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Tr igonomet r ic  series of the  t y p e  

(0.1) ~ q n  (t)(an cos n x +  bn sin nx), 
1 

where  {~n(t)} denotes  the  sys tem of R a d e m a c h e r  funct ions,  have  been ex tens ive ly  

s tud ied  in order  to d iscover  p roper t i e s  which belong to " a lmos t  a l l "  series, t h a t  is 

to say  which are  t rue  for a lmos t  all values  of t. 1 We propose  here to  add  some new 

con t r ibu t ions  to the  theory .  

C H A P T E R  I 

Weighted Means of 0rtho-normal Functions 

1. Le t  ~ ,  ~2 . . . .  ,9~n, . . .  be a sys tem of funct ions  of x, o r tho -norma l  in an  

in te rva l  (a, b), and  let  Yl, Y2 . . . .  , yn, . . .  be  a sequence of non-nega t ive  cons tan t s  

such t h a t  

Sn = y l + y 2 + ' "  + Y .  

increases indef in i te ly  as  n t ends  to  + or U n d e r  wha t  condi t ions  does the  mean  

Rn (x) = Yl q~l (x) + Y2 ~oi (x) + . . .  + yn ~on (x) 
yl  + y ~ +  .-. + y .  

t end  to  zero a lmos t  everywhere  2 as n-~  oo? 

i Cf., in particular,  PALEY and ZYGMUND, Prec. Cambridge Phil. Soc., 26 (1930), pp. 337-357 
and 458-474, and 28 (1932), pp. 190-205. 

2 We write briefly Rn (x)-~0 p.p. ("presque par tout") .  
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I t  has been proved 1 that, if ~ n = e  ~ ,  then R~(x)~O p.p., provided ~ = 0 ( 1 ) .  

The proof is applicable without change to any ortho-normal uniformly bounded 

system. As it was observed in the paper, some condition on the 7~ is indispensable, 

since, e.g. 
n 

2 - ~ 2  k e ~k~ 
1 

does not tend to zero almost everywhere as n ~ .  

More recently, Hill and Kakutani  have raised the question whether Rn (x )~0  p.p. 

if {~0n} is the Rademacher system, the sequence 7~ is monotonically increasing and 

"Tn = o (Sn). The answer has been proved by several authors to be negative. 2 

Here we propose to give a sufficient condition in order that  R~ (x)~0  p.p., when 

{~n} is any uniformly bounded ortho-normal system in (a, b) and to prove, by the 

consideration of the trigonometric system, that  this condition is the best possible one. 

Let us observe first of all that  the condition ~,~ = o  (Sn) is trivially necessary in 
b 

order that R=(x)-->O p.p. F o r  ~2n/Sn= f R n ~ d x ,  and the uniform boundedness of 
a 

the ~0~ implies that  R~0~-+0 p.p., boundedly, whence ~,/Sn-~O. 

As we shall see, the condition ~, =o(Sn)  is, in general, not sufficient. Let us 

note, however, that  in the case y ~ = e  t ~ ,  if the sequence {y~} is monotonic and 

~,,, =o  (S,), then R~ (x)-*0 everywhere, except for x--0 .  This follows from an appli- 

cation of summation by parts to the numerator of R,.  

2. (1.2.1) Theorem. Let {~,} be an ortho-normal and unijormly bounded system 

in (a, b), and let ]q)n]<_ M. Let ~ (u) be a monotonically increasing /unction o/ u such 

that u/w (u) increases to + c~ and such that Y~ 1/k~o (k)< ~ .  Then Rn (x)-)O p.p., pro- 

vided ~ = 0 {S~/eo (S~)}. 

Proo|. Let us recall first that, if we set 

~ , * = M a x ~  (l<_m<_n), 
m 

then also ~*~ = 0 {S,/r (S~)}. For we have ~* = yp, where p = p (n) _< n is non-decreasing. 

Let Q~ = S~/w (S~). Then 

1 Cf. R. SALEM, The absolute convergence of trigonometric series, Duke Math. Journal, 8 (1941}, 
p. 333. 

2 See TAMOTSU TSVCHIKURA, Prec. o] the Japan Academy, 27 (1951), pp. 141-145, and the re-  

s u l t s  quoted there, especially MARUYAMA'S result. 
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Q~ Qp Q ~ -  Qp 

and our assertion follows. 

Consequently one also has 

(1.2.2) 

N 

= 0  1 

Let us fix a number  0 >  1 and let Nj be the first integer such tha t  

0 j < S~ s < 0 j+~. 

Nj always exists for ?" large enough. For otherwise there would exist arbitrari ly large 

integers j such that  for a suitable m we would have OJ<_Sm < 0 jfl  and simultaneously 

Sm 1 "~ 0 "i 1 This would imply 

OJ Oj 1 0 - 1  
7,. > O j - O j  ~, 7m> 0 j '~ _ 0 2 , Sm 

contradicting the assumption ~ ,~ -o  (S~). 

Now, by (1.2.2), 
b 

__1 
a 

by the hypothesis Z 1 / k w ( k ) <  ~ .  Hence RNj-*0 p.p. 

Let  now ~ < m < N j ~ l .  One has 

N t r a  

R~ = I ~- Nj+I 
S~ Sm 

7V . The first ratio tends to zero almost everywhere since Sm ~ s the second one has 

absolute value less than  

I t  follows tha t  

Nj~ 1 

7n S~j S~) < M 0j+2 - 0j 
M Nj~I M ~ I -  

SNj S~j 0 j 

almost everywhere. 

M (02 - 1) .  

lim sup ] Rm ] -< M (0 ~" - 1 ) 

Since 0 can be taken arbitrari ly close to 1, the theorem follows. 
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3. We shall now show that  the preceding theorem no longer holds if we allow 

Z 1/keo (k) to diverge. This will follow from the following 

(1.3.1) Theorem. Given any /unction oJ (t) increasing to + o~ with t and such that 

~o)(t) = ~ ,  and assuming /or the .sake o/ simplicity that ~o (t)/log t is monotonic, there 

exists a sequence ~ such that 7~ = 0 {S=/w (Sn}} and that 

aim sup 171 e'X + "'" + 7.  e'~Xl = 1 
)'1 + "'" +Tn 

almost everywhere. 

We shall first prove two lemmas. 

{1.3.2) Lemma. Let {m~} be an increasing sequence o/ integers such that mq/q is 

monotonic and Y~ 1/mq = ~o. Then 

l imsup  1 sin_qmqx[ 
m-~ s i n q x  [ = l  

almost everywhere. 

Proof. By a well-known theorem of Khintchine, the conditions imposed on the 

sequence {mq} imply that  for almost every x there exist infinitely many integers p 

and q such that  (1) 
�9 

Hence, fixing an x having this property, one has 

Iqx-2~pl--~./mr 
[ q m q x -  2zr pmq]=~q 

for infinitely many p, q, with eq-*0. Hence also, for infinitely many values of q, 

1 sin qmq x 1 sin eq 
mq sin qx mq sin (~q/mq)' 

and the lemma follows. 
I sin q2x 

As a simple special case we get that  lim sup q sin q x = 1 p.p. 

Remark. If Z 1/mq< ~ ,  one has lira 

from the fact that  

s i n q m q x  O p.p. 
mq sin qx 

This follows immediately 
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271 

__1 f \(sinqmqxlZdx-O(1)'sin 
m~q qx / - 

0 

(1.3.3) Lemma.  Let {mq} be an increasing sequence o/ integers such that mq/q is 

monotonic and that E 1/mq = cr Let us set, /or each positive integer q, 

and 

Then 

almost everywhere. 

Proof. One has 

h = h ( q ) = q m q + l ,  k = k ( q ) = ( q §  

Fq (x)=e hq~x-~-e(h ~ l)qt~ + ... + e kq~ 

l i m  sup I F~ (x)I/m~ = 1 

= e n q ~ z e ( k  h! l )q ix  1 
Fq e q~x - 1 

IFqI=I sin~(k-h+l)qxsTn-~qx =[  sin �89 

and it is enough to apply  the preceding lemma. 

Proof of Theorem (1.3.1). I t  will be sufficient to consider the s tronger case in 

which o9 (t)/log t increases to ~ .  We write o9 ( t )= log  t 2(log t) where 2 (u) increases 

to c~ with u. Observe tha t  

u ; t (u)  t log t 2  (log t) .1 to9(t) " 

Hence we can find an increasing sequence of integers mq such tha t  mq/qX(q) in-  

creases to ~ and tha t  Z 1 /mq= cr 

By  ~o (q) we shall denote  a funct ion of q increasing to cr as slowly as we wish 

and which we shall determine later on. 

Let  us now set, for each integer q, as in L e m m a  (1.3.3), 

h = h ( q ) = q m q  + l, k = k ( q ) = ( q +  l)mq 

and let 

e q ~ q )  
7 ,  = = c  a for n = v q  (h<v<_k) 

ma 

7 n = O  for n * v q  ( h q < n < k q ) .  
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We note  that ,  F a being defined as in L e m m a  (1.3.3), there  is no over lapping of t e rms  

o f  F a and Fq+l, since q k ( q ) < ( q + l ) h ( q + l ) .  

Let  us now wri te  

~q 
C 1 F~ + c a F 2 + ... + ca Fq 

C z m I + C 2 m~ + .. �9 + cq m a 

This rat io is equal  to R .  (x) for n = q k ( q ) .  

One has 

(Cl F z  -~- " '"  -~ Ca-1 Fq 1) e -ar + Fa/mq,  

~q = (cz ml..~ ..._JrCq_l mq_l)e-qq~(q)_~ l 

and since 

one has 

q 1 

I C l F l + " ' + c q  aFq 1 ] < - c z m l + ' " + c q  ] m q ] =  ~ek~(~)=o(eqr 
] 

lim sup [~r ] = lim sup [Fq [/ma= 1. 

On the other  hand,  if e nix occurs in Fq, 

Hence  

eaq~(a) 
~'n-- 

rnq 

a 1 
and S , >  ~ ekq~(k)>e (a 1)~(q z) 

1 

Since mq/q,~(q) increases to ~ ,  we can choose ~(q)  increasing slowly enough in order 

to  have  

. . . . . . .  mq . . . .  > eqq~(q) - ( q  l )~(q l) 

q ~v (q)), [q r (q)] 

Therefore,  

Bu t  

I t  follows t h a t  

V~_ < 1 

~s,. - q ~ (q) ~ [q ~ (q)] 

q 

Sn < ~ ek~(k)'~ e q~(a)" 
1 

S .  log S .  2 (log S~ 

which proves  the theorem.  
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4. As we have mentioned above, the case of Rademacher functions has been 

completely investigated by Maruyama and Tsuchikura. We give here different proofs 

of their two results. 

(1.4.1) Theorem. Let q~l, ~~ . . . ,  q~n, ... be the system o/ Rademacher /unctions. 

Then ~ n = o  {S~/log log S~} is a su//icient condition in order that Rn-~O p.p. 

We have, as in Section 2, 

N 

S~ o log SN log log SN' 

where eN-~0. Since for the Rademacher functions one has 

1/N ~ek N k 
(1.4.2) f [ ~ , n q ~ n )  d x ~ k ~ ' ( ~ y : )  ( k : l ,  2 . . . .  ) 

0 

it follows that,  A being a positive constant, 

(ARN)2kdx<- A"k" "S~ ~ \log log SN] " 

0 

Let us define k = k ( N )  to be the integral part of (eA2eN) l log log SN. We get 

1 log log S N 

o 

Let us now take 0 > 1  and define, as in Section 2, a sequence {Nj} such that  

0 j<-SNj<O j ' l .  Let k j=k(Nj) .  One has, for j large enough, 

Hence 

so that  

1 
r I ~ 2 .  
e A2 ~Nj 

1 

f (A RNj) dx  = 0 (i ) 
0 

(A RNj)2kJ < oo p.p. 
t 
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I t  follows tha t  lim sup RN s ~< A 1 p.p., and  so also tha t  lim RNj = 0 p.p., since A can 

be taken arbi trar i ly large. F rom here we proceed, wi thout  change, as in Section 2. 

Remark  1. An al ternate  proof could be given using an extension of the Law 

of the I te ra ted  Logar i thm pertaining to the case of Rademacher  functions, bu t  the 

proof given above is simpler and more direct. 

Remark  2. The theorem can obviously be extended to other  orthogonal systems 

for which the inequali ty of the type  (1.4.2)holds,  e.g. to  certain types  of independent  

functions, and also lacunary  t r igonometr ic  functions, such as cos 2 n x. 

5. (1.5.1) Theorem. Theorem (1.4.1) become~ ]alse i/ we replace in the assumption 

the order "o"  by "O".  More precisely, there exists a sequence {?~} such that 

? ,  = 0 (S , / log  log S~), 

and such that lim sup R ,  > ~ p.p., cr being any ]ixed constant less than 1. 

(1.5.2) Lemma.  Let q)1, q~2, ... be the system o] Rademaeher ]unctions and let {ran} 

be an increasing sequence o[ integers such that 

Then, writing 

one has 

An=mr--ran 1 < l ~  
- log 2 

m n 

m n l t l  

lim sup Fv/Ar  = 1 p.p. 

The set in which F n =  Ap has measure 2-~v. Hence the set where F n *  An is 

of measure 1 - 2 - a n ;  and the set Ep where Fn, Fr~a, ... are all different from At,  

An ~1,-- . ,  respectively, is of measure 

I~ ( 1 - 2 - ~ q ) = 0  
q - p  

by  the hypothesis  on Aq. If,  for a given x, lira sup F r / A  n < 1, then,  clearly, x belongs 

to some E n. Since the sets E r are all of measure zero, the l emma follows. 

We are now able to prove Theorem (1.5.1). Preserving the nota t ion  of the lemma, 

we take  a sequence of integers m n satisfying the conditions 

l o g  p < mp - mp_ 1 < [ log  p 
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so tha t  the condition A n _< log p/log 2 is satisfied. Let us now take, with A > 1, 

y .  = A r / A r  = %, for mp-1  < n < mr, 

and consider the ratio 

cl F1 + c2 F2 + "" + cn F r  
cl A1 + c2 A2 + "'" + cr An 

which is equal to R~ (x) for n = m n .  One has 

( C l F  l + ' ' ' + c  v 1 F p _ I ) A - n  + F v A v  1 

On = ( C l A l + . . . + C n _ l A n _ i ) A - n + l  

HOW, 
p-1 

I A n ( c l F 1  + "'" +Cr-1Fr -1 ) l<-A  -"  (Cx A1 + "'" + cr-1Ar 1)=.4 r ~ IA k" 
1 

Hence, if A is large enough, using the lemma, 

lim sup ~p > ~r p.p. 

On the other hand, if ~ occurs in Fv, then 

7~ = Ap A;  1 < 3.AV/l~ P, 

Stop_ 1 < Sn <- Stop, 

so that  log log S ~  2 log p, and y~ = 0 {S,/log log S~}. 

253 

(1.6.1) Theorem. I l 7 1 + 7 2 + . - . + 7 , + . . .  is a convergent series with positive terms, 

and i/ ,.~, denotes the remainder 7 ,  +Tn+l + " " ,  then 

R .  (x) = 7n ~0n -4- 7n+1 ~0n+l -4- " "  

7" + 7-+1 + "'" 

tends to o p.p., provided 7 . = 0  {g . /o  (1/~r 

The proof is identical with tha t  of Theorem (1.2.1). 

6. To theorems about  the partial sums of divergent series often correspond theo- 

rems about  the remainders of convergent series, and the results of this chapter admit  

of such extensions. We shall be satisfied with stating here the following analogue 

of Theorem (1.2.1), in which the functions co(u) and ~n have the same meaning 

as there. 
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C H A P T E R  I I  

The Law of the Iterated Logarithm 

1. As proved  by  Kolmogoroff ,  the  law can be s ta ted  as follows. Let  

Zl~ 22~ . . . ~  Zn~ . . .  

be independent  r andom variables  with vanishing mean  values and  with dispersions 

b l, b 2, . . . ,  bn, . . . ,  respect ively.  Le t  

N N 

S~ = ~ zk, B~v = ~ bk. 
1 1 

Under  the assumpt ions  
1 

B~v-~ ~ ,  I zu I -< m N =  o iog log B~f  

one has, with probabi l i ty  1, 

SN 
(2.1.1) lim sup (2 B~ log log BN) t = 1. 

The  result  lim s u p ~  1 has been extended by  the au thors  to the case in which 

the series of r andom variables  is replaced by  a lacunary  t r igonometr ic  series 

Y~ (ak cos nk x + b~ sin nk x), 

with nk+l/nk > q > 1. l Here  we propose to give a theorem equiva len t  to Kolmogoroff ' s ,  

valid for  a lmost  all t r igonometr ic  series of the  type  (0.1). 

(2.1.2) Theorem.  Let us consider the series 

(2.1.3) ~ (t) (a~ cos n x  + b~ sin n x ) =  ~ cp~ (t) Am (x), 
1 1 

where {qg, (t)} i8 the system o/ Rademacher ]unctions. Let 

N 

1 

N 

SN = ~,cpk (t) Ak (x), 
1 

and let co (p) be a ]unction o/ p increasing to + oo with p, such that p/o~ (p) increases 

and that Z 1~pro(p)< ~ .  Then, under the assumptions 

I See Bulletin des Sciences Mathdmatiques, 74 (1950). 
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f (2.I.4) B~N--~ c~, C2N = O /~- (B~)[ 

one has, /or almost every value o/ t, 

SN 
lim sup i2B~logl-ogB~i~ = 1 

almost everywhere in x, that is to say the law o/ the iterated logarithm is true/or almost 

all series (2.1.3). 

The proof will be based on Theorem (1.2.1). 

, 

in which t is the variable, gives 

N 

~ A,  (x) ~ (t) 
1 

(2.2.1) lim sup { N ~ o }~ 
2 al (x)log log (x) 

For a given x, the law of the iterated logarithm applied to the series (2.1.3) 

p.p. in t, provided 

1, 

N 

(2.2.2) ~A~ ( x ) ~ ,  A~ (x)=o . . . . . . .  
1 ( l o g l o g ~ A ~ ( x ) )  

One has 

A,~(x)=an cos n x  + bn sin nx=cn  cos ( n x - ~ , ) ,  

A~ (x) = �89 c] {1 + cos (2 nx  - 2 a,)}. 

Hence, by Theorem (1.2.l) and on account of the condition c~ = O {B~/co (B~)}, one has 

N 

(2.2.3) Bh2~A~  ( x ) ~ l  p.p. in x. 
1 

On the other hand, condition (2.2.2) is satisfied p.p. in x, because Z 1/pco (p)< 

and co(p) increasing imply log p /w(p )~O.  Hence 

[ / 
= o/ og g 8N/'  

which together with (2.2.3) implies (2.2.2). 

Finally, (2.2.1) and (2.2.3) give 

SN 
lim sup (2 B~v log log BN) ~ = 

p.p. in t and x, and so also the theorem as stated. 
17- 533807 .  Acta Mathematica. 91. I m p r i m 6  le 30 o c t o b r e  1954. 
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3. Additional remarks, a) We do not know whether the condition 

o/ { c~= /~ (B~)! 

with Z l /p ro  (p)< cr can be improved or not  (this condition is certainly satisfied if 

cn=O(1)) .  But  the argument used here would break down if • 1/pro(p) were di- 

vergent. This follows from Theorem (1.3.1). 

In the rest of this chapter the function eo (u) will be supposed to have the prop- 

erties assumed in Theorem (2.1.2). 

b) The following is an analogue of Theorem (2.1.2) for power series 

(2.3.1) ~ 0 .  (t) cn e ' n~, 
1 

for which we set 
N N 

(2.3.2) C2 = Z I c~ ], SN = ~ q~k (t) ck e' ~ ~ 
1 1 

(2.3.3) Theorem. For almost every t we have 

(2.3.4) lim sup (C2N log log C,) t = 1 

almost everywhere in x, provided 

We note tha t  the factor 2 is missing in the denominator in (2.3.4). 

Let  us set SN = UN + i V~. From Theorem (2.1.2) it follows that  for almost every 

point (x, t) and every rational a we have 

U~ cos at~t+ V~ sin r162 
lim sup (C 2 log log CN) t 1, 

and from this we easily deduce that  (2.3.4) holds for almost every point (x, t) 

(compare a similar argument used in Salem and Zygmund, loc. cit.). 

c) Kolmogoroff's result quoted at the beginning of this chapter has an analogue 

for the case in which the series Z bk converges. Writing R~=ZN+Z~r f12= 

=bN+bN+l+ " " ,  one has, with probability 1, 

lim sup R , / ( 2  fl~ log log 1/fl~)t = 1 

provided I : "  I -~ o {fl /log log (1//3.)} t. 
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Combining this result with the proof of Theorem (1.2.1), and using Theorem 

(1.6.1) we get the following 

(2.3.5) Theorem. Let us suppose that the sum ~, (a 2 + b~)corresponding to the series 

(2.1.3) is [inite, so that the series (2.1.3) converges at almost every point (x, t), 1 and let 

us set 
oO oO 

C 2 2 2 = a . + b L  ~= �89  R~= Y~n(t)A~ (~). 
N N 

Then, /or almost every t, we have 

RN 
lim sup (2 fl~ log log 1/fl,~) ~' 1 

almost everywhere in x, provided 

o l  " (2.3.6) C2N = [ ~ / - ~  [ �9 

An obvious analogue holds for power series (2.3.1), with Zlckl ~ finite. 

C H A P T E R  I I I  

The Central Limit  T h e o r e m  

1. In this Section, to (u), e~, BN, S~ have the same meaning as in Theorem (2.1.2). 

(3.1.1) Theorem. Under the same conditions as in Theorem (2.1.2), namely 

B~-~ oo, ~ = 0 ~ B~ 
/to (B~,)} ' 

the distribution /unction o/ 8~r162 tends, /or almost every t, to the Gaussian distribution 

with mean value zero and dispersion 1. 

I t  is easily seen that  the assumptions imply also 

l<k_<N 

We shall suppose, for the sake of brevity, that  the series Y~k (t)A~ (x) is a purely 

cosine series (our proof is immediately adaptable to the general case by writing 

an cos n x + b n  sin n x = c ,  cos ( n x - c r  and it will be convenient to replace the var- 

iable x by 2yrx,  so that  the series becomes ~q~k(t)ak COS 2 g k X .  

1 See PAL~.Y and  ZYO~UND, lee. cir., or  Zygmund ,  T r i g o n o m e t r i c a l  Ser/es, p. 125. 



258 R.  S A L E M  A N D  A, Z Y G M U N D  

For  a given t, let EN (y) be the set of points  x of the interval  (0, 1) at  which 

SN/BN<~y, and let FN (y) be the measure of EN (y). Then FN (y) is the  distr ibution 

funct ion of SN/BN. I n  order to prove our  theorem it will be enough to prove tha t  

over every finite range of )t the characterist ic funct ion of FN (y) approaches uniformly 

tha t  of the Gaussian distribution, for almost  every  t. This characterist ic funct ion is 

(3.1.2) f e '~y dFN (y)= f e'~SN/'Ndx, 

and we have to prove tha t  for almost  all t the last integral tends to exp ( - � 8 9  

uniformly over any  finite range of 2.1 

Let  us now fi• t. Since 

one has 
d = (1 + z) e~ ~'' oc,~,)  as  z ~ 0 ,  

N .2 a k  
(3.1.3) e I '~SNIBN: 1-I 1 - -  (t) cos 2~kx  exp - � 8 9  ak k=l +~BN 7zk ~ COS2 27~kx +O(1)  , 

where the term o (1) tends to  0, uniformly in x, as N ~  oo, since ) .= O(1) and  

max a~=O{ B~B~}=o(B~ ). 
l ~ k ~ N  

Observe now tha t  

. 2 a k  I~ 1 
k ~ l  k = l  

and that,  writing 

T -  B~ c ~  1 2 ~ c o s 4 7 c k x = l + ~ N ( x ) '  

the measure of the set of points  at  which [~:N(X)]>--d>0 is not  greater  than  

1 

~ ~ f ~ , a x = ~ - ~ ( ~ +  ... +a~)B2, 
0 

and  tha t  the last quan t i ty  tends to 0 as N - >  c~. 

Hence, with an  error tending to zero (uniformly in 2 ~ O ( 1 ) ) a s  N - - ~ ,  the 

integral (3.1.2) is 
1 

0 

I Since the exponential function is continuous, the uniformity of convergence is (as is very 
well known) not indisponsab[e here. 
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and in order to prove  our  theorem we have  to show that ,  p.p. in t, 
1 

(3.1.4) ~+r f ~I(11 + iek ~vk (t) cos 2ztkx)dx= 1, 
0 

where we write e~ = ek (N) = 2 ak/B~. 

2. Le t  us set 
1 

JN(t)= f ~l (l+iekq~k(t) cos2~kx)dx--1 
o 

1 

= (l+iekq~k(t) eos2ztkx)--I dx. 
0 

N 

Writ ing 1-] (x) = 1-I (1 + i e~ ~k (t) cos 2 ~ k x), one has  
1 

1 1 

[J~ (t) l z= ff  {H (x)- 1} {~I(y)-l}dxdy 
o o  

and 

Now 

and 

Hence 

1 I I 1 

f IJN(t)l 2dt= ffdxdyf(1-I (x)- 1} ( F I ( y ) -  1}dt. 
0 O 0  0 

1 1 

S[I(x)dt= f~(y) dt=l 
0 0 

1 l 

VI (x) 1-] (y) d t = { 1 + e~ cos 2 ~ k x cos 2 ~e k y 
o o 

+ i e k  (cos 2:~ k x -  cos 2:~ky)~k (t)}dt 

= l-I(1 +*~ cos 2 ~ : k x  cos 2 g  Icy). 
1 

1 1 1 

f 'JN(t)12dt= f ,Idxdy{~ (l+*~ c~ 2gkxc~ 2~ky)-l} 
0 0 0 

1 1 

=~f~l(l+*~cos2~kxcos2~ky)dxdy-1 
0 0 

1 1 

0 0 
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Using the fact  t ha t  e = = l + u + � 8 9  2e ~=, 0 < ~ < l ,  with 

N 

u =  ~e~ cos 2 ~ k x  cos 2 ~ k y ,  
1 

1 1 

and  observing tha t  I u [ < ~ e~ = 2 )3, one has, since u d x d y = 0, 
1 

0 0 

1 1 1 

j ff(  )" ]JN (t) l 2dr < �89 e ~'  _ e ~ c o s 2 ~ t k x c o s 2 z r k y  d x d y  
o 0 0 

N 

N ~ a ~  
= ~ d~'Y.  e~ = t ;t'  e ~ '  1---, 

and since 

one has 

^r B~ ) 
max a~=Ul---~N)t  , l < k < N  

1 }. 
0 

Let  us now fix a number  0 >  l, and let Nj be the first integer such tha t  

0 j_<B~j< 0 j~l I n  Chapter  I ,  in connection with the  proof of Theorem (1.2.1), we 

showed tha t  such all integer always exists for j large enough. Thus  

! 

0 

Since Y, 1/p o9 (p) < c~, we have Z 1/o9 (0 j) < cr and thus JNj 

almost  every t. We have therefore shown tha t  

1 

f el~S~/SNJ d x ~ e - ~ a  ' ' 
0 

tends to zero for 

p.p. in t, and uniformly over any  finite range of 2. 

. 

and let 

Let  us now consider an  integer m such tha t  

N j < m < N j + t  

1 1 
|]~2 N f B  N -7 / ~  f p_')'SmlBmdx_ f e j J~X. 

0 0 
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One has 

Hence 

where 

1 

[A[_< ~ B N /  
o 

d x ,  

1 

- ~ L Bm +SN, B,. JBN, dx  

1 1 

223 f 2 2 ( B + + l - B +  )~ (~o  . 
< - -  ( S . , - S ~ j ) 2 d x + 2  

o 0 

1 1 

+ 2 22 (BNI + 1 - 

__< 4 ~2 B~s+1 - B~s  < 4 ,;t 2 0j +2 _ 0 j . . . .  4 ~2 (0 2 _ 1 ) .  
B~j 0 j 

1 1 
f e ~ S m / S m d x ~  r I ~ S N / B  N -- Je J J d x + A ,  
o 0 

1 

IAl<~2[~t[(02- 1) i and lim f e '~SN/SN'dx=e  ~"" 
0 

Since 0 can be taken arbitrarily close to 1, this proves that  

1 
f ~ . S m / B m  ~ _ 1]r 

f e dx  e p.p. in t, 
0 

uniformly over any finite range of 2, and this completes the proof of Theorem (3.1.1). 

Whether the condition c~= 0 {B~/eo (B~)} is the best possible one, we are not 

able to decide. 

4. The result that  follows is a generalization of Theorem (3.1.1). 

(3.4.1) Theorem. The notation being the same and under the same conditions as 

in Theorem (3.1.1), the distribution function of SI~/BN on every fixed set G of positive 

measure tends to the Gaussian distribution, for all values of t with the possible exception 
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o/ a set o/ measure zero which is independent o/ the set G. More precisely, EN (y) being 

the ,set o/ points x in (0, l )  such that S N / B N ~ y ,  and 

meas  [EN (y)" G] 
F N ( y ,  G )  = 

meas  G 

FN (y, G) tends to the Gaussian distribution with mean value zero and dispersion 1. 

We have  

e ~ d F g ( y ,  G) ]Gllfe~SNJ'~dx, 
d 

- 0 r  G 

where ]G I denotes  the  measurc  of G, and  we have  to  p rove  t h a t  the  l a s t  express ion 

tends  to e , un i fo rmly  over  any  f ini te  range of ~, for all  values  of t excep t  in a 

set  Ht of measure  zero, Ht being i n d e p e n d e n t  of G. 

Our theorem will be es tab l i shed  if we prove  i t  in the  case when G is an  in ter -  

val  with ra t iona l  end points .  F o r  then  i t  would be p roved  when G is a sum of a 

f ini te  set of in te rva ls  I ,  whence we would get  the  resul t  when G is the  mos t  general  

open set in (0, l ) .  Since every  measurab le  sct is con ta ined  in an  open set  of measure  

(liffcring as l i t t le  as we please,  we would ob ta in  the  resu l t  in the  general  case. 

W i t h o u t  loss of genera l i ty ,  we m a y  assume t h a t  I is an  in te rva l  of the  form 

(0, a), where :( is r a t iona l ,  0 - : : r  1. Suppose  now we can prove  t h a t  for a given ~r 

(3.4.2) ( �9 

0 

a lmos t  everywhere  in t, t h a t  is  to say  with  the  excep t ion  of a set Ht (:r measure  

zero. Our resul t  will then  follow, since the  set  H e =  ~ H ~  (a), s u m m a t i o n  being ex- 

t ended  over  all r a t iona l  numbers  0(, is also of measure  zero. 

Thus we have  to prove  t h a t  (3.4.2) is, for a g iven :r t rue  p.p.  in t. As in the  

proof of Theorem (3.1.1), i t  is enough to show t h a t  

�9 1 
0 

tends  to zero p.p.  in t, where  sk =]r and  N--> ~ .  

The proof  proceeds  exac t ly  in the  same w a y  as  before un t i l  we ge t  

N 
1 �9 a ~,  2 c o s 2 n k x c o s 2 , k Y  

0 0 0 
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Writ ing now again e" = 1 + u-~- �89 u 2 e ~u, 0 < ~/< 1, we observe tha t  

and thus 

Not ing also tha t  

f f  e~ sin2 2 ~ k ~  e~ e~ cos 2 ~ k x  cos 2 : ~ k y d x d y  - 4~2]c2 <k2 
0 0 

_ ~ .... 0 1 max a~ = < 2 B ~  l<k<N (o-- 
0 0 

wc get 

~ 1 1 

0 0 0 0 

d x d y ,  

1 

f 
0 

I KN (t)12 dt  = 0 {1/o9 (B2N)}, 

from which place the proof proceeds as before. 

5o 

(3.5A) 

Theorems (3.1.1) and (3.4.1) have analogues for power series 

5"ck e ' z ~  k ~ q ~  ( t ) ,  
1 

whose partial sums we shall again denote by S N ( x ) .  

(3.5.2) Theorem. I [  

N 

c~ = �89 y. Ir I ~, ~.~=~ o {e~,/~o (c~)}, 
1 

then the two.dimensional distribution /unction o/ SN (x)/CN temis, /or almost every t, to 

the Gaussian distribution 

l f f ~"+""d2d/~. 2:~ e 
~ -e,,o 

I t  is enough to  sketch the p roof )  Le t  Ck=lckle'~'k, and let UN and VN denote, 

respectively, the real and imaginary  par ts  of SN. Let  FN (~, ~) denote the measure of 

the set of points x, 0-< x < l, such tha t  UN (x)/CN <-- ~, VN (X)/CN__ ~l, simultaneously.  

The characteristic funct ion of FN is 

I See also the authors' notes "On lacunary trigonometric series" part I, Proc. Nat. Acad., 33 
(1947), pp. 333-338, esp. p. 337, and part II, Ibid. 34 (1948), pp. 54-62. 
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+ o o  +r 1 

- o o  oo O 

1 
= ] e x p  iCh ~ Ick[Dt cos (2:~kx+~k)+t t sin (2:~kx+~k)]~vk (t) dx 

O 

' t N } = f e x p  iC~ ~ ( ~ + / ~ ) ~ [  c,~l cos ( 2 ~ k x + 0 r  (t) dx, 
0 1 

t 
where the r162 now also depend on 2 and /~. 

To the last integrand we apply a formula analogous to (3.1.3) and we find tha t  

for ;t ~ + / ~  = 0 (1) our integral is 

1 

1 
0 

with an error tending uniformly to zero. The second factor here tends to 1 p.p. in 

t, since after an obvious change of notation it reduces to the integral in (3.1.4), 

provided in the latter we replace cos 2 n kx by cos i2 g kx + a~), which does not affect 

the validity of (3.1.4). Hence, p.p. in t, the characteristic function of FN(~, ~)tends 

to e ~(~'~t'~), which completes the proof of Theorem (3.5.1). 

I t  is clear that  the conclusion of the  theorem holds if we consider the distri- 

bution function of SN (x)/CN over any set of positive measure in the interval 0_< x < 1. 

This result and Theorem (3.4.2) have analogues in the case when the series are 

of the class L ~, i.e. when the sum of the squares of the moduli of the coefficients 

of the series is finite. Then, instead of the normalized partial  sums we consider the 

normalized remainders of the series and show that,  under condition (2.3.6), the distri- 

bution functions of these expressions tend, p.p. in t, to the Gaussian distribution. 

The proofs remain unchanged. 

6. So far we have been considering only the partial  sums or remainders of series. 

One can easily extend the results to general methods of summabil i ty  (see, for example, 

the authors '  note cited in the preceding Section, where this is done for lacunary 

series). We shall, however, confine our at tention to the Abel-Poisson method, which 

is interesting in view of its function-theoretic aspect. 

(3.6.1) Theorem. Suppose that Z (a~+b~)= ~ ,  and let 

c~=a~ +b~, B2(r)=�89 Y.c~r ~,  0 _ < r < l .  
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Then, as r - * l ,  the distribution /unction o/ 

/r (X) = Z (ak cos 2 ~r k x  + bk sin 2 r: kx)  q~k (t) r ~ 

tends, p.p. in t, to the 

provided 
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Gaussian distribution with mean value zero and dispersion 1, 

m a x  (c~ r 2k) = 0 (B 2 (r) /w (B 2 (r))), 
l _ < k < o o  

in particular, provided ck = 0 (1). 

The proof  is the  same as t ha t  of Theorem (3.1.1). Extens ions  to power  series, 

sets of posi t ive  measure  and  series of the  class L 2 are s t ra ightforward.  

C H A P T E R  I V  

On the Maximum of Trigonometric Polynomials whose Coefficients 
have Random S i g n s  

1. In  this chapte r  we shall consider series of the form 

(4.1.1) ~ rm q~m (t) COS mx ,  
1 

where (~m (t)} is the R a d e m a c h e r  system, and where we consider purely  cosine series 

only to s implify writing, there being no diff iculty in extending  the results to the 

series of the  form Zr,~q~m(t)cos ( m x - ~ ) .  

Writ ing  
n 

P .  = P~ (x, t )= ~ rm qJ.~ (t) cos rex, 
1 

we consider 
M~ = M~ (t) = m a x  I Pn (x, t)I, 

x 

and  our  ma in  prob lem will be to find, under  fairly general conditions, the  order  of 

magni tude  of M~ for a lmost  every  t; more  exact ly,  to de te rmine  a funct ion of n, 

say,  ~ (n), such t ha t  

Mn (t) _< M~ (t) < lim sup C (4.1.2) c_< lim inf ~ (n) - ~ (n )  

a lmost  everywhere  in t, c > 0 and  C being constants .  

Analogous results will be given for power  series of the  fo rm 

(4.1.3) Z rm e t(mx +2~m), 
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where the phases ~,, are variable. The Rademacher functions are replaced here by 

the Steinhaus functions e 2~i~, which are functions of a single variable t, 0 ~ t ~ < l ,  

and are obtained from mapping this interval onto the unit cube 0 ~ m _  < 1 of in- 

finitely many dimensions (see Steinhaus, Studia Math., 2 (1930), pp. 21-40). 

Part 1. Rademacher Functions 

2. 

(4.2.1) Lemma. 

Cm are real constants. 

Proof. 

We begin by proving ~ number of lemmas which we shall need later on. 

n 

Let / ,  = ~. cm ~)m ( t ) ,  where {~m} is the Rademacher system and the 
1 

n n 
Let Cn= ~ c~, Dr = ~ e~ and let ~ be any real number. Then 

1 1 

1 

0 

The q~m being independent functions, 

1 1 

f O f  ne)'Cm~-e)lCm earndt= e~Cmq'mdt= H . . . . .  
1 2 

0 0 

Cm , em 
-- 1 + --g!---r ~ + . . . .  

1 

Z ' " c ~ " ]  " ,,- 
= H e P ' ~  = e 

Since (2 p)! k 2 r p!, one has 

1 

f e~fn 

o 

In the opposite direction, 
1 

0 

Using the fact that  for u > O  one has l + u > e  u ~u,, one gets 

1 

n 1.~ 2 1-4 4 
eat. d r>  l i e  ~^ ~m ~^ em> e~"Cm J"Dm, 

1 0 

which completes the proof. 1 

2 
X L a t e r  on  w e  shal l  n e e d  t h e  l e m m a  in t h e  ca se  w h e n  n =  c~ a n d  ~ c m  < ~ .  I t  is c l e a r  t h a t  

t h e  i n e q u a l i t i e s  of  t h e  l e m m a  h o l d  in t h i s  case ,  s ince  ~ Cm q)m c o n v e r g e s  a l m o s t  e v e r y w h e r e .  
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The l emma which follows is well known bu t  we s ta te  it in order  to avoid  

cons tant  repeti t ions.  I t  is s ta ted  for funct ions of a single var iable  but  it clearly holds 

for functions of several  variables.  

(4.2.2) Lemma.  Let g(x), a<_x<_b, be a bounded real /unction. 

b 

19(x)[<_A, ( b - a ) - l f g ~ ' ( x ) d x = B .  
a 

Then, /or any positive number ~, 

b 

f ( b - a )  -1 d'~ d x < _ l + # / B §  

b 

In  the ease when f g (x )dx  = O, this inequality can be replaced by 
g 

b 

f B .A ( b - a )  -1 e"~ dx<_l + -A~e . 
a 

Now 

Hence  

Proof. One has 

g ~ gP 
e "g  = 1 + l i  -~ . . . . .  ]- p i - -  -i . . . .  . 

b b 

d x ~  A v 2B= B Ap" -- y4~ 

Suppose that 

b 

( b - a )  l f e"' dx 
a 

< 1 +/x~/B + B A  -2 ~ /xP  AP < d'*.  _ ~ - ~ . ~ - _ I + / x V h + B A  2 

The second inequali ty,  if g(x) has mean  value zero, is obvious.  

(4.2.3) Lemma.  Let x be real and P ( x ) =  ~(CCm cos m x  + flm sin mx) be a trigo- 
o 

nometric polynomial o/ order n, with real or imaginary coe//icients. Let M denote the 

maximum o/ I P[ and let 0 be a positive number less than I. There exists then an 

interval o/ length not less than ( 1 - 0 ) / n  in which [P] >_O M. 

Proof. Le t  x 0 be a point  a t  which [ P ] = M ,  and  let x 1 be the first point  to the 

r ight  of x 0 a t  which I P [ = 0 M  (if such a point  does not  exist  there is nothing to 

prove).  One has 
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M (1 - 0) = IP  ( x o ) [ -  IP  (xl) l 

I P (xo) - P (xl) I _< (x x - Xo), Max  [ P ' [ .  

But, by Bernstein's theorem, max lP ' l<_nM. Hence 

X 1 - -  X O ~" ( 1  - -  O ) / n ,  

as stated. 

(4.2.4) Lemma. Let qJ (x)>_ 0, and suppose that 

1 1 

f cfdx>_A>O, f cf2dx<_B 
o 0 

(clearly, A 2< _ B). Let ~ be a positive number less than 1 and let lE  I denote the measure 
~A 2 

o/ the set E in which q~>_~A. Then IEI_>0-~) ~ .  

If  C E denotes the set complementary to E, then f ~ d x _< ~ A and 
C N  

1 

E O CE 

But 
1 

E 0 

so that  
A (1-5)<_IElt  B i, 

_ - , ~  ~A~ 
IEl>(1 -" B "  

k 

(4.2.5) Lemma. Let /k = ~cm q)m (t), where {~m) iS the Rademacher system and the 
1 

Cm are real constants. Let n (t) be a measurable ]unction taking only positive integral 

values and suppose that 1 <_ n (t) ~ n. Write Cn = ~ C~m and denote by 2 a positive num- 
1 

ber. Then 
1 

f e al/n(t)(t)l dt  <_ 16 e ~a*cn . 

0 

The proof of this well-known result is included for the convenience of the 

reader. 
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Proof. Let k be an integer, 1 <_ k <_n. Then, if (:r fl) is any dyadic interval of 

length 2 k ( : t = p 2  ~, f l = ( p + l ) 2  -k, p an integerL one has 

/ k ( t ) = ( f l - - a ) - l f / n ( u ) d u ,  o~<t<_fl. 
ot 

Thus, for all t, 

[/k (')] ~ ( ~ - - ~ ) I f  [/n (U)[ du <~ sup  ~ - - t  f [frt (u)] d u  
~t t 

(o_<o_<1). 

Denoting the last member of the inequality by f; (t), we see that  

*t  l b . )  ( t ) l -</ .  ( ~. 

By the well known inequality of Hardy and Littlewood, 

Hence, if q > 2, 

Now, 

1 1 

0 o 
(q> 1). 

1 1 

f l/n(t) (t)]r dt <~ s f l/= (t)[r dt. 
o 0 

1 

f e~ltn (t) (t) I 

o 

1 

dt < f {e~fn(t)(t) + 
o 

e ~tn,)(t)} dt 

1 
=2 f ~ ~t2P[[n(t)(t)]2Pd$ 

0 (2 p)! 
0 

1 

o (2 p)! 
o 
1 1 

=8 f eafn(Odt+8 f e afn(t) dt 
o o 

< 16e ~'c~ , 

by an application of Lemma (4.2.1). 
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3. We now pass to  the  proof of our first  theorem.  

(4.3.1) Theorem. Consider the series (4.1.1), denote by Pn =Pn (x, t) the polynomial 
n n 

~rm~0m (t) cos mx, and write Mn = i n  ( t )=  m a x  IPn (x, t)l , R ,  = ~ r~. There exists an 
1 

absolute constant A such that 

almost everywhere in t. 

x 1 

Mn (t) 
l im sup . . . . . . . . . . . .  < A, 

n=~ ]/.R:- log n 

Proof.  One has, by  L e m m a  (4.2.1) 1, 

so t h a t  

Hence  

1 

j ~ e "~ P n 

o 

n 
2 2 2 ~  rm COS 2 r e x  

d t < e  1 <_ela'nn 

1 

ealenldt <_ 

0 

1 

[ (eaP~+e ae~)dt<2e~a~R~. 
J 
0 

1 2 n  

f d t f e a l e n l d x < 4 g e  ~ a ' n n .  

o 9 

By L e m m a  (4.2.1), denot ing by  0 a fixed posi t ive n u m b e r  less t han  1, one has 

Hence  

211 

f ealenldx> 1 -- OeOaMn. 
n 

o 

1 

f e o2Mn(t) dt 

0 

4 ~ n  e!a2Rn 4~ ta2n 
< i-: o - " 

log n 

Take  2=( f lRn  I log n)t ,  fl being a posit ive cons tant  to be de te rmined  later  on. 

We get 
1 

I 4 ~  e( l~x)  lo, n eO~Mn(t) dt < ~-- 0 
0 

Since, a t  present,  we are not  concerned with  improving  the value of the cons tan t  A, 

we shall now use ra ther  crude es t imates .  We  have  

x In what follows 2 is always positive. 
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1 

f e . (1 +r/) Io~" n e O'~Mn- (lfl42~)l~ n dt < -1--~ 4 :z 

0 

being a positive number. Hence 

?t 

1 

for almost all t. Hence, for n >_ n o = n o (t), 

0 2 M .  < ( � 8 9  log n 

and, replacing 2 by its value, 

M,t<o- l f l -~ ( �89  log n) '~ . 

This means that,  for almost all t, 

M . ( t )  < � 8 9  
lim sup (R. log n)l - 0 fl& " 

Since 0 is arbitrari ly close to 1, and ~ as small as we please, 

Taking now f l= 4, 

M.( t )  _< + ~ .  
lim sup (Rn log n)t p, 
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M .  (t) _< 2, 
(4.3.2) lira sup iR,~]o-gn)~ 

which proves the theorem and shows that  the best value of A is <_2. We shall 

show later on (see Theorem (4.6.1) below) tha t  under certain conditions the best 

value of A is < 1 .  

Remarks on Theorem (4.3.1). As we shall see later, the order of magnitude ob- 

tained for M ,  in Theorem (4,3.1) is not always the best possible one, and addi- 

tional hypotheses will be required to prove the first inequality (4.1.2) with 

(n) = (R, log n)~. 

An almost immediate corollary of (4.3.2) is a known result (see Paley and Zyg- 

mund, loe. eit.). I] Y, r~ is /inite, then /or almost all t the partial s~tms 

n 

en = ~ rm q)m (t) COS m . ~  
1 

1 8 -  533807. Acta Mathematica. 91. I m p r i m 6  le 1 n o v e m b r e  1954. 
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o/ the series (4.1.1) are o (log n) l ,  u ni/ormly in x. Tha t  these pa r t i a l  sums are  

0 (log n) i is obvious.  By d ropp ing  the  f irst  few te rms  of the  series (4.l .1) so as to  

make  the  R ,  un i fo rmly  small ,  we improve  the  ' 0 '  to 'o ' .  

We  shall  see l a te r  on (Section 8) t h a t  more  precise in fo rmat ion  can be ob ta ined  

a b o u t  the  o rde r  of s~ for some pa r t i cu l a r  series wi th  Z rgm < o~. 

4. In  order  to ge t  fu r ther  resul ts  we mus t  now prove  ano the r  l emma.  

(4.4.1) Lemma .  Let us again consider the series (4.1.1) and keep the notation o/ 

Theorem (4.3.1). Let (nj} be an increasing sequence o/posit ive integers and let 9J~j --~J~j (t) 

be the maximum,  with rcspect to n, when nj < n <-njtl o] 

Hn (t) = max  I P~ (x, t ) - P , j  (x, t)]. 
9C 

Then, /or almost all t, 

9J~; (t) 
l im sup < o 

j {(R, ,~,  -- R , , )  log n,~,}~ . . . .  

Proof. Let  n (t) be any  measurab le  funct ion  of t t ak ing  in tegra l  values  only  an(l 

such t ha t  nj < n ( t ) ~ n i : , .  By L e m m a  (4.2.5), 

Hence  
1 

f 
0 

l 

0 

dt 

2:1 

f e~lPn(t) Pnjl d ( 3 2 ~ t e  J ~  . �9 Z _~_ l~t~(Rn Rnl) 

0 

By L e m m a  (4.2.3), we have,  wi th  0 < 0 < 1, 

Hence  

and so 

2~ 

0 

Pn(t )  Pntl  d x >  - - -  1 - 0  1 - 0  cO). H n (t)(t) 
n (t) nj~ 1 

~O ~ ltn (t) (t) 

1 

f g02 H n 

O 

(t) dt  < nj~, 32 ~r e~'(~"J+l n,j) 
1 - 0  

1 

!e Oagn*s(t)d t < 32~t ~a~(n,j+, 
�9 - i - ~  ~ 

0 

R n j )  ~ log  n) ~ I �9 
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Les us take, as in the 

t l>  O. Then 
1 

f eO~9.)t*i(t) 

0 

( log nJ.,RX )~ p r o o f  of  T h e o r e m  (4.2 .1) ,  a = 2  n",i,- 

- 1 - 0  

and let 

and so, exactly as in the proof of Theorem (4.2.1), 

~ ,  (t) 4 + ,~ 
limisup { (R . ;~ , -R . , )  log n,~l} �89 -< 20 ' 

and tim lemma follows by taking ~ arbitrarily small and 0 arbitrarily close to 1. 

5. We proceed now to prove, under certain conditions, the first part of in- 

equality (4.1.2), with ~ (n) = (R~ log n)i .  

(4.5.1) Theorem. Let us consider again the series (4.1.1), the expressions P~, M,,, 
n 

R,  having the same meaning as in Theorem (4.2.1). Let T n :  ~r4m. 
1 

We make the /ollowing assumptions: 

I n/R~ = 0  (n ~) /or some positive y (clearly, y~-1), this assumption obviously 

implying that Z r'Zm : ~ .  

b) R, . /R , , - * I  i/ n 1 and n 2 increase indefinitely in such a way that nl/n2-->l. 

Under these assumptions, one has, almost everywhere in t, 

l im)nf  M.  (t) > - c 

c (~) being a positive constant depending on y only. 

Proof. 

2 ~  

1 f eXe, dx  ' so thai;, by Lemma (4.2.1), Let  us set I , ( t ) = ~  
0 

1 2 n  1 2n  n 

f I f f 1 f 'a'Y.'~m co'' I . ( t )  d t=  ~ dx  e a ~ d t  >-2~ e ~ o 
0 0 0 0 

2~t  n 

0 

m x - A  4 T n 

dx 
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Now, since 

z c o s  e 1 > 1 - ~ - ~  1 

the  mean  va lue  of the  exponen t i a l  exceeds 1, so t h a t  

1 

f 1 it2 Rn_).4 Tn. 
(4.5.2) In (t) d t > e 4 

0 

1 

W e  proceed now to ob t a in  an  i nequa l i t y  in the  oppos i te  d i rec t ion  for f I~ ( t )d r ,  
0 

which, toge ther  wi th  (4.5.2), will  enable  us to  a p p l y  the  resul t  of L e m m a  (4.2.4). 

We have  
2~ 2~ 

I~ (t) = 4 ~  ~ e~[Pn(x't)+Pn(Y't)]dxdy, 
0 o 

so t h a t  

f l~(t)dt<_l~ f f dxdy f e a[~'n('r't)'en(u't)l 
0 O 0 0 

dt. 

Thus,  by  L e m m a  (4.2.1), 

Wr i t i ng  

n 

I~(t)dt<_ ~ e 1 dxdy .  
o o o 

(cos m x + cos m y) 2  = 1 + �89 cos 2 m x + �89 cos 2 m y + 2 cos m x cos m y 

one has, p u t t i n g  

Sn=Sn(x,y)= ~ (�89 COS 2rex§ �89 cos 2 m y + 2 ~  cos ~ x  COS ~},  
1 

the  inequa l i ty  
1 2~ 2~ 

f i~( t )d t<e~ZRn 1 " d x d y .  

0 0 0 

We now use L e m m a  (4.2.2) for the  funct ion  Sn(x ,y)  of two var iables .  W e  
2n  2n  

observe t h a t  f f Sn d x d y = 0 and  t h a t  the  sys tem of 3 n funct ions  cos 2 m x, cos 2 m y, 
0 0 

cos m x  eos m y  (m = 1, 2 . . . . .  n) is o r thogona l  over  the  square  of in tegra t ion .  Therefore,  
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2~ 2 g  

f f 1 S 2 d x d y  = + ~ + 1  T n = i T n .  '4 :~2 n 
o 0 

Since I Sn{_<3R,, an application of the second inequality of Lemma (4.2.2) gives 

2~ 2~ 

1 e ~ d x d y < _ l +  - ~ e  ~a'n" 
4~  2 

o 0 

so that ,  by the hypothesis a) of the theorem, w e  have finally, a denoting a positive 

constant, 
1 

0 

Using the inequalities (4.5.2) and (4.5.3), let us apply Lemma (4.2.4) to determine 

a lower bound for the measure {En[ of the set E ,  of points t such that  

1 )fl R n _ ) )  Tn 
(4.5.4) In (t) _> n - '  e4 , 

where the number  ~/> 0 is to be determined later and the factor n - '  plays role of 

the 6 of Lemma (4.2.4). The lemma gives immediately 

tha t  is to say, 

~ A' Rn- 22' T n 

IE.l>II-n-"? ~" 
e la'Rn(l+~ea ~ a ' n n \ ' )  

z, ~,12 Rn) 
IE. I_> (x- 2~-'). ~-~a'T.. 1 - ~ ?  �9 

[2 l o g n ]  { 
Let  us now fix a number  0, 0 < 0 < 1 ,  and let ) .=0  ~ y - ~ - )  , so tha t  

~ 2  R n -  ~ log n 
e -  ~ e (0S- l )~  , log n 

One has 

224T~=048 21~ ~n blog 2n ~7 ~-~- T~ <-- ny ' 

b denoting a positive constant, so tha t  

e-2;t'T. > | b log 2 n 
n~ 
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and 

Choosing now r /=~(1 -02) ,  we lmve 

l E n i n ( 1  . . . .  

B denoting a constant. 

In the set E~ one has, by (4.5.4), 

so that 

Now 

and 

n ~,(i-- 0~ ' 

e ~ M~(t) > In (t) > e{ Z ~ -~ . ,  T ~  Io, n, 

V logn=0 ~/~:-(Rn . M, (0 ;: R~ - ~3 Tn - X. 2~;.6 log .~)~'-.-:,~ ~'n - ~. log , .  

)~ZT =0~1 g : ~ f T . = O  [/lo ~ ~ l o g n - ~ C R ,  logn) t 
( Un ( ~ R n :  J ) 

llog n R n)t} (R. log = O ( - ~  ( ~log =o  n)~ 

~ log n =  ?.(L- 02) ~//-3 / ). () ~-y (Rn log n) t =6(0  -'2-- l) 0V~ ( R ~ 2  V6 log n) t 

so that, writing e0=6(0 -~-  1) and fixing 0 close enough to 1 to have e0, say, less 

than ~, we have for ts  

Mn(t)> v f y  ( l - e 0 - o ( 1 ) ) ( R n  log n) t. 
2 V6 

Let us now take an integer s such that 

s y (I -- 0 2) > 1. 

Then the series E*n -va-eb extended only over the integers n - - r  n: (m= 1, 2 . . . .  ) is 

convergent. Hence, by the lower bound found for lEvi, 

(l-]E,:l)< o~, 
rn - !  

and thus, for almost all t, 

M~(0 > 0 V r ( l - e 0 ) .  
(4.5.5) lira in/(R~ log n)~ - 2 V6 
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We mus t  now, in order  to complete  the  proof of the theorem,  ex tend  this 

inequal i ty  to the  case when n tends  to  ~ th rough  all integral  values. For  this pur-  

pose we shall use L e m m a  (4.4.1) and  assumpt ion  b) of our  theorem.  

Denot ing by  ~J~ (t) the  m a x i m u m  with respect  to n, for m ~ < n <  ( m +  1) ~, of 

m a x  I P~ (x, t) - P m  s (x ,  t)[ 

we have,  by  L e m m a  (4.4.1), 

~ , .  (t) 
limmsup { ( R , m + l > S -  Rms)log (m + 1)~} } -<- 2 

so that ,  since R(m+,)*/R,,s-+l by  assumpt ion  b), 

~ : .  (t) 
(4.5.6) limmSUp (Rms log m~) t = 0 .  

Now, since for m ~ < n _ < ( m +  1)~ we have  

M ,  (t) _> MmS (t) - ~J~ (t), 

it follows tha t  for a lmos t  all t, 

l im inf M,, (t) = lim inf M .  (t) 
,, (R.  log n) t . (Rm' log m~) t 

Mm, (t) - lira sup ~)~* (t) 
> lim inf (Rm-~-iog-mS)t iR,is log m')  i 

> 0 ;/~ (1 - ~o). 

I t  remains  now to observe  t h a t  the  last inequal i ty  being t rue  for all O, 0 < 0  < 1, 

we can take  0 a rb i t ra r i ly  close to  1 and  ea arb i t rar i ly  small,  so t ha t  

l i m i n f  M ,  (t) > ]/Ty , 

for  a lmost  all t, which proves  our theorem.  

Remarks  on Theorem (4.5.1). Le t  us observe tha t  the preceding a rgumen t  shows 

tha t ,  with assumpt ion  a) alone, one has 

M. (t) . > U~6 
lim sup (R,  log n ) t -  ' 
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so that ,  comparing this with Theorem (4.2.1) we have at least the t rue order of 

magni tude  for the  superior limit. 

We m a y  also add tha t  we do not  use in the proof the full force of assumption 

b), which is needed only when n I and n 2 are of the form m s and ( r e + l )  ~. 

6. The case 7 = 1  deserves special a t tent ion.  We have then T~/Re,~=O(1/n) 

and this condition is cer tainly satisfied if the  rm are bounded  both  above and below 

(i.e. away from zero). In  this case assumpt ion b) of Theorem (4.5.1) is automat ica l ly  

true, if n~ and n 2 are m ~ and ( m +  1) ~ respectively. We shall show tha t  in this case 

the value of the constant  A in Theorem (4.2.1) m a y  be reduced from 2 to 1. 

(4.6.1) Theorem. Let us consider the series (4.1.1) and let P , ,  M , ,  R , ,  T ,  have 

the same meaning as be~ore. Then, u,der the sole assumption T~/R~ =O(1/n)  we have, 

almost everywhere in t, 

(4.6.2) 1 < l i m  inf M~(t) < l i ra  sup Mn(t)  

This is true, i)~ particular, /or the series Z q~ (t) cos mx.  

Proof. F rom the remark just  made  it follows tha t  the first inequali ty (4.6.2) 

will he proved if we show that ,  for any integer s, R(m~l)~/Rm~-~l. Now, 

[ R ( ~  1>8 - R ~ ]  2 _< [(m-~ l)* -- m ~] T(m~ 1>,, 

by  Schwarz 's  inequali ty,  so tha t  

R(~,>. j -  RL,.. - o 1  (m~])' t =~ 
as stated. 

We now prove the par t  of the theorem concerning lira sup. We begin as in 

the proof of Theorem (4.3.1), 
n 

1 ~12 Z r 2  cos~ m x 

P n l d t < 2 e  1 f e~l 
o 

but  write 

so tha t  

2 � 8 9 1 8 9  ~ r~ cos 2 m x ,  ~.rm cos 2 r e x =  
1 1 

f ZT~r ~ 
dt  eal~ 'n ldx<2e {~2an e 1 dx. 

0 0 0 
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Applying now Lemma (4.2.2), we have 

2 ~  n r 2 
1)LZ 'K ~ !)O. R n  1 4 - ~  m cos  2 m x Tn ea 

2~  e 1 dx < l + � 8 9  
R~ 

0 

< 1 +a-e~X"an, 
n 

a being a positive constant, so that  

1 2zt 

0 0 

P n ! d x < 4 ~ e  4 14-- e �9 
n 

Taking 2 = 2 (Rn I log n) ~ we get 

1 2~t 

f dt f ~'"= ' dx < 4,~ (1 + a ) e  l~ 
0 0 

By Lemma (4.2.3), taking a positive number 0 less than l, we get as in the proof 

of Theorem (4.3.1), 
1 

f 4 ~ n  4~(1-~ rt) 
e~ t a) el~ l - - 0  e~]~ 

0 

Fixing all r/> 0 we have 
1 

f eo~.( . ,~ , )  ~og ~ dt < 4_~ (1 + a) 
1 - 0  

0 

Let s be an integer such that  s ~ > l .  Then Z m - S ' < ~  so that  

e O ' ~ M n - ( 2 i t D l ~  < c<)~ 

tt = m s 

for almost all t, with 2 = 2 n - - 2 ( R Z  ~ log n) t. From this we deduce, as ill the proof of 

Th.eorem (4.3.1), that  

M , ( t )  _<0_1(1 + �89 ~), 
lim sup (Rn log n) t 

for almost all t, and since 0 may be taken arbitrarily close to 1, 

M, (t) 
lim sup (-R. log n)J -< 1 + �89 ~. 
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To pass to all values of n, we use L e m m a  (4.4.1), just  as in the proof of 

Theorem (4.5.1). We have,  with the  same notat ion,  Mn -<. M~s + ~*~, for m ~ < n <_ (m + 1) ~, 

and  it follows immedia te ly  t ha t  

i n  (t) 
< 1 +~r},  l im sup (R. log n) �89 - 

for  a lmost  all t. And since ~ is a rb i t rar i ly  small,  our  result  follows. 

Remarks  to Theorem (4.6.1). I t  is not  excluded tha t  for series having  coefficients 

of sufficiently regular  behavior ,  in par t icular  for the  series Z q)m(t)cos mx,  the  ex- 

pression M,/ (R~  log n)t  (for the  par t icular  series, Mn/(n  log n) t) tends to a limit,  

p.p. in t, as n ~  ~ .  We have  not,  however,  been able to prove  a result  of this kind,  

or even to narrow the gap  between the constants  of Theorem (4.6.1). 

We shall see t ha t  the  gap  between the cons tants  is reduced if we replace Rade-  

macher ' s  funct ions by  Stc inhaus ' .  

7. We now proceed to generalize the preceding result.  

(4.7.1) Theorem. Let (~, fl) be a /ixed interval contained in (0, 270 and letM, (:r fl) 

denote the maximum o/ [ Pn l /or cr ~ x <_ ~. Then, under the same assumptions as in 

Theorem (4.5.1), and almost everywhere in t, 

M ,  (a, fl) 
lira inf - (Rnlog n) i > c (y), 

c(y) being a positive constant depending on y, which is at least equal to the value 

V~/2 ~/6 ]ound ]or the constant o] Theorem (4.5.1). 

Proof. The proof follows the pa t t e rn  of the proof  of Theorem (4.5.1), and  we 

only sketch it briefly to indicate  the  differences. Wri t ing  

one has 

Now, 

1 f ea Jn ~ J ,  (:c, fl, t) = ~ 
~t 

P, dx, 

1 

0 

n 

dt>ela~n,-a'Tn 1 f �9 e 1 

f l -  ~ 
OL 

dx. 

{ j" 1 ~ rL c o s 2 m x l d x  < r~ c o s 2 m x  d x <  :ZT, , 
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and since 

one has 

so that  

(4.7.2) 

n 
! ) , ~ r  2 c o s 2 m x  
4 m o 

e 1 > 1  + ~ 2  2 r;~ c o s 2 m x ,  
1 

1 1 2 
fl-o~ e 1 d x > _ l - i 2  \ ~ ]  >_1 ([}_:r 

1 

f Jn dt >_ e 4 
(fl - ~)U 0 

We now find an upper  bound for f J~dt by using, as in the proof of Theorem 

(4.5.1), a double integral and find, with the notation of that  theorem, 

1 # # 

f J~dt<e~a'n, 1 __ ( . ~  . ;  / e 12"-Sn d x dy. 

As in Theorem (4.5.1), we have ISnt<_3Rn. Also 

fl fl 2 n  2 #  

(fl_ e)2 (fl_ ~)2 S~dxdy'~'(fl_-~)~'4 T,,=5:z2 . . . . . .  - . . . .  : : : , ) ' - '  ' 

~ 0 0 

so that  an application of the first inequality of the Lemma (4.2.2) gives 

(fl_ ~r e' dxdy<_l+22znfl_:r  +9ifl-_-ai2R n 

aTn ~a~n,~ 
< l  ~ a 2  2 V ~  ~-(fl~-)~R~e , 
-- fl -- O~ 

a being a positive absolute constant. Hence 

1 

f ,,,,,[ aT, ] (4.7.3) J~dt<_e ~ 14 [3-<x (fl-~)~R~ e~a2an " 
0 

From here the proof proceeds as in the case of Theorem (4.5.1), using the 

inequalities (4.7.2) and (4.7.3) instead of (4.5.2) and (4.5.3), and taking into account 
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the hypothesis Tn/R~ = 0 (n-r). One has only to observe that,  since ~t = O(R; 1 log n)�89 

one has 
 log n 

T~} = O(n-�89 log n). 22T~=0 ( Rn 

Once the theorem has been established for a sequence of integers n = m s one proves 

it for all n by using again Lemma (4.4.1). The constant c(y) can be taken equal 

t o  V /2 V6. 
The comments on Theorems (4.5.1) and (4.6.1) are applicable here without change. 

By taking the end points 0~, fl rational, one sees immediately tha t  if we exclude 

a certain set of values of t of measure zero then 

l i m in f  Mn(:c, fl) > Vy 
n (Rn log n) t - 2 V6 

for any fixed interval (0r fl). 

I t  is also easily seen tha t  the theorem holds for the intervals (:r ft,) whose 

length and position vary with n, provided that  fin-0on > n ~', where a is a sufficiently 

small number which can be determined if y is given. One finds a < � 8 9  but  the 

constant of the theorem depends then on a. The details are left to the reader. 

Finally, Theorem (4.7.1) holds if the interval (a, fl) is replaced by a set E of positive 

measure; it is enough to replace in the proof f l - a  by ]E[. 

8. Some results for the ease in which ~ r~ is slowly divergent or is convergent. 

2 diverges slowly, or is convergent, the assumption a) of Theorem If the series ~ r~ 

(4.5.1) is not satisfied. In  order to show what the situation is in tha t  case, we 

shall consider examples of series with regularly decreasing coefficients. 

(i) The series 
oo. 

m - ( t - ~ ) ~ z  (t) cos mx 
1 

presents no difficulty since here T,,/R~ is O(n -~) if e< �88  is O(n -1 log n) if e = � 8 8  

and is O(n -l) if e> �88  so tha t  condition a ) o f  Theorem (4.5.1)is  satisfied. Since 

condition b) of tha t  theorem is also satisfied, the exact order of Mn (t) is 

(R= log n) t ~ n" (log n)t. 
(ii) The series 

~ m - � 8 9  ~ ( t )  cos m x  

does not satisfy condition a) of Theorem (4.5.1). By Theorem (4.3.1) we have 

M,~(t)=O(log n), p.p. in t, and we are going to show tha t  this is the exact order. 
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We consider the sequence of polynomials 

Qn=P~-  Pv = ~ m -t  elm(t) cos mx, 
r + l  

where p=p(n) is a function of n. We take p=[n r ] ,  where iF is a positive number 

less than 1, to be determined later. We write M (p, n) = M (p, n, t) = Max I Q- I, the 
x 

other notations remaining the same as in Theorem (4.5.1). 

We observe that  for the polynomials Qn we have 

T , - T p  [ p - l - n - 1  ] 
i f f  " Z / ~ 2  = 0 [(log]~--i~gg ~ J  = 0 (n r log-..e n) 

so that condition a) of Theorem (4.5.1) holds; it is easily seen that  in the proof of 

the inequality (4.5.5) of Theorem (4.5.1) the fact that  the polynomials are partial 

sums of the form ~ is irrelevant, so that  the proof of the inequality (4.5.5) applies 
1 

to the sequence Qn since condition a) is satisfied [condition b) is not required for 

the proof of that  inequality]. We have to replace T~ by T~-Tp,  R~ by R ~ - R r ,  M~ 

by M(p,n). Hence, for s y ( 1 - 0 2 ) >  1 and for almost all t, 

lim inf M (p, n) . 0 V~ (1 - e0), 
,~=m' {(Rn - Rr) log n} t ~- ~ 6  

0 and eo having the same meaning as in Theorem (4.5.1). Hence 

M (p'n)>-O ~.~-(1-to) VI -iF. lim inf ]-ogn 2V6 

Now, by Theorem (4.3.1) we have, for almost all t, 

Mr 2, i.e. lim sup Mr < 2  
lim sup (Rp log p)t - log p -  

where, as usual, Mp = max [Pr]" In other words, 
z 

lim sup Mr/ log  n _< 2 ~,, 
P 

so that, if Mn = m a x  ]Pnl, 
x 

lim inf _Mn > lim inf M (p, n) 
n = m  s log n -  n f m  s log n 

M r  > 0 (1 - V i  - y - 2 r 
lira sup log n - 2 I/6 

which is a positive quanti ty if y is small enough. 
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We now pass to the sequence of all n, like in Theorem (4.5.1), by  using 

L e m m a  (4.4.1) which can be applied to the proof since plainly for the series 

m -~ ~n ( t )cos  m x one has R,,/R,u--->I whenever  nl/n2--->l. 

Hence,  combining our results  and  observing tha t  0 is as close to 1 as we wish, 

we have,  for a lmost  all t 

I V~(1 - -7 )  2 y ~ l i m  inf Mn / log  n_<lim sup M~/ log  n < 2 ,  2 ~/6 

where we can take,  e.g., ~ = 1/100. 

The a rgumen t  could be applied to show tha t  the exact  order  of magni tude  of 

M , ( t )  for a lmost  all t is again ( R ~ l o g n )  ~ for r m = m  - � 8 9  ~ ,  if 0 < ~ . < � 8 9  bu t  it 

breaks  down in the  case r162 = �89 which we are now going t~o consider. 

(iii). The series E (m log m) - t  ~m (t) cos rex .  In  this case the funct ion (R,  log n)t 

(log n . l o g  log n) ~ does not  give the r ight  order of magn i tude  for M , ,  for we are 

going to show tha t  in the present  case we have  i ~  = 0 (Vlog--n) p.p.  in t. 

In  fact,  set t ing 

a ,  = ~ (m log m) - t  q~m (t) COS rex,  P~ = m - t  qg,, (t) cos m x  
2 2 

we have,  I)y Abel 's  t rans format ion ,  

it 1 m l/log (mi~l 1))t 1 a , ,=  ~ [Vlog - P r o + -  ---Pn,  Wlog n 

and since m a x  IP,n I = o (log m) p.p. in t we have,  again p.p. in t, 
x 

" ' t  1 - -  } max  ]en I ~ ~ 0 log m + 0 (log n) ~ = 0 (log n) ~. 
z ~ [m (log m)~ 

I t  can also be seen tha t  M . = m a x  l a .  I is o(log n)t  for a lmost  no t. For  sup- 
x 

pose tha t  M .  = o ( l o g  n) t for t belonging to  a set  E of posi t ive measure.  Then  

n 1 

P ,  = ~ (~/log m -  Viog (m + 1)) a~ + (log n)~ a ,  
2 

and so, in E,  we would have  

max  I P ,  I ~ 0 o ( ~ / l o ~ )  + o (log , )  = o (log n), 
x 2 

which we know not  to be true.  

The same a rgumen t  can be applied to the more  general series 

m - t  (log m ) - ~ m  (t) cos m x  
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if � 89162  to show tha t  Mn=O(logn)  ~-~ but  not o( logn)  ~-~, p.p. in t (see also, 

the end of Chapter V, Section 5). 

Part If. Steinhaus Functions 

o o  

9. The problem of the series ~rm e i(mx~2:'~m) (rm>--O)is not essentially different 
1 

from the problem treated in Par t  I, and we shall only indicate the relevant modi. 

fications of the argument.  They lead to bet ter  values for the constants. As mentioned 

in Section l, we map the hypercube 0___ ~m -< 1 (m = l, 2 . . . .  ) onto the interval 0_< t_< 1 

using the classical method. 

The following result is an analogue of Lemma (4.2.1). 

(4.9.1) Lemma. Let /n=~Cme where the Cm are complex constants. 

being a real number, one has 

1 

(4.9.2) f lear"ldt= ~I, Jo(i21e,,D, 
0 

Then, I 

where Jo in the Bessel /unction o/ order zero : 

I 

0 ] k , ~  - =  e u ,  
o 

aria .','iti. C. = :~ I~,. I ~, D ~  = :~ l e,. I', one ha~ 
1 1 

1 
!~IC _I.D. [" 

(4.9.4) e '  J le'r, ldt<e l''c" 
0 

Proof. One has, if e,,,=leml e 2~'~, 
1 1 

o 0 

1 

= fil f etlernl c~ 

0 

1 

= ~ f e~'~176176 
0 
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Now, if z is real, 

and 

Hence 

which proves (4.9.4). 

Jo (i z) <_ ~ ~] = e 4 
0 

1 2 e l z2  z~ 
J o ( i z ) >  l + ~ z  > 

1 2 2 0 n _ ~ t D  n n 1.42..Cn 
e 4 < I-IJo(iXe, , )<_e , 

1 

(4.9.5) Lemma. The nolation being the same as in Lemma (4.9.1), one has 

(4.9.6) 

where ~, ~ 0  i/  C,-+ oo. 

1 

f ! .~2 Cn ( l + e n )  cairn  I d t  ~ e 4 

0 

Proof. If k is a positive integer, 

1 I 1 

0 0 0 
~ , . . .d  = Y ( ~ ] i  k~ ~ i,,~ . . . .  ~" ... k ; / )  le, i~. l  "-~., 

the summation being extended over all combinations such that kj ~ O, ~2 kj--k. Thus 

1 

0 

k~ 
l / " l~d t<-k !  ~ ki ! :.. k ni Ic'l=" .... I~"l~""=k~cL 

Hence 

1 1 1 1 

e a ' t , ' d t  <_ ca irn 'dr+ e a l t " ' d t = 2 ~ o  ~ ][" 

0 0 0 0 

k~ 

By Stirling's formula, asymptotically, 

(2k)! ~.k~'  

so that  the general term of the series is 

k~ 2k k 22 C~ (2 }) ! 
2 (i ~)~ cl  .~V~, 

k! 
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asymptot ical ly ,  and it follows tha t  

1 

f 
0 

e a I rn I d t _< e ~ a~ c~(l E ,n) 

where e~ can be taken as small as we please if C~ is large enough. 

Let  now 

Pn = ~ r m e  '(mz'2"~m), M n - M a x l P n  1, Rn= ~r: , ,  Tn = ~r4m. 
1 gg 1 1 

Theorem (4.3.1) is now replaced by  a corresponding theorem for the series 

~, rm e ~(m~+2~m), where the constant  2 can be replaced by ~/2, on account  of t h e  

inequal i ty  (4.9.6). 

For  the proof of the result corresponding to Theorem (4.5.1) we use the integral 

2 ~  

H,, (t) = 1 f 
0 

so tha t  L e m m a  (4.9.1) leads immedia te ly  to 

(4.9.7) 

1 2 n  1 

1 ela't~n a, rn 

0 0 0 

by inequal i ty  (4.9.4). 
On the other  hand, as in the proof of Theorem (4.5.1), 

Since 

and 

1 2n 2n 1 

fH~.(t)dt=4---~f fdxdy 
0 0 0 0 

t)~ P n ( y . t ) l l d t .  

P .  (x, t) + P~ (y, t) = ~ rm (e tmz § e tm~) e 2nt%l 
1 

le'm~§ §  | m ( x  ~)1~=2(1 § re(x-y)), 

one has, by  (4.9.4), 

n 

leaten(x,t)+Pn~.t)l[dt=e" 1 

0 

Thus 

1 9 -  533807. Acta Mathematica. 91. I m p r i m d  le l n o v e m b r e  1954. 
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1 2 n 

f :.'.. l~j H~(t)dt_<_e . - -  e 2 l m 
4 :~" 

0 0 0 

~ n 
= ell'R= 1 e !~ '~ '~  c~ 

�9 ~ d x  

0 

cos  m (x -- y )  

d x d y  

so that,  by Lemma (4.2.2), 

1 

(4.9.8) f H2(t) dt ~ , n ,  [1 + T~ _<e ~ e : " ~ ]  �9 
0 

The inequalities (4.9.7) and (4.9.8) now lead to the proof of the analogue of 

Theorem (4.5.1) and, due to the disappearance of the factor 3 in the exponential 

in the brackets of (4.9.8), the constant c(~) can be taken equal to V~//2[/2. 

The analogue of Theorem (4.6.1) is as follows. 

(4.9.9) Theorem. Considering the series : rm e t("z~2~=m), the expressions Pn, M, ,  
1 

Rn, T .  being the same as above, under the sole assumption T . /R~ = 0 ( l /n) ,  we have, 

/or almost all series, 
$ 

2 ~_< lira inf M . / ( R .  log n) t < lira sup M . / ( R .  log n) t _< 1. 

This applies, in particular, to the series Z e |(mx~2ztCtm). 

Remarks. In the proofs of the analogues of Theorems (4.5.1)and (4.6.1)we 

need, of course, an analogue, for Steinhaus' functions, of Lemma (4.2.5). The proof 

of the latter, though a little troublesome, follows the same pattern and we sketch 

it briefly here, the notation being tile same as that  of Lemma (4.9.1). 

Let k be an integer, n Ek_>l ,  and let (~,fi) he a dyadic interval, a = p 2  q, 

f l= (p+ 1)2 -q, where q = � 8 9  1). Then it is known (see e.g. Kaczmarz and Stein- 

haus, Orthoyonalreihen, pp. 137-138) that  

~{ at 

and, if both u and t are in the interior of (~r fl), then 

I f~ (u ) -  h (t) i-< 2~ (lOll 2-~ + I c~l 2-(~-')+"" + [c~ i 2-') 
so that  
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and 

~.~ /k(u) d u - - / k ( t ) _ a C k _ a C  n 
O~ 

o 

_ fll (u)ld +aC , 
t 

I ln (,) (t) l -< I; (t) + a C~, 

/,(t)(t) and /*(t) having the same meaning as in Lemma (4.2.5), and a being an 

absolute constant. 

For c_>2, 
< q 1 ]q a q , t q  I / . . ) ( 0 1 ' - 2  {I/.(t) + cn } 

I 1 

f ( ' ) ' :  I/"(t)(t)]qdt<2q-l"2 q-~i ]/"(t)lqdt+2q ~aqC~" 
'0 0 

1 1 1 

' . . 

o o o 

where A is an absolute constant. Hence, by the same sequence of inequalities which 

led to Lemma (4.2.5), 
1 

f e~ l/n(t)(Ol d t  < 2 et ~S A2 Cn. 
0 

The introduction of the constant A in the exponent  will lead to the replacement 

of 2 by 2A in the inequality of Lemma (4.4.1), but  clearly will have no effect upon 

the inequality analogous to (4.5.6). 

C H A P T E R  V 

Continuity of Trigonometric Series whose Terms have Random Signs 

I. Given a trigonometric series ~ rm ~m(t) COS (rex-- ~), where {~(t)} is the 

Rademaeher  system and ~ r~ < oo, we shall say, briefly, that  the series is " randomly 

continuous" if it represents a continuous function for almost every value of t. We 

propose to give here some new contributions to the theory of such series (which 

have already been studied). 1 Without impairing generality we shall simplify writing 

i See PALEY and ZYOMU•D, 1oc. cir., and R. SALEM, Comptes Rendus, 197 (1933), pp. 113-115 

and  Essais sur les sdries trigonomdtriques, Paris  (Hermann) ,  1940. 
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by  considering purely cosine series 

(5.1.1) ~ rm ~n (t) cos mx. 
1 

I n  wha t  follows, A will denote  an absolute constant ,  not  necessarily the same 

a t  every occurrence. 

(5.1.2) Lemma.  Let Q= Q(t, x) denote the polynomial ~ r,, q~,, (t) cos m x, and let 
1 

M = i ( t ) =  max [Q(t,x)l. Let R= ~ r~. Then f idt<_A(Rlogn)~. 
x l ~ + l  

o 

Proof. By  the a rgumen t  of Theorem (4.3.1), 

Hence 

1 

f 4~ el;:nn~log n e~ d t ~ _ O  
0 

( 0 < 0  < 1). 

1 

OafMdt 1)2R ~ log n ~ log 14~ 0 
e o < e z. 

Taking ~ = ( 2 R  ~log n) t, we get 

1 

Y 
o 

Mdt<O ](2Rl~ ll~ (2~oog-~)R 

=O-l (2R log n)i [l + log (l~O)'~og--~] 

< A (R log n)t,  

which proves the theorem. We see tha t  we could take  A as close to V2 as we wish 

if n is large enough, bu t  this is i rrelevant for our  purposes. 

We could also, by  writing 

cos m x = cos p x cos ( m -  p ) x -  sin p x sin ( m -  p )x  

prove easily tha t  
1 

fMdt<_A {R log ( n -  p)}t, 
0 

b u t  we shall not  make  use of this slightly s tronger inequality.  
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(5.1.3) Lemma. Let 

Qn= ~ rmq~m(t) cosmx,  M n = m a x  IQnl, 
p + l  x 

and let, /or /ixed m, 

M* (t) = max M~ (t) 
n 

Then, with R ~  ~ r~, we have 

1 

(5.1.4) 

when p+ l <n<_m. 

/ M * d t < _ A ( R  log m) �89 
0 

Proof. By the argument of Lemma (4.4.1) we have 

1 

f ~ !)'2R ~ l~ n e~ _ e e , 0 < 0 < 1 ,  

0 

which leads, exactly as in the proof of the preceding lemma, to (5.1.4). 

(5.1.5) Theorem. Let Rn denote I the remainder ~ r~ o/ the convergent series ~ r~. 

I[ ~ n 1(log n ) - t  ~//~ < 0% the series (5.1.1) is randomly continuous. Moreover,/or almost 

every t that series converges uni/ormly in x. 

ProoL Let us divide the series into blocks Q0, Q1,--. such that  

n k ~ l  
Ok = ~ rm ~m (t) cos mx 

n k ~ l  

0 o k 
(no= 0, nk = - "  ). 

Let Mk = max J Qkl- By lemma (5.1.2), 
x 

1 

/ Mk dt <_ A (2 k R22k) i .  
0 

By Cauchy's theorem, the convergence of Z n 1(log n ) - t  ]/R~ implies that  of 
1 

Z k-  t J / ~  which, in turn, implies the convergence of Z (2 ~ R2e k)t. Hence Z / i k  d t < oc, 
0 

which shows that  Z Mk converges for almost every t, i.e. for almost every t the 

series Z Qz converges uniformly in x and the first part  of the theorem has been 

established. 

I At ten t ion  of the reader  is called to the fact  t h a t  Rn, and later on Tn, has  no t  the same mean-  
in~ here as in the preceding chapter .  
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To prove the  second part  of the theorem it is enough to observe that ,  writing 

M:(t)= m a x  (max I ~, r ~ ( t )  cos nxl} 
nk+l<m<---nk~ 1 x n k + l  

one has, by Lemma (5.1.3), 
1 

f M~ dt <_ A (2 k R2zk)�89 
0 

so that,  for almost all t, E M~ <c~ ,  and so also M~-*0. 

2. Remarks on Theorem (5.1.5). a ) T h e  condition E n- l ( log  n) - t  ~/R,< ~ is 

merely sufficient, but  not necessary, for the random continuity of the series (5.1.I). 
2 p I t  is enough to consider the series F~ p-2~22P (t)cos 2 x. 

b) On the other hand, the condition • / t  -1 (log n)-~ 1 / ~ <  ~ is the best possible 

of its kind. In  other words, there exist series (5.1.1) which represent a continuous 

function for no value of t and such that  

n (log n) t co (n) < ~ '  

o~ (n) being a given function, increasing to ~ with n, as slowly as we please. 

1 
To see this, let us consider the series F ~ p ~ 2 p ( t  ) cos 2rx, where ~ ( p ) i n -  

creases to oo with p but  F~ l/ /py~(p)= oo. The series being lacunary, it cannot re- 

present a continuous function for any value of t. But  

so that  

R2r= ~ 1 . _ 1  
~.1 k2~ 2 (k) ~" p~2 (p) '  

l , 

' h - ~ < k ~ ( k )  n (k ) "  

Now, no mat te r  how slowly ~ (k )  increases, we can find ~(k) such that  

z 1/k ~ (k) = ~ ,  z 1/k ~ (k) ~ (k) < oo. 

and this proves the statement,  if we set eo (2 k) = ~ (k )  and apply Cauchy's theorem. 

c) A necessary condition for random continuity of the series (5.1.1) is known 

(see Paley and Zygmund, loc. cit.). Let  us divide the se~es into blocks 
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2 k + l  

(5.2.1) Pk = ~ r~ q~ (t) cos mx, 
2k+1 

and let 
2k+1 

(5.2.2) Ak = ~ r~. 
2k+1 

293 

The condition Z ]/~-k < c~ is necessary, for random continui ty.  

But  the condition is not  sufficient, as seen on the following example. 

I t  will be slightly simpler to deal with a series of exponentials • rm q~m (t)e *'x. 

We shall construct  a series of this type  which for no value of t does represent a 

continuous function, a l though the series F~ A~ will be convergent .  

We shall make use of the familiar fact,  namely,  t ha t  if 91, ~'~,---, ~N are any  

distinct Rademacher  functions, then  

N 

max I ~ ~fk(t)e~2kxl>-AN, 
x 1 

no mat te r  what  value we give to t. Let  us now determine the coefficients rm iu 

each polynomial  Pk as follows (compare (5.2.1) and (5.2.2)): 

r,, = k -  1 for m = 2 k + 2'  (s = 1, 2, . . . ,  k) 

rm = 0  for other  values of m. 

Then, by the remark just made,  we have for all t, 

max  ]Pk]> A k . k - l =  A k  t 
x 

A k = k . k  ~=k- t ,  

while 

so tha t  Akt = k - t .  Let  us now consider an increasing sequence of integers nq such 

tha t  Z n - t  < or (e.g. nq =qS) and  construct  the series q 

P. ,  + P . ,  + "" + Pnq + "'" 

with the polynomials just  defined. The series, having infinitely many  H a d a m a r d  

gaps, must,  if it represents a bounded function, have its part ial  sums of order cor- 

responding to the beginning or end of the gaps uniformly bounded.  1 In  particular, 

P ,q  mus t  be uniformly bounded.  Since max ] Pnq[ > A nq t, this is impossible, no mat te r  

what  value we give to t. And yet,  for this series, Y. A~=Y~ n~- l<  or 

t See  ZYOMV~D, Tr igonome t r i ca l  Ser ies ,  p.  251.  
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We shall re turn to the problem of necessary and sufficient conditions for random 

cont inui ty  at  the end of this chapter.  

3. (5.3.1) Theorem. Suppose that the series (5.1.1.) is randomly continuous. Denote 

by (nq) any lacunary sequence of positive integers (i.e. such that n a ~ / n q ~ >  1). 

Write S~ = ~ rm q)m (t) COS mx.  Then, /or almost every t, the partial sums Snq, o/order 
1 

no, converge uniformly in x. 

Proof. Observe first that ,  t o being a fixed n u m b e r - - n o t  a dyadic r a t iona l - - the  

series 

(5.3.2) rm q~m (to) q~,~ (t) COS m x 

is randomly  continuous,  if (5.1.1) is. For  let E be the  set of measure 1 such that ,  

when t fiE, (5.1.1) represents a continuous function. Let  t E E and define t '  by  

~ (t') ~ (to) = ~ (t). 

I t  is easy to see (e.g. by  the consideration of dyadic  intervals) tha t  the set of t' 

corresponding to the t E E  is also of measure 1. 
n q i l  

Let  us now divide the series (5.1.1) into blocks P r  ~ rmq)m(t )cosmx and 
n a i l  

consider the two series 

Po + P~ + P2 ~- P3 + "'" 

P o  - P1 + P2  - P3 + "'" 

I t  follows from our remarks  tha t  the series P 0 + P 2 ~ - P 4 + " "  and P l + P a + P s - t  . . . .  

are both randomly  continuous.  :But both  series are series with Hadamards  gaps, so 

tha t  the partial  sums Snq of order nq of the series (5.1.1) converge uniformly in x, for 

a lmost  every t. 

Remark on Theorem (5.3.1). Let  us consider alongside (5.1.1) the series (5.3.2), 

where now ~Vm (to) = 1 for m = n a (q = 1, 2 , . . . )  and ~m (to) . . . .  1 for m ~= nq (no+l/ne >- 2 > 1). 

An application of the preceding a rgument  leads to the conlusion tha t  the random 

cont inui ty  of (5.1.1) implies the random cont inui ty  of E rnq ~,q (t) cos na x. The sequence 

{nq} being lacunary  this implies t ha t  E Irnql<Cr In  other  words, if (5.1.1) is 

randomly continuous, the moduli of any lacunary subsequence of its coe/ficients have a 

finite sum. This is of course a consequence of the necessary condit ion discussed in 

Section 2, c), but  the proof given here is much simpler. 
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. 

writing 

(5.4.1) Theorem. Suppose that the series (5.1.1) is randomly continuous. Then, 

R~= ~ r  2, Tn= ~r4m 
n~-i n v l  

we necessarily have Rn log T~-~O as n - §  

Proof. Let us observe first that  the series (5.1.1) converges almost everywhere 

in x for almost every t (see e.g. Zygmund, Trigonometrical Series, p. 125). Let 

Q~- ~ rm qZm(t)cos mx. By lemma (4.2.1), 
n-i-1 

1 2z~ N 

f f ~.Z~m~(t) . . . . .  e ~+1 d t d x < 2 u e  �89 

0 0 

2~ 

the theorems of Fatou and Fubini, {2~) 1 f e~.O,~dx=in(t) exists for 
0 

so that, by 

almost all t and is integrable. 

The argument used in the proof of Theorem (4.5.1) call then be applied without 

change, though Qn is not a polynomial here but an infinite series (sec footnote to 

Lemma (4.2.1)), and we get 

1 
f 1 ;t2Rn-~* T n I n d t 2 e  4 

0 

1 

0 

Taking 4=  {~R;,' log (R~/T,)}J, we have 

1 

f 1 ~2Rn-~0 r n In (t) d t  > e' 

0 

1 

I2.(t)dt~(1 + A)e , 

0 

so that, by Lemma (4.2.4), if we denote by En the set of points t such that  

we have 
In >- �89 e 4 

IE.]_> [4(A + 1)] le  -2a'rn. 
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Now, 
o 2 ).4 Tn = ~ R;  2 Tn log 2 (R~/T,) <_ U - 1  log ~ u, 

where u=R~/Tn >_ 1, so that  2). 4 T, <_B, B being an absolute constant, and 

IEnl>_[4(A + l)e~]-~=~, 

(~ being a positive absolute constant. 

Now, writing M,  =Mn ( t )=max  ]Qn (t, x)] for a given t for which In (t) exists 
z 

(M, can be + oo) one has, if tEEn, 
e I ).2Rn.-)J Tn~lOg 2 

e a Mn >- I n ( t )  >- 

that  is to say, 

N O W ,  

(5.4.2) 

(5.4,3) 

and 

(5.4.4) ). ~ log 2 = log 2. (~)t 

Suppose now that Rn 

that  R2/Tn is unbounded. 

following properties : 

). log 2 M" >- ~ R" - ).3 Tn - ). 

2 Rn 1 = ~ - ~  {Rn log (R~/Tn)} t 

)3 Tn < Tn Rn ] log ~ (Ri/Tn) log (R2/Tn) o n~/Zn {R~ log (RT~/Tn)} 

(Rn log (R2,/T,,)} i 
R~ log- t (R2/Tn) = (,~)t. log 2. - -  log (R2,/T-,) " 

Rn/Tn does not tend to zero. Since R ~ 0 ,  we see log 2 

Hence we can find a sequence (n~} of integers with the 

a) R~q/Tnq increases to -! ~ 

b) R,q (log R~q/Tnq) >- c > 0 

C) nq~.l/nq>-2 for all q. 

I t  follows then from (5.4.2), (5.4.3), (5.4.4) tha t  Mnq(t)> ~/C//10 in a set E,q of 

measure >_5. But this is impossible if (5.1.1) is randomly continuous. In fact, (nq} 
being lacunary, Qnq must  tend then to zero for almost every t uniformly in x, 

by the preceding theorem. Now, consider the set ~ of points t for which Q,q-~O 
uniformly in x. Every t s ~ must belong to all the complementary sets C E,q after 

a certain rank. Hence 

~_.= ~-I CEnq+ ~I CEnq+... 
1 2 

If we denote the products on the right by $'1, F 2 , ' " ,  respectively, then 
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Thus  I ~ 1 < _ 1 - ~ ,  so that ,  since obviously E must  be of measure 0 or 1, we have 

] ~ ] =  0. I n  other words, if Rn log R ~ / T ,  is not  o(1), almost  no series (5.1.1) represents 

a continuous function. 

The proof of the theorem is completed by  observing tha t  R,-+O implies 

R= log R=-+0 so tha t  the condit ion Rn log (R~/T~)-+O is equivalent  to R~ log Tn-~0.  

Corollary. If  {rm} is a decreasing sequence, the condit ion Z .2 ~a < ~ implies 

mr~->O so that ,  for n large enough, 

T = < ( n + l )  2 + ( n + 2 )  2 + - - . < l / n ,  

and so Rn log n -+0  is a necessary condition for random continui ty.  1 This is of course 

true, more generally, if ~ r ~ = O ( n  ~) for some e > 0 .  
rt~l 

5. We shall now indicate  a case of " regula r i ty"  in which the convergence of 

.~ n 1 (log n)- ' t  ~/R-n is both  necessary and sufficient for the random cont inui ty  of (5.11.1). 

(5.5.1) Theorem. I !  the sequence {rm} is decreasing and i! there exists a p >  1 such 

that Rn (log n) v is increasing, then the convergence o/ Y~ n 1 (log n ) -  ~ ~R-, is both necessary 

and su/[icient [or the random continuity o/ (5.1.1). 

I n  view of Theorem (5.1.5) it is sufficient to prove the necessity of the condition. 

The hypothesis  is be t ter  unders tood if we observe tha t  the boundedness of 

Rn (log n) v for some p >  1 implies E n 1 (log n ) - J  ~R,  < oo. Thus  we have to assume 

tha t  Rn (log n) p is unbounded ;  our " regular i ty"  condit ion consists in assuming the 

monotonic i ty  of the lat ter  expression for some p::, 1. 

( 5 . 5 . 2 )  Lemma.  

are satisfied 

I /  (5.5.1) is randomly continuous and i/  two /ollowing conditions 

..... --R2 k = 0  , k R 2 k = O ( 1  ), 

then Z n 1 (log n) - t  VR~< oo. 

P r o o f  of the Lemma.  Using the notat ion of Section 3, 

Ak = R2k --  R2k  ~ I 

we know (by the result of Paley  and Zygmund  quoted there) tha t  if (5.1.1) is ran- 

domly  continuous,  then ~ A~<  cr Now 

1 In particular, the series, ~ m -}  (log m) l~m (t) cos rex, for which Rn log n is bounded but 
does not tend to zero, is not randomly continuous. 
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n-1 
]~--~ R2k -~ ~ 0 (k �89 [~R2k -- V R 2 k + I ]  + O ( n R 2 n ) � 8 9  

1 1 

= ~ k) ~ + 0 (nR2~)~ 

n-1 
= E O(A~)+O(1) ,  

1 

so that  E k - i  ]/R2k < oo and the lemma follows by an application of Cauchy's theorem. 

ProoT of Theorem (5.5.1). The sequence {rm} being decreasing, the random 

continuity o f (5 .1 .1 )  implies R~ log n ~ 0  (see the Corollary of Theorem (5.4.1)). In 

particular, k R2k-~ 0. 

Moreover, since R~ (log n) p increases, 

R2~ k p < R2k+l (]r 1) p 

Hence 1 -  (R2~,/R2k)  <_A/k, and the theorem follows from the lemma. 

6. I t  is clear that  the results of this chapter hold when the Rademacher func- 

tions are replaced by those of Steinhaus, viz. for the series of the type ~ rm e f(m~*2€ 
1 

In particular if rm>0  is decreasing, Rm log m = o ( 1 )  is necessary for random con- 

tinuity. I t  might be interesting to recall in this connection that,  if the sequence 

{1/r~} is monotone and concave, no matter how slow is the convergence o[ • r~, there 

always exists a particular sequence (~m} such that  the series ~ rm e t<m ~ +2, :m) converges 
1 

uniformly (see Salem, Comptes Rendus, 201 (1935), p. 470, and Essais sur les sdries 

trigonomdtriques, Paris (Hermann), 1940), although the series need not be randomly 

continuous, e.g. if R,  log n~=o(1). 

The problem whether an analogous result holds for the series of the type 

rm cos mxrfm (t), where {~0m} is the sequence of Rademacher functions, is open. 
1 

C H A P T E R  V I  

The Case of  Power P o l y n o m i a l s  

1. Let us consider a power series ~ x  k of radius of convergence 1 and let 
0 

us also consider the power series ~ ~k ~vk (t)x ~ and its partial sums 
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Pn = ~ ~k qJk (t) x k, 
o 

where ~o, V1, V~,-" is the sequence of Rademacher functions. 

problem of the order of magnitude, for almost all t, of 

M.(t)= max ]P~I, 
- l < x < + l  

We may consider the 

assuming, for the sake of simplicity, that  the coefficients ~ are real. 

From Theorem (4.3.1), using the principle of maximum, we see at once that  

M~ (t) = 0 (R~ log n) i 

almost everywhere in t, with Rn = ~ :r We shall see, however, that  better estimates 
0 

than that  can be found and that  the problem has some curious features distinguishing 

i t  from the corresponding problem for trigonometric polynomials. 

(6.1.1) 

then 

(6.1.2) 

Theorem. I f  R , ~ o o  and 

:r {Re,/log log R~} 

lim sup M~ (0/(2 R,  log log R~}t = 1 

for almost every t. On the other hand, 

(6.1.3) lim inf Mn (t)/R~ = 0(1), 

almost everywhere in t. 

Thus, unlike in the theorems of Chapter IV, even in the simplest cases (e.g. for 

a0 = ~r . . . . .  l) the maximum M,  (t) has no definite order of magnitude p.p. in t. 

Proof. The inequality (6.1.2) is a rather simple conse(uence of the Law of the 

Iterated Logarithm. 

For let M'~ (t) and M~' (t) denote the maximum of I P~ I on the intervals 0 _< x -< 1 

and - l _ < x < 0  respectively. I t  is enough to prove (6.1.2) with M,(t)  replaced by 

M~ (t). For then the inequality will follow for M'n' (t) (since it reduces to the pre- 

ceding case if we replace ~k by ( -  1) ~ ~ ) ,  and so also for M~ (t)= max {M~ (t), M "  (t)}. 

Let us set 

Sin(t)= ~ k ~ 0 k ( t ) ,  S*( t )=  max lSm (t) [. 
0 l ~ m ~ n  

Since 
n - 1  

P.= ~ ~ ( t ) x  ~= Y ~(x~-x~+l)+x~Sn 
0 0 



300 R .  S A L E M  A N D  A.  Z Y G M U N D  

we immediately obtain 

(6.1.4) 

On the other hand, 

M~ (t) _< S* (t). 

so tha t  

S*~ (t) = I S,~ (t) l for some m = m (n) ~ n, 

lim sup Mn (t)/(2 R~ log log Rn) t _<lim sup ISm (t)]/(2Rn loglog R,)  �89 _ 1 

by the Law of the I tera ted Logarithm, and this gives (6.1.2). with ' = '  replaced by '~< '. 

The opposite inequality follows from the fact tha t  M~(t)>_lSn(t)l and tha t  

lira sup IS~ (t)l/(2R~ log log R~)i = 1 p.p. in t. 

As regards (6.1.3), it is enough to prove it with M~ replaced by S*, on account 

of (6.1.4). By Lemma (4.2.5), 
1 

f e ~ 3 * ~ t ~  e~2~Rn. na 16 
0 

Let us consider any function co(n) increasing to + c~ with n. In  the inequality 

1 
In= f e ~s* ~'(") d t ~  16e tzRn o,(n) 

0 

we set 2 = R~-t col (n). Then In -< exp { -- ~ to (n)}. Thus, if {nj} increases fast enough, 

we have )2 I , j <  ~ so that,, for almost all t and for n=nj large enough, we shall 

have 2 S* ~ co (re), that  is 

S* (t)/{Rn (6.1.5) lim inf co (n)} t ~ 1, p.p. in t. 
n 

From this it is easy to deduce the validity of (6.1.3), with Mn replaced by S*, 

for almost every t. For suppose that  (6.1.3) does no t  hold in a set E of positive 

measure. Then S* (t)/R~ tends to infinity in E. Using the theorem of Egoroff, we 

may assume tha t  this convergence to ~ is uniform in E. ~re can then find a func- 

tion co(n) monotonically increasing to r162 and such tha t  S* (t)/{R, co(n)} ~ still tends 

to ~ in E, and with this function co(n) the inequality (6.1.5) is certainly false. 

This completes the proof of the theorem. 

The argument  leading to (6.1.3) is obviously crude and there is no reason to 

expect that  it gives the best possible result. I t  is included here only to show tha t  

under very general conditions the maximum M ,  ( t )has  no definite order of magnitude 

for almost every t. Under more restrictive conditions, involving third moments,  Chung 

has shown (see his paper in the Trawsaetions of the American Mathematical Sot., 
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64 (1948), pp. 205-232) 1 that  

limin  ) 
n - . ~  log R~ 

almost everywhere. (This equality holds, in particular for r  2 . . . . .  1.) Owing to 

(6.1.4) this leads, under Chung's conditions, to 

(6.1.7) lim inf Mn(t) log Rn - ]/8' 

an inequality stronger than (6.1.3). Unfortunately, we know nothing about the inequality 

opposite to (6.1.7) 2 . 

x We are  gra te fu l  to Dr. ERD6S for ca l l ing  our  a t t e n t i o n  to C1[u~o's  paper .  I t  m a y  be added  

t h a t  (6.1.6) genera l izes  an  ear l ier  resu l t  of ERDOS who showed t h a t  in the case ~q=~2 . . . . .  1 the  

left  side of (6.1.6) is a l m o s t  eve rywhere  con t a ined  be tween  two  pos i t ive  abso lu te  cons tan t s .  

2 (Added in proo].) Dr. ERDOS has  c o m m u n i c a t e d  us t h a t  in the  case u l = a  2 . . . . .  1 he can  

prove  tha t ,  for eve ry  e > 0, 

l i ra  inf ~ > 0 
n2 

a lmos t  everywhere ,  and  even  a s o m e w h a t  s t ronger  resul t .  


