THE INHOMOGENEOUS MINIMUM OF A TERNARY QUADRATIC FORM

BY

E. S. BARNES

1. Let $Q(x, y, z)$ be an indefinite ternary quadratic form with real coefficients and determinant $D \neq 0$. Davenport [4] has shown that, given any real numbers x_{0}, y_{0}, z_{0}, there exist x, y, z congruent (modulo 1) to x_{0}, y_{0}, z_{0} satisfying

$$
\begin{equation*}
|Q(x, y, z)| \leq\left(\frac{27}{100}|D|\right)^{\frac{1}{2}} ; \tag{1.1}
\end{equation*}
$$

the equality sign can hold if and only if Q is equivalent (under integral unimodular transformation of the variables) to a multiple of the form

$$
Q_{1}(x, y, z)=x^{2}+5 y^{2}-z^{2}+5 y z+z x .
$$

The main weapon used in the proof was a generalization of Minkowski's result on the inhomogeneous minimum of a binary quadratic form, namely:

If $f(x, y)$ is a binary quadratic form with real coefficients and discriminant Δ^{2}, where $\Delta>0$, and $\mu>0, \nu>0, \mu \nu \geq \frac{1}{16}$, then, for any real numbers x_{0}, y_{0}, there exist $x, y \equiv x_{0}, y_{0}(\bmod 1)$ satisfying

$$
\begin{equation*}
-\boldsymbol{v} \Delta \leq f(x, y) \leq \mu \Delta \tag{1.2}
\end{equation*}
$$

By obtaining an 'isolation' of this inequality when ν is approximately 2μ, Davenport was able to show that the result (1.1) is isolated: that is to say, there exists a positive constant δ such that the inequality

$$
\begin{equation*}
|Q(x, y, z)| \leq(1-\delta)\left(\frac{27}{100}|D|\right)^{\frac{t}{t}} \tag{1.3}
\end{equation*}
$$

can be satisfied whenever Q is not equivalent to a multiple of the special form Q_{1}.

Recently Swinnerton-Dyer and I [3] made a detailed investigation of results of the type (1.2) and developed a technique for obtaining best possible results for any value of the ratio ν / μ. I use this technique here, together with Davenport's general method of attack on the problem, to find the best possible value of δ in (1.3).

The proof leads naturally to a stronger assertion than (1.3) and shows that the result (1.1) is isolated not only in respect of the form Q_{1} but also in respect of the values $\frac{1}{2}, \frac{1}{2}, \frac{1}{2}(\bmod 1)$ of x_{0}, y_{0}, z_{0}. To make this statement precise we introduce the following notation:

If $Q=Q(x, y, z)$ is any indefinite ternary quadratic form and x_{0}, y_{0}, z_{0} any real numbers, we set

$$
\begin{equation*}
M\left(Q ; x_{0}, y_{0}, z_{0}\right)=\text { g.l.b. }|Q(x, y, z)| \tag{1.4}
\end{equation*}
$$

where the lower bound is taken over all sets $x, y, z \equiv x_{0}, y_{0}, z_{0}(\bmod 1)$. We then write

$$
\begin{equation*}
M(Q)=\text { l.u.b. } M\left(Q ; x_{0}, y_{0}, z_{0}\right), \tag{1.5}
\end{equation*}
$$

where the upper bound is taken over all real x_{0}, y_{0}, z_{0}; we call $M(Q)$ the inhomogeneous minimum of Q.

Clearly (1.1) implies that always

$$
M(Q) \leq\left(\frac{27}{100}|D|\right)^{\frac{1}{3}} .
$$

Now if T is any 3×3 matrix with integral elements and determinant ± 1 and we make the transformation of the variables expressed in vector notation by

$$
\begin{equation*}
\underset{\sim}{X}=T \underset{\sim}{x}, \tag{1.6}
\end{equation*}
$$

then $Q(x, y, z)$ becomes, say, $Q^{\prime}(X, Y, Z)$, and the forms Q, Q^{\prime} are said to be equivalent. If also we define
then it is clear that

$$
\begin{equation*}
{\underset{\sim}{X}}_{0}=T{\underset{\sim}{x}}_{0} \tag{1.7}
\end{equation*}
$$

$$
\begin{equation*}
M\left(Q^{\prime} ; X_{0}, Y_{0}, Z_{0}\right)=M\left(Q ; x_{0}, y_{0}, z_{0}\right) \tag{1.8}
\end{equation*}
$$

Further, since X_{0}, Y_{0}, Z_{0} run through all real numbers when x_{0}, y_{0}, z_{0} do, we have

$$
\begin{equation*}
M\left(Q^{\prime}\right)=M(Q) \tag{1.9}
\end{equation*}
$$

It will always be understood, when we pass to an equivalent form by a transformation (1.6), that any particular values of x_{0}, y_{0}, z_{0} under consideration are subjected to the corresponding transformation (1.7).

The complete statement of the results we shall obtain is given, in the above notation, by

Theorem 1. (i) If $Q(x, y, z)$ is not equivalent to a multiple of either of the forms
then

$$
\begin{align*}
& Q_{1}(x, y, z)=x^{2}-y^{2}-z^{2}+x y-7 y z+z x \tag{1.10}\\
& Q_{2}(x, y, z)=2 x^{2}-y^{2}+15 z^{2} \tag{1.11}
\end{align*}
$$

$$
\begin{equation*}
M(Q)<\left(\frac{4}{15}|D|\right)^{\frac{1}{2}} . \tag{1.12}
\end{equation*}
$$

(ii) For the special forms Q_{1}, Q_{2} we have

$$
\begin{equation*}
M\left(Q_{i} ; x_{0}, y_{0}, z_{0}\right)<\left(\frac{4}{15}|D|\right)^{\frac{1}{3}} \quad(i=1,2) \tag{1.13}
\end{equation*}
$$

unless $x_{0}, y_{0}, z_{0} \equiv \frac{1}{2}, \frac{1}{2}, \frac{1}{2}(\bmod 1) ;$ further,

$$
\begin{align*}
& M\left(Q_{1} ; \frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)=\left(\frac{27}{100}|D|\right)^{\frac{3}{3}}=M\left(Q_{1}\right) \tag{1.14}\\
& M\left(Q_{2} ; \frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)=\left(\frac{4}{15}|D|\right)^{\frac{1}{3}}=M\left(Q_{2}\right) \tag{1.15}
\end{align*}
$$

In the course of the proof we shall use the following lemmas:
Lemma 1. If $Q(x, y, z)$ is indefinite and has determinant $D<0$ then there exist integers x_{1}, y_{1}, z_{1} satisfying

$$
\begin{equation*}
0<Q\left(x_{1}, y_{1}, z_{1}\right) \leq(4|D|)^{\frac{1}{2}} \tag{1.16}
\end{equation*}
$$

This is Theorem 2 of Davenport [5].
Lemma 2. Let β, B be real numbers with $B>\frac{1}{4}$. Then for any real x_{0} there exists an x satisfying
provided that

$$
x \equiv x_{0}(\bmod 1), \quad\left|x^{2}-\beta^{2}\right|<B
$$

$$
\begin{array}{ll}
\beta^{2}<B^{2}+\frac{1}{4} & \text { if } B \text { is integral } \\
\beta^{2}<B+\frac{1}{4}[2 B]^{2} & \text { if } B \text { is not integral. }
\end{array}
$$

This result is contained in Davenport [4], Lemma 5.
Lemma 3. Let T be an integral 2×2 matrix of infinite order and of determinant ± 1, and let R be a bounded point set in the Cartesian plane. Suppose that, for some point A with integral coordinates, any point P of R has the property that either $T(P)-A$ belongs to R or $T(P)$ is not congruent $(\bmod 1)$ to a point of R.

Then, if P is a point such that $T^{n}(P)$ is congruent (mod 1) to a point of R for all integral $n \gtreqless 0, P$ is the unique point F of \mathcal{R} defined by

$$
T(F)-A=F .
$$

This result is due to Cassels, and is quoted by Bambah [1]; an alternative proof is given in Barnes and Swinnerton-Dyer [2], Theorem D; (the region \boldsymbol{R}^{*} ap-
pearing in this theorem may be taken as the set of all points of the plane which are not congruent $(\bmod 1)$ to a point of $R)$.
2. The results stated in Theorem 1 for $M\left(Q_{1} ; \frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)$ and $M\left(Q_{2} ; \frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)$ are easily established by congruence considerations, and it is convenient to dispose of these at once.
(i) We have

$$
4 Q_{1}=(2 x+y+z)^{2}-5(y+3 z)^{2}+40 z^{2}
$$

If $x, y, z \equiv \frac{1}{2}, \frac{1}{2}, \frac{1}{2}$, then $2 x, 2 y, 2 z$ are odd integers; we may therefore write

$$
4 Q_{1}=X^{2}-5 Y^{2}+10 Z^{2}
$$

where X, Y, Z are integral, $Z=2 z$ is odd and $X-Y=2 x-2 z$ is even. We then have

$$
4 Q_{1} \equiv 2(\bmod 4), \quad 4 Q_{1} \equiv 0, \pm 1(\bmod 5)
$$

whence $\left|4 Q_{1}\right| \geq 6$. We have thus shown that

$$
\left|Q_{1}(x, y, z)\right| \geq \frac{3}{2} \quad \text { whenever } x, y, z \equiv \frac{1}{2}, \frac{1}{2}, \frac{1}{2} \text {. }
$$

Since

$$
\left|Q_{1}\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)\right|=\frac{3}{2}, \quad D\left(Q_{1}\right)=-\frac{25}{2},
$$

it follows that
as required.

$$
M\left(Q_{1} ; \frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)=\frac{3}{2}=\left(\frac{27}{100}|D|\right)^{\frac{1}{2}},
$$

(ii) If $x, y, z \equiv \frac{1}{2}, \frac{1}{2}, \frac{1}{2}$, then

$$
4 Q_{2}=2 X^{2}-Y^{2}+15 Z^{2}
$$

where X, Y, Z are odd integers. Hence

$$
4 Q_{2} \equiv 0(\bmod 8),
$$

and it is easy to see, by considering congruences $\bmod 3$, that $4 Q_{2} \neq 0$. We therefore have

$$
\left|Q_{2}(x, y, z)\right| \geq 2 \quad \text { whenever } x, y, z \equiv \frac{1}{2}, \frac{1}{2}, \frac{1}{2} .
$$

Since

$$
\left|Q_{2}\left(\frac{1}{2}, \frac{5}{2}, \frac{1}{2}\right)\right|=2, \quad D\left(Q_{2}\right)=-30,
$$

it follows that

$$
M\left(Q_{2} ; \frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)=2=\left(\frac{4}{15}|D|\right)^{\frac{1}{3}}
$$

as required.
To complete the proof of Theorem 1 we have therefore to establish
Theorem 2. The inequality

$$
\begin{equation*}
M\left(Q ; x_{0}, y_{0}, z_{0}\right)<\left(\frac{4}{15}|D|\right)^{\frac{1}{3}} \tag{2.1}
\end{equation*}
$$

holds unless Q is equivalent to a multiple of Q_{1} or Q_{2} with $x_{0}, y_{0}, z_{0} \equiv \frac{1}{2}, \frac{1}{2}, \frac{1}{2}(\bmod 1)$.

For the proof of Theorem 2, we first observe that there is no loss of generality in supposing that $D<0$ (since we may consider $-Q$ in place of Q if necessary). Let $a=Q\left(x_{1}, y_{1}, z_{1}\right)$ be any value assumed by Q for coprime integers x_{1}, y_{1}, z_{1} satisfying (1.16), so that

$$
\begin{equation*}
0<a \leq(4|D|)^{\frac{1}{2}} \tag{2.2}
\end{equation*}
$$

Making an appropriate equivalence transformation, we see that $\frac{1}{a} Q(x, y, z)$ is equivalent to a form

$$
\begin{equation*}
f(x, y, z)=(x+h y+g z)^{2}-\phi(y, z) \tag{2.3}
\end{equation*}
$$

where h, g are real and $\phi(y, z)$ is an indefinite quadratic form of discriminant

$$
\begin{equation*}
\Delta^{2}=\frac{4|D|}{a^{3}} \geq 1 \tag{2.4}
\end{equation*}
$$

Then (2.1) is equivalent to the assertion that

$$
\begin{equation*}
M\left(f ; x_{0}, y_{0}, z_{0}\right)<\left(\frac{1}{15} \Delta^{2}\right)^{\frac{1}{2}} \tag{2.5}
\end{equation*}
$$

The first step in the proof of (2.5) is the consideration of the possible forms of $\phi(y, z)$. In this section we prove

Theorem 3. If $f(x, y, z)$ is given by (2.3), (2.4), then (2.5) holds unless either
or \quad (ii) $\quad \phi(y, z)=2 y^{2}+12 y z+3 z^{2}, \quad y_{0}, z_{0} \equiv \frac{1}{2}, \frac{1}{2}$,
or \quad (iii) $\phi(y, z)=\frac{5}{4} k\left(y^{2}+6 y z+z^{2}\right), \quad y_{0}, z_{0} \equiv \frac{1}{2}, \frac{1}{2}$,
where

$$
\begin{equation*}
.9906<k<1.0063 \tag{2.9}
\end{equation*}
$$

(or equivalent forms).
It is convenient to set

$$
\begin{equation*}
d=\left(\frac{8}{15} \Delta^{2}\right)^{\frac{1}{3}}, \tag{2.10}
\end{equation*}
$$

so that, by (2.4),

$$
\begin{equation*}
d \geq\left(\frac{8}{15}\right)^{\frac{2}{3}}>\frac{4}{5} . \tag{2.11}
\end{equation*}
$$

Lemma 4. Let $\mu>0, v>0$ be defined by

$$
\begin{align*}
& \mu \Delta=\frac{1}{2} d-\frac{1}{4} \tag{2.12}\\
& \nu \Delta= \begin{cases}\frac{1}{2} d+\frac{1}{4}[d]^{2} & \text { if } d \text { is not integral } \\
\frac{1}{4}\left(d^{2}+1\right) & \text { if } d \text { is integral. }\end{cases} \tag{2.13}
\end{align*}
$$

2-543808. Acta Mathematica. 92. Imprimé le 29 décembre 1954.

Suppose that there exist $y, z \equiv y_{0}, z_{0}(\bmod 1)$ with

Then for any x_{0}

$$
\begin{equation*}
-\mu \Delta<\phi(y, z)<v \Delta \tag{2.14}
\end{equation*}
$$

$$
\begin{equation*}
M\left(f ; x_{0}, y_{0}, z_{0}\right)<\frac{1}{2} d=\left(\frac{1}{15} \Delta^{2}\right)^{\frac{1}{3}} \tag{2.15}
\end{equation*}
$$

Proof. If in (2.14) we have $\phi(y, z) \leq 0$, then, for any x_{0}, we can choose $x \equiv x_{0}$ with $|x+h y+g z| \leq \frac{1}{2}$. For this choice of x, y, z we have

$$
0 \leq f(x, y, z)<\frac{1}{4}+\mu \Delta=\frac{1}{2} d
$$

If, however, $\phi(y, z)>0$, we have

$$
0<\phi(y, z)<\nu \Delta
$$

applying Lemma 2 with $\beta^{2}=\phi(y, z), B=\frac{1}{2} d$ (noting that then $B>\frac{1}{4}$ by (2.11)), we see that for any x_{0} we can choose $x \equiv x_{0}$ with

$$
|f(x, y, z)|<\frac{1}{2} d
$$

The required result (2.15) follows immediately.
In the notation of Barnes and Swinnerton-Dyer [3] we denote by \boldsymbol{R}_{m} the set of points of the ξ, η-plane defined by

$$
-1 \leq \xi \eta \leq m
$$

An inhomogeneous lattice \mathcal{L} is a set of points

$$
\begin{aligned}
& \xi=\alpha x+\beta y, \\
& \eta=\gamma x+\delta y,
\end{aligned}
$$

where x, y run through all numbers congruent $(\bmod 1)$ to x_{0}, y_{0} respectively, and

$$
\Delta=\Delta(\mathcal{C})=|\alpha \delta-\beta \gamma| \neq 0
$$

is the determinant of \mathcal{L}. \mathcal{L} is admissible for \boldsymbol{R}_{m} if it has no point in the interior of \boldsymbol{R}_{m}. The critical determinant D_{m} of \boldsymbol{R}_{m} is defined to be the lower bound of $\Delta(\mathfrak{L})$ over all admissible lattices \mathcal{L}. We now have

Lemma 5. For all $m \geq 1$,

$$
\begin{equation*}
D_{m} \geq 4 \sqrt{m} \tag{2.16}
\end{equation*}
$$

This result is equivalent to Davenport's result quoted in § l (Davenport [4], Lemma 3). A less direct proof is given in Barnes and Swinnerton-Dyer [3].

Now since $\phi(y, z)$ has discriminant Δ^{2}, it may be expressed as the product of two linear forms of determinant Δ. Thus the form

$$
\frac{1}{\mu \Delta} \phi(y, z)
$$

with $y, z \equiv y_{0}, z_{0}$ runs over the values of $\xi \eta$ corresponding to a lattice \mathcal{L} of determinant $\frac{1}{\mu}$. From the definition of D_{m} it is therefore clear that (2.10) is certainly soluble, for any y_{0}, z_{0}, if

$$
\frac{1}{\mu}<D_{m}, \quad \text { where } m=\frac{v}{\mu}
$$

Combining this result with Lemma 3, we have
Lemma 6. If μ, v are defined as in Lemma 4 and

$$
\begin{equation*}
m=\frac{v}{\mu} \tag{2.17}
\end{equation*}
$$

then the inequality (2.5) certainly holds unless

$$
\begin{equation*}
\frac{1}{\mu} \geq D_{m} \tag{2.18}
\end{equation*}
$$

As a first step towards the elimination of possible values of d, we use (2.18) with the estimate (2.16) for D_{m}.

Lemma 7. If (2.5) does not hold, then d satisfies either
$o r$

$$
\begin{gather*}
d=2 \tag{2.19}\\
2.969<d \leq 3 \tag{2.20}\\
3.975<d \leq 4 \tag{2.21}\\
4.994<d \leq 5 .
\end{gather*}
$$

or
$o r$
Proof. By Lemma 6 and (2.12) we have

$$
\begin{array}{ll}
& \frac{1}{\mu} \geq 4 \sqrt{m} \\
\text { i.e. } & 16 \mu \nu \leq 1 .
\end{array}
$$

Substituting for μ, ν and noting that, by (2.10),

$$
8 \Delta^{2}=15 d^{3}
$$

this inequality becomes

$$
\begin{array}{ll}
8(2 d-1)\left(2 d+[d]^{2}\right) \leq 15 d^{3} & \text { if } d \text { is not integral, } \\
8(2 d-1)\left(d^{2}+1\right) \leq 15 d^{3} & \text { if } d \text { is integral. } \tag{2.24}
\end{array}
$$

Now (2.24) may be written in the form

$$
(d-2)\left(d^{2}-6 d+4\right) \leq 0,
$$

and this inequality is easily seen to be false if $d \geq 6$ or if $\frac{4}{5}<d \leq 1$. Thus (2.24) can hold for integral $d>\frac{4}{5}$ only if $d=2,3,4$ or 5 . Further, since $[d]>d-1,2 d+[d]^{2}>d^{2}+1$. Hence (2.23) cannot hold if d satisfies $d \geq 6$ or $\frac{4}{5}<d \leq 1$.

It remains for us to consider non-integral d satisfying (2.19) and $1<d<6$.

$$
\text { (i) } \begin{aligned}
\text { If }[d] & =1, \quad(2.23) \text { is } \\
15 d^{3} & =32 d^{2}+8 \geq 0 ;
\end{aligned}
$$

the l.h.s. takes its greatest values at the end-points of the interval $\mathbf{l}<d<2$ and is negative for $d=1$ and $d=2$. Hence (2.23) is never satisfied.

$$
\begin{aligned}
\text { (ii) } \quad \text { If }[d] & =2, \quad(2.23) \text { is } \\
15 d^{3} & -32 d^{2}-48 d+32 \geq 0 ;
\end{aligned}
$$

the l.h.s. increases with d for $d \geq 2$ and is negative when $d=2.969$; hence d satisfies (2.20).

$$
\begin{aligned}
& \text { (iii) If }[d]=3, \quad(2.23) \text { is } \\
& 15 d^{3}-32 d^{2}-128 d+72 \geq 0 ;
\end{aligned}
$$

the l.h.s. increases with d for $d \geq 3$ and is negative when $d=3.975$; hence d satisfies (2.21).

$$
\begin{aligned}
& \text { (iv) If }[d]=4, \quad(2.23) \text { is } \\
& 15 d^{3}-32 d^{2}-240 d+128 \geq 0 ;
\end{aligned}
$$

the l.h.s. increases with d for $d \geq 4$ and is negative when $d=4.994$; hence d satisfies (2.22).

$$
\begin{aligned}
& \text { (v) If }[d]=5, \quad(2.23) \text { is } \\
& \quad 15 d^{3}-32 d^{2}-384 d+200 \geq 0 ;
\end{aligned}
$$

the l.h.s. increases with d for $d \geq 5$ and is negative when $d=6$; hence (2.23) does not hold.

This completes the proof of the lemma.

Corresponding to the values of d allowed by Lemma 6 , we find the following values of $m=\frac{\nu}{\mu}$:

$$
\begin{gather*}
m=\frac{5}{3}, \\
2 \leq m<2.0126, \\
{ }_{7}^{17} \leq m<2.4389, \\
{ }_{9}^{26} \leq m<2.8915 .
\end{gather*}
$$

Now the estimate (2.16) is known to be best possible if and only if m is of the form

$$
m=1+\frac{2}{r} \quad(r=1,2,3, \ldots)
$$

or $m=1$; in particular $D_{m}=4 \sqrt{m}$ for the values $m=\frac{5}{3}, m=2$. However, for the remaining values of m given in (2.19') - (2.22'), strict inequality holds in (2.16). The results we shall need are given in the following four lemmas:

Lemma 8. If $m=\frac{5}{3}$ and \mathcal{L} is admissible for \boldsymbol{R}_{m}, then either $\Delta(\mathcal{L})>4 \sqrt{3}$ or \mathcal{L} is given by

$$
\xi \eta=\frac{2}{3}\left(x^{2}+8 x y+y^{2}\right), \quad x, y \equiv \frac{1}{2}, \frac{1}{2}(\bmod 1) .
$$

Lemma 9. If $m \geq 2$ and \mathcal{L} is admissible for \mathcal{R}_{m}, then either $\Delta(\mathcal{L}) \geq \sqrt{33}$ or \mathcal{L} is given by

$$
\xi \eta=k\left(x^{2}+6 x y+y^{2}\right), \quad x, y \equiv \frac{1}{2}, \frac{1}{2}(\bmod 1), k \geq \frac{1}{2} m .
$$

Lemma 10. If $m \geq \frac{17}{7}$ and \mathcal{L} is admissible for \boldsymbol{R}_{m}, then either $\Delta(\mathcal{L})>\frac{8}{7} \sqrt{30}$ or \mathcal{L} is given by

$$
\xi \eta=k\left(2 x^{2}+12 x y+3 y^{2}\right), \quad x, y \equiv \frac{1}{2}, \frac{1}{2}(\bmod 1), k \geq \frac{4}{17} m .
$$

Lemma 11. If $m \geq{ }_{9}^{26}$ and \mathcal{L} is admissible for \boldsymbol{R}_{m}, then $\Delta(\mathcal{L}) \geq 4 \sqrt{3}$.
In order to avoid interrupting the main argument, we defer the discussion of these results until § 4.

Now suppose that (2.19) holds, so that $d=2, m=\frac{5}{3}$. Then

$$
\begin{aligned}
\mu \Delta & =\frac{1}{2} d-\frac{1}{4}=\frac{3}{4}, \\
\Delta^{2} & =\frac{15}{8} d^{3}=15, \\
\frac{1}{\mu} & =4 l^{\prime} / \frac{5}{3} .
\end{aligned}
$$

Hence, by Lemmas 3 and 8, (2.5) holds unless

$$
\phi(y, z)=\frac{1}{2}\left(y^{2}+8 y z+z^{2}\right), \quad y_{0}, z_{0} \equiv \frac{1}{2}, \frac{1}{2}
$$

this is (i) of Theorem 3.
Next suppose that (2.20) holds, so that m satisfies (2.20'). Then, since

$$
\frac{1}{\mu}=\frac{4 \Delta}{2 d-1}=\frac{4}{2 d-1} \sqrt{\frac{15 d^{3}}{8}}
$$

it is easily verified that $\frac{1}{\mu}<\sqrt{33}$. By Lemmas 3 and 9 it follows that (2.5) holds unless $\phi(y, z)$ is equivalent to a positive multiple of $y^{2}+6 y z+z^{2}$ with $y, z \equiv \frac{1}{2}, \frac{1}{2}(\bmod 1)$. This shows that (2.8) of Theorem 3 holds for some $k>0$. Also, since then $\Delta^{2}=50 k^{2}$, we have

$$
\Delta^{2}=50 k^{2}=\frac{15}{8} d^{3}
$$

The bounds (2.9) for k now follow from the bounds for d given in (2.20). Thus $\phi(y, z)$ satisfies Theorem 3 (iii).

Next suppose that (2.21) holds, so that m satisfies (2.21'). Then the inequality

$$
\begin{equation*}
\frac{1}{\mu} \geq \frac{8}{7} \sqrt{30} \tag{2.25}
\end{equation*}
$$

cannot hold unless

$$
\begin{equation*}
m=\frac{17}{7}, \quad d=4, \quad \frac{1}{\mu}=\frac{8}{7} \sqrt{30} \tag{2.26}
\end{equation*}
$$

For (2.25) is equivalent to

$$
{ }_{7}^{2} \sqrt{30} \leq \frac{\Delta}{2 d-1}=\frac{1}{2 d-1} \sqrt{\frac{15 d^{3}}{8}},
$$

which reduces to

$$
49 d^{3}-64(2 d-1)^{2} \geq 0
$$

$$
(d-4)\left(49 d^{2}-60 d+16\right) \geq 0 ;
$$

since $3.975<d \leq 4$, this is true only if $d=4$ and the sign of equality holds: this gives (2.26). It now follows at once from Lemmas 3 and 10 that (2.5) holds unless $\phi(y, z)$ is equivalent to a positive multiple of

$$
\begin{gathered}
2 y^{2}+12 y z+3 y^{2}, \quad y, z=\frac{1}{2}, \frac{1}{2} \text { and } d=4 . \text { Since then } \\
\Delta^{2}=\frac{15}{8} d^{3}=120,
\end{gathered}
$$

we see that (ii) of Theorem 3 holds.
Suppose finally shat (2.22) holds, so that m satisfies (2.22'). Then, by Lemmas 3 and 11, (2.5) holds unless

$$
\frac{1}{\mu} \geq 4 \sqrt{3}
$$

But this inequality is equivalent to

$$
\begin{gathered}
\sqrt{3} \leq \frac{1}{4 \mu}=\frac{\Delta}{2 d-1}, \\
3(2 d-1)^{2} \leq \Delta^{2}=\frac{15}{8} d^{3},
\end{gathered}
$$

and it is easily verified that this is false for d satisfying (2.18).
This completes the proof of Theorem 3.
3. The next step in the proof of Theorem 1 is to decide what values of x_{0}, h and g are allowable in (2.3) if (2.5) is not satisfied and $\phi(y, z)$ is given by one of the forms in Theorem 3.

Lemma 12. If $f(x, y, z)$ is given by (2.3), where $\phi(y, z)$ is given by (2.6), then (2.5) holds unless f is equivalent to
and

$$
\begin{equation*}
f_{1}(x, y, z)=x^{2}--\frac{1}{2}\left(y^{2}+8 y z+z^{2}\right) \tag{3.1}
\end{equation*}
$$

$$
x_{0}, y_{0}, z_{0}=\frac{1}{2}, \frac{1}{2}, \frac{1}{2}(\bmod 1) .
$$

Proof. We have

$$
f(x, y, z)=(x+h y+g z)^{2}-\frac{1}{2}\left(y^{2}+8 y z+z^{2}\right)
$$

with $x, y, z \equiv x_{0}, \frac{1}{2}, \frac{1}{2}(\bmod 1)$. Since $\Delta^{2}=15$,

Now

$$
\begin{equation*}
\left(\frac{1}{15} \Delta^{2}\right)^{\frac{1}{2}}=1 \tag{3.2}
\end{equation*}
$$

$$
\begin{align*}
& f\left(\pm x, \frac{1}{2},-\frac{1}{2}\right)=\left(\pm x+\frac{1}{2} h-\frac{1}{2} g\right)^{2}+\frac{3}{4} \tag{3.3}\\
& f\left(\pm x, \frac{1}{2}, \frac{1}{2}\right)=\left(\pm x+\frac{1}{2} h+\frac{1}{2} g\right)^{2}-\frac{5}{4} \tag{3.4}
\end{align*}
$$

For any real x_{0}, we can choose $x \equiv x_{0}$ with
hence, by (3.3),

$$
\left|x+\frac{1}{2} h-\frac{1}{2} g\right| \leq \frac{1}{2}
$$

$$
M\left(f ; x_{0}, y_{0}, z_{0}\right) \leq 1=\left(\frac{1}{15} \Delta^{2}\right)^{\frac{1}{2}}
$$

and the sign of inequality holds unless

$$
x_{0}+\frac{1}{2} h-\frac{1}{2} g \equiv \frac{1}{2}(\bmod 1) .
$$

In the same way, taking the lower sign in (3.3), we see that (2.5) holds unless

$$
-x_{0}+\frac{1}{2} h-\frac{1}{2} g \equiv \frac{1}{2}(\bmod 1)
$$

Similarly, choosing $x \equiv x_{0}$ with
we see that (2.5) holds unless

$$
\frac{1}{2} \leq\left| \pm x+\frac{1}{2} h+\frac{1}{2} g\right| \leq \frac{3}{2}
$$

$$
\begin{array}{r}
x_{0}+\frac{1}{2} h+\frac{1}{2} g \equiv \frac{1}{2}(\bmod 1), \\
-x_{0}+\frac{1}{2} h+\frac{1}{2} g \equiv \frac{1}{2}(\bmod 1) .
\end{array}
$$

Since the above four congruences imply that
$x_{0} \equiv \frac{1}{2}, \quad h \equiv g \equiv 0(\bmod 1)$,
the lemma follows at once.
Lemma 13. If $f(x, y, z)$ is given by (2.3), where $\phi(y, z)$ is given by (2.7), then (2.5) holds unless f is equivalent to
and

$$
\begin{align*}
& f_{2}(x, y, z)=x^{2}-\left(2 y^{2}+12 y z+3 z^{2}\right) \tag{3.5}\\
& x_{0}, y_{0}, z_{0}=\frac{1}{2}, \frac{1}{2}, \frac{1}{2}(\bmod 1) .
\end{align*}
$$

Proof. We have

$$
f(x, y, z)=(x+h y+g z)^{2}-\left(2 y^{2}+12 y z+3 z^{2}\right)
$$

with $x, y, z \equiv x_{0}, \frac{1}{2}, \frac{1}{2}(\bmod 1)$. Since $\Delta^{2}=120$,

Now

$$
\left(\frac{1}{15} \Delta^{2}\right)^{\frac{1}{2}}=2
$$

$$
\begin{aligned}
& f\left(\pm x, \frac{1}{2},-\frac{1}{2}\right)=\left(\pm x+\frac{1}{2} h-\frac{1}{2} g\right)^{2}+\frac{2}{4} \\
& f\left(\pm x, \frac{1}{2}, \frac{1}{2}\right)=\left(\pm x+\frac{1}{2} h+\frac{1}{2} g\right)^{2}-\frac{17}{4}
\end{aligned}
$$

Choosing $x \equiv x_{0}$ to satisfy any one of

$$
\begin{array}{r}
\left| \pm x+\frac{1}{2} h-\frac{1}{2} g\right| \leq \frac{1}{2}, \\
\frac{3}{2} \leq\left| \pm x+\frac{1}{2} h+\frac{1}{2} g\right| \leq \frac{5}{2},
\end{array}
$$

we see, precisely as in Lemma 12, that (2.5) holds unless

$$
x_{0} \equiv \frac{1}{2}, \quad h \equiv g \equiv 0(\bmod 1)
$$

This gives the result of the lemma.
For the case (iii) of Theorem 3, we want to show that (2.5) holds unless $x_{0} \equiv \frac{1}{2}, h \equiv \frac{1}{2}, g \equiv \frac{1}{2}(\bmod 1)$ and $k=1$. For this, the simple argument used in Lemmas 12 and 13 is not sufficient. However, the complete result will follow by a consideration of the automorphs of $f(x, y, z)$ and an application of Lemma 4. The proof divides naturally into two stages, given in the following two lemmas.

Lemma 14. If $f(x, y, z)$ is given by (2.3), where] $\phi(y, z)$ satisfies (2.8), (2.9), then if (2.5) does not hold we have

$$
\begin{equation*}
h \equiv g \equiv \frac{1}{2}(\bmod 1) ; \tag{3.6}
\end{equation*}
$$

further, in the form equivalent to $f(x, y, z)$ with $h=g=\frac{1}{2}$,

$$
\begin{equation*}
\left|x_{0}-\frac{1}{2}\right|<.016(\bmod 1) \tag{3.7}
\end{equation*}
$$

Proof. There is clearly no loss of generality in supposing that

$$
\begin{equation*}
0 \leq h, g<1 \tag{3.8}
\end{equation*}
$$

in (2.3). We than have to prove that $h=g=\frac{1}{2}$ and that (3.7) holds under the assumption that (2.5) is false for some x_{0}.

Since $y_{0}, z_{0} \equiv \frac{1}{2}, \frac{1}{2}(\bmod 1)$ and $\Delta^{2}=50 k^{2}$, (2.5) holds unless, for some x_{0},

Now

$$
\begin{equation*}
M\left(f ; x_{0}, \frac{1}{2}, \frac{1}{2}\right) \geq\left(\frac{10}{3} k^{2}\right)^{\frac{t}{5}}>\left(\frac{10}{3} \times .9814\right)^{\frac{f}{5}}>1.484 . \tag{3.9}
\end{equation*}
$$

$$
\begin{aligned}
& f\left(\pm x, \frac{1}{2}, \frac{1}{2}\right)=\left(\pm x+\frac{1}{2} h+\frac{1}{2} g\right)^{2}-\frac{5}{2} k \\
& f\left(\pm x, \frac{1}{2},-\frac{1}{2}\right)=\left(\pm x+\frac{1}{2} h-\frac{1}{2} g\right)^{2}+\frac{5}{4} k
\end{aligned}
$$

Hence, for any x_{0} for which (3.9) holds, we have

$$
\begin{array}{r}
\left|\left(p \pm x_{0}+\frac{1}{2} h+\frac{1}{2} g\right)^{2}-\frac{5}{2} k\right|>1.484 \\
\left(p \pm p_{0}+\frac{1}{2} h-\frac{1}{2} g\right)^{2}+\frac{5}{4} k>1.484 \tag{3.11}
\end{array}
$$

for all integral p and any choice of sign. In (3.10) we choose p so that

$$
1 \leq\left|p \pm x_{0}+\frac{1}{2} h+\frac{1}{2} g\right|=\alpha<2,
$$

and in (3.11) we choose p so that

$$
\beta=\left|p \pm x_{0}+\frac{1}{2} h-\frac{1}{2} g\right| \leq \frac{1}{2} .
$$

We then have, from (3.10), either
or

$$
\begin{array}{ll}
\alpha^{2}>\frac{5}{2} k+1.484>3.9605, & \alpha>1.99 \\
\alpha^{2}<\frac{5}{2} k-1.484<1.032, & \alpha<1.016
\end{array}
$$

it follows that

$$
\begin{equation*}
-.016< \pm x_{0}+\frac{1}{2} h+\frac{1}{7} g<.016(\bmod 1) . \tag{3.12}
\end{equation*}
$$

Similarly, from (3.11) we deduce that

$$
\beta^{2}>1.484-\frac{5}{4} k>.2261, \quad \beta>.475
$$

whence

$$
\begin{equation*}
\frac{1}{2}-.025< \pm x_{0}+\frac{1}{2} h-\frac{1}{2} g<\frac{1}{2}+.025(\bmod 1) . \tag{3.13}
\end{equation*}
$$

Adding (3.12), (3.13) with suitable choices of sign we find that

$$
\begin{align*}
\frac{1}{2}-.041 & <h, g<\frac{1}{2}+.041 \quad(\bmod 1) \tag{3.14}\\
-.032 & <2 x_{0}<.032 \quad(\bmod 1)
\end{align*}
$$

whence either $\left|x_{0}\right|<.016(\bmod 1)$ or $\left|x_{0}-\frac{1}{2}\right|<.016(\bmod 1)$. If h, g satisfy (3.8) it is clear from (3.12) that the second alternative must hold, i.e. that x_{0} satisfies (3.7).

If we apply the integral unimodular transformation $x=X, y=-Z, z=Y+6 Z$ to $f(x, y, z)$ we find that

$$
f(x, y, z)=\left(X+h_{1} Y+g_{1} Z\right)^{2}-\frac{5}{4} k\left(Y^{2}+6 Y Z+Z^{2}\right)
$$

where

$$
h_{1}=g, \quad g_{1}=6 g-h
$$

and

$$
X, Y, Z \equiv x_{0}, \frac{1}{2}, \frac{1}{2}(\bmod 1)
$$

It follows that (3.14) must still hold if h, g are replaced by h_{1}, g_{1}. Similarly, using the inverse transformation $x=X, y=6 Y+Z, z=-Y$, we see that (3.14) must still hold if h, g are replaced by

$$
h_{-1}=6 h-g, g_{-1}=h
$$

Let now R be the region of the h, g-plane defined by

$$
\begin{equation*}
\frac{1}{2}-.041<h, g<\frac{1}{2}+.041 \tag{3.15}
\end{equation*}
$$

and let T be the matrix

$$
T=\left(\begin{array}{rr}
0 & 1 \\
-1 & 6
\end{array}\right)
$$

(which is clearly of infinite order). Then, if P is the point (h, g), we have

$$
\begin{aligned}
& P_{1}=\binom{h_{1}}{g_{1}}=T(P) \\
& P_{-1}=\binom{h_{-1}}{g_{-1}}=T^{-1}(P)
\end{aligned}
$$

Since $0 \leq h, g<1$, (3.14) shows that $P_{\varepsilon} \boldsymbol{R}$. Also, by what has been proved above, $T(P)$ and $T^{-1}(P)$ are congruent (mod 1) to a point of R; and since P satisfies (3.15) it is clear that in fact

$$
T(P)-(0,2) \varepsilon R, \quad T^{-1}(\mathscr{P})-(2,0) \varepsilon R
$$

Finally, the argument shows that the point $T^{n}(P)$ must satisfy (3.14), i.e. must be congruent to a point of R, if (3.9) holds.

It now follows from Lemma 4 that this is possible only if P satisfies

$$
T(P)=P+(0,2)
$$

i.e. if $P=(h, g)=\left(\frac{1}{2}, \frac{1}{2}\right)$.

This completes the proof of the lemma.
Lemma 15. Suppose that

$$
\begin{equation*}
f(x, y, z)=\left(x+\frac{1}{2} y+\frac{1}{2} z\right)^{2}-\frac{5}{4} k\left(y^{2}+6 y z+z^{2}\right) \tag{3.16}
\end{equation*}
$$

where k satisfies (2.9), and suppose that (2.5) is false with $y_{0}, z_{0} \equiv \frac{1}{2}, \frac{1}{2}(\bmod 1)$ and x_{0} satistying (3.7). Then

$$
\begin{equation*}
k=1, \quad x_{0} \equiv \frac{1}{2}(\bmod 1) \tag{3.17}
\end{equation*}
$$

Proof. Since f has determinant $D=-\frac{25}{2} k^{2}$ and k satisfies (2.9), it is quickly verified that (2.2) holds, i.e.
with

$$
\begin{gathered}
0<a \leq(4|D|)^{\frac{1}{3}} \\
a=f(1,1,0)=\frac{9}{4}-\frac{5}{4} k .
\end{gathered}
$$

If we make the equivalence transformation

$$
\begin{equation*}
x=X+Z, \quad y=Y, \quad z=X \tag{3.18}
\end{equation*}
$$

we find that
so that

$$
\begin{align*}
f(x, y, z) & =a F(X, Y, Z) \\
& =a X^{2}+\left(\frac{1}{4}-\frac{5}{4} k\right) Y^{2}+Z^{2}-\left(\frac{15}{2} k-\frac{3}{2}\right) X Y+3 X Z+Y Z \tag{3.19}
\end{align*}
$$

$$
F(X, Y, Z)=\left\{X-\frac{1}{4 a}(15 k-3) Y+\frac{3}{2 a} Z\right\}^{2}-\Phi(Y, Z)
$$

with

$$
\begin{equation*}
X, Y, Z \equiv \frac{1}{2}, \frac{1}{2}, x_{0}-\frac{1}{2}(\bmod 1) \tag{3.20}
\end{equation*}
$$

Now the form (3.19) is of the original type (2.3) and we are supposing that (2.4) is false, i.e. that

$$
M\left(F ; \frac{1}{2}, \frac{1}{2}, x_{0}-\frac{1}{2}\right) \geq\left(\frac{1}{15} \Delta^{2}\right)^{\frac{1}{3}}
$$

(where here Δ^{2} is the discriminant of $\Phi(Y, Z)$). By Theorem 3 it follows that we can apply an equivalence transformation to Y, Z, say $Y=\alpha Y^{\prime}+\beta Z^{\prime}, Z=\gamma Y^{\prime}+\delta Z^{\prime}$ so that $\Phi(Y, Z)$ is transformed into one of (2.6), (2.7), (2.8) (with Y^{\prime}, Z^{\prime} for y, z), and that then

$$
Y^{\prime}, Z^{\prime} \equiv \frac{1}{2}, \frac{1}{2}(\bmod 1)
$$

Since $\alpha, \beta, \gamma, \delta$ are integers, we deduce that each of Y and Z must be congruent to 0 or $\frac{1}{2}(\bmod 1)$; hence, by (3.20),

$$
x_{0} \equiv 0 \quad \text { or } \frac{1}{2}(\bmod 1),
$$

and so, by $(3.7), x_{0} \equiv \frac{1}{2}(\bmod 1)$ as required.
Further, by Lemmas 12, 13 and 14, we see that each of the coefficients $-\frac{1}{4 a}(15 k-3)$ and $\frac{3}{2 a}$ must be congruent to either 0 or $\frac{1}{2}(\bmod 1)$. Since $a=\frac{9}{4}-\frac{5}{4} k$ and k satisfies (2.9), it is easy to see that this can hold only if

$$
\frac{3}{2 a}=\frac{3}{2}, \quad \frac{1}{4 a}(15 k--3)=3
$$

whence $a=1, k=1$. This proves the lemma.
By Theorem 3 and Lemmas 12-15, we have now shown that (2.5) holds unless $f(x, y, z)$ is equivalent to one of

$$
\begin{aligned}
& f_{1}(x, y, z)=x^{2}-\frac{1}{2}\left(y^{2}+8 y z+z^{2}\right), \quad x_{0}, y_{0}, z_{0} \equiv \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \\
& f_{2}(x, y, z)=x^{2}-\left(2 y^{2}+12 y z+3 z^{2}\right), \quad x_{0}, y_{0}, z_{0} \equiv \frac{1}{2}, \frac{1}{2}, \frac{1}{2} \\
& f_{3}(x, y, z)=\left(x+\frac{1}{2} y+\frac{1}{2} z\right)^{2}-\frac{5}{4}\left(y^{2}+6 y z+z^{2}\right), \quad x_{0}, y_{0}, z_{0} \equiv \frac{1}{2}, \frac{1}{2}, \frac{1}{2} .
\end{aligned}
$$

To complete the proof of Theorem 2 (and hence of Theorem 1) we have only to observe that

$$
\begin{aligned}
f_{3}(x, y, z) & =Q_{1}(x, y, z) \\
2 f_{1}(x, y, z) & =2 x^{2}-(y+4 z)^{2}+15 z^{2} \\
& \sim Q_{2}(x, y, z) \quad \text { with } \quad x_{0}, y_{0}, z_{0} \equiv \frac{1}{2}, \frac{1}{2}, \frac{1}{2} \\
f_{2}(x, y, z) & =2(x-y-3 z)^{2}-(x-2 y+6 z)^{2}+15 z^{2} \\
& \sim Q_{2}(x, y, z) \quad \text { with } \quad x_{0}, y_{0}, z_{0} \equiv \frac{1}{2}, \frac{1}{2}, \frac{1}{2} .
\end{aligned}
$$

4. Proof of Lemmas 8-11. For the proofs of Lemmas 8-11 we must appeal to the general theory of two-dimensional inhomogeneous lattices developed in Barnes and Swinnerton-Dyer [3]. For the convenience of the reader we state briefly the particular results we shall need.

We denote by $\left[b_{1}, b_{2}, b_{3}, \ldots\right]$ the continued fraction

$$
b_{1}-\frac{1}{b_{2}-} \frac{1}{b_{3}-\cdots}
$$

where b_{i} is integral and $\left|b_{i}\right| \geq 2$. If $b_{i}>0$ for all i and $b_{i} \geq 4$ for some arbitrarily large i, we have

$$
\begin{equation*}
\left[b_{1}, b_{2}, \ldots, b_{n}, b_{n+1}, \ldots\right]<\left[b_{1}, b_{2}, \ldots, b_{n}, b_{n+1}^{\prime}, b_{n+2}^{\prime}, \ldots\right] \tag{4.1}
\end{equation*}
$$

provided only that $b_{n+1}<b_{n+1}^{\prime}$, in particular

$$
\begin{equation*}
\left[b_{1}, b_{2}, \ldots, b_{n}-1\right]<\left[b_{1}, b_{2}, \ldots, b_{n}, \ldots\right]<\left[b_{1}, b_{2}, \ldots, b_{n}\right] . \tag{4.2}
\end{equation*}
$$

Let $\left\{a_{n}\right\}(-\infty<n<\infty)$ be a chain of positive even integers for which the inequality $a_{n} \geq 4$ holds for some arbitrarily large n of each sign. For each n we define

$$
\begin{aligned}
\theta_{n} & =\left[a_{n}, a_{n-1}, a_{n-2}, \ldots\right] \\
\phi_{n} & =\left[a_{n+1}, a_{n+2}, a_{n+3}, \ldots\right]
\end{aligned}
$$

so that, by (4.2), $\theta_{n}>1, \phi_{n}>1$. For any real λ, μ with $\lambda \mu>0$, the inhomogeneous lattice \mathcal{L} defined by

$$
\begin{aligned}
& \xi=\lambda\left\{\theta_{n}\left(u-\frac{1}{2}\right)+\left(v-\frac{1}{2}\right)\right\} \\
& \eta=\mu\left\{\left(u-\frac{1}{2}\right)+\phi_{n}\left(v-\frac{1}{2}\right)\right\},
\end{aligned}
$$

where u, v run through all integral values, is called a symmetrical lattice corresponding to the chain $\left\{a_{n}\right\}$. If \mathcal{L} has determinant Δ, we have $\Delta=\lambda \mu\left(\theta_{n} \phi_{n}-1\right)$, so that, for points of \mathcal{L},

$$
\begin{equation*}
\xi \eta=\frac{\Delta}{\theta_{n} \phi_{n}-1}\left(\theta_{n} x+y\right)\left(x+\phi_{n} y\right), \quad x, y \equiv \frac{1}{2}, \frac{1}{2}(\bmod 1) . \tag{4.3}
\end{equation*}
$$

A symmetrical lattice \mathcal{L} is admissible for \boldsymbol{R}_{m} : $-1 \leq \xi \eta \leq m(m>1)$ if and only if the inequalities

$$
\begin{align*}
& \frac{\Delta}{m} \geq \frac{4\left(\theta_{n} \phi_{n}-1\right)}{\left(\theta_{n}+1\right)\left(\phi_{n}+1\right)}=\Delta_{n}^{+} \tag{4.4}\\
& \Delta \geq \frac{4\left(\theta_{n} \phi_{n}-1\right)}{\left(\theta_{n}-1\right)\left(\phi_{n}-1\right)}=\Delta_{n}^{-} \tag{4.5}
\end{align*}
$$

hold for all n.
For any $m>1$, all critical lattices of \boldsymbol{R}_{m} are symmetrical. Moreover, if $1<m \leq 3$, the inequality

$$
\begin{equation*}
\Delta(\mathcal{L}) \geq 2(m+1) \tag{4.6}
\end{equation*}
$$

holds for any \boldsymbol{R}_{m}-admissible \mathcal{L} which is not symmetrical.
Finally, if $0<D<2(k+1)$ and, for any n,

$$
\begin{equation*}
\Delta_{n}^{-} \leq D, \quad \Delta_{n}^{\dagger} \leq \frac{D}{k} \tag{4.7}
\end{equation*}
$$

then the inequality

$$
\begin{equation*}
\left|\alpha-\frac{2(k-1)}{2(k+1)-D}\right| \leq \frac{\sqrt{D^{2}-16 k}}{2(k+1)-D} \tag{4.8}
\end{equation*}
$$

holds with $\alpha=\theta_{n}$ or $\alpha=\phi_{n}$.
Proof of Lemma 8. Let $m=\frac{5}{3}$ and suppose that \mathcal{L} is R_{m}-admissible and has $\Delta(\mathcal{L}) \leq 4 \sqrt{\frac{5}{3}}=4 \sqrt{m}$. Since $2(m+1)>4 \sqrt{m}, \mathcal{L}$ must be symmetrical; and, by (4.4), (4.5) we require

$$
\Delta_{n}^{-} \leq 4 \sqrt{\frac{5}{3}}, \quad \Delta_{n}^{+} \leq 4 \sqrt{\frac{3}{5}}
$$

for all n. Thus (4.7) holds with $D=4 \sqrt{\frac{5}{3}}, k=\frac{5}{3}$; since now $D^{2}=16 k$, (4.8) shows that for all n

$$
\theta_{n}=\phi_{n}=\frac{2(k-1)}{2(k+1)-D}=4+\sqrt{15}=[8,8,8, \ldots] .
$$

Hence $\left\{a_{n}\right\}$ is the periodic chain $\{8\}$ and, by (4.3),

$$
\xi \eta=\frac{\Delta}{2 \sqrt{15}}\left(x^{2}+8 x y+y^{2}\right), \quad x, y \equiv \frac{1}{2}, \frac{1}{2}(\bmod 1)
$$

Finally, since now $\Delta_{n}^{-}=4 \sqrt{\frac{5}{3}}$ for all n, we require
whence

$$
\Delta \geq 4 \sqrt{3}, \quad \Delta \leq 4 \sqrt{\frac{5}{3}},
$$

$$
\Delta=4 \sqrt{\frac{5}{3}}, \frac{\Delta}{2 \sqrt{15}}=\frac{2}{3} .
$$

Proof of Lemma 9. It is shown in [3], Theorem 9, that if $m \geq 2$ and \mathcal{L} is admissible for R_{m}, then either $\Delta(\mathcal{L}) \geq \sqrt{33}$ or \mathcal{L} is a symmetrical lattice corresponding to the chain $\{6\}$. Lemma 9 follows at once from this, on observing that, for the chain $\left\{\begin{array}{r}\times \\ \{ \end{array}\right.$ we have
for all n,

$$
\left.\theta_{n}=\phi_{n}=\stackrel{\times}{6}\right]=3+2 \sqrt{2}
$$

$$
\xi \eta=\frac{\Delta}{4 \sqrt{2}}\left(x^{2}+6 x y+y^{2}\right), \quad x, y \equiv \frac{1}{2}, \frac{1}{2}(\bmod 1)
$$

where

$$
\Delta \geq m \Delta_{n}^{+}=\frac{4 m}{\sqrt{2}}, \quad \frac{\Delta}{4 \sqrt{2}} \geq \frac{1}{2} m
$$

Proof of Lemma 10. Suppose first that the inequalities

$$
\begin{equation*}
\Delta_{n}^{-} \leq \frac{8}{7} \sqrt{30}, \quad \Delta_{n}^{+} \leq \frac{8}{17} \sqrt{30} \tag{4.9}
\end{equation*}
$$

hold for all n. We show that then $\left\{a_{n}\right\}$ is the periodic chain $\{\stackrel{\times}{6}, \stackrel{\times}{4}\}$. For (4.7) holds with

$$
D=\frac{8}{7} \sqrt{30}, \quad k=\frac{17}{7},
$$

and so (4.8) gives, for all n,

$$
\begin{aligned}
& \left\lvert\, \alpha-\frac{5}{12-2 \sqrt{30}}\right. \leq \frac{1}{12-2 \sqrt{30}} \\
& \frac{2}{6-\sqrt{30}} \leq \alpha \leq \frac{3}{6-\sqrt{30}}
\end{aligned}
$$

i.e.

$$
\stackrel{\times}{\times} \stackrel{\times}{4}, 6] \leq \alpha \leq\left[\begin{array}{c}
\times \tag{4.10}\\
6 . \\
6
\end{array}\right]
$$

where $\alpha=\theta_{n}$ or $\alpha=\phi_{n}$. Using (4.1), (4.2), we see that $a_{n}-1<\theta_{n}=\left[a_{n}, a_{n-1}, \ldots\right]<a_{n}$, and so (4.10) shows that $a_{n}=4$ or 6. If $a_{n}=4$, (4.10) with $\alpha=\theta_{n}$ and $\alpha=\phi_{n-1}$ gives

$$
\begin{aligned}
& {\left[4, a_{n-1}, \ldots\right] \geq[4,6,4, \ldots]} \\
& {\left[4, a_{n+1}, \ldots\right] \geq[4,6,4, \ldots]}
\end{aligned}
$$

whence $a_{n-1} \geq 6, a_{n+1} \geq 6$, so that $a_{n-1}=a_{n+1}=6$. Similarly, if $a_{n}=6$, (4.10) shows that $a_{n-1}=a_{n+1}=4$. It follows that $\left\{a_{n}\right\}$ is $\left\{\begin{array}{c}\times \\ 6,4\}\end{array}\right.$, as required.

Now if \mathcal{L} is symmetrical and admissible for \boldsymbol{R}_{m} with $m \geq \frac{17}{7}$, either (4.9) holds for all n or, by (4.4) and (4.5),

$$
\Delta>\min \left\{\frac{8}{7} \sqrt{30}, \quad \frac{8 m}{17} \sqrt{30}\right\}=\frac{8}{7} \sqrt{30}
$$

while if \mathcal{L} is not symmetrical, (4.6) gives

$$
\Delta \geq 2(m+1)=\frac{48}{7}>\frac{8}{17} \sqrt{30}
$$

It follows that if \mathcal{L} is R_{m}-admissible, with $m \geq \frac{17}{7}$ and $\Delta(\mathcal{L}) \leq \frac{8}{7} \sqrt{30}$, then \mathcal{L} is a symmetrical lattice corresponding to the chain $\left\{\begin{array}{r}\times \\ \mathbf{6}, \underset{4}{\mathbf{4}}\}\end{array}\right.$. For this chain, θ_{n} and ϕ_{n} are $\frac{1}{3}(6+\sqrt{30}), \frac{1}{2}(6+\sqrt{30})$ in some order, for each n, whence

$$
\begin{gathered}
\xi \eta=\frac{\Delta}{2 \sqrt{30}}\left(2 x^{2}+12 x y+3 y^{2}\right), \quad x, y \equiv \frac{1}{2}, \frac{1}{2}(\bmod 1), \\
\frac{\Delta}{2 \sqrt{30}} \geq \frac{m \Delta_{n}^{+}}{2 \sqrt{30}}=\frac{4 m}{17}
\end{gathered}
$$

Proof of Lemma 11. For $m \geq \frac{26}{9}$ we have

$$
2(m+1)>4 \sqrt{3}
$$

it is therefore sufficient to show that there exists no symmetrical lattice satisfying

$$
\begin{equation*}
\Delta_{n}^{-}<4 \sqrt{3}, \quad \frac{26}{9} \Delta_{n}^{+}<4 \sqrt{3} \tag{4.11}
\end{equation*}
$$

for all n.
Now if (4.11) holds, then (4.7) holds with $D=4 \sqrt{3}, k=\frac{26}{9}$. Hence, by (4.8),

$$
\begin{gathered}
\left|\alpha-\frac{17}{35-18 \sqrt{3}}\right|<\frac{6}{35-18 \sqrt{3}} \\
\frac{11}{35-18 \sqrt{3}}<\alpha<\frac{23}{35-18 \sqrt{3}}
\end{gathered}
$$

with $\alpha=\theta_{n}$ or $\alpha==\phi_{n}$. Thus for all n we have

$$
\theta_{n}>\frac{11}{35-18 \sqrt{3}}>\frac{11}{3.8231}>2.87
$$

so that $a_{n} \geq 4$ for all n.
If now $a_{n} \geq 6$ for some n, we have, using (4.1),

$$
\theta_{n} \geq[6,4,4,4, \ldots]=4+\sqrt{3}, \quad \phi_{n} \geq[4,4,4, \ldots]=2+\sqrt{3}
$$

whence

$$
\frac{1}{4} \Delta_{n}^{+} \geq \frac{10+6 \sqrt{3}}{(5+\sqrt{3})(3+\sqrt{3})}=\frac{9+7 \sqrt{3}}{33}=0.64 \ldots,
$$

whereas (4.11) gives

$$
\frac{1}{4} \Delta_{n}^{+}<\frac{9 \sqrt{3}}{26}<0.6
$$

It follows that $a_{n}=4$ for all n. But then $\Delta_{n}^{-}=4 \sqrt{3}$, contradicting (4.11). Thus (4.11) cannot hold for all n.
5. It is not difficult, using the same methods, to show that Theorem 1 remains true if in (l.12) and (1.13) we replace $4 / 15$ by a slightly smaller constant. The ranges of d given in Lemma 7 are then slightly increased, but Theorem 3 still holds with the forms (2.6), (2.7) replaced by $\frac{1}{2} k\left(y^{2}+8 y z+z^{2}\right), k\left(2 y^{2}+12 y z+3 z^{2}\right)$, where k is nearly 1. (For the proof of this, we need stronger versions of Lemmas 8 and 10 , but these are easily obtained.) We may then show, just as in Lemmas 14 and 15, that in each case k must be 1. I have not given the details, to avoid complicating the main lines of the proof.

Thus the 'second minimum' $\left(\frac{4}{15}|D|\right)^{\frac{1}{3}}$ is isolated, and the problem remains to find the third and any further minima. Since Davenport [4] has given a (zero) form with $M(Q)=\left(\frac{1}{4}|D|\right)^{\frac{1}{4}}$, the third minimum is at least $\left(\frac{1}{4}|D|\right)^{\frac{1}{2}}$.

I think it likely that the methods of this paper will not prove adequate for a complete analysis of the problem. It is easy to see that, in particular, the method will break down if there are uncountably many distinct lattices admissible for $\boldsymbol{R}_{\boldsymbol{m}}$ with determinant not exceeding $1 / \mu$; and this situation does in fact arise if one attempts to find the forms Q with $M(Q) \geq\left(\frac{1}{4}|D|\right)^{\frac{1}{2}}$.

However, a complete answer to the problem may be obtainable by the use of 'local' methods on the chain $\left\{a_{n}\right\}$ associated with $\phi(y, z)$ in the form (2.3). I hope to investigate this attack in the near future.

The University of Sydney, Australia.

References

[1]. R. P. Bambah, Non-homogeneous binary quadratic forms (II), Acta Math., 86 (1951), 32-56.
[2]. E. S. Barnes and H. P. F. Swinnerton-Dyer, The inhomogeneous minima of binary quadratic forms (I), Acta Math., 87 (1952), 259-323.
[3]. ——, The inhomogeneous minima of binary quadratic forms (III), Acta Math. 92 (1954), 199-234.
[4]. H. Davenport, Non-homogeneous ternary quadratic forms, Acta Math., 80 (1948), 65-95. [5]. …, On indefinite ternary quadratic forms, Proc. London Math. Soc. (2), 51 (1949), 145-160.

