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1. Let  Q (x, y, z) be an indefinite ternary quadratic form with real coefficients 

and determinant D # 0 .  Davenport [4] has shown that,  given any real numbers 

Xo, Yo, Zo, there exist x, y, z congruent (modulo 1) to Xo, Yo, Zo satisfying 

IQ(x, y, z) l<-(~olDI)i  ; (~.1) 

the equality sign can hold if and only if Q is equivalent (under integral unimodular 

transformation of the variables) to a multiple of the form 

Ql (x, y, z)=x~ + 5y2 - z2  + 5yz  + zx. 

The main weapon used in the proof was a generalization of Minkowski's result 

on the inhomogeneous minimum of a binary quadratic form, namely: 

If /(x, y) is a binary quadratic form with real coefficients and discriminant A 2, 

where A > 0 ,  and # > 0 ,  1,>0, # v ~ ,  then, for any real numbers x 0,y0, there exist 

x, y - x  o, Yo (rood 1) satisfying 

- v A < ~ / ( x ,  y)_<# A. (1.2) 

By obtaining an 'isolation' of this inequality when v is approximately  2#, Da- 

venport was able to show that  the result (1.1) is isolated: that  is to say, there 

exists a positive constant ~ such that  the inequality 

[Q(x, y, z)]~ (1 -~)(~J~ I D [)* (1.3) 

can be satisfied whenever Q is not equivMent to a multiple of the special form Q1. 
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Recently Swinnerton-Dyer and I [3] made a detailed investigation of results of 

the type (1.2) and developed a technique for obtaining best possible results for any 

value of the ratio v/#.  I use this technique here, together with Davenport ' s  general 

method of a t tack on the problem, to find the best possible value of ~ in (1.3). 

The proof leads natural ly to a stronger assertion than (1.3) and shows tha t  the  

result (1.1) is isolated not only in respect of the form Q1 but  also in respect of the 

values 1 1 ~, ~, �89 (mod 1) of x o, Y0, z0. To make this s tatement  precise we introduce the  

following notation : 

I f  Q = Q  (x, y, z) is any indefinite ternary quadratic form and Xo, Yo, zo any real 

numbers, we set 
i (Q; x o, Y0, Zo) = g.l.b. I Q (x, y, z)], (1.4) 

where the lower bound is taken over all sets x, y, z ~ x  o, Y0, zo (rood 1). We then write 

M (Q) = 1.u.b. M (Q; x 0, y0, zo), (1.5) 

where the upper bound is taken over all real xo, Y0, zo; we call M(Q)  the inhomo- 

geneous minimum of Q. 

Clearly (1.1) implies tha t  always 

M (Q) ~ (~0~ [ n I) ~. 

Now if T is any 3•  matr ix  with integral elements and determinant +_1 and 

we make the transformation of the variables expressed in vector notation by  

X = T x ,  (1.6) 

then Q(x, y, z) becomes, say, Q ' (X,  Y, Z), and the forms Q, Q' are said to be equi- 

valent. I f  also we define 
X o = Tx0, (1.7) 

then it is clear that  
M ' (Q ; X0, Y0, Zo) = M (Q ; x 0, Y0, z0)" (1.8) 

Further,  since X0, Yo, Zo run through all real numbers when Xo, Yo, Zo do, we have 

M (Q') = M (Q). (1.9) 

I t  will always be understood, when we pass to an equivalent form by  a trans- 

formation (1.6), that  any particular values of x o, Y0, zo under consideration are sub- 

jected to the corresponding transformation (1.7). 

The complete statement of the results we shall obtain is given, in the above 

notation, by  



then 

Ql(x, y, z ) = x 2 - y 2 - z 2 + x y - 7 y z + z x  

Q2(x, y, z) = 2 x ~ -  y2 + 15z 2, 

M (Q) < (~slDI) ~. 
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Theorem 1. (i) I /  Q(x, y, z) is not equivalent to a multiple o/ either o/ the /orms 

(1.10) 

(1.11) 

(1.12) 

(i = 1, 2) (1.13) 

(ii) For the special /orms Q1, Q2 we have 

M(Q~ ; x o, Yo, %) < (r IDI) t 

unless Xo, Yo, zo ~- ~, �89 -~ (mod 1) ; /urther, 

M (Q~ ; 1, ~, ~) = (1~ ]D [)~ = M (Q~), 

i . 1 1 (Q2, ~, ~, ~) = (r ID])~ = M (Q2) �9 

In  the course of the  proof we shall use the  following lemmas:  

(1.14) 

(1.15) 

Lemma 1. I /  Q (x, y, z) is inde/inite and has determinant D < 0 then there exist 

integers xl, Yl, zl satis/ying 
0 < Q (x 1, yl, z~) _< ( 4 I n  ])t. (1.16) 

This is Theorem 2 of Davenpor t  [5]. 

Lemma 2. 
an x satis/ying 

provided that 

Let fl, B be real numbers with B > ~. Then /or any real x o there exists 

x=xo (mod 1), [x~-fl2l<B, 

f12 < B 2 + ~ i / B  is integral, 

f12 < B + 1 [2 B] 2 i/ B is not integral. 

This result  is contained in Davenpor t  [4], L e m m a  51 

Lemma 3. Let T be an integral 2• 2 matrix o/ in/inite order and o] determinant 

• 1, and let ~ be a bounded point set in the Cartesian plane. Suppose that, /or some 

point A with integral coordinates, any point P o/ ~ has the property that e i t h e r  

T ( P ) -  A belongs to ~ o r T (P) is not congruent (mod 1) to a point o/ ~. 

Then, i/ P is a point such that T ~(P) is congruent (rood 1) to a point o/ ~ /or 

all integral n ~0, P is the unique point F o/ ~ de/ined by 

T (F)  - A  = F .  

This result is due to Cassels, and is quoted by  Bambah  [1]; an a l ternat ive  

proof is given in Barnes and Swinner ton-Dyer  [2], Theorem D; (the region ~* ap- 
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pearing in this theorem may  be taken  as the set of all points of the plane which 

are not  congruent  (mod 1) to  a point  of }~). 

2. The results s ta ted in Theorem 1 for M (Q1 ; 1, 1, �89 and M (Q2 ; ~, ~, ~) are easily 

established by  congruence considerations, and it is convenient  to dispose of these 

at  once. 

(i) We have 
4 Q1 = (2 x + y + z) 2 - 5 (y + 3 z) ~ + 40  z 2. 

I f  x , y ,  z-2,~,~,=l 11  then  2x, 2y,  2z are odd integers', we may  therefore write 

4 Q l = X ~ - 5  y ~ + 1 0 Z  2, 

where X, Y, Z are integral, Z = 2 z  is odd and X -  Y = 2 x - 2 z  is even. We then  have 

4 Q 1 - 2  (mod 4), 4 Q I - 0 ,  •  (mod 5), 

whence 14Q1]_> 6. We have thus  shown tha t  

[ Q1 (x, y, z)[ _>-~ whenever  x, y, z--  ~, 1, ~. 

[Q~(I, ~, ~)] =~, D ( Q I ) =  8 5  
2 '  

Since 

it  follows t ha t  

as required. 

(ii) If  x, y, z =:1, 1, ~, then 

M(Q1; 1, 1~, ~)1 = ~= r  ,100 IDI) *, 

4Q z = 2 X  2_  y 2 +  1 5 z  2, 

where X ,  Y,  Z are odd integers. Hence 

4 Q2 = 0 (rood 8), 

and it is easy to see, by  considering congruences mod 3, t ha t  4 Q2 ~- 0. We therefore have 

z =~1 ~, . i .  ]Q2(x ,y ,z ) ] ->2  whenever  x , y ,  --8, 

I Q ~ ( ~ ,  .~ ~ = _ ~:, ~)[ = 2, n (Q2) a0, Since 

it follows tha t  
M . 1 1  (Q2, ~, ~, ~)= 2 = (~ [DI)~ 

as required. 

To complete the proof of Theorem 1 we have therefore to establish 

Theorem 2. The inequality 

M (Q; x o, Yo, Zo) < (4 [n])~ (2.1) 

: 1  1 ' (mod 1). holds unless Q is equivalent to a multiple o/ Q1 or Q2 with x o, Yo, Zo-~,  ~, 
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For  the proof of Theorem 2, we first observe tha t  there  is no loss of generali ty 

in supposing t ha t  D < 0 (since we m a y  consider - Q  in place of Q if necessary). Le t  

a =  Q(xl,  Yl, Zl) be any  value assumed by  Q for coprime integers x 1, yj, zj satisfying 

(1.16), so tha t  
o<(,_<(41DD*. (2.2) 

1 
Making an appropria te  equivalence t ransformation,  we see tha t  Q (x, y, z) is equi- a 
valent  to  a form 

/ (x, y, z) = (x + h y  + gz) 2 - 4' (Y, z) (2.3) 

where h, g are real and ~ (y, z) is an indefinite quadrat ic  form of discriminant 

A2=4~DI>I.--_ 

Then  (2.1) is equivalent  to the assertion tha t  

M ( / ;  x o, Yo, %) < (11~ A2) ~" 

(2.4) 

Theorem 3. 

The first step in the proof of (2.5) is the consideration of the possible forms of 

(y, z). In  this section we prove 

Or 

o r  

w h e r e  

I /  /(x,  y, z) is given by (2.3), (2.4), then (2.5) holds unless either 

(i) $(Y ,Z)=�89  Yo,~o--~=!2,~, 

(ii) 6 ( y , z ) = 2 y ~ + 1 2 y z + 3 z  2, yo, Zo=-~, 1, 

(iii) $ ( y , z ) - ~ k ( y 2 + 6 y z §  ~ =1 Y0, ~ 0 - - ' 2 ,  ~, 

(or equivalent /orms). 

I t  is convenient  to set 

so tha t ,  by  (2.4), 

Lemma 4. 

�9 9906 < k < 1.0063 

d = {1~ 12)L 

d>_(~)~ >~. 

Let tt > O, v> 0 be de/ined by 

~ • 1 8 9  1 

{~d+l[d? 
vA=[ l (d~+l )  

i/ d is not integral 

i/  d is integral. 

2 - -  543808 .  Acta B1athematica. 92. l m p r i m 6  le 29 ddeembre  1954. 

(2.6) 

(2.7) 

(2.S) 

(2.9) 

(2.1o) 

(2.11) 

(2.12) 

(2.13) 

(2.5) 
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Suppose that there exist y, z~yo ,  z o (mod 1) with 

Then /or any x o 

Proof. I f  in 

- / z  A < ~ ( y ,  z ) < v A .  (2.14) 

M (I ; xo, Yo, %) < ~ d =  (~ A~) ~. (2.15) 

(2.14) we have d~ (y, z) <_ O, then, for any x 0, we can choose x ~ x  o 

with [ x + h y + g z l  -<�89 For this choice of x , y , z  we have 

0_<](x, y, z ) < ~ + # A = l d .  

If, however, ~b (y~ z) > 0, we have 

O < 6 ( y , z ) < v A ;  

applying Lemma 2 with f l~=6{y,  z), B = ~ d  (noting that  then B >  1 by  (2.11)), we 

see tha t  for any x o we can choose x=-Xo with 

I/(x, y,z)l<id. 

The required result (2.15) follows immediately. 

In  the notation of Barnes and Swinnerton-Dyer [3] we denote by ~m the set 

of points of the ~, ~-plane defined by  

- l _ ~ < _ m .  

An inhomogeneous lattice i: is a set of points 

~ = ~ x + ~ y ,  

~ = T x  +(Sy, 

where x, y run through all numbers congruent (mod l) to x o, Y0 respectively, and 

A=A(C)=I a- rI*o 

is the determinant  of ~. s is admissible for ~m if i t  has no point in the interior 

of Rm. The critical determinant Dm of ~ a  is defined to be the lower bound of A (s 

over all admissible lattices E. We now have 

Lemma 5. For all m > l,  
Dm >- 4 (2.16) 

This result is equivalent to Davenport ' s  result quoted in w 1 (Davenport  [4], 

Lemma 3). A less direct proof is given in Barnes and Swinnerton-Dyer [3]. 
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Now since ~ (y, z) has discriminant A s, it may  be expressed as the product of 

two linear forms of determinant  A. Thus the form 

1 
# A  ~(y, z) 

with y, z=--yo, z o runs over the values of ~ corresponding to a lattice I: of deter- 

minant  1 From the definition of Dm it is therefore clear tha t  (2.10) is certainly 
# 

soluble~ for any Y0, %, if 
1 
- -  ~ D m ,  where m = - .  
# # 

Combining this result with Lemma 3, we have 

Lemma 6. I[  tt, v are de/ined as in Lemma 4 and 

m ~ -  , 

(2.17) 

then the inequality (2.5) certainly holds unless 

1 
- -  >- Din. (2.18) 
tt 

As a first step towards the elimination of possible values of d, we use (2.18) 

with the estimate (2.16) for Din. 

Lemma 7. I /  (2.5) does not hold, then d satis/ies either 

d- -2 ,  (2.19) 

or 2.969 < d _< 3, (2.20) 

or 3.975 < d_< 4, (2.21) 

or 4.994 < d _< 5. (2.22) 

Proof. By I, emma 6 and (2.12) we have 

1-_>4VV~, 
# 

i.e. 16#v_< 1. 

Substituting for F,, v and noting that,  by  (2.10), 

8 A 2 = 15 d a, 
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this inequality becomes 

8 ( 2 d -  1) (2d + [d] ~)_< 15d 3 if d is not integral, (2.23) 

8(2d-1) (d2+l)<_15d a if d is integral. (2.24) 

Now (2.24) may be written in the form 

( d - 2 )  (d2-  6d+4) -<0 ,  

4 < and this inequality is easily seen to be false if d_>6 or if s < d _ l .  Thus (2.24)can 

hold for integral d > ]  only if d=2,  3, 4 or 5. Further, since [d] > d -  l, 2 d +  [d]2 >d~+  1. 
4 < Hence (2.23) cannot hold if d satisfies d_>6 or s < d _  1. 

I t  remains for us to consider non-integral d satisfying (2.19) and 1 < d < 6 .  

(i) If [d]= 1, (2.23) is 

15d a - 3 2 d  2+8_>0; 

the 1.h.s. takes its greatest values at the end-points of the interval I <e l<  2 and is 

negative for d =  1 and d = 2 .  

(ii) 

Hence (2.23) is never satisfied. 

If [d] =2 ,  (2.23) is 

15d a -  32d 2 - 4 8 d + 3 2 _ > 0 ;  

the 1.h.s. increases with d for d ~ 2  and is negative when d=2.969;  hence d satis- 

fies (2.20). 
(iii) If [d]=3,  (2.23) is 

15d 3 - 3 2 d  2 -  1 2 8 d + 7 2 ~ 0 ;  

the 1.h.s. increases with d for d > 3  and is negative when d - 3 . 9 7 5 ;  hence d satisfies 

(2.21). 
(iv) If [d]=4,  (2.23) is 

15d a - 3 2 d  2-- 240d+ 128_>0; 

tim 1.h.s. increases with d for d ~ 4  and is negative when d=4.994;  hence d satisfies 

(2.22). 
(v) If [d]=5,  (2.23) is 

15d a - 3 2 d  2 - 3 8 4 d + 2 0 0 _ > 0 ;  

the 1.h.s. increases with d for d ~ 5  and is negative when d = 6 ;  hence (2.23) does 

not hold. 

This completes the proof of the lemma. 
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Corresponding to the values of d allowed by Lemma 6, we find the following 

values of m = - - :  
/t 

m=~,  (2.19') 

2 _< m < 2.0126, (2.20') 

~7 < m < 2.4389, (2.21') 

~6 _< m < 2.8915. (2.22') 

~ o w  

the form 

the estimate (2.16) is known to be best possible if and only if m is of 

m = l +  2- (r=l,  2 ,3 , . . . )  
r 

or r e = l ;  in particular D ~ = 4 ~ m  for the values m=~,  m = 2 .  However, for the re- 

maining values of m given in (2.19')-(2.22') ,  strict inequality holds in (2.16). The 

results we shall need are given in the following four lemmas: 

Lemma 8. I/  m=~ and I: is admissible /or ~m, then either A(I : )>4V~ or I= is 

given by 

~ = 3  (x2 + 8xy+y2), x, y ~ ,  1 (m o d l ) .  

Lemma 9. 

given by 

I /  m >_ 2 and s is admissible /or ~,,, then either A (s V33 or I~ is 

~ = k ( x ~ + 6 x y + y 2 ) ,  x,y=-�89 1 (mod l ) ,  >1 k _ ~ m .  

Lemma 10. i /  m>_�89 and s is admissible /or ~m, then either A ( s  or 

s is given by 
~ l=k(2x~+12xy+3y2) ,  x ,y=~, 1 (m o d l ) ,  k>_~m. 

Lemma 11, I /  m>~6 and s is admissible /or ~m, then A (s 4 Y3. 

In order to avoid interrupting the main argument, we defer the discussion of 

these results until w 4. 

Now suppose that  (2.19) holds, so that  d=2, m=~. Then 

- - ~ ,  

A 2 = ~Sda = 15, 

# 
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Hence, by  Lemmas  3 and 8, (2.5) holds unless 

~(y,z)=~(yS+8yz+z2), y0, z 0 ~ ,  ~; 

this is (i) of Theorem 3. 

Next  suppose tha t  (2.20) holds, so tha t  m satisfies (2.20'). Then, since 

1 4A 4 V15da 

# 2 d - 1  2 d - l r  8 ' 

it is easily verified tha t  1 < ~ / ~ .  By Lemmas 3 and 9 it follows tha t  (2.5) holds 

unless ~b (y, z) is equivalent to a positive multiple of y~ + 6 y z + z 2 with y, z ~ 4, 1 (mod 1). 

This shows tha t  (2.8) of Theorem 3 holds for some k > 0 .  Also, since then A2=50k  s, 

we have 
A s = 50 k 2 = ~ d s. 

The bounds (2.9) for k now follow from 

r z) satisfies Theorem 3 (iii). 

Next  suppose tha t  (2.21) holds, so tha t  m satisfies (2.21'). 

cannot hold unless 

For (2.25) is equivalent to 

which reduces to 

m=7, d=4, 1~-~l/30. 
/a 

2 - - - <  A = 1 V158da 
V3o_ 2 d - 1  2 d - 1  

4 9 d a -  64(2d - 1)2>0, 

( d - 4 )  (49d2-  6 0 d +  16)>_0; 

the bounds for d given in (2.20). Thus 

Then the inequality 

(2.25) 

(2,26) 

since 3.975 < d _  4, this is true only if d = 4  and the sign of equality ho lds : th i s  gives 

(2.26). I t  now follows at  once from Lemmas 3 and 10 tha t  (2.5)holds unless ~ (y, z) 

is equivalent to a positive multiple of 

2y~+12yz+3y s, y,z=--~,~ and d = 4 .  Since then 

A2 = ~5 d s ~= 120, 

we see tha t  (ii) of Theorem 3 holds. 

Suppose finally shat (2.22) holds, so tha t  m satisfies (2.22'). Then, by  Lemmas 

3 and l l, (2.5) holds unless 
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But  this inequal i ty  is equivalent  to 

1 > 4 V 3 .  
# 

1 A 

4/~ 2 d - l '  

23 

3 (2d - 1) 2 <_ A 2 : l ~ d  3, 

and it is easily verified t ha t  this is false for d sat isfying (2.18). 

This completes  the proof of Theorem 3. 

3. The  nex t  s tep in the  proof of Theorem 1 is to decide wha t  values of xo, h 

and g are allowable in (2.3) if (2.5) is not  satisfied and  ~ (y, z) is given b y  one of 

the  forms in Theorem 3. 

L e m m a  12. I /  /(x, y,z) is given by (2.3), where ~(y,z) is given by (2.6), then 

(2.5) holds unless [ is equivalent to 

/1 (x, y, z) = x 2 -- ,~ (y2 + 8 y z + z 2) (3.1) 
and 

z - - !  1 1 (mod 1). Xo, YO, 0 - - 2 ,  ~, 

Proof. We have  
/(x, y, z)=(x + hy + gz) 2 -  ~(y~ + 8yz + z 2) 

with x,y,z=-xo,~,�89 ( m o d l ) .  Since A~=15 ,  

(~ A2)~ = 1. (3.2) 
:Now 

/ ( i x ,  ~, -~)=(  •  + ~h-~g)2 + ~, (3.3) 

] ( _ + x , ~ , � 8 9  2-~. (3.4) 

For  any  real x o, we can choose x -  = x o with 

hence, by  (3.3), 
M (/; x 0, Y0, %) -< 1 = ( ~  A2) ~ ; 

and the sign of inequal i ty  holds unless 

Xo+�89 1~g~--1 ( m o d l ) .  

I n  the same way,  taking the  lower sign in (3.3), we see t h a t  (2.5) holds unless 

_xo+lh_l~g=~--i (rood 1). 
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Similarly, choosing x ~ x  o with 

we see that  (2.5) holds unless 

XO+12h+lTz~__ ~ 1  (mod 1), 

-Xo+~ h+ ~--l~v~ (mod 1). 

Since the above four eongruenees imply that  

xo~ ~, h ~ g ~ 0  (mod 1), 
the lemma follows at once. 

L e m m a  

(2.5) holds unless / is equivalent to 

/2(x, y, z ) = x  2 -  (2y2+ 12yz+  3z 2) 
and 

x0, Y0, %_=1, ~, 1 (mod 1). 

Proof. We have 

/(x, y , z ) = ( x  + h y + g z )  2 - ( 2 y 2 +  12yz  + 3z2), 

13. I /  / ( x , y , z )  is given by (2.3), where r  is given by (2.7), then 

(3.5) 

with x, y, z~xo,  .~, �89 (rood 1). Since A s=  120, 

(~ A2) ~ = 2. 
Now 

/ ( + x ,  � 8 9 1 8 9  ,.~2 - 

/( _+x, ~, ~)=(_+~+ ih+~a?-u 

Choosing x ~ x  o to satisfy any one of 

] +~+ih-~g[_<�89 

~-<l + x + ~  h+- l" j<~  
- -  2 ~ 1  - - 2 '  

we see, precisely as in Lemma 12, that  (2.5) holds unless 

~ '  h ~ g - O  (mod 1). XO - -  '2, 

This gives the result of the lemma. 

For the case (iii) of Theorem 3, we want to show that  (2.5) holds unless 

x0~ ~, h-�89 q~-~ (rood 1) and k = l .  For this, the simple argument used in Lemmas 

12 and 13 is not sufficient. However, the complete result will follow by a considera- 

tion of the automorphs of /(x, y, z) and an application of Lemma 4. The proof 

divides naturally into two stages, given in the following two lemmas. 
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Lemma 14. I /  /(x, y, z) is given by (2.3), where7 ~ (y, z) satis/ies (2.8), (2.9), then 
i/ (2.5) does not hold we have 

h==-g=-~ (mod 1); (3.6) 

/urther, in the /orm equivalent to /(x, y, z) with h=g= 1, 

IXo-~I < .016 (mod 1). (3.7) 

Proof. There is clearly no loss of general i ty  in supposing tha t  

0 _ < h , g < l  (3.8) 

in (2.3). We than  have to prove tha t  h=g=~ and tha t  (3.7) holds under  the as- 

smnpt ion tha t  (2.5) is false for some x o. 

z =1  1 (rood 1) and A~=50k ~, (2.5) holds unless, for some x0, Since Y0, o - 2 ,  

M(/; x0, I, ~)--- (~~ k~) ~ > (~o• .9814)~ > 1.484. (3.9) 
Now 

/( +x,~, ~)=( +x+~h+~g)~-~k, 

/(+x,~,_ ~ i ) = ( + x + i h - l _  ~g) ~ +~k. 

Hence,  for any  x 0 for which (3.9) holds, we have 

] ( p + x o  + 1 _  ~h+~g)l 2 ~b1>1.484,  (3.10) 

(p+_po+�89 > 1.484 (3.11) 

for  all integral p and any  choice of sign. In  (3.10) we choose p so t ha t  

l_<Jp_+~0+~h +1g1=~<2, 

and in (3.11) we choose p so tha t  

We then have,  from (3.10), either 

~ > ~ k + 1.484 > 3.9605, ~r > 1.99, 

g~ < ~ b -  1.484< 1.032, cr 1.016; o r  

it follows tha t  
- . 0 1 6 <  +_xo+-~h+}g<.016  (rood 1). 

Similarly, from (3.11) we deduce tha t  

f12 > 1.484 - ~b > .2261, fl > .475, 

(3.12) 



26 E.s .  BARNES 

whence 
~ _ . 0 2 5 <  + x  ~ 1 1 + ~ h - ~ g < ~ + . 0 2 5  (mod 1). 

Adding (3.12), (3.13) with suitable choices of sign we find that  

whence 

(3.]3) 

~-.041 <h,  g < l +  .041 (mod 1), (3.14) 

- .032 < 2xo<.032 (rood 1), 

either Ix0[<.016 (mod 1) or Ixo-~].<.016 (mod 1). If h,g satisfy (3.8) it is 

clear from (3.12) that  the second alternative must hold, i.e. that  x o satisfies (3.7). 

If we apply the integral unimodular transformation x =  X, y = - Z ,  z=  Y +  6Z 

to /(x, y, z) we find that  

/(x, y, z )=(X +h 1 Y +gIZ)~-~k(y2 +6 Y Z +  Z 2) 
where 

hi=g, g l = 6 g - h  
and 

X, Y, Z=-xo, !, ~ (mod 1). 

I t  follows that  (3.14) must still hold if h, g are replaced by h 1, gl. Similarly, using 

the inverse transformation x = X ,  y = 6 Y + Z ,  z = -  Y, we see that  (3.14) must still 

hold if h, g are replaced by 
h _ l = 6 h - g ,  g-l=h. 

Let now R be the region of the h, g-plane defined by 

- .041 < h, g < ~ + .041, (3.15) 
and let T be the matrix 

 o101 
(which is elearly of infinite order). Then, if P is the point (h, g), we have 

P1 =(hx)  = T  (P), 
gl 

Since 0 _ < h , g < l ,  (3.14) shows that  PeR.  Also, by what has been proved above, 

T(P) and T-I (P)  are congruent (mod 1) to a point of R; and since P satisfies 

(3.15) it is clear that  in fact 

T (P)  - (0, 2) e R,  T -1 (P)  - (2, 0) e R.  

Finally, the argument shows that  the point T n (P) must satisfy (3.14), i.e. must be 

congruent to a point of R, if (3.9) holds. 
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I t  now follows from Lemma 4 that  this is possible only if P satisfies 

T(P) = P +  (0, 2), 
i.e. if P =  (h, g)= (~,1 ~).1 

This completes the proof of the lemma. 

Lemma 15. Suppose that 

](x, y , z )=(x+ ~y+ lz)~- ~k(y2 + 6yz +z2), (3.16) 

where k satisfies (2.9), and suppose that (2.5) is /alse with Yo, zo=-~, ~ (mod 1) and x o 

satis/ying (3.7). Then 
k = l ,  Xo~- ~ (mod 1). (3.17) 

Proof. Since / has determinant D=--2~k2 and k satisfies (2.9), it is quickly 

verified that  (2.2) holds, i.e. 

0<a-<(4lDI)~ 

a=1(1, 1, 0)=~-~.  

If we make the equivalence transformation 

x= X + Z, y= Y, z= X (3.18) 

/(x, y, z )=aF(X ,  Y, Z) 

we find that  

so that  

with 

=aX2 +(~-~k) Y2 + Z2-(�89 Y + 3 X Z +  YZ,  

3 2 
F (X, Y, Z) = {X - ~-~ (15 k - 3) Y + ~a Z} - ap ( Y, Z) 

Now the form (3.19) 

(2.4) is false, i.e. that  

(3.19) 

(where here A 2 is the discriminant of (I)(Y, Z)). By Theorem 3 it follows that  we 

can apply an equivalence transformation to Y, Z, say Y = ~ Y' + fl Z', Z = 7 Y' + b Z' 

so that  (I)(Y, Z) is transformed into one of (2.6), (2.7), (2.8) (with Y', Z '  for y, z), 

and that  then 
y '  7 , ' - - !  , ~ - 3 , 1  ( m o d l ) .  

Since :r ~, ~ are integers, we deduce that  each of Y and Z must be congruent to 

0 or ~ (rood 1); hence, by (3.20), 

M (F;I~,~,I x0_~)>(~A2) t  

X,  Y, Z -1 ,  1, x o _ l  (mod 1). (3.20) 

is of the original type (2.3) and we are supposing that  
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x 0 ~ 0  or 1 ( m o d l ) ,  

and so, b y  (3.7), xo=-~ (mod 1) as required. 

Fur ther ,  b y  L e m m a s  12, 13 and  14, we see t h a t  each of the  coefficients 
1 3 

- 4 a ( 1 5 k - 3 )  and  2 a  mus t  be congruent  to  ei ther  0 or �89 (mod 1). Since a = ~ - ~ k  

and k satisfies (2.9), i t  is easy  to see t h a t  this can hold only if 

3 _ 3  1 
2--~- ~, ~ a ( 1 5 k - -  3 ) = 3 ,  

whence a =  1, k = l .  This  proves  the  l emma.  

B y  Theorem 3 and  L e m m a s  12-15, we have  now shown t h a t  (2.5) holds unless 

/ (x,  y, z) is equivalent  to  one of 

11( x, Y, z)=x2-1(yZ+8YZ+Z~), xo, Yo, Zo=~, ~, ~, 

= 1  /z (x, y, z) = x 2 - (2 y2 + 12 yz + 3z2), x 0, Yo, Zo - ~, ~, 

: 1  1 1 /3(x, y, z ) =  (x+~y+lz)2-~(y2+6yz+z~) ,  x o, Y0, Zo-~,  ~, ~" 

To  complete  the  proof  of Theorem 2 (and hence of Theorem 1) we have  only to  

observe t h a t  

/a(x, y, z)=Ql (x, y, z); 

2 / l ( x , y , z ) = 2 x  2 -  ( y + 4 z ) 2 +  15z 2 

1 1 1 .  ,~ Q~ (x, y, z) with x o, Y0, z o -  ~, 2, :2, 

/2(x, y, z) = 2  ( x -  y -  3z) z - (x - 2 y +  6Z) 2 -? 15z 2 

; ~ : ! 1  1 Q~(x ,y ,z )  with x0, y0, o-2,~,:2" 

4. Proo~ of Lemmas 8-11. For  the  proofs of L e m m a s  8-11 we mus t  appeal  to  

the  general  theory  of two-dimensional  inhomogeneous  lat t ices  developed in Barnes  

and  Swinner ton- I )yer  [3]. For  the  convenience of the reader  we s ta te  brief ly the  par t ic-  

ular  results we shah need. 

We denote  b y  [bl, b2, b3, . . .]  the  cont inued f ract ion 

1 1 
bi b 2 -  b a -  " " '  

where bt is integral  and  ]b~l>2.  

large i, we have  

I f  bi > 0 for a l t  i and b~ > 4 for some arb i t ra r i ly  
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[b 1, b 2, �9 . . ,  bn, bn+l, . . .] < [bl, b2,.. �9 bn, b'n+l, b'~2, ...] (4.1) 

provided only t ha t  b.+l<b'n+l, in par t icular  

[b 1, b2, . . . ,  bn - 1] < [b 1, b 2 . . . .  , bn,...] < [bl, b2,..., bn]. (4.2) 

Le t  { a n } ( - ~  < n <  c~) be a chain of positive even integers for which the in- 

equal i ty  an-> 4 holds for some arbi t rar i ly  large n of each sign. For  each n we define 

On=[an, an-l, an-2,...] 

~bn=[an+l, an+2, a,+3, . . .],  

so that ,  by  (4.2), 0n > 1, ~n > 1. For  any  real 2, # with ~ # > 0 ,  the inhomogeneous 

latt ice s defined by  
= ~ {0n (u - 1) + (v - �89 

V = ~ {(u - ~) + ~n (v - 1)}, 

where u, v run  through all integral values, is called a symmetr ical  latt ice corresponding 

to the chain {an}. If  s has de terminant  A, we have A = ~ # ( 0 n ~ n - I ) ,  so that ,  for 

points of s  
A 

~1 0 n ~ b ~ - l ( 0 n x + y ) ( x + ~ n Y ) '  x , y ~ � 8 9  (mod 1). (4.3) 

A symmetr ica l  latt ice s is admissible for R,n: - - l _ < ~ _ < m  ( m > l )  if and only 

if the inequalities 
A >  4(0n ~bn-- 1) 

A + (4.4) 
m -  (0n + 1) (~n + 1) 

A _  > 4 ( 0 n ~ b n - 1 ) = A ~  (4.5) 
( 0 n -  1) ( ~ n -  1) 

hold for all n. 

For  any  m > 1, all critical lattices of ~m are symmetrical .  Moreover, if 1 < m _< 3, 

the inequali ty 
A (/:) _> 2 (m + 1) (4.6) 

holds for any ~m-admissible s which is not  symmetrical .  

Finally, if 0 < D < 2 ( k + l )  and, for any  n,  

D 
A ~ < D ,  A~ < ~-,  (4.7) 

then  the inequal i ty  
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holds with ~ = 0~ or ~r = ~bn. 

2 ( k - - l )  < ~ / ~ -  16k (4.8) 
2 (ic~l-) - D - 2 ( k +  1 ) - D  

Proof of Lemma 8. Let  m=~ and suppose that  l: is Rm-admissible and has 

A (l:) _< 4 V~ = 4 Vm. Since 2 (m + 1) > 4 I/m, s must be symmetrical;  and, by (4.4), (4.5) 

we require 

A.+ 4 Vi 

for all n. 

for all n 

Thus (4.7) holds with D = 4 ~ ,  k=~;  since now DZ=16k,  (4.8)shows that  

2 ( k - l )  - 4 + V ' 1 5 = [ 8 , 8 , 8 , . . . ] .  On:~n--2(k§ 1 ) - D  

• 

Hence {a~} is the periodic chain {8) and, by (4.3), 

~ =  (x2+8xy+y~), x,y--~, [ (mod 1). 

Finally, since now A ; = 4 V ~  for all n, we require 

whence 
• 

A 

Proof of Lemma 9. I t  is shown in [3], Theorem 9, that  if m > 2  and 1: is ad- 

missible for ~m, then either A ( s  1/~ or IZ is a symmetrical lattice corresponding 
• 

to the chain {6). 
x 

chain {6} we have 

for all n, 

where 

Lemma 9 follows at once from this, on observing that,  for the 

• 

0n = ~n = [6] = 3 + 2 ~/2 

A --1 1 (mod 1), ~l=~(x2+6xy§  x,y:~,~ 

4m A 
~_>mA~ ( i '  4V~ ->~m" 

Proof of Lemma 10. Suppose first that  the inequalities 

A~ _ 7 V30, A~ + _< ~ ] /~  (4.9) 



THE INHOMOGENEOUS MINIMUM OF h TERNARY QUADRATIC FOR13~ 31 

• • 

hold for all n. We show that then {an) is the periodic chain {6, 4}. For (4.7)holds 

with 

and so (4.8) gives, for all n, 

i.e. 

I 5 ] 1 
12 - 2 V30 12 - 2 V ~  

2 3 < ~ < - -  
6 - -  V ~  - 6 - -  ] / ~ '  

x x x x 

[4, 6] < ~r _< [6, 4], (4.10) 

where cr or ~r Using (4.1), (4.2), we see that an- l<O,=[an ,  an-1,...]<an, 

and so (4.10) shows that a n = 4  or 6. If an=4 ,  (4.10) with r162 and ~=~bn-1 gives 

[4, an-l,...] --> [4, 6, 4,. . .] ,  

[4, a n + l , . . . ] - - >  [4, 6, 4 , . . . ] ,  

whence an_l>_6, a n + l > 6 ,  SO that  a n - l = a n + l = 6 .  Similarly, if an=6 ,  (4.10) shows 
• • 

that  a n _ l = a n + l = 4 .  Ib follows that {an} is {6,4}, as required. 

Now if s is symmetrical and admissible for ~m with m_> ~, either (4.9) holds 

for all n or, by (4.4) and (4.5), 

A > m i n { S l / ~ ,  8 m l / ~ } = s l / ~ . ~  

while if s is not symmetrical, (4.6) gives 

A > 2 ( m +  1 ) = ~ > s V ~ .  

I t  follows that  if s is ~m-admissible, with > 1~ and A ( s  i /~ ,  then s is a m - -  T 
• • 

symmetrical lattice corresponding to the chain (6, 4}. For this chain, 0n and ~n are 

(6 + I/~),  �89 (6 + 1/~) in some order, for each n, whence 

A 
}~ =2---V~ (2x~+ 1 2 x y +  3y~), x, y ~ - ,  ~ (mod 1), 

A mAn + 4 m  

2V, -2V  17 

P r o o f  of Lemma 11. For m_>~ 6- we have 

2(m + 1) > 4]/3; 
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it is therefore sufficient to show that  there exists no symmetrical lattice satisfying 

A:  < 4  V3, ~ A+ < 4  [!3 (4.11) 
for all n. 

Now if (4.11) holds, then (4.7) holds with D : 4 V 3 ,  k = ~  6-. Hence, by  (4.8), 

17 I 6 
35 - 18 V3 35 - 18 | /3 '  

11 23 

V3 < ~ <  35 - 18 35 - 18 V3' 

with 0r or ~r Thus for all n we have 

11 11 
0 ~ > - -  > - - > 2 . 8 7 ,  

35-18/5 3.8231 
so that  a~_>4 for all n. 

If  now a ~ > 6  for some n, we have, using (4.1), 

0~_> [6, 4, 4, 4, ...] = 4  + V3, 
whence 

lo+6W 9+7V  
(5 + 1/3) (3 + V3) 33 

whereas (4.11) gives 

6 ,  _> [4, 4, 4, ...] = 2 + l'~, 

- -  = 0 . 6 4 . . . ,  

i A~ < ~ 6 -  <0.6.  

I t  follows that  a , = 4  for all n. But  then A;=4~ '~ ,  contradicting (4.11). Thus 

(4.11) cannot hold for all n. 

5. I t  is not difficult, using the same methods, to show that  Theorem 1 remains 

true if in (1.12) and (1.13) we replace 4//15 by a slightly smaller constant. The 

ranges of d given in Lemma 7 are then slightly increased, but  Theorem 3 still holds 

with the forms (2.6), (2.7) replaced by ~ k (y~ + 8yz  + z2), k (2 y2 + 12 yz  + 3 z~), where k 

is nearly 1. (For the proof of this, we need stronger versions of Lemmas 8 and 10, 

but  these are easily obtained.) We may then show, just as in Lemmas 14 and 15, 

that  in each case k must be 1. I have hot given the details, to avoid complicating 

the main lines of the proof. 

Thus the 'second minimum' (r t is isolated, and the problem remains to 

find the third and any further minima. Since Davenport  [4] has given a (zero)form 

with M(Q)=( I lDI )  ~, the third minimum is at least ( l IDI) t .  
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I think it ]ikely tha t  the methods of this paper will not prove adequate for a 

complete analysis of the problem. I t  is easy to see that,  in particular, the method 

will break down if there are uncountably many  distinct lattices admissible for ~m 

with determinant  not exceeding 1//~; and this situation does in fact arise if one 

a t tempts  to find the forms Q with M(Q) >_ (~ID]) ~. 

However, a complete answer to the problem may  be obtainable by  the use of 

'local' methods on the chain {an} associated with ~b (y, z) in the form (2.3). I hope 

to investigate this a t tack  in the near future. 

The University o/ Sydney, Australia. 
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