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w 1. In  this paper  we shall be concerned with infinite series whose terms are 

real numbers. Suppose tha t  the series 

(1) ~ an 

is absolutely convergent and has the sum s. Then, as is well known, every rear- 

rangement,  ~ a'n, of (1) also converges and has the same sum s. If, however, (1) 
n - - I  

converges, but  not absolutely, then, according to Riemann's  classical rearrangement 

theorem [3, p. 235, or 2, p. 318], for every real number s', there exists a rearrange- 

ment  of (1) whose sum is s'. 

Assume, now, that  (1) is Cl-summable [1, p. 7, or 2, p. 464], and that  its C 1- 

sum is o. Consider the set of all Cl-summable rearrangements of (1); what is the 

nature of the corresponding set of Cl-sums? We are going to answer this question; 

the answer turns out to be somewhat more complicated than Riemann's  rearrange- 

ment  theorem (and also more difficult to obtain). We shall show, namely, that,  /or 

any Cl-summable series (1), the rearrangement set (c/. Definition 1 below) consists either 

o/ a single number, or o/ all numbers o/ the /orm :r § v fl (v=O, •  +_2, ...) /or some 

particular real numbers fl ~ 0 and ~, or o/ all the real numbers. Moreover, given any 

~, there exists a Cl-summable series (1) whose rearrangement set consists o/ the single 

number ~; and, given any fi~:O and r162 there exists a Cl.summable series (1)whose 

rearrangement set consists o/ all numbers o/ the /orm :r +v f l  (v = O, +_ 1, +- 2 . . . .  ). 

We introduce 

Definition 1. The set o] numbers ~ such that the Cl-sum o] some rearrangement 

o/ (1) is ~, will be denoted by R and called the rearrangement set o/ (1). 
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In  case (1) converges, the answer to our question is immediate, because the 

Cl-sum of a series whose sum is s, is s [1, p. 100, or 2, p. 461]. Hence, if (1)con- 

verges absolutely, every rearrangement  of (1) has the Cl-sum s; if (1)converges  

conditionally, then, for every real number  a' ,  there exists a rearrangement of (1) whose 

Cl-sum is a' .  Since this case is settled, we shall assume, from now on, tha t  (1) is 

not only Cl-summable , but  is also divergent. 

I f  lira an =0 ,  then the answer is again immediate: an examination of Riemann's  
n-->oo 

proof of his rearrangement  theorem shows that ,  for every real number  a' ,  there 

exists a rearrangement of (1) which actually converges to a' ,  and hence has the C l- 

sum a'. An example of this case is the series 1 - � 8 9 1 8 9 1 8 9  ! + 3 1 - ~ - � 8 8 1 8 8  

where the n th  group of consecutive terms with the same sign contains n terms, each 

of which is equal to ( -  1) n 1/n; this series obviously diverges, and is easily seen to 

have the Cl-sum �89 

w 2. Ins tead of assuming, as in the preceding case, tha t  lira a n = 0 ,  let us sup- 
n--~oo 

pose merely tha t  {an} has a subsequence {ank} such tha t  k-~lim a n k = 0  and k~=0]an~]= 

diverges. We shall show that ,  given an arbi trary real number  a', there exists a 

rearrangement,  ~ a',, of (1), whose Cj-sum is a'. 
n = l  

We shall employ the notation sn = a 1 + a2 + "" + an, an = (Sl + s~ + ... + sn)/n 

( n =  1, 2, 3, ...), and define s'n, a'n analogously for ~ a'n. Our problem, then, is to 
n = l  

show tha t  there exists a rearrangement,  a , ,  of (1), such tha t  lim ~ n = ~ .  
n = l  n -~r  

Since (1) is divergent and Cl-summable, the subseries of positive terms of (1) 

diverges, and the subseries of negative terms of (1) diverges. Furthermore,  because 

of our suppositions in the last paragraph but  one, there is a divergent subseries of 

a,  k consisting exclusively either of non-negative or non-posit!re terms, and there 
k = 0  

is no loss of generality in assuming tha t  the former is the case; this subseries, in 

turn, contains a convergent infinite subseries. The sequence {an} is thus seen to 

contain infinite subsequences {b~}, {cn}, {dn} with the following properties: 

(i) b n < 0  ( n = 0 ,  1, 2 . . . .  ), and ~ bn diverges; 
n = 0  

(ii) c ~ 0  ( n = 0 ,  1, 2, ...), and ~ c~ converges; 
n = 0  

(iii) d n > 0  ( n = 0 ,  1, 2 . . . .  ), lim dn=0 ,  and ~ dn diverges. 
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Now let e 1 > 4 e ~ >  ... > 4  ~-le~ > - . . > 0 ,  e ~ > 2 1 a ~ - a ' [ ,  a n d l i m e ~ = 0 .  We define 
k--~oo 

a rearrangement ,  ~ a'n, of (1), by  means of induction,  as follows: Pu t  m ~ = l ,  
n ~ l  

t t i t 
am, = aa = a 1. Then 8 1  ~--- (3" 1 = a 1, 

and suppose tha t  the te rms 

so tha t  I ~ / - ~ ' 1 < ~  and 1~ / -~ '1<=~ /2 .  Le t  k=>l, 

I i i 
(2) a l ,  a= . . . .  , amk  (m~  > 1) 

have a l ready been defined so as to const i tute  a finite subsequence of {an} such tha t  

(3) l a ' k  - a ' [  < ek and I s~k - a '  I < ek/2 

(these inequalities hold for k =  1, according to the preceding sentence). There  is a 

first term, call it a~ k+l), of {an}, which has not  been used in forming the sequence (2). 

If  s ' k + " ( ~ + a ) > a '  ek+l ~ = + - ~ - ,  then,  according to (i), there  exists a finite subsequence of 

te rms b(1 ~+1), ~2~(k+1), . . . ,  ~,~(k+l) of {bn} not  a l ready singled out  of {an} in the course of 

this induction,  such tha t  

8 k + l .  8mkt _~ t*l"(k+l) .•  b~ k+l )  -4- b (k+ ' )  -}- " '"  + b~u ~:+1) < o"  + 
2 ' 

t ~ k + l  , . . .  (if 8ink -}- a(1 k+l) < a '  + - - ~ - ,  then  simply ignore b(1 k+l)  , b(u k+l)  wherever  they  o c c u r ;  

an analogous s ta tement  holds for d~ ~+1), . . . ,  d(v k+l) and c(1 ~+1), . . . ,  cw+t-(*+l) considered 

below). I f  

t ~_ ~ (k+ l )  E k + l  
am k + a(x ~ § + b(1 k + l) + "'" - vu < a '  - - - ~  , 

then,  according to (iii), there exists a finite subsequence of terms d~ ~+1), ~2z(k+a), - . . ,  d(~+,~ 

of {dn} not  a l ready singled out  of {an} in the course of this induction,  such tha t  

d[ k+l)  < ek+l/2 (i = 1, 2 . . . . .  v) and 

[s '~k+"(~+l)•  ~ , 1  + " "  + b~+l) + d(lk+l) + + d~ +1) - 0" [<~-*$k+1 

According to (ii), there exists a finite subsequence of terms c(1 ~+1), c(2 k+l) . . . .  , C(w k+l) of 

{cn} not  a l ready singled out  of {an} in the course of this induction,  the number,  w, 

of these terms being as large as we please, such tha t  

( 4 )  C (k+l)l ~ • c(k+1)2 7-~ . . .  ~_ Ow~(k+ 1) < a t  ~_ 2-ek+l - -  tlStm k "~- a(k+a)x + b(k+D1 + " "  + b(u k+l) + 

+ dl ~+1) + . . .  + d(vk+l)). 
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t f k + l )  ' ( k + l )  , _ a ( k + l )  ' b(lk +1), 
a m k + l = C l  , " ' ~  a r n k + w : r  , a m k + w + l - -  1 ~ a r n k ~ w 1 2 =  " " ~  

t - - / ~ ( k + l )  ~P __.7(k+l )  t d(~+l) ' 
a m k + W + u + l - - e u  ~ tvrnk+w+u- , -2- -~ l  ~ , . .  , a m k + w + u + v + l  ~ 

then it is evident, from (3), (4), and the definition of a'n as the centroid of the 

system of points Sl, s2 . . . .  , sn, that,  by taking w large enough, we shall have 

I d - - ' 1  <*~ ( ~  _ ~ i _ ~  + w  + ~ + ~ + 1). (5) 

On account of (4), 

18mk+W+U+v~l  - -  (~'[ < e k + l  �9 
2 

As before, we can obtain a finite subsequence of unused terms ~w~l~(k+l~, vw+2A(*+~), . . . ,  ~w+t~(k+l 

of {cn}, with t as large as we please, such that  

( 6 )  ~ ( k + l )  -!_ C ( k + l )  g k + l  ' 
V w + l  v ' " +  w+t < ( Y ' + - - ~ - - S m k + w + u + v + l .  

If we put  

t - -  ~(k + 1) t ~(k ~ 1) 
a m k + w + u + v + 2 - - V w +  1 ~ . . .  , a m k + w + u §  v+t+l  ~ t~w+ t , ?nk~ l = m k  + W + U + V + ~ + l~ 

(so that  ink<ink+l) and bear in mind again the definition of a ' ,  it is evident from 

(5) and (6) that  

(7) ] a ; - a ' [ < e k  (mk+w+u+v+l~--i<=mk+l), 

and that,  if t is taken sufficiently large, 

t _ _ O j ] ~ E k _ l .  O'mk+ 

r ~ k + l  
] S m k §  2 

This completes the induction. The series ~ a~ is obviously a rearrangement of ~ an; 
n = l  n = l  

and because of (5), (7), (8), and the fact that  lim ~k=0, we have lim a'~=a', q.e.d. 

An example of this case, in which lim an * 0 ,  can be obtained from the example 

given at the end of w 1 by inserting the terms +1  and - 1  after each group of 

negative terms: 

1 - � 8 9 1 8 9 1 8 8 1 8 8 1 8 8 1 8 8  

the Cl-sum of this series is evidently also �89 

(s) 

Moreover, on account of (6), 



REARRA~GEYIEIqTS OF C1-SUYIlgABLE SERIES 3 9  

w 3. The next  case to be considered is that  in which (1), in addition to being 

divergent and Cl-summable to (r, has the property that,  if {a~} is the subsequence 

of non-zero terms of {a.n}, then 

(9) lim nk+l = 1 
k-~:r nk 

and 

(10) O<(~<[ankl ( k = 0 ,  1, 2 . . . .  ) 

! - a ,  then the rearrangement 

sume that  

.(11) 

We shall obtain a rearrangement, 

~a'n of (1) has the Cl-sum a'. We shall also as- 
n = l  

O<q ' - -o '<O.  

~a '~,  of (1), whose Cl-sum is a', and which has 

(12) 

and 

(13) 

the property that,  if {a'~,k} is the subsequence of non-zero terms of {a;}, then 

lim n'~+l/n'k = 1 and (5 < I a'~,~ I (k = 0, 1, 2 . . . .  ), so that  the analogues of conditions (9) and 
k-->oo 

(10) are satisfied by this rearrangement of (1). Consequently, the procedure for ob- 

raining this rearrangement can be applied successively a finite number of times, if 

necessary, so as to yield, finally, a rearrangement of (1) whose Cl-sum is an arbitrary 

a ' > r  (a' not necessarily satisfying (11)). Thus ( l l ) ,  which at first appears to be a 

serious restriction, entails no loss of generality either. 

Since (1) is Cl-summable, we have [1, p. 101, or 2, p. 484] 

8 m ~ 0 (m) 

am = o ( m ) .  

The fact that  the Cl-sum of (1) is a is equivalent to the assertion that  

1 r, 
(14) m ~ 8 ~ = ~ + o ( 1 ) .  

k = l  

for some fixed constant 5 independent of k. 

We shall show that,  under these conditions, given an arbitrary real number 

a 'mtr,  there exists a rearrangement of (1) whose Cl-sum is (r'. We may assume, 

without loss of generality, that  (r< a'. For suppose that  a ' < a ,  so that  - a < - a ' .  

The series ~ ( - a n ) ,  which also satisfies (9) and (10), has the Cl-sum - a  [1, p. 8, 
n = l  

or 2, p. 476], and if a rearrangement, say ~ (-a'~), of this series has the Cl-sum 
n = l  
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Suppose t h a t  t~ is a natural number (m=  1, 2, 3, . . .).  Then  (14) implies t h a t  

a + o ( 1 )  = ~ 1  ~. s k =  1 +  - - ~ s k +  m ~ sk~ 
m + t m  k -1  tmk=l k = m + l  ] 

= 1 +  a + o ( 1 ) + - -  ~,sm+k~, 
m k . l  I 

so t h a t  
t m 

Sm+~=tm a + {m 'o (1 )  +tm'O(1)}. 
k = l  

I f  {m/tm} is a bounded  sequence, or if m/tm-+Oo sufficiently slowly, then  r e . o ( 1 ) +  

+ tin" o (1) = o (tin), and hence 

tm 

(15) Y s,,+~=tm a+o(t,,). 
k = l  

An immedia te  consequence of (12) is t ha t  if {m/tm} is a bounded  sequence, or if 

m/tin--> o0 sufficiently slowly, then  

( 1 6 )  8m+tm =0 (tin). 

Now let {arm} be the  subsequenee of posit ive t e rms  of {an}. Since (1) is C1- 

summable  and  divergent ,  {ap,n} is an infinite sequence. Fur the rmore ,  we have  

l im Pm+l = 1. (17) m-.~ pm 

For  if (17) were false, there  would be an infinite subsequence {pmh} of {pro} such 

tha t ,  for some fixed cons tant  c >  0, 

(18) P~a+~/P~h > 1 + c (h = 1, 2, 3 . . . .  ). 

For  all sufficiently large values of h, and  for every  na tura l  n u m b e r  i <  ,~pm h 

(where [x] denotes  the grea tes t  integer in x); let v (h, i) be the  n u m b e r  of t e rms  

( ]) g1 ~=Pmh+i,  P m h + l + i ,  Pmh+2+i ,  . . . ,  1 + ~  p,nh +i  

t h a t  are negat ive,  and set, 

N h =  min  v(h , i ) .  
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Then  relat ions (9) and (18) imply  t h a t  

( 1 9 )  l im Nn = + ~ .  
h---)'~ 

Bearing in mind  (10) and (18), we see t h a t  

- s  ~ ~ > v ( h ,  i ) . O  

and hence 

(20) y (Sprnh+l--8[(l+~)Pmh]+,)~ [~Pmh] "Nh'~" 

t r , .  l /  
I t  follows from (15), however, since Ip,nh///~pmh// and IPmhlltl+~)Pmhll a r e  

bounded  sequences, t h a t  

and 

so t h a t  

I=l 

Cp 

8 c (SPmh+i-- [(1+ ~) Jgmh]+t ) O(~gmh)" i : l  

This, in view of (19), contradic ts  (20). Therefore  (17) mus t  be true.  

Because of (17), we can choose an infinite subsequence,  {q~}, of {Pro}, such tha t ,  

as m-->oo, qm+l /qm-+l  as slowly as desired; let us do this in such a way  t h a t  the 

following conditions are satisfied: 

(21) 8qm+l + 8qm+2 + "'" q- 8qm+ 1 = (qm+l - q~)" a + o (qm+l -- qm) 

(this is (15) with tm replaced b y  q m + l - q m  and m + k  replaced b y  qm + k); 

(22) Sqm + l = o (qm+ l - qm) 

(this is (16) with tm replaced by  qm+l -q~) ;  

(23) l im 8vm qm+l = 0, if, for  every  m,  vm is an integer  such t h a t  qm < Vm < q,, +1 
m-,~ Vm qm+x--qm 
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(this condition can be satisfied because, according to  (12), as m-+ ~ ,  srn/m-+O at  a 

certain fixed rate); 

(24) lim aqm+~l qrn+l 0 
rn..+~ qm+l qrn+l-- qrn 

(this condition can be satisfied because, according to (13), as m-+ oo, arn /m~O at  a 

certain fixed rate). 

For  every na tura l  number  m, consider the expression 

aqrn +1 (~' - ~ )  + - -  

(25) u~ = (qm+~ - qrn) qm+~ - qrn _ l, 
Qqm+l 

and set [U~]=Um. Because of (24), (11), (10), and the definition of the sequence (aprn}, 

we have, for all sufficiently large values of m, say  for m>=m*, 1 <u~<qm+x--qrn--1 ,  

and  hence 

(26) 1 <urn <qm+l -qrn -- 1. 

I t  follows from (25), (24), and the definition of u~, t ha t  

(27) ( u ~  + 1)  aqrn+ 1 = ( q ~ + l  - q ~ )  (a '  - a )  + o (qrn+l - qrn). 

Now, for every m >m*,  pu t  

(2s) 

t 
a~ = ak (qrn + 1 =< k _-< qrn+l - (urn + 1)), aqm+l Urn = aqrn+l, 

a~=ak-1 ( q r n + l - ( u ~ -  l)<k<=qrn+x), 

and let ak = a~ for every natural  number  k _<-qrn.. Then a~ is obviously a rearrange- 
k = l  

ment  of (1), and we are going to show t h a t  the Cl-sum of this rear rangement  is a ' .  

According to (28), for every m >m*,  

8Pqrn+l -~ 81qrn+2 ~-"" • 8qrn+l : (Sqrn+l ~- 8qrn+2 ~-"" Jr 8qrn+l-1) + 8Qrn ~1 (urn+l) -~ (Urn 2t- 1) aqm+l 

(29) =((q , ,+l -qrn) . (~+o(qrn~l -qrn) )+o(qrn~l -qrn)+((qrn+~-qrn) (a ' - (~)+~ 

= (qm+l --qrn)" Or'+ 0 (qrn+l --qrn); 

the second equali ty is obtained by  making use of (21) and (22), (23) with vm= 

=q,~+l-(urn+ 1) (bearing in mind (26)), and (27). 
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We shall now show t h a t  

~ t 
(30) sk = n a '  + o (n), 

k = l  

which immedia te ly  implies t h a t  the  Cl-sum of ~ a~ is a ' .  I f  n is a sufficiently large 
k = l  

na tura l  number ,  then  there exists  an m > m* such t h a t  

(31) qm <n gqm+l. 

We have  

(32) ' ' ' 8k ~ ~ 8k  + 8 k .  
k = l  k = l  k=qm+l  

Because of (29), 

(33) 

( am i) qm t qm* t qm*+l  qm*+2 t 

k = l  k = l  \ k =  qm*+l k = q m . + l + l  k=q m_ 1+1 / 

= o ( q ~ ) +  ~ ((q~-q~ 1)'a' +o(qk--qk-1)) 
k = m * + l  

=o  (qm)+ (qm --q~*)" ~' +0  (qm --q~*) 

=qm " a' + o (qm) 

= n ' a '  +((qm--n) 'a '  +o(qm)) 

= n . a '  +o(n), 

the  th i rd  equal i ty  result ing f rom [2, p. 77, 4], and the  last  equal i ty  being a con- 

sequence of (31) and  the fact  t h a t  qm/qm+l"->l as m - + o o .  On account  of (28), there  

exists an integer r sat isfying the relat ion 

(34) O < r < u m +  1, 

such t h a t  

(35) 81k = (8am + l + Sam + 2 + " "" + Sn_  l )  + S n _ r  + r aqm + l . 
k=qm+l  

I f  we make  use of (14), (31), and the  fact  t h a t  q.,//q,n+l'+l as m ~ o o ,  we see t h a t  

(36) 8qm+l  + 8qra+2 -~" " ' "  ~- 8 n - 1  = 0  ( / t ) ;  

with the  aid of (12), (34), (31), and  (26), we obta in  

(37) s,_r=o(n); 
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and (34), (31), and (27) yield 

(38) r aq~+l = o (n). 

Combining (35), (36), (37), and (38), it follows that  

(39) ~ s ~ = o ( n ) .  
k - q m + l  

Relation (30) is now a consequence of (32), (33), and (39), and if we bear in mind 

(28), it is evident, finally, tha t  the assertion following (11) is true. 

An example of this case is the familiar series 1 - 1 §  . . . .  , whose C l- 

sum is ~. 

w 4. The case to be considered in this section, in contrast to those treated in 

the foregoing sections, exhibits a departure from the Riemann rearrangement theorem. 

We shah assume that  (1) is divergent and Cl-summable, and satisfies the fol- 

lowing condition: 

(4o) 
For every C~-summable rearrangement, ~ a~, of (1), if {a~k} 

| i s  the sequence of non-zero terms of {a~}, then lim nk+_jl > 1. \ k-->oQ n k 

We shall also suppose that  

(41) the Cl-sum of (1) is 0. 

This entails no loss of generality. For if b is a real number, and the Cl-sum of 

a l§247  is a, then the Cl-sum of a l + a 2 + " ' - t - a n § 2 4 7  

is a+b,  and conversely [1, p. 102]. Hence, if the Cj-sum of a l + a ~ + . . .  §  is 

a, then a rearrangement of this series is C~-summable to a' if, and only if, a re- 

arrangement of the series - a + a  1 + a  s § 2 4 7  is Cl-summable to a ' - q ,  and 

the addition of a single new term to our original series (1) does not invalidate (40) 

or the assumptions just preceding it. 

We proceed to prove a series of lemmas. 

Lemma 1. Let ~ a'n be a rearrangement o] (1) and have the Ct-sum :r so that 
n=l  

~ E R  (c]. Definition 1 in w 1), and let {a'nk} be the sequence o/ non-zero terms o/{an}. 

Then there exists an in/inite subsequence, {nkj}, o/ {nk} such that 

(42) lim s~k j = a. 
j-->oo 
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Proof: According to (40), there  exists a constant  c >  1 such t h a t  lim (nk+l/nk) =c. 
k--~*oo 

Hence,  there  exists an infinite subsequence,  (nej), of (he)  such t ha t  lim (nkj+~/nej)= c, 
j -~oo  

so t h a t  we m a y  write 

(43) nej+l = nkj (c + es) (~ = 1, 2, 3, .. .), 

where 

(44) l im ej- = O. 
j--)-oo 

I t  follows f rom the definit ion of the  sequence {nk}, t ha t  a~n=0 if nkj<m<nks+l.  

Using this fact  as well as (43), we see t h a t  

! t p ! 
1 (sl + s~ + ... + snkj + snks+l + ..- + snej§ = 

n ej+ l 

1 s'l+ "'" +8"nkj nei+l--nei-- 1 , s'ei+l 
= . , , ~ s ~ e i ~ + - - .  

(c + ej) nej nej+l nki§ 

Solving this equat ion for the s~es in parentheses  in the  preceding line, and  mak ing  

use of (43), (44), the  fact  t ha t  the Cl-sum of ~ a'n is :r and (12), the relat ion (42) 

is. obta ined.  

Suppose t h a t  ~ be is an infinite series, and  be,, be . . . . .  , bkp (k I < k 2 < "" < kp) is 
e = l  

a finite subsequenee of the sequence {be}. Then we shall call be,+be,+ "'" +b% a 

subsum of ~ be. 
k = l  

Definition 2. The number ~ is initially accessible by ~ be provided that, /or every 
k = l  

e > 0 and every natural number n, there exists a subsum, be, + bk, + "" + be~, o/ ~ be 
k = l  

such that every b~ (k <= n) is a term o/ this subsum, and I bk, + be. + "" + bk, - fl] < e. 

Definition 3. The number ~ is terminally accessible by ~ be provided that, /or 
k = l  

every e> 0 and every natural number n, there exists a subsum, be,+ be,+ "" + b%, o/ 

be such that no bk (k<_n) is a term o/ this subsum, and [ b e , + b e , + ' " + b e p - ~ ] < e .  
k = l  

L e m m a  2. I /  eER,  then ~ is initially accessible by (1). 

Proof: Le t  ~ a~ have  the  Cl-SUm ~ and be a r ea r rangement  of (1). According 
k = l  

to L e m m a  1, there exists an infinite subsequence {s~,} of the sequence {s~} of par t ia l  

sums of this rear rangement ,  such t h a t  l im s ~ = e .  Now let e > 0  and  the na tu ra l  
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number  n be given. For  all sufficiently large values of i, I s~i - ~ I < e. Moreover, since 

ak is a rearrangement  of (1), every ak (k<n)  is a term of the part ial  sum sk~, 
k = l  

provided tha t  i is sufficiently large. The t ru th  of Lemma 2 is now evident.  

Lemma 3. I /  ~ is initially accessible by (1), then :r 

Prool: We shall employ an a rgument  which is similar to, bu t  simpler than,  the 

one used in w 2. Let  s be a positive number  sat isfying the relation e > l a l - e  [. 

We define a rearrangement ,  ~ a',, of (1), by  means of induction, as follows: Pu t  
~ = 1  

! p p p ! 
m 1 = 1, a ~  = al = al, so t h a t  s, = el = a l and consequently l al - :r ] < e and Is1 - e ] < e. 

Let  j >  1, and suppose tha t  the  terms 

t t t 
(45) al, a2 . . . . .  a~j (mj > 1) 

h a w  already been defined so as to  const i tute a finite subsequence of {a=} such tha t  

, 8 , E 
(46)  a n d  

(note tha t  these inequalities hold for ) '= 1). Since, by  hypothesis,  e is initially ac- 

cessible by  (1), there exists a subsum, call it Sj+I, of (1), such that ,  if nr is the 

largest index possessed in (1) by  any  term of (45), then every ak (k<nj)  is a term 

of Sj~I, and 

B 

(47)  I < 

I f  there are any  terms of ,%1 which are not  terms of (45), denote them by  a(1 j+l), 
a.~ j~l) . . . .  , a~ j§ On account  of (40), infinitely m a n y  terms of (1) are equal to zero. 

Let  z(~ +1), Z!))+l)2 , . . . ,  -w~(]+l)~t (w>l)_. be a finite subsequenee of terms, all of them equal 

to zero, of {an}, not  a lready singled out  of the lat ter  sequence in the course of this 

induction. I t  is evident from the meaning of ~r',, that ,  if w is chosen large enough, 

and if we pu t  

Z ~ + I )  ' __ ~ ( / + 1 )  ' a( lJ  - 1) ,  a'~j~=z<l j ~), a'ms,= .,. , . . . ,  a m i + ~ - ~  , a,,i+w+l= 

r __ ~ ( ] - ~  1) r = a ( j +  1) ,  
( t m j  ~ w ~ 2  - -  re2  , �9 �9 " , a m j  + w + v 

then,  because of (46), 

( 4 s )  Io ,  - I < : 
? 

and, because of (47), 

(mj<i  < m j + w + v ) ,  
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i 8 
(49) I smj+ w+. - ~] < j ~ "  

Referring again to the meaning of a',, it is clear from (48) and (49) that ,  if t is 

taken large enough, and if we put  

' (j+l) ' (j+l)  P (1+1) 
amj+w+v+l : Z w + l ,  amj+w+v+2:Zw+2, . . . ,  amy+w+v+t =Zw+t ,  

and set mj+w+v+t=mj+l ,  then, since w__>l, we have mi+l>mj, and 

(50) I ~; ~t < ~ 
1 

(mj + w+ v<=i <=mj+,), 

(51) [(lmi+l--Ot[< j-~- l '  

and ]s '~ i§  ). This completes the induction. The series ~ a ~  thus de- 
n = l  

fined is obviously a rearrangement of (1), and it follows from (46), (48), (50), and 
f 

(51) tha t  lim a~=~,  q.e.d. 
i-->cO 

Lemma 4. I /  ~ER, then -cr is terminally accessible by (1). 

Prooh Let  ~ > 0 and the natural  number  n be given. By hypothesis and Lemma 2, 

is initially accessible by  (1). Hence, there is a subsum, S, of (1) such tha t  every 

a ,  ( k g n )  is a te rm of S, and 

(52) I s - ~ l <  ~- 

According to (41) and Lemma 2, 0 is initially accessible by  (1). Hence, there is a 

subsum, T, of (1) such tha t  every term of S is a term of T, at  least one term of 

T is not a term of S, and 

8 
(53) IT I < ~. 

Let  U be the subsum of (1) consisting of those terms of T tha t  are not terms of 

S. Then 

(54) U = T - S, 

no ak (k=<n) is a term of U, and (52), (53), and (54) imply tha t  I U + ~ I < E ,  which 

means tha t  - ~  is terminally accessible by  (1), q.e.d. 

Lemma 5. I/  cccR, then - 2 ~  is termiually accessible by (1). 
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Proof: Let  e > 0 and the natural number n be given. According to Lemma 4, 

there exists a subsum, S, of (1) such that  no ak (k<:n) is a term of S, and 

(55) 

Let  n'  denote the largest index possessed in (1) by  any term of S. Then there 

exists a subsum, T, of (1) such that  no ak (k<=n') is a term of T, and 

(56) IT+ctl< ~- 

Let  U be the subsum of (1) consisting of the terms of S and the terms of T. Then 

(57) U = 8 + T, 

no ak (k<fn) is a term of U, and (55), (56), and (57)imply tha t  I U + 2 = I < e ,  which 

means that  - 2 ~  is terminally accessible by (1), q.e.d. 

Lemma 6. I /  =eR, then - =  is ini~iaUy ~ess ib le  by (1). 

Proof: Let  e > 0 and the natural number n be given. By hypothesis and Lemma 2, 

there exists a subsum, S, of (1) such tha t  every ak (k<=n) is a term of S, and 

E 
(58) Is- l< 

Let  n'  denote the largest index possessed in (1) by any term of S. By Lemma 5, 

there exists a subsum, T, of (1) such that  no ak (k<=n ') is a term of T, and 

(59) [T+2ar ~. 

Let  U be the subsum of (1) consisting of the terms of S and the terms of T. Then 

(57) holds, every ak (k_~n) is a term of U, and (58), (59), and (57) imply tha t  

I U + a ] < e ,  which means that  - a  is initially accessible by  (1), q.e.d. 

An immediate consequence of Lemma 6 and Lemma 3 is 

Corollary 1. I /  ~ E R, then - ~ E R. 

Lemma 7. I /  t iER  and y E R ,  then ~ q - y E R .  

Proof: According to Corollary 1, - /~ER,  avd hence, by Lemma 4, ~ is termi- 

nally accessible by  (1). On account of Lemma 2, y is initially accessible by  (1). 

An argument analogous to tha t  used in the proof of Lemma 6 now shows tha t  ~ + ? 

is initially accessible by (1), and then Lemma 3 implies tha t  /~+yER,  q.e.d. 
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Corollary 2. I[ ~ER, then m~ER (m=0 ,  •  +--2, ...). 

Lemma 8. The set R is closed. 

Proof: Let  I be the set of numbers tha t  are initially accessible by  (1). According 

to Lemmas 2 and 3, R = I .  Suppose that  ~t is a hmit point of I; we have to show 

that  ~ E I .  Let  e > 0 and the natural number n be given. Then there exists a number 

t tEI such that  

(60) [Ft - )- I < ,~" 

There is a subsum, S, of (1) such that  every a~ (k<n) is a term of S, and 

(61) 

From (60) and (61) it follows that  ]8 -~[<t ,  and consequently ~EI ,  q.e.d. 

I t  is evident now from Corollary 2 and Lemma 8, that  there are only three 

possibilities: 

(A) R={0};  

(B) R = {m ~}~=0. ~1. ~2 .... for some a ~= 0; 

(C) R is the set of real numbers. 

We shall show, by means of examples, that  each of these possibilities can actually 

be realized. 

Example A. Let 

a n  = 

22~-k if n = 2  "2~ 

_22k k if n = 2  ~'~+1 

0 if n is any other natural number. 

(k=  1, 2, 3, ...) 

Since lim an 40 ,  (1) diverges. 

Suppose that  n > 4 .  Then there is a k > l  such that  2 2 ~ < n < 2  ~k+l We have 

( r n = l  ~ 22/-1 =< ~ ~ 'k '22k k = k ' 2  k' j=l 

and hence lim a n = 0 ,  so that  (41) holds. 
n-- )~  

Let ~ a~ be a Cl-summable rearrangement of 
n = l  

finite subsequence, {hi}, of ~nj r ~ such that  

4 -- 5 4 3 8 0 8 .  A e t a  3 l a t h e m a t i c a .  92. I m p r i m ~  le 29 d ~ c e m b r e  1954. 

(1). Then there exists an in- 
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(62) a~=0 ( n i < i < 2 n t ;  i =  1, 2, 3 . . . .  ). 

For if this is not so, then, for every sufficiently large n, there is at least one ] 

satisfying n < ] < 2 n and a~ :~ 0; hence, for every sufficiently large k, there are at 

least 2 ~ values of ] satisfying 22~<]<22k+1 and a~:t:0. There are precisely 2 k + 2  

values of n satisfying 1 ~ n _-< 2" + 1 and a~ ~- 0. Consequently, for every sufficiently 

�9 < 2 ~k+l large k, since 2 k > 2 k + 2 ,  there is at  least one mk satisfying 22~<ms= and 

]a-kl>22~'=c k--,, which implies that  

lam~] :> 2 2 k + 2 - k - 2 ~  22k'+l k -2 ,  

ms 22k+l 

so that  lim la2kl/mk= ~ ,  contradicting the fact tha t  ~ a~ is Cl-summable (cf. (13)). 
k - - ~  n=l  

An immediate consequence of (62) is that  (40) holds. 

Suppose that  there are infinitely many values of i such that  s'~ = 0  (throughout 

the rest of this paragraph, let i represent only these values). Then, because of (62), 

we have also s~=0 ( n ~ < ] < 2 n i ) .  Hence, 

8 ' 1 +  ' ' ' ' ' s2 § "'" + s~ i sl  + s2 + "'" + s ,  i + O 
a '  = l i m  - -  l i m  - -  �89 a ' ,  

so that  ~ ' = 0 .  

Suppose, however, that  s~i~=0 for every sufficiently large value of i. Then there 

is a largest value of k, call it ki, such that  one of the terms a~ ( l g ] ~ n ~ )  is either 

equal to 2 ek~ ~~ or to - 2  e~k~, but  none of these terms is equal to -22ki k~, 22~i ~, 

respectively. Since - ~ a:  is a rearrangement of (1), lim kL= ~r Now 
n: . l  i--~ov 

k i 1 
[8ni I "> 22ki -k, __ ~ 2 21. ] a 2 2 k i - k i  - -  (k ,  - -  l )  2 2 k i - l - k i + l  = 2 2k~ 1 -k i+ l  (2 2ki -1-1 - -  k i ~- 1), 

j = l  

which implies that  lim [s',i[= ~ .  Assume that ~'~:0. Then, for every sufficiently 
i-->~ 

large i, 

(63) 1 :,l>2lo'l. 
Because of (62), we have s~=s;~  (n~<]<2n~; i = 1 ,  2, 3, ...). Hence, 

p t ~ t / 
81 -~- 82 -~- . . .  -~- 8'hi 8' 1 -~- 82 -~ . . .  -;- 8ni ~- 71. i 8n i r = lim = lira 

= � 8 9 1 8 9  lim s~,, 
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and consequently 

lim s~ = a', 
t--~oo 

which contradicts (63). Therefore we must have 0 ' = 0 .  

Thus we see that  R={0}.  

Example B. Let  

2 ~ - ~  if n = 2  2~ 

--2~'k-k--1 if n:22~-~ 1 
( I n ~ - - -  

1 if n = 2 ~ k + 2  

0 if n is any other natural number. 

( k = l ,  2 ,3 ,  ...) 

Then it is obvious that  (1) diverges. 

Suppose that  n ~ 4 .  Then there is a k=>l such that  22~=<n<2 ~+1. We have 

1 ~. 22i_j, 
n j = l  

and an argument analogous to one employed in connection with Example A now 

shows that  lim a~=0 ,  so that  (41) holds. 
n--)~o 

Let ~ a'n be a Cl-summable rearrangement of (1). Then there exists an infinite 
n = l  

subsequence, {n~}, of {n} such that  

(64) either a ~ : 0  or a ~ : l  (n~<~=<16n~; i : 1 ,  2, 3 . . . .  ) 

The proof of this is analogous to the proof of the existence, for Example A, of the 

sequence {ni} satisfying (62), and will therefore be omitted. A consequence of (64)is 

! t 
(65) s'~ ~< s~§ ~ " "  ~ s16 n i (i = 1, 2, 3, ...). 

Suppose that  for every sufficiently large i and for every k satisfying n, g k _< 8 n,, 

there is at least one j satisfying k < j G 2 k  and a~= l .  Let  a' be the Cl-sum of 

a'~. Then there are two possibilities: either ' a ' - 1  for every sufficiently large A.,  8 2  n i :>  
n = l  

t t i, or else there is an infinite set, I ' ,  of natural numbers such that  s2 ~i =< a - 1  for 

every : iE I ' .  If the second alternative holds, then, in view of (65), 

t t r t 

Sn~§ + S~i+2 + "'" + s 2 ~ N n i ( a  -- 1) 

for every iE I ' ,  and hence 
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t �9 t �9 
8 1 +  - . -  ~- 8 h i  -~ 8 n t + l  -~ - - -  -~- 82  ~i 

a'= lim < a ' - � 8 9  
~-~o 2 n~ 
i e l "  

which is absurd.  I f  the  first  a l te rna t ive  holds, then,  according to  the  first  sentence 

of this pa ragraph ,  s~n~ > a '  and  Ssni > a ' +  1 for  eve ry  sufficiently large i, so t h a t ,  in 
t t t 

view of (65), as ~+1 + Ss ~i+2 + ' - -  + s16 ~ > 8 n~ (a '  + 1), and  hence 

l v �9 l 

81 -~- . . .  -~ 88  n i ~- 88  n i + l  -~ . . .  ~- 816 n i 
a ' =  lira = > a ' + � 8 9  

~ 16  n~ 

which is also absurd.  The  initial  supposi t ion in this pa rag raph  mus t  therefore  be 

false. Consequently,  there  exists  an  infinite set,  I " ,  of na tu ra l  numbers  such tha t ,  

i - I "  for  every  k , there  is an  mi, sat isfying n~ =< m~ __< 8 n~, for which 

(66) a~ = 0 (m~ < j < 2 ~ ;  i E I "  ') 

A n ' i m m e d i a t e  consequence of (66) is t h a t  (40) holds. 

According to  L e m m a  1, there  exists  an  infinite subsequence,  {n;}, of {n} such 
t 

t h a t  lim s',.~ = a'. Since s~ is an  integer  for  every  n, a' mus t  also be an  integer.  
| - - ~  

This means  t h a t  every  n u m b e r  belonging to  the  r ea r rangement  set  of ( 1 ) i s  an 

integer.  

Conversely,  if ~ is an  integer,  then  v ER. We have  a l ready seen t h a t  O ER. 

Suppose,  then,  t h a t  ~ > 0 .  Le t  a ' = l  (l__<n<=v) and  a'n=an_,, ( n = ~ , +  l,  y + 2 ,  v + 3  . . . .  ). 

The  series ~ a" thus  defined is a r ea r rangement  of (1), because infinitely m a n y  t e rms  

of (1) are equal  to 1, and,  according to the  second sentence following (41), the  C 1- 

sum of this r ea r rangement  is v. Similarly,  if u < 0 ,  the  series obta ined f rom (1) by  

s imply  delet ing the  t e rms  an ( n : 2 2 ~ + 2 ,  ]r  2 . . . . .  - ~ ) ,  is a r ea r rangement  of (1), 

and  the  Cl-sum of this r ean ' angemen t  is v. 

Thus  we see t h a t  R is the  set of integers. 

Example  C. Le t  

222k 1 (2~ D 

_2~2k x r  

1 

an = 229-k-2* 

_ 2 2 " -  ~ 2 ~ _ 1/2 

0 

if n=22~'k 1 

if n = 2  z 2 k - l + l  

if n=22~'k 1 + 2  

if n = 232 k 

if n : 2 ~'2k + 1 

if n = 2 ~- ~ + 2 

if n is any  o ther  na tu ra l  number .  

( ~ = 1 ,  2, 3, . . .)  
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Then arguments analogous to ones employed in connection with Example  B show 

tha t  (40) and (41) hold (and (1) is obviously divergent), and tha t  the rearrangement 

set of (1) contains every number  of the form p + u V 2 ,  where p and y are integers. 

I t  is well known tha t  the set of all such numbers is everywhere dense in the set 

of real numbers,  and from this fact  and Lemma 8, i t  follows tha t  R is the set of 

real numbers. 

w 5. Let  us return to our original question. Suppose tha t  (1) is Cl-summable; 

what  is the nature of its rearrangement set R? 

I f  (1) is convergent, the answer is given in w 1. Suppose tha t  (1) is divergent. 

I f  0 is not a limit point of the sequence {am}, then our question is answered in 

w 3. Assume tha t  0 is a limit point of {am}. If, for every e > 0, there is a non-zero 

limit point of {am} in the interval ( -  e, e), then, as is easily seen, this case can be 

reduced to the one treated in w 2. If, however, there exists an e > 0 such tha t  0 is 

the only limit point of {am} in the interval ( - e ,  e), then the terms of (1) in this 

interval form an infinite subsequence, {am~}, of {am} such tha t  lim amk=O. Now there 
k--~oo 

oo 

are two possibilities: either k~=llamkl diverges or it converges. I f  i t  diverges, we have 

the case discussed in w 2. Suppose, however, tha t  i t  converges. Let  ~ am~=~. I f  
k = l  

the Cl-sum of (1) is a, then the Cl-sum of the series obtained from (1) by  setting 

am~=0 ( k = l ,  2, 3 . . . .  ) exists and is equal to a - ~ ,  and conversely. (This is very 

easy to prove if one considers, in addition to the series already mentioned, the series 

obtained from (1) by  setting a~=0 (i*mk; k = l ,  2, 3, ...), and makes use of the fact  

tha t  Cj-summable series may  be added and subtracted term by  term.) Hence, there 

is no loss of generality in assuming tha t  am~=O (k= l ,  2, 3, ...). This means tha t  

8 
if we put  ~ =  ~, and if {ank} is the subsequence of non-zero terms of {a.}, then 

]a~k]>~ ( k = l ,  2, 3, ...). I f  limnk+l/nk=l, then we have t h e  case considered in 
k--~oo 

w 3. If, however, this limit is not  equal to 1, the discussion in w 4 applies. 

Thus it is evident tha t  the assertion made in the second paragraph of w 1 is true. 
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