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w 1. In  a previous paper  [2], I have studied the cubic curve 

(1) i 3 § y3 = A  Z 3, 

giving the number of generators and the basic rational solutions for nearly all positive 

(cube-free) integers A _-< 500. The solutions were found by  means of a "first descent", 

leading to equations of the form 

(2) axa +by3 +cz3=O, a b c = A  

(3) 3 a u v ( u - v ) §  3, A i ( a ~ - a b + b 2 ) = A ,  

and by a "second descent" in certain cubic fields defined by these equations. 

The extensive tables of [2] 1 contain a few blank spaces, where no solution had 

been found, but where my  congruence conditions of the second descent did not show 

insolubility. In  some of these cases, the corresponding equations can be proved in- 

soluble by  the methods of CASSELS [1], showing the insu//iciency o/ my conditions 

(w167 2-3 below). 

The remaining unsolved equations of [2] have all been solved on the electronic 

computer at  the Inst i tute  for Advanced Study in Princeton, N. J.  (w 4; the com- 

pletion of Tables 2 a-b, 5 and 6). Consequently, I now have the complete solution o/ 

(1) /o~: all A <= 500. 

One of my  earlier conjectures concerning the equation (2) is incorrect and must  

be modified (w 5; Tables 2c-d). 

1 There is a rnisprin~ in the last line of Table 3, for p= 17: ]or w= 0 read w= 1. 
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w 2. I t  was mentioned in [2] (Ch. I, w 6) tha t  solubility or insolubility of an 

equation (1) can also be decided by the methods of Cassels [1], in the purely cubic 
3 3 3 

field K (v ~) = K (Vm) = K  (V4 A) (which reduces to K (V�89 A) when A is even). Since [2] 

was written, I have discovered that  the following unsolved equations can be shown 

insoluble by these methods: 

1. The equation x a + 41ya + 46 z z = 0 of Table 2 a, corresponding to A = 41 �9 46 = 

=1886 .  - -  There are in fact /our equations (2) with a b c = 1 8 8 6 ,  all of which are 

consequently insoluble (cf. w 3 below). 

2. The equation X a +  Ya=473Za  of Table 6, giving rise to the equation 

xa+11ya+43za=O of Tables 2 a-b, and to an equation (3) with a = 7 ,  b = 6 ,  A1=11 

(Table 5). - -  Another example of the same kind (not within the tables of [2]) is 

A = 5 0 8 = 2 s . 1 2 7 ;  this is the first value of A > 5 0 0  where my  methods fail. 

Class-numbers h and units ~ of the cubic fields used for the above exclu- 

sions are: 

A = 1 8 8 6 ,  m = � 8 9  h=15,  

1 
= 3.2-3 i ( - 458 850 + 41 653 z9 + 524 v~2) a 

A - 4 7 3 ,  m = d A = 1 8 9 2 ,  h = 2 7 ,  

7 695 -s 
~ =  - 185767 - 3 2 5 6 7  0 + ~ - - #  

A = 5 0 8 ,  m = ~ A = 2 5 4 ,  h = 2 7 ,  ~ = 1 9 - 3 ~ .  

In  all cases, h is odd and m is :~ •  (mod9) .  The two first units are not ne- 

cessarily fundamental,  but  they are neither squares nor cubes of other units. 

w 3. For all equations of the last paragraph, my  methods of the second descent 

fail to indicate insolubility. In  the case of (3), there is only one (non-purely) cubic 

field, defined by the left hand side, to be used for each of the values A = 473 and 
3 

A =508. In  the case of (2), however, there are three different cubic fields K(l /m)  

which might be used for exclusion, as seen from the following transformations: 

(ax) a + a  sbya= - a  s c z  z, m = a  sb 

(by)S+b  scz a = - b  s a x  a, m = b  sc 

(cz) a + cSax a =  - d  b ya, m=cSa .  

I t  will not lead to any  new conditions if we use for instance m=aSc ,  since 
3 3 

K = K 
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The values of A in w 2 give rise to 6 insoluble equations (2) (in the abbreviated 

notation of [2], Ch. VII, w 4): 

A = 1 8 8 6 = 2 . 2 3 . 4 1 : { 1 ,  2, 23-41}, {1, 23, 2.41},  

{1, 41, 2.23},  {2, 23, 41} 

A =  473=11-43 :  {1, 11, 43} 

A =  508= 4. 127: {1, 4, 127}. 

For each of these equations, I have checked in all three cubic fields that  my  

congruence conditions of the second descent do not lead to exclusion. I t  seems to 

me very striking tha t  when my methods /ail, they seem to /ail in all the/ields involved. 

w 4. During the Spring of 1952, I had the opportuni ty to "code" the remaining 

unsolved equations of [2] for the electronic computer at the Inst i tute for Advanced 

Study in Princeton, N.J . ,  and to run the problem on the computer myself. The 

equations (3) were coded in this form, but  "resulting equations" (cf. [2], Ch. IV) 

were used instead of (2). The computer scanned a certain domain for the unknowns, 

and halted at the first solution, or when a given limit was reached. 

With the first code, the machine was unable to solve the one equation (3) 

corresponding to A =283.  I later made a separate code for this equation, utilizing 

special congruence conditions etc., and the problem was run successfully by Mr. 

Manfred Kochen at the Inst i tute in December, 1953.1 

The effective machine time for solving 9 equations totalled about 6 hours, cor- 

responding to approximately 6 months of work on a desk calculator (but it took 6 

weeks to prepare the problem for the computer). 

The completion of Tables 2 ~ b, 5 and 6, resulting from the Princeton solutions, 

appears below. 

w 5. For given a b e = A ,  the number of different equations (2), possible for all 

moduli, is one of the numbers 

NA =0 ,  1, 4, 13, 40, ... 

(if trivial repetitions are avoided by the additional conditions 1 ~ a < b  <c, (a, b)=  

= (a, c)=(b,  c )=  1). I conjectured in [2] (Ch. VII ,  w 4, 3rd conjecture) that  one and 

1 I would  l ike  to express  m y  g r a t i t u d o  to Mr. K o e h e n  for his ass is tance ,  and  also to Prof. 

yon  N e u m a n n  and  Dr.  Golds t ine  a t  the  I n s t i t u t e ,  for g iv ing  me the  o p p o r t u n i t y  to run  m y  prob- 

lems on the  compu te r .  

1 3 -  543808. Acta Mathematica. 92. Imprim6 le 29 ddcembre 1954. 
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COMPLETION OF TABLE 2 a 

(X 3 § m y3 § n Z 3 = 0.)  

m n z 

17 

2.9 

l l  

41 

41 

47 

43 

46 

x y 

149 105 -140  161 

- 5  646 1 705 

101 988 

917 

Inso lub le  (Cassels) 

COMPLETION OF TABLE 2 b 

(axa § § abc=A.) 

A a b c x y z 

346 

382 

445 

473 

2 

2 

5 

11 

173 

191 

89 

43 

117 747 -119  635 21 799 

456 771 501 542 -122  093 

- 18 683 10 383 2 182 

In so lub l e  (Cassels) 

EXTENSION OF TABLE 2 c TO 1 0 0 0  < A g 2 5 0 0  

( V a l u e s  of  A w i t h  13 p o s s i b l e  e q u a t i o n s  ax3+bya§ abc=A, 
o n l y  o n e  of  w h i c h  i s  s o l u b l e . )  

A a b c x i Y z 

1230 = 2.3.5.41 

1380 = 22.3.5.23 

1410 = 2.3.5.47 

1518=2.3 .11 .23 

1590 = 2.3.5.53 

1650 = 2.3.52.11 

1740 = 22.3.5.29 

1770 = 2.3.5.59 

1870 = 2.5.11.I7 

1914 = 2.3.11.29 

2130 = 2.3.5.71 

2244 = 22.3.11.17 

2460 = 22.3.5.41 

2490 = 2.3.5.83 

5 

20 

5 

3 

6 

22 

5 

6 

17 

11 

10 

17 

15 

10 

123 

23 

282 

253 

53 

25 

348 

295 

22 

87 

71 

33 

41 

83 

- 4  

1 

7 

5 

1 

1 

7 

- 7  

1 

- 49  

- 3  

-23  

-14  

1 

1 

1 

- 5  

1 

2 

1 

1 

2 

1 

~5 

1 

]3 

9 

2 

1 

-1  

1 

-1  

-1  

-1  

-1  

1 

-1  

9 

1 

7 

1 

-1  
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TABLE 2 d ( N E W )  

V a l u e s  of  A =< 2 5 0 0  w i t h  13 p o s s i b l e  e q u a t i o n s  a x a + b ya + c z a = 0,  a b c = A ,  

a l l  o f  w h i c h  a r e  s o l u b l e .  

A = 1 0 2 0  = 2 2 . 3 . 5 . 1 7 :  

a 

1 

1 

1 

1 

1 

1 

1 

3 

3 

3 

4 

4 

5 

A = 1122 = 2.3.11.17: 

a b c x y z 5 c x 

3 :40 - 7 

4 :55 1 

5 :04 - 1 9  

12 85 29 

15 68 11 

17 60 29 

20 51 -11 

4 85 3 

5 68 3 

17 20 1 

5 51 7 

15 17 - 2 

12 17 1 

y z 

1 1 

- 4  1 

1 1  1 

32 -17  

- 5  2 

- 1 3  6 

4 1 

1 - 1  

- 5  2 

1 - 1  

1 - 3  

1 1 

1 - 1  

1 

1 

1 

1 

1 

1 

1 

2 

2 

2 

3 

3 

6 

2 

3 

6 

11 

17 

22 

33 

3 

11 

17 

11 

17 

11 

561 

374 

187 

102 

66 

51 

34 

187 

51 

33 

34 

22 

17 

5 

1 

29 

41 

7 

5 

1 

10 

1 

2 

- 9  

13 

1 

- 7  

- 5  

- 16  

-19  

- 5  

- 2  

1 

- 9  

5 

1 

1 

17 

1 

1 

1 

1 

4 

3 

1 

- 1 

1 

- 3  

- 1  

4 

- 16  

- 1 

A = 2310= 2.3.5.7.11: 

a b c x y z 

1 

1 

1 

1 

1 

2 

2 

3 

3 

6 

7 

10 

6 

7 

15 

22 

42 

5 

33 

10 

l l  

14 

7 

15 

11 

385 

330 

154 

105 

55 

231 

35 

77 

70 

33 

55 

22 

21 

1 

19 

- 23  

-29  

13 

- 23  

1 

1 

- 3  

1 

2 

1 

1 

4 

17 

9 

8 

- 6  

17 

I 

- 2  

1 

- 4  

1 

1 

1 

-1  

- 5  

2 

5 

5 

1 

-1  

1 

1 

3 

-1  

-1  

-1  

A = 2346 = 2.3.17.23: 

b c x y z a 

1 2 

1 3 

1 6 

1 17 

1 23 

1 34 

1 46 

2 3 

2 17 

2 23 

3 17 

3 23 

6 17 

1173 

7s2 

391 

138 

102 

69 

5I  

391 

69 

51 

46 

34 

23 

- 13 

229 

7 

31 

- 5 

- 41 

1 1  

2 

47 

196 

3 

61 

1 

8 

-159  

2 

, 1  

1 

l l  

1 

5 

25 

23 

- 7 

71 

1 

1 

4 

- 1  

- 6  

1 

7 

- 3  

- 1  

- 19  

-67  

5 

-64  

- I 
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ADDITION TO TABLE 4 

4h: V a l u e s  of A =< 500, p r o v e d  inso lub le  b y  t h e  m e t h o d s  of Cassels: 

A = 473 = 11.43 

COMPLETION OF TABLE 5 

8 3 
( N o n - e x c l u d e d  e q u a t i o n s  3 a u v (u - v) + b (u a - 3 u 2 v + v a) : 3 t  A1 w .) 

A a b A 1 Case 

283 

337 

409 

499 

473 = 11.43 

19 

8 

23 

25 

7 

6 

21 

15 

18 

6 

1 

1 

1 

1 

I I  

u v ~() 

31 982 1102 

89 165 17 

96 29 169 

2 125 . 222 . 

In so lub le  (Cassels) 

COMPLETION OF TABLE 6 

( B a s i c  s o l u t i o n s  of  X 3 +  Y 3 - - A  Z 3 f o r  A g 5 0 0 . )  

A g (X, Y, Z) 

283 

337 

346 

382 

409 

445 

499 

( 2 0 8 2 4 8 8 8 4 9 3 ,  8 7 8 0 4 2 9 6 2 1 ,  3 0 9 0 5 9 0 9 5 8 )  

(53 750 671, -53  706 454, 1 043 511) 

(47 189 035 813 499 932 580 169 103 856 786 964 321 592 777 067, 

42 979 005 685 698 193 708 286 233 727 941 595 382 526 544 683, 

8 108 6.(}5 l l 7  451 325 702 5S1 978 056 293 186 703 694 064 735) 

(58 477 534 119 926 126 376 218 390 196 344 577 607 972 745 895 728 749, 

16 753 262 295 125 845 463 811 427 438 340 702 778 576 158 801 481 539, 

8 122 054 393 485 793 893 167 719 500 929 060 093 151 854 013 194 574) 

(22015523 ,  2 1 4 2 5 7 5 8 ,  3 6 8 7 4 1 1 )  

(362 650 186 970 550 612 016 862 044 970 863 425 187, 

- 58 928 948 142 525 345 898 087 903 372 951 745 227, 

47 432 800 292 536 072 666 333 861 784 516 450 106) 

(80 968219,  1 7 5 0 1 2 1 3 , 1 0 2 4 2 4 1 4 )  
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only  one of these equat ions  is soluble when NA = 13. My as sumpt ion  was based  on 

an examina t ion  for A =< 1 000, covering only  5 cases (Table 2 c of [2]). 

I have  l a t e r  con t inued  the  examina t i on  of N A = 1 3  up to  A = 2 5 0 0 .  I n  mos t  

cases (Table 2 ~ above) ,  there  is one soluble and  12 exc luded  equat ions .  I n  four  cases, 

however ,  all 13 equations are soluble (Table 2d). The 3rd conjec ture  should conse- 

quen t ly  be modi/ied to  include this  a l t e rna t ive .  

I n  a separa te  pape r  [3], I have  combined  the  conjec tures  of [2] wi th  the  new 

numer ica l  resul ts  to  the  fol lowing general ized 

Conjectures: 

1. (Weaker  form.) The second descent excludes an even number o/ generators. 

2. (Stronger  form.) When a second descent exists, the number o/ generators is an 

ewn  number less than what is indicated by the first descent. 

I t  is ve ry  s t r ik ing  t h a t  the  s t ronger  conjec ture  seems to hold (at  leas t  in cer ta in  

cases) also /or the Weierstrass normal form of a cubic curve,  cf. [4]. 
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