CAUCHY'S THEOREM AND ITS CONVERSE

BY

MANSOOR AHMAD

1. Let C be a simple closed contour which has a central point z_{0}. By a 'central point' of a simple closed contour, we mean a point within the contour, such that every radius vector drawn from it to the contour lies wholly in the closed domain bounded by the contour and intersects it in only one point.

The existence of a central point z_{0} imposes the restriction that the inside of C be a star with respect to z_{0}. Among such star domains many, including all convex domains, have the required property for all points z_{0}.

We shall first prove a form of Cauchy's theorem which imposes restrictions, both on the form of the contour and on the derivative of the function. We then remove these restrictions later on.

The point of affix

$$
\zeta=z_{0}+\lambda\left(z-z_{0}\right),
$$

when z lies on C; and $0<\lambda<1$, lies on a similar closed contour lying within C and having z_{0} as its central point. Call this contour C_{λ}.

Let us further suppose that
(i) $f(z)$ is a function of z, which has got a definite finite value at every point of the closed domain which consists of all the straight lines drawn from z_{0} to the contour C; and of all contours $C_{\lambda}, 0 \leq \lambda \leq 1$, save possibly at the point z_{0};
(ii) $f(z)$ is one-valued and continuous along every contour $C_{\lambda}, 0 \leq \lambda \leq 1$; and differentiable along every contour $C_{\lambda}, 0<\lambda<1$, at every point of C_{λ};
(iii) the maximum-modulus of $f(z)$ on the contour C_{λ} is bounded, when λ tends to zero and also when λ tends to unity;
(iv) $f(z)$ is continuous along every straight-line joining z_{0} to the contour C, at every point of the straight line;
(v) $f(z)$ is differentiable along every straight line, joining z_{0} to the contour C, at every point of the straight line, save possibly at one or both of its end points;
(vi) the derivative of $f(\zeta)$, at any point ζ of the contour C_{λ}, is the same whether taken along C_{λ} or along the straight line joining ζ to z_{0};
(vii) the derivative of $f(\zeta)$, at the point ζ, taken along the straight line passing through ζ and z_{0} is uniformly bounded with respect to z and λ, when z lies on C and λ lies in any closed interval $\left(\lambda_{1}, \lambda_{2}\right), 0<\lambda_{1}<\lambda_{2}<1$.

Then

$$
\int_{C} f(z) d z=0 .
$$

Proof. We define the Lebesgue integral of a function $f(z)$, round a simple closed contour C, by the relation

$$
\int_{C} f(z) d z=\int_{i_{0}}^{T} \operatorname{Re} \dot{z} f(z) d t+i \int_{t_{0}}^{T} \operatorname{Im} \dot{z} f(z) d t
$$

where z is a function of a real parameter t, when z lies on C; and the two integrals on the right-hand side are Lebesgue integrals.

Now, if λ_{1} and $\lambda_{1}+h_{1}$ be any two points in the open interval $(0,1)$, by the condition (vii) there exists a positive number M, depending only on λ_{1} and h_{1}, such that $\left|f^{\prime}(\zeta)\right|<M$, when. λ lies in the closed interval whose end-points are λ_{1} and $\lambda_{1}+h_{1}$, $f^{\prime}(\zeta)$ being the derivative of $f(\zeta)$ along the contour C_{λ}.

Therefore, by the Fundamental theorem of the Lebesgue integration, we have

$$
\begin{equation*}
\left|\frac{f\left(z_{0}+\left(\lambda_{1}+h\right)\left(z-z_{0}\right)\right)-f\left(z_{0}+\lambda_{1}\left(z-z_{0}\right)\right)}{h}\right|=\left|\frac{1}{h} \int_{z_{0}+\lambda_{1}\left(z-z_{0}\right)}^{z_{0}+\left(\lambda_{1}+h\right)\left(z-z_{0}\right)} f^{\prime}(\zeta) d \zeta\right|<M \cdot l, \tag{A}
\end{equation*}
$$

when $\lambda_{1}+h$ lies in the closed interval whose end-points are λ_{1} and $\lambda_{1}+h_{1}$; and z lies on C. The path of integration is a straight line; and l is the greatest distance of the point z_{0} from C. By the condition (v), we have

$$
\lim _{h \rightarrow 0} \frac{f\left(z_{0}+\left(\lambda_{1}+h\right)\left(z-z_{0}\right)\right)-f\left(z_{0}+\lambda_{1}\left(z-z_{0}\right)\right)}{h}=\left(z-z_{0}\right) f^{\prime}\left(z_{0}+\lambda_{1}\left(z-z_{0}\right)\right)
$$

when z lies on C.
Consequently, applying Lebesgue's convergence theorem to the real and imaginary parts of the following integral on the left-hand side, we can easily show that

$$
\begin{equation*}
\lim _{h \rightarrow 0} \int_{C} \frac{f\left(z_{0}+\left(\lambda_{1}+h\right)\left(z-z_{0}\right)\right)-f\left(z_{0}+\lambda_{1}\left(z-z_{0}\right)\right)}{h} d z=\int_{C}\left(z-z_{0}\right) f^{\prime}\left(z_{0}+\lambda_{1}\left(z-z_{0}\right)\right) d z, \tag{B}
\end{equation*}
$$

where we make h tend to zero through an enumerable sequence.

Also, by the relation (A), we have

$$
\begin{equation*}
\lim _{h \rightarrow 0} \int_{C} f\left(z_{0}+\left(\lambda_{1}+h\right)\left(z-z_{0}\right)\right) d z=\int_{C} f\left(z_{0}+\lambda_{1}\left(z-z_{0}\right)\right) d z \tag{C}
\end{equation*}
$$

Now, let

$$
\psi(\lambda)=\int_{C} \lambda f\left(z_{0}+\lambda\left(z-z_{0}\right)\right) d z,
$$

where $0<\lambda<1$; and the left-hand side is a Lebesgue integral.
Combining (B) and (D), we have

$$
\begin{aligned}
\psi^{\prime}\left(\lambda_{1}\right)=\lim _{h \rightarrow 0} \frac{\psi\left(\lambda_{1}+h\right)-\psi\left(\lambda_{1}\right)}{h}= & \int_{c}\left\{f\left(z_{0}+\lambda_{1}\left(z-z_{0}\right)\right)+\lambda_{1}\left(z-z_{0}\right) f^{\prime}\left(z_{0}+\lambda_{1}\left(z-z_{0}\right)\right)\right\} d z \\
& =\frac{1}{\lambda_{1}} \int_{C_{\lambda_{1}}}\left\{f(\zeta)+\left(\zeta-z_{0}\right) f^{\prime}(\zeta)\right\} d \zeta
\end{aligned}
$$

where ζ lies on $C_{\lambda_{1}}$.
But the inequality $\left|f^{\prime}(\zeta)\right|<M$ holds at all points of $C_{\lambda_{1}}$; and $f(\zeta)$ is continuous along $C_{\lambda_{1}}$, therefore by the Fundamental theorem of the Lebesgue integration, we have

$$
\begin{aligned}
\psi^{\prime}\left(\lambda_{1}\right) & =\frac{1}{\lambda_{1}} \cdot \int_{c_{\lambda_{1}}}\left\{f(\zeta)+\left(\zeta-z_{0}\right) f^{\prime}(\zeta)\right\} d \zeta \\
& =\frac{1}{\lambda_{1}} \cdot \int_{c_{\lambda_{1}}} \frac{d}{d \zeta}\left\{\left(\zeta-z_{0}\right) /(\zeta)\right\} d \zeta \\
& =\frac{1}{\lambda_{1}} \cdot\left[\left(\zeta-z_{0}\right) f(\zeta)\right]_{c_{\lambda_{1}}} \\
& =0
\end{aligned}
$$

Proving thereby that the derivative $\psi^{\prime}(\lambda)$ of the function $\psi(\lambda)$ vanishes, when $0<\lambda<1$. Therefore $\psi(\lambda)$ is independent of λ.

By the conditions (iii) and (iv) and by Lebesgue's convergence theorem, we can very easily prove that $\psi(\lambda)$ is continuous at the points $\lambda=0$ and $\lambda=1$. But $\psi(0)$ is zero; and hence

$$
\int_{C} f(z) d z=0 .
$$

2. If \mathfrak{r} and r_{λ} be a pair of corresponding arcs of the contours C and C_{λ} respectively; and if $f(z)$ satisfy all the conditions of $\S 1$, with respect to the similar 2-543809. Acta Mathematica. 93. Imprimé le 7 mai 1955.
contours $\mathfrak{r}_{\lambda}, \lambda_{1} \leq \lambda \leq 1$; and the segments of straight lines drawn from z_{0}, which lie between r and $r_{\lambda_{1}}$, then

$$
\int_{\Delta} f(z) d z=0,
$$

where Δ is the closed contour formed by $r, r_{\lambda_{1}}$ and the segments of straight lines, joining the corresponding end-points of \mathfrak{r} and $\mathfrak{r}_{\lambda_{1}}$.

Proof. Let a and b be the end-points of \mathfrak{r}; and let

$$
\psi(\lambda)=\int_{\mathfrak{r}} \lambda f\left(z_{0}+\lambda\left(z-z_{0}\right)\right) d z
$$

where $\lambda_{1} \leq \lambda \leq 1$.
Replacing C by \mathfrak{r} in (B) and (C) of § l, we have

$$
\begin{aligned}
\psi^{\prime}(\lambda) & =\frac{1}{\lambda} \cdot\left[\left(\zeta-z_{0}\right) f(\zeta)\right]_{\mathrm{r}_{\lambda}} \\
& =\left(b-z_{0}\right) f\left(z_{0}+\lambda\left(b-z_{0}\right)\right)-\left(a-z_{0}\right) f\left(z_{0}+\lambda\left(a-z_{0}\right)\right),
\end{aligned}
$$

where $\lambda_{1}<\lambda<1$.
Integrating each side of this relation, between the limits λ_{1} and 1 , we get

$$
\begin{aligned}
\psi(1)-\psi\left(\lambda_{1}\right) & =\int_{\lambda_{1}}^{1}\left(b-z_{0}\right) f\left(z_{0}+\lambda\left(b-z_{0}\right)\right) d \lambda-\int_{\lambda_{1}}^{1}\left(a-z_{0}\right) f\left(z_{0}+\lambda\left(a-z_{0}\right)\right) d \lambda \\
& =\int_{b_{1}}^{b} f(z) d z-\int_{a_{1}}^{a} f(z) d z,
\end{aligned}
$$

where a_{1} and b_{1} are the end-points of $\mathfrak{r}_{\lambda_{1}}$; and the last two integrals are taken along segments of straight lines drawn from z_{0}.

Hence we have

$$
\begin{aligned}
\int_{\Delta} f(z) d z & =\int_{\mathfrak{r}} f(z) d z-\int_{b_{1}}^{b} f(z) d z-\int_{\mathrm{r}_{1}} f(z) d z+\int_{a_{1}}^{a} f(z) d z \\
& =0
\end{aligned}
$$

3. If a function $f(z)$ satisfy all the conditions of $\S 1$, with respect to a simple closed contour C; and if α be any point within C other than the central point z_{0}, then

$$
f(\alpha)=\frac{1}{2 \pi i} \int_{C} \frac{f(z) d z}{z-\alpha}
$$

where $f(\alpha)$ is the value of $f(z)$, at the point α, as defined in $\S 1$.
Proof. Let us suppose that the point \propto lies on a similar contour $C_{\lambda_{1}}$. Consider the following figure:

Let L^{\prime} and $L^{\prime \prime}$ denote the arcs of $C_{\lambda^{\prime}}$ and $C_{\lambda^{\prime \prime}}$ respectively, which join ζ_{1}^{\prime} to ζ_{2}^{\prime}; and $\zeta_{1}^{\prime \prime}$ to $\zeta_{2}^{\prime \prime}$; and let \mathfrak{r}^{\prime} and $\mathfrak{r}^{\prime \prime}$ denote the remaining portions of $C_{\lambda^{\prime}}$ and $C_{\lambda^{\prime \prime}}$ respectively. Let R_{1} and R_{2} be the segments of straight lines joining ζ_{1}^{\prime} to $\zeta_{1}^{\prime \prime}$ and ζ_{2}^{\prime} to $\zeta_{2}^{\prime \prime}$, respectively.

Now, if $F(z)=\frac{f(z)-f(\alpha)}{z-\alpha}$, by $\S 2$, we have

$$
\int_{\mathfrak{r}^{\prime \prime}} F(z) d z-\int_{\mathfrak{r}^{\prime}} F(z) d z=\int_{\boldsymbol{R}_{\mathbf{2}}} F(z) d z-\int_{\boldsymbol{R}_{\mathbf{1}}} F(z) d z .
$$

Therefore

$$
\begin{equation*}
\int_{c_{\lambda^{\prime \prime}}} F^{\prime}(z) d z-\int_{c_{\chi^{\prime}}} F^{\prime}(z) d z=\int_{\Delta} F(z) d z, \tag{D}
\end{equation*}
$$

where Δ denotes the closed contour formed by $L^{\prime}, L^{\prime \prime}, R_{1}$ and R_{2}.
Let $\Delta, \Delta_{1}, \Delta_{2}, \ldots \Delta_{n}, \ldots$ be a sequence of closed contours, each contained in its predecessor, such that every one of them contains α; and is formed by the arcs of similar contours C_{λ}; and the segments of straight lines drawn from z_{0}. Let us assume that the second derivative of $f(\zeta)$ exists along every contour of the sequence $\Delta, \Delta_{1}, \Delta_{2}, \ldots$, at every point of it; and is uniformly bounded with respect to z and λ, when z lies on an arc of C joining z_{1} and z_{2}; and λ lies in the closed interval ($\lambda^{\prime}, \lambda^{\prime \prime}$).

Integrating by parts, we have
$\int_{\Delta} F(z) d z=\left[\left\{f(z)-f(\alpha)-(z-\alpha) f^{\prime}(z)\right\} \log (z-\alpha)\right]_{\Delta}+\int_{\Delta} f^{\prime \prime}(z)\{(z-\alpha) \log (z-\alpha)-(z-\alpha)\} d z$.
In the last equation, the integrated part becomes

$$
2 \pi i\left[f(z)-f(\alpha)-(z-\alpha) f^{\prime}(z)\right]_{\Delta} .
$$

Here the second term in the bracket tends to zero, since $f^{\prime}(z)$ is bounded.
The first term tends to zero if, in evaluating the variation of the integrated part, the initial point of Δ is taken to be a point where the contour $C_{\lambda_{1}}$ or the straight
line through z_{0} and α cuts Δ. This is possible because the second integral in the equation tends to zero independently of the initial point, in virtue of the hypothesis on $f^{\prime \prime}(z)$.

We have thus shown that

$$
\begin{equation*}
\int_{\Delta} F(z) d z \rightarrow 0 \tag{E}
\end{equation*}
$$

when we make z_{1} tend to z_{2}; and each of λ^{\prime} and $\lambda^{\prime \prime}$ tend to λ_{1}, by taking the sequence of contours $\Delta, \Delta_{1}, \Delta_{2}, \ldots$

Now, by the method of $\S 1$, we can prove that the function

$$
\psi(\lambda)=\int_{C} \lambda F^{\prime}\left(z_{0}+\lambda\left(z-z_{0}\right)\right) d z
$$

is independent of λ, when $0 \leq \lambda<\lambda_{1}$; and also when $\lambda_{1}<\lambda \leq 1$. But, by (D) and (E), $\psi(\lambda)$ is continuous for $\lambda=\lambda_{1}$; therefore $\psi(\lambda)$ is constant in the closed interval $(0,1)$. Proving thereby that

$$
\psi(1)=\int_{c} \frac{f(z)-f(\alpha)}{z-\alpha} d z=0
$$

Hence

$$
f(\alpha)=\frac{1}{2 \pi i} \int_{C} \frac{f(z) d z}{z-\alpha}
$$

We can easily deduce from this formula that

$$
f^{n}(\alpha)=\frac{\mid n}{2 \pi i} \int_{C} \frac{f(z) d z}{(z-\alpha)^{n+1}}
$$

when $f^{n}(\alpha)$ is the nth derivative of $f(z)$ at α; and this derivative is independent of the path along which it is taken.

We, now, prove that it is unnecessary to assume the existence and the uniform boundedness of the second derivative of $f(z)$.

Let $\varphi(z)=\int_{z_{0}}^{z} f(z) d z$, where $f(z)$ satisfies all the conditions of $\S 1$ with respect to C; and the path of integration is the straight line joining z_{0} and z. If ζ_{1} and ζ_{2} be any pair of points lying on a contour C_{A}, by $\S 2$, we have

$$
\begin{aligned}
\lim _{\zeta_{2} \rightarrow \zeta_{2}} \frac{\varphi\left(\zeta_{2}\right)-\varphi\left(\zeta_{1}\right)}{\zeta_{2}-\zeta_{1}} & =\lim _{\zeta_{2} \rightarrow \zeta_{1}} \frac{\int_{\zeta_{1}}^{\zeta_{1}} f(\zeta) d \zeta}{\zeta_{2}-\zeta_{1}} \\
& =f\left(\zeta_{1}\right),
\end{aligned}
$$

where the integral on the right-hand side is taken along an arc of C_{λ}, whose endpoints are ζ_{1} and ζ_{2}. Therefore, the function $\varphi(z)$ satisfies all the conditions of $\S 1$. The second derivative $\varphi^{\prime \prime}(\zeta)$ of $\varphi(\zeta)$ at any point ζ of the contour C_{λ}, exists along C_{λ}; and is equal to its second derivative along the straight line passing through ζ and z_{0}. Since $\varphi^{\prime \prime}(\zeta)=f^{\prime}(\zeta), \varphi^{\prime \prime}(\zeta)$ is uniformly bounded with respect to z and λ, when z lies on C; and λ lies in any closed interval $\left(\lambda_{1}, \lambda_{2}\right), 0<\lambda_{1}<\lambda_{2}<1$.

Consequently, if α lies within $C_{\lambda}, 0<\lambda<1$, we have

$$
\varphi^{\prime}(\alpha)=\frac{1}{2 \pi i} \int_{C_{\lambda}} \frac{\varphi(z) d z}{(z-\alpha)^{2}},
$$

where $\varphi^{\prime}(\alpha)$ denotes the derivative of $\varphi(z)$, at the point α. Proving thereby that

$$
f(\alpha)=\frac{1}{2 \pi i} \int_{C_{\lambda}} \frac{f(z) d z}{z-\alpha}
$$

Hence, making λ tend to unity, we have

$$
f(\alpha)=\frac{1}{2 \pi i} \int_{C} \frac{f(z) d z}{z-\alpha} .
$$

Corollary 1. If $f(z)$ satisfies all the conditions of $\S 1$, with respect to a simple closed contour C which has a central point z_{0}; and if $f(z)$ has got the value $f\left(z_{0}\right)$ at the point z_{0}, then

$$
f\left(z_{0}\right)=\frac{1}{2 \pi i} \int_{C} \frac{f(z) d z}{z-z_{0}}
$$

and

$$
f^{n}\left(z_{0}\right)=\frac{\mid \underline{n}}{2 \pi i} \int_{C} \frac{f(z) d z}{\left(z-z_{0}\right)^{n+1}},
$$

where $f^{n}\left(z_{0}\right)$ denotes the nth derivative of $f(z)$ at the point z_{0} taken along any path.
Proof. If α be any point within C other than z_{0}, then by $\S 3$, we have

$$
f(\alpha)=\frac{1}{2 \pi i} \int_{C} \frac{f(z) d z}{z-\alpha}
$$

Now, making α tend to z_{0}, along the straight line passing through α and z_{0}, we obtain the first formula; and the second formula is easily deducible from this.

Corollary 2. If $f(z)$ satisfies all the conditions of $\S 1$, with respect to a simple closed contour C which has a central point z_{0}, then $f(z)$ is an analytic function of z, regular within C.
4. Let us suppose that a function $f(z)$ satisfies the following conditions:
(i) $f(z)$ is continuous along every straight line joining any point z of a simple closed contour C to its central point z_{0}, at every point of the straight line, save possibly at its end-point z;
(ii) $f(z)$ is one-valued and continuous along every similar contour C_{λ};
(iii) the integral of $f(z)$, round every contour formed by an arc of any contour C_{λ} and the straight lines joining the end-points of the are to z_{0}, vanishes;
(iv) the maximum-modulus of $f(\zeta)$ on C_{λ} is bounded in every closed interval $\left(\lambda_{1}, \lambda_{2}\right)$, where $0<\lambda_{1}<\lambda_{2}<1$. Then $f(z)$ is regular within C.

Proof. Let $\varphi(z)$ be a function of z, defined by the relation

$$
\varphi(z)=\int_{z_{0}}^{z} f(z) d z
$$

where the path of integration is the straight line joining z_{0} and z.
By hypothesis, we can easily show that the function $\varphi(z)$ is one-valued and continuous along every similar contour C_{λ}; and also along every straight line joining z_{0} to any point z of the contour C_{λ}.

Also, if z_{1} and z_{2} be any two points of a contour C_{λ}, then, by hypothesis, we have

$$
\frac{\varphi\left(z_{2}\right)-\varphi\left(z_{1}\right)}{z_{2}-z_{1}}=\frac{\int_{z_{2}}^{z_{2}} f(z) d z}{z_{2}-z_{1}},
$$

where the integral on the right-hand side is taken along an arc of C_{λ} whose endpoints are z_{1} and z_{2}.

Consequently, we have

$$
\varphi^{\prime}\left(z_{1}\right)=\lim _{z_{4} \rightarrow z_{1}} \frac{\varphi\left(z_{2}\right)-\varphi\left(z_{1}\right)}{z_{2}-z_{1}}=f\left(z_{1}\right) .
$$

Proving thereby that the derivative of $\varphi(z)$ at any point z of the contour C_{λ}, exists along C_{λ}; and is equal to its derivative at the same point, taken along the straight line passing through z_{0} and z.

Moreover, by the condition (iv), the maximum-modulus of this derivative on C_{λ} is bounded in every closed interval $\left(\lambda_{1}, \lambda_{2}\right), 0<\lambda_{1}<\lambda_{2}<1$.

We have thus shown that $f(z)$ satisfies all the conditions of $\S 1$, with respect to C. Hence, by Corollary $2, f(z)$ is regular within C.
5. If $f(z)$ satisfies all the conditions of $\S 1$, except (vii), and if $f(z)$ is bounded in the open domain enclosed by C, then

$$
\int_{C} f(z) d z=0 .
$$

Proof. Let λ and $\lambda+h_{n}$ be any two points of the open interval (0,1); and let z be a function of a real parameter $t, t_{0} \leq t \leq T$, when z lies on C.

Consider the function

$$
\varphi_{n}(\lambda, t)=\left|\frac{f\left(z_{0}+\left(\lambda+h_{n}\right)\left(z-z_{0}\right)\right)-f\left(z_{0}+\lambda\left(z-z_{0}\right)\right)}{h_{n}}\right| .
$$

The function $\varphi_{n}(\lambda, t)$ may be expressed by $\nu(\lambda, t, \eta)$, a function of the three variables λ, t, η, where $\eta=\frac{1}{n}$. The function $v(\lambda, t, \eta)$ is in the first instance defined only for values of η, of the form $\frac{1}{n}$, but it may be extended to the case in which η has all values in the interval $0<\eta \leq 1$, by such a rule as that, when η is in the interval $\left(\frac{1}{n+1}, \frac{1}{n}\right)$,

$$
v(\lambda, t, \eta)=v\left(\lambda, t, \frac{1}{n}\right)+\frac{\frac{1}{n}-\frac{1}{\eta}}{\frac{1}{n}-\frac{1}{n+1}}\left\{v\left(\lambda, t, \frac{1}{n+1}\right)-v\left(\lambda, t, \frac{1}{n}\right)\right\}
$$

The function $\nu(\lambda, t, \eta)$, so defined for the three-dimensional set of points $0<\lambda<1$, $t_{0} \leq t \leq T$ and $0<\eta \leq 1$ is, everywhere continuous with respect to each variable. Therefore, by a theorem of Baire ([1], p. 422, ex. 2) there must be points in every domain lying in the plane $\eta=0$, at which $v(\lambda, t, \eta)$ is continuous with respect to (λ, t, η); and therefore with respect to (λ, t). Consequently $\left|f^{\prime}\left(z_{0}+\lambda\left(z-z_{0}\right)\right)\right|$, which is $\lim _{\eta \rightarrow 0} \nu(\lambda, t, \eta)$, is point-wise discontinuous with respect to (λ, t). It follows that the points of infinite discontinuity of the derivative $f^{\prime}(\zeta)$ of $f(\zeta)$ at any point ζ of the contour C_{λ}, taken along C_{λ}, form a set which is non-dense in the open domain bounded by the contour C.

Now, if a be any point within C, which is not an infinite discontinuity of $f^{\prime}(\zeta)$, there exists a closed contour Δ of the same form as that of $\S 2$, such that no point of infinite discontinuity of $f^{\prime}(\zeta)$ lies within or on it; and a is an interior point of it.

Let $\varphi(z)=\int_{b}^{z} f(z) d z$, where b is a fixed point within Δ, z is any point within or on it; and the integral is taken along a path which consists of two parts: (i) the
segment of the straight line drawn from z_{0} through b, joining b to the point z_{1} where this straight line intersects the contour C_{λ} on which z lies; and (ii) the arc of the contour C_{λ}, lying inside Δ, whose end-points are z and z_{1}.

If ζ_{1} and ζ_{2} be any two points within or on Δ, lying on the same straight line through z_{0}, then by $\S 2$, we have

$$
\begin{aligned}
\lim _{\zeta_{2} \rightarrow \zeta_{1}} \frac{\varphi\left(\zeta_{2}\right)-\varphi\left(\zeta_{1}\right)}{\zeta_{2}-\zeta_{1}} & =\lim _{\zeta_{2} \rightarrow \zeta_{1}} \frac{\int_{\zeta_{1}}^{\zeta_{2}} f(\zeta) d \zeta}{\zeta_{2}-\zeta_{1}} \\
& =f\left(\zeta_{1}\right),
\end{aligned}
$$

where the integral on the right-hand side is taken along the straight line.
Also, if ζ_{1} and ζ_{2} lie on the same contour C_{λ}, by the definition of $\varphi(z)$, we have

$$
\begin{aligned}
\lim _{\zeta_{2} \rightarrow \zeta_{1}} \frac{\varphi\left(\zeta_{2}\right)-\varphi\left(\zeta_{1}\right)}{\zeta_{2}-\zeta_{1}} & =\lim _{\zeta_{2} \rightarrow \zeta_{1}} \frac{\int_{\zeta_{1}}^{\zeta_{2}} f(\zeta) d \zeta}{\zeta_{2}-\zeta_{1}} \\
& =f\left(\zeta_{1}\right),
\end{aligned}
$$

where the path of integration is an are of C_{λ}.
Since $f(z)^{-}$is bounded in the closed domain enclosed by $\Delta, \varphi(z)$ satisfies all the conditions of $\S 2$ with respect to Δ. Moreover, the second derivative of $\varphi(\zeta)$ at any point ζ within or on Δ, taken in the sense of $\S 1$ along a path inside Δ, is $f^{\prime}(\zeta)$ which is bounded. Therefore, by the method of $\S 3$, we can easily prove that $\varphi(z)$ is regular within Δ. Consequently, $f(z)$ is regular within Δ.

We have thus proved that $f(z)$ is regular in a neighbourhood of every point within C, with the possible exception of a non-dense set.

Let r be a closed contour formed by an arc of any contour $C_{\lambda}, 0<\lambda<1$, and the straight lines joining the end-points of the are to z_{0}. The set of points within or on \mathfrak{r}, which are not infinite discontinuities of $f^{\prime}(\zeta)$, is open. It can be covered by an enumerable set of closed contours Δ.

Since no boundary point of Δ is an infinite discontinuity of $f^{\prime}(\zeta)$, the function $f(z)$ can be continued analytically outside Δ. We take a point on Δ and draw a closed contour of the same form as Δ, corresponding to this point. We then repeat the same process at the common boundary points of this contour and Δ; and so on. It should be observed that, in this process of analytical continuation, isolated points or unclosed curves of infinite discontinuities of $f^{\prime}(\zeta)$ can not occur. For an endpoint of such a curve will be a singularity of the analytic function $f^{\prime}(z)$ and conse-
quently of $f(z)$; which is untenable, under our hypothesis. Since $f(z)$ is one-valued and bounded within C, we can easily show that $f(z)$ can be represented by a Cauchy's integral formula, at all points in a small neighbourhood of such an end-point, which do not lie on the curve. By the conditions (ii) and (iv) of $\S I$, this integral formula can be proved to be valid also for the points of the curve in the small neighbourhood. Proving thereby that $f(z)$ is regular at all points in this neighbourhood.

So there are two possibilities: either $f(z)$ is regular within \mathfrak{r} or in continuing $f(z)$ outside Δ, we reach a natural boundary of $f(z)$ which is composed of arcs of similar contours C_{λ} and segments of straight lines drawn from z_{0}. We call such a closed contour Δ^{\prime}. Any point of infinite discontinuity of $f^{\prime}(\zeta)$ within or on r, lies on a contour Δ^{\prime}; and the closed domain bounded by \mathfrak{r} is thus covered by an enumerable set of non-overlapping contours Δ^{\prime}.

Moreover, the closed domain bounded by a contour Δ^{\prime} can be divided up into a finite number of contours Δ; and therefore, by $\S 2$, the integral of $f(z)$ round Δ^{\prime} vanishes. Since $f(z)$ is one-valued and bounded, the integrals of $f(z)$ along an arc of C_{λ} or along a segment of a straight line drawn from z_{0}, taken in opposite directions cancel. Consequently, if we exolude the portions of the contours Δ^{\prime} lying outside \mathfrak{x}, the integral of $f(z)$ round \mathfrak{r} vanishes.

Hence, by $\S 4, f(z)$ is regular within C.
Finally, we can remove the restriction on the type of the contour C in two ways: (i) these theorems can be applied to a closed contour C, the inside of which can be divided up into a finite number of sub-domains, such that each sub-domain has a central point, provided that $f(z)$ satisfies all the conditions of these theorems with respect to each sub-domain; and is one-valued and bounded within C; and (ii) the inside of C can be represented conformally ($[2], \S 8.2$) on a domain which is a star with respect to one or more of its interior points.

Lucknow (India).

References

[1]. E. W. Hobson, Theory of functions of a real variable, Vol. I, Cambridge, 1921.
[2]. E. T. Copson, Functions of a complex variable, Oxford, 1935.

