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1. Let  C be a simple closed contour which has a central point  z 0. By  a 'central 

point '  of a simple closed contour, we mean a point within the contour, such tha t  

every radius vector, drawn from it to the contour lies wholly in the closed domain 

bounded by  the contour and intersects it in only one point. 

The existence of a central point z 0 imposes the restriction tha t  the inside of C 

be a star with respect to z 0. Among such star  domains many,  including all convex 

domains, have the required proper ty  for all points %. 

We shall first prove a form of Cauchy's theorem which imposes restrictions, both 

on the form of the contour and on the derivative of the function. We then remove 

these restrictions later on. 

The point of affix 
= z0 + ~ (z - z0), 

when z lies on C; and 0 < 2 < 1, lies on a similar closed contour lying within C and 

having z o as its central point. Call this contour Ca. 

Let  us further suppose tha t  

(i) /(z) is a function of z, which has got a definite finite value at  every point 

of the closed domain  which consists of all the straight lines drawn from z o to the 

contour C; and of all contours Ca, 0_<2__ 1, s a v e  possibly a t  the point Zo; 

(ii) /(z) is one-valued and continuous along every contour Ca, 0_<~_< 1; and 

differentiable along every contour Ca, 0 < ~ t < l ,  at  every point  of Ca; 

(iii) the maximum-modulus  of /(z) on the contour Ca is bounded, when 2 tends 

to zero and also when ~t tends to uni ty;  

(iv) ](z) is continuous along every straight-line joining z o to the contour C, a t  

every point of the straight line; 

(v) /(z) is differentiable along every straight line, joining z 0 to the contour C, 

at  every point of the straight  line, save possibly  a t  one or both of its e n d  points; 
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(vi) the derivative of ] ($), at  any point ~ of the contour CA, is the same whether 

taken along C~ or along the straight line joining ~" to %; 

(vii) the derivative of ]($), at  the point $, taken along the straight line passing 

through ~ and z 0 is uniformly bounded with respect to z and i ,  when z lies on C 

and 1 lies in any closed interval (}-1, t2), 0 < t l  <~2 < 1. 

Then 

f l(z) dz=O. 
C 

Proof. We define the Lebesgue integral of a function /(z), round a simple dosed 

contour C, b y  the relation 

T T 

f f(z) dz= f Re~/(z) dt +i f Im~/(z)dt, 
C t o t, 

where z is a function of a real parameter  t, when z lies on C; and the two integrals 

on the right-hand side are Lebesgue integrals. 

Now, if 21 and 21 + h 1 be any two points in the open interval (0, 1), by the condi- 

tion (vii) there exists a positive number  M, depending only on 21 and h l, such tha t  

[ ] ' (~-)[<M, when  X lies in the closed interval whose end-points are 21 and '~1 ~ - h l '  

1' ($) being the derivative of /(~) along the contour Ca. 

Therefore, by the Fundamental  theorem of the Lebesgue integration, we have 

zo+(~l+h) (z - z  o) 

I ] ( z ~ 1 7 6 1 7 6 1 7 6  = f f(~)d~ <M.1, (A) 

Zo+At(Z Zo) 

when 11+h  lies in the closed interval whose end-points are tj  and t 1+h l ;  and z 

lies on C. The path  of integration is a straight line; and 1 is the greatest distance 

of the point z 0 from C. By the condition (v), we have 

lim ] (% + (11 + h) (z - %)) - [ (z o + 11 (z - zo) ) 
= (z - Zo) 1' (zo + t~  (z  - Zo)) 

h--~O h 

when z lies on C. 

Consequently, applying Lebesgue's convergence theorem to the real and imaginary 

parts of the following integral on the left-hand side, we can easily show tha t  

limh..+O .f [(z~ + (ll + h) ( z - z~  t" (z~ ( z -  z~ f ( z -  z~ ]' (z~ 4- ~l (z-z~ 
C C 

( B )  

where we make h tend to zero through an enumerable sequence. 
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Also, by  the relation (A), we have 

Now, let 

lim fl(Zo+(gl+h)(z-zo))dz= fl(zo+2~(z-zo))dz. 
h~O C 

v/(g)=fg/(zo+g(z-zo))dz, 
C 

(c) 

where 0 < 2 <  l ;  and the left-hand side is a Lebesgue integral. 

Combining (B) and (D), we have 

(21 y, + h) (~,) F 
~v' (2~) = lim ~- ~v = / { / ( z~  + 2 ,  (z - Zo) ) § 2 ,  (z - Zo)/' (z o + ,~, (z - Zo))} dz 

h..-*.O h o,I 

C 

= ~ {/(~) + ( r  zo) I '  (r  d r 
CA, 

where r lies on Ca,. 

But  the inequality [/' (~)[< M holds at all points of Ca,; and /(~) is continuous 

along Ca,, therefore by the Fundamental theorem of the Lebesgue integration, we have 

, 1 f v, (~.,) = ~ -  j { I ( ; )  + (~-~o) r (~-)} d~" 
Ca, 

Ca I 

1 
[(~ - Zo) I (~')]% 21 

= 0 .  

Proving thereby t h a t  the derivative y/(2) of the function y)(2) vanishes, when 

0 <2 < 1. Therefore y}(2) is independent of 2. 

By the conditions (iii) and (iv) and by Lebesgue's convergence theorem, we can 

very easily prove that  yJ(2) is continuous at  the points 2 = 0  and 2 =  1. But ~f(0)is 

zero; and hence 

f/(z) dz=O. 
c 

2. If r and  ra be a pair of corresponding arcs of the contours C and Ca re- 

spectively; and if /(z) satisfy all the conditions of w l, with respect to the similar 
2 -  543809. A c t a  M a t h e m a t i c a .  93. Imprim6 le 7 mai 1955. 
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contours  r~, ~t 1 __2 _< 1; and the segments of s t ra ight  lines drawn f rom z0, which he 

between r and r~,, then  

f I(~) d~=0, 
A 

where A is the closed contour  formed by  r, ra, and the segments of s t ra ight  lines, 

joining the corresponding end-points  of r and  r~,. 

Proof. Let  a and  b be the  end-points  of r ;  and  let 

(~) = f ~ I (Zo + ~ ( z -  zo)) dz, 

where ~t 1 _~ ~t _~ 1. 

Replacing C by  r in (B) and  (C) of w 1, we have 

1 
~' (~) = ~. [(~- Zo) I (~)1,~ 

= (b - Zo) / (z o + ~t (b - Zo) ) - (a - Zo) / (z o + ~t (a - Zo)), 

where ~'1 < ~. < 1. 

In tegra t ing  each side of this relation, between the limits ;t I and 1, we get  

1 1 

(1) - F (~1) = S (b - %) ] (z o § ~t (b - Zo) ) d~t - S (a - z0) / (z o § ~t (a - Zo) ) d~ 

b a 

= I11 lez- I1(z)dz,  
bl a .  

where a 1 and b 1 are the  end-points  of r~,; and the last two integrals are taken  along 

segments of s traight  lines drawn f rom z 0. 

Hence we have 
b a 

A ~ b,  r,~ I a l  

~ O .  

3. If  a funct ion [(z) satisfy all the condi t ions .of  w 1, with respect  to  a simple 

closed contour  C; and if e be any  point  within C other  than  the central  point  z 0, then 

1 f /(z) dz 1 (~) = ~ ~_---~' 
C. 

where 1(~) is the value of /(z), at  the  poin t  ~, as defined in w 1. 

Proof.  Let  us suppose t h a t  the point  ~ lies on a similar contour  C~.. 

the following figure: 

Consider 
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Z! 

( I' 
Let L'  and L"  denote the arcs of Cr and Cr, respectively, which join ~ to ~ ;  and 

~'[' to ~'2'; and let r '  and 1:" denote the remaining portions of Cr and Ca,. respec- 

tively. Let  R 1 and R 2 be ,t.he segments of straight lines joining ~ to ~'1' and ~s to ~' ,  

respectively. 

Now, if F (z )=  ] ( z ) - / ( ~ ) ,  by w 2, we have 

Therefore 

f ~'(z)d:- f~(z)dz= f F(z)dz- f F(z),~: 
r I:" R~ R~ 

f F (z) dz - f F (z) dz = f F  (z) dz, (D) 
cx,, c r a 

where A denotes the closed contour formed by L', L",  R 1 and R~. 

Let  A, A1, As, ... An . . . .  be a sequence of closed contours, each contained ill 

its predecessor, such that  every one of them contains ~; and is formed by the arcs 

of similar contours C~; and the segments of straight lines drawn from %. Let  us 

assume that  the second derivative of ] ($) exists along every contour of the sequence 

A, A1, A~ . . . .  , at every point of it;  and is uniformly bounded with respect to z and 4, 

when z lies on an arc of C joining z I and z2; and ~[ lies in the closed interval (~', ,~"). 

Integrating by parts, we have 

f F(z) d z =  [{l (z) - / ( a )  - (z - a ) / '  (z)} log (z - a)]~ + f  l"  (z) {(z - a) log (z - ~) - (z - a)} dz. 
A A 

In  the last equation, the integrated part  becomes 

2 zt,; [! (z) - I (~) - (z - ~) l '  (z)],,. 

Here the second term in the bracket tends to zero, since [' (z) is bounded. 

The first term tends to zero if, in evaluating the variation of the integrated part ,  

the initial point of A is taken to be a point where the contour Ca, or the straight 
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line through z 0 and ~ cuts A. This is possible because the second integral in the 

equation tends to zero independently of the initial point, in virtue of the hypo- 

thesis on /"  (z). 

W e  have thus shown tha t  

f F(z) dz~O, (E) 
A 

when we make z 1 tend to zz; and each of 2' and 2" tend to 21, by  taking the 

sequence of contours A, A1, A~ . . . . .  

Now, by  the method of w 1, we can prove tha t  the function 

(2) = f 2 F (z o + 2 (z - z0)) d z 
c 

is independent of 2, when 0-<2 <21; and also when 21 <2-< 1. But,  by  (D) and (E), 

~(2) is continuous for 2=21;  therefore y)(2) is constant in the closed interval (0, 1). 

Proving thereby tha t  

~(1)= f l(z)-l(~) 
c 

Hence 

f 
C 

We can easily deduce from this formula tha t  

f /(z)dz 
1" (~) = ~ ( z -  ~)~+'" 

C 

when [ n (~) is the nth derivative of /(z) at  ~; and this derivative is independent of 

the pa th  along which it is taken.  

We, now, prove tha t  it is unnecessary to assume the existence and the uniform 

boundedness of the second derivative of /(z). 
Z 

Let q)(z)=f/(z)dz,  where [(z) satisfies all the conditions of w 1 with respect 
Zl 

to C; and the pa th  of integration is the straight line joining z 0 and z. I f  ~1 and ~2 

be any  pair of points lying on a contour Ca, by  w 2, we have 

r 

f/ c)dr 
l i r a  r (~ s )  - r (~1)  ___ l i r a  -r 

= 1(~',), 
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where the integral on the right-hand side is taken along an arc of CA, whose end- 

points are ~1 and $2. Therefore, the function ~ (z) satisfies all the conditions of w 1. 

The second derivative ~"  ($) of ~(~) at any point $ of the contour CA, exists along 

CA; and is equal to its second derivative along the straight line passing through 

and %. Since ~"  ($) = / '  (~), ~" ($) is uniformly bounded with respect to z and 2, when z 

lies on C; and 2 lies in any closed interval (21, 2e), 0 <21 <~2 < 1. 

Consequently, if a lies within CA, 0 <2  < 1,  we have 

1 f cf(z) dz 
~'(~)=~ (z-~)~' 

c A 

where ~' (~r denotes the derivative of ~(z), at the point ~. Proving thereby that  

1 f ](z)dz / (o:) = ~-~ z~ ~ 
c~ 

Hence, making 2 tend to unity, we have 

1 f!(z)dz 1(~)= ~ -~-~ 
C 

Corollary l ,  If [(z) satisfies all the conditions of w l, with respect to a simple 

closed contour C which has a central point %; and if l(z) has got the value 1(%) 
at the point %, then 

and 

1 f l(z)dz 
c 

[n [ (z) dz 
/~(z0)= ~ f (Z_Zo)~+l, 

C 

where [n (%) denotes the nth derivative of [ (z) at the point z o taken along any path. 

Proof. If ~r be any point within C other than Zo, then by w 3, we have 

1 f l ( z ) d z  
1(~) = ~ z - ~  " 

c 

Now, making ~ tend to z 0, along the straight line passing through ~ and z 0, we 

obtain the first formula; and the second formula is easily deducible from this. 

Corollary 2. If f(z) satisfies all the conditions of w l, with respect to a simple 

closed contour C which has a central point z0, then /(z) is an analytic function of z, 

regular within C. 
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4. Le t  us suppose t h a t  a funct ion /(z) satisfies the  following c o n a m o n s :  

(i) /(z) is cont inuous along every  s t ra ight  line joining any  point  z of a simple 

closed contour  C to its central  point  z 0, a t  every  point  of the  s t ra ight  line, save 

possibly a t  its end-point  z; 

(ii) /(z) is one-valued and  cont inuous along every  similar contour  Ca; 

(iii) the  integral  of /(z), round  every  contour  formed b y  an arc of any  contour  

Ca and  the s t ra ight  lines joining the  end-points  of the arc to %, vanishes;  

(iv) the m a x i m u m - m o d u l u s  of ]($) on Ca is bounded  in every  closed interval  

(21, 22) , where 0 < ~t 1 < 2 2 < 1. Then  / (z) is regular  within C. 

Proof.  Le t  ~0(z) be a funct ion of z, defined by  the relation 

z 

rp(z)= f ](z) dz, 
Zo 

where the pa th  of in tegrat ion is the s t ra ight  line joining z o and z. 

B y  hypothesis ,  we can easily show t h a t  the  funct ion ~ ( z ) i s  one-valued and 

cont inuous along every  similar contour  Ca; and  also along every  s t ra ight  line joining 

z 0 to any  point  z of the  contour  Ca. 

Also, if z I and  z 2 be any  two points  of a contour  Ca, then,  by  hypothesis ,  we have  

z2 

f [(z) dz 
( z 2 )  - q~ ( z ~ )  _ z ,  

Z 2 - -  Z 1 Z 2 - -  Z 1 

where the  integral  on the r igh t -hand  side is t aken  along an arc of Ca whose end- 

points  are z I and z 2. 

Consequently,  we have  

~0' (zl) = l im ~ (z2) - ~0 (zl) / (zl)" 
zz.-.~ z~ Z 2 - -  Z 1 

Proving  the reby  t h a t  the  der iva t ive  of ~0(z) a t  any  point  z of the  contour  Ca, exists 

along Ca; and is equal  to its der iva t ive  a t  the  same point,  t aken  along the s t ra ight  

line passing th rough  % and z. 

Moreover,  b y  the  condit ion (iv), the  m a x i m u m - m o d u l u s  of this  der iva t ive  on Ca is 

bounded  in every  closed interval  (2j, 22), 0 < 21 < 23 < 1. 

We have  thus  shown t h a t  /(z) satisfies all the  conditions of w 1, with respect  

to  C. Hence,  b y  Corollary 2, / ( z ) i s  regular  within C. 
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5. If  [(z) satisfies all the  conditions oi w 1~ except  (vii), and  if /(z) is bounded  

in the open domain  enclosed by  C, then  

$/(z)  dz=O. 
C 

Proof.  Le t  2 and 2 + h~ be any  two points  of the  open in terval  (0, 1); and  let 

z be a funct ion of a real p a r a m e t e r  t, t 0_< t_< T, when z lies on C. 

Consider the  funct ion 

/ (z0 + (2 + h~) (z - z0)) - / (z0 + 2 (z - z0)) I. (2, ~n t) 
h~ I 

The funct ion q~n (2, t) m a y  be expressed b y  ~ (2, t, ~]), a funct ion of the three  vari-  

1 
ables 2, t, 9, where 9 = - .  The funct ion ~ (2, t, ~) is in the first instance defined only 

n 

for values of 9, of the  form 1,  bu t  it m a y  be ex tended  to the case in which ~/has  
n 

all values in the in terval  0 < ~ <  1, b y  such a rule as tha t ,  when ~ is in the  in te rva l  

n + l '  ' 

1 1 

( n 
v(2,  t , ~ ) = ~  2, t, + 1 1 

n n + l  

The  funct ion r (2, t, 9), so defined for the three-dimensional  set of points  0 < 2 < 1, 

t 0~< t ~ T and  0 < 9 _ < 1  is, everywhere  cont inuous with respect  to each variable.  

Therefore,  b y  a theorem of Baire ([1], p. 422, ex. 2) there  mus t  be points  in every  domain  

lying in the plane ~ = 0, a t  which v (2, t, 9) is cont inuous wi th  respect  to (2, t, 9); and there-  

fore with respect  to (2, t). Consequent ly  [ / ' (% + 2 ( z -  z0))l, which is lim r (2, t, ~), is 
9-->0 

point-wise discontinuous with respect  to (2, t). I t  follows t h a t  the points  of infinite 

discont inui ty  of the der iva t ive  / '  (~') of /(~') a t  any  point  ~ of the contour  C~, t aken  

along C~, form a set which is non-dense in the open domain  bounded  by  the  con- 

tour  C. 

Now, if a be any  point  within C, which is not  an infinite discont inui ty  o f / !  (~), 

there exists a closed contour  A of the same form as t ha t  of w 2, such t h a t  no 

point  of infinite discont inui ty  of /'(~) lies within or on it;  and  a is an inter ior  

point  of it. 
z 

Let  q J ( z ) = f / ( z ) d z ,  where b is a fixed point  wi thin  A, z is any  point  wi thin  
b 

or on it;  and  the integral  is t aken  a long  a pa th  which consists of two par t s :  (i) the  
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segment  of the s traight  line d rawn from z 0 through b, joining b to the point  z 1 where 

this s t ra ight  line intersects the contour  C~ on which z lies; and (ii) the arc of the 

contour  C~., lying inside A, whose end-points  are z and z 1. 

If  ~1 and ~ be any  two points  within or on A, lying on the same straight  line 

through %, then by  w 2, we have 

/ / (~) d~ 

lim r (~2 )  - r (~1)  _ lim " 

= 1 ( $ ~ ) ,  

where the integral on the r ight -hand side is taken along the s t ra ight  line. 

Also, if ~1 and ~2 lie on the same contour  Cz, by  the definition of T(z), we have 

lim ~ ($2 )  - ~ (~1)  _ l i m  c, 

= / ( $ 1 ) ,  

where the pa th  of integrat ion is an arc of CA. 

Since /(z)" is bounded in the closed domain enclosed by  A, ~(z) satisfies all the 

conditions of .~ 2 with respect to  A. Moreover, the second derivat ive of ~ ( $ ) a t  

any  point  $ within or on A, taken  in the  sense of w 1 along a pa th  inside A, is 

/ '  ($) which is bounded.  Therefore, by  the method  of w 3, we can easily prove tha t  

(z) is regular within A. Consequently,  /(z) is regular wi thin  A. 

We have thus  proved t h a t  /(z) is regular  in a neighbourhood of every point  

within C, with the possible exception of a non-dense set. 

Le t  r be a closed contour  formed by  an arc of any  contour  Ca, 0 < ~ t <  1, and 

the s traight  lines joining the end-points  of the arc to %. The set of points within 

or on r, which are not  infinite discontinuities of / '  ($), is open. I t  can be covered by  

an enumerable set of closed contours  A. 

Since no boundary  point  of A is an infinite discontinui ty of ] '  (~), the funct ion 

/(z) can be continued analyt ical ly  outside A. We take a point  on A and draw a 

closed contour  of the same form as A, corresponding to this point.  We then repeat  

the same process at  the common boundary  points  of this contour  and A ; a n d  so on. 

I t  .should be observed that ,  in this process of analyt ical  continuation,  isolated points  

or unclosed curves of infinite discontinuities of / '(~) can not  occur. For  an end- 

point  of such a curve will be a singulari ty of the analyt ic  funct ion / '  (z) and conse- 
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quently of /(z); which is untenable~ under our hypothesis. Since /(z) is one-valued 

and bounded within C, we can easily show that  /(z) can be represented by a Cauchy's 

integral formula, at all points in a small neighbourhood of such an end-point, which 

do not lie on the curve. By the conditions (ii) and (iv) of w 1, this integral for- 

mula can be proved to be valid also for the  points of the curve in the small neigh- 

bourhood. Proving thereby that  [(z) is regular at all lcoints in this neighbourhood. 

So there are two possibilities: either f(z) is regular within r or in continuing 

/(z) outside A, we  reach a natural boundary of /(z) which is composed of arcs of 

similar contours C~ and segments of straight lines drawn from %. We call such a 

closed contour A'. Any point of infinite discontinuity of / '  ($) within or on r, lies 

on a contour A';  and the closed domain bounded by r is thus covered by an enu- 

merable set of non-overlapping contours A'. 

Moreover, the closed domain bounded by a contour A' can be divided up into 

a finite number of contours A; and therefore, by w 2, the integral of / ( z ) r o u n d  

A' vanishes. Since /(z) is one-valued and bounded, the integrals of / (z)a long an arc 

of C~ or along a segment of a straight line drawn from %, taken in opposite direc- 

tions cancel. Consequently, if we e xVlnde the portions of the contours A' lying out- 

side r, the integral of /(z) round r vanishes. 

Hence, by w 4, /(z) is regular within C. 

Finally) we can remove the restriction on the type of the contour C in two 

ways: (i) these theorems can be applied to a closed contour C, the inside of which 

can be divided up into a finite number of sub-domains, such that  each sub-domain 

has a central point, provided that /(z) satisfies all the conditions of these theorems 

with respect to each sub-domain; and is one-valued and bounded within C; and (ii) the 

inside of C can be represented conformally ([2], w 8.2) on a domain which is a star 

with respect to one or more of its interior points. 

Lucknow (India). 
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