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t .  Professor Boas recently suggested the following problem in a letter: 

For what integer-valued sequences {t (n)}, n =0,  _+_ 1, -4-2 . . . . .  is it true that 

is a Fourier series whenever 

oO 

a (t (n))  e ~n~ 
- - o 0  

is a Fourier series? 

~. a ( n )  e ~"a 
- - o 0  

Theorem I of the present paper contains the solution of this problem, and leads 

to a complete description of all automorphisms and endomorphisms of the group 

algebra of the unit circle, i.e., the algebra whose members axe the Lebesgne inte- 

grable complex-valued functions on the unit circle, with convolution as multiplication. 

The algebra of all bounded complex Borel measures on the circle is also discussed 

from this standpoint. 

Boas' question was prompted by the following theorem recently obtained by 

Leibenson [7] and Kahane [6] (the latter removed the differentiability conditions im- 

posed on w by the former): 

The only real /unctions w which have the property t h ~  / (e tw(~ has an absolutely 

convergent Fourier series whenever the Fourier series o/ / ( e  ~~ converges absolutely, are 

o/ the /orm w ( 0 ) = n  0 + r162 where n is an i n ~ e r  and ~ a real number. 



4 0  WALTER RUDII~ 

The basic "reason" for the contrast between the simplicity of this result and 

the rather complicated Theorem I of the present paper seems to be the fact that  

the circle group is connected, whereas the additive group of the integers is discrete. 

This point is further illustrated by the following result of Beurling and Helson: 

I /  G is a locally compact abelian group with connected dual group and i/ T is an 

automorphism o/ the ,group algebra L (G), then T is given by the formula 

( T f ) ( x ) = k . y ( x ) . f ( r ( x ) )  (xeG,  / e L(G)), (1.1) 

where y is a continuous character o/ G, ~ is a topological automorphism of G, .and k 

is a positive number which compensates for the change in Haar measure caused by ~. 

This theorem is not  explicitly stated by Beurling and Hclson, but  is an easy 

consequence of the second theorem of [1] and the first two paragraphs of [2]. Since 

the present paper is primarily devoted to the group algebra of the circle group C, 

we omit the details. 

Thus L(G) admits only the trivial automorphisms (1.1) if the dual of G is con- 

nected, whereas L (C) admits the much larger variety of automorphisms described 

toward the end of this paper. 

2. This paragraph is devoted to a quick review of some of the principal facts 

concerning Fourier and Fourier-Stieltjes series, measures, and convolutions, which will 

be needed later. By the circle group C we mean the set of all complex numbers of 

absolute value 1, with multiplication as group operation. The additive group of all 

integers will be denoted by J.  Instead of writing e i~ etc., for the elements of C, 

we shall use the letters x, y, z; instead of Lebesgue measure on C we shall use the 

Haar measure m (E) (which is nothing but  the Lebesgue measure of E, divided by 

270; this simplifies the formalism. L(C)  is the set of all complex functions on C 

which are integrable with respect to Haar  measure; with convolution defined by 

(l~g) (x) = S 1 (xY -1) g (Y) d m  (y) (2.1) 
C 

and norm 

II/ll= II( )ldm(x), 

L(C)  is a commutative Banach algebra. The 

coefficients) of a function / E L  (C) are given by  

a ( n ) =  S x - n / ( x )  dm(x )  
c 

(2.2) 

Fourier coefficients (or simply the 

(n E J); (2.3) 
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/ (z) ~ ~ a (n) z n (2.4) 
n ~ J  

is equivalent  to  (2.3). Wi th  these definitions the  coefficients o f / ~ g  are  the p roduc t s  

of the coefficients of / and g. 

By  a measure we mean a countab ly  addi t ive bounded complex-valued set func- 

t ion defined for all Borel subsets of C; M (C) is the set of all measures. Wi th  the 

norm I1#]1 of /~ defined as the to ta l  var ia t ion of # on C and convolut ion of two 

measures # and ~t given by  

(~-)e ,~) (E) = .f # (E y -1) 42  (y) (2.5) 
C 

(where E y  -~ is the set of all elements x y  -1 with x E E ) ,  M ( C )  is a commuta t ive  

Banach algebra; for the  details of this, see for instance [11]. The measure which is 

concentra ted  at  the point  x = 1 and which assigns the  value 1 to  t h a t  point  is the  

uni t  element of M(C) .  The coefficients of a measure # are the numbers  

a ( n ) =  S x - n d l ~ ( x )  (n EJ) ;  (2.6) 
C 

the Fourier-Stieltjes series of # is 

d/~(z),,, ~. a(n)  z n, (2.7) 
n E J  

with a (n) given by  (2.6). 

t ion of coefficients. 

For  every # E M (C) there is a unique decomposi t ion 

Again, convolut ion of measures corresponds to multiplica- 

lul (E) = S/(x) din(x). (2.9) 
E 

where #1 is discrete (i.e., /~1 is concentra ted  on an a t  mos t  countable set of points),  

#2 is absolutely continuous with respect to  H a a r  measure, and #a is singular (i.e., 

continuous,  bu t  concentra ted  on a set of H a a r  measure zero). F r o m  (2.5) it follows 

immedia te ly  t h a t  if one factor  of a convolut ion is continuous or absolutely continuous,  

then the same is t rue of the convolution;  the convolut ion of two discrete measures 

is discrete. 

Wi th  every ] E L  (C) there is associated a measure 

# =/~1 +f12 +/~a (2.8) 
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This formula furnishes an isometric isomorphism of L(C) onto the set of all abso- 

lutely continuous measures and the identification of / with #r allows us to consider 

L(C) as a closed ideal of M (C). 

3. Besides the well-known facts outlined in the preceding section, the following 

will be used several times in our investigation ([3]; see also [4]): 

H E L S O ~ ' S  TH]~OREM. I /  ~ E M ( C )  and i/ the coe//icients o/ # have only a 

/inite number o~ distinct values, then la = a +  v, where a is a discrete measure whose 

coe//icients /orm a periodic sequence, and ~ has only /initely many coe//icients di//erent 

/tom zero. 

Conversely, it is easy to see tha t  every periodic sequence of complex numbers,  

with period p, is the sequence of Fourier-Stieltjes coefficients of a discrete measure, 

concentrated a t  the pth  roots of unity. 

A set S c J is said to be periodic if, for some p > 0, n E S if and only if n + p E S. 

A set N c J will be called a P-set  if N can be made periodic by  adding or deleting 

a finite number  of elements. 

With this terminology, Helsons's theorem furnishes the following characterization 

of the idempotent  measures (i.e., those measures which satisfy the equation # ~ u  =# ) ,  

since their coefficients are all 0 or 1: 

A trigonometric series ~ a(n)z  n is the Fourier.Stieltjes series o/ an idempotent 

measure i/ and only i/ there ks a P-set N such that 

a(n)  = ( ;  i/ n E N ,  
otherwise. 

On the other hand, this characterization of the idempotent measures immediately 

implies Helson's theorem. The extension of this result to arbi t rary compact abelian 

groups would be a major  step toward a complete description of the automorphisms 

and endomorphisms of their group algebras. 

4. In  order not to interrupt  the main argument,  we insert here a measure- 

theoretic lemma which depends on the theory of analytic sets [9]. 

L EMMA. Let / be a complex-valued Borel measurable /unction on the topological 

product C• C, and suppose that /or each x EC there is an at most countable set A x c  C 

such that / (x ,  y ) = 0  i/ y~A~.  I /  
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g(x)= 5 /(x, y) (xec) ,  
Y e A  x 

the series converging absolutely /or each x, then g is Lebesgue measurable. 

43 

I t  is easy to see that  

Q (n x . . . . .  nk) = W,, n ... n w ,~ .  

Ek = (J Q (n 1 . . . . .  nk), 

the union being taken over all k-tuples subject to the above condition. Since this 

a countable union, Ek is Lebesgue measurable. 

Thus the lemma is true if ] is the characteristic function of a Borel set, hence 

if / is a simple function (i.e., one with a finite set of values), then if / is real and 

non-negative (since ] is then the pointwise limit of an increasing sequence of simple 

functions), and the general case follows by noting tha t  

] = f ~ - f ~ + i f a - i / 4  with f~_>0 ( n = l ,  2, 3, 4). 

REMARK. The proof shows that  the hypothesis of the lemma can be weakened 

and the conclusion strengthened by replacing Borel and Lebesgue measurability, re- 

spectively, by measurability with respect to the analytic sets. However, the state- 

ment of the lemma becomes false if "Borel"  is replaced by "Lebesgue" in the hypo- 

thesis or if "Lebesgue" is replaced by "Borel"  in the conclusion. 

5. THE PRINCIPAL THEOREM. Let  N be a subset of J and let t be a 

mapping of N into J.  We say that  t carries L (C) into L (C) if "the series 

a(t  (n)) z n (5.1) 
n ~ N  

To prove this, assume first tha t  the only two values of / are 0 and 1, let E 

be the set of all points (x, y) at which /(x,  y ) =  1, and, for every positive integer k, 

let Ek be the set of all xEC at which g(x)_>k. Since g(x) is, in this case, nothing 

but  the number of points in Ax, the Lebesgue measurability of g will be established 

if it is proved tha t  every E~ is Lebesgue measurable. 

To this end, fix k and let (Fn}, n = l ,  2, 3, . . . ,  be a countable base for CxC.  

Let  Wn be the set of all xEC such tha t  (x ,y)  E E N V n  for some y e C .  Then W~ is 

Lebesgue measurable (since projections of Borel sets are analytic sets ([9], p. 144) 

and the latter are Lebesgue measurable ([9], p. 152)). 

For any choice of positive integers n 1 . . . . .  n~ such that  the open sets V~ 

(i = 1 . . . . .  k) are pairwise disjoint, put  
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is a Fourier series 1 whenever the series 

~. a (n) z" (5.2) 
n ~ J  

is a Fourier series. 

T ~ E O R E ~  I. Let t be a mapping o/ N into J, with N ~  J. Then t carries L(C) 

into L (C) i/ and only i/ the /ollowing conditions are satisfied: 

A: N is a P-set. 

B: There is a mapping s o~ J into J and a positive integer q such that 

B I :  t ( n ) = s ( n )  /or all h E N ,  except possibly on a finite subset o/ N; 

B2: /or every n E J ,  s ( n + q ) + s ( n - q ) = 2 s ( n ) ;  

B3: /or every hE J,  s ( n + q ) # s ( n ) .  

The special case N = J  answer Boas'  question. 

6.  P R O O F  T H A T  T H E  C O N D I T I O N S  A R E  N E C E S S A R Y .  This proof is ra ther  

long and will be broken up into several steps. We assume now tha t  t carries L(C) 

into L (C). 

STEP 1. Extend t to a mapping o/ J into J by defining t ( n ) = n  i/ n ~ N .  Let 

otherwise. 

For every x E C there is then a measure vx such that 

alex(z)~ ~ ~(n) x"n)z ~. 
nEJ  

These measures are bounded in norm. 

(6.1) 

For every / E L (C) with Fourier series (5.2) there is a function T / E L (C) with 

Fourier series (5.1). The coefficients of T /  are accordingly given by 

.[ x -n (T /) (x) dm (x) = y) (n) a (t (n)) = y) (n) S x-t(n) / (x) dm (x). 
C C 

Qn(=,x)= ~ [l-Ikll ~, k=- .  n +  lJ  ~(k) (k)z k, 

Putt ing 

the Ces~ro means of the Fourier series of T /  are therefore 

1 This  means ,  of course, t h a t  there  is a func t ion  in  L (C) whose  n t h  Fou r i e r  coeff ic ient  is  0 if 

nSN a n d  is a(t(n)) if nfiN. 
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a.  (T/;  z) = ~ / (x) Q~ (z, X -1) d m  (X) 
C 

(n = 0 ,  1, 2 . . . .  ). 

Suppose the funct ions 

yn (x) = ~ {Qn (z, x-1) ldm (z) 
C 

( n = 0 ,  1 , 2  ... .  ; x E C )  

are not  un i formly  bounded.  Then  there  exist  sets  E ,  c C such t h a t  the  funct ions 

h~(x )=  ~ Q,(z ,  x'l)dm(z) 
E n  

are not  un i formly  bounded,  and  by  the  Banach-Ste inhaus  theorem there  is a func- 

t ion / E L ( C )  for which 

as (T/ ;  z) d m (z) = S / (x) h ,  (x) d m (x) 
E n C 

is unbounded  as n - - > ~ .  This  implies t h a t  for this par t icular  / 

(T/; z)ldm(z) 
C 

is unbounded ,  contradic t ing  the  fact  t ha t  T / E L ( C )  [13, p. 84]. 

is a cons tan t  K such t h a t  

S I Q ~ ( z , x ) I d m ( z ) < g  (n=O, 1 ,2  . . . .  ; x E C ) .  
C 

Consequent ly  there  

Observing t h a t  Q, (z, x) is the  n t h  Cess mean  of the series (6.1), the assert ions of 

Step 1 follow ([13], p. 79), with {{v~{{_<K for  all xEC.  

S T E P 2. The set N satis/ies condition A o/ the theorem. 

Taking  x =  1 in (6.1), we see t h a t  {yJ (n)} is a sequence of Fourier-St iel t jes  coef- 

ficients of an i dempo ten t  measure .  The  definit ion of y ( n )  now shows t h a t  N is 

a P-se t .  

S T E P  3. I /  t is extended as in Step 1, then the extended mapping also carries 

JL (C) into L (C), and /or every x EC there is a measure /Lx such that 

d/~x (z) % ~ xt(~)z". (6.2) 
n e J  

These measures are bounded in norm. 

Taking  x = l  in (6.1), we see t h a t  

[1 - v' (n)] z" 
nEJ 

is a Fourier-St iel t jes  series. Hence,  if (5.2) is a Fourier  series, s o  is 
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[ 1 - - v ( n ) ] a ( n ) z  n= ~ a( t (n))z  n; 
n e J  h e n  

adding this to  (5.1), we conclude t h a t  

~. a (t (n)) z n 
r teJ 

is a Fourier  series. We can now app ly  Step 1 with N = J ,  and  Step 3 follows. 

S T E P  4. The measures tzx o{ Step 3 saHs{y the equation 

/z~ ~ /zy  =/ tzy (x 6 C, y 6 C). (6.3) 

I /  2x is the discrete part o/ /uz, then we also have 

]tx ~ ]t~ = 2zu (x 6 C, y 6 C). (6.4) 

Since convolut ion of measures  corresponds to  mult ipl icat ion of coefficients, (6.3) 

is an immedia te  consequence of (6.2); and  (6.4) follows f rom (6.3) by  equat ing  the  

discrete pa r t s  on bo th  sides of (6.3). 

S T E P  5. There is a mapping s o/ J into J such that 

d 2x (z),,, ~ x~(~) zn. (6.5) 
nEJ  

Let  the coefficients of 2~ be denoted  b y  c, (x); we compute  c, (x) in t e rms  of 

the  coefficients of /~x: for 0 < r < l ,  let  

x t(.)z "r  1.1= f 1 - r  ~ ql x (r, Z)  ~j~ ~ 1 - 2 r R e  (zy -1) + r ~ d bt~ (y)' 
C 

where Re  (z) denotes  the  tea] p a r t  of z, and  pu t  

1 - r  
/ (x, z) = l im ~ Ux (r, z) (x s C, z s C). 

r-~l 

F r o m  the Poisson integral  representa t ion  of u~ it  follows easily t h a t  / (x ,  z) is equal  

to  the mass  which /ux assigns to  the  set  consisting of the  single point  z, so t h a t  

.~Jl(x, ~)1< oo (x~c), 

and 

c .  (x) = j" z -  ~ d ~ (z) = ~ z -"  1 (x, z).  
C zeC 

Since / (x, z) is the pointwise limit of a sequence of continuous functions on C x C, 

the lemma of section 4 is applicable and shows that the functions cn are Lebesgue 
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measurable. From (6.4) we infer tha t  

cn (x) cn (y) =en (xy) (xEC, yEC). (6.6) 

Now it is well known ([10], p. 479) tha t  the only Lebesgue measurable solu- 

tions of 

g(O) g(q))=g(O+q)) (0, ~b real) 

which are not  identically zero are of the form 

g (0) = e (~+~)~ (~, fl real). 

I f  g is to have period 2g ,  then :r f lEJ .  

Since X1=/~1 (the unit of M(C)), we see tha t  e n ( 1 ) = l ,  and we conclude tha t  

for each n E J  there is an s(n)EJ such tha t  c=(x)=x s(~). This completes Step 5. 

S TEe 6. The mapping s o/ Step 5 satis/ies condition B 2. 

Since 2, is a discrete measure, the integral 

xs(n)= ~ z-'~ d 2x (z) 
C 

reduces, for each fixed x E C, to a series of characters of J which converges absolutely 

and uniformly on J .  Hence x ' ( ' )  is, for each x, an almost periodic function on J 

([10], p. 448). Every  infinite set of translates of an almost periodic function con- 

tains a uniformly convergent subsequence; all we need here is tha t  for each x EC 

there is a positive integer kx such tha t  

Ix*(~)-x'(~+kx)l < 1 (nEJ) .  

I t  follows tha t  there exists a positive integer ]c and a set E c C with m ( E ) > 0 ,  

such tha t  

[xS(~)- x'(~+k)] < 1 (nEJ, xEE). 

Putt ing b (n) = s (n + k) - s (n), this becomes 

[1-x~ < 1 (hE J, xEE). (6.7) 

I f  {b(n)} were unbounded, then the sequence {x ~ would be dense on C, for almost 

every x ([12], p. 344); by  (6.7) this is false for every xEE; hence {b(n)} is bounded. 

Since {x s(n+k)} and {x -~(~)} are sequences of Fourier-Stieltjes coefficients of dis- 

crete measures, so is their product  {xb(n)}. Helson's theorem now tells us tha t  {x b(n)} 

is a periodic sequence, for every x E C. Considering an x EC which is not a root of 

unity, we conclude tha t  {b(n)} is periodic; i.e., b (n + p ) =  b (n) for some positive in- 

teger p and every n E J .  
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The definition of b (n) shows tha t  

p--1 

s ( n + k p ) - s ( n ) =  ~ [ s ( n + ( j +  l ) k ) - s ( n + j k ) ]  

p - 1  

= Z b ( n + ] k ) ,  

and similarly tha t  
p - 1  

s ( n ) - s ( n - k p ) =  ~ b ( n - k p + j k ) .  
1=0 

Since p is a period of (b(n)~, these last two expressions are equal. Put t ing q = k p  

we thus obtain condition B 2: 

s ( n  + q)  - s ( n )  = s ( n )  - s ( n  - q) .  

STEP 7. For every xEC,  put 

Since ,~ - / ~  is a continuous measure, so is 7:x. Putting r (n) = t (n) - s (n), (6.2) and 

(6.5) imply 

d ~ (z )  ~ ~ [1 - x T (~)] z ~. ( 6 . 8 )  
n e J  

This is obvious. 

STEP 8. The sequence (r(n)} has at most a /inite number o/ terms di//erent /rom 

zero; this implies that condition B 1 holds. 

For every continuous complex function g on C the integral 

f g (z) d ~ (z) 
c 

is a continuous function of x; if g is a trigonometric polynomial, this follows from 

the fact tha t  the coefficients of v~ are continuous functions of x, and the general 

case follows if we approximate  g uniformly by  trigonometric polynomials and note 

tha t  [[~U is bounded. 

For any open set E c  C, the total  variation ]vx[(E) of Tx on E is given by 

Iv. l (E) = sup ] f g (z) d ~ (z) l, 
C 

where the supremum is taken over all continuous functions g which vanish outside 

E and are bounded by  1 in absolute value. Being the supremum of a collection 

of continuous functions, I vx I(E) is a lower semi-continuous function of x. Taking 

E = C ,  we see tha t  the same is true of H v~[[. 
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For any closed set F c C with complement E we have 

II II-I  l (E), 
so that  [vx[(F) is the difference of two lower semi-continuous functions of x and is 

there/ore continuous on a dense set o/ type G~ ([5], p. 310). 

Let R be the set of all x EC which are roots of unity. If  y e R ,  (6.8) shows 

that  ~y has only finitely many distinct coefficients, and Helson's theorem, together 

with the continuity of ~ ,  implies that  v~ is absolutely continuous. From (6.8) it 

follows also that  

v ~ * e V z = V y + v z - v ~  (yeC,  zEC), 

so that  v~z and ~z have the same singular part if y ER. 

Suppose now that v~ fails to be absolutely continuous for some z EC. Then 

there is a closed set F with m(F)=O,  such that  

for every y ER. But ] v y ] ( F ) = 0  for every y ER. Since R is dense in C, this means 

that  I vxl(F) is discontinuous at every x EC, a contradiction. 

We conclude that  ~ is absolutely continuous, for every x EC, so that  

lim [1-x~(n)]=O. (6.9) 
I n I ~  

If  {r (n)} were unbounded, (6 .9)would be false for almost all x [12]. Thus {r (n)} 

is bounded. Taking x(~R, (6.9) now shows that  r ( n ) = 0  except possibly for a finite 

set of values of n. 

S TE P 9. The mapping s satis/ies condition B 3. 

The fact that  s satisfies B 2 (proved in Step 6) means that  s is linear on each 

residue class modulo q. Suppose s ( n + q ) = s  (n) ~ for some n; then s is constant on 

some residue class H. If  H N N  is finite, then s ( n ) = n  for all n E H ,  b y B 1  and the 

way in which t was extended. Hence H N N is infinite, so that  for some no E N  we 

have t ( n )=n  o for infinitely many n EN. If  a (no)=~0 in (5.2), the coefficients of (5.1} 

do not tend to 0 as [nl-->~.  This contradiction shows that  B 3 holds. 

The proof of the necessity of the conditions A and B is now complete. 

7 .  P R O O F  T H A T  T H E  C O N D I T I O N S  A R E  S U F F I C I E N T .  S u p p o s e  t h e  c o n -  

d i t i o n s  A and B hold, and extend t to J by defining t ( n ) = s ( n ) i f  n ~ N .  The 

transformation of (5.2) into (5.1) can be considered as the product of three trans- 

formations: 

4--  563801. Acta ~lathematic6. 95. Impr im~  le 6 mars  1956. 
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a (n) z"--> ~ a (s(n)) z ~, (7.1) 
n~3" n e J  

a (s (n)) zn-+ ~ a (t (n)) z ", (7.2) 
he3" n G l  

~. a (t (n)) zn--> ~ a (t (n)) z ~. (7.3) 
n e J  n e N  

Since N is a P-set ,  (7.3) is noth ing  bu t  convolut ion with an idempoten t  mea- 

sure; since B 1 holds, (7.2) changes only  a finite set of coefficients; hence t t ransforms 

L (C) into L (C) if (7.1) t ransforms L(C) into L (C). 

Condition B 2 means t h a t  s is linear on each residue class modulo q; t h a t  is to  

say, there exist integers b I . . . . .  be and  Cl, . . . ,  ca such tha t  

s(kq+i)=kcj+bj (i=1 . . . . .  q ) .  

By B 3 ,  c~*0.  

The second series in (7.1) is therefore the  sum of the q series 

a (k cj + bj) z k q+J (j = 1 . . . . .  q), 
k e l  

(7.4) 

and  it is sufficient to show t h a t  each of these is a Fourier  series if the first series 

in (7.1) is the  Fourier  series of a funct ion /EL(C) .  

To do this, fix j, pu t  bj =b ,  cj =c, and define 

]1 (z) = / (z) z -b N ~. a (n) z n-~. (7.5) 
rtEJ 

Denot ing the I c I dist inct  cth roots  of z by  aT (z), r = 1 . . . . .  [ c I, observe tha t  

Icl5 ~r (Z)~ = { Iclz~ 
r= l  0 

if q ( n - b ) = h c  for some hE J ,  
otherwise, 

and tha t  the funct ion 

1 Icl 

1~ (z) = H T-1 y h (~ (z) ~) 

belongs to  L (C); the Fourier  series of 12 is consequently 

a(q l h c + b ) z  h, 
h c H  

where H is the s e t  of all h EJ such t h a t  q divides h c. 

Let  v be the idempotent  discrete measure defined by  

dr(z) , , ,  ~ z r 
k e l  
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Then if /a =/~ ~ v, we have 

/a(z) "~ ~ a(Icc§ qk. 
kEJ 

Hence (7.4) is a Fourier series. 

This completes the proof of Theorem I. 

8. THEOREM I I .  Let t be a mapping o/ N into J, with N c J .  The /oUowing 

three statements are equivalent: 

(i) t carries L (C) into M (C). 

(if) Conditions A, B 1, B 2  hold. 

(iii) t carries M (C) into M (C). 

The s ta tement  (i) means, of course, tha t  (5.1) is a Fourier-Stieltjes series when- 

ever (5.2) is a Fourier series; (iii) has the obvious analogous meaning. 

Note tha t  Step 1 depended on the fact tha t  the CesEro means of the Fourier 

series of T /  are bounded in the norm of L(C); but  this is equally true for Fourier- 

Stieltjes series ([13], p. 79). Hence if (i) holds, the assertion of Step 1 is still true, 

and the remainder of the proof of Theorem I,  up to and including Step 8, is 

unaffected. Thus (i) implies (if). 

A very slight change in the argument  of Section 7 proves tha t  (if) implies (iii), 

and it is trivial tha t  (iii) implies (i). 

Theorem I I  is proved. 

9. ENDOMORPHISMS AND HOMOMORPHISMS. If  T is a mapping of L(C) 

into L(C) such tha t  

T ( / + g ) =  T / +  Tg 

" T ( : c / ) = ~ T /  (9.1) 

[ T ( / ~ g ) = T / ~  Tg 

for any /, g6L(C) and any complex number  a, then T is an endomorphism of L(C). 

If, for every /6L(C),. we have T / 6 M ( C )  and (9.I) holds, then T is a homomorphism 

of L(C)  into M(C).  An endomorphism of M(C)  is a mapping of M(C)  into M(C)  

which satisfies (9.1). 

We mention in passing tha t  these definitions are purely algebraic and that  no 

continuity assumptions are made. However, if the argument  of Section 7 (slightly 

modified if M (C) is involved) is examined in detail, it will be seen tha t  all map- 

pings T considered in this paper  are actually continuous with respect to the norm 
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topology. This could also be deduced from the general theory of semi-simple com- 

muta t ive  Banach algebras ([8], pp. 76-77). 

I f  the conditions of Theorem I hold, then the operator T which associates with 

a function / whose Fourier series is (5.2) the function T /  whose Fourier series is 

(5.1) is evidently an endomorphism of L (C). We next  prove tha t  there are no other 

endomorphisms of L (C): 

THEOREM I I I .  Every endomorphism T o/ L(C) is o/ the /orm 

a (n) zn-+ ~. a (t (n)) z n, (9.2) 
rtEJ rtEN 

where N and t satis]y the conditions A and B o] Theorem I. 

To prove this, denote the coefficients of T /  by cn (/). For each hE J,  cn is a 

homomorphism of L (C) into the complex field. Let  N be the set of all n for which 

c= is not the zero homomorphism. For each n E N, c~ (/) is then a Fourier coefficient 

of / [[8], p. 136), so tha t  there is an integer t (n) for which 

c~ ( / )=  ~x- t (n ) / (x )dm(x)  (/EL(C),  nEN) .  (9.3) 
C 

That  is to say tha t  T transforms the function / whose Fourier series is (5.2) into 

the function T /  whose Fourier series is (5.1), and Theorem I I I  follows from Theo- 

rem I. 

T H E O R E ~  IV .  I /  T is a homomorphism o/ L(C) into M(C), then T is o/ the 

/orm (9.2), where N and t satis/y the conditions A, B 1, and B 2 o/ Thevrem I. 

Every homomorphism o/ L (C) into M (C) can be extended to an endomorphism o/ 

M (C). This extension is unique i/ and only i/ N =J .  

The proof of the first assertion is precisely the same as the proof of Theorem I I I ,  

except tha t  we replace the reference to Theorem I by a reference to Theorem II .  

Thus T is given by (9.2), with A, B 1, B 2 holding, and Theorem I I  shows tha t  (9.2) 

also induces an endomorphism of M (C); this furnishes one extension of T to M (C). 

To prove the last par t  of Theorem IV we let T be an endomorphism of M (C) 

and investigate the extent  to which T is determined by its action on L (C). The 

restriction of T to L (C) is a homomorphism of L (C) into M (C), and is therefore of 

the form (9.2), with N and t subject to A, B 1 ,  B2 .  

For any  ~uEM (C), denote the coefficients of T~u by cn (ju). Then for every nEJ ,  

cn is a homomorphism of M (C) into the complex field. 

Suppose now tha t  n EN. The restriction of c~ to L(C) is given by (9.3). Thus, 

if # E M  (C) and / E L  (C), we have 



THE GROUP ALGEBRA OF THE UNIT CIRCLE 5 3  

Cn ( / ~  te )  = Cn ( / )  Cn (te)*~ 

since / ~ t e  is absolutely continuous, (9.3) applies, and 

cn ( / ~  #) = ~ x -t(~) d (] ~ te) (x) = cn (/)" .~ x -t(n) dte (x). 
C C 

Choosing an /EL(C)  for which c~(/):~0, we conclude tha t  

c~(te)= .Ix t(~)dte(x) (teEM(C), nEN).  
C 

In  particular, there is only one extension of T from L(C) to M ( C ) i f  N = J .  

Let us now assume tha t  N is a proper subset of J .  Since L(C) is a closed 

ideal of the normed ring M(C), L(C) is contained in at  least one maximal  ideal of 

M(C) ([8], p. 58), so tha t  there exists a homomorphism of M(C) onto the complex 

field which maps L(C) into 0. I f  A is any finite subset of the complement of N, 

the mapping 

a (n) zn--> ~ a (t (n)) z n § ~ hn (te) z n, (9.4) 
n E J  h e N  rtv:A 

where the hn are homomorphisms of the type just described, is an endomorphism 

of M (C). 

This completes the proof of Theorem IV. 

A natural  question to raise at  this point concerns the restrictions one has to 

impose on the homomorphisms h~ if the set A of (9.4) is infinite; the answer would 

provide us with a complete description of the endomorphisms of M (C). The homo- 

morphisms of measure algebras on groups are discussed in [11]. 

i0 .  AUTOMORP~ISMS.  An automorphism is an endomorphism which is one- 

to-one and onto. 

T~ EOR EM  V. I /  t is a one-to-one mapping o/ J onto J which satis/ies condi- 

tion B o/ Theorem I (with N =J),  then the mapping T given by 

a (n) zn-~ ~ a (t (n)) z n (10.1) 
n ~ J  n e ]  

is an automorphism o/ L(C) (and o/ M(C)); every automorphism o /L(C)  (and o[ M (C)) 

is obtained in this manner. 

Our previous results show tha t  (10.1) is an endomorphism of L(C)and  of M(C);  

since t is one-to-one and onto, the inverse mapping of t also satisfies B; it follows 

tha t  T is an automorphism. 
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The second par t  of the theorem can now be proved in several ways, of which 

the following is perhaps the simplest. The continuous characters of C are the only 

idempotents in L (C) and in M (C) which are not sums of two non-zero idempotents.  

Since automorphisms preserve all algebraic properties and since J is the dual group 

of C, every automorphism must  be induced by  a one-to-one mapping of J onto J 

and must  therefore be of the form (10.1). The theorem follows. 

COROLLARY. ~uppose T is an automorphism o/ M(C). 

(i) I/  # is absolutely continuous, so is T~t. 

(ii) I/  # is a continuous measure, so is T #. 

(iii) I/ # has no singular component, then T#  has no singular component. 

Assertion (i) is part  of the s tatement  of Theorem V. A slight change in the 

argument of Section 7 shows tha t  (7.1) carries continuous measures into continuous 

measures and discrete measures into discrete measures (it is again sufficient to con- 

sider the series (7.4)). The transformation (7.2) adds at  most  an absolutely continuous 

component. This proves (ii) and (iii). 

The corollary shows tha t  certain structural properties of measures are invariant  

under every automorphism of M (C). Theorem V exhibits quite a large var iety of 

such automorphisms. The trivial ones (i.e., those which are of the form (1.1)) are 

given by t (n )=c+n and by t ( n ) = c - n ,  where c is constant. To mention just one 

non-trivial case we consider the example 

t ( 3 k ) = 2 k ;  t ( 3 k + l ) = 4 k + l ;  t ( 3 k + 2 ) = 4 k + 3  (kEJ). 

l l .  We conclude with a remark which concerns our method of proof and re- 

strict ourselves for simplicity to the problem of finding the automorphisms. 

I t  is known [2] tha t  every automorphism T of L(C) can be extended to an 

automorphism of M (C). The extended mapping carries idempotents into idempotents,  

so tha t  the mapping t of J onto J which induces T carries P-sets into P-sets. I t  

is tempting to t ry  to deduce from this alone tha t  t satisfies condition B of Theo- 

rem I.  The following example shows tha t  this is impossible. 

Let  E be the set consisting of the integers n! and - n ! ,  and denote the ele- 

ments of E by ks (iEJ), in such a way that  ki_l<ki. Define t (n )=n if nEE, and 

t(k~)=ki_l. Then t is a one-to-one mapping of J onto J which evidently does not 

satisfy condition B. We shall show tha t  the image of every P-set  under t (as well 

as under t -1) is again a P-set.  
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To this end, let H be a residue class (mod p) for some p > 0 .  If  H consists of 

all integers divisible by p then all but a finite number of elements of E are con- 

tained in H. If  H is any other residue class, then H N E is finite. Consequently 

t(H) differs from H by at most a finite number of elements, and is therefore a 

P-set. Now, any periodic set with period p is the union of a finite number of residue 

classes (mod p). This makes it evident that  t (S) is a P-set for every P-set S. 

The assertion concerning t -1 is obtained in the same manner, and implies that  

every P-set is the image, under t, of some P-set. Thus t induces a one-to-one map- 

ping of the set of all idempotent measures onto itself which cannot be extended to 

an automorphism of M(C). 
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