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1. Introduction 

E. Lucas [22] has proved tha t  the diophantine equation 

12+22+ ... + n2 = m  2 

has only the two solutions n = m = l ;  n = 2 4 ,  m = 7 0  (cf. [19]). In  this paper we 

consider the more general equation 

S t ( n )  = I v + 2 v + . . .  + n  v = m  q (1.1) 

where p and q are given positive integers, and positive integral solutions are required. 

Some cases of this equation have been discussed before (see [7], Ch. 1, 23) and a 

very few simple ones solved, but  no general solution has, to our knowledge, been 

attempted. 

A few algebraic properties of S v (n), some of them new, are reviewed in Sec- 

tion 2. Section 3 deals with certain numerical properties of Sv (n) required sub- 

sequently. 

The study of equation (1.1) is divided into two parts. In Section 4 it is con- 

sidered from a general point of view, and it  is proved that ,  for any given choice of 

p, q, the number of solutions is finite, unless one of the following is the case: 

q = l ;  p = 3 ,  q = 2  (trivial cases); p = l ,  q = 2 ;  p = 3 ,  q = 4 ;  p = 5 ,  q = 2  (Theorem 1). 

Also a result concerning the number of solutions is obtained. 

In Sections 5 (cases with q odd) and 6 (q even), the complete determination of 

the solutions is obtained in several cases by means of theorems concerning algebraic 

diophantine equations of several kinds. The cases in which the number of solutions 

is infinite reduce to "Pellian" equations and can be solved completely. For the rest, 

11 - 5 6 3 8 0 1 .  Acta mathematica. 95. I m p r i m 6  le 2 m a i  1956. 
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cases were considered with p ranging from 1 through 11, and with q in several 

classes of numbers. The bulk of the proofs in these sections consists of numerical 

computations, which are only briefly sketched. The results of these sections are 

collected in Section 7 (Theorem 2), and give weight to the conjecture that  the case 

p =q  =2,  mentioned at the beginning of this introduction, is the only case with a 

finite number of solutions that  has a solution other than the trivial n = m  = 1. 

Most of the research was carried out at the Insti tuto de Matem~tica y Esta- 

dlstica, Universidad de la Repfiblica, Montevideo, Uruguay. Some of the results were 

obtained in the course of a seminar at that  University (1951). The author is indebted 

to J.  F. Forteza, who originally suggested this topic, and to Prof. R. Laguardia for his 

guidance and numerous helpful suggestions; he also wishes to thank Profs. Th. Skolem 

and E. Selmer for the suggestions which have led to the final form of this paper. 

2. Algebraic properties of Sp (n) 

S~ (n) may be expressed in terms of Bernoulli polynomials as 

1 
S ,  (n) = ~ (Bv+I (n + 1) - By+ 1 (0)). (2.1) 

(Our notation for Bernoulli polynomials will be that  of N6rlund's paper [25] through- 

out.) 

We now apply some well-known facts concerning Bernoulli polynomials, ([25], 

pp. 127-130), and obtain the following results: 

L~MMA 1. S l ( n ) = n ( n §  /or p~=l we have: 

1 
(i) Sp ( n ) = ~ ) . n ( n +  1 ) ( 2 n +  1) .Pv  (n) 

(2.2) 

1 .n 2(n+l) ~.Pv(n) (ii) Sp (n) = ~  

according as p is (i) even, or (ii) odd; k(p) is an integer selected in such a way that 

Pp (x) be a polynomial with integral coe//icients having no common /actor. This poly- 

nomial satis/ies the /ollowing conditions : 

a) 0, - 1 / 2 ,  - 1  are not roots o/ Pp(x) /or any p. 

b) P r ( x ) = P r ( - 1 - x ) .  

e) P v ( x ) ~ Q p ( x ( x + l ) )  where Qv(y) is a polynomial with integral coeHicients, 

which have no common /actor. 
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PROOF:  A trivial consequence of the properties of Bernoulli polynomials. We 

merely point out tha t  Qp (y) has integral coefficients since the leading coefficient of 

x ( x + l )  is 1. 

We are not concerned with the particular algebraic form of P~ (x), except in 

two cases which we shall presently consider (Lemmas 2 and 5). 

L E M M A  2. For odd p > l ,  we cannot have Q p ( y ) ~ ( T ( y ) )  ~ (T(y)  a polynomial) 

unless p = 3  (Qa(y)-=l). 

PROOF: By Gauss's Theorem, we may always assume that  T(y)  has integral 

coefficients. From (2.2) (ii) we should then have 

1 
Sp (n) = k ~ "  [n (n + 1). T(n)] 2. (2.3) 

Since Sp(1)=1  it follows that  k ( p ) = ( 2 . T ( 1 ) )  ~. Substituting this value in (2.3) and 

setting n =2,  we obtain 

Sp (2) = 1 + 2 ~ = (3. T (2) /T (1)) 8 = x  2 

where x obviously must be an integer. However, the equation 1 + 2 ~ = x  2 has ob- 

viously the unique solution p = 3 ,  since it  implies 2 r - 2  s =2,  r + s  =p .  
t 

LEM~A 3. Let P be a prime, n an arbitrary positive integer, and set n-~ ~ n i p  t, 
0 

where 0 <_ n~ <_ P - 1 .  (The n~ are the digits o/ n written to the base P, and are there/ore 

uniquely determined.) Then ( n ) ~ 0  (rood P) /or all integers m 8 u e h  that 
r e ( P -  1) 

t 

O < m ( P - 1 ) < n  i/ and only if ~ n t < _ P - 1 .  
O 

L EMMA 4. Let n be a positive integer such that n - - 2  (mod 4). I /  P is any odd 
t ( P )  

prime, set n = ~ n~ e P~, where 0 <_ n~ p <_ P - 1. I /  both the /ollowing conditions are 
0 

satis/ied 
t (3) 

a) Either n=--2 (rood 3) or ~ ~3_<_2 
0 

t (P)  
b) For all odd primes P > 3 ,  ~ . n t p < _ P - 1 ,  

0 

then n must be one o/ the numbers 2, 6, 10, 30. 

Since the proofs of these lemmas would seriously interrupt  our m a i n l i n e  of 

reasoning, they are omitted here and given in full in Appendix I. 

LEMMA 5. For odd p > l ,  we cannot have Q p ( y ) - - ( A y +  B) (T (y ) )  ~ (A *O, T(y )  

a polynomial) unless p-~5.  ( Q a ( y ) - 2 y - 1 ) .  : 
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P]~OOF: By (2.1) and Lemma 1, c), the degree of Qp(y) is ( p - 3 ) / 2 .  The 

degree of T (y) would therefore be ( p - 5 ) / 4 .  Since this must be an integer, we have 

p ~ l  (rood 4). Setting 2 r = p + l  we have 

2 r ~ 2  (mod 4). (2.4) 

The assumption, together with (2.1), (2.2) (ii) and condition c) of Lemma 1 now 

imply 
B2, (x) - B2r ~ x z (x - 1)~ (a x ~ - a x + b) (c 0 x r-s + . . .  + c~_a) z (2.5) 

where a, b, ct (i =0 ,  1 . . . . .  r - 3 )  axe rational numbers. 

On the other hand we have from [25], p. 123: B2r(x)=~ ~ .Bi.x 2~-j. Since 

by assumption p>l, we have B~,_I=Bp=O, and hence 

2~-2/2 r\ 
B~r (x) - B2r'=-- ~o ( ~ )" BI'x2r-" (2.6) 

Let  P be an arbitrary odd prime. By  the Staudt-Clausen Theorem ([28], Ch. IX), 

P Bj is an integer modulo P,  and if j *  0, 

PBj=O ( m o d P )  if j ~ 0  (rood P - I ) ,  
(2.7) 

PB~---1 ( m o d P )  if j--=0 (rood P - l ) .  

Consequently all the coefficients of 

2r-~/gr\ 

are integers modulo P.  Using (2.5) and applying a trivial extension of Gauss's 

Theorem to integers modulo P we have 

e~(2r~ (P B,) x2r-'-- xZ (x - 1)' (5x~-ax+ 5)(50x'-S +-- .  + 5r 2 (2.8) 
o \ i /  

where a, ~, • ( i = 0 ,  1 . . . . .  r - 3 )  are integers modulo P.  We equate coefficients and 

obtain P B e = P  = 5 .  ~.  Since d and 50 are integers modulo P we must have 

d~=0 (mod P)  (o•0 (mod P).  (2.9) 

Fur ther  equating of coefficients yields 

( 2 ; )  pB,=Pr(2r_ 1)/6 =5(3~o2 + ~:+ 2 ~ . ~  - 6 505x)+ ~.~. 

But from (2-9) it  then follows that  ~.5~=Pr(2r-1)/6 (modP) .  
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I f  either P * 3 ,  or P = 3  bu t  r ~ l  (mod3),  it  is clear tha t  b-5~-~0 (m o d P ) ,  

and on account of (2.9) this implies 

~ 0  (mod P).  (2.10) 

Together with the fact tha t  the ~ are integers modulo P,  (2 .9 )and  (2 .10) imply  

tha t  all the coefficients of the left-hand member of (2.8) vanish modulo P, i.e. 

2 r )  ( P B , ) ~ 0  (mod P), ( j = 0 ,  1 , . . . , 2 r - 2 ) .  By (2.7) equivalent virtue o f  this is to 
J ( ) , , ' ,  

2 r  ~ 0  ( m o d P )  for all / such that O < / ( P - 1 ) < _ 2 r - 2 .  I f w e s e t 2 r =  ~. .r ipP i, 
/ ( P -  I) 0 

where 0_< r~ p < P -  1, we must have, by Lemma 3, 

t ( P )  

rt e -< P - 1. (2.11) 
0 

Formula (2.11) holds whenever (2.10) holds, i.e. for all odd primes P,  P = 3  being 

excepted when r - -1  (rood3), which means 2 r - - 2  (mod 3). Therefore, taking into 

account (2.4), the assumptions of Lemma 4 axe satisfied for 2r,  and therefore 2 r  

must be one of the numbers 2, 6, 10, 30. 

The case 2 r = 2  is excluded by  the assumption p > l .  For 2 r = l O ,  a simple 

computation yields Q g ( y ) - ( y - 1 ) ( 2 y ~ - 3 y + 3 )  which is not of the required form. 

The case 2 r = 30 could be settled in the same way, bu t  to avoid tedious computa- 

tion the following indirect method is used. 

( 2 r )  
Since r =  15, j PBj=---O (rood P)  for all odd primes P including 3. This im- 

plies tha t  ( 2 ; ) - 2 B j i s  a n i n t e g e r  for every j. From (2.5) and (2.6) we obtain 

o \ ~ !  2 B j x e r - J ~ x 2 ( x - 1 ) ~ ( a ' x 2 - a ' x + b ' ) ( c s  ' ~ 

where we may assume that  a', b', c[ ( /=0 ,  1 . . . . .  r - 3 )  are integers. Equating coeffi- 

cients, 2 B 0 = 2 = a' co g, and therefore 

t2 a' = 2 Co = 1. (2.13) 

I t  is clear from Lemma 1, a), tha t  c :_a*0.  Comparing the next-to-lazt coefficients 

of (2.12) we obtain, after use of (2.13) and division by c~-a,' c:-3 = b' (c~'_~ - c,'_s). 

This implies tha t  b' is a factor of c'-3. Considering the last coefficient in (2.12), 
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2 r -  (2B2r 2)=b'-c~2_3, we see tha t  all its prime factors divide it more than once. 

( 3 0 ) . 2 B ~ s = - 7 . 3 3 9 2 7 8 0 1 4 7  a n d t h e  second f a c t o r i s  not d iv i s i b l eby7 .  However,  28 

This eliminates the case 2 r =  30. 

The only remaining case is 2 r = 6 ,  i.e. p = 5 ,  and indeed Qs(y)=~2y-=-l. 

3. Numerical properties of Sp (n) 

L E M M A 6. Let P(x)  be a polynomial with integral coe//icients, and let Q ( x ) ~ a x  + b, 

with a and b relatively prime integers, be algebraically prime to P(x) .  There exists an 

integer D (a, b, P (x)) such that the /ollowing properties are satis/ied : 

a) For any integer n, every common /actor o/ the numbers P (n), Q (n) is a/actor 

o/D. 
b) There exists n o such that D divides both P(n0) , Q(no), 

P R o  o F: We perform the algebraic division of P(x)  by  Q (x) and obtain 

P (x)----(ax + b) . T (x) + r. (3.1) 

I f  we apply Ruffini 's Rule for the determination :of r and of the coefficients of T(x),  

we find tha t  on multiplying (3.1) through by  a ~ (s the degree of P(x))  we obtain 

a ~- P (x) ~ (ax + b). T '  (x) + r '  

where r '  and the coefficients of T '  (x) are now integers. 

Let  D be the largest factor of r' tha t  is relatively pr ime to a. Then 

a ~. P ( x ) - ~ ( a x + b ) .  T ' (x)  +r"  .D. (3.2) 

We now substi tute an arbi t rary  integer n for the variable in (3.2). Any common 

factor h of P(n)  and a n + b  will be a factor of r " . D .  Since h divides a n + b ,  and 

(a, b ) =  1 by  assumption, we must  have (a, h ) =  1. By  the definition of D, h must  

then divide D. Proper ty  a) of D is thus proved. 

Let  n o be a root of the congruence a n + b - - O  (mod D), which is soluble since 

(a, D ) =  1. On substitution of n o in (3.2), b o t h  terms in the r ight-hand member  be- 

come divisible by  D. Therefore D divides a ' . P ( % ) ,  but  since ( a , D ) = l ,  D must  

also divide P(%) .  This completes the proof. 



T H E  E Q U A T I O N  l p + 2 p + 3 ~ + "" + n r = m q 161 

The number  D (a, b, P(x))  is thus uniquely defined except for the sign, which we 

shall assume positive a l w a y s .  I t  is a kind of "numerical  GCF" of P (x) and Q (x)" 

We now apply Lemma 6 to the s tudy of ST (n). 

LEM~A 7. The numbers D (1, 0, P ,  (x)), D (1, 1, P~ (x)), D (2, 1, P r  (x)) are weil- 

de/ined /or all p >  1, and /urthermore, D(1, 0, Pp(x)) =D(1 ,  1, Pp(x)) =D(1 ,  O, Qp(y)). 

P R O O f :  The first pa r t  follows from Lemma 1, a) and Lemma  6. The equalities 

follow from Lemma 1, b) and c), and in fact the common value of the three num. 

bets is the constant te rm of P~ (x) or Qp (y). 

We shall henceforth invariably use the notation 

D~=D(1 ,  O, Qp(y)) D 'p=D(2 ,1 ,  Pp(x)). 

The following result is useful for the s tudy of particular cases of the diophantine 

equation. 

LEMMA 8. Let n be an arbitrary integer, and let h be a common /actor o /P~(n)  

and 2 n +  1. Then the GCF o/ h and Pr (n)/h is a factor o/ D'r/h. 

We omit the proof, which proceeds by  considering the even polynomial P '  (z) 

obtained as P '  (2x + 1)~---P~ (x). 
! 

COROLLARY. I /  D~ is square/tee, then /or any integer n and any common/actor 

h o/ Pp(n) and 2 n §  1, w e  have (Pp(n)/h, h)= 1. 

4. The Equation Sp (n )  = m q .  Numher of  Solutions 

The purpose of this section is the investigation of the equation 

S~(n) = l P + 2 v + . . .  + n V = m  ~ (4.1) 

and the determination of the cases in which the number  of solutions is either finite 

or infinite. The answer to this question is given, with a more precise s ta tement  

about  the number  of solutions, in Theorem 1 below. 

We shall first make a few remarks of a trivial nature, which will, however, be 

quoted repeatedly in the sequel. 

R E M A R K I.  I f  q = 1, the equation is obviously satisfied for any n and a matching 

m. T h i s  case will be spoken of as a trivial one. 

REMARK I I .  For any given p, if ql is a factor of q2, the values of n corre- 

sponding to solutions of (4.1) for q=q2 .will be among those corresponding to solu- 

tions for q = ql. 
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RV. MARX I I I .  For  any  values of p, q, the set n = m = l  is a solution of the 

equation. I t  will be referred to as the trivial solution. 

REMARK IV. Since S3(n )=(S1(n ) )  2 for all n, the following s ta tement  holds: 

I f  q0 is odd [even], and n = n o ,  m = m  o is a solution of (4.1) for 

p = l ,  q=qo [P--1,  q=qo/2] ,  
then 

n = n  o , m = m ~  [ n = n  o , m = m o ]  

is a solution of (4.1) for p = 3 ,  q=q0;  and in this way all the solutions of this case 

may  be obtained. In  particular, if p = 3, q = 2 we have, by  Remark  I,  a trivial case 

for p = 1, q = 1, and hence this case shall be called trivial for p = 3 also. 

We shall require the following theorems:  

THEOREM A. (Nagell, Ljunggren, Domar).  The equation 

IAxO- yol=l 

has at most two solutions in positive integers x, y for q>_ 3. I f  q = 3, 4 there is at most 

one solution. 

This special case of the Thue-Siegel Theorem is proved for q = 3  by Nagell [24] 

and for q - - 4  by  Ljunggren [16]. For q>_5 it  is proved by  Domar  [9]. 

THEOREM B. (Landau-Ostrowski-Thue). Let a, b, c, d, be integers such that 

a ( b 2 - 4 a e ) * O .  I [  r>_3, the equation 

ax2 + b x  + c = d y  T 

has only a finite number of solutions in integers x, y. ([8], Th. 118, [11], Satz 695). 

T H E 0 R E M C. Let [ (x) be a polynomial o/ degree >_ 3 with integral coefficients, 

and assume that all its roots are distinct. Then, if  c is any  integer, the equation 

/ (x) = c y2 

has only a finite number of solutions in integers x, y. ([31]). 

The main result o f ' t h i s  section is the following: 

THEOREM 1. For given values of p and q, the number o/ solutions of (4.1) is 

infinite only in the trivial cases q = 1 and p = 3, q = 2, and in the cases p = 1, q = 2; 

p =3 ,  q = 4 ;  p =5 ,  q =2 .  I n  all other cases the number of solutions N (p, q) is finite 

and N (p, q)<_N o (p), where No(p)  is a function of p alone. 

PROOF: We shall consider separately the eases p = l ,  p even, and p odd 

and _ 3. 
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1. p = l .  B y  L e m m a  1, equa t ion  (4.1) becomes n ( n + l ) / 2 = m  q. Spl i t t ing  in to  

r e l a t ive ly  pr ime  fac tors  we have,  according  to  the  p a r i t y  of n, e i ther  n = 2 x  q, 

~9.  1 =y~ or n = x  q, n 9. 1 = 2y  q. Therefore  one of the  equa t ions  

yq - 2 xq = l xq - 2 y q= - 1  (4.2) 

m u s t  hold.  I f  q = 2 ,  these  are  " P e l l i a n "  equa t ions  and  have  an  inf ini te  n u m b e r  of 

solut ions.  W e  shall  give the  fo rmula  for  t h e m  in Sect ion 6. I f  q_>3, Theorem A 

impl ies  t h a t  equa t ions  (4.2) have  be tween  t h e m  a t  mos t  two solut ions,  and  so t he  

t heo rem is p roved  in th is  case wi th  N o ( 1 ) =  2. 

2. p even. According  to  L e m m a  1, (4.1) has  the  form 

1 
- - .  n (n 9, 1) (2 n 9. 1). P~ (n) = m ~. (4.3) k(p) 

Since the  l e f t -hand  m e m b e r  is an  in teger  for eve ry  in teg ra l  va lue  of n, the re  exis t ,  

for a g iven  n, the  in tegers  kl, k2, ka, k 4 (not  necessar i ly  un ique ly  defined),  such t h a t  

k 1 k 2 k 3 k 4 = k (p), and  such t ha t  n//kl, (n 9. 1)/k2, (2 n 9- 1)/ka, Pv (n)/k4 are  all  in tegers .  

The th ree  f i rs t  of these  are  obv ious ly  r e l a t ive ly  p r ime  in pairs .  W e  now set  

d I = (n/k~, P ,  (n)/ka) d,  = ((n 9. 1) /k , ,  P ,  (n)/k4) 

d a = ( (2n  + 1 ) /k  a, P ,  (n)/k,) .  

! 

B y  L e m m a s  6 and  7 i t  is clear  t h a t  dl, d z a re  fac tors  of D v and  d a is a fac tor  of Dp. 

F u r t h e r m o r e ,  dl, d2, d a a re  also obv ious ly  r e l a t ive ly  pr ime  in pairs .  I t  follows t h a t  

n / k  I dl (n + 1)/k2 d~ (2 n + 1 ) /k  a d a Pv (n)/k4 dl d.z da 

are  in tegers  r e l a t ive ly  pr ime  in pairs .  I f  we subs t i t u t e  these  number s  in (4.3) we ob t a in  

n n + 1 2 n + 1 Pv (n) mq" (4.4) 
d21"d~'d~'k~d~ k2d2 kada "k4d~d2da 

W e  shall  f irst  consider  q odd  and  > 3. W e  m a y  set  

d 1 = a~ b 1 c 1 e 1 d 2 = a~ b~ c 2 e 2 d a = a.~ b a c a e a (4.5) 

in  such a w a y  t h a t :  

a) b 1 e I el, b 2 C 2 e2, b a c a e a are  qth-power-free .  

b) all  p r ime  fac tors  of b 1 are  fac tors  of n / k i d 1 ;  all  p r ime  factors  of b 2 are  

fac tors  of ( n + l ) / k 2 d 2 ;  all  p r ime  factors  of b a are  fac tors  of ( 2 n + l ) / k a d  a. 
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c) All p r ime factors  o f  c 1 c 2 c 3 are factors  of Pp (n) /k  4 d 1 d 2 d a. 

d) (e t e 2 e a, n / k  t dr) = (e 1 e 2 ca, (n + 1) /k  2 42) = (e 1 e 2 e 3, (2 n + 1) /k  3 d3) 

= (e 1 e 2 e3, Pp (n)/k~ d t d~ d3) = 1. 

The decomposi t ion  thus  def ined is clearly unique. The bi, c~, e~ ( i = l ,  2, 3) are 

all re la t ively  p r ime  in pairs.  ( R e m a r k :  Fo r  the  purposes  of this proof,  d 3 need no t  

have  been factored.  However ,  the  complete  factor ing is the  appropr ia te  background  

for the  s t u d y  of par t icu lar  cases (S~ction 5)). 

We now subs t i tu te  (4.5) into (4.4) and  regroup the  factors  in such w a y  t h a t  all 

except  the  first  will cer ta inly  be re la t ively  pr ime in pa i r s :  

2 2a2,q ( b ~ . ~ )  [b 2 n + l  ~ [b ~ 2 n + l  ~ (c~c~c 2. P'(n)- ~ e2.e ~ .e~:mq.  (4.6) at a2 8) . . . .  

We m a y  divide th rough  b y  a q~h power  and  thus  e l iminate  the  first  factor .  All the  

remaining factors,  being re la t ive ly  pr ime in pairs ,  m u s t  be  perfect  qth-powers.  F r o m  

condit ion a) of their  definition, and  since q is odd, i t  follows t h a t  e I e 2 e a = 1. I f  the  

first  two remain ing  factors  are x q, yq w e  ob ta in  on division b y  bt, b 2 respect ively 

b I �9 n = k I c 1 ( a  t x) q b 2 �9 (n + 1) = k 2 c a (a 2 y)q. (4.7) 

The  numbers  kt, ks, bp b 2, ct, c s are factors  of e i ther  k(p)  or D~. The  n u m b e r  of 

possible sets of values  of these is therefore  bounded  by  a bound  N '  (p) which depends,  

t h rough  ]c (p) and  Dp, on p alone. 

Le t  /1 = (b z, kz), /s = (bs, ks). Le t  hz, h 2 be the  least  integers  such t h a t  b~//i, bJ / s  

divide h~, h~ respect ively .  Since (bt, c i ) =  (b 2, c s )=  l ,  i t  is clear t h a t  if (4 .7) is  to  hold 

we m a y  set  a t x = h  i X ,  a s y = h  s Y .  Thus  

n = ( k x / / t )  c z (hq~/~/bt)" X q = A  X q 

n + 1 = (ks/]~) c 2 (hi [2/bs)" Yq = B Y" 

and therefore  (4.7) implies 
B Y~ - A X ~ -- 1. (4.8) 

The  n u m b e r  of sets of values  of A, B is still _<N'(p) .  Fo r  each set, (4.8) has, b y  

Theorem A, a t  mos t  2 solutions. Equa t ion  (4.3) has therefore  a t  mos t  2 N '  (p) solu- 

t ions in th is  case. 

We now consider the  case q=2.  I n  (4.4) we m a y  divide th rough  b y  squares,  

and  since the  last  four  factors  in the  lef t -hand m e m b e r  are re la t ive ly  pr ime in pairs  

t hey  mus t  be  perfect  squares.  I n  par t icu lar  
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n = k l d l . X  ~ n + l = k s d e . Y 2  2 n + l = k a d  a.z 2 

and combining these we have 

4k  xk 2d l d  s. (xy) 2+ 1 = ( k  sd3) s . z  4. 

The coefficients of this equation can only take a finite number  of sets of values, 

and for each such set the equation has, according to Theorem B, only a finite 

number  of solutions; and so has therefore (4.3). This is for q = 2 ,  but  according to 

Remark  I I ,  this result holds for any even q, and N(p ,  2 q ' ) < N ( p ,  2). Combining 

this result with the previous one, She theorem is proved for p even and we may  set 

N0 (p) = max  {2 N '  (p), N (p, 2)}. 

3. p > 3 ,  odd. By Lemma 1, (4.1) has now the form 

1 
- - .  nS(n + 1) 2. Pp (n) = m  q. (4.9) (p) 

Consider in the first place the case q odd and > 3. In  a way quite similar to 

tha t  followed for p even, there exist, for every integer n, integers kl, ks, k a, such 

tha t  k~ k s k a = k (p) and such tha t  nS/k~, (n + 1)2/ks, Pp (n)/k 3 are integers. We then set 

d, = (n2/k~, Pv (n)/ka) d s = ((n + 1)2/ks, Pv (n)/k 3) 

and by Lemmas 6 and 7, dl, d s are factors of D2v. We now factor d 1 and d s in a 

way completely similar to tha t  established in (4.5). Substitution in (4.9) yields 

(a~a~) q . (bY . ~12dl) . (b~ . ( n+ l )2~  [c2 2 Pv (n) �9 ( i t s .  . d . d = m '  

where el e s = l  as before, and all factors except the first are certainly relatively 

prime. Therefore 

b~.nS=kld l .  X q b ~ . ( n + l ) S = k 2 d s . y  q. (4.10) 

Since the left-hand members are perfect squares, and since q = 2 q ' +  1 is odd, we 

must  have k id  1 x = x  's, k s d 2 y=y,2.  (4.10) implies 

b l ( k l d l ) q ' . n = x  'q bs(ksds)q' . (n+ l ) = y  'q. (4.1I) 

As above, the number  of sets of values of kl, k2, dl, ds, bl, b s (factors of either k(p) 

or D~) is bounded by a number  which we shall also denote by N '  (p) and which 

depends on p alone. 
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Let hi, h 2 be the last integers such tha t  bl(]C 1 dl) q', b2(ksd2) q' divide h~, h~, and 

let A, B be the quotients of these divisions. I f  (4.11) is to hold, we may  set x' =hlX , 
y'=h2Y. Then n = A X  q, n + l -~BY  q, and we again obtain equation (4.8). The num- 

ber of sets of values of A, B being _<N'(p), the number  of solutions of (4.9) is 

again at most  2 N '  (p) in this case. 

Consider now q = 2 .  Set k(p)=K s.k', with k' squarefree. Equation (4.9) then 

reduces to 
Pp (n) = Qp (n (n + 1)) = k' u s. (4.12) 

Set Qp (y)~(Q' (y))2.R (y) where R(y)  has only simple roots. We may  assume Q'(y) 

and R(y) to have integral coefficients (Gauss). Equation (4.12) then reduces to 

R (n (n + 1)) = k' v s. (4.13) 

I f  the degree of R(y) is >_ 3, then the diophantine equation R (w)= k' v 2 has only a 

finite number  of solutions in integers w, v, since R (y) has only simple roots (Theo- 

rem C). The same holds a f o r t i o r i  for (4.13). I f  the degree of R(y)  is 2, we examine 

R(x(x+l)) as a polynomial in x. I t  is easy to verify tha t  there is a multiple root 

if and only if either: (i) R (y) has a multiple root, which is excluded by construc- 

tion, or: (ii) x = - 1 / 2  is a root of R(x(x+l)),  which is excluded by Lemma 1, a). 

I t  follows tha t  R(x(x+l)) (which is of degree 4) has no multiple root, and therefore 

(4.13) has only a finite number  of solutions (Theorem C). We conclude that ,  if the 

degree of R(y) is _>2, N(p ,  2) is finite, and by  Remark  I I ,  N(p, 2q')<_N(p, 2), so 

tha t  for these values of p the theorem is proved and we may  set 

N o (p) = Max {2 N '  (p), N (p, 2)}. 

I t  remains to examine the cases for which the degree of R(y)  is 0 or 1. By 

Lemmas 2 and 5, this is the case only for p = 3 ,  p = 5  respectively. Case p = 3  is 

disposed of by Remark  IV, which yields the result required by  the s ta tement  of the 

theorem, again with N0(3)=2 .  As for p=5, Qs(y)~-2y-1, k ' = 3 ,  and (4.13) may  

be written 
(2n+ 1) 3 - 6 v  2 = 3  (4.14) 

which has an infinite number  of solutions, each one providing a solution of (4.9). 

We shall give these solutions in Section 6. Consider now p =5 ,  q = 4. Since D 5 = 1 

and since every fourth power is also a square we must  have 

( 2 n + l ) 2 + 3 = 6 v  4 
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and this equation has only a finite number of solutions by Theorem B. (In Section 6 

we shall prove that  there is none but the trivial solution). The theorem is thus 

proved also for p = 5, with N O (5) = max {2 N'  (5), N (5, 4)}, since any even number 

other than 2 is a multiple of 4 or of an odd number other than 1; the conclusion 

follows from Remark I I .  The proof of Theorem 1 is thus complete. 

REMARK~ A referee pointed out that, as far as finiteness of the number of 

solutions is concerned, Theorem 1 could be deduced from Siegel's theorem ([27]): I ]  

/(x, y) is a polynomial with rational coe/]icients which is irreducible in the /ield o/ all 

algebraic numbers (or in the /ield o/ complex numbers) and i/ the genus o/the Riemann 

sur/ace o/ /(x, y)=0 is positive, then there are only /initely many pairs o/numbers a, b 

(a an integer, b rational), such that ](a, b)=0. 

We note that  yq--S  T (x) is reducible if p= 3 and q is even, but by Lemmas 1 

and 2 is irreducible otherwise. The reducible case is disposed of by Remark IV. In  

the irreducible case we refer to the genus calculations in [2], pp. 231-239. From 

the results there obtained it follows that  yq--Sp(X)=0 has a Riemann surface the 

genus of which is 0 if and only if q = 1 or if ST (x) is of one of the forms (R (x)) q ( x -  a) r 

or (R(x) )q(x-a)r (x -b)  q-r where O<_r<q and R(x) is some polynomial. Thus by 

Lemmas l, 2 and 5 it follows that  in the irreducible cases the genus is 0 if q = l  

or if p = l ,  q = 2  or if p = 5 ,  q=2 but is otherwise positive. Application of the 

above-mentioned theorem then yields Theorem 1 as far as the finiteness of the num- 

ber of solutions is concerned. 

In  concluding, it may be noted that, just as 2 N'  (p) could be explicitly computed 

from p, a similar bound can be given for N(p, 2q'), by an appropriate use of Theo- 

rem A, except if q '=l  or if p is odd and q'=2. 

5. The Equation Sp(n)=mq. Odd Values of q 

5.i.  Me thods  and  t heo rems .  In  this section we shall give methods to find 

odd primes q for which the equation has none but the trivial solution. Apart from 

the trivial application of Remark I I  of Section 4, we point out that  the same me- 

thods apply to certain composite odd numbers while failing for all their prime factors; 

but  we shall not pursue this remark further. 

The first method we shall describe is essentially one of congruences. The applica- 

tion to be made is similar to the method used by Ddnes [5], to Fermat 's  Theorem. 

Less general theorems have been proved by Vandiver [30] and Ankeny and Er- 

dSs [1]. 
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For  any  posi t ive integer  h, let  Fn denote  the  set  consisting of 0 and  of the  

2 h t h  roots  of uni ty .  Le t  Z2h (x) denote  the  cyclotomic polynomial  of order  2h  (its 

degree is ~(2h) . )  Let  N(~)  denote  the  no rm of the  algebraic n u m b e r  r/. 

Consider a set  of polynomials  in s var iables  with integral  coefficients 

P = { P k  (Xl, x, . . . . .  xs):  k =  1 . . . . .  t}. (5.1) 

h be a posi t ive integer.  For  every  set  {Yx, Y2 . . . . .  y~} of s e lements  chosen in 

Pk (0, 0 )=-0  (mod r) 

P~ (gJ', 0 ) - - 0  (mod r) 

Pk(0 ,  gJ')----0 (mod r) 

Pk (gi,, g h ) ~  0 (mod r) 

k = 1 . . . . .  t (i) 

k --- 1 . . . . .  t ( i i )  

k = 1 . . . . .  t (iii) 

k = 1 . . . . .  t (iv) 

where 0_<]1 , ?.2 < 2 h .  I f  (5.3) is to  have  solutions, one a t  least  of (5.5), mus t  hold. 

Assume for ins tance t h a t  u set  of t ype  (iv) holds for some choice of /'1, ?.2. I n  order  

t h a t  it m a y  hold s imul taneous ly  wi th  (5.4), the  algebraic resul tants  

(5.5) 

Let  

Fh, consider the  set  of number s  

{N(Pk  (Yl, Y2 . . . . .  ys)) : k = 1 . . . . .  t} (5.2) 

The  sets (5.2) form a class S(P,  h). 

L E ~ M A  9. Let P be a class o/ polynomials as de]ined by (5.1), and let q be an 

odd prime. I /  there exists a positive integer h such that r = 2 h q +  l is a prime and 

such that r does not simultaneously divide all the numbers o/ any one o/ the sets in 

S (P ,  h), then the set o/ equations 

Pk(u~,u~ . . . . .  u ~ ) = 0  k = l  . . . . .  t (5.3) 

has no solution in integers ul, u 2 . . . . .  us. 

P R O O F :  I t  will be sufficient to p rove  the  l e m m a  for the  case of two variables,  

the  proof  being ent i rely similar in the  general  case. 

Wi th  the  except ion of 0, the  qth power  residues modulo  r form a cyclic sub- 

group  of order  ( r - 1 ) / q = 2 h  of the  mul t ip l ica t ive  group  of non-zero residues. Le t  g 

be  a genera tor  of this subgroup ;  this s t a t e m e n t  is equivalent  t o -  . 

Z2n (q)--=0 (mod r). (5.4) 

We now consider the  set  of equat ions  (5.3) modulo  r and  subs t i tu te  u~, u~ b y  

their  residues modulo  r. We obta in  one of the  following sets of congruences:  
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R (Pk (x j', xJ*), Z2h (x)), k = 1 . . . . .  t 

must all vanish modulo r. 

Let  ~ be a primitive 2hth root of unity, i.e. a root of Z2h(x). Using a well- 

known relation ([29], Sect. 28), the result just mentioned may be restated as 

N ( P k  (~s,, ~J*))--0 (mod r) k = 1 . . . . .  t. 

Applying this method to all choices of ]1, i2, as well as to the sets of congruences 

of types (i), (ii), (iii) in (5.5), we obtain precisely the sets in S ( P ,  h), and the proof 

of the lemma is eomplete. 

We now define Lh to be the class of all odd primes q such that  2 h q §  is a 

prime. (Note that  every q belongs at least to one, and in fact to an infinite number, 

of these classes). Since the class of sets S ( P , h )  depends on h, but not on q, we 

obtain the following alternative formulation of Lemma 9. 

Co R O L LARu Let P be de/ined as in Lemma 9. Let h be a given positive in. 

teger. I] among the sets in S ( P ,  h) there is none such that all its elements vanish, then 

the set of equations (5.3) has solutions lot at most a ]inite number o/ primes q in Lh, 

namely /or those /or which r = 2 h q + 1 divides all the elements o / some  one set o / S  (p, h ). 

REMARK 1. Since in our applications one of the polynomials in P is often of 

the form a x  I + b x 2 +  1, it is often useful to apply the following result which we state 

without proof (for the method, see [1]; there is, however, no restriction on h such 

as in tha t  paper): I /  P(Xl ,  x~ . . . . .  x ~ ) ~ a l x l  + ' . .  + a s x ~ + k ,  k * 0 ,  then i/  /or some h 

and some choice o/ ~1,~2 . . . . .  ?s in Fh we have P(? I , ?~  . . . . .  ?s)=O this same equality 

must already hold /or some choice o] the ~ in F 1 (i.e. either 0 o r a l ) .  

REMARK 2. In  both Lemma 9 and its Corollary the fact that  q is a prime is 

irrelevant" Although this remark may extend the field of application of this method, 

it was not followed up in numerical computation; neither was the simple relation 

N ( P k ( ~ I , $ ,  . . . . .  ~ ) ) < a ~  (~h), where a ,  is the sum of the absolute values of the 

coefficients of Pk. 

REMARK 3. In  applying the Corollary of Lemma 9 to any particular set of 

equations, it may be possible to prove impossibility for all q in a given Lh, if the 

exceptional values of q for which r divides all the elements of some set in S ( P ,  h) 

also belong to some other La,, in which they are not exceptional. This remark is 

widely used in the applications. 
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We shall now require some definitions and notations. /{ will denote the class 

of all regular primes (in the sense of Kummer) .  Le t  s be any prime. We shall say 

tha t  a prime q ~> 7 belongs to the class A~ if s belongs to an even exponent modulo 

q; and tha t  q belongs to the class B~ if s belongs to either an even exponent or 

the exponent ( q - l ) / 2  modulo q. Finally, q shall belong to the class C~ if 8q-l~l 

(mod q2). 

In  terms of these notations the following lemma is a res ta tement  of some results 

of Ddnes [6]. 

LEMMA 10. The equation xq + y q = c z q  (c 

in integers x, y, z except the trivial ones (i.e. 

have no common /.actor), in the /ollowing cases : 

a) c = 2  u~ and q E R N B  2N C 2 

b) c = 2 U ' . 3  ~ and q E R N A 2 N A 3 N ( C 2 u C a )  

c) c = 2  ~ . 5  ~' and q E R N A  2NASN(C2U(::5) 

d) c = 2 ~ . 3 ~ . 5  ~' and q E R N A 2 N A a ( 1 A s N ( C 2 u C 3 u C 5 ) .  

an integer prime to q) has no solution 

I x y z [ = O ,  1, i/ x, y, z are assumed to 

PROOF: Case a) is a res ta tement  (and a trivial extension if u2=~l ) of [6], Th. 9. 

Cases b), c), d) follow immediately  from [6], Th. 7, under the additional assumptions 

1 + 1 <  q - 3  1 1 q - 3  1 1 1 - 3  
5) 12 13-2(q--i) d) q (5.6) - 2 ( q - 1 )  - 1 )  

respectively, where /~ denotes the exponent to which s belongs modulo q. A straight- 

forward computat ion shows tha t  (5.6) b) is satisfied for all q except 7, which does 

not belong to A 2 (only q>_7 are considered); (5.6) c) holds for all q except 7, 31, 

neither of which belongs to A2; (5.6) d) holds for all q except 7, 11, 13, 31, of 

which 7, 31 do not belong to A 2 and 11, 13 do not belong to A 3. The lemma is 

therefore proved. 

Regulari ty and irregularity of primes are now known for primes up to 2000 ([14]). 

In  Appendix I I  we have collected the data  relevant  to Lemmas 9 and 10 for all 

regular primes less than  1000, note being taken of the fact tha t  in the applications 

the Corollary of Lemma 9 was applied for h = l , . . . , 6 .  I t  is known tha t  the only 

primes less than  16000 which do not belong to C 2 are 1093 and 3511 ([3]). 

We shall also require some results concerning equations of degrees 3 and 5. 

Concerning the former, we have the following resta tement  of par t  of the compre- 

hensive results of Selmer ([26]). 
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TH~OI~EM D. I /  a, b, e are cube/tee integers, the equation a x  3~-bya+cz  3=0 

has no solutions but the trivial ones (i.e. with x y z = O )  i/ labcl  is one o/ the numbers 

co~tained in Table 4 g o/ [26]; and also in the cases contained in Table 2 a o/ [26]. 

I /  l abc]=2 ,  there are none but the trivial solutions x y z = O  and ] x l = [ y l = l z  I. 

A special case of Theorem A for q = 3 is this:  

THEOREM E (Nagell). I /  D is a multiple o/ 3 and has no prime /actors o/ the 

/orm 6 h § 1, the equation x3 § D y 3 = 1 has none but the trivial solution x = 1, y =0, un- 

less D =9 .  ([23]). 

THEOREM F (Lebesgue). The equation x 5 §  5 has none but the trivial 

solutions (i.e. Ixyz[=O,1  i/ x, y, z are assumed to have no common /actor) i/  c has no 

prime /actor o/ the /orm 1 0 h §  and /urthermore c ~  •  ___7 (mod 25). ([12]). 

5.2. Cases  p = l ,  p = 3 .  Lemma 10 a), Theorems D and F, and Remark  I I  in 

Section 4 imply tha t  equations (4.2) have none but  the trivial solutions and there- 

fore the equation (4.1) for p =  1 has none but  the tr ivial  solution n = m  = 1, whenever 

q is a multiple of 3, 5, or of any  prime in R A B  2N C~. Remark  IV then disposes 

of the case p = 3  for q odd or twice an odd number  (we include this case in this 

section for p = 3) and at  the same time a multiple of any of the primes mentioned. 

5.3. O t h e r  c a s e s .  Due to lack of space, we shall not discuss the different 

cases in detail. After giving the general da ta  for p = 2  . . . . .  11 (which will also serve 

for Section 6) we shall make some general remarks about  the cases with odd q and 

give two examples of how the method applies. 

p e v e n  

p k (p) Qp (y) D ,  D', 

2 6 1 1 1 

4 30 3 y -  1 1 7 

6 42 3 y 2 - 3 y + l  1 31 

8 90 5 y a -  1 0 y ~ + 9 y - 3  3 3 . 1 2 7  

10 66 ( y - 1 ) ( 3 y 3 - 7 y 2 §  5 5 . 7 . 7 3  

For p = 8 ,  Q s ( n ( n + l ) ) : - 6  (mod 9) for every integer n, so tha t  it is divisible by  

exactly one factor 3 of k(8), and thus d l d 2 ~ l  , and d 3 = l  or 127. For p = 1 0  we set 

Q I o ( Y ) - ( y -  1) .S(y)  and find: D(1,  0, y -  1) =D(1 ,  - 1, S(y)) = 1 ;  

D(1 ,0 ,  S ( y ) ) = D ( 2 ,  1, x ( x +  1 ) -  1 ) = 5 ;  D(2,  1, S ( x ( x +  1))) = 7 . 7 3 .  

12 - 563801.  A c t a  ma thema t i ca .  95. I m p r i m 6  lo 2 m a i  1956. 
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In  all cases considered, D~ and D~ are squarefree, so that ,  in (4.6), we have 

ala2a3=l. By the Corollary to Lemma  8, c a = l .  

p odd 

p k (p) Qp (y) Dp 

5 12 2 y - 1  1 

7 24 3 y ~ - 4 y + 2  2 

9 20 ( y - 1 ) ( 2 y 2 - 3 y + 3 )  3 

11 24 2y4-8ya+17y~-20y+lO 10 

For  both p = 7 ,  p = l l ,  Q~,(n(n+l))~-2 (rood 4) for all n, so tha t  it is divisible by  

exactly, one factor 2 of k(p). Therefore for p=7, dld 2 = 1 ; a n d  for p= 10, did ~ =1,  5. 

As for p=9, we set Qg(Y)~-(y-1)'S(y) and it  is clear tha t  n ( n + l ) - I  and 

S(n(n+ 1)) are relatively prime for all n. 

The general method of a t tack  for both even and odd values of p consists in 

eliminating n between the various factors in (4.6) (and in the corresponding equation 

for p odd), which are known to be perfect qth powers. A set of equations is thus 

obtained for every set of values of the coefficients. This set is tested by  the con- 

gruence methods of Lemma 9 and its corollary. The computational  difficulties have 

limited us in general to h_< 6; in the case p = 10 the number  of equations and the 

values of their coefficients were so high tha t  the computations could not be carried 

out, and in the case p = l l  they were limited to h= 1. 

In  those cases in which the Corollary of Lemma 9, completed with Remark  

3 following it, breaks down (as it must,  since equation (4.1) possesses the trivial 

solution and therefore no simple congruence method can settle it  completely), we 

apply Lemma 10 and Theorems A, D, E, F. In  the cases p = 2 ,  p = 5 ,  the congru- 

ence method adds nothing to the  knowledge we obtain through these theorems, and 

can therefore be dispensed with. Theorems A and E (for q=3)are required only 

for the cases p=9, 10, 11, and will therefore not appear in the given examples. 

The results obtained for these as well as for the other values of p considered, with 

q odd, are given in Section 7 (Theorem 2). 

As examples we shall now discuss the cases p = 4  and p =7 .  

Case p=4. According to the data  above, we have dld2=l, b3=d a. Therefore 

the following equations must  hold: 

n = k l z  q n + l = k ~ y  q d3(2n+l)=k3z q 3 n ( n + l ) - l = k 4 d 3 t  q. 
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Elimination of n provides the equations 

k 2 y q - k l X q - l = O  d3klxq +d3]c2yq-kazq=O 3]Cl]C2(xy)q-kad3tq=O. (5.7) 

For q = 3 ,  these equations are treated by congruences modulo 7, 9, 13, and those 

cases that  are not incompatible are settled by means of Theorem D. Taking into 

account that  n must be positive, this yields the trivial solution n = m = 1 as the unique 

solution of (4.1). A similar conclusion is reached for q = 5  by means of congruences 

modulo 11 and 25 and use of Theorem F. 

In  the general case (q=~3, 5) the Corollary of Lemma 9 and the subsequent 

Remarks 1 and 3 are applied to (5.7) for h_<6. (Note: In  view of the fact that  

our result will be restricted by other considerations to q ER N B 2 f3 Cs, it was not 

considered necessary to check cases under Remark 3 for values of q not in this class.) 

The method breaks down only :in the following cases: 

(i) k lk  s = 2 ;  (ii) d a = k  a = k l = l ;  (iii) d a = k  a = k  s = l .  

In  case (i) the first of equations (5.7) has no non-trivial solutions for q E R  N B s N C s 

by Lemma 10, a). In  cases (ii) and (iii) the equation obtained in eliminating y or x, 

respectively, between t he  first two equations (5.7) similarly has no non-trivial solution 

for the same class of values of q. Only in case (i) do the trivial solutions yield the 

trivial solution n = m =  1 of the original equation; in the other two cases they yield 

the absurd value n ( n + l ) = O .  We conclude that  for p = 4  the original equation has 
6 

none but  the trivial solution n = m = l  for q = 3 ,  5, or q E R N B  2NCsN [JLh (or 
1 

multiples of these). 

Case p=7 .  From the above data we conclude d l d s = l ,  and hence the following 

hold : 
n ~ = k 1 x q (n + 1) ~ = k 2 yq Q7 (n (n § 1)) = ]cat q. 

We may set ]Ca= 2 k~, and ]c~ = 1, 3 as is easily seen. We thus have either of the two sets 

n~(n+l)  ~= 4 (xy) '  Q T ( n ( n §  Q 
(5.s) 

n2 (n§  q Q~(n(n+l))=-2t  q. 

In  the first case, since q is odd  and x, y are relatively prime, we must have 

x = X  s, y=  y2, and therefore n ( n + l ) = 2 ( X Y )  q, whence either of the equations 

Y q - 2 X q = I ,  X q - 2 Y  q= - 1  

holds; and these have no non-trivial solutions for q = 3 (Theorem D), q = 5 (Theorem F) 
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or q E R  n B~N C~ (Lemma 11, a)). In  all these cases the trivial solutions yield only 

In the second case of (5.8), the left-hand member of the first equation being a 

square and q odd, we must have x y =  3 ( X Y )  2. This implies 

n (n  + 1) = 2 . 3  (~+I)/2 �9 ( X  Y)q ,  

whence one of the following equations must hold: 

2 . 3  (q+l)/~. Yq - X q = 1 

3 ( q + 1 ) / 2  �9 Yq - 2 X q = 1 
(5.9) 

or those obtained by substituting ( - X ) ,  ( - Y )  for X ,  Y, respectively, in these 

equations; since q is odd, these last two eases need not be considered separately. 

The first equation (5.9) has none but  the trivial solution for q =  3 (Theorem D), q =  5 

(Theorem F) or q E R N A~. N A 3 (I (C~ 0 C 3) (Lemma 11, b)) ; the trivial solution yields 

n =0 ,  which is excluded. 

Consider the second equation (5.9). For  q =  3 we obtain 9Y 3 - 2 X  3= 1, which 

is impossible modulo 9; for q = 5  we have 2 7 Y 6 - 2 X S = l ,  which is impossible mo- 

dulo 11. In the general case ( q * 3 ,  5) we obtain, in conjunction with the second 

equation of the second set of (5.8), 

3 (q+~)/2 �9 Yq - 2 X q = 1 

2 . 3  q + 2 "  ( X Y )  2q - 4" 3 (q*1)/2" ( X Y )  q + 1 = t q. 

The Corollary of Lemma 9 cannot be applied directly, but  this set may  be trans- 

formed to 

3 (3 Y~)~ - (2 X ~ + 1) 3 --- 0 ( 5 . 1 0 )  

4 8 .  X 2q .  ( 3 Y 2 )  ~ - ( 1 8 X  2~ .  ( 3 Y ~ )  r  t ~ + 1) 3-~ 0 

to which the Corollary may be applied. We do this for h_< 6. We note tha t  3, and 

therefore 3Y ~, is a quadratic residue modulo r = 2 h q + l  for h ~ 0 ,  1, 5 (rood 6), and 

a non-residue otherwise; this follows from the quadratic reciprocity law and the fact 

tha t  r, q are prime and ~= 3. This fact may be used to restrict the choice of the ~,~ 

in (5.2) and hence the sets of S (P ,  h) for which the assumption of Lemma 9 and its 

Corollary must hold. With the help of Remark 3 to the Corollary, we are able to 
6 

show that  (5.10) is impossible for all q E U L~. 
1 
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Combining the  previous results, we conclude t h a t  fo r  p = 7 and q = 3, 5, or 

6 

qERnA~flAan C2[~ U La 
1 

(or multiples of these), there is no solution of the  original equat ion other  t han  the 

trivial  one n = m = 1. 

6. The Equation Sp(n)fmq. Even Values of q 

6. i .  P r e l i m i n a r y  t h e o r e m s .  We shall require some facts about  certain "Pel l ian"  

equat ions x ~ - D y 2 = a  (D square-flee). For  the e lementary  theory  of these equations,  

see, e.g., [28], Ch. XI .  We shall be interested in part icular  in the  equat ions 

x2--2y 2-= + 1. (6.1) 

The non-negat ive solutions of (6.1) are all given by  the  general relation 

xs + y~ V~ = (1 + V2)' (6.2) 

for non-negat ive s, in such a way  t h a t  

x 2 2 - 2 , -- Y ~ = t - - 1 )  ~. (6.3) 

A few trivial facts concerning these solutions are :  

(x,, ys) = (x~, x~+l) = ( x ,  x~+2) = 1. (6.4) 

y, is even or odd according as s is even or odd, and 

(Y2,-~, Y2r+l) = (y2,/2, y2,+2/2) = 1. (6.5) 

According as r ~ 0 ,  1, 2, 3 (mod 3), we have respectively 

x2r-~l ,  3, 5, 3 (rood 12) y2r/2~-O, 1 , 0 , 5  (rood 6). (6.6) 

A more interesting p r o p e r t y  of the xs, y8 is as follows: f rom (6.2) we have 

x~, + y~, V2 = (~, + yr V2) "~ 

and therefore x2r=x2+2y~. Combining this result  with (6.3), 

x2T = (2 y~)~ + ( - 1) T. (6.7) 
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One further type  of "PeUian" equation which we consider is 

x ~ - 6 y~ = 3 

the general solution of which is 

x + y V 6 =  (3 +I/6)  ( 5 + 2  V6) r r = 0 , 1 , 2  . . . . .  

(6.8) 

(6.9) 

Lv.MM A 11. The equation 9 x 4 -  1 = 8 y2 has no solution except the trivial one 

Ixl=lyl=l. 
PROOF:  By congruence modulo 16, y must  be odd. Thus the only way of 

factoring ( 3 x 2 - 1 ) ( 3 x ~ + l ) = 8 y  2 admissible modulo:  3 is such tha t  we obtain the 

equations 

2 v ~ - u 2 = l ,  2 v 2 + u ~ = 3 x  ~, 

and according to a result of Lucas ([21]), this set implies I l=lvl=lxl=l. 

L~MMA 12. The equations 

x 2 8 - 2 y  ~ = + 1  s * l  (6.10) 

have no solutions except the trivial ones y = O, x = + 1 (/or the plus sign) and [x I = ] Y l = 1 

(/or the minus  sign).  

(Note : A theorem of Liouville ([15]), implies this result for the equation with the 

plus sign for all s for which Fermat ' s  Theorem holds.) 

PRO o F: Without  loss of generality we may  assume tha t  s is a prime. For s = 2, 

the lemma is a well-known result of Fermat  (see [13], Th .  IV ;  [28], Ch. XI I ) .  We 

may  therefore assume from now on tha t  s is an odd prime.  Consider first the 

equation with the minus sign. I t  may  be put  in the form 

X 2 + 1 = 2 ys (X = x s, Y = y2), 

and this equation has no non-trivial solutions unless s = 4  (see [17 ] ) and  this is 

excluded. 

For the equation with the plus sign, (6.10) may  be considered as a case of (6.1), 

and therefore by  (6.3) and (6.7) we m a y  set x s = z ~ +  1. The minus sign cannot hold, 

since x is odd and the left-hand side would have to be factored into perfect sth 

powers differing by  2. We therefore have x 8 = z 2 + 1, and an elementary argument  in 

the field of Gaussian integers shows tha t  this has no non-trivial Solutions (see, e.g. 

[4], Th. II) .  
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L E M M ~  13. The equation 4 x ' - l = 3 y  ~', s * l ,  has none but the trivial solu- 

tion Ixl=lyl=l. 
P R O O F :  We m a y  again assume t h a t  s is a prime. I f  s----2, the  first  m e m b e r  

can be f ac to red ;  the  only factor ing compat ib le  modulo  3 is 2 x - 1  = u  a, 2 x +  1 = 3v a, 

so t h a t  3 v a -  u a = 2. This equat ion  has none  bu t  the t r ivial  solution I u [ = Iv ] = 1 

(see [16]). 

We then  assume t h a t  s is odd. We rewri te  the  equat ion  as 

1 + 3 Y ~ = 4 x S ;  ( Y = y ' ) .  

B y  congruence modulo  8 i t  follows t h a t  x mus t  be odd. A result  of L junggren  ([18]) 

then  implies tha t ,  if there  are non- t r iv ia l  solutions, s mus t  divide the  class n u m b e r  

of K ( ] / ~ )  (K the  rat ionals) ,  bu t  this class n u m b e r  is 1. 

6.2. (~asos p = i ,  p = 3 .  The  equat ions  for  p - - 1  are (4.2). I f  q is even bu t  

q * 2 ,  L e m m a  12 implies t h a t  there  is none bu t  the  t r ivial  solution n = m =  1. The  

remaining  case is p - -  1, q = 2, which has, according to  Theorem 1, an infinite n u m b e r  

of solutions. In s t ead  of using (4.2), we ob ta in  direct ly  f rom n ( n + l ) / 2 = m  ~ the  

equat ion  ( 2 n + l ) 2 - 8 ~ n 2 = l .  We have  then  f rom (6.1), (6.2), (6.3) the  resul t :  

n = ( x 2 r - 1 ) / 2 ,  m=Y2r/2  for  r = l ,  2 . . . . .  

As for  p =  3, i t  is disposed of b y  R e m a r k  I V ;  the  cases wi th  q even bu t  double 

an  odd n u m b e r  were a l ready discussed in Section 5; the  cases wi th  q a mul t ip le  of 

4 are covered b y  the  above  resul t  for p = 1. 

6.3. (~asos w i t h  p oven.  F r o m  the da t a  in the preceding section, (4 .4) implies ,  

for  T = 2 , 4 , 6 , 8 ,  q - ~ 2 :  

n=]cl x2 n + l =k~y ~ 2 n  + l=kadaz  ~ Qp(n(n + l ) )=badat  2. 

For  the  case p = 10 see below. 

Case p = 2. He re  ]c 1 ]c~]c a = 6. B y  means  of congruences modulo  3 we el iminate  

all the  cases except  

(i) ]Cl = 1, ]C~ -- 2, ]c a = 3 ; (if) ]el = 6, ]c2 -- ]ca = 1. 

I n  ease (i) we square the  th i rd  of the  above  equat ions  and  obtain ,  subs t i tu t ing  

the  first  and  the second, 9 z 4 - 1 = 8 ( x y )  ~. According to L e m m a  11, this equat ion  

has  none bu t  t r ivial  solutions, which yield n = m  = 1. 
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I n  ease (ii) i t  follows t h a t  z 2 - 2 y  ~ - 1  and therefore by  (6.1), (6.2), (6.3) we 

m a y  set 
Z = X 2 r + l  = X2r -~ 2 Y2r  = 2 Y2,+z-  X2r+2  

(6.11) 
Y = y2r+l = x2r q- y2r = X2r+2 - Y2r +2. 

On the  o ther  h a n d  we mus t  have 6x2=z~-y  ~ and using (6 .11 ) th i s  m a y  be 

wri t ten 6x2=(z-y)(z+y)=y2r.y2r+~. Since bo th  factors  in the  r ight -hand member  

are even, x mus t  be even, and we have 

6 (x/2) 2 = (y2~/2) (y2r§ (6.12) 

B y  (6.5) the  factors  in the  r igh t -hand  member  are relat ively prime, and using (6.6) 

we see t h a t  t hey  mus t  be 6 u  ~, v 2 in some order,  where u v=x/2 .  Set y2~=2v ~ 

(either s = r  or  s = r + l )  and subst i tute  in (6.3); we find x ~ s - l = 8 v  4. There are 

only two ways  of factoring this compatible  with the  fact  t h a t  x2, is odd. I f  

x2s=4a4 + l = 2b4-1 

we obtain  b 4 - 2 a 4 = l  which has only the tr ivial  solution a=O (Lemma 1 2 ) a n d  this 

implies the  excluded value n = 0 .  Thus x 2 s = 2 a  4 + 1 = 4 b  a - 1  and a a - 2 b  4 = - 1 ,  

whence by L e m m a  12 [ a I = [ b [ = l ,  and x2, = 3. This implies s = 1. I f  now r = s - 1 = 0, 

we should have n=6x2=yoy2=O, which is excluded. Therefore r = s = l ,  and 

n = Y 2 Y 4  = 24. 

We find $2(24 ) = 4 9 0 0  = 702, so t h a t  m= 70. This is thus  the only non-tr ivial  solution, 

Since 70 is no t  a perfect  power, the equat ion for p=2,  q even bu t  q * 2  has none 

bu t  the  trivial  solution. 

(Note: Lucas  [22] derived the  final a rgument  f rom a theorem of G~rono [10]. 

Cf. also [20]. Al though Lucas  solved the  case p = q = 2  completely in [22] (cf. also 

[19]) we have included a proof, main ly  since the  a rgumen t  will be used again.) 

Cases p = 4, 8. By  appropr ia te  congruences we can eliminate all the combinat ions  

of values of kl, k~, ka, k 4, d 3 except  k l=da=l ,  k z = 2  , k3=3 .  This case coincides, as 

far  as the first three equat ions are concerned, with the case (i) for p =  2, and  thus  

n = m = 1 is the only  solution. 

Case p = 6. B y  appropr ia te  congruences, the  only cases remaining are :  

(i) k l = d  a = l ,  k 2 = 2 ,  k 3 = 3 ,  



T H E  E Q U A T I O I ~  I p + 2 p + 3 p + --" + n p  = m ~ 1 7 9  

which coincides wi th  case (i) for  p = 2  a n d  y ie lds  none  b u t  t he  t r i v i a l  so lu t ion  

n = m = 1 ; and  (ii) : k 1 = 42, k 2 = k a = d 3 = 1. Fo l lowing  the  reasoning  for  case (ii) of  

p = 2 ,  we obta in ,  cor responding to  (6.12), 

42 (x/2) 2 = (y2,/2) (y2,+2/2). 

This t ime  the  fac tors  in the  r i gh t -ha nd  m e m b e r  m u s t  be  e i the r  42 u z and  v 2, or  6 u  ~ 

and  7v 2, in some order ,  wi th  u v = x / 2 .  I n  t he  f i rs t  case the  p rocedure  is ident ica l  

wi th  t h a t  for p - -  2, b u t  leads  to  Y4 = 12 = 84u  2 which is absurd .  W e  m a y  thus  assume 

t h a t  y28= 12u 2 (r=s  or r + l  =s). S u b s t i t u t i o n  in (6.3) y ~ l d s  2 8 8 u 4 = x ~ 8 - 1 .  There  

are  on ly  four  ways  of fac tor ing  compa t ib l e  wi th  the  fact  t h a t  x2, is odd.  Of these,  

on ly  two are  possible  modulo  4 :  I f  x 2 s = 1 4 4 a a + l = 2 b 4 - 1 ,  we ge t  b 4 - 7 2 a a = l ,  

which m a y  be  t r ans fo rmed  to b4+ (6a2) 4 =  ((6a2)2+ 1) 2, which  is of t he  form xa+y4=z 2 

and  has  no non- t r iv ia l  solut ions (see e.g. [28], Ch. X I I ) .  This  leads  to  n= 0, which 

is excluded.  I f  x2s -- 16a  4 + 1 = 18 b 4 - l ,  we ge t  (3 b2) 2 - 8 a  4 --- 1. This  equa t ion ,  as  we 

have  seen in the  case p = 2 ,  l eads  to a = 0  or  a = l .  a = 0  impl ies  n = 0  which is 

excluded.  F r o m  a = l  we have  b = l ,  x 2 s = 1 7 ,  s=2.  Accord ing  as  r = s  or t - = s - 1  

we o b t a i n  ye=70=14v  2, y = 2 = 1 4 v  ~, b o t h  of which are  absurd .  Case (ii) therefore  

y ie lds  no add i t i ona l  solutions.  

Case p = 10. Here  we t ake  a d v a n t a g e  of the  pecul ia r  a lgebra ic  s t ruc tu re  of Q10 (Y) 

(see Sect ion 5). B y  means  of a p p r o p r i a t e  congruences,  al l  poss ible  cases for q=2  

are  e l imina ted  except  those  con ta in ing  the  equa t ion  n(n+ 1 ) -  1 =u 2. B u t  th is  m a y  

be wr i t t en  ( 2 n + l ) 2 - ( 2 u ) 2 - - 5 .  I t  follows t h a t  we mus t  have  

2 n + l + 2 u = 5 ,  2 n + l - 2 u = l ,  

whence n = 1, and  thus  n = m = 1 is the  on ly  solut ion.  

W e  have  thus  shown t h a t  for  p = 2, 4, 6, 8, 10 and  q = 2 the re  is no non- t r iv ia l  

so lu t ion  of (4.1) excep t  the  so lu t ion  n = 2 4 ,  m=70  for p = 2 .  F o r  q even b u t  q~=2 

there  is, b y  R e m a r k  I I  of Sect ion 4, none  b u t  the  t r iv ia l  so lu t ion  in a n y  of these  cases. 

6.4. G a s e s  w i t h  p o d d  >_5. W e  set  q = 2 q ' .  Since, for t he  va lues  of p con- 

s idered,  did 2 is squarefree,  and  4 is the  only  square  fac tor  of /c(p), we m a y  set  

k ( p ) = 4 k '  and  the  reasoning which led to  (4.12} yields  t he  equa t ions  

n(n+ l ) = 2 ( x y )  q' Qv(n(n+ l ) ) = k ' . t  ~q'. (6.13) 

The  f irst  of these  equa t ions  is precisely  the  equa t ion  we ob t a in  in  the  case p = 1, q = q'. 

Solvab i l i t y  of this  case is thus  a necessary  condi t ion  for  t h a t  of (6.13). The  resu l t s  
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of the discussion of the case p = 1 in this section and the preceding one may  thus 

be applied (see Theorem 2). 

(Note: Simple conditions can be given for p odd in order tha t  (6.13)should 

hold; we shall not,  however, go into this matter) .  

We are, however, uble to prove more than what  has just been stated, a t  least 

for p - - - 5 , 7 , 9 .  

Case p = 5. The case q'= 1 has, according to Theorem 1, an infinite number  of 

solutions. By (4.14), (6.8) and (6.9), all the solutions are given by  

n=(x-1) /2 ,  m=y(3y2 + l)/4 

where x, y are given by  (6.9). 

For q':v 1, we substitute the first equation of (6.13) in the second and obtain 

4(xy )q ' - l=3 t  2q', which by  Lemma 13 has none but  the trivial solutions for all q'; 
this implies n = m = 1. 

Case p = 7. We shall only examine the case q'= 2 in addition to the general 

remarks made above. I n  the second equation (6.13), set n(n+l)=2z,  and we obtain 

2 ( 3 z - 1 ) 2 +  l=9t  4, as is easily verified from the data  in Section 5. Since t must  be 

odd, 3 z - 1  is even, say 3 z - l = 2 w .  Thus 9 t 4 - 1 = S w  ~, and by  Lemma 11 this has 

none but  the trivial solution, which yields n = m = 1. 

Case p=9. Consider q'= 1. Since Q,(y) - (y-1) .S(y) ,  the second of equations 

(6.13) splits into 
n ( n + l ) - l = k ' a u  2 S(n(n+l))=k~'v ~ 

where k'sk'a'= k'= 5. I f  k'3 = 1, the first of these equations may  be writ ten 

(2n+ l) ~ -  (2u)2 = 5, 

which clearly implies n = l ,  and hence m = l  also. I f  k~=5,  n ( n + l ) - - I  (mod5) ,  

and hence f=S(n (n+l ) ) - -2  (rood 5), which is absurd. 

The results obtained in these cases are completed by a reference to Remark  I I  

in Section 4. 

7. Summary of  Particular Cases and Conjectures 

The results of the two preceding sections are collected in Theorem 2. The classes 

of primes Lh, R,  Bs, As, C8 are defined in Section 5. I f  u is an integer, [u] will 

denote the class of all multiples of u, and [u]* the class of all multiples of u ex- 



THE EQUATION 1 ~ + 2 ~ § 3 ~ + ... + n p = ~q 181 

clusive of u itself. If  U is a certain class of integers, [U] will denote the class of 

all numbers that  are multiples of at  least one integer in U. 

THEOREM 2. All the solutions of the equation S~(n)---m ~ are given in the /ol- 

lowing cases : 

a) I /  q= 1 or i /  p = 3 ,  q = 2 ;  every value of n provides a solution. 

b) I f  p = l ,  q = 2  or i/ p = 3 ,  q=4,  the number of solutions is infinite; they are 

all given by n = (xsr - 1)/2, m = y~r/2, where x~ + y~ V2 = (1 + I/2)', r = 1, 2, 3 . . . . .  

e) I f  p = 5 ,  q=2 ,  the number ol solutions is in/inite; they are all given by 

n = ( x - 1 ) / 2 ,  m = y  (3y2 + l ) /4 ,  where x + y ~ / 6 = ( 3 +  V6) (5+ 2 ~/6) s, s=O, 1,2 . . . . .  

d) I f  p = 2 ,  q=2 ,  the only solutions are n = m = l  and n = 2 4 ,  m = 7 0 .  

e)  I n  the following eases the equation has none but the trivial solution n = m =  1: 

q odd q even; q=2q" 
P (q belongs to :) (q" belongs to :) 

1 [3] U [5] U [R N B 2 N C2] [1]* 

2 [3] U [5] U [R N B 2 N C2] [1]* 

3 [3] U [5] U [R N B 2 N C2] [2]* U [3] U [5] U [R N B 2 N C 2] 
6 

4 [ 3 ] U [ 5 ] u [ R N B  2 N C  sN U La] [1] 
1 

5 [3] u [5] u [R n A s n A 3 n C s] [1]* 
6 

6 [3] U [5] lJ [R N B s N C 2 N U Lh] [1] 
1 

6 

7 [ 3 ] U [ 5 ] u [ R N A  sNA 3 N C  2N U L a ]  [ 2 ] U [ 3 ] U [ 5 ] U [ R N B  sNC~] 
1 

6 

8 [ 3 ] U [ 5 ] u [ R n B  s n C  sn O L h ]  [1] 
1 

6 

9 [3] U [5] U [R N A s N A 3 N .,45 N C s N U Lh] [1] 
1 

10 [3] u [5] [1] 

11 [3] U [5] U [R N A,. N A 3 n .4 5 N C s N L1] [2]* U [3] U [5] U [R N B s N Cs] 

Table 1 contains those primes from 7 to 997 which belong to each of the classes 

mentioned in Theorem 2. The table is based on the data in Appendix II .  

I t  is interesting to find out what lowest bound we may obtain for the number 

of solutions in the cases not covered by Theorem 2, by means of an adequate use 

of Theorem A. In  this connection it is convenient to sharpen Domar's result by 

using his own discussion of formula (8) in his paper [9]: I /  we exclude a possible 

solution ]x]= l Y] ~ 1: the equation I A x q -  B yql= 1 has at most one solution in positive 
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integers /or q >_ 7. Application of this s ta tement  yields the following bounds for the 

number  N (p, q) - 1 of non-trivial solutions: (q >_ 7) : 

p 1 2 3 4 5 6 7 8 9 10 11 

q odd 1 2 1 7 2 7 3 7 4 13 9 

q even 0 0 1 0 0 0 1 0 0 0 1 

I t  would seem that ,  except for p = 4 ,  6, 8, 10, these bounds cannot be improved by  

the use of Domar ' s  result alone. 

The results obtained in this paper  give rise to the following conjecture: 

C o ~ J ~ c T U R E : Disregarding the cases with an in/ ini te  number o] solutions 

(speei/ied by Theorem 1),  the only non-trivial solution of the equation S~, ( n )=  m q 48 

p = 2 ,  q =  2, n = 2 4 ,  m =  70. 

TABLE 1 

R N B2 N C ~ 

7 11 13 17 19 23 29 4I  43 47 53 6I 71 79 83 

97 I07 109 113 137 139 163 167 173 179 181 191 193 197 199 

211 227 229 239 241 251 269 277 281 313 317 331 349 359 367 

373 383 397 419 443 449 457 479 487 499 503 509 52I 563 569 
571 599 64i  643 661 701 709 719 733 739 743 769 787 823 829 

853 857 859 863 883 907 941 947 967 977 983 991 997 (88 pr imes) .  

6 

RNB~NC~NU Lh 
1 

7 11 13 17 19 23 29 41 43 47 53 61 71 79 83 

97 107 109 113 137 139 163 173 179 181 191 193 199 211 229 
239 241 251 269 277 281 313 331 349 359 367 373 383 397 419 

443 449 479 487 499 503 509 569 571 599 641 643 661 709 719 

733 739 743 769 787 823 829 853 857 863 883 907 941 947 977 
997 (76 pr imes) .  

R N A2 N Aa N C~ 

17 19 29 41 43 53 61 97 113 137 139 163 173 193 197 

211 241 269 281 317 331 349 373 397 449 457 499 509 521 569 

571 641 643 66I 701 739 769 787 853 857 859 883 907 941 977 
997 (46 pr imes) .  

6 

R N A 2 N A  a N C 2 N U  Lh 
1 

17 19 29 41 43 53 61 97 113 137 139 163 173 193 211 
241 269 281 331 349 373 397 449 499 509 569 571 641 643 661 

739 769 787 853 857 883 907 941 977 997 (40 pr imes) .  
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6 
RNA2 NA aNA sNC~N U Lh 

1 

17 29 41 43 53 61 97 113 137 163 173 193 241 281 349 

373 397 449 509 641 643 661 769 787 853 857 883 907 977 997 

(30 primes).  

29 41 53 

R NA 2 NA a NA 5 N C 2 N L  1 

113 173 281 509 641 (8 primes).  

N o t e  : Total  n u m b e r  of pr imes in interval  considered:  165. 

Regular  primes among  these :  100. 
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Appendix I: P r o o f  o f  L e m m a s  3 and 4 
t 

LEMMA 3. Let P be a prime, n an arbitrary positive integer, and set n= ~ n~ P ~, 
o 

where 0 <_ n, <_ P -  1. (The n, are the digits o/ n written to the base P, and are there[ore 

uniquely determined') Then ( n ) ~-0 (m~ /~ all integers m such t h a t m ( P - 1 )  

t 

O < m ( P - 1 ) < n  i/ and only i/ ~ n~<_P-1. 
0 

t 

PROOf: 1. Let  r<_n be a non-negative integer, and set r =  ~ r~P ~, where 
0 

0_< r~ _< P - 1 .  I t  is well-known and easy to prove (e.g. by  application of Lcgendre's 

rule for the exponent of a prime factor in a f a c t o r i a l ) t h a t  ( : ) ~ 0  (mod P ) i f  and 

only if r~_<n~ for all i. 

2"Assume tha t t he reex i s t san in t egerm 'O<m(P- l )<n ' such tha t (  n ) m ( P - 1 )  ~ 0  

(mod P). Set r = m ( P - 1 ) .  I t  follows from par t  1 of the proof tha t  r~<_n~ for all i. 

Since moreover we have assumed r < n, equality cannot hold for all i, and therefore 

we obtain 
t t 

r, < ~ n,. (A.1) 
0 0 

On the other hand, since P - ~ I  (mod P - l ) ,  we have 

t t 
r~=-- ~ rtP~=m(P-1)~---O (mod P - l ) .  

0 0 

Since, however, we have assumed r >  O, this implies 

t 
~ r , > P - 1  
0 

(A.2) 
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t 

and combining (A.1) and (A.2) we finally obtain Y. h i > P - l ,  and this completes 
o 

one-half of the proof. 
t 

3. Assume now that  ~ n~ > P - 1 .  Then there exists a "section" of the sequence 
0 /r 

of digits, say n i . . . . .  nk, such that  ~ n ~ > P - 1 ,  and such that  this inequality does 
i 

not hold for any sub-section. Since we have n i _ < P - 1  for every i, this section 

cannot consist of a single element. We now set 

Hence 

,)) m 0 = P t .  1 +  nj+, ~ * 0 .  (A.3) 

1+  ~ n j + ~ ( P ~ - l )  = P - l -  ~ n, p t +  ~ n,P' .  (A.4) 
0 i + t  / t+1  

m o (P - 1) = p l .  ( p  _ 

k /r 

Now by assumption ~ n, > P -  1, but  ~ ni _-_ P -  1, and therefore 
t i + 1  

k 

P -  l - n 1 <  ~ n t < - P - 1 ,  
t+1 

whence we conclude 
k 

0 < P - l -  ~. n~<nt<_P-1 .  (A.5) 
t+1 

If we finally set r = m o ( P - 1 ) ,  it follows on inspection of (A.3) and (A.5) and from 

the fact tha t  the determination of the digits of r is unique, that  

k 

r s = P - 1 -  ~ n t < n j ;  ri=n~ ( i = ~ + 1  . . . . .  k); 
t+1 

and r~ = 0_<n~ otherwise. Since we now have r~ _<n~ for all i, part  1 of the proof 

implies tha t  m 0 ( P - 1 )  ~ 0 (mod P) ;  and since the inequality rj < nj is a strict one 

and since m 0 * 0  by (A.3), we conclude that  0 < m 0 ( P - 1 ) < n ,  which completes the 

proof. 

LEMMA 4. Let n be a positive integer such that n - - 2  (mod 4). I f  P is any odd 
t ( P )  

prime, set n =  ~ ntp P ~, where O < n t ~ , < P - 1 .  I[ both the /ollowing conditions are 
0 

satis/ied 
t (P)  

a) Either n=--2 (mod 3) or ~ n~8<_2 
0 

t.(.P) 

b) Nor all odd primes P > 3, ~. hie -< P - 1. 
0 

then n must be one o I the numbers 2, 6, 10, 30. 
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P R O O f :  I t  is obvious that  the numbers mentioned satisfy a) and b). We shall 

now replace condition b) by the weaker one that  the inequality be verified for 

P =  5, 7, 13. 

1. Since n is even and P is odd, 

t(P) t(P) 

0 ~ n =  ~ n t e P i ~  ~ nte (mod 2). (A.6) 
o 0 

If P-----1 (rood 4) we have 

and if P = - I  (rood4) 

t (P) 

2-----n------ ~ nip (mod 4) (A.7) 
o 

t ( P )  

2 ~ n ~  ~ ( - 1 )  inte (mod4).  
0 

(A.S) 

Applying 2. Applying condition b) and (A.7) to P = 5  we obtain n = 5  c + 5  a. 

condition a) and (A.8) to P = 3 we distinguish the following three cases: 

Case I : n = 2  (rood 3) 

Case 11: n -~ l  (mod3) ;  then n = l + 3  a, a * 0 ,  a = 0  (mod2)  

Case 11I :  n ~ O  (m'od 3); then n = 3 a + 3  b, ab*O,  a----b (mod 2). 

3. Case I .  Since 5c+5a=---2 (mod 3), both e and d are even. Therefore n ~ 0  

(mod 7). Application of condition b) and (A.6) to P =  7 and the fact tha t  we are in 

Case I yield n = T a + 7  n. But  then n ~ - l , 2  (mod 7). In the latter case, n = 2 .  

Excluding this case from now on, we have n = l + 7 n ~ l  (mod7).  Therefore 

c -~d=2  (rood 6), and in particular cd*O,  so that  n-~0 (mod 5). Therefore h ~ 2  

(mod 4). On the other hand the above condition implies n = S C + 5 a ~ - 5  (mod 9), so 

that  h----2 (mod 3). Thus finally h--=2 (mod 12). This implies n--=ll  (rood 13), which 

contradicts condition b) and (A.7). 

4. Case I I .  Since 5c+5a~-1 (mod 3) it  follows that  c and d are odd, and 

therefore n ~ 3 ,  10, 0 (mod 13). On the other hand, 1 + 3 a ~ 2 ,  4, 10 (rood 13). Thus we 

must have n--=10 (rood 13). I t  now follows from condition b) and (A.7) for P =  13 

tha t  n = 10. 

5. Case I I I .  From 5 c + 5 n ~ 0  (rood 3) it follows tha t  c ~ d  (rood 2), and, say, 

e is even, d is odd. 

Since a==--b (rood 2) it follows that  n ~ 0  (mod 7). Analysis of the combinations 

of values modulo 6 of  c (even) and d (odd) which make this possible then shows 

that  we must also have n $  0 (rood 9). This implies tha t  a, b cannot both be _> 2. 
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Since neither can be 0 in Case I I I ,  one a t  least, say a, is 1, and consequently b 

also is odd. 

I f  b ~ l  (rood 6) it follows tha t  n ~ 6  (mod 7), and by  condition b) for P = 7  i t  

follows tha t  n = 6. 

I f  b ~ 5  (mod 6) it follows tha t  n--=12 (rood 13), which contradicts condition b) 

and (A.7) for P =  13. 

Therefore, in the remaining discussion of this case, b-~3 (rood 6), and n ~ 2  

(mod 7), n-------4 (mod 13). 

We now recall tha t  c is even and d odd. I f  c = 0 ,  then n = l + 5 d ~ 6 ,  9 (mod 13), 

which contradicts the preceding. Thus c~:0 and n = 0  (mod 5). I t  follows tha t  b ~ 3  

(mod 4), and hence n=3+3b------14 (mod 16). 

Application of condition b) and (A.6) to P = 7  and the fact  tha t  we are in 

Case I I I  and tha t  n - - 2  (mod7)  yield n = 2 + 7 ~  k. Then n~-14 (mod 16) 

implies tha t  g, h, ], k are all odd. I t  is easy to verify tha t  there is then no com- 

bination of these numbers which will make n~-0  (mod25).  Therefore, since c _ 2 ,  

we must  have d = l .  Taking into account b ~ 3  ( m o d 6 ) w e  may  set b=3b'; and 

since c=2c' is even we must  have n = 3 + 3 a b ' = 5 + 5  ~c'. Therefore, setting x = 3  b', 

y = 5  c' we have x 3 - y 2 = 2 ;  but  this diophantine equation has the unique solution 

x = 3 ,  y =  + 5 ,  as is well known (see, e.g., [28], Ch. XII ) .  Therefore b'=c'= 1, and 

n = 30. The proof is thus complete. 

Appendix II: Data concerning Primes 

Of the 165 primes between 7 and 997, 65 are irregular: 

37 59 67 101 103 131 149 157 233 257 263 271 283 293 307 

311 337 347 353 379 389 401 409 421 433 461 463 467 491 523 

541 547 557 577 587 593 607 613 617 619 631 647 653 659 673 

677 683 691 727 751 757 761 773 797 809 811 821 827 839 877 

881 887 929 953 971 

The table in this appendix contains the following information concerning the 

regular primes q between 7 and 997: 

a) The values of h such tha t  qELh,  for h < 6 .  I f  there is no such value, the 

least h is given in brackets. 

b) The fact whether q belongs to B 2, A 2, A 8, A s (indicated by x in the ap- 

propriate column). 
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Note: D6nes [6] s tates  t h a t  2 belongs to  exponents  35 modulo  281 and 281 

modulo  563, whereas ac tua l ly  2 belongs to  exponents  70 modulo  281 and  562 modulo  

563. I n  par t icular ,  [6], Th. 9 is also va l id  for 281. 

q h B a  A ~  A 8 A s q h B 2 A 2 A 8 A 5 

7 2 3 5  x x x 

11 1 3 4  x x 

13 2 3 5 6  x x x 

17 3 4 x x x x 

19 5 6 x x x 

23  1 3 6  x x 

2 9  1 4 6  x x x x 

31 5 6 x 

41 1 x x x x 

4 3  2 5 x x x x 

47  3 x x 

53  1 x x x x 

61 3 6 x x x x 

71 4 6 x 

73  2 3 6  x x 

79  2 x x 

83  1 3 6  x x x 

89  1 6 x x 

97 2 5 x x x x 

107  3 4 x x x 

109  5 x x 

113  1 x x x x 

127  2 x x 

137 3 4 x x x x 

139  2 6 x x x 

151 3 5 x 

163  2 x x x x 

167  (7) x x 

173  1 3 x x x x 

179  1 4 x x 

181 3 5 x x x 

191 1 6 x 

193  2 5 x x x x 

197  (9) x x x x 

199  2 6 x x 

211  5 x x x 

2 2 3  6 x x 

2 2 7  (12) x x x 

2 2 9  6 x x x 

2 3 9  1 4 x 

241  3 5 x x x x 

251  1 x x 

2 6 9  4 6 x x x 

2 7 7  2 3 x x 

281  1 6 x x x 

313  3 x x 

317  (13) x x x 

331 3 x x x 

3 4 9  5 x x x 

3 5 9  1 x 

367  3 5 x x 

373  2 3 x x x 

3 8 3  6 x 

397  3 x x x 

4 1 9  1 x x 

431  1 4 

4 3 9  5 x 

4 4 3  1 3 x x 

4 4 9  4 x x x 

4 5 7  (15) x x x 

4 7 9  4 6 x 

4 8 7  2 5 x x 

4 9 9  2 x x x 

5 0 3  3 6 x 

5 0 9  1 4 x x x 

521  (16) x x x 

5 6 3  (7) x x 

5 6 9  6 x x x 

571  5 x x x 

5 9 9  4 x 

601  3 5 6 

641  I 3 x x x 

6 4 3  6 x x x 

661  3 6 x x x 

701  (9) x x x 

7 0 9  2 x x 

7 1 9  1 6 x 

733  5 x x 

739  2 x x x 

7 4 3  1 x 

769  5 x x x 

7 8 7  3 x x x 

x 

x 

x 

x 

x 

x 

x 

x 

x 

x 

x 

x 

x 

x 

x 

x 

x 

1 3 -  563801.  Acta  Ma~hematica. 95. I m p r i m 6  le 4 m a i  1956. 
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Table  (count . )  

JUAN J .  SCHAFFER 

q h B~ A 2 A a A 5 q h B~ A 2 A a A 5 

823 5 x x x 

829 5 6 x x 
853 2 3 x x x x 

857 4 x x x x 

859 ( l l )  x x x 

863 3 6 x x 
883 2 5 6 x x x x 
907 3 x x x v 

911 1 

919 2 x 

937 3 5 x x 
941 3 4 x x x 

947 3 4 x x x 
967 (8) x x x 

977 4 x x x x 

983 (7) x x 

991 (9) x x 
997 2 x x x x 
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