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1. Introduction and r6sum6 o f  results 

Equat ions  of the form 

(r(x)y ' ) '  + K ( x ) y  = 0, (1) 

where r (x) > 0 and  K (x) are real cont inuous funct ions on - c~ < x < o0, are classified, 

by  the behavior  of their real solutions, as (+)-osc i l la tory  or non-oscil latory.  In  the first 

ins tance one non- t r iv ia l  (not ident ical ly zero), and  thereby every, solut ion vanishes a t  

arbi t rar i ly  large abscissas; in the second ins tance every non- t r iv ia l  solution is non-vanish ing  

for sufficiently large abscissas. A special ins tance  of non-oscil lat ion is the disconjugate case 

in which every (non-trivial)  solution has at  most  one zero on - c~ < x < co. I t  is known 

tha t  an equat ion of the form (1) is disconjugate if and  only if there is a solution which is 

everywhere positive. 

Our principal  interest  concerns the s i tua t ion where r ( x )=  1 and K (x) = - a  + bp(x) .  

Here (a,b) are real parameters  and  p (x) is a real almost  periodic funct ion.  We shall note,  

in  this case, t ha t  non-oscil lat ion and  disconjugacy are coincident. Also we shall f ind tha t  

the domain  D in the (a,b)-parameter plane, for which the corresponding equat ions are 

disconjugate,  is closed and  convex. 

We generalize the theory of Hill 's  equat ion (in which p(x )  is periodic) but ,  of course, 

wi thout  using the Floqnet  representat ion,  which is not  applicable here. For  example, 

inter ior  to the disconjugacy domain  D there is a basis of solutions each of which has an 

almost periodic logarithmic derivative.  For  the bounda ry  of D the analysis is more corn- 
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pl ica te  since here we can d i sp lay  an example  of an app rop r i a t e  equa t ion  having  no (non- 

t r iv ia l )  bounded  solut ion f rom the  ana logy  wi th  Hi l l ' s  equa t ion  one might  expec t  an  al- 

mos t  per iodic  solut ion in such a case. 

F ina l l y  we inves t iga te  the  effect on D of pe r t u rba t i ons  in the  funct ion p (x). 

2. The d i sconjugacy  d o m a i n  for equat ions  w i t h  a lmost  periodic coeff ic ients  

D E F I N I T I O N .  The diseonjugacy domain D o/ 

(r(x)y') '  + ( - a + bp(x ) )y  = 0, (2) 

r (x) > 0 and p (x) being real continuous/unctions on - c~ < x < c~, is the subset o / the  real 

(a, b)-pIane wherein the corresponding equations are discon~ugate. 

We shall  p ic ture  the  b-axis hor izon ta l ly  and  the  a-axis  ver t ica l ly .  Of course, D depends  

on the  pa r t i cu l a r  funct ions  r (x) > 0 and  p (x), b u t  D a lways  conta ins  the  half-axis  a >_ 0, 

b = 0. The set of poin ts  (a, b) for which the  corresponding equat ions  (2) are  osci l la tory  is the  

osci l lat ion domain  0 and,  when r (x) - 1, th is  a lways  contains  the  half -axis  a < 0, b = 0. 

W e  shall  be in te res ted  in the  d i sconjugacy  domain  D, pa r t i cu l a r ly  for r (x) - 1, and  

for var ious  funct ions  p (x). Below are severa l  examples  ind ica t ing  some of the  possibi l i t ies  

for the  form of D. 

Example  1. l im p ( x ) =  + o %  lim p ( x ) = - o %  e.g. p ( x ) = x .  Here  D is the  half- 
x-~oo  x--~ oo 

a x i s a > _ 0 ,  b ~ 0 .  

Example  2. p (x) -~ O. Here  D is t he  hal f -p lane  a _> 0. 

Example  3. p (x) unbounded  above  (below). Here  D conta ins  no r a y  in b < 0 (in b > 0). 

However  D can conta in  an  inter ior ,  e.g., for p ( x ) =  x sin (x2), D contains  the  pa rabo l i c  

reg ion  a >_ b~/ 4. 

Example  4. sup p (x) = M > 0, inf p (x) = m < 0. Here  the  larges t  sec tor  
- o 0  < x < o ~  - o r  < x < ~  

conta ined  in D is bounded  b y  the  rays  a = M b ,  a > 0 and  a = rob, a ~ 0. If ,  say, M > 0 

and  m > 0, t hen  the  largest  sector  conta ined  in D i s  bounded  by  the  r ays  a = M b  >_ 0 and  

a = m b ~ O .  

Example  5. p(x)  = sin log+ Ix ]. Here  D is exac t ly  the  sector  in which  I bl _< a > 0. 

I n  s tudy ing  the  l inear  equa t ion  (1) one of ten uti l izes the  associa ted  R icca t i  equa t ion  

u' + u2/r (x) + K (x) = 0. (3) 

F o r  a solut ion y(x)  of (1), non-vanish ing  on some in te rva l  I ,  u ( x ) = y ' ( x ) r ( x ) / y ( x )  is a 

solut ion of (3) on I .  Moreover,  every  sSlution of (3) can be so obta ined .  W e  shall  be pri- 
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m a r i l y  i n t e r e s t ed  i n  the  case where  r(x)  ~- 1 a n d  l K ( x )  I < M2, for some real  b o u n d  M 2. 

T h e n  a so lu t ion  u (x) of the  R icca t i  e q u a t i o n  can  be def ined  for all  x if a n d  o n l y  if I u (x) [ < M 

everywhere .  

Also, i n  case r (x) - 1 a n d  I K ( x )  I < M2, the  b o u n d e d  so lu t ions  of the  R icca t i  e q u a t i o n  

fill a closed b a n d  wh ich  is e i ther  e m p t y ,  a s ingle  so lu t ion  curve,  or a h o m e o m o r p h  of 

0 _< y <_ 1, - ~ < x < c~ in  t he  p lane .  This  b a n d  is n o n - e m p t y  if a n d  o n l y  if t he  corre-  

s p o n d i n g  l inear  e q u a t i o n  (1) is d i scon juga te .  The  b a n d  is closed, t h a t  is t he  e x t r e m a l  u p p e r  

a n d  lower  so lu t ions  are easi ly  seen to  be b o u n d e d  since o therwise  each n e a r b y  so lu t ion  

u (x) w o u l d  somewhere  sa t i s fy  I u (x0) [ > M.  B u t  t h e n  I u (x) l wou ld  grow more  r a p i d l y  to 

i n f i n i t y  t h e n  a n  u n b o u n d e d  so lu t ion  of u ' =  - u  2 + M 2 a n d  so u(x)  wou ld  n o t  exis t  for 

all  real  x. 

L~M~aA 1. Let r(x) > 0 and K (x) be real almost periodic/unctions.  I / t h e  equation 

(r(x)y') '  + K ( x ) y  = 0 (1) 

is not disconjugate, then it is oscillatory at both +_ ~ .  

Proo/. Suppose  a n o n - t r i v i a l  s o l u t i o n  y(x)  of (1) van i shes  a t  two d i s t i n c t  po in t s  

x = ~ a n d  x =/~. Fo r  each ~ > 0 the re  are  a r b i t r a r i l y  large ~ - a lmos t  periods,  say  Tn, of r (x) 

a n d  K (x). Consider  the  t ra r / s la ted  e q u a t i o n s  

(r(x +T~)y') '  + K ( x  +T~)y  = 0 (ln) 

w i th  so lu t ions  Yn (x) wh i c h  a s sume  the  same  in i t i a l  va lues  a t  x = :~ as does y (x). Also the re  

is a so lu t ion  Yn(x) of (1) for which  Y~(x + r ~ ) =  y~(x). 

F o r  each ~ > 0 the re  exists  a n  e > 0 such t h a t  y~(x) van i shes  on  fl - ~ < x < f i  + $. 

T h e n  Y~(x) van i shes  a t  x = ~ +v~ a n d  also n e a r  fl + r n .  H e n c e  eve ry  so lu t ion  of (1) m u s t  

v a n i s h  on  ~ +~n  <-x _<fl +T~ + ~. Since the  t r a n s l a t i o n  n u m b e r s  rn are a r b i t r a r i l y  large 

(or small) ,  (1) is osci l la tory .  Q .E .D .  

LEMMA 2. Let the real continuous /unctions Kn(x),  r ~ ( x ) > 0 ,  n = l ,  2 . . . . .  on 

- c~ < x < co, converge uni/ormly on each compact interval to K (x) and r (x) > O, respec- 

tively. I / e a c h  equation 

(rn(x)y')'  + K n ( x ) y  = 0 (In) 

is disconjugate, then so is 

(r(x)y ') '  + K ( x ) y  = 0. (1) 

Proo/. Suppose  t h a t  a (non- t r iv ia l )  so lu t ion  y(x)  of (1) has  two  d i s t i nc t  zeros, x 0 

a n d  x 1. Consider  t h e  so lu t ions  yn(x) of (1,) wi th  in i t i a l  d a t a  y,  (x0) = 0, Y'n (xo) = Y' (x~). 

Le t  L be a co mp a c t  i n t e r v a l  c o n t a i n i n g  x 0 a n d  x 1 in  i ts  in te r ior .  F o r  suf f ic ien t ly  large 

n,  [ r~ (x) - r ( x )  I, IK~(x) - K(x)  l, a n d  I Y~(X) - y(x) l a re  smal le r  t h a n  a n y  p resc r ibed  
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e > 0 for x E L.  Therefore  y~ (x) van i shes  n e a r  x 1. B u t  th is  con t r ad i c t s  t he  hypo thes i s  

t h a t  (ln) is d i scon juga te .  T h u s  (1) is necessar i ly  d i scon juga te .  Q . E . D .  

LEMMA 3. Let  r~(x) > 0, K~(x) be real cont inuous  /unct ions  on - c ~  < x < c ~  and 

such that 

(r~(x)y') '  + K~(x )y  = 0 (i = 1, 2) (1~) 

are non-oscil latory at x = + oo. T h e n  [or each t on 0 < t < 1 the equation 

[ ( t r l (x  ) § (1 - t )r~(x))y '] '  + [ t K l ( x  ) + (1 - t ) K 2 ( x ) ] y  = 0 (lt) 

is  also non-oscil latory at x - + c<). 

Proo/ .  Le t  ui (x) = r i (x) y; (x ) /y i  (x), where  y~ (x) is a so lu t ion  of (li), pos i t ive  for x > x 0. 

T h e n  

u~ + u~/r~ (x) + K~(x) = 0 (i = 1, 2) (3~) 

for x > x 0. Consider  u t ( x ) =  t u l ( x )  + (1 - t )  u~(x). T h e n  we c o m p u t e  

- t(1 - t) (r2u I - rlu2) 2 " 
u~ + u~/[ tr  1 + (1 - t)r2] + [ t K  1 § (1 - t)K2] 

r l r  2 [tr 1 + (1 - t)re] 

T h u s  the re  is a so lu t ion ,  c o n t i n u o u s  for x > x, ,  of 

u' + u2 / [ t r l  + ( i  - t)r2] + [ t K  1 + (1 - t )g2]  = O. 

Therefore  (It) is non -osc i l l a to ry  a t  x = + c~. Q .E .D .  

On e  is o f t en  i n t e r e s t e d  in  t he  d i s con jugacy  d o m a i n  of the  t r a n s l a t e s  of e q u a t i o n  (1) 

or e v e n  of l imi t  t r ans la tes .  I f  K ( x )  is a lmos t  per iodic  a n d  x~ a re  real  n u m b e r s  such t h a t  

l i m  K ( x + x ~ ) = K * ( x )  u n i f o r m l y  on  - c ~ < x < c ~ ,  t h e n  one s ta tes  t h a t  K*(x)  is i n  
n-§ 

t h e  hu l l  H {K(x)} g en e ra t ed  b y  K ( x ) .  I t  is k n o w n  t h a t  K* (x) is a lmos t  per iod ic  a n d  

K ( x ) C H { K * ( x ) } ,  cf. [5, p. 73]. 

T H E O a E M  1. Let  r (x)  > 0 and p (x )  be real almost  per iod ic /unc t ions .  Then  the dis- 

conjugaey domain  D o[ 

( r (x )y ' ) '  + ( - - a  + b p ( x ) ) y  = 0  (2) 

is  a closed convex subset o[ the (a,b)-plane.  Furthermore ,  i [ / o r  real translates Xn, n - 1, 2, 

. . . .  l im  r (x + x~) - r* (x) > 0 and l i m p  (x + x~) = p* (x) u n i / o r m l y  on - oo < x < oo, then 
n-~-oo n-->r 

D* = D,  where D* is the discon]ugacy domain  o/ 

(r* (x)y ' ) '  + ( - a + bp* (x ) )y  = 0. (2*) 

Proo/ .  B y  t h e  above  th ree  l em m as ,  D is closed, convex  a n d  i ts  c o m p l e m e n t  is t he  

osc i l la t ion  d o m a i n  O. To  show D* = D we need  o n l y  show t h a t  D ~ D* a n d  t h e n  t he  

conc lus ion  follows f rom s y m m e t r y .  



OSCILLATION AND DISCONJUGACu FOR LINEAI~ DIFFERENTIAL EQUATIONS I03 

For a fixed (a,b) E D each solution of (2) and of 

(r(x § Xn)y')' § ( - a § bp(x § xn))y = 0 (2,) 

is d isconjugate .  Suppose  there  is a non- t r iv ia l  osc i l la tory  solut ion y* (x) of (2*). Then,  for 

suff ic ient ly  large integers  n, the  solut ion of (2~) hav ing  the  same in i t ia l  values  as y* (x) 

mus t  have  more  t han  one zero and  thus  be osci l la tory.  Bu t  this  con t rad ic t s  the  disconju-  

gacy  of (2~). Therefore  D c D*. Q.E.D.  

COROLLARY. The oscillation domain 0 o/ (2) is open, connected and its complement 

in the (a, b)-plane is D. 

Proo/. Since D and  0 are complemen ta ry ,  O is open. I f  (ao, bo)E O, then ,  b y  the  

S tu rm-P icone  compar ison  theorem,  so is (a 0 - $, b0) E O for e~ch ~ > 0. Moreover,  0 con- 

ra ins  t h e  sector  a < - I b ]  sup p(x).  Therefore  0 is connected.  Q.E.D.  

We nex t  proceed to  a de ta i led  s t u d y  of the  form of D. To s impl i fy  the  analysis  we 

t r e a t  only  the  case r(x) ~ 1 and  we often make  the  convent ion  t h a t  p(x)  has  mean  zero. 

F o r  the  equa t ion  (1) Le igh ton  [9] gives the  fol lowing cr i ter ion for oscil lation: 

dx/r(x)  = o o  and  f K ( x ) d x  =oo. 
Xo x o 

F r o m  this ,  if r (x) - 1 and  p (x) is real  a lmos t  per iodic  wi th  zero mean,  i t  follows t h a t  D 

lies in the  ha l f -p lane  a > O, for the  l inear  equa t ion  

y" § ( - a  + b p ( x ) ) y - O .  (L) 

B y  a re f inement  of Le igh ton ' s  tes t  one can show t h a t  D, except ing  the  origin,  lies in a > 0. 

THEOREM 2. Let p(x) ~ 0 be a real almost periodic/unction o/ mean zero. Then/or 

y" + ( - a  +bp(x ) )y  = 0 ,  (L) 

D, excepting the origin, lies in a > 0 

Proo/. W e  need on ly  show t h a t  for a = 0, b ~: 0 the  corresponding equa t ion  (L) is 

osci l la tory.  F o r  the  f irst  case assume f p(s)ds is unbounded .  Then  one can replace p(x)  
0 

b y  a func t ion  in H{p(x ) ) ,  which we shall  st i l l  denote  as p(x), for which ei ther  
g~ x 

l im sup b f p(s)ds = c~ or l im sup b f p (s) ds = ~ ,  [4, p. 48]. Then f rom a known resul t  
X ~  0 X - ~ - - ~  0 

[ l l ,  p. 138], (L) is osci l la tory.  
x 

F o r  the  second case assume t h a t  f p(s)ds is a lmos t  periodic.  Le t  v(x) be the  a lmos t  
0 
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periodic funct ion  with mean  zero and such tha t  v' (x) - p ( x ) .  Then  there exists a n u m b e r  
9J 

x 0 for which v (x0) = 0 and v(x)  = f p ( s ) d s .  Suppose tha t  the Riccati  equat ion  
2"11 

u' + u 2 + b p ( x ) - O ,  b~=O (R) 

has a bounded  solut ion.  Now if for every p * ( x ) 6 H { p ( x ) } ,  the corresponding Riccat i  

equat ion  (R*) had a un ique  bounded  solution, then  it  is easy to show (cf. Theorem 9 and  

remark  after Theorem 16) tha t  this solution u(x)  is almost  periodic. Bu t  this contradicts  

the fact tha t  the mean  of u(x) 2 is clearly zero. Thus we replace p(x) by  some func t ion  in 

H p  { (x)}, still called p(x) ,  for which there are two bounded  solutions, u 1 (x) and  u2(x ). 

X 3: 

Now ui (x) = u, (Xo) - f ui (s)2ds - b f p (s)ds. 
~t'o 2"0 

x 

Let lim [ui(x~) - f u~(s)2ds] = w~ 
2"--> -[- oo  2"0 

X 

and  lim [u~(x0) - fu~(s)2ds] = ~i, i = 1, 2. 
2 " ~  - -  ~r :i,. o 

I t  can be shown, cf. Theorem 14, tha t  l i m i n f  l u l ( x ) - u  2(x) l = 0  and  so ~ 1 = ~ 2 = : r  

~o 1 = (0 2 - co. Ei ther  ~ > 0 or eo < 0. Say to < 0 and  the other case is similar. Then  u~ (x) < 

x 

0)/2 - b f p (s) ds  = z (x) for large x > k. Bu t  z(x) is an almost  periodic funct ion with negat ive  
2"0 

mean and so 0 < exp f u~(s)ds < exp f z ( s )ds  < K ,  for some bound  K,  when x > k. There- 
k k 

fore the linear equat ion (L) has a basis of bounded  solutions on a half-axis and  thus  (L) 

is oscillatory. Bu t  this contradicts  the assumpt ion t ha t  (R) has a bounded  solution and  

so (L) is oscillatory. Q.E.D. 

T H E 0 R E M 3. The disconjugacy domain  D o/ 

y "  + ( - a + b p ( x ) ) y  - 0, (L) 

where p (x) I 0 is real almost periodic with mean zero, contains the sector bounded by the rays 

a = b sup p (x) > 0 and a = b inf p (x) > 0. This  is the largest sector belonging to D in  
- - o r  --  o r  ~ 

that no other rays are in D. The boundary o / D  is a continuous curve a(b) which is strictly 

monotone decreasing on b < 0 and increasing on b ~ O. 
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Proo/. Consider a r ay  a = kb > 0. Then  for such parameter  values (L) becomes 

y"  + b ( -  k + p(x) )y  = O. (Lk) 

Thus in  b > 0 the rays for which - k + sup p (x) < 0 yield disconjugate  equations.  I n  

b < 0, the rays which lie in D correspond to - k § inf p (x) _> 0. For  any  other ray, in 

a > 0 ,  b ( - k §  becomes positive for x on some interval .  Thus for large [b[, the 

corresponding equat ion is oscillatory and  such rays do not  belong to D. 

Tha t  the bounda ry  of D is a monotone  cont inuous  curve a(b) follows from the fact 

tha t  D is convex and  contains a sector. Q.E.D. 

COROLLARY. a(b )~  M b  /or b--> + c~2; a(b),,~ mb /or b - + -  cx3. 

If p (x) assumes its supremum M or its i n f imum m at  some point ,  t hen  one can fur ther  

est imate a (b). 

THEOREM 4. Let p(x) ~:0 be a real almost periodic /unction o/ mean zero and 

p ( x ) E C  (2). I /  p(Xo) = M  = sup p(x)  (or i/ p(x~) = m  = inf p(x)) then the domain 
- 0 r  < x < o r  - r162 < x < o o  

D /or the equation (L) has a boundary 

a ( b ) = M b - O ( b  ~) for b > 0  

(or a ( b ) = m b - O ( b � 8 9  for b < 0 ) .  

Proo/. Let p(xo) = M.  Then  for each h < p"  (x0) there is an e > 0 such tha t  p(x) > M 

§ �89 (x - x0) 2 on I x - x 01 < e. Take e small and  define k by  �88 (M - k) /h  = - e2. Consider 

the rays a = kb > 0 for k just  tess t h a n  M. Along such rays we have 

y " + b ( - k + p ( x ) ) y = O ,  b > 0 .  (L~) 

Fo r  these equations,  whenever  Ix - x 01 <- ~ 

b ( -  k + p(x)) > b ( -  k + M + ~ (X -X o )  2) >7~b8 (M - k ). 

N o w  if (7 b / 8 ) ( M  - k) > - hzr2/(M - k) on an in terva l  of length [ -  (M - k)/h] "~, our 

equat ion  (L) is oscillatory. Thus the curve 

7b 
(M - k) = - h z ~ / ( M  - k), a = kb 

lies in the oscillatory region of (L). Thus  a (b) lies above M b  - 2zeV - 2 h b / 7  for sufficiently 

large b > 0. A similar calculat ion holds for b < 0. Q.E.D. 

If  one assumes t ha t  p (x) has a higher order of "f latness" at  its m a x i m u m  then  still 

sharper asymptot ic  est imates for a(b) are possible. We indicate  the results only in  the 

extreme case where p(x) = M (or p(x) = m) on an  i n t e r v a l  
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THEOREM 5. Let p(x) 2z 0 be real almost periodic o/mean zero. Assume p(x) = M = 

sup p ( x ) ( o r p ( x ) = m =  inf p(x)) /orxonaninterval .  T h e n , / o r ( L ) , a ( b ) = M b - O ( 1 )  
oo < x < ~  - o o < x < ~  

/or b > 0 (or a(b) - m b  - 0 (1 ) /o r  b < 0). Thus the boundary curve a(b) is asymptotic to a 

line o/slope M (or slope m). 

Pro@ Assume p ( x ) - M  on IX-Xo]<_s. On the  r a y  a =kb,  b > 0 ,  we have  

y" + b ( - k  +p(x) )y  - 0 .  (Lk) 

But  b ( - k + p (x)) = b ( - k + 3:1) on Ix - x 01 < e. If  b ( - k + M) k ~2/4c2, (L) is osci l la tory.  

Thus for a = M b - J r 2 / 4 e  2, large b > 0 ,  we have  oscil lation. Because of i ts convexi ty ,  

a(b) is a symp to t i c  to  a line of slope M between a -  Mb and a = M b - ~ 2 / 4 s  2. The case 

for p(x) = m is similar.  Q.E.D.  

We now show tha t ,  in mos t  i m p o r t a n t  cases, the  b o u n d a r y  of D is t angen t  to  the  

b-axis a t  the  origin. The reby  D conta ins  the  m a x i m a l  sector  p rope r ly  in i ts interior .  

THEOREM 6. Let p(x) be real almost periodic and f p(s)ds also almost periodic. Then 
0 

the domain D o/equation (L) has a boundary a(b) which is tangent to the b-axis at the origin. 

Pro@ Let  y =exp(~ax)z, where y(x) is a solut ion of 

y " + ( - a + b p ( x ) ) y = O ,  a > 0 .  (L) 

Then one computes  

(exp (2 ~'ax) z ' ) '  + (exp (2 Vax) bp(x))z = O. 

Now a non-osci l la t ion t es t  of Moore [12] s ta tes  t h a t  equa t ion  (1) is non-osc i l la tory  

K(t) dt has an  osci l lat ion < 1  on O < x < o o .  F o r  

t 

x 

bf w(x) = 2 ~  a p(t)dt. 

0 

Let  w = osci l lat ion f p(t)dt. Then the  pa rabo la  (b /2~ /a )w-1  or a = (w2/l)b 2 lies in D. 
0 

Therefore a'(b) exists  a t  b = 0 and  there  equals  zero. Q.E.D.  

COROLLARY. In  case f p(s) is almost periodic, the domain D o/ (L) contains the 
0 

maximal sector (except /or the origin) in its interior. Also on the boundary curve a(b) o/ D, 

( - a + bp(x)) is somewhere positive. 
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Proo/.  Since a '  (0) = 0, t he  convex  d o m a i n  D c o n t a i n s  t he  r ays  a = mb,  a = M b, for 

b > 0, in  i ts  in ter ior .  T h u s  D con t a in s  the  r ays  a = M b -  ~, a = r o b  - s for some s > 0 

w h e n  I bl is large. Since ( - a  + bp (x ) )  is a r b i t r a r i l y  n e a r  to zero a t  po in t s  of the  e x t r e m a l  

rays ,  ( -  a + b p ( x ) )  becomes  pos i t ive  in  D. Q .E .D .  

F i n a l l y  we show t h a t  in  m a n y  i m p o r t a n t  cases D is s y m m e t r i c  in  t he  a-axis.  

T HE OREM 7. Let  p ( x )  be real almost  periodic wi th  Four ier  /requencies {~n}. I /  the 

{ ~ }  are rationally independent ,  then /or the boundary  curve a(b) o/ D /or the equation (L),  

we have the s y m m e t r y  

a (b) = a ( - b). 

Proo/.  Let  p(x )  h a v e  F o u r i e r  series ~ r162 ix=x where  ~n =$ -~ .  W i t h i n  the  hul l  
n= ar 

H { p  (x)}, convergence  of the  F o u r i e r  coefficients  of t r ans l a t e s  p (x + h~) impl ies  u n i f o r m  

convergence  on  - c~ < x < c~. Now one  can  select a t r a n s l a t e  h~ so t h a t  I ~t~h= - ,n I < (�89 

(mod 2 Jr) for n = 1,2 . . . . .  m. This  is possible  s ince t he  f requenc ies  are l i nea r ly  i n d e p e n d e n t  

over  the  ra t iona l s .  B u t  t h e n  we can  def ine  a sequence  of t r a n s l a t e s  p (x + h~) whose F o u r i e r  

coefficients  converge  to  those  of - p ( x ) .  Thus  - p ( x ) E H { p ( x ) }  a n d  D is s y m m e t r i c  in  

the  a-axis.  Q .E .D.  

3. Interior of the disconjugacy domain 

W e  shal l  n o w  cons ider  the  d i f fe ren t ia l  e q u a t i o n s  

y "  + ( - a  + b p ( x ) ) y - O  (L) 

for (a, b) in  t h e  in te r io r  of the  d i s con jugacy  d o m a i n  D. T h e n  the  assoc ia ted  R icca t i  e q u a t i o n  

u '  + u  2 + ( -  a + bp (x ) )  - 0  (R)  

has  so lu t ions  which  are de f ined  a n d  b o u n d e d  on  - c~ < x < c~. 

T H E O R E M  8. Let  

u '  + u 2 + K (x) + ~ - 0 (R~) 

have bounded solutions on - c~ ~ x <: c~ /or all smal l  ~, e > ~ ~ O, where K (x) is a real con- 

t inuous  bounded /unct ion  on - c~ < x < c~, I K (x) I < M2" Then  /or each such e there are 

in / in i te ly  m a n y  bounded solutions o/ R~ and these / i l l  a closed bounded domain  Be in  the 

(x ,u)-plane.  A l so  B~.~ lies interior to B~, i /  Q < ~2. The  upper  and lower bounded solutions 

uu (x) and uL (x), respectively,  o / R  0 are separated, that is, 

e 2 

inf  I uu(x) - uL (x) I >.~V(522~i ~ + 8ei > O. 
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Furthermore/or any two bounded solutions u 1 (x), u 2 (x) o / R  o which are not both the extreme 

solutions, we have 

l im [u l (x  ) - u 2 ( x ) [ = 0  as x---> + c ~  or as x---~-c~.  

Proo/. I n  the  (x, u)-plane each Ricca t i  equa t ion  RE defines a slope field. I f  ~ > el > 0 

then  the  slope of the  solut ion curve of RE. is more  nega t ive  t h a n  t h a t  of the  solut ion curve 

of R~,  th rough  each po in t  (x,u). If  Re, had  jus t  one bounded  solut ion on - ~ < x < c~, 

t hen  i t  is easi ly seen t h a t  Re2 would  have  no such bounded  solutions.  Thus each RE has 

a band  BE of bounded  solutions.  Each  band  Be is closed (by the  a rgumen t  jus t  preceding 

L e m m a  1 of Sect ion 2) and  so has  an upper  and  a lower solut ion curve for the  correspond-  

ing equa t ion  Re. 

I f  e~ > Q > 0, t hen  each solut ion curve of RE~ which in tersects  e i ther  ex t remal  solut ion 

of Rel mus t  become unbounded .  Thus B~ 2 lies in ter ior  to  BE,. 

Le t  ue(x) be the  solut ion of Re, ~ > 0 ,  t h rough  (x0, uu(xo) ) for some x 0. Then  on 

x > xo uu(x) > ue(x) and,  since ue(x) lies above  the  lower edge of BE, us(x) > UL(X). Now 

Uu(X) - -ue (x )=  f [--u~(t)  2§  ~§  
XO 

and  u~(x) - u E ( x )  <_ ( 2 M  2 §  for x_>x  o. 

Bu t  then  u~(x) - ue(x) = e(x - xo) §  

z 
where  Q (x )=  J [uE( t ) -  u~(t)] [ue ( t )§  u~(t)]dt. 

xo 

x 

Hence  I Q (x) l < (2 M 2 + ~) 2 M f (t - xo) d t 
~0 

o~ IQ (~)1 <- M (2M~ + ~) (x - xo) ~. 

A n  e l emen ta ry  calcula t ion shows t h a t  

u~(xo + h ) - u e ( x o  + h) >_~ > 0 ,  

where h - 2 M ( 2 M ~ §  ) and  ~ = h v - M ( 2 M 2 §  2. 

Thus u~ (x  0 §  0 §  Bu t  x o is a r b i t r a r y  and  so u ~ ( x ) - u L ( x ) > ~ ]  on 

- c~ < x < c~. I n  the  s t a t e m e n t  of the  theorem we t ake  e = e / 2 .  

Le t  u l(x) and  u s(x) be two bounded  solut ions  of R 0 and  say  t h a t  u l(x) < u 2(x) and  

t h a t  u 1 (x) is no t  the  lowest  bounded  solut ion of R0 (the o ther  cases are similar).  We  shall  
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show t h a t  

l ira l Uu (x) - u 1 (x)l = O. 

Let  u~ (x) be a solut ion of R o ly ing  below the  band  of bounded  solutions.  Then 

n ,  (x) - u~ (x) ~ u ~  (x) - u~ (x) 

~1 (x) - uL (x) u ~  (x) - uL ( x ) '  

for a cons tan t  ~t. l~ow a t  x = 0, choose u~ (0) so near  to UL(O ) t h a t  I)~1 is de te rmined  

smal ler  t h a n  a prescr ibed  posi t ive  number  ~. Now for each number  - N  2 there  is an 

abscissa ~ such t h a t  u~ ( x ) <  - . u  wherever  u~ (x) is def ined for x >2 .  Thus one call 

choose N 2 so large tha t ,  for x >2,  [u~ (x) - u~ (x ) ] / [u~  (x) - uL(x)] is a rb i t r a r i ly  near  + 1. 

But  this  means  t h a t  t he  ra t io  I [ u ~ ( x ) -  u~(x ) ] / [u l ( x  ) - u L ( x ) ]  t becomes smal ler  t han  $. 

Thus lira inf. ] u u (x) - u 1 (x) I = 0. 
x--> oo 

W e  comple te  the  proof b y  showing t h a t  the  ra t io  [u~r ( x ) -  u~(x)]/'[u~r ( x ) -  uL(x)] is 

mono tone ly  decreasing.  Bu t  the  de r iva t ive  of this  ra t io  is easi ly found to be 

[u~ (x) - u ~  (x)] [u~ (x) - u~ (x)]/[u~r (x) - u~ (x)] < 0. 

Therefore  the  ra t io  [u~ (x) - u 1 (x)]/[u 1 (x) - uL (x)] decreases mono tone ly  to zero as x ~ ~ .  

Thus ]im l u ~ ( x ) - u ~ ( x ) l = O .  Q.E.D.  
x-->~ 

W e  can now prove  an  i m p o r t a n t  resul t  concerning a lmos t  per iodic  solut ions for the  

Ricca t i  equa t ion  (R) in ter ior  to the  domain  of d isconjugacy.  We follow the  me thod  intro-  

duced  b y  F a v a r d  [5, Ch. 3]. Similar  resul ts  are ob ta ined  in [1] and  [7]. 

THEOREM 9. Let  Ul(X ) and u~(x)  be bounded solutions o/ 

u'  + u ~ + K (x) ~ O, ( R )  

where K (x) is a real almost periodic /unction. I /  u 1 (x) - u2(x ) > 5 > 0 on - er < x ~- cx~, 

then u 1 (x) and u 2 (x) are almost periodic and the modules o/ their /requencies are contained in  

the module o/ K (x). 

Proo/. Since u , ( x ) -  u2(x ) > 5 > O, u l ( x  ) is the  upper  bounded  solut ion and u2(x ) is 

the  lower bounded  solut ion of (R). F u r t h e r  we make  the  no ta t iona l  s impli f icat ion 

_ 

Consider a sequence of real  numbers  {h~} and  corresponding t r ans la tes  of u l(x),  t h a t  

is, u l (x  + h~). W e  shall  show tha t ,  for some subsequence,  u l (x  + h~) converges un i formly  

on - cx~ < x < oo. This shows t h a t  u 1 (x) is a lmost  per iodic  and  a s imilar  a rgumen t  would 

hold for u~(x). 
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Since the  numbers  u l (0  +h~)  and  u2(0 + h~) are  bounded  sets, ex t r ac t  a subse- 

quenee (again called h.) for which ul(O+h~)--~r162 u2(O +h,~)-+fl. Also one can require  

K (x + h~)+K* (x) uni formly  on - oo < x < oo. 

Le t  u~' (x) and  u~ (x) be the  solut ions of 

u'  + u 2 + K *  (x) = 0 (R*) 

with  ini t ia l  condi t ions  u* (0) = ~r u~'(0) = ft. Then,  b y  the  cont inuous  dependence  of the  

solut ions of a di f ferent ia l  equa t ion  upon  the  coefficients, l im ul(x + h,~)= u~(x) and  
it-~cla 

lira u 2(x ~ ]z~) = u~ (x) where the  convergence is uni form on each compac t  in terval .  

Now inf ]u~(x + h~) - u 2(x + h,) I = 6 for each h,. I f  lug(.0) - u ;  (x0) I < 6 a t  

some po in t  x0, t hen  for large n, lul(xo+h~) u2(xo+h~)l<6,  which is false. Thus  

inf lug(x) - u~(x) l > 5 > O. Therefore  u~(x) is the  uppe r  bounded  solut ion of (R*) 

and  u~ (x) is the  lower bounded  solut ion of (R*). 

W e  need to  show t h a t  a subsequence  of u~ (x + h=) is Cauchy in the  metr ic  space of 

real ,  bounded ,  cont inuous  funct ions  CB( -- c~, oo). Suppose  the  cont ra ry .  Then there  exists  

> 0 such tha t :  for each N 1 there  are  integers  n 1 > N1, m I > ~/*1 and  some x 1 a t  which 

l ui  (x 1 + h~,) - u l (x  I + hm,)[ > s. Choose a sequence Nk-->oo and corresponding integers  

nk, mk > N k and  numbers  x k a t  which lul (xl + h%) Ul (Xl § hmk) I > s. 

E x t r a c t  a subsequence  k/ (again called k) for which u 1 (x k +h=z)-->x and  also 

ul  (xk +h~k)-->~4=~. Bu t  consider  the  t r ans la tes  u 1 (x 4, x k 4. h%) and  u 1 (x 4. x k 4. h~k ) 

and  again  ex t r ac t  a subsequence ki (again called k) so t h a t  K ( x  4-x k 4, h%)--> K* (x) and  

K ( x  ' ~* ~- x k 4"hmk ) - ~ K  (x). Then the  upper  bounded  solut ions of the  corresponding equat ions  

(/)*) and  (J~*) are  ~ '  (x) and  d~ (x), respect ively ,  wi th  ~" (0) = h and .~' (0) = ~. 

Bu t  IK((x  4. xk) -+ h%) - K((x  4. xk) + hmz) l<r] for any  prescr ibed ~1 > 0 and suf- 

f ic ient ly  large k. Therefore  K* (x) = K* (x) and  (/~*) is the  same as (R*). But  then  ~* (x) = 

-~* (x) and  ~ = ~ which is a cont radic t ion .  

Therefore u~ (x 4. h % ) ~  u~' (x) un i fo rmly  on - co < x < co and  u~ (x) is a lmost  periodic:  

F u r t h e r m o r e  for each sequence [h~} wi~h K ( x  + h~)~K*(x)  there  is a subsequence h~ 

such t h a t  u 1 (x-4 hn,)-->u*~ (x) with uniform convergence on co < x < co. Therefore we 

ac tua l ly  mus t  have  u~(x 4- h~)~U*l(X) uni formly  on - c ~  < x < co. Thus the  module  of 

frequencies of Ul(X ) is con ta ined  in t h a t  of K(x).  Q.E.D.  

Using Theorem 8, one can easi ly see t h a t  there  are no o ther  a lmost  per iodic  solut ions 

t han  u~(x) and  u 2(x). 
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We now relate our results directly to the linear differential equat ion (L) and describe 

a distinguished solution basis for this equation. 

T ~E O~E M 10. Let 

y"  + ( - a + bp(x) )y  = O, (L) 

with p (x) real almost periodic, belong to the interior o/ the disconjugacy domain D. Then there 

is a solution basis o/ the /orm 
x 

yu(x) = e ~x exp f ~u ( t )d t  
0 

yL(x)  - e - ~  e x p  f c L ( t ) d t ,  
o 

where ~ > 0 and ~u (x), ~L (x) are almost periodic /unctions o/ mean zero. Also 2 ~ is mean 

o/ the width o/the band o~ bounded solutions o/ the associated Riccati equation and i" [~u (t) + 
0 

~L (t)] dt is almost periodic. Thus Yu (x) Yn (x) and its reciprocal are almost periodic. 

Proo/. Let  uu(x) and uL(x) be the upper  ~nd lower almost periodic solutions of the 

Ricc~ti equation. Then define 

X 

y u ( x ) = e x p  f u u ( t ) d t  ~nd y L ( x ) = e x p  fuL( t )d t .  
0 0 

These are clearly linearly independent  and thus form the required basis. 

Now uu(x) = ~ + ~ ( x ) ,  uL(x ) - :XL + eL(X) where (~u(X), ~L(x) are almost  periodic 

with mean zero. The width of the band  B of bounded solutions of the l~iccati equat ion is 

W 
A ( x )  - u~(x )  - u L ( x )  

y ~ (x) yL (x)' 

r 
where the Wronskian W = y'~ (x)yL(x) yL (x) y~(x) is ~ non-zero constant.  Therefore 

0 < c < y~(x)yL(x) < C 

for bounds c, C and for all x. 

However,  yu(x)yL(x)  = exp {(:% + ~L)x + f [ r  +r Since y , (x )yL(x)  is 
0 

bounded as indicated, gu = - ~ L  =Cr and the ~lmost periodic funct ion A(x) has ~ mean 

of 2 ~ - 0 .  Thus yu(x)yL(x) and its reciprocal are ~lmost periodic. But  this means tha t  

i [ r  +r is bounded and thus almost periodic. Q.E.D. 
O 
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C O R O L L A R Y  1. y~(X) (or yL(x)) is the unique (up to a constant factor) solution of (L) 

bounded on a negative (or positive) half-axis. Also i/ the product o/ two solutions o/ (L) is 

bounded, then the factors are (up to constant multiples) y~(x) a m d  yL(x). 
f 3" 

I f  c~(t)dt and  f cL( t )d t  are  b o u n d e d ,  t h e n  t h e y  a re  each  a l m o s t  per iodic .  I n  th i s  
0 0 

ease t h e  canon ica l  so lu t ion  basis  has  t h e  f o r m  

y~(x) =~F~(x)e  ~x, yL(x) =uf~L(x)e ~x, 

where  tF~,(x) a n d  ~L(X)  are  a l m o s t  pe r iod ic  func t ions .  M o r e o v e r  one  shows eas i ly  t h a t  
x 5r 

both  t h e  in tegra l s  f ~ ( t ) d t ,  f ~L(t)dt are  b o u n d e d  if one  of t h e m  is bounded .  
0 0 

2$ 

COROLLARY 2. There is a solution basis /or ( i )  of the form r exp  f dt/r 2, 
0 

r  cxp  f-dt/ /q~(t)  2, where r (x) is almost periodic and O < c < q ~ ( x ) < C .  
~) 

Proof. Def ine  z(x) by  y ( x ) = t  y~(x)yc(x)z = r  where  y(x) is a so lu t ion  of (L.) 

T h e n  we c o m p u t e  

W 
(r ( x ) ~ ' ) '  - 4 ~ ( ~ ) ~  ~ = 0,  

�9 t 
where  we can  t a k e  t h e  W r o n s k i a n  W = YuYL -YLY~ = 2. B u t  th is  e q u a t i o n  can  be so lved  

exp l i c i t l y  to  y ie ld  so lu t ions  e x p  i -+ dt/cP (t)2" Q . E . D .  
0 

W e  n e x t  exp l i c i t l y  list  ce r t a in  d a t a  on t h e  m e a n s  of t h e  a l m o s t  pe r iod ic  f u n c t i o n s  

desc r ibed  above .  

C O R O L L A R Y  3 .  m e a n  [u,, (x) - u L (x)] = 2 

m e a n  u u (x) 2 = m e a n  u L (x) 2 

m e a n  r  (x) 2 = m e a n  e L  (x)~ 

m e a n  r (x ) -2  = ~. 

I[ mean p (x) = O, then ~2 + mean r (x) 2 = a and thus [mean d?~ (x)] 2 ~ a - ~z ,  i = L o r  u .  

Proof. I n  t h e  t h e o r e m  we showed  t h a t  m e a n  [u~ (x) - u L ( x ) ]  = m e a n  A (x) - 2  ~. N o w  

m e a n  u~ (x) 2 = m e a n  [~2 + ~r  (x) + r  (x) 2] a n d  m e a n  uz  (x) 2 - m e a n  [:r + ~ r  (x) + eL  (x)2] �9 

T h e n  since m e a n  Cu (x) - m e a n  eL  (x) = 0, m e a n  [u u (x) 2 - uL (x) 2] = m e a n  [r (x) e - eL  (x)2] �9 
t ! 

B u t  u~(x) 2 -  uL(x) 2 = u i . ( x ) -  uu(x) which  has  a zero  m e a n .  

N o w  r  - 2 -  A ( x ) / W - A ( x ) / 2  and  th is  has  a m e a n  of ~. 
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Fina l l y  from the  Ricea t i  equa t ion  

r §  + r  +bp(x ) )=0 .  

Taking  means  one ob ta ins  ~2 + mean  r (x) 2 - a = 0. Since [mean r (x)] 2 < mean  r (x) 2 one 

also has [mean r 2 < a - ~2. Q.E.D.  

F o r  the  equat ion  (L) in ter ior  to D we say  t h a t  the  numbers  (~, - ~) appear ing  in the  

canonical  solut ions of Theorem 10 are  the  character is t ic  exponents  [10] of (L). They  sa t is fy  

the  usual  def ini t ion of charac ter i s t ic  exponents  in t h a t  

1 
l im sup - log ] Yu (x) I = ~- 

X-->~r X 

1 
and  lira sup log [yL(x)[ = - ~. 

X-->oo X 

Using this  defini t ion for the  character is t ic  exponents  we shall  l a te r  show t h a t  t h e y  are  

zero when (L) belongs to the  b o u n d a r y  of D. 

F o r  the  classical case of Hi l l ' s  equat ion ,  the  solut ions are exponent ia l  funct ions  mul t i -  

pl ied b y  periodic  functions.  The following example  shows t h a t  the  difficult ies which are 

men t ioned  in the  above  theorem and corol]aries do ac tua l ly  arise. 

Consider  the  equa t ion  

y" + ( - a  + b p ( x ) ) y - O ,  (L) 

where a - ~2 _ mean  Z (x) 2, b - - 1, and  p (x) 2 :r (x) + Z (x) 2 + Z' (x) mean  Z (x) ~" Then 

(:) t ak ing  ~ > 0 and  Z (x) = n~ cos , p (x) is an  a lmos t  per iodic  funct ion  wi th  mean  

zero and (L) has a solut ion 

y ( x ) = e x p  ~ x +  1 sin x = exp o~x+ z(t)dt  . 
n = l n  0 

) Since the  character is t ic  exponent  of 9(x) is ~ > 0, \x~(lim xl ~oZ(t)dt = 0 , the  equa t ion  (L) 

belongs to  the  in ter ior  of D, of. Theorem 15. Then i t  is easy  to see t h a t  there  is no solut ion 

basis of the  form exp { ( -  1)i~x §  where :~(x) are  a lmos t  periodic,  i = 1, 2. F o r  one 
X 

would then  require  t h a t  g (x) = c exp ( e x + :~1 (x)), for c * 0, and  ~1 (x) = f Z (t) d t which 
0 

is not  bounded.  I t  is unknown whether  such a d i f f icul ty  can occur if p (x) is, say,  a t r igo-  

nomet r ic  polynomial .  

LE~aNA. Let 
y" + ( - a + bp(x))y = O. (L) 
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with p (x) a real almost periodic/unction, be in the interior o/ D. Then the characteristic expo- 

nent :r and the quantities 6 = inf I uu (x) - uL (x) ] (/or the upper and lower almost periodic 
- o r  

solutions o/ the associated Riccati equation), and # = sup [ uu (x) - uL (x) [ are continuous, 
- r 1 6 2  

strictly increasing/unctions along each line b = const., as a increases away / rom the boundary 

ol D. 

Proo]. Let (ao, bo) lie in the interior  of D and  let u~(x), uL(x ) be the upper  and  lower 

almost  periodic solutions of the associated Riccati  equation.  Then  A ( x ) =  Uu(X ) - u L ( x  ) 

has a mean  of 2~ 0 where cr o is the corresponding characteristic exponent .  By  Theorem 8, 

~, 6, and # are str ict ly increasing along the line b = const, and  we next  show tha t  they  are 

cont inuous functions.  

Consider the almost  periodic funct ions 

wl(x) = tuu(x) + ( 1  - t)uL(x) 

and  w 2 (x ) = ( 1  t ) u u ( x ) + t u L ( x )  for O < t < l .  

Then  a calculation shows tha t  both of these almost periodic funct ions are solutions of the 

equat ion 

w' + w ~ + [ -  a o + boP(X ) + t(1 - t)(u=(x) - uL(x)) 2] = 0. 

Also w l ( x ) - w 2 ( x ) = ( 2 t - - 1 )  [ u u ( x ) - u L ( x ) ] .  Then the width Aw(x ) of the band  of 

bounded  solutions of 

w' + w  ~ + [ - a  0 +bop(x  ) +c]  = 0 ,  

where 0 < c < t(1 - t) inf {u~ - uL) 2, satisfies 
- ~ <x<~x~ 

Aw(x) ~ (2t - 1)lug(x) - u L ( x ) ]  = (2t - 1)A(x). 

For  a prescribed ~ > 0 choose t so near  1 tha t  A ( x ) -  Aw(x)< s whenever c > 0 is 

sufficiently small. Therefore ~, 6, and # are cont inuous from below along b = const. Bu t  

within a fixed neighborhood of (a0, bo) , c can be chosen independent ly  of (a', b0) so tha t  

the band  width of 

w' + w 2 + [ -  a' + boP(X)/= 0 

and  tha t  of w' + w  e + [ - a '  +c  ~ b o p ( x ) / = 0  

differ by less t han  r Therefore 0r 6, and  # are cont inuous along b =b  0. Q.E.D. 

THEOREM l l .  Let 

y" + ( -  a + bp(x ) )y  = 0 ,  (L) 



OSCILLATION AND D I S C O N J U G A C Y  FOR LINEAR, D I F F E R E N T I A L  E Q U A T I O N S  1 1 5  

/or a real almost periodic p (x), belong to the interior o/ D. On the interior o/ D the real/unc- 

tions ~ (a, b) and ~ (a, b) are continuous. Let D~, and Eo, be the subsets o/ the interior o/ D 

wherein ~ > ~o and 5 > do, respectively. Then each D~ and Eo is a convex set which is rela- 

tively closed in the interior o/ D. Also D~ (or E~,) is properly contained in the interior o[ 

Da~ (or E~) whenever 0~ 2 < a-1 (or de < c~1). On the relative boundary o/ D~ (o/Ee) the charac- 

teristic exponent (the inf lug(x) uL(x) l) is exactly ~ (or 5). 

Proo/. Let (al, bl) and  (a 2, b2) lie in D~ (or lie in Ee). Let u~)(x), ur be the upper  

almost periodic solutions and  u~)(x), u(~)(x) be the lower almost  periodic solutions of 

the corresponding Riccati  equations.  Consider w= (x) = tu~)(x) + (1 - t) u~)(x) and 

w~(x) = tu(~)(x) + (1 - t)u~)(x) for 0 < t < 1. A computa t ion  shows tha t  w~(x) satisfies 

w' + w 2 + { - [ t a  I + (1 - t ) a 2 ]  +[tb~ + (1 - t )b2]p(x))  } + t(1 - t ) [ u ~ ) ( x )  - u ~ ) ( x ) ]  ~ = 0. 

Thus the upper  almost  periodic solution of 

w' 4- w 2 =-{ --[ta x + (1 --t)a2] +[tb t + (1 t)b~]p(x)} = 0 (Rt) 

lies above w~ (x). Similarly the lower almost periodic solution of the last. equat ion (Rt) lies 

below wL(x ). Thus the b a n d  width A t of (Rt) satisfies 

A t > t A r l ) ( x )  ~- ( l  - -  t) A(2J(x). 

Thus Eo is convex. Since mean 1/k t = ~t, the characteristic exponent  corresponding to 

(Rt), D~ is convex. 

By the lemma, the characteristic exponent  corresponding to a boundary  point  of D~, 

inter ior  to D, is exact ly ~. Also on the relative bounda ry  of E~, inf l uu(x) - u L ( x )  I = 6. 
~r < x - o r  

Thus both D~ and E~ are relat ively closed in the interior of D. The enclosure relations 

ment ioned  in the theorem are then  elementary.  

F ina l ly  we verify tha t  e(a,  b) and d (a, b) are conti lmous on the interior of D. But  this 

follows easily from the enclosure and  convexi ty  conditions. Q.E.D. 

One can further  describe D~ by  not ing tha t  it  mus t  contain the sector bounded by 

the rays 

a = cr '~ -~ b inf p (x) 

and  a = cr 2 " b sup p(x). 
o o < x < ~  

Similarly Es mus t  conta in  the sector bounded by the rays 

a = 6 2 + b inf p(x) 

and  a = b 2 + b sup p (x). 

S -- 563802. Acta mathematica. 96. I m p r i m 5  le 23 octobre I956. 
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Also each domain D~ and E~ is invariant under translations, and even limits of such, 

of the equation (L). 

Later, cf. Theorem 14, we shall show that  (~-+0 near the boundary of D and thus 

that  each E~ lies interior to D. However, although it is very likely true, we have not been 

able to show that  :r near the boundary of D. 

We conclude this section with a result for a forced or non-homogeneous differential 

equation. 

THEOREM 12. Let 

y"  + ( - a + bp(x) )y  = O, (L) 

where p(x) and p' (x) are real almost periodic /unctions, lie interior to D. I /  /(x) is almost 

periodic, then the equation 

y"  + ( a + bp(x))y  - /(x) (F) 

has a unique bounded solution and this is almost periodic. 

Pro@ Since the homogeneous equations (L*) have no (non-trivial) bounded solutions, 

(F) has at most one bounded solution. Moreover, by Favard 's  theory [5, Ch. 3], if there 

is a bounded solution y(x) for which y'(x) is also bounded, then y(x) is almost periodic. 

A solution basis for the homogeneous equation is qS(x)exp i -+ dt//r (t)2 where r is 
0 

almost periodic and 0-~'-c < r C. Construct the Green's function 

G(x,~) r 1 6 2  dt t 
2 

Consider the solution of (F) given by 

y(x) = ~ G(x, ~)/(~)d~. 
o o  

Tile integral exists s ince/(x)  is bounded and G(x, ~) has au exponential decrease at both 

-t- c<). 

From the definition of q~(x), cf. Corollary 2 of Theorem 10, we see tha t  ~b'(x) and 

~"(x)  are also almost periodic. Then one can differentiate tile expression for y(x) to see 

that  y(x) is a solution of (F). 

Since y(x) and y" (x) are bounded, so is y' (x) bounded, as is required. Q.E.D. 
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4. Boundary of the disconjugacy domain 

W e  first  give a cr i ter ion for d is t inguishing be tween  the  in ter ior  and  the  b o u n d a r y  

of D b y  the  behavior  of the  solut ions of (L). 

Tt tEORE]g 13. Let 

y" + ( - a + bp (x ) ) y  = O, (L) 

where p (x) is real almost periodic, be disconjugate. Then (L) belongs to the interior o/ D i/ and 

only i/ there is a solution basis y~(x)yL(x)  o/ (L) /or which 0 < yu(x)yL(x)  < C. 

Proo/. If  (L) lies in ter ior  to  D, then  b y  Theorem 10 the re  is a solut ion basis  of t he  

requ i red  type .  

Conversely let  yo(x), Yl (x) be a basis whose p roduc t  is bounded ,  as above.  Then the  

funct ions  Uo(X ) = yo(x)/yo(x ) and  ul (x  ) = y~ (x ) / y l ( x  ) are solut ions of the  associa ted  Ric-  

cat i  equa t ion  

u' -+- n ~ + ( -  a + bp(x))  - O. ( R) 

Let  us wri te  u l ( x ) > u  0(x) and  u l ( x ) - u  o ( x ) > 2 / C .  Consider the  funct ion w ( x ) =  

~-[u I (x) - u 0 (x)]. A compu ta t ion  yields 

w' + w 2 + ( - a + bp (x)) + �88 [u 1 (x) - u o (x)] 2 = 0. 

Thus  the  equa t ion  w' + w ~ + ( - a + bp(x))  § 1 /C 2 - 0 

has a bounded  solution. Therefore  y" + ( - a + b p (x) + 1/C 2)y - 0 

is d i sconjuga te  and  (L) lies in ter ior  to D. Q.E.D.  

COROLLARY. I n  the interior o / D  no (non-trivial) solution o / the  corresponding linear 

di//erential equation (L) has a square which is bounded. However, i/ on the boundary o/ D, 

the product o/ two positive solutions o/ (L) is bounded (even only positive with a bounded 

product on a hall-axis), then the two solutions are linearly dependent. 

W e  can now comple te  the  discussion of (~(a, b) which was begun in Theorem 11. 

TI-IEOREM 14. Let 

y"  + ( - a  + b p ( x ) ) y  = 0 ,  (L) 

where p (x) is real almost periodic, belong to D. Then on the boundary o/ D 

l im inf I uu (x) - uL (x) I = 0 
X-~•  r 

/or any two (possibly coincident) bounded solutions o/ the associated Riccati equation (R). 

There~ore ~ (a, b) = 0 on the boundary o/ D and/urthermore (5 is continuous on all o/ D. 

* --  5 6 3 8 0 2 .  
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Proo/. Suppose the  po in t  (ao, bo) yields a po in t  in te r io r  to D bu t  (a 0 - ~ ,  b0) for a 

cer ta in  e > 0 yields an osci l la tory  equat ion  (L). If, for (a0, b0), the  width  of the  band  for 

the  associa ted Ricea t i  equat ion  is A ( x ) ~  2~"~, then  the  po in t  (a 0 - ~ ,  b0) lies in ter ior  to  

D, as follows from the  calculat ion occuring in the  proof of Theorem 13. Therefore  

2~ (x~ < 2 ~"v for some x and  c~-->0 near  the  b o u n d a r y  of D. 

Now for (a, b) on the b o u n d a r y  of D, the  band  for the  associa ted  Ricca t i  equa t ion  

nlus t  lie in ter ior  to  the  band  for (a + e, b), v > 0. Bu t  for the  wid th  A~ (x) of th is  band  one 

has lira inf A~(x) - 5(a + e, b). Since (~(a + c, b ) ~ 0  as ~-+0,  as we have  the  desired result .  

Q.E.D.  

We nex t  t u rn  to the  p rob lem of comput ing  the  character is t ic  exponen t  ~ on the  

b o u n d a r y  of D. 

T H E O R E M  15.  Let 

n' + u  2 ~ ( - a  +-bp(x)) -O,  (R) 

/or real almost periodic p (x), correspond to the boundary o/ D. I/<~ solution o/ (R) is almost 

periodic, it must have zero mean. Also there can be at most one almost periodic solution o/ (R) .  

Proof. Le t  u(x)  be an a lmos t  per iodic  solut ion of (R) and  suppose mean  u (x) = ~ > 0. 

Consider  the  aux i l i a ry  equa t ion  

z' - 2 u ( x ) z -  1. 

Then a solut ion is z(x) = f [exp f 2u(s)ds]dt, which is bounded  on a r ight  half-axis ,  

say  x > 0. Define w(x) by z (x )= - w ( x ) e x p  f u(t)dt. An easy compu ta t ion  shows t h a t  
0 

w(x) is a pos i t ive  solut ion of 

y" ~ ( - a  +bp(x) )y  - 0 .  (L) 

But  then  the  p roduc t  of two posi t ive  solut ions of (L) is bounded  on a r ight  half-axis  and,  

by  the  Corol lary to  Theorem 13, t hey  mus t  be l inear ly  dependen t  solutions.  Bu t  this  is 

impossible  since / u ( s ) d s - +  § c~ as x ~ o c  and so w(x)-~O as x - + c ~ .  F r o m  this  contra-  
0 

dic t ion we conclude t h a t  mean  u ( x ) ~  O. 

A similar  con t rad ic t ion  arises from the  suppos i t i on  t h a t  mean  u ( x ) < 0 .  Here  one 

uses the  funct ion 

z 1 (x) [exp ~ 2~ (s)ds]dt 
cr t 
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which satifies the same auxil l iary equat ion,  and  which is bounded on a left half-axis. 

Again define wl(x  ) by zl(x ) =Wl(X) exp f u( t )d t  and  observe, tha t  wl(x  ) is a positive 
0 

solution of (L). Then  the same reasoning as in the earlier case shows tha t  mean  u(x) - 0 .  

If there were two almost periodic solutions of (R) then  these differences would be 

a positive almost periodic funct ion  of zero mean  and  this is impossible. Q.E.D. 

COROLLARY. Let y(x)  be a positive solution o/ (L), /or the boundary o/ D, 

such that u ( x ) - y ' ( x ) / y ( x )  is almost periodic. Then the characteristic exponent 

lira sup ( l /x )  log l y ( x ) ] -  0. 
X-~cx~ 

The following example shows tha t  an equat ion  (L) on the boundary  of D need not  

have a (non-trivial) bounded  solution. Our example does have a solution y(x) > 0 such 

tha t  y' (x) /y(x)  is almost periodic. Whether  or not  there is always such a solution in this 

s i tua t ion  is unknown.  We shall have fur ther  comments  on this d i lemma later. 

Consider y" ~ [ -  Z (x) 2 Z' (x)] y 0 where Z (x) ~ 1 ' x  , = = - -  cos Here take a = 
n :: 1 n 2  ,n.  " 

mean Z (x) 2, b - 1, p (x) - - X (x) ~ - Z' (x) § mean X (x) 2. The equat ion is disconjugate since a 

positive solution is y(x)  = exp i X (t)dt" Since lim sup (1~Ix) log y(x)  = mean  X(x) = 0, the 
0 X-->vr 

equat ion belongs to the bounda ry  of D. We also note tha t  lim sup y ( x ) -  ~ oo, 

lira inf y (x) - 0. 

If Y(x)  were a bounded solution, say Y(x)  > 0 for x > x o, then  0 < Y(x)  < cy(x)  for 

x > x 0 and  a constant  c. But  then lim inf W(x)  = 0 where W(x)  is the Wronsk ian  of Y(x)  
z->r 

and  y(x). However, W(x) is constant .  Thus there are no (non-trivial) bounded solutions. 

The next  theorem shows tha t  one can always obta in  a bounded  solution for (L) on 

the boundary  of D, merely by t rans la t ing  to a l imit  equat ion (L*). 

THEOREM 16. Let 

y"  + ( -  a + bp(x ) )y  = O, (L) 

where p(x)  and p' (x) are real almost periodic /unctions, belong to the boundary o/ D. Then 

there exists p* (x) C H { p (x)} such that 

y" § ( - a + bp* (x))y = 0 (L*) 

has a positive bounded solution. 

Proo/. For  each g > 0 a solution basis yl (x), y2(x) ofy"  -i- ( - a § bp(x)  - e)y - 0 yields 

a general solution 
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e l y  1 (X) 2 -[- c2y 1 (X) Y2 (X) ~- c3y  2 (X) 2 

of w ' "  § 4( - a § bp(x) - ~)w' § 2bp' (x)w = O. 

Then there  is jus t  one posi t ive  solut ion w~ (x) = Yl (x) Y2 (x) which is bounded  on - c~ < x < c~ 

and  such t h a t  sup w~ (x) = 1. An easy  calculat ion,  based  on the expl ic i t  form of Yl (x) 
~ < x < ~  

and  Y2 (x) (cf. Theorem 10), yields  t h a t  Iw' / (x)]  < M 2 and  so I w'~ (x) I < M~ where the  

bounds  M 1 and  M 2 depend  only on ( - a  + bp(x)) and  not  on ~. 

Lei~ ~'~ be a sequence of posi t ive  numbers  decreasing monotone ly  to zero. Le t  w,~(x) 

be the  cor respondingly  defined,  posi t ive,  bounded  solut ions of 

w'" + 4 ( -  a + bp(x) - sn)w' + 2bp ' (x )w = O. 

p! 
Then let xn be a sequence of poin ts  such t h a t  wn(x,~)-->~Xo~: O, w'~(Xn)-~:% wy (x,~)-~ z, 

p (x + x=)-~p* (x) and  p' (x + xn)-->p*' (x) uni fo rmly  on - c~ < x < c~. Let  w* (x) be the  

solut ion of 

w" '  + 4 ( - a  +bp*(x))w' +2bp*' (x)w = 0  

wi th  the  in i t ia l  d a t a  w* (0) = go, w*' (0) = ~1, w*" (0) = g2. 

Now wn(x+x~) -~w*(x )  uni fo rmly  on compac t  intervals .  Thus w * ( x ) < l  on 

- c~ < x < c~. B u t  w* (x) is the  p roduc t  of two solut ions of (L*). Thus w* (x) mus t  be the  

square  of one such solut ion y* (x) which is t he r e by  bounded.  

Since w'~ (x + xn)--~w*' (x) and  w~' (x ~-' x~)-~w*" (x) un i fo rmly  on compac t  in terva ls ,  

one mus t  have  w*'(x0) - w * " ( x 0 )  = 0 wherever  w* (x0) - 0 .  Thus w* (x) > 0 and  we t ake  

y* (x) > 0. Q.E.D.  

COROLLARY. For the equation (L*), the associated Riccati equation (R*) has a unique 

bounded solution. 

Pro@ Let  u*(x) = y*' (x)/y* (x) where y*(x) > 0 is the  bounded  solut ion of (L*). 
x 

Suppose  ~ (x) is a bounded  solut ion of (R*) and  say  4 (x) < u* (x). Then ~ (x) = e x p f ~ (t)dt  
0 

and  0 < ~ ( x ) <  y*(x) for x > 0. Bu t  if (L*) has  two l inear ly  i ndependen t  solut ions which 

are  bounded  on a half-axis ,  t hen  (L*) is osci l la tory.  Q.E.D.  

W e  r e m a r k  t h a t  if for each p* (x )EH{p(x)}  the  equa t ion  (R*) on the  b o u n d a r y  

of D has  a unique bounded  solution,  then  this solut ion is a lmos t  per iodic  and  (L*) has 

a posi t ive  solut ion whose logar i thmic  de r iva t ive  is a lmos t  periodic.  This r e m a r k  can be 

ob ta ined  in the  manne r  ind ica ted  in the  proof  of Theorem 9. I t  is our conjec ture  t h a t  

each such (R*) ac tua l ly  does have  a un ique  bounded  solution. 

Using the  const ruct ion  of Theorem 16 we can f ind an equat ion  (L*) on the  b o u n d a r y  
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of D with a bounded positive solution which is not almost periodic. To do this, let (L) 

be an equation, on the boundary of D, for which there are no (non-trivial) bounded solu- 

tions, cf., previous example. Consider a limit translate (L*) for which there is a positive 

bounded solution y* (x). If  y* (x) were almost periodic, then (L) would have a positive 

almost periodic solution which is contrary to the construction. 

5. Perturbations of p (x).  

Consider y"  + ( - a + bp(x ) )y  = O, (L) 

for p(x)  real almost periodic, belonging to the boundary of D. Then if - a  + bp(x)  is 

replaced by - a + bp (x) + ~ (x), where ~ (x) s~ 0 is a non-negative almost periodic function, 

the resulting equation is oscillatory. If  the band for the associated Riccati equation de- 

generates to a single bounded solution, as is the case when p (x) is periodic, then c (x) need 

not be almost periodic but  merely continuous in order to change (L) from disconjugacy 

to oscillatory. 

We now study the dependence of the disconjugacy domain D upon the choice of the 

almost periodic function p(x). 

T~EOREM 17. Let p(x)  be real almost periodic, andre(x) = kp (x )  +1,/or Icm O, I real 

numbers. Then the disconjugacy domain A o/ 

y"  + (-- ~ + f l~ (x ) )y  = 0  (A) 

is the image o/ the disconjugacy domain D o/ 

y"  + ( - a  + bp(x ) )y  = 0  (L) 

under the map T o/ the (a,b)-plane onto the (~,fl).plane, where 

T:  (a, b)~(~, //) =(a + bUk, b/k). 

Proo/. The point (:r for (A) yields the same solutions as does a = ~ - i l l ,  b = i l k  

for (L). Thus a set A in the (:r describes the same differential equations as the 

set D in the (a, b)-plane, provided A is the image of D under 

T : (a, b) --> (a + b///c, b/k). 

Q.E.D. 

COROLLARY. Let K ( x )  be a non-constant, real, almost periodic ]unction decomposed 

as K (x) = - a o + b o p (x) and K (x) = - :% +//o 7r (x). Then the corresponding diseonjugacy 

domains D and A /or varying (a, b) and ( a, fl) respectively, are related by the map 
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T : (a, ( a + b   o-ao 
bo ' b o l  

Proo/. Here  k -bo / / / 3  o, 1 -  (s o -ao) j ' /3  o and we use the  formula  of the  theorem.  

Q.E.D.  

Also one notes  tha t ,  in the  Corollary,  if ~(x)  and  p(x) have  mean  zero, b o and /3  o are  

posi t ive,  sup .~(x) - sup p (x), then  ~(x)  - p (x), ~o -= ao,/30 - bo and A - D. 
- -  ~ < ; T <  c-~ - - o r  

We shall show tha t  the  domain  D varies cont inuous ly  with the  choice of the  a lmos t  

per iodic  funct ion p(x).  On the  space ~t of real  almost, per iodic  funct ions we uti l ize the  

uni form topology  defined by  the  metr ic  ~ (Pl (x), P2 (x)) = sup I Pl (x) -Pz(X)[ .  On the  
- - o o < x <  o~ 

space S of n o n - e m p t y  closed p lane  sets we define a topo logy  of uniform convergence on 

bounded  regions b y  a ne ighborhood prescr ip t ion  as follows. F o r  D E S define an open 

ne ighborhood U (K, e) of D depending  on an open disc K,  centered at  the  origin, which 

in tersec ts  D and  a number  e > 0. Le t  D~ E U in case D1 intersects  K and 

m a x {  sup ~(P1, D N K ) ,  s u p _ o ( P ,  D I N - K ) } < e .  
PleDINK PeDgIK 

Here  ff is the  d is tance  funct ion in the  plane.  I t  is easi ly verif ied t h a t  a topology  on S is 

def ined by  this  open ne ighborhood  sys tem.  

LEMMA. Let n(x)  > p(x)  /or all x, where z(x) ,  p(x)  E :~. Let the discon]ugacy domains 

D and A of 

y"  + ( - a  + bp(x ) )y  = 0  (L) 

and y"  + ( - a + ber(x))y = O, (A) 

respectively, have bounding curves aL(b ) and aA(b ). Then a A ( b ) > a L ( b  ) /or b > O  and 

aA(b) ~aL(b)  /or b <=0. 

Proo/. For  b ~ O, a + b n ( x ) >  - a  + bp(x).  Thus, if (L) is osci l la tory for some 

p a r a m e t e r  values  (a, b), then  so is (A) osci l latory.  Therefore aA(b) > aL(b). Fo r  b < 0 the  

a rgumen t  is s imilar .  Q.E.D.  

T H E 0 R E M 18. For each real almost periodic/unction p (x) E ~ there is a corresponding 

disconjugacy domain D E $. The map p (x)--> D is continuous. 

Proo/. Consider a ne ighborhood  U(K,  e) of D o, the  d i sconjugaey  domain  for po(x). 

There is a number  l > 0 such t h a t  for each l(x) E :~ wi th  [ 1 (x) [ < 1, the  domain  D o + A D, 

corresponding to P0 (x) + 1 (x), has b o u n d a r y  curves which lie be tween those corresponding 

to p o ( x ) + l  and  p o ( X ) - I E ~ .  F r o m  Theorem 17 we see tha t ,  for 1 sufficiently small ,  

the  b o u n d a r y  curves of D o + A D are within the  required e-closeness of those of D o inside 

/7. Q.E.D.  
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