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1. The problem 

Wiener's approximation theorem was the starting point of many developments in 

harmonic analysis. Carleman, in his proof of the theorem [1], introduced a new method 

which is of considerable generality and leads to the formulation and solution of new 

approximation problems. These problems are of the following type: 

In  the space ~ L 1 (G) of integrable functions on a locally compact abelian group G a 

closed linear subspace I is given which is invariant under "translations", i.e., which con- 

tains with a function /o(X) also all functions /o(ax), for arbitrary a E G. 

I t  is required to find, for a given function / (x) in L 1 (G), the number 

inf f l i (x) /o (x) l d x 
foel 

which indicates how closely /(x) may be approximated, in the metric of L 1 (G), by means 

of the functions belonging to I .  Using geometrical language, this number is called the 

distance of / (x)  from the linear subspace I and denoted by dist {/, I}. 

As is well known, this distance is the norm in the quotient-space L I (G)/I (cf. [3], 

Theorem 22.11.4; since LI(G) is a (commutative) Banach algebra, with convolution as 

multiplication, and I an ideal in L 1 (G), L 1 (G)/I is actually a quotient-algebra). The exact 

calculation of the distance makes it possible to determine explicitly the structure of 

L' (G) / I .  

1 The au thor  wishes to acknowledge wi th  thanks  the oppor tuni t ies  for research accorded to h im 

a t  the Univers i ty  of Reading where this  paper  was  wr i t ten  during the tenure of a t empora ry  lectureship 
in 1955-56. 

Nota t ion  and te rminology are as usual;  of., e.g., [4]. I n  part icular ,  dx denotes the H a a r  measure,  

and integrat ion extends over the whole group G unless otherwise specified. 
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This was carried out before for two classes of invariant subspaces (cf. [4], Theorem 

1.3 and [5]). In the present paper the distance is obtained in a more general case which 

includes the previous ones; the study of the corresponding quotient-space will be left for 

a future communication. 

2. General  m e t h o d  o f  so lut ion  

If I is an arbitrary closed linear subspace of L 1 (G), not necessarily invariant under 

translations, and /(x) any given function in L 1 (G) then dist {/, I} may be found as follows 

(cf. [1], Chap. I I I  and [4], pp. 402403):  

1"/there is no bounded, measurable ]unction q~ (x) satis/ying the conditions 

f /o (X)~V(x)dx=O loral l  toeI ,  (1) 

f / (x) ~ (x) d x = 1, (2) 

then / E I. 

I[ there are bounded, measurable/unctions q~ (x) satis/ying (1) and (2), then 

dist {/, Z} = 1/ inf  H~l[~, 

the greatest lower bound being taken/or all such/unctions q~. 

Condition (1) is expressed by saying that  q~ is orthogonal to I. 

We assert that  i / I  is invariant then already the continuous, or even the unilormly con- 

tinuous /unctions orthogonal to I su//ice /or calculating the distance, i.e., we may replace 

"measurable" by "continuous" or even "uniformly continuous". This will be important  

for the applications. 

To prove this assertion we show that if there is a bounded, measurable function 

~o(x) satisfying (i) and (2) then there is also a bounded, (uniformly) continuous function 

(x) which satisfies them and which is such that I[ ~ ll~ exceeds II W li~ by as little as we 

please. 

First, the fact that I is an invariant subspace implies that ~o(y-lx) is orthogonal to 

I for each (fixed) y E G. It follows that for any u (x) 6 L I (G) the function 

~ v ~ ( x ) = f u ( y ) w ( y  lx)  d y  

is orthogonal to I.  Moreover, q~u(X)is uniformly continuous 1 and I[~v=[[~ ~< ][W[[~" I[ u[[x. 

Indeed, ~u(X)=fu(xy)'q,(y-1)dy and f [u(=~yl-~,(,y)ldy=f I~,<~y)-**<y)ldy<~ ,or 
zE u~ (ef. [8], p. 4U. 
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Secondly, we may write 

f /(x)w(y lx)dx=l +~(y), 

where I e (y) ] < e for y 6 U~, for the left-hand side is a continuous (even uniformly continuous) 

function of y, by an argument similar to that  used before. Now let u~ (x) be a real, non- 

negative function in LI(G) vanishing outside the neighbourhood U~ and such that  

f u~(x)dx = 1. Then 

f u~(y)dy f /(x)tv(y-~ x)dx= l +u, 

where I UI <e" Thus, letting 

f~(x)= ~ u~ (y) ~o (y-1 z) dy, 

we have a uniformly continuous function q). satisfying conditions (1) and (2); moreover, 

1 

which completes the proof. 

Remark. Assertion and proof are valid for general locally compact groups if we re- 

place "invariant" by "left invariant" and "uniformly continuous" by "left uniformly 

continuous" throughout. 

3. A theorem on bounded, continuous functions and some applications 

Let G be the dual group of the locally compact abelian group G. The closed sub- 

groups of G and G are in one-to-one correspondence, in such a way that  if g c G and 

F ~ G are corresponding subgroups then the dual group of g is G/F and the dual of F is 

Gig (cf. [8], pp. 108-109). 

For a bounded, measurable function T (x) on G, the spectrum is defined as the (closed) 

set of all elements of the dual group for which the Fourier transform of every function 

] (x) 6 L 1 (G) satisfying 

f /(yx)9(x)dx=O for all y6G 

vanishes (this is equivalent to the usual definition, [2], pp. 128-130). 

If  9(x) is given, we may consider ~(xs), for fixed x6G, as a function of s on a (closed) 

subgroup g c  G. The spectrum of ~(x) is in G, while q~(xs), as a function of sCg, has its 

spectrum in ~ /F  where F is the subgroup of G corresponding to g. The relation between 

the two spectra, for continuous 9, is as follows: 

1 7 -  563802. Acta  mathematica. 96. I m p r i m 6  le 31 d@cembre 1956. 
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T H E o R ~ M 1. Let G be a locally compact abelian group, g a closed subgroup o /G  and I' 

the subgroup o / G  corresponding to g. Let q)(x) be a bounded, continuous/unction on G and 

~ c ~ the spectrum o[ q). 

Then q)(xs), considered as a /unction o/ s on the subgroup g (xQG being/ixed), has a 

spectrum which is contained in the closure o/the image o[ s resulting/tom the homomorphism 

O - , O / p .  
This theorem is the basis of the paper.  

Let  2' be an a rb i t ra ry  element of G /F  outside the closure of the image of f2~; we have 

to show tha t  2' is not  in the spectrum of ~v (xs). 

Take a closed neighbourhood 0 '  of 2', with the same p roper ty  as 2', and a funct ion 

/(s) E L l(g) such tha t  its Fourier  t ransform 

[(~')=f/(s)(s, ~'~ds (~'eb/P) 
g 

vanishes off ~ '  and [(2') =~ 0; 2 '  being the image of ^ ^ xEG, [(2') is also a periodic funct ion 

[(2) on 0 (constant  on each eoset of P). 

For  a rb i t ra ry  h(x) E L 1 (G), the funct ion 

/1 (x) = f / (s) h (s -1 x) ds (3) 
g 

is in L I(G) and has the Fourier  t ransform 

[~(~) =f(~).~(:'~) (~e~). 

Thus [i (2) vanishes on an open set containing f~ ,  namely  the inverse image of the comple- 

ment  of 0 ' .  Hence by  a theorem of Godement  [2], Th6or6me C, a corollary of Wiener 's  

theorem, 

f f l ( yx )  c f (x )dx=O ( yea ) .  

Let t ing y = e, replacing/1  (x) by  (3) and changing the order of integrat ion twice, we get  

f h (x) [ f / (s) ~o (xs) ds] dx  = 0 
g 

Since h (x)E L 1 (G) is arbi t rary ,  it follows tha t  

f / (s) ~v (xs) d s  = 0 (4) 
g 

almost  everywhere on G. Now the left-hand side is a continuous funct ion of x (since ~ (x) is 
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a bounded  funct ion,  un i fo rmly  cont inuous  on any  compac t  s e t ) a n d  hence ( 4 ) h o l d s  

for all  xEG. Thus 4' is no t  in the  spec t rum of q~(xs) which proves  the  theorem.  1 

The nex t  two theorems  are  app l ica t ions  of Theorem 1. 

T ~  E o ~E M 2. Let q~ (x) be a bounded, continuous/unction on G such that its spectrum 

is contained in a closed subgroup F o/ the dual group G. 

Then q~ (x) is periodic with respect to the subgroup g E G corresponding to F. 

According  to  Theorem 1 the  spec t rum of ~ (xs), as a func t ion  of s C g, conta ins  a t  mos t  

one element ,  n a m e l y  the  neu t ra l  e lement ,  of G / F .  I t  follows, for every  (fixed) x E G, t h a t  

q~(xs) is cons tan t  on g (cf. [4], p. 422) and  for s = e we have  q~(xs) = F(x)  which proves  the  

theorem.  ~ 

THE O RE M 3. Let F be a closed subgroup o/ G and suppose that A'  is a closed, denumer- 

able subset o/ G/F consisting o/ independent elements. Let (2 be the inverse image o/ A'  in G, 

and A any representative system (mod. F) o/g2. a 

Then every bounded, uni/ormly continuous/unction q) (x) with spectrum in ~2 has the/orm 

(x) = ~ A ~  (x) (x, ~). (5) 

The "coe//icients" q~ (x) are uni/ormly continuous/unctions, periodic with respect to the sub- 

group g c G corresponding to F, and 

(6) 

I / ,  in particular, F is a discrete subgroup o/ ~, then every bounded, uni/ormly continuous 

/unction with spectrum in (2 is almost periodic. 

B y  Theorem 1 the  spec t rum of ~ (xs), as a func t ion  of s C g, is con ta ined  in A ' .  Hence  

i t  follows f rom the  ]emma in [5] t h a t  

(xs) = ~ a~, (x). (s, ~') (7) 
3/r 

a n d  f rom K r o n e c k e r ' s  t heo rem (of. loc. t i t . )  t h a t  

y la ,(x)l= sup (S) 
~." e A" s e g  

1 The au thor  is obliged to the referee who gave a proof bo th  simpler and more  general t han  the 

original one which needlessly restricted q0 (x) to be uni formly continuous.  The proof above is bu t  a slight 
modificat ion of the proof of the referee. 

2 Theorem 2 was  originally s ta ted  only for uni formly cont inuous functions.  The un i fo rmi ty  of 

the cont inui ty  is not  required, however,  as pointed out  by  the referee (cf. the preceding footnote) .  

a I.e., a subset  of f~ which contains exactly one equivalent  element (rood. F) to every element  
of f2. For  the definition of independent  elements of an  abelian group,  cf. [5]. 
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The "coefficients" a~, (x) are uniformly continuous flmctions of x: az, (x) is the  

mean value of ~v (xs). (s, 2') over the subgroup g and thus  

[ CL).. (Xl) - -  a),  (x2) ] ~ SUp [ 9) (X 1 8) - -  ~ (~'2 8)[ ~-~ ~ 8Eg 

for x 1.x~16 U~, by  the  uniform cont inui ty  of cf (x). 

Another  proper ty  of a~,(x) is obtained by  subst i tut ing xt (tE9) for x in (7): 

q~(xts)= ~ ax,(xt).(s, ~'). 
)~" ~ A "  

:Moreover, replacing s by  ts in (7) we have 

qz(xts)= ~ az,(x)'(t, 2')'(s, 2'). 
A'eA" 

Since the coefficients of (s, 2') are uniquely determined, it follows tha t  

ax, (xt)=az, (x). (t, 2'). 

:Now we use the representat ive system A ment ioned in the s ta tement  of the theorem. There 

is a one-to-one correspondence between A and A' ,  so we m a y  write a~,(x) instead of a~,(x), 
being the element of A corresponding to 2' EA'.  We define now functions ~vz(x)0.eA) 

by the relation 

a~. (x) = cf~ (x ) .  (x,  2) .  

These functions depend in an obvious way  on the choice of the representat ive system A. 

Each  gv~(x) is uniformly continuous, and periodic with respect to g, i.e., ~v~(xs)= 
~v~ (x) (s 6 g). Assertion (5) of the theorem follows from (7) for s = e, while (8) implies assertion 

(6) or more precisely 

l ~ ( x )  I = sup I~ (xs) [, 
8Eg 

where the summat ion  extends over all 26A.  

To prove the last par t  of the theorem we observe tha t  if ~v (x) is a bounded,  uniformly 

continuous funct ion of x, then so is sup ]~v(xs) l which is periodic with respect to g and 
S E g  

hence a (uniformly) continuous funct ion on Gig. Thus the sum of the series El~v~(x) l is 

continuous. I f  now F is discrete then Gig is compact  and it follows from Dini 's  theorem tha t  

~1 ~v~. (x) l converges uniformly on G/g, and thus on G itself. But  then E~v~ (x). (x, 2) converges 

uniformly on G; hence its sum is almost  periodic. 

Remark 1. Theorem 3 holds in a somewhat  more general form: the set A '  m a y  contain, 

besides independent  elements, also the neutral  element of G/F,  and need only be reducible 

instead of denumerable.  This is due to the fact  tha t  the lemma in [5] holds in a corresponding 
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more general form as m a y  readily be shown. On each compact  subset of Gig at  most  count- 

ably m a n y  "coefficients" ~ ( x )  can assume values different f rom zero. 

Rernarlc 2. If  in Theorem 3 A '  is assumed to be discrete, then every bounded,  continuous 

funct ion with spectrum in ~ is of the form (5), the  coefficients 7~(x) being then also 

continuous. For, if /(s)CLl(g) is such tha t  [(2 ')  vanishes outside a neighbourhood of 

); CA' which contains no other  point  of A ' ,  then by  (7) 

f / (8) ~ (S -1 X) d s  = ] ( ~ ' ) .  a~ , ( x ) .  
g 

Now the l d t - h a n d  side is a continuous funct ion of x (d.  p. 256); as we m a y  suppose ](~') * 0, 

the assertion folIows. 

4. On certain invariant subspaces 

The cospectrum of an invariant  subspace I ~ L ~ (G) is defined as the (closed) set of 

all those elements of the dual group G for which the Fourier  t ransforms of all functions in 

I are zero [7]. I f  a bounded,  measurable funct ion is or thogonal  to I its spectrum is contained 

in the cospectrum of I .  

The preceding theorems yield results about  some classes of invar iant  subspaces. 

T H E  O~EM 4. Let I be a closed, invariant subspace o~ LI(G) such that the cospectrum 

o/ I is a subgroup F o/ G. 

Then I consists o / a  I 1 ]unctions in L I (G) the Fourier trans/orms o/which vanish on F. 

As shown in w a f u n c t i o n / 6 L  1 (G) will belong to I if there is no bounded, continuous 

funct ion ~(x) orthogonal  to I which satisfies (2). 

Now Theorem 2 is applicable to ~; it follows tha t  T (x) is a funct ion on Gig. Hence 

(2) m a y  be wri t ten l 

f 
Gig g 

T h u s  I1 [[oo-flf/(xs)dsldx' l. 
Gig g 

1 W~e denote the }Iaar measure  on G/g by  dx ' ;  the measures  are assumed to be so normalized t h a t  

f ( ez 
Gig g 
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I t  follows a t  once t h a t  there  can be no bounded ,  cont inuous  funct ion q (x) sat is-  

fy ing  condi t ions  (1) and  (2) if 

f lfl(xs)dsldx'=O, 
Gig  g 

i . e . ,  if the  func t ion  f' (x')= f/(xs)ds 
g 

vanishes  a lmos t  everywhere  on Gig. This will h a p p e n  if (and only if) the  Four i e r  t r ans fo rm 

o f / '  (x') vanishes  iden t ica l ly  on F,  the  dual  group of Gig. This Four i e r  t r ans fo rm is j u s t  

t he  res t r i c t ion  of t h a t  of /(x) to  the  subgroup  F c ~.  Hence,  if the  Four i e r  t r ans fo rm of 

/ (x)  vanishes  on F then  /(x) belongs to  I (and, of course, conversely) .  

The d i s tance  of an  a r b i t r a r y  funct ion  / (x)E L 1 ( G ) f r o m  I is precisely 

I I1'111 = f I f iCx )dsldx' 
Gig  g 

as m a y  be shown b y  the  m e t h o d  of w This  resul t  was p roved  a l r eady  in [4], Theorem 1.3, 

wi th  the  a s sumpt ion  t h a t  I is given,  in advance ,  as t he  subspace  of all funct ions  in L I(G) 

the  Four i e r  t r ans fo rm of which vanishes  on the  subgroup  1 ~ c ~.  

Remark 1. If, being a closed subgroup,  is e i ther  a discrete  or  a perfect  subse t  of r  

I n  the  f irst  case the  s t a t e m e n t  of Theorem 4 is inc luded in a known,  and  more  general ,  

t heorem (cf. Theorem 2.2 in [4] and  the  references there  given),  b u t  the  second case is 

of qui te  ano the r  na ture .  Consider  the  group R ~ =/~P of t r ans la t ions  of p -d imens iona l  

eucl idean space,  for p > 2. Here  the  s t r a igh t  lines, planes,  and  genera l ly  the  d-d imens iona l  

closed l inear  mani fo lds  (1 < d < p) are  perfect  subsets  corresponding to  p roper  subgroups .  

I n  th is  case which belongs to  classical  analys is ,  Theorem 4 should  be compared  wi th  a well- 

known  example ,  due to L. Schwar tz  [7], which shows t h a t  in L I ( R  p) there  exis t  d i f f e r e n t  

closed i nva r i an t  subspaces  hav ing  the same cospect rum,  the  surface of a sphere in p -d imen-  

s ional  space,  for p > 3. 

Remark 2. Theorem 4 should  be compared  wi th  a resul t  p roved  in [6] concerning general  

loca l ly  compac t  groups.  The  ma in  p rob lem there  is to  show t h a t  two left  i nva r i an t  sub- 

spaces of L :  (G), def ined in qui te  different  ways ,  are  ac tua l l y  ident ical .  Now if G is abe l i an  

these two subspaces  have  the  same cospect rum which is a subgroup  of G. This is an  ana logy  

to Theorem 4, bu t  in the  genera l  case t r e a t e d  in [6] no Four i e r  t rans forms  are ava i lab le .  1 

: A difficulty in [6] should be pointed out: by the lemma on p. 74, loc. cir., the relation q(xa -1) = 
~(x) holds for every (fixed) gE g almost everywhere on (7. But here the exceptional set of measure zero 
may depend on g! The assertion that ~(x) is constant on the left cosets of 9 lacks, therefore, sufficient 
foundation--it would have to be shown that the exceptional null set may be chosen independently of 
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T H E 0 ~ ~ M 5. Let F be a closed subgroup o/G and suppose that A'  is a closed, denumerable 

subset o/ ~ / F  consisting o/ independent elements. Let ~ be the inverse image o / A '  in ~, and 

A any representative system (rood. F) o / ~ ,  as in Theorem 3. Let I be a closed, invariant sub- 

space o/ L 1 (G) with cospeetrum ~. 

Then I consists o/ a l l /unctions in L 1 (G) the Fourier trans/orms o/ which vanish on ~ .  

For arbitrary ] (x) E L 1 (G) 

dist o,.f sup lf/(xs)(xs, )dsldx',.. 

where g denotes the subgroup o~ G corresponding to F. 

Given /ELl(G), we may calculate dist {/, I} by means of the uniformly continuous 

functions ~(x) orthogonal to I(w 2). The spectrum of such a function is contained in f /  

so that  Theorem 3 is applicable. Thus (2) may be written 

f / (x) { ~A~ (x) . (x, ~t)} d x =  1 

or, since the functions ~ are periodic, 

Gig g 

Hence by (6) 

II ll  f sup I f/(xs(xs, )dsJdx'>_  (9) 
Gig ~eA 

[The function sup ] ( / ( x s ) ( x s ,  ~)ds] is in LI(G/g); in fact, for each 
2cA 

I f/(xs)(xs, )dsI<_ f[/(xs)[ds 
g g 

which belongs to L 1 (G/g).] 

Relation (9) immediately implies that  there is no bounded, uniformly continuous 

function ~9(x) satisfying (1) and (2) if the integral 

d-- f s.p[//(xs)(xs, )dsidx' 
Gig 3.cA 

vanishes. 1 This will be ~he case if (and only if) each of the functions 

a. Now th i s  d i f f icul ty  m a y  be ent i re ly  avo ided  by  u s ing  on ly  con t i nuous  func t ions  ~(x) ,  in accordance  
w i t h  w 2 above.  I t  was  m a i n l y  diff icul t ies  wi th  nul l  sets ,  especial ly  in [6] wh ich  led to t he  cons idera t ions  

i n w  
1 I t  shou l d  be observed  t h a t  th i s  in tegra l  is i n d e p e n d e n t  of t he  pa r t i cu la r  r ep re sen t a t i ve  s y s t e m  

A u s e d  because  ! f ](x s) (xs , ) . )ds  I d e p e n d s  on ly  on  t he  coset  of 1 ~ to which  2 belongs .  
g 
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I,~(~')= ~. l(xs)(x~, 2)d~ (,leA), 
g 

defined on G/g, vanishes almost everywhere on Gig or, equivalently, if the Fourier trans- 

form of each ['~(x') vanishes identically. The Fourier transform of /j.(x') coincides with 

the restriction of the Fourier transform of [(x) to the set )l-P ~ ~.  Hence I contains all 

functions in L I(G) the Fourier transforms of which vanish on g~ (and of course no others). 

To show tha t  for arbi trary [CLI(G) dist {/, I} is given by  the integral d above, we 

observe that  for d = 0 this has just been proved; moreover, by the preceding argument,  

]r if d > 0. Let  then rf(x) be a bounded, uniformly continuous function satisfying (1) 

and (2). Then, by (9), inf II ~ II~ > l/d and it follows (w 2) that  dist {/, I} < d. 

The opposite inequality is easy to establish. If  /(x) and ]o(x) are in LI(G) we have 

f l l ( ~ ) - l o (~ ) i dx=  f dx' f ll(~8)-lo(X*)Ids 
Gig g 

and 

f I / ( ~ )  - /o  (x ~)I d~ ~ sup I f / (x~) (~, ~) d ~ -  f Io (x ~) (~,, ~) d, l- 
g ~ e A  g g 

I f  now /o(X) belongs to I ,  then :]o(xs)(xs,~.)ds vanishes almost everywhere on 
g 

G/g, for each ~tEA. Thus for /0CI  and / C L  I(G) 

i.e., dist {/, I} > d, which completes the proof. 

Theorem 5 may  be generalized in the same way as Theorem 3 with regard to the con- 

dition concerning the set A'  (el. Remark  1 to Theorem 3, p. 258):  

In  this somewhat generalized form Theorem 5 contains Theorem 4 which corresponds 

to the case where A'  contains only the neutral element of G/F; moreover, if F reduces 

to the neutral element of G one has the result of [5]. Thus Theorem 5 represents the most 

general ease in which the approximation problem, for invariant subspaees I with non- 

empty  eospeetrum, has been explicitly solved. The formula for the distance which was 

obtained has significance in connexion with the quotient-algebra L ~(G)/I; this will be 

studied later. 

i If .~_' is not denumerable the formula for the distance is 

dis t{/ , I}= AcAc:gsup f ~Asup I:/(xs)(xs, 2) dsldx', 

A denoting denumerable subsets of A. 
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