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Introduction 

t .  This paper  deals with the boundary behaviour of meromorphic functions. The 

considerations lead in a natural  manner to a conformally invariant  class of meromorphic 

functions, distinguished by a number  of interesting properties, which we call normal 

meromorphic functions. Their definition reads as follows: I f  /(z) is meromorphic in a simply 

connected domain G, then /(z) is normal if and only if the family {/(S (z))}, where z' = S (z) 

denotes an arbi trary one-one conformal mapping of G onto itself, is normal in the sense 

of Montel. In  multiply connected domains /(z) is said to be normal if it is normal on 

the universal covering surface. 

Normal meromorphic functions admit  the following characterization in terms of the 

spherical derivative: A non-constant meromorphic /(z) is normal in a domain G, which 

then necessarily is of hyperbolic type, if and only if there exists a finite constant C so tha t  

I r  (z) l Idzl zeal(z) ,  (1) 

where da (z) denotes the element of length in the hyperbolic metric of G. 

I t  follows from the definition tha t  e.g. bounded functions, schlicht functions, and, 

more generally, functions omitting a t  least three values, are always normal. On the other 

hand, all functions of bounded type are not normal. 

2. In  order to arrive in as natural  a way as possible at  the concept of a normal function, 

we devote w 1 to a systematic s tudy of the situation tha t  a meromorphic /(z) possesses an 

asymptot ic  value a a t  a boundary point P but  has not the angular limit ~ at  this point. In  

this case there exists, roughly speaking, a zone containing curves with endpoint at  P 

on which/(z)  tends to the limit a. This zone, however, is sharply limited, i.e., there exist 
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curves terminating at P on which [ (z) has not the limit zr such that the hyperbolic distance 

of these curves to an ~-path can be made arbitrarily small (Theorem 1). 

This first result is then used in w 2 to finding conditions under which the existence of 

an asymptotic value implies the existence of the angular limit. I t  is here that  the family 

{[(S(z))} enters in a most natural manner, and it follows easily that the angular limit 

certainly exists, if {](S(z))} is a normal family (Theorem 2). This gives rise to the above 

definition "of normal meromorphic functions as functions generating a normal family 

{/(s(~))}. 
By studying conformally invariant normal families we arrive in w 3 at the condition 

(1) (Theorem 3). Theorem 2 is then restated in terms of the spherical derivative. Although 

the condition ensuring the existence of the angular limit is not necessary, the theorem seems 

to belong to the best general results in this direction. This derives from the fact that, 

owing to the nature of the problem, non-trivial necessary and sufficient conditions can 

scarcely be given. Besides, if the situation is specialized, sharp results can immediately 

be established. For instance, assuming that a meromorphie [(z) tends to a limit as z ap- 

proaches a boundary point P in an arbitrary manner along the boundary, we give a 

necessary and sufficient condition under which [(z) then uniformly tends to this limit as 

z approaches P in the closure of G (Theorem 4). As a second conclusion, we give a necessary 

and sufficient condition concerning the existence of the angular limit, if the corresponding 

radial limit exists (Theorem 5). 

At the end of w 3, the relation of normal functions to functions of bounded type is 

briefly discussed. In both classes the growth of the functions is restricted by a condition 

involving the spherical derivative. The boundary behaviour, however, is quite different. 

For normal functions asymptotic values imply the corresponding angular limits, whereas 

this is not true for all functions of bounded type. On the other hand, while functions of 

bounded type always possess angular limits almost everywhere, there exist normal functions 

with no asymptotic values at all. 

Starting from the relation (1), we derive in w 4 sharp estimates of a more special kind 

for normal functions. As a fundamental result we first establish an improved version of 

the classical Two Constants Theorem, yielding an inequality not only for regular [ (z) but 

also for functions possessing poles (Theorems 6 and 7). This result can be applied in several 

directions. First, we obtain a sharp theorem of the Phragm6n-Lindel6f type for the boundary 

values of normal meromorphic functions (Theorem 8). Secondly, we can readily prove 

that a meromorphic function cannot be normal in any neighbourhood of an isolated essential 

singularity (Theorem 9), which result is a generalization of Picard's classical theorem. 

Finally, it follows that if a sequence of normal functions, satisfying (1) with a fixed C, 
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un i fo rmly  tends  to  zero on a b o u n d a r y  arc, then  the  sequence un i fo rmly  converges towards  

zero in eve ry  compac t  p a r t  of the  doma in  G (Theorem 10). As an  immed ia t e  corol lary  of 

th is  genera l  resul t  we f ind anew Theorem 2 t h a t  for no rma l  funct ions  the  exis tence of an  

a s y m p t o t i c  value  ~ a t  a b o u n d a r y  po in t  impl ies  the  exis tence of the  angular  l imi t  ~ a t  th is  

point .  

w 1. Asymptotic paths of meromorphic functions 

3. Le t  ](z) be a meromorph ie  funct ion in a s imply  connected  domMn G bounded  b y  

a J o r d a n  curve. I n  th is  sect ion we s t u d y  the  behav iour  of ] (z) in the  ne ighbourhood  of a 

b o u n d a r y  point .  

F o r  convenience of nota t ions ,  we wri te  for every  b o u n d a r y  po in t  z - z0, 

l / (~o) I = lim sup l /(~)I.  
z~-z o 

I f  1[(%)1 tends  to  zero as z 0 on the  b o u n d a r y  approaches  a po in t  P ,  we say  t h a t  [(z) 

has the  l imi t  zero a t  P along the  boundary .  I f  so, there  a lways  exists  a J o r d a n  curve in 

G wi th  endpo in t  a t  P on which [ (z) t ends  to zero as z-->P. 

W e  call an  angle with  ve r t ex  a t  P a domain  A defined as follows: I f  Q is some o ther  

b o u n d a r y  po in t  and  ~o(z) the  harmonic  measure  in G of one of the  arcs PQ, then  A is a 

d o m a i n  whose poin ts  z sa t i s fy  a condi t ion  e < o~ (z) < 1 - e, e > 0. I f  / (z) un i fo rmly  t ends  

to  a l imi t  ~ as z-+P inside every  angle A of the  above  kind,  we say  t h a t  [ (z) possesses the  

angular limit ~ a t  the  po in t  P .  

Concerning the  behav iour  of /(z) in the  ne ighbourhood  of P ,  we make  the  fol lowing 

assumpt ions :  We suppose t h a t  there  exists  a J o r d a n  curve P, t e rmina t ing  a t  P and  ly ing  

in the  closure of G, such t h a t  [(z) t ends  to  zero as z--+P a long  this  curve. Besides, we 

suppose  t h a t  ] (z) does not possess the  angu la r  l imi t  zero a t  P .  

The resul ts  which we shall  ob ta in  on the  b o u n d a r y  behav iour  of [ (z) will be expressed 

in  conformal ly  i nva r i an t  form. I n  wha t  follows we may ,  therefore,  f reely per form one-one 

eonformal  mapp ings  of G onto o t h e r  su i t ab ly  chosen domains .  

4. W e  shall  p rove  t h a t  under  the  above  condi t ions  there  are cer ta in  " l a s t "  curves 

a r o u n d  F on which ] (z) s t i l l  t ends  to  zero. More precisely,  we es tabl ish  the  fol lowing theorem,  

which in a s l ight ly  weaker  form will  be used in the  subsequent  considerat ions.  

THEOREM 1. Let the ]unction [(z), meromorphic in G, have the asymptotic value zero 

at a boundary point P along a Jordan curve lying in the closure o[ G. I] [ (z) has not the 

nagular limit zero at P, there exist ]or any given s > 0 two curves in G with endpoints at P, 

4 - - 5 6 3 8 0 4 .  Acta mathematica. 97. I m p r l m 6  le 11 a v r i l  1957. 
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so that / (z) tends to zero on one curve but not on the other, and so that the hyTerbolic distance 

o/ these curves is less than ~. 

Proo[. I t  proves convenient  to choose as domain G the r ight  angle 0 < arg z < 7t/2, 

and suppose tha t  the  boundary  point  P lies at  z = c~. By  the above, there is no loss of 

generali ty to assume tha t  the asymptot ic  pa th  F, along which f (z)  tends to zero, lies 

ent irely in G. We suppose tha t  F starts at  z = 0 so t h a t  it divides G into two dist inct  par ts  

G 1 and G2; let G 1 denote the pa r t  of G bounded by  F and  the  imaginary  axis. 

Because ] (z) does not  uniformly tend to zero in every angle, there exists an angle A:  

5 < arg z < ~ / 2  - 26, (~ > 0, containing an infinite number  of points which cluster a t  

infinity and at  which /(z) has not  the l imit zero. The same is thus also t rue at  least in one 

of the intersections G 1 fl A and G 2 fl A; we assume in the following tha t  it is t rue in G I f l  A. 

I n  order to avoid difficulties arising f rom the possible complicated s t ructure  of the 

asymptot ic  pa th  1 ~, we perform an auxil iary conformal mapping  w = w(z).  We map G 1 

again onto the r ight  angle 0 < arg w < ~ /2 ,  and normalize the mapping  by  keeping fixed 

the boundary  points  0 and  oo. I n  this mapping,  the curve F is mapped  on the positive 

real axis. Moreover, the images of G 1 fl A lie in the angle arg w < ~ / 2  - 2 6 ,  as follows im- 

mediately if we apply  the  m ax imum principle to the harmonic  measures of G and G1, 

vanishing on the imaginary  axis and equal to 1 on the real axis and on F, respectively. 

I n  the w-angle we thus have the following situation. The t ransformed func t i on / (w)  

tends to zero on the positive real axis as w-->oo, whereas there exists in arg w < re/2 - 2 8  

a point  set on which /(z) has no t  the limit zero. F r o m  this it follows tha t  given any  three 

non-zero values a, b, c, there is in arg w < ~ /2  - ~ an infinite number  of points, clustering 

at  infinity, at  which /(z) takes at  least one of the values a, b, c. For  if not,  /(w) would 

omit  the values a, b, c in (arg w < 7~/2 - 6) fl (l w l > R) for a sufficiently large R. By  a 

well-known generalization of Lindel6f 's  Theorem, 1 / (w)  would then  uniformly tend  to 

zero in arg w < zt/2 -- 28 as w-->c~, thus contradict ing the hypothesis.  

After  these prel iminary considerations, we introduce a family of similar triangles A, 

defined as follows: The base of A lies on the real axis, the two other  sides are equal, and 

the vertex angle equals �89 Given three non-zero values a, b, c, we construct  all triangles 

A of the above kind containing no points at  which /(w) takes one of these values. A com- 

ponent  of the union of all these triangles is an  unbounded  simply connected strip domain  

bounded  by  the coordinate axis and a polygonal  curve. I f  needed, we cut  the tops of 

the  lat ter  curve so as to ascertain its entirely lying in the angle arg w < ~ / 2 -  6, and 

denote  the curve so obtained by  C and  the  corresponding strip domain by  D (Fig. 1). 

1 First proved by W. GRoss, ~ber die Singularit~ten analytischer Funktionen, Monatshe]te ]i2r 
Mathematik und Physik, 29 {1918). 
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Fig. 1. 

I n  D, /(w) omits the three values a, b, c, whereas on C there is an infinite number  of points 

at  which /(w) takes some of these values. 

I n  the domain D we again apply  the generalized LindelSf Theorem to /(w) and con- 

clude tha t  /(w) has the angular  limit zero at  infinity. I n  other  words, if to (w, D) denotes 

the harmonic measure of D which vanishes on the real axis and is equal to 1 on the rest 

of the boundary ,  then [(w) tends to  zero on every level curve to(w, D ) =  2, 0 < 2 < 1. 

We shall now prove tha t  these level curves have a bounded hyperbolic distance f rom the 

polygonal  curve C and tha t  the bound  obtained tends to zero as 2-->1. 

To this end, we consider an  a rb i t ra ry  point  P (w = u + iv) on C. Let  to (w, A) denote 

the  harmonic measure of the  triangle A with vertex at  P ,  which vanishes on the base and 

is equal to 1 on the remaining boundary .  Since the triangle A is contained in D (cf. Fig. 1), 

it follows from the m a x i m um principle t ha t  to(w, A ) >  to(w, D). Hence, the Eucl idean 

distance of the  level curve to (w, D) = ;t f rom P is less than  the  corresponding distance of 

the  curve to (w, A) = 2. 

As regards the corresponding hyperbolic distances, we conclude as follows. Let  

Ql(U + iv D and Q~ (u + ivy) denote points a t  which the curves to (w, D) = 2 and to (w, A) = ;t 

bisect the s traight  line w = u. I f  a(P, Q) designates the hyperbolic  distance between P 

and Q, we have 
P P 

~ldwl<~ sin{} T 
Q~ Q~ 

1 1 v 1 1 v 
- 2 sin 6 log vl-- < ~ ~ log --.v2 
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B u t  since the  t r iangles  A are  similar ,  the  ra t io  v/v 2 = k (2) is i ndependen t  of the  choice of 

the  p o i n t  P and  depends  on ~ only.  Ev iden t ly ,  k (2)--> 1 as 2-+  1. Accordingly ,  the  hyperbo l i c  

d i s tance  be tween  the  curve r (w, D) - 2, on which ] (w) tends  to  zero, and  the  curve C, 

on which [(w) has not  the  l imi t  zero, is less t h a n  the  cons tan t  ~-(1/sin d) log k(;t), which 

tends  to  zero as 2~--~1. 

Now the  hyperbol ic  met r ic  is i nva r i an t  wi th  respect  to one-one conformal  t rans-  

format ions .  On re tu rn ing  to z-angle, we thus  infer the  exis tence of two curves,  s t r e tch ing  

to  oo, so t h a t  [ (z) t ends  to zero on one curve bu t  no t  on the  other ,  and  so t h a t  the  hyperbo l i c  

d i s tance  of these curves is less t han  a cons tan t  which can be chosen a r b i t r a r i l y  small .  

The  hyperbol ic  met r ic  is t hen  def ined with respect  to the  image  of the  w-angle, i.e. wi th  

respec t  to the  domain  G v By the  pr inciple  of the  hyperbol ic  measure ,  however ,  the  hyper -  

bolic measure  wi th  respect  to G~ is g rea te r  t han  the  hyperbol ic  measure  wi th  respec t  to 

the  whole angle. Our resul t  thus  holds a [ortiori in the  hyperbol ic  measure  of the  angle,  

a n d  the  theorem is comple te ly  proved.  

w 2. Normal meromorphic functions 

5. Making use of Theorem 1, we shall  now derive a condi t ion  under  which the  exis tence 

of an a s y m p t o t i c  value  zero a t  P implies  the  exis tence of the  angu la r  l imi t  zero a t  P .  

The resul t  ob t a ined  contains  as special  case Gross 's  above -men t ioned  genera l i za t ion  of 

LindelSf ' s  Theorem.  

Preserv ing  the  s i tua t ion  of Theorem 1, we suppose t h a t  [(z) has  the  a s y m p t o t i c  va lue  

zero a t  P along a J o r d a n  curve ly ing in the  closure of G and  t h a t  [(z) does no t  possess the  

angu la r  l imi t  zero a t  P.  By Theorem 1, there  then  exists  a J o r d a n  curve L in G wi th  end- 

po in t  a t  P ,  on which [(z) t ends  to zero, and  a sequence of po in ts  z~, n = 1, 2, . . . ,  which 

converge  towards  P and  a t  which ] (z=) -- a :~ 0, such t h a t  the  poin ts  z~ have  a bounded  

hyperbol ic  d i s tance  ( < M) from the  curve L. 

We fix an  a r b i t r a r y  po in t  z 0 in G, and  associate  wi th  the  poin ts  zn conformal  mapp ings  

z'  -- ,5'~ (z), which are defined as follows: Sn (z) is the  funct ion which gives a one-one mapp ing  

of  G onto itself, keeps the  b o u n d a r y  po in t  P inva r i an t ,  and  satisfies the  condi t ion  S~ (%) = zn. 

Le t  K denote  the  hyperbol ic  circle whose centre  lies a t  z = z 0 and  whose radius ,  in 

the  hyperbol ic  metr ic ,  equals  M ~ 1. Because of the  invar iance  of the  hyperbol ic  met r ic  

wi th  respect  to one-one conformal  mappings ,  every  inverse t r ans fo rma t ion  z -  S~l(z  ') 

maps  one or several  arcs of the  curve L inside K.  F o r  large values  of n, the  funct ions  [ (S= (z)) 

are  smal l  on these image arcs, since ] (z) tends  to zero on L. On the o ther  hand,  [(Sn (%)) = 

a * 0 for every  n. 
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6. Let  us now impose a new condition on the function /(z): we assume tha t  the family 

of functions [(Sn(z)) is normal. By definition, a family of meromorphie  functions is said 

to be normal  in a domain, if every sequence of its functions contains a subsequence which 

converges uniformly in every compact  pa r t  of the domain. Since the functions m a y  have 

poles, convergence must  be defined in the spherical metric. 

As remarked above, for large values of n the functions /(S,~ (z)) are small on certain 

ares in K. Hence, they  cannot  uniformly tend to oo, and we conclude from the normal i ty  

the existence of a subsequence [(S~k (z)), whose functions uniformly converge towards a 

meromorphie  limit funct ion ~ (z) in K.  
--1 t The images of the ares of L mapped  into K by the functions z = S~ k (z) clearly possess 

at  least one accumulat ion cont inuum c. Because [ (z)-+0 on L, it follows tha t  on c, ~ (z) = 0. 

Hence, the l imit function ~0 (z) vanishes identically. On the other  hand, for every k, f (S~k (%)) 

= a * 0, so tha t  also ~ (z0) ~: 0. We have thus arrived at a contradiction, and it follows tha t  

i] ](z) does not possess the angular limit zero, the [amily {[ (S~(z))} cannot be normal. 

7. We now introduce the definition mentioned in the Int roduct ion:  A meromorphie  

function ](z) is called normal in a simply connected domain G, if the family {[(S(z))} is 

normal,  where z' - S (z) denotes an a rb i t ra ry  one-one mapping of G onto itself. I n  a mult iply 

connected domain [(z) is said to be normal  if it is normal  on the universal covering surface 

of the domain. 

I n  view of this definition, the above result on the boundary  behaviour of f (z) can be 

expressed as follows. 

T I~I E 0 RE M 2. Let [ (z) be meromorphic and normal in G, and let [ (z) have an asymptotic 

value o: at a boundary point P along a Jordan curve lying in the closure o[ G. Then f (z) possesses 

the angular limit c~ at the point P.  

Remark.  I t  follows immediately  from the above considerations tha t  if the asymptot ic  

pa th  F lies on the boundary ,  a normal  ] (z) does not  only possess the limit c~ in every angle 

A, bu t  it also uniformly tends to cr in the pa r t  of G lying between A and the curve F. 

8. On the basis of the definition, we can immediately  conclude the normal i ty  of 

certain meromorphic  functions. For  instance, if ] (z) omits three values in G, all functions 

] (S (z)) omit  the same three values. Hence, {[ (S (z))} is a normal  family (Montel's Theorem), 

and thus [(z) is normal.  I n  particular,  all bounded functions are normal  as well as all 

schlicht functions in domains of hyperbolic type.  

I t  is clear t ha t  if [(z) is normal,  then so is [(z) + g(z), if g(z) is bounded. Likewise, if 

[ (z) is normal,  then also all powers [ (z) ", # real, are normal. (If # is not  integer, we have to 
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suppose [(z) ~ O, oo in order t h a t / ( z )  ~' will be single-valued.) I t  is also readily seen tha t  

with [(z), every rat ional  funct ion R ([(z)) of /(z) is normal.  

I f  /(z) omits less than  three values, the subordinat ion principle cannot  be applied, and  

it is often difficult to  judge whether  [(z) is normal  or not.  However,  in certain simple cases 

this can readily be done. For  instance, suppose tha t  /(z) ~= 0, c~ and tha t  [ (z) takes some 

third  value only a finite number  of times, say  n - 1 times. Then [ (z) it= is single-valued and 

omits at  least three values. Hence, /(z) 1/'~ is normal,  and thus also/(z)  = (/(z)l/n)'L I t  is not  

difficult to  establish the more general result  t ha t  /(z) is normal  if it takes three values only 

a finite number  of times. 

w 3. Spherical derivative of normal functions 

9. We shall now s tudy  wha t  conditions on the growth  of ](z) are imposed by  the 

requirement  t ha t  /(z) is normal.  To begin with, we introduce the spherical derivat ive 

I / '  t S @ (1 (z)) - 1 + II (~) 

of [ (z), and s tar t  f rom the known result  t ha t  a family ~ of meromorphic  functions is normal  

in a domain G if and only if 

sup @ (/(z)) < oo (2) 
lED 

in every compact  par t  of G. 1 This condition, however, assumes a much  sharper form as 

applied to the family {/(S(z))}, which is conformally invariant .  

t0. We caU a family  ~ of meromorphic,  no t  necessarily normal  functions in a s imply  

connected domain con/ormally invariant, if [(z)E ~ always implies [(S(z) )E~.  

Let  us suppose, for a moment ,  t ha t  the domain G is the unit  disc [ z] < 1. The mapping  

function z' = S (z) can then  be wri t ten 

S (z) = e ~ z + 
l + ~ z  

(0r real, ICI<I) 

so t h a t  

For  z = 0, this yields 

dl (z')[ 
dz '  l-]$l ~ 

q (/ (S (z)))= l + ] ] ( z , ) l ~  i i + ~ z l  ~. 

( / ( o  (0))) = (1 - ] ~ I ~) ~ ( / ( e  '~ 0 ) .  (3) 

1 See e. g. L. AHLFORS, Complex Analysis, McGraw-Hill Book Company, Inc. (1953): p. 169. 
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From this we conclude that  in a family ~, conformally invariant in ] z/ < 1, 

1 
sup q (/(z)) sup 0 (/(0)). 
I ~  - l - I  zl ~ 1 ~  

Introducing the notation 
Idz[ do(z) 1-1 [ 

for the hyperbolic element of length, this can also be written 

sup Q ( / (z ) ) ]dz[=  sup O (/(0)) da (z). (4) 

This relation holds in the special domain ]z l < 1. Since, however, both e(/(z))[dz [ 
and da (z) are conformal invariants, the relation can immediately be extended by conformal 

mapping to every domain G of hyperbolic type. 

I I .  We remark that  sup Q (/(0)) = 

in domains G of elliptic or parabolic type, if the conformally invariant family ~ contains 

non-constant functions. For we can then suppose that  G is either the whole extended 

z-plane or the punctured plane z ~= co. In  both cases, S(z) = az + b gives a one-one mapping 

of G onto itself, where a =~ 0 and b are arbitrary complex numbers. Now, if /(z) is mero- 

morphic in G, 
e(/(S(0))) = /a le ( / (b) )  , 

whence the assertion follows. 

i2 .  Considering the criterion (2) for normal families, we infer from (4) the validity 

of the following condition: A con/ormally invariant class ~ containing non-constant/unctions 

is a normal/amily in a domain G i /and  only 4/ its /unctions satis/y an inequality 

e(/(z))ldz I <= Cda(z), (5) 

where C is a fixed/iwite constant. 

For we first conclude from the above that  if ~ is a normal family, the domain G must 

be of hyperbolic type, and thus a hyperbolic metric can be introduced. If ~ is normal in 

[z] < 1, then sup q/(0)) <c~  by (2), and hence by (4), (5) is satisfied for C = sup e(/(0)). 

The validity of (5) in arbitrary domains follows hereafter immediately by conformal map- 

ping. 

Conversely, if (5) holds, then sup e(/(z)) <= c(ga(z) / ldz  I ) < ~  in every compact part  

of G, and by (2), ~ is a normal family. 
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13. By the above, we get the following characterization of normal functions ill terms 

of the spherical derivative and hyperbolic metric. 

THEOREM 3. A non-constant/(z) ,  meromorphic in a domain G, is normal i / a n d  only 

i/ the condition (5) is satis/ied at every point o /G.  

For it follows from (3) that  if (5) is valid, ~(/(S(0))) =< C. Hence, by (4), 

(1 (~ (~)))I dz I ~ Cd~ (~), 

and the above normality criterion applies to the conformally invariant family {/(S(z))}.  

14. Considering Theorem 3, Theorem 2 can also be expressed in the following form: 

T H E o tr E M 2'. Let [ (z) be meromorphic in G and have an asymptotic value ~ at a boundary 

point P along a Jordan curve lying in the closure o/ G. I /  

lira sup 9 (] (z)) Idz] < oo, (6) 
z-*P d a (z) 

then /(z) possesses the angular limit ~ at the point P. 

For if (6) is valid, we have a finite C such that e(/(z))Jdz r <= Cda(z) in a G-neigh- 

bourhood of P. From the principle of hyperbolic measure it then follows, by Theorem 3, 

tha t / (z )  is normal in this neighbourhood. 

i5.  The inequality (6) is of course no necessary condition, since Theorem 2' has to 

hold for all asymptotic paths. However, as soon as the asymptotic path is fixed, (6) can 

be modified so as to yield precise conditions for the existence of the angular limit. 

As a first exaIflple, we establish the following generalization of a well known boundary 

theorem of LindelSf. 

THEOREM 4. Let /(z) be meromorphic in G and approach a limit o~ as z tends to P in 

an arbitrary manner along the boundary. Then /(z) uni /ormly tends to o~ as z tends to P in the 

closure o/ G, i/ and only i/ the condition (6) is /ul / i l led.  

Proo/. If (6) holds, we first conclude as in proving Theorem 2' tha t / (z )  is normal in 

a neighbourhood of P. Hence, by Theorem 2 and the subsequent Remark, /(z) uniformly 

tends to a, no matter how z approaches P in the closure of G. Thus condition (6) is suf- 

ficient. 

In  order to establish the converse part of the Theorem, we assume, for simplifying 

the computations, that  G is the upper half-plane and P the point z = 0. If  dar (z) denotes 

the hyperbolic element of length with respect to the semicircle (Iz] <r)  N ( Im(z)  > 0), we 

can show by an elementary computation that  dar(z)/da(z) is bounded in every smaller 
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semicircle I z l < r - ~, 5 > 0. Hence, if (6) is not fulfilled, it follows from Theorem 3 tha t  

[(z) cannot be normal in any semicircle I z] < r. But  then / (z )  cannot omit more than two 

values in any neighbourhood of P, and the uniform convergence towards ~ is impossible. 

16. With only formal modifications to the above proof we can also establish 

THEOREM 5. Let  [(z) be meromorphic in  Izl < 1, and  let it possess the radial  l imit  

at the point  z - e  i~. Then  /(z)  possesses the angular l imit  :< at z = e ~, i / a n d  only i /  

0(1)  
Q ( / ( z ) )  = 1 - I z - - ~ I  

in  every angle l arg (1 - ze-i~) l < ~ /  2 - (5, ~ > O. 

17. By means of Theorem 3, we can draw certain general conclusions concerning 

normal functions. In  Theorems 2', 4 and 5, we already made use of the important  property,  

ensuing from the principle of hyperbolic measure, tha t  if /(z) is normal in G, it is also 

normal in every subdomain of G. I t  may  be noted that  this is not as easily seen if the 

original definition of normality with the help of normal families is used. 

By the principle of hyperbolic measure, we can also establish the following result: 

Let  / (w)  be normal in a simply or multiply connected domain Gw, and w -  (p(z) mero- 

morphic in a simply connected G~ with values lying in G~. Then [(cf(z)), which is single- 

valued by the monodromy theorem, is normal in Gz. For since /(w) is normal, we have 

0([(~(z)))=Q(Y(w))l~'(z)l~C~dwldaw(w) ~'(z)  l=cdaWldzl(q~(z))" 

By the principle of hyperbolic measure, da~ (V (z)) < d ~  (z), so tha t  finally e ([(~ (z)))ldzl  <= 

Cd(~ (z), whence the normali ty of / (~ (z)) follows. 

i8.  I t  may  be of interest to compare normal functions with meromorphic functions of 

bounded type. I t  is well known tha t  there exist functions of bounded type possessing more 

than  one asymptotic  value at  a boundary point (e.g. / (z) = ze ~ is of bounded type in the 

right half-plane and possesses the asymptotic  values 0 and c~ at z = c<)). Hence, all func- 

tions of bounded type are not normal. On the other hand, the elliptic modular function, 

which omitting three values is normal, is not of bounded type. The two function classes 

thus overlap each other. 

However, for normal functions the characteristic function cannot grow very rapidly. 

In  fact, in the unit disc we can write 

r 

Y,r)= fd fr 7 , e ( ] ( z ) ) ~ d x d y "  

0 I z I < r  
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Making use of Theorem 3, we get from this by an elementary computation 

C 2 1 
T(r)=< ~ - I o g  1 - r  ~" 

19. A function /(z) is of bounded type, if the average growth of ~ (/(z)) is not too large. 

In  this case, the existence of an asymptotic value does not necessarily imply the existence 

of the corresponding angular limit. Instead, it does follow that  angular limits exist almost 

everywhere. On the other hand, a function /(z) is normal, if e (/(z)) i tsel/does not grow too 

rapidly. Asymptotic values then always imply angular limits, but we cannot say anything 

about the existence of asymptotic values. In  fact, there exist normal functions which possess 

no asymptotic values at all. 

In  order to prove this we make use of a theorem of Lohwat~r and Piranian, 1 which 

states that if E is an arbitrary denumerable set on I z I = 1, there exists a bounded function 

in I z I < 1 possessing a radial limit at every point outside E and failing to have a limit at 

any point of E. 

In  particular, if /(z) is a modular function which possesses radial limits only in a 

denumerable set, we have a bounded g (z) such that  the normal function / (z) + g (z) possesses 

radial limits nowhere. I t  cannot then have any asymptotic values either. 

w 4. Boundary behaviour of normal functions 

20. By aid of the simple metrical condition for normal functions, it is possible to 

derive sharp estimates of a more special kind for the modulus of /(z), and thus accurately 

describe the boundary behaviour of a normal function. We first establish an improved 

version of Two Constants Theorem, and formulate it in view of the applications as follows. 

T ~ E o ~ E M 6. Let a meromorphic / (z) be normal in a domain G, Q (/(z)) [ d z [ <= Cd~ (z), 

and satis/y an inequality I / (z) [ <= m on a boundary arc ~.~ Let G* be a subdomain o / G  with 

boundary ~ U ~', where ~; is an analytic curve. I /  [/(z) l <= M in G* and i/  there is an inner 

point Q on ~' at which ]/(z)l = M,  then 

m>=Me C2Q(M+I/M)~ (7) 

=tidal 
the hyperbolic metric being de/ined with respect to G and 8mien  denoting the derivative in the 

1 To appea r  in  Ann.  Acad. Sci. Fennic~e. 

2 W e  recall t h a t  for  b o u n d a r y  po in t s  z, I] (z) ] refers  to  l im sup  [ / (z )  t, 
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direction o/the inner normal o/ ~' o/ the harmonic measure ~ (z) o/ G*, which is equal to 1 
on ~ and vanishes on ~'. 

Proo/. The function log (M/I / (z)]) is positive in G* and harmonic except for possible 

logarithmic singularities. On 7, log (M/  I / (z) l ) >= log (M/m), while on 7', log ( M /  I / (z) l ) >= O. 
Hence, by the maximum principle, 

M M 
l o g ~  >= ~o (z) log m - - '  

M )  (o (z). 
o r  I1 (z) l =< M (S) 

An inequality for the modulus of /(z) in the opposite direction is obtained by taking 

into consideration that  / (z) is normal. The spherical distance of M and I/(z)[ equals 

M 
dt  M-If(z) I 

s (M, If (z) [) = . ~ = arc tg l+Ml/(z) I, (9) 
I f  (z) I 

where the branch of arc tg of modulus less than ~/2  must be chosen. 

Because /(z) is normal, we have, on the other hand, 

Q Q 

II(z)l)<=f Cf (10) 
Z Z 

Since we are interested in points $ near Q, we can suppose that  the right-hand majorant is 

less than ~/2. Combining (9) and (10), we then get 

M -  t g ( C ~ d ~  (z)) 

I/(z)l->- Q �9 ( ] 1 )  

1 + M  tg (Cz~ da ( z ) )  

In (8) and (11) we have a double inequality for [/(z)l" For z = Q, the bounds coincide. 

Hence, at Q the normal derivative of the majorant in (8) cannot be less than the normal 

derivative of the minorant in (11). Performing the derivation, we obtain the desired 

inequality (7). 

2 i .  Because the minorant in (7) is conformally invariant, we can assume, without 

loss of generality, that  G is the upper half-plane. As domain G* we choose a circular segment 

T~ containing the angle ~r and having as chord a segment of line of the real axis, which we 

take as 7- 
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I n  this  case, the  exac t  va lue  of ~Q can easi ly  be computed .  I f  7 is the  segment  of l ine 

= m r t hen  wi th  endpoin t s  z ~ , 

1 

a n d  i t  follows b y  an  e l emen t a ry  c o m p u t a t i o n  t h a t  

:;g - -  (X 

2 sin cr 

Consequent ly ,  ;t is i ndependen t  of r and  z and  depends  on ~ only.  W i t h  respect  to  ~, 2 is 

monoton ic  decreasing.  

I n  this  special  case (7) assumes the  form 

o c ( , . + 5 )  
m > M e  2 s i n ~  (12) 

22. I f  M~>oo,  the  m i n o r a n t  in (12) tends  to zero, and  the  inequa l i t y  becomes t r iv ia l .  

This is due to the  fact  t h a t  for ve ry  large M,  the  two inequal i t ies  (8) and  ( l l )  y ie ld  a be t t e r  

e s t ima te  t h a n  (12) if app l ied  in some inner  po in t  of G*. However ,  we need no t  a p p l y  (12) 

for large values  of M a t  all. Fo r  if (12) holds for a cer ta in  M -- M0, we can show t h a t  i t  

holds  for eve ry  M < M 0. 

F o r  M ~ m, this  is t r iv ia l .  I f  M -  M 1 satisfies the  inequal i t ies  m < M 1 < M0, we 

consider  the  closed po in t  set E on which ][(z) l >_ MI. This set has a posi t ive  d i s tance  

f rom ),. F r o m  among  all domains  Ta bounded  by  a p a r t  of 7 we then  select one which has  

a t  leas t  one b o u n d a r y  po in t  in common wi th  E bu t  does no t  conta in  any  in ter ior  po in ts  

of E.  I n  such a T~, if(z)[ < M 1 ,  and  ]/(z)[ - M ~  a t  some po in t  of y ' .  Hence,  (12) holds 

for M - M r 

A p p l y i n g  the  same reasoning we see t h a t  (12) remains  va l id  also if [/(z)l > M a t  

some po in t  of T~. 

The  m i n o r a n t  in (12) a t t a ins  i ts  la rges t  value  for 

M = M (~,  C)  = 
7 t - - ~  
- - C  
sin 

If  sup  I[(z)] ~ M(~ ,  C) in T~, (12) thus  yields the  bes t  es t imate ,  if M = M(ct, C). 

S u m m a r i z i n g  the  results ,  we ob ta in  
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THEOREM 7. Let [(z) be meromorphic and normal in the upper hall-plane, and let 

f / (z) I ~ m on a segment o / l ine  ~, o/ the real axis. Then 

where M is an arbitrary positive number satis/ying the condition 

M =< sup I/(z) l, i /  sup I I (z) l < M c). 
ZE TOr ZE TO~ 

The best estimates are obtained/or 

M=supll(z) [, i/ supll(z)l<M(~,C), 
zeT~ zeTc~ 

and /or  M = M (~, C), i! sup I/(~)1 ~ M (~, C). 
Zr T~ 

23. In  the special case tha t  I [ ( z ) [ <  m on every  finite segment  of line y of the 

real axis, Theorem 7 gives the following accurate description about  the boundary  values. 

THEOREM 8. Let [(z) be meromorphic and normal in the upper (z = x +iy)-hal/-plane, 

~ ( / ( z ) ) t d z l  C<  ~ ,  (13) 
sup d a (z) 

and denote m =  sup I[(x) l" Then 

1 +  1 ~ C  2 
m ~ - -  e- I  1+c~, (14) 

C 

unless [ (z) is bounded, in which case 
m ~ C .  

Both bounds are sharp. 

Pro@ The case tha t  /(z) is bounded is readily established. By  the max inmm principle, 

we then have l/(z) l ~ m in the whole half-plane. Hence, by  Schwarz 's  Lemma,  

Idol 

with equal i ty  at  z = z 0 if and only if w = / ( z )  gives a one-one mapping of the half-plane 

onto I wl < m and [(%) = 0. Hence, a [ortiori, 

e(/(z)) Idzl <= md~(z), 

i.e., C ~ m, 

with equal i ty  for the above mapping  functions. 
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Let  us hereaf te r  suppose t h a t  [ (z) is unbounded .  F o r  an  a r b i t r a r y  M > m, we consider  

the  set E M on which 1 / (z) I =~ M. F o r  eve ry  cr 0 < cr < ~, we obvious ly  have  a doma in  T~ 

such t h a t  T~ N EM is void,  while T~ and  E M have  a t  leas t  one b o u n d a r y  po in t  in common.  

Hence,  Theorem 7 holds for every ~, 0 < ~ < z .  Le t t i ng  ~-+~,  we ob ta in  (14). 

I n  order  to p rove  t h a t  (14) is sharp  we consider  a func t ion  

/ ( z ) - A  e i(~z+c), (15) 

where b > 0 and  c are a r b i t r a r y  real  numbers .  I f  A > 0 is de t e rmined  b y  the  condi t ion  

2 A y e  ~ 
n l a x  - C ,  
y>o l § A~ e 2y 

we see immed ia t e ly  t h a t  the  condi t ion  (13) is fulfilled. Besides,  i t  follows b y  an  easy  com- 

p u t a t i o n  t h a t  
2 A =.1 +VI+C e_~+c,. 

C 

Because m = A for the  funct ions  (15), (14) holds for t h e m  as an  equal i ty .  

24. F r o m  Theorem 8 we also i m m e d i a t e l y  ge t  in format ion  on z2i fJL(x)I. I n  fact ,  

1 1 
- -  = s u p  

...... I/(x)l 

and  since ~ (/(z)) = Q (1 / / (z ) ) ,  i t  follows t h a t  

# _< C eVi~ ~ ,  
1 + } / I + C  2 

unless 1/ / (z)  is bounded ,  in which case # __< 1/C. Bo th  hounds  are  aga in  sharp.  

I n  the  general  case t h a t  bo th  /(z) and  1/[  (z) are unbounded ,  m - + c ~  and  ju->0 as C-->0. 

Hence,  the  "more  no rma l "  such a funct ion  is, the  more  its modulus  has  to  osci l late  on 

the  boundary .  

25. As ano the r  app l i ca t ion  of Theorem 7, we prove  the  following genera l iza t ion  of 

P i ca rd ' s  classical Theorem. 

T ~ E O R ~ M  9. A meromorphic function cannot be normal in any neighbourhood d/ an 

isolated essential singularity. 

Proof. Le t  the  i sola ted  s ingu la r i ty  lie a t  z = 0. Owing to the  mono ton ic i t y  p r o p e r t y  

of normal  funct ions  wi th  respec t  to the  domain ,  there  is no res t r i c t ion  involved  in suppos ing  

t h a t  the  ne ighbourhood  G considered is the  un i t  disc p u n c t u r e d  a t  z = 0. 
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L e t  us  m a k e  t h e  a n t i t h e s i s  t h a t  / (z) is n o r m a l  in  G. S ince  the  u n i v e r s a l  cover ing  sur face  

of G is m a p p e d  on to  lwI < 1 b y  z = e (w+l)l(w-1), we ge t  b y  a n  e a s y  c o m p u t a t i o n  

d a (z) 1 

1 tazl 21~l]og~ 
F r o m  t h e  n o r m a l i t y  of l ( z ) i t  t h u s  fo l lows t h a t  1 

C q (1 (~)) --< 1 2tzllog~l 

B e c a u se  z = 0 is a n  i s o l a t e d  e s sen t i a l  s i n g u l a r i t y ,  /(z)  t a k e s  a l l  va lues  e x c e p t  a t  m o s t  

t w o  in  e v e r y  n e i g h b o u r h o o d  of z = O. W i t h o u t  a n y  e s sen t i a l  r e s t r i c t i o n  we can  t he r e fo re  

a s s u m e  t h a t  t h e r e  ex i s t s  a sequence  of p o i n t s  zl, z 2 . . . .  w i t h  [z11 ~ ]z21 ~ " - ,  l im  I z~ I = 0, 
n -->r 

such  t h a t  ] (z~) = 0, n = 1, 2 . . . .  

On t h e  circle  I z I = I zn 1' we h a v e  for  t he  sphe r i ca l  d i s t a n c e  of [(z) a n d  0, 

Z 

s (/ (z), 0l = a rc  t g  ] / ( z )  l ~<f O ( l (z l )  I d z l  
Z n 

Z 

o f Idzl ~ < - -  < - -  

1 = I =2 [zllog N logl~.l 
Z n 

F o r  su f f i c i en t ly  l a rge  n, i t  t h u s  fol lows t h a t  on  I z I = I z~ I, 

\l~ / 

L e t  n o w  r < l z . I  be  so chosen  t h a t  l / (z)  l < 1  in  r < l z l  < I z ~ I  a n d  t h a t  l / (z)  l = l  

for  some  z of m o d u l u s  r. W e  a p p l y  T h e o r e m  6 to  / (z) b y  t a k i n g  as d o m a i n  G the  disc  I z I < I Zn I 
p u n c t u r e d  a t  z = 0 a n d  as G* t h e  r ing  r < [z [ < I z~ I" T h e n  

i=2r logl; l. ~ 

1 I t  can:be proved tha t  only O (/)= o ([ z [-1) is actually needed. We shall discuss this problem in 
a forthcoming paper. 
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and  since the  hyperbol ic  measure  of (I z I < [z~ l) N z ~: 0 is g rea te r  t h a n  the  measure  in the  

p u n c t u r e d  uni t  disc, i t  follows t h a t  

This,  however ,  leads to a con t rad ic t ion  as n--+eo, and  we conclude t h a t  /(z) cannot  be 

normal .  

26. Theorem 6, or i ts  sha rpened  specia l iza t ion Theorem 7, can also conven ien t ly  be 

used for the  s t u d y  of the  b o u n d a r y  convergence of no rma l  meromorph ic  funct ions.  We 

can easi ly  es tab l i sh  the  i m p o r t a n t  p r o p e r t y  of no rma l  funct ions  t h a t  convergence towards  

a cons tan t  on a b o u n d a r y  arc  implies  convergence towards  th is  cons t an t  in the  whole 

domain .  

THEOREM 10. Let /n(z), n -  1, 2 . . . . .  be a sequence o/ meromorphic functions normal 

in G, ~ (/~ (z) ) l dz ] ~ C da (z), where C is independent o /n .  Let further l im ]/~ (z) l - 0 uniformly 
n--.~ oo 

on a boundary arc ~. Then the sequence/n (z) tends uniformly to zero in every compact part o/G. 

Proof. Le t  us f irst  suppose t h a t  G is the  upper  half-plane.  Le t  B be an a r b i t r a r y  compac t  

p a r t  of G, and  le t  us consider  a doma in  T~ with  y as chord which contains  B. 

B y  Theorem 7, we have  in T~, 

sup  (z)r >- , (16)  
ZEy 

where  M is equal  to sup I/~(z)[ or M ( a ,  C), according as sup [/ .(z)l  < M ( a ,  C) or 
z E To: z ~Tch 

sup I/~ (~) ] >- M (~, C)  
z ~To:  

B y  hypothes is ,  the  l e f t -hand  side of (16) t ends  to zero, as n -~c~ .  Hence,  f rom a cer ta in  

n on, the  a l t e rna t ive  t h a t  (16) holds for the  f ixed M - M ( ~ ,  C) is impossible.  W i t h  the  

l e f t -hand  side t end ing  to  zero, M = sup l/n(z) l_~ m a x  l/~(z) l also has to approach  zero. 
ZETo~ - -  z E B  

Hence ,  the  sequence /~(z)  converges un i fo rmly  towards  zero in B. 

By  conformal  mapp ing ,  the  resul t  is ex t ended  for more genera l  domains  G. 

27. We f inal ly  r e m a r k  t h a t  Theorem 2 (or Theorem 2'),  our  genera l iza t ion  of Lindel6f ' s  

Theorem,  can also be de r ived  as a d i rec t  consequence of Theorem 10. 

Le t  us suppose  t h a t  a n o r m a l / ( z )  has an  a s y m p t o t i c  va lue  ~ a t  a b o u n d a r y  po in t  P 

along a J o r d a n  curve U ly ing  in the  closure of G. We make  the  an t i thes i s  t h a t  there  exists  

a po in t  set zl, z 2 . . . .  in an angle wi th  ve r t ex  a t  P such t h a t  z,~---->P and  t h a t  /(z~) does no t  

t end  to  ~. 
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I n  p rov ing  Theorem 2, we in t roduced  mapp ings  z' = S~ (z) of G onto itself, which lef t  

P i nva r i an t  and  were normal ized  b y  the  r equ i remen t  Sn ( z 0 ) -  zn, where z 0 was a f ixed 

po in t  in G. The proof  was essent ia l ly  based  on the  resul t  of Theorem 1 according to which 

there  exists  an a s y m p t o t i c  g -pa th  L such t h a t  under  the  inverse  mapp ings  z-S~(z') 

cer ta in  arcs of L had  an  accumula t ion  con t inuum inside G. In  possession of Theorem 10, 

we can, however ,  d r aw  the  same conclusions also if the  con t inuum lies on the  boundary, 

and  Theorem 2 follows more d i rec t ly .  
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