ON NON-LINEAR DIFFERENTIAL EQUATIONS OF THE SECOND
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§1. We enter now on our complete account of the more general equation

GrEfy+9y)=bkp(p), ¢=t+a.

The functions f, g, p are fixed, b is non-negative, and % is large and positive. We
proceed to state the long list of assumptions about f, g, p. It may help towards easier
reading to imagine that f and g are polynomials and p a trigonometrical polynomial:
in so far as hypotheses about the smoothness of f, g, p are concerned our arguments
are not essentially different from what they would then be, and the reader may trust
us to have taken care of the details. He may similarly take on trust details about
the constants connected with these functions, and the various appeals to the f, g, p
dictionary (§3) that occur in the arguments.

P has continuous p”, is periodic with period normalized to 2 =, has mean value 0,
and is skew-symmetric, i.e. p(z+¢)= —p(p). Any integral f pd @ is periodic; we define
p1(p) be that one for which the mean value is 0. It also is skew-symmetric. It is
now an essential assumption that p, aftains its upper (and consequently also its lower)
bound once only in a period. We normalize p to make 1 the upper bound of p,, to
be attained at jz. So p, (w)= —p, (—in)=1, p(+in)=0. p'(—1Ln) is non-negative;
we suppose it a positive constant a,.

fly) is even, with continuous f’. It has a single pair of zeros, normalized to

+1; f/(1) is & positive constant a;, and f has a positive lower bound in (say) y=2.
Yy

We define F(y)= f f(y)dy; F is odd. We normalize f to make F(—1) (certainly
0

positive) §. This will make 2 the critical value of b, as for van der Pol’s equation;

the behaviour for 5>% is crude, and we suppose for simplicity that 0 <b < 2 as before.
1~ 573805. Acia mathematica. 98. Imprimé le 19 novembre 1957.
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We define H, a constant >1, by F(H)=F(—1)=%1
The final assumptions are about g: we suppose it odd, with continuous g”’. We
should in any case suppose that g’ has a positive lower bound. In order to avoid

certain complications we suppose g’ >1.2

§ 2. Constants L are throughout positive constants depending only on the func-
tions f, g, p, and the constants implied in O’s are always of type L.

Before going on we state the essential

LemMA 1. Suppose (as always) that 0<b<2. Then every trajectory I ultimately
satisfies
lyl=Ls,  |gl<Lik
where we may suppose Lg>20, say3 If it satisfies these at t=t,, then it will satisfy
lyl<L*, |g|< L'k for t>4,
If >0, T' (strictly) crosses y=0 infinitely often.

This is proved (for still more general f, g, p) elsewhere.t

§ 3. In the light of Lemma 1 we define, slightly extending the natural meaning
of the adjective, an “eventual” I' to be one satisfying |y|<Lg, |§| <Lk at the
(arbitrary) origin of time t=0. It then satisfies |y|<L*, |y|<L*k for t=0.

We may observe that this ultimate behaviour holds (for a suitable Lg and LY
subject to very general conditions on f, g, p.* Once granted this, it is enough for our
further purposes that the more stringent conditions we impose on f, g, p should hold
in the restricted range |y|<L*.

H

We give for convenience of reference a ‘“dictionary” of , P.
ry )

LeEMMA 2. p(p)® has continuous p”. It has period 27 and mean value 0, and
p(p+n)=—p(p). p (@), the integral of p with mean value 0, has p, (p +7) = — P, (p).
p, - aftains its upper bound, which is 1, at ¢ =1%mn, and nowhere else, and atlains its

lower bound —1 at o= —}n and nowhere else.

p(tin) =0, p' (£in)=Fa, ¢,>0; p(tin)=*x1. ()

1 In van der Pol’s equation this critical height H has the value 2. We choose to normalize the
critical b to £ rather than H to 2.

2 Since the period is normalized to 27 this is a real restriction on one parameter of the equa-
tion and may be unnecessary. We could alternatively assume that /' >0 in 1<y<H.

3 Constants with *’s (and with or without suffixes) are permanent (see §4 below).

4 See M. L. CARTWRIGHT and J. E. LitTTLEW00D, Ann. of Math., 48 (1948).

5 @ is the phase, and is of the form ¢+ a, since the period is 27z. We work sometimes in ¢,
sometimes in . We have of course

p’=dpldp=dp/dt=p.
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Fig. 1. Graph of F(y).
For |p|<m we have
|p(—3m+y)|<Llyl, 2)
1+ p (—in+9)=}a,9°+0(¥’), (3)
Ly*<l+p (—fnt+y)<Lyf, @)
with corresponding results for p, Gn+y)= —p (—imx+y).
[ 8 even, with continuous f'. g is odd, with continuous g".
(=0, F(¥L)==3}  f(t})=ZEa, ae>0. (3)
FH)=F(-1)=%, H>1. (6)

y=1+n  f@)=ayn+0@) (|ly|<L*; fly)/n=2L (0<ys<L"). (7)

Fy)~F)=ta,n*+0(*) (ly|<L"); l
Fy)—-F(1)=0 (y=—H); (8)
LpP<F@y)-F1)<Ln? —%(1+H)SySL*);]

g’ is continuous, and 1<g'<L* for |y|<L*. (9)

(1) is agreed, and (2), (3) follow from (1) and the continuity of p’’. The second
inequality in (4) is a trivial corollary of (3); the first, however, depends on the fact
that the lower bound p, (—}x) is attained at ¢ = —1x only. '

The results about f and F are either agreed, or simple consequences of (5) and
the continuity of . (9) is agreed.

§ 4. Notation for upper bounds. We use L (as we said above) for positive

constants depending only on the functions f, g, p; and we use 4 (z, y, ...) for positive



4 J. E. LITTLEWOOD

constants depending only on these functions and the z,y, ... In the rather rare cases
when A is used as an index [as log “k, or k~4] it means a positive absolute con-
stant. We use D for constants A4 (§) depending on a d whose rdle is similar to that of
the 6 in the Introduction? (§ 12). This § is to be thought of as “‘small”: it has in the end
to be less than some definite L; we suppose always, and tacitly, that & satisfies any
inequality d <L called for by the run of the argument. Each L, D, 4 (), as it occurs
will in general depend on previously occurring ones; the chain, e.g., of D’s could be
made one of explicitly defined constants.

Many L’s and D’s do not need identification. Where they need identification
throughout a single argument we use femporary suffixes, restarting the suffixes again
at 1 on the next occasion. We sometimes use dashes in the same way (when suffixes
are too thick on the ground). Where constants need permanent identification we use
stars (as well as suffixes): thus Df (§20) is always the same D. Suffixes to things
other than constants L, D are used in many distinct senses; we hope that these
are sufficiently disparate not to be confused; our notational problems are very dif-
ficult.

The upper bounds implied in O’s are always L’s.

We have to employ Lemmas with undetermined non.negative or positive con-
stants d, d’; these are blank cheques, constants chosen in different ways on different
occasions; when chosen, they may be 0, or L, or D, but are always one of these.
The assertions of the Lemmas, which involve such things as 4 (d,d’), k,(d, d’), con-
sequently involve D’s at worst, when they actually come to be applied. (Indeter-
minate constants other than d, d’ are sometimes used, but only temporarily and with
ad hoc explanations.)

The constant b requires some discussion. It is always (as explained in § 1) subject
to 0<b<2, and for some results no restriction other than this is necessary. But
both 6=0 and b=% are generally critical, and bounds of various things depend on
the nearness of b to 0 or 2. Behaviour when b=0 has considerable interest of its
own, and our first intention was to introduce a second *“4”’, §’, and a hypothesis
6=¢ in the relevant contexts. By leaving the orders of § and ¢’ independent we
should arrive at results which were at least pointers to the case of small b (the real
answers probably require such b to be a function of k). The complications of having
more than one d, however, proved almost prohibitive, and we adopted the simplifica-

tion of making all 6 the same. It turned out in the end, however, that even the

1 See Paper III Acta Math. Vol. 97 (1957). This paper will be referred to in future as the In.
troduction. Both papers are based on joint work with M. L. CARTWRIGHT.
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assumption 5>4§ (4’ =0J) led to a very great increase of complication; and our final
hypothesis (where the critical values 0, Z are relevant) is b€ B, where B is the range

1

2000

100 (n

We regret this masking of behaviour for small b, but it seems the lesser evil.

When 5€B an A(b) or A(b, ), if continuous in b, as it always is in practice,
lies between two L’s or D’s respectively.

The dependence of ky=Fk,(z, y,...) on constants (cf. Introduction §§ 5, 9) requires
only a short explanation. ky(z, y, ...) is always an 4 (z,y, ...) and depends only on
f-9, p and the x,y,.... Where we have Lemmas containing (undetermined) d’s the k,
naturally depends on thes d’s. The ks of Theorems generally depend on §, but never
on undetermined parameters (which Theorems never contain).

A ky in a Lemma or Theorem is “sufficiently large”. It has to be continually
re-chosen as the argument proceeds. Supposs, for example, we have proved X <D, k™}
where k> k,. We then have, eg., X <k™? for k> ko, where ko= max (k,, DY), and say
“X<D,kt<k ! by re-choice of k,’. It would be intolerable to mention all the re-
choices, and, once having directed attention strongly to the point, we shall more and

more frequently suppose tacitly that any necessary rechoice is being made.

§ 5. We now seriously begin our long and intricate story, which, after the
literary excursions of the Introduction, we shall not try to lighten. What we have
aimed at is to make things as easy as may be for a reader who omits the proofs
of the Lemmas (or merely skims them for the general idea) and concentrates on
their statements (and of course the connecting explanations). We have taken pains
to make the chain of statements as lucid and efficient as we can. Each Lemma of
the chain, further, has almost always a self-contained proof; clumsinesses that happen
inside these proofs do not carry over outside. Part of the plan is to collect all needed
results of a similar kind into one Lemma at a time, and some of the Lemmas are

long “dictionaries”.

§6. LEmma 3. (i) Let 0<b<2, and let d be a non-negative and d' a positive
constant. Then there is a ky(d,d’) such that when k=k,, the following properties hold.
Suppose that an eventual trajectory has a piece X Y Z lying entirely in y=>=1—d k™ 3;
suppose also that (a) XY has time length at least d’, (b) Y Z contains a point at which
=—1n, (¢) YZ has time length at least k=% log k. Then for any @ of Y Z,
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lgl<A@,d), |gl<d@d d)kt, |y|<A@d,d)k; 1)
gf=bp(p)+0(A @, d)k¥); (2)
yf=bp@)+0(A@d &)k |y—1|7). (3)

In the identity
t
F-F(1)=C+b(l+p(p)—k[gdt—gk™ 4)
0
we may substitute y=0 (4 (d,d")) in the stretch Y Z.

(ii) Let 0<b<2, and suppose that d is a positive constant, and that k=k,, where
ky 5 a certain ky(d). Then at a Q that has been preceded by a piece of an eveniual
trajectory lying in y>1+d, and lasting a time k™ 'log®k at least, we have

lgl<d@), |gl<4a@d), |yl<A@);
with various consequences, e.g. (2) is valid with error term improved to O(A(d)k™!), or

lof-—-bplp)| <A@ k. (5)

Fig. 2. My, M,, M, correspond to cases (i), (ii), (iii) respectively.

We abbreviate constants 4 (d,d’) to A.

We begin by proving the result |¢|<A in (i). On the trajectory we have always
|y|<L,. In any piece of the trajectory of time interval &’ || cannot everywhere exceed
2L,/d'. Hence (see fig. 2) there is an R of XY with |gz|<L/d’". Let |y| attain its
maximum » for RZ at M. We may in what follows suppose that v is greater than
any particular A that artises, since otherwise we have what we want. (In particular
we systematically reject alternatives v <A as they present themselves.) We suppose
always v>1.

We may suppose M not at B (M =R would give what we want). By the hypo-
thesis about Y Z, RZ contains a point, S within 27 on one side or the other of M,

for which @s= —ln. Let ¢y= —in+y, where [p|<2m.
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§7. We may suppose, by prolonging YZ to the next intersection! with the
line y=1—dk %, that Z lies on this line (the hypotheses being satisfied a fortiori in

the new case). We have now to distinguish three cases:
(i} M identical with Z (when g, is negative by the geometry and ¢, = —v);
(i) M is not Z, gy = —v;
(ili) M is not Z, yp= +w.
In cases (i) and (ii) gy = —v. From the g-identity, writing g, for fgdt, we have
Is—Yu= —k(F (ys)— F (1)) + E(F (yp) — F (1) + bk (py (@s) — P1 (ar)) — [9:]31-

The left-hand side is gs+v=0. On the right the first term is non-positive by Lemma 2
(8); the second is not greater than Lk 53 by Lemma 2 (8); the fourth is less than

L since |tg—ty|<2n. We have, therefore,
0= Lkni +bk(py (ps) — Py (@) + L.
Now — Py (@) + Py (@) =1+ p (— b+ 9) = Le?,
by Lemma 2 (4). Hence
by <Luy+Lk™" in cases (i) and (ii). (1)

Next, in either of the cases (ii), (iii), M is strictly interior to RZ, and conse-

quently #,;=0; whence by substitution in the differential equation
Y f @) =bp (@) — g () k™" in cases (i) and (iii). (2)
By (7) and (2) of Lemma 2, and since gy= —1z+vy, we have
v|nu|<bL|yp|+LEk™ in cases (i) and (iii). (3)
In case (ii) we have (1) and (3), and so also
P <L+ LPh 2 <Lby*+ Lk <L(Lyy+ Lk Y)Y+ Lk <Lygi+ Lk
Since we may suppose v*>2 L,, this gives
| 7w < LEH,

and a fortiort |9, |< Ak }. This last inequality, just proved for case (ii), is true also

in case (i) (when 5y =7%,= —dk™?). In either case we now have by <Ak

! This need not happen ¢mmediately.
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Hence, summing up: ]
nM= -,
In cases (i) and (i) { by’< Ak, 4)
|7ae] < A2

We continue to take cases (i) and (ii) together, and now consider the reversed
motion (r.m.) from M; if ¢ is its time variable we have ¢=g@y,—7. The g-identity

for this r.m. is

d
~ e o kP~ F ) +E(F ()~ F (1) +
+bk(p, —%n+w—r)—pl(—%n+w))+fgdr,
0
with y(0) =1+ 5y, (dy/d1)y=v. We write n=y—1=k}z, t=k"}z, P=P(2)=
E(F(y)—F (1)), Py=P(z). Then P, Py=>0, z,=k} 9y > — A. The differential equation

becomes
%zv%—P—Po—i-bkp(—%n+1p)1+0(k1:2)+0(t).
Now by (4) and Lemma 2 (2), bkp(—Lin+9)=0(ky)=0(k* A); and when we sub-

stitute from this and for ¢ the last differential equation becomes

%=v+P—PO+O(Ax)+O(Ax2). (5)

Let X=1log*(w+2); then X<Llogtk, and (since the r.m. lasts a time k*log £,
which corresponds to a range y~! log k of z, without y reaching L*) (5) has a solution
in 0<z<X that is bounded by Lk?.

We show next that either v < a certain A, as desired, or else dz/dz, initially
positive, remains positive throughout 0 <z <X. If dz/dxz ever vanishes, let it vanish
first at x=§E<X; then in (0, &) 2=2,> — A. Now if 2,<0, then P—Py= — P,> — A;

F-4
and if z,>0, then P— Py~ f (positive) dz>0; in either case

20
g—;>v—A—A£—A§2>v—A—AX2>v—A—Alog (v+2),
which is positive at x=¢& (contrary to hypothesis) unless v < A.
We may suppose, then, that dz/dx>0 and 2>z, in (0, X). In this range we

have certainly —1<y<L* and so, by Lemma 2 (8),
LEA<P<L:.



THE GENERAL EQUATION 4§+ kf(y)y+g(y)=bkplp), p=t+a 9

L2 —A  (2<0),

L(z—2)® (2,=0). ®)

It follows now that P—P,> {
For if 2,<0, then zy=0(A), Py<A, and P—Py>Lz*— A. If 2,=0, then

n n
P—Py=k|fdyz=k[Lydy,
M M

by Lemma 2 (7), and so
P-Py2Lk(n*—ni)=L(Z*—25)= L (z—z,),

since z2>z,; and this completes the proof of (6).
From (5) and (6) we have in (0, X) for the case z,<0,

Z—;>v—A——AX—AX2+Lz2>v—A—Alog(v+2)+Lz2, (7

and a similar inequality with L (z—z,)* in place of the last term for the case z,>0.
Now either v is less than a certain A, as desired, or else (7) gives, in, e.g., the

case 2,<0,

d
d—;>%v+Lz2,

X 2 2o oo o0
and then log*(v+2)=X=fdx§f%—fi—zL—;§< U‘+’f|< 2f =Lv},
0 2 0 0 0

and v <A. In the case 2,=0, the alternative to v< A is

dz
ﬂ>%v+L(z—zo)2,

and the rest is much as before.

We have now proved |j|<A in cases (i) and (ii).

§ 8. It remains to consider case (iii), in which y, =v: here we have to pay close
attention to signs (of ¢ and %y).
We recall the identity (2) of §7 [valid for case (iii)].
Yorf (Yar) =0 (@) — 9 (o) k7"
This gives, by Lemma 2 (7) (whatever the sign of 7)
bp (pu) <Lovmy+ LE, (1)

(algebraically, note) and also
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v|na| <Lb|p(@a) |+ LET, )
<Lb|y|+ Lk, (3)

by Lemma 2 (2) (since gu= —inm+y).
In the y-identity between M and S of §7 we have now for the left-hand side

Ys— Y the lower bound —2v in place of the original 0; the conclusion:(1).of §7 is

consequently modified to
by®< L+ Lok 4)

Combining this with (3) (and using b< L, v>1) we have
vy <L,nu+Lok™,
and unless »*<2 L;, which we can reject, we have
v <Lvk™, |qu|<L@wk) i (5)

We prove next that either v is less than a certain A (which we reject), or else
§>0 for a time interval k™% before M. Suppose the second alternative false; then there
is a stationary point X, with =0, at time 7 <k} before M, and we may suppose
it the nearest such point to M. The point X is in XM (since XM has time-length
at least d’ >k }); hence yx>1—dk™}, —dk <ng<ny, and so 5% <yk+dk™". Con-
sequently
0—v=4gg—gu=—~k(Fys) — FQ)+k(F ()~ F (1) +bk (P, (g —7) — Py (920)) + [91]E

= ~Lkys+0+bk(—vp(ps) — L% +0,
bkrp(py)=v—L{kni+A)+0—bkLEk+0=v— Lo —A,

by (5). Unless v is less than a certain A, which we reject, this is greater than }v,
and then
bp(pu)=ivk i =lvk b (6)

On the other hand (1) and (5) give
bp (pu)<Lvik 4+ LE?

which contradicts (6) unless v<L, which we can reject. Then >0 for an interval
k! before M, as stated.

By (5) we now have, for t,—k 1 <t<t,,

—dk¥<n<my<Lv ik} (7)
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The y-identity between ¢ and ¢, gives
J=v+k(F (yu)— F () + bk (p, (9) — P2 (@a)) + [9:],
20+ k(F(yu)— F(y) +bk(t—tr) P (@) — Ll (t —1y)* + 0. (8)
We now distinguish the cases (i) >0, (ii) <0, and prove in each case that

4 >1v at the point in question (of the k™% interval), or else v<A.
M
In (i) yu=y=1 and F(y)—~F(y)= [ fdy=0.
In (ii) |[n|<dk%, and so ’
F(yw)—F(y)=(F(yn)—F (1) - (F(y)—F(1)) 20— Lo,
by Lemma 2 (8), >—-AkL
This last inequality is therefore true in either case, and then (8) gives
y=v—A—Lk-k ¥ Max (0,bp(py))—L+0
>v— A~ Lk v|nyl,

by (1), >p—A— Lo},
by (5), >3,
unless v < A.

Ignoring the v <A alternatives, then, we have 3 >} v throughout the time interval
k™t before M. But then at time t,—k % we have

p<nuy—Llvk¥<Lotpt-lok L

The left-hand side being at least —dk™*; this leads to v<A, which is therefore
established.

We take next the (easier) proof that || <Ak* on YZ. Let X, be the point of
XY of time halfway between ty and ty. We have |§| <A, (say) on X;Z (by the y
result). Then we cannot have |§|>2A,/(ld’) on the whole of X, ¥ (or § would
somewhere exceed A,); there is therefore a point R of X,Y at which |§z| <A. Let
the maximum of || for RZ occur at M. We may suppose M not at R, which would

give what we want. This time we distinguish two cases:
(@) |7m|<dk™} (this includes the case M =Z),
B) nu>dk i

In case (x) we use the fact that there is an § of RZ, within 27z on one side
or the other of M, with ¢s=—}n, and then, by the y-identity,
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bk (1+p, (@a)) = b ke () (@ar) — P1 (Ps))
=gu—Js+ k(F (ya) = F (1) — b (F (ys) — F (1)) + [9,]5
<A+A+Lknpy—0+2nL<A.

By Lemma 2 (2) the left-hand side is at least bkLy? where py=—}n+y,
|p|<2a; hence by?<Ak™!, and

b|p(em)|<bL|p|<Ldy?) <Ak
Since [fm) | < L|npul < AEE,
we have Gu=|—kfi—g+0kply<kAk +L+EAk <Ak}
which proves what we want.

In case (§) M is strictly interior to RZ; consequently y, =0, or

0= —kgjuf(yn)—kf (yn) Y4 —9 Yu) Gu+bkp’ (pa)-
Since |f(yy)|>L|nu|>Ak™*, by Lemma 2 (7),
|?7M| SAEH —f (yu) G~k g (Yae) G+ 0D (ar) |
<A (LA+k'LA+L)<AR,
which completes the proof that |g]|<Ak} for Y Z.

The proof of |y|<Ak is much like that of the § result, but simpler, since the
term bkp”’ is crudely O (k). We differentiate once more and use %'” =0 in one half
of the argument (as for ¢): it is this that requires us to assume the existence of
continuous second derivatives of f, g, p.1

We have now established (1) of the Lemma: (2) and (4) are immediate conse-

quences. For (3) we have
fi=bp —g 9k —f -5k =0 (A),
and so §=0(A|y—1|""), and we have only to substitute this in
gf—bp=—gk -5k
This completes the proof of part (i).

§9. In part (ii) let 7=log*k/k, and consider the r.m. from the point concerned
¢

as time origin, over the time 0<¢<7. Let T = ffdt. Since y=1--d, we have f>Ld
0

(Lemma 2 (7)), T=tLd. The r.m. is

1 We need the inequality for y: it is not a luxury.
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g=kf(y)y—g+bkp? (1)

or LG = kg et @

From (1) we have
y=kfg+kf 9@ —g y+bkp)
and so dit(gje‘”)=(lcf’g]z—g'y’+bkp)e’”. (3)
From (2)

t

[
ge T —go= [ (bkp—g)edt= [O(k)e " dt
0 0
¢ ¢
=0k) [e* T dt=0(k) [e ¥ dt=0@d™),
0 0
Hence, either g,=0(d™ '), or else
|ge " |>1|9|> L.

The last alternative makes |9|>exp (Ld log® k) at time 7, contrary to y= O (Lk).
Thus 9,=0(d™"), as desired.

For g, we argue similarly from (3), substituting y=0(Ld™") on the right-
hand side. For y the argument is similar.

This completes the proof of Lemma 3.

§10. We take next the key Lemma B of the Introduction, (Lemma 5, below)
prefacing it by Lemma C (Lemma 4, below); we restate them for convenience (they

are unaltered in form, except for an addition to Lemma B).

Lemma 4. Suppose y,, y, are respectively solutions of
y=D(y,8)+ By,

where © is continuous in (y, t), By,2 continuous and B,> R, for t=¢,.
(i) If now y, (b)) 2 ys(ty), then y, >y, for t> 4,
(ii) The conclusion is true if R,> R, for t>1, only, provided we know independ-

ently that y, >y, for small positive t—t,.

For the proof see §14 of the Introduction.

1 The argument of p involves —¢ and a constant, but neither detail affects the reasoning.
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LemmaA 5. Consider the (Riccati) equation, for x=0,

dz _ 2 »
—? -2 =
ae =7 ?+l+a—28x, 2(0)=0,
where a= —1, and f further satisfies B<O0 when a= —1, so that z is positive for small

positive x.

There is a By= P (o) such that

(i) if B>B, [or 0>F>p, when a= —1)], then z changes sign to-negative al an
x =14 (x, §)>0;

(ii) ¢f B<By then z2— + co at an asymptote x=x, (o, §)>0;

(iii) ¢f B =g, there is a solution in (0, o) for which 2=0 and
z=x+ B+ F(x, a),

where F (x, ) is continuous in (z,«)! and F=0 (1/z) as x—>oo.

Further By(ax) and y,(x)=a+ B3 (x) are continuous and (strictly) increasing. f,(a)
is large with large positibe o.

Finally f,(«) has the sign of o (and f,(0)=0).

(Gv) If B=Bo(x), O<l,<V+a<l, then dz/dx>A(l;,1,)>0.

z is positive for small positive z, since 2'(0)>0 if x> —1, and 2’ (0)=0, 2" (0) =
—2>0 if a=—1.
Let z=u+xz+f, y=a+p® (and y,=a+f5); the equation becomes

d
(—i—z=u2+2(x+ﬂ)u+y=u(u+2x+2ﬁ)+y, w(0)= —p. 1)
Let C,, O, be the curves z=z(x), u=wu(x) (both for £=0), determined by the equa-

tions and their initial conditions, and let I, be the hyperbola
u(ut+2z+28)+y=0.

The slope of C, can vanish only at a point of I,.

For given a= —1 there are 3 mutually exclusive possibilities in respect of f:
(4)2 O, has a vertical asymptote where z— + co; (B) C, crosses Oz (from positive
to negative z) (C) neither (4) nor (B) happens; we say in the respective cases that
BE(A4), (B), (C) (the classes vary with «).

1 We include this obvious fact because it is explicitly used later.
2 Initial of “‘asymptote’.
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u

(i) (i)
Fig. 3. (i) &, $>0. The region du/dx> 0 is shaded. (ii) a, § <0. The region du/dz >0 is shaded.
(Erratum: in Fig. 3 (i) — f should be placed between — 2§ and origo.)

In the first place we have by continuity:

The classes (A4), (B) are open, and vary continuously with e, (2)
and from Lemma 4 we have:
If BE(A) so does f'<B; if S€(B) so does f'>p. (3)
Thus (A) and (B), unless one of them is null, are infinite open intervals, separated
by the complementary {C), which is either a closed interval or a single point.
We aim first at proving the following results:
(8)y If >0, a small positive §€(A4), and every large positive f € (B).
(@)- If —1<a<0, then f= —|«|* €(4), and any small negative 8 € (B).
(b) For a=0, if f€(C), then 20,
z=z+B+F(z,a), F=0(1/x),
and (C) contains exactly one f.
(c¢)+ This § is large with large positive «.
Suppose these results established. From (a),, (a)_, (b),, (¢). and (2) (continuity) it

follows that a unique continuous f,(«) exists for all « (including a=0), that () € (C),

that f8,(x) has the sign of o, and that 8,(a) is large with large positive «. Further
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(i), (i), (iii) of the Lemma hold. It remains only to prove (iv) and that f,(«) and
@+ B%(x) are monotonic increasing, and these we postpone, going on now to prove
(a)y to (c),. We can divide (b) into the two cases (b), and (b)_. corresponding to
a>0 and «<0.

Begin with the results involving « >0, namely (a)., (b):, (¢):.

In (a), and (b), we may suppose «>0, §>0. So y>0, I, is as in fig. 3 (i) and
does not cut Ou (the equation with =0 has no real roots).

C,! starts at P (0, —fB) with positive slope «. If C, cuts Ox before cutting I,
the slope cannot vanish thereafter, we have du/dx>u*+y, and C,, and so also C,,
has a vertical asymptote at an z=wx,(x, §); § belongs to Class (4).

If C, cuts I', before cutting Oz, the slope of C, becomes negative and remains
negative thereafter; % is negative at the crossing, u= —1 say, and subsequently
decreases, so that |u|=A. Next, we must have u< —}(z+p) for some large =z, since

the contrary inequality for all large z, combined with (1), would imply

u+2zx+28=2L(x+p)

and 2 Alul@ Bty —1AEtf 4y

so that » would go to —co at least as fast as — 3212’ a contradiction. Since
u< —3(x+f) implies z< —}(x+ f), this last is true for some large z; consequently
C, must cross Oz at a positive a=x,(«, 8), and § belongs to class (B).

To sum up: B belongs to class (4) if C, cuts Oz before T',, and to class (B)
if it cuts I', before Oz.

For a small positive 8, C,, having slope y >« at P, clearly cuts Oz first; and
we have the first part of (a)..

Suppose next that B is large and positive. Then dz/dx is large and negative
for some positive x. For suppose not, then C, does not go to — oo for finite z.
Further, by Lemma 4, C, is below the curve

a

(ﬁ=&'2+l+a, £©0)=0,

which has an asymptote at z=1m(1+ a)"¥=¢, say, and satisfies {<¢’, say, in
0<z<}c. In the range 1c<x<lc we have, on the one hand z <¢’, and on the other,
by hypothesis, dz/dz> — K, where K is independent of 8, and so z> —}cK. Hence

=1
at x=1c,

1 Cy is an auxiliary curve for proving facts about C,.
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%;z:<z2+1+oc~2/3-ic<(c'+%cK)2+1+m—%ﬁc,
and as this is large and negative we have a contradiction.

So dz/dx and a fortiori du/dx, is large and negative for some positive z. But
for such z C, must have already crossed I', (since du/dz is positive until T, is
crossed). C, cannot have first crossed Oz, since it would then continue to move
upwards. This establishes the second half of (a),.

When f is of class (C), z remains positive. Further, (), cuts neither Oz nor I',,
and consequently approaches Oz between Oz and the asymptotic branch of I',; henc
u=0(1/x), and z=z+B+0(1/x). If this happened for two distinct f’s, B, and
B2> 1, we should have z,=z,+ (B, — ;) + O (1/x)>2, for large x, whereas z,<z, by
Lemma 4. We have accordingly proved (b),.

That f,(«x) is large with large positive « is evident; if « is large and f is not,
the large initial slope of C, will take it across Oz, and f will not be of class (C).

This is (¢);, and we have proved all the «>0 results.

§11. We now take up the o <O results, namely (a)_, (b).. In (a). we have
<0, f<0.

When ¥=0, or f= —|«l|}, the u equation is

Z—:=u2+2(x+ﬁ)u, u(0)=|8].
This is soluble in finite terms, and the solution has an upward asymptote: this
proves (a)_.

For small negative § we have p<0, and T', is as in fig. 3 (ii). Since du/dz
vanishes on and only on Iy, C, certainly cannot cross the lower branch of I',. Hence
if C, crosses Ox (as it clearly does for a small negative ), u takes a negative
value —A and thereafter decreases further. If we now had w> —3%(x + f) for all large

xz, we should have
d
wr2(@tp)=i@h, o< APty
for large x, and % would go to — co like — 1 A2* at least, thereby crossing the lower
branch of I',, which is impossible. Hence for some large x u< —3(z+p), and so
z2< ~}(x+p), C, crosses Oz, and f belongs to class (B). (a)_ is now proved.
For a f§ of class (C) C, must go to o between Oz and the upper branch of I',,

since if it crosses the I',, u would subsequently increase; for large = we should have
2 —573805. Acta mathematica. 98. Imprimé le 19 novembre 1957.
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du/dx>u®+2zu with a vertical asymptote. Hence w=0(1/z), and the rest of the
proof of (b)_ is the same as for (b),.
It remains to prove f,(a) and p,(x) (strictly) increasing, and finally (iv).
Consider C,, 0,, the C, for (x;, By(2;)), (%a, o (xs)) respectively, and let =2z, —z,.
We have
{'=P{—-2bx+a, £0)=0, P=2z +2,

where a =0, —ay, b=F,(0;) — By (xz), and this gives

x
{=el[(—2bz+a)e Pdx, P,= [Pda.
0

o'_.,(_)

As z—>o00, P=2x+0(1), P,=2*+0(x).

f now «;>a, and so a>0, ¢ will tend to oo like ¢™ unless b>0. Since
{=0(Q), b>0 and f,(a) is increasing.

Next, again with o, > a,, let 7=z, (x) — 2, (x + 8, — B,) where we write 8 2= f, (a1, 2),

y1.,2= Yo l0,2). We find

' =Pn+(y—7v) P=2z,(2)+2(x+f,— Ba)
p=e (n(0)+ (yl——y2)6[.e_’°‘dx).

We have again P=2z+ 0(1), P,=2%+ O{(x). Also 1(0)<0 and we shall have 57— — oo,
which is false, unless y; —9,>0; y,(a) is incresing.

In (iv) C, cannot cross the hyperbola 2> — 22 — 2 8y z + 1 + a =0, since its d z/dx would
thereafter be negative, and dz/dz>0 for >0; also dz/dz—1 as z—>oco. dz/dx has

a positive minimum A4 (), continuous in «, and the desired results follows.

§12. “Linkage of v, w, V at U for a settled trajectory”.! This, in full detail, and
for general f, g, p, is our next task.

There are in point of fact two distinct sets of circumstances in which we need
to establish “linkage” at U on y=1 between v and @ (and V, which is a combination
of v and ). One, discussed at length in the Introduction, is the case of arrival at U
after a “long descent” to y=1, with possible dips. Here we establish not only the
linkage, but (from Lemma 3) also an upper bound for |w| (one of order k™#). The
other becomes important only much later. In this, on the one hand nothing is
assumed about the previous history of the trajectory earlier than a time k¥ log k

before U; on the other hand we are given that w is of order k™*. We give a separate

1 Cp. Introduction § 11, 12.
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Lemma for each case; when we come to proofs, However, it is natural to establish
first the restriction on w in the first case, after which everything reduces to proving
the second case (where the w-restriction is a hypothesis).

In dealing with linkage, we naturally transform our variables v, w (as in the
Introduction) to parameters o, 8 appropriate for the application of Lemma 5. The
statement of the two Lemmas is further complicated by (i) the necessity of working
with undetermined d, d’; (ii) the need for a specific.error-term in the “linkage’.

We set out first some permanent notation. For a trajectory (in the first instance

otherwise unrestricted) arriving at U on y=1 from above, let
pu=—in—o, |o|<x; —Yu="v; V=v+bk(l+p (—in—ow)); (1)
and let the change of variables to «, 8 be defined by

B=2"tafart bt b} (—p(—}a-w)), |

= * * gt agipt 1§ (2)
l+a=v/v*, V*=v"=ajta}bt. ]

Bo(a) is the function of Lemma 5.

We have now

LEMMA 6. Let 45<b<2, and let d be a non-negative, and d' a positive constant.
Suppose that an eventual trajectory I' satisfies the two following sets of conditions (A)
and (B):

(A) it ends with o piece WU (U on y=1) lying in y=1 and of time-length at least

k¥ log k.

(B)Y WU is preceded by a piece XYW, the whole of XW (and so of XU) is in

y=1—dk % XY has time-length at least d'; and Y U contains a point at which.

= 1
¢=—z7.

If now further k>ky(d,d'), then we have upper bounds (for v, 0, V, a, §) as
follows, in which A is an abbreviation for A(d,d’):

(a) o] <Ak3,
(b) 0<v<V<A;
(c) |Bl<A

(d) 0<1+a<A.

1 We define V* by V¥=o*,
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And we have linkage given (in terms of o, ) by
(e) B=PB, @)+ Ok ¥log? k).t
We note for convenience the asymptotic relations? (for k large, o small)
&) B~2"Fafad bkt w, V-v~iabko’, )
V=V*(1+a+p@)+0Aktloghk). |
Finally we have (for reference)
(2) V*=v*, L<V*<L.
Lemma 7. The conclusions of Lemma 6, with d absent from ky and A’s, are valid
(in form3) when (B) is replaced by
(B) lo|<d kt.
We prove first (a) of Lemma 6. In Lemma 6 Lemma 3 (4) is valid for YU,
so that for points YU
F(y)—F(1)=C+b(1+p () +O(Ak™). 3)
Now YU contains a point § where p= -}z, and so 1+ p(¢)=0; also F (ys)-F(1)=0;
hence ¢'> —A k™', and taking y=1, ¢ =g, in (3), we have
b(1+p (p)< —C+OAE)<OAE™),

and so from Lemma 2 (4)*
w*=0 (A k),
as desired.

§ 13. Everything now reduces to proving Lemma 7; for in Lemma 6 we have
proved (a), i.e. condition (B') is fulfilled with A4 (d,d’) for d’, and this leads to the
same final results. Our arguments are now based on (B’) and the fact that the r.m.
from U does not go outside 1 <y<L* within a time k™% log k.

In the y-identity for the direct motion (d.m.) from U, viz.

t
g= —v—k(F(y)—F(l)ku(pl(fp)—pl(%))—tfgdt,

! We do not aim at best possible powers of log k in the error term, the more so that we can
absorb a factor A by changing the A.

? These are straightforward calculations from (a), ..., (¢), and the properties of the funec-
tions p, p,.

2 d’ has a new meaning in Lemma

-

7, and d does not occur.
¢ The special assumption about p, is involved.
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we write {=7y—7 to obtain the r.m. with time variable zero at U. This gives

W o+ b(F ()~ F (1) -k (g (~dm— 0= )=y (~hm— ) +0(D)
=v+k(F(y)—FL)+bkp(—in—w)r—1bkp' (-la—w)?+0(k1*)+0(z),
with (0)=1, or (0)=0. In this we write
p=y—1l=ck ¥z, t=yk iz,
where ¢, y are given in terms of the fundamental constants by
leya, =1, 1y*clba,=1,

and then write
at+l=pcty, B=1bk*(—p(—in—w)yic?,
which yield the values of §12 for «, g.
The result of the substitutions is

dz pP(—in—ow) , _ -

—“Z1x 8L a2 Tl 3,3 3

P 1+ a+yp(z) v (1) 22—-20x+0k t2°)+ O (k% x),
where 9 (2) = (2, k)=yc &k (F (y)— F(1)). Since w=0 (A k%), the coefficient of a* is
—1+0(Ak™%). Thus the r.m. from U, in (z, x) form, is

g—:}=l+m+¢(z)—x2—2ﬂx+xe(x), 2(0)=0, 1)

where, over the range 0<z <y !log £k,
e(@)=0AE Y A+z+a?), (2)
and B=0 (k* w)=0(A). (3)

-The solution 2z is finite and non-negative in the range, y satisfies 1 <y<L* and
so, by Lemma 2 (8), y satisfies

p=22+0(k ¥2®), 4)
and L22=yp(2) = L,2% (5)
From this state of things [and for suitable k,(d, d’)] we have to deduce the
results of the Lemma.
We begin by proving

1+a<A (6)
(which is (d) of the Lemma).
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For <1 (and suitable k,(d, d’)) we have
| -2 —2Bz+xe(x)|<l+A+Ak <A,
Suppose now that 1+«>A,+; then from (1)

dz
a?_l+ip(z)>l+L2z2;

by Lemma 4 z is above the solution of dz/dx=L,2*+I, which has an asymptote at
x=3m (I Ly) . This number is less than 1 if I is a suitable chosen L, and we have
then a contradiction with “z2< oo (0<2<1)”. Hence 1+a>A,+1 implies <L, and
this proves (6).

For 0<z<y 'logk (and suitable k,) we have
[1+a—2*—28z+ze(@)|<A+y log®k+Alogk+Ak tlog® k<2y%log?k.

Hence Z—;=1p+219y“2 log®k (0<x<yp ?logk), (7
where |§]|<1.

We prove next that in the shorter range 0<xz<ly~2logk

dz 3
— X 8
T <log'k {8)

For suppose not, so that dz/dx=1log®k for the first time at an x=¢ satisfying
0<£<}y 'log k. Consider now the range from & to &,, where &, is either y~* log k, or else
that x>¢& at which first dz/dx =0, whichever is least. In (&, &) z is non-decreasing
and so

d .
Ezztp— 2y 2log? k> L,z -2y Plog?k = L, 2% (£)- 2y 2log? k= (L,/L,) (L, 2* (§) - Llog®k)>0,

since L2 (&)=yp(f) = (j—;— 29y %log? k) e log® k—29:y *log®k>L1log® k. (9)

Hence the alternative dz/dx=0 does not happen first, so that & =y ?log k. Thus in

(& vy~ log k)
z2>2z(£)> Llog™ k,

dz i
d—x>L222’—‘2‘y 210g2k2%L222,
log k S d L
2
tlog k<lo k—§=fdx<f—<—<l
o " é a(s)%L2Z2 2 ()

by (9). This being false, we have established (8).
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For the range 0<z<1y 'logk we now have |z| <}y 'logtk, by (8); also
le; (@)| <Ak %log®k, by (2). From these and (1), (4) the z, # equation now becomes

%=1+a+ 2—2?—2Bx+zxe (x), 2(0)=0,

le,(@)| <Ak tlog k<k tlog*k.

Let 6=p—8,(a), let £{={ (z, «) be the solution in OSzS%y'l log k& of

Z—i=1+a+§2—x2—2ﬂo(a)x, £0)=

and let u=z—. We shall prove that |0]| <2k ¥log* k, thereby establishing the re-
maining result (e} of the Lemma. Suppose that, on the contrary, |6|>2k % log* %,
and suppose first that 0 is positive. Then 20 —¢, (z)= 0. Now u satisfies

3— =u{{+2)—(20—¢ )z, u(0)=0,

and by Lemma 4 u <w, where

fl—:=w(§'+z)-0x, w(0)=
and so w= — 0 exp (I(C+z)dx)fxexp( f§+z dx) z. (10)
[\] 0 0

Now, by Lemma 5 (iii), [{—x|=]|B(@)+F (2, a)]<A, since —1<a<A, and
by (8) we have 0<z<uxlog®%. Hence

fzxexp (—_lf(C-i-z)dx) dxzfxexp (—f(x+A+xlogsk)dx) dx
[ 1] 0 0

fxexp —Az—3(1+log®k)2*) dx

>Alog3k (11)

for =1 and therefore for x>1. So for z>1 we have from (10)
|w|=—w=>0 exp (dex)-Alog‘3 k,
0

|w|= @2k ¥ log* k)-exp Ra®—Az)-Alog 2k (1<z<ly 'logk). (12)
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On the other hand,
|w)= —w< —u={—2<|¢|+]|z]|<z+ A+ zlog’k. (13)

(12) and (13) are incompatible (for a suitable k,) when =1}y " log k, and the assumed
inequality for 0 is false.

In the case of negative 0, assuming < —2%k ¥ log* k, we have w non-negative,
w>w, and so w<z—{<z+|{|, and the rest of the argument is the same.

This completes the proof of Lemma 7 (and Lemma 6).

§14. LEMMA 8. (“Dip or shoot-through at a U”.) Let §5g<b=<2. Let the piece
WU of T satisfy the conditions (4), (B) of Lemma 6. Abbreviate constants A(d, d’, 5)
to A1

(i) Suppose V=V*+8; then for k=ky(d,d’, d) the dom. from U, shoots through
and reaches® y= —3(1+H) in time at most Ak *. Up to this moment we have

~§=V*>L, and
—g=v+k(F(y)—F(1)+0(A);

and finally the velocity of arrival at y= —31(1+ H) satisfies —y>Lk.

(il) Suppose V<V*—3§; then for k=ky(d,d’, 8), (a) the dm. from U makes a dip
of depth Ak™* at most below y=1, emerging at time Ak~ at most later. It then (b)

pursues approrimately the curve C,, the branch of
F(y)—F(L)=b(1+p, ()

lying in y=1, and (c) if T' has been above y=1—dk™? for a time 37 before u it

arrives at y=1 again at a time approximately 2 m later.

In either case I' satisfies, up to its arrival at U, the hypotheses, and therefore
the conclusions, of Lemma 6.
The d.m. from U, taking =0 at U, is

—y=v+k(Fly)—F)-bk(p, (pv+t)—p,{pu)+ 0
={o+k(F(y)-FL)}—-bk{p(—in-w)t+ip (—jn—w)}+0Ek)+0(t). (1)

={v+k(F(y)—FAN}+0 (kwt)+ 0 Ee) + 0kt + 0 (). 2)

1 In applications A become D’s. The blank cheques d, d’ are still involved, via the hypotheses
(4), (B).

2 What we do (while we are about it), is to follow the shoot-throngh up to & point a distance
L below y= —1: this is a more convenient place than y= —1 for the next starting point.
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Let ¢, ¥, «, § be the numbers and y(z) the function of § 13, and write y = 1—ck ¥,
t=yk tx; (1) then gives (with an ¢(x) different from that of §13)

d
Ei=1+a+w(—£)—x2+2ﬂx+x8(x), C(0)=0s] 3)

e(x)=0 (Ak™?) (1+x+2%).
(that is, formally, (1) of §13 with —{ for z and — 8 for f).

Case (i). V=V*+4. By Lemma 6 (f) we have « + 5 (x) > LJ, and so, by Lemma 5,
a>A(d) and f,(x) > 4,(d). Since

1'8"130(0()|<A"’_11r log# k<3 4, (9),

by Lemma 6 (e), we have 8> A4 (J).

Consider now (3) for the range of x after 0 to the value for which (for the first
time) {=0, or |{]= kll—o, or x= k%, whichever happens first. In this range 2 8+ ¢&(x) >0
and (—0)=C+0 k), and so

ac
Z2>141 s
dx> +ia+lf—-x
By Lemma 4 {>=w, where
dw
—— 1 2 g2 =
P 1+fa+w*—2* w(0)=0.

By Lemma 5 w>0 and w has an asymptote to + oo at z=z,(x) < A4,(). Hence two
of the alternatives fail, and [ reaches the value +kT15 before x = A4, (6) at most, which

corresponds to {=Ak ! at most, and then—y=(¢c/y)d{/dz>L{*-A>L k5. Further
{ >z, since { is not less, by Lemma 4, than the solution of

du _ 2_ .2 —
dx—1+u 2%, u(0)=0,

which is u=1x; hence df/dx>1+La>1 throughout, equivalent to —y> V™.
Return now to (1). We have —y>7V* up to a time t, <Ak % and at t=t,

11
y— 1= —cki® %. Consider the range from ¢ =t¢, until either — § = V*, or y= —1(1+ H),

or ¢—¢, =k ¥, whichever happens first. In this range (2) gives
(=) —{o+k(F @) -F1)}=0(A), (4)

since w=0(Ak™}). In particular
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—§>B(F @)~ F (1)~ A,> Lk (1-yP— A,
by Lemma 2 (8). Further —g>V*>0 and k(1—y)>>k(1—y):, =Lk} and so
—y>3Lk(1—y)> (®)
Now this motion, if wninterrupted, makes y go to —oo in time O (k_%_%) with
—4>V* throughout. We infer that of the three alternatives it is y= —1(1+ H) that

happens first, and in time at most (A+ 1)kt after U, and then, by (5), —¢>Lk.
This completes the proof of case (i).

§15. Case (ii). V< V*—4. Much of this is parallel to case (i). By Lemma 6 (f)
we have a< —4 (), so that, by Lemma 5, B,(x)< — 4,(d); also |f— B, («)| <34, (5)
and so f< —1A,(d). Consider the [, x equation [(3) of §14] for the range of = after

0 to the value for which (for the first time) =0, or |C|=k%, or x=k21_0, whichever

happens first. In this range 2 8+ ¢(x) <0, and w(—C)=C2+0(k—%+T36), and so

d
a—;<14‘%a+cz—$2.
By Lemma 4 [ <w, where
d
2 el tlatur—a®, w(0)=0.
dzx

By Lemma 5 (since a<0) w, initially positive, becomes negative at z=A4 («) and is
bounded by an A («) before this point. We infer that obvious alternatives fail, and
that the d.m. from U’ makes a dip, as described in (ii).

§16. Let the dip emerge at U’, with gy =v">01 We take t=0 at U’, and we
have now to discuss the d.m. from U’, for which
Yy=v"—k(F(y)—F Q1) +bk(p,(pv +1)—py (pv)) — Gy

Now for t<k %
bk (p, (pv+t)— py(py)) =bktp (—in+0),

where 6= —w+ (py — py)+&¢, which is (a) small, and (b) greater than — w, which

is positive with —f8 (Lemma 6). Since p’ (—}=) is positive,

bkp(—3m+0)=bkp(—in—w)=Lbt|B|kt > Akt

1 The dashes in U’, ¢" are temporary notation only, inside the proofs, and while we are dealing
with dips.
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Hence for t<k % the d.m. has
4= —k(F(y)—F)+ (At - L)t=0(y, ).

Since the first term in @ is —k (L (y—1)*+ O (y— 1)®), the locus ® =0 has a branch
starting at t=0, y=1, and lying above y=1 for 0<t<k% and ®>0 for points
between this and y=1. Since 3 >0 for small positive ¢ it clearly follows that y =0 and
y=>1 so long as t<k % During this time, and afterwards until y next descends to
y=1, I satisfies the conditions of Lemma 3, with d=A, and therefore satisfies the
two relations ‘
gf=bp(p)+0(Ak™}), (h
F-F()=C+b(l+p ()+O0(AE™). 2

But from time k"% to a suitable! L, we have —in+k $<@<L,+|w|, and bp(p)>
bLk % The right side of (1) is then positive (for suitable ky); so y remains a time
at least L in y=>1.

By taking t=0, y=1 in (2) we see that C satisfies C =0 (bw)+O(Ak™}). Tt
follows that, to error O (k™ “), I' pursues up to =2z the branch C, of

F—-F()=b(1+p(g))
in y>1, as (b) of Lemma 8 (ii) asserts, and the error is of the form O (k™*).

§ 17. Finally we have, in (c), to deal with the point mentioned in (ii) of §13
of the Introduction, and prove that I" does reach y=1 near the end of C,, and
in fact by time {,+2m at latest. Suppose this false, and {with the notation of
Lemma 6) let y,=y(t), y,=y (t+2n), w=y,—1y,, and consider the range R, 1<t <ty
where 7=t —k tlogk. We are to show that y,=1 for some ¢ of R. Suppose on
the contrary that y,>1 in R.

Now the y-identities for y; . are of the forms

y=—kF(y)+ By 2 (H
i+2nm t+2n
where, since f pdt=0, we have R,— R, = — _f g dt,
t i
and so R,— R <—1L, @)

since y;, ¥,>1—dk? in R. It follows, by Lemma 4, that w<0, and so y,<1, at
t=1t,, provided w<O0 at some point of R. If the desired result is false, then, we must

1 e.g. an L, such that —$n+ L, is halfway between — 3}z and the next zero of p ().
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have both y,>1 and y,—y, =w>0 throughout R: we proceed to show that these
hypotheses lead to a contradiction.l
Let R' be the middle third of R. In R’ (and indeed in R) the results of

Lemma 3 (i), and in particular its (2), are valid for %,.2 So we have in R’

~ 9, fy,) = ——bp((p)—l-O(Ak_*);
and in this we have

p—(—3nm)< -1k tlogk+O(Ak Y)< — Lk tlogk,

and so —bp(p)>Lk *logk. Since |g,|<A, by (1) of Lemma 3 (i), and y >1,

this gives
fly)>Aktlogk. 2)
dw
Now, by (1), e —BX 4Ry~ Ry<—kX—L,
Y.
where X=F(y,)— F(y,) = ffdy>wf(yl)> Awk ¥ log k,

Y,

by (2). So in R', or t, <t<¢,, say,

—@<—qw—L, g=Aktlogk,

(;—Zi(we‘”) < —Le%,

¢
w<w(t)e ¢ Le’qtf et dt
tl

<L e—a(t--t.) _ Lq—l (1 _ e—e(t—t,)).

This is negative for, say, t=t, +%k ¥, and gives the desired contradiction.

This completes the proof of Lemma 8.

§ 18. We consider now a series of successive dips, U, U1, U, Us, ..., of which the
first, U,U;, is subject to the hypotheses of Lemma 8 (ii). If the depth of the dip
U,U; is d,k* we have d,<A. Then T, taken up to U,, satisfies the conditions of
Lemma 6 with Max (d, d,) for new d and the same d' as before. Hence, with obvious
notation, v,, w,, V, satisfy the bounding and linkage relations (a) to (g) of Lemma 6,
with the new d, d’.

! The remainder of the argument is different from the one in the Introduction, because we are
making weaker assumptions.
2 The hypotheses of Lemma 8, of Lemma 6 and of Lemma 3 (i), are effectively the same.
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Further, U, U, is the curve C,, to error O (k~*). Now the g-identity between U,

and U, can be written in the form
u,
Vo~ Vy=[gdt,
U,

and we have in consequence

V,—V,=M+0k*, 1)

where M = fg(Y)dt, and y=Y (¢) is the equation of the curve C,. M is an A4 (b)

(depending only on b and the fixed functions) and lies between two L’s.

There are now three alternatives concerning V,; (i) V,>V*+4, (ii) V,<V* -4,
(i) V*—8<V,<V*+4; the first two correspond to (i) and (ii) of Lemma 8, the third
we describe as the “gap” case. In (i) there is a shoot-through as in Lemma 8 (1);
in (ii) there is another dip U,Us;, of depth dy,k~* < Ak, followed by U, U, approxi-
mately a period length of the curve C), as in Lemma 8 (ii). And so on. If k; is
successively rechosen in the obvious way we shall arrive at a final U, =U, with
n<1+[(V*+68)/(M— Lk *)], and either with a ¥V (=V,) in the gap V* =+, or else
a V=V*+4 and a shoot-through. We have n< L, and the final k, is a k, (L, d, d’, 9),
where d,d’ are the parameters conditioning I' at the start. Finally, Lemma 6 is valid
(with new d,d’ of type A) for the stretch ending in U, and Lemma 3 (i) is similarly
valid and up to U.

§ 19. We continue these additions to Lemma 8 by pursuing the shoot-through
of §14 a Vstage further. We assume the (minimum) hypotheses of Lemma 8 (i) [namely
those of Lemma 6, together with V> V*+4]. As we have seen, ¢y = —in— w, where
w=0(Ak ™) and T' arrives, at K', say,? on y= —}(1+H), with g< — Lk, and in
time 7=0(Ak %) after U. We proceed to show that y vanishes, within time A%™%

after U, at an inverted vertex Z’ for which
g+ HI <A, |gw+ha|< Bk )

Consider I' beyond K’ up to the time when first 4 =0. The differential equation

can be written

d .
d—t(ye"")=e"" (bkp—g),

where f, = f fdt. If we take t=0 at K’ this gives

1 We retain the notation A for 4 (d, d’, d).
2 The dash attached to K, and Z below, is there to conform with what is later systematic
notation.
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t t
g—y'oe"‘"=e"‘"blcj’pe"f‘dt—e"‘"fge""dt
1] 0

12 t t
=bkp(@t) [e*Fdr— [g(r)e *Fdr—bk[(p(t)—p(r)) e " dT, @)
0 0 0

t
where ¥ = ff(y)dr. Since y < —1— L throughout we have f= L and e **=¢ 1*¢-7;

also the second and third terms on the right side of (2) are

t t
0({6‘”‘“"%1) +0(k)f t—7) e_Lk(t_nd7=0(%) )
0 [1}

Also g,= O (k). Hence (2) gives
4> —Lke ™ +bp(—Ln+y)(1—e - Lk (3)
where y=¢@+1in=—w+({—t,). Then p(—in+y)=a,p+0(y?) (for small p), and the
right side of (3) is certainly positive if (i) >k % and (ii) t > k™%, Since tg. —ty<Ak™H,
4 accordingly vanishes at a time after U at most Ak}, so that |p. +1iz|<A k7%,
the second half of (1).

Further, by the g-identity between U and Z’,
0=ygo=bk(1+p(p:) = V—k(F(yz)-F (1))~ g,
=0 k(AL H)+0(L)—k(F (y)—F(1))
=0(A)—k(F (y»)— F(—H)),

so that F(y.)—F(—H)=0(Ak™), and |y, + H|<Ak™", as desired.
Incidentally we have at any point of UZ’

gy=—kF(y)+§k+0(8)= —k(F(y)—F (1)) +0(A). 4)
For convenience of reference we add to this summing up the result (of Lemma 8)

lg|>V*>L over UK'. (5)

§ 20. We are supposing always that ;35 <b<Z—{s.

When we take d=0 and d'=1, the numbers A; 2 of (1) of §19 become definite
Ds, A,(8), 4,(6), which we may suppose to increase as § decreases. We now define
(note the change from & to 18) Di=Max (4,(:0), 4,(39)). [In the special case of
van der Pol’s equation D}, with ¢ for 19, is the D, of the Introduction (§10).] We
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are now in a position to prove the key-Lemma 9, and the further results in
Lemmas 10, 111

We denote by (S) the set of initial conditions
(8) |gol=DFE™, |yo— H|<D5E, |@y—Ln|<DS k%,

and we denote also by S the class (“stream”) of Is satisfying (S). There is a certain
Di>D; that we define later (§24). We denote by (S;), S,, etc., the conditions and
“stream” obtained by replacing Dj by Df. 8, contains S.

In considering behaviour connected with the boundaries y= +1 of the region X,
or |y|<1, we have so far had only to consider one of them at a time, and have
standardized to y=1. Any such behaviour happens also in “inverted” form: we
systematically use dashes to denote the inverted form of the undashed thing. Thus,
toa Uon y=1,withg,=—in—w, V=—g(U)+bk(1+p,(—in—w)=V*—§ there
corresponds a U' ony=—1, pp=}n—0o', V' =g(U)+bk(1l-p,En-')=V*-4, and
so generally. We shall state results for one form only at a time, taking the opposite
form as understood; but sometimes the uninverted, sometimes the inverted, happens
to be the more convenient. This use of dashes among others should never lead to
confusion: our practice will be that if a dash can mean an inversion it does (and if
it cannot it does %,(4) not).

§21. LEMMA 9. Provided k>ky(8), a T' of 8, (a fortiori one of S) does not
reach a certain y=1+ L, a fortiori does not reach y=1, before time Lk at least. After
possible dips it will arrive at y=1 at U, where either (i) V is in the gap V* 14, or
else (i) V=V*46. In case (ii), and, more generally, when V=V*+14, there is a
shoot-through UZ' ending at an inverted vertex Z' satisfying the inverted forms of (S):2
namely

(8 |90l (=0)< Dk, |yo+ H|<D§E?, |po+im|<DFEE,

so that I' belongs to an S’, and repeats the behaviour just described until, if ever, it
“arrives at a gap” (arrives at y= +1 with V or V' in V*+6)3

LemwmA 10. (Linkage at U). For the ' of Lemma 9 we define (repeating some
earlier definitions for convenience of reference)

* These involve 3 parameters y,, Jo, Po, S0 that the I' are multiply represented.

2 Not (8,), of course.

3 The argument will show that whatever D, D’ say, is chosen in place of D7, the results of
the Lemma are valid provided &>k, (L, 8, D’): strictly speaking we should employ a blank cheque d,

ultimately chosen to be Df, but this seems hardly necessary. (To introduce DY before Lemma 9
would waste space.)
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puv=—in—ow, |o|<x; —gu=v; V=v+bk(1l+p,(—in—w) (=v); @)
V*=v*=artal bt; (2)
1+a=2v/V*, B=-2"tata; btk p(-ln—w). (3)

Then we have
V*-48<V<UL; |w| <Lk} L<l+a<L; |8l<L; (4)
and the linkage B=PB,(a)— Ok ¥ log” k). (8)

Lemma 11. A T of Lemma 9 satisfies, from its start up to U,
|9l <D, |§|<Dkt; (1)
gl =bp(e)+0DE}). (2)
Over UK' [K’' is on y= —}(1+ H)] we have

—§>V*>L. (3)
Over UZ’ we have

y=—k(F @y —-F(1)+0D)=—kF(y)—3k+0(D). (4)

Over an interval of time-length 1, say, ending at U we have —y> L. More l
generally, for an arrival (possibly earlier than U) at y=1 with v> L, we have I (5)

— 4 > Ly (Ly) over the unit interval ending with the arrival, where L, depends on L.t

§ 22. Proof of Lemma 9. In the notation of Lemma 3 we take X at the start,
and Y at time t=1log®k/k, or when y first reaches } (1 + H), whichever happens first.

t
Over XY, writing f, = ffdt, we have
0
d s kT kfy
d—t(—ye y=ue’, u=—bkp+yg. (1)

We have p=1a+0 Dk H+0(log?k/k)=1r+0(DEk™?),
p(p)=0(Dk), u=0(Dk?).
t
(1) gives —g=—goe " + fu(tr)e—k(fl(t)—f.tt'»dt'_
0

The exponential in the integral is <e “¥¢~¥; hence

t
|9] <Dk -1+ Dk} [ X ¢4y <D}, (2)
0

1 Strictly speaking the L, should be a blank cheque: there is actually only one application, in
§ 42, when L, is a particular L.
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This gives  y>gyo—Lt>H—Dk'— Lk log k>1(1+ H),
so that it is #=1og® k/k that happens first, and XY has length log® k/k.
We note for later use that over XY we have both (2) and, since p=0(Dk™?),
G=0ky)+0(kp)+0(1)=0(DE}). (3)
Next we have, for the whole of T,
F—F(1)=C+b(1+p1(<p))—k'1!gdt—yk“l,
in which, on substituting =0,
C=F(yp) = F (1)~ b (14 py (pg)) + g k.
Now FH)=-F(Q1)=3,
F(y))=F (H)+0(y,— H)=3+0(Dk™),
L+ 9y (go) =2 — (91 3 7) — 11 (90)) =2+ O (@~} 7))* =2+ 0 (D k™)),

and so C=4—2b+0(Dk™"), and the equation is
t

F-F)=(¢—-2b)+b(L+p (@) — k™ [gdt—yk '+ 0 (D). (4)
0

There is a constant [, an L, such that F(1+1)— F(1)=4; Consider the stretch
of I' from X to the first arrival at y=1+1. Lemma 3 (ii) is valid, with d =1, and we
have |y|<L. Substituting this in (4) and taking ¢ to be the time of arrival at
y=1+1, we have

t
k' [gdt>@E—2b)+b(1+p, (@)~ Lk ~DEk ' — (FQ+1)~F(1)
0
>3+ 0-Dk™ '~ 55> 5k,

so that t>Lk. A fortiori the stretch from Y to the first arrival U, has time-length
at least Lk(>1), and contains points with ¢= —1n. It follows in the first place that
Lemma 3 (i), with », for Z and a new Y is valid for XY u,, whence |¢|<L and in
particular v, <L. By §18 we have the arrival at U deseribed in Lemma 9, with D’s
for A’s, and at U we have V<V,+(n—1)M+ Lk *<L (since n, M <L), and so
a<L.

Next, for the case V>TV*+4, we recall the results of §19 about descent to Z’:
the constants A;; have now d,d =0,1, and become A4, (d), 4,(d). For the extended
case V>V*+14 (the last part of Lemma 9 we have to consider) we have the
desired result, about D =Max (4,(}6), 4,@396)).

3~ 573805. Acta mathematica. 98. Imprimé le 20 novembre 1957.
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Proof of Lemma 10. We have proved (5), and V, a<L, and from (5) a<L im-
plies f<L. This implies, since w is small)l |w|<Lk™* by the definition (3) of
and B the properties of p(p). There remains of Lemma 10 only 1+a>L. Now
o+ pa(a)=V/V*—1+0(k ¥log* k)> — L, and o + B («) decreases from 0 as o decreases
from 0, so that a< — L is possible only for a small L, and 1+ o> L as desired.

Proof of Lemma 11. We recall the last sentence of §18, in whose consequences,
since the original d,d’ are 0 and 1, A’s become D’s. We have accordingly (from
Lemma 3 (i)) (1) and (2) of Lemma 11, except for a time log® k/k at the beginning.
For this stretch the first is included in (2) and (3) above, and the second follows
from (3). The results (4) and (3) of the Lemma are respectively (4) of § 19, in which
A becomes D, and (5) of §19.

There remains only (5) of Lemma 11. In the first place it is enough to prove
this for time k& *loglog k& before U. For then we have in the remaining time stretch,
n=y—1>Lk tloglogk; Lemma 3 (i) (3) is valid [with D for 4 (d,d’)], and so

g=bp(@)/f+0Dk* 7%
=bp(g)/f+ O (D (loglog k)™")
> Lp(p)/(ty—t)— D (loglog k)%, since f<Ln<L(ty—t),
> L, since —(p+3in)>w+ (ty—1t)>L({Ey—1).
For the stretch k™ *loglog k before U we have for the r.m., in the notation of
§12, over a stretch that becomes z < Llog log £,
¢z tat (z)—wx2—2ﬂx+0(k‘*x3)+0(k‘§x) 2(0)=0
dz ¥ P (—in) ’ '
The coefficient of a® is —1+O0(Dk™%), and B=pg,(a)+ Ok ? log “k). Also =22+
Ok %2%); and we know that
dz

Y% <Ly <
dx_Lly|<L’ so that |z|<Lxz.

It follows that (over z < Lloglog k)

dz

E;=l+a+z2—x2—2ﬁox+0(k“‘).

1 Because U is near the curve C,. Lemma 6 has |w|<Ak—i, but we cannot use this since the
A would become a D (because the dips have depths O (DE" ). The proof in Lemma 6 is also dif-
ferent (and there is a similar one in the Introduction).



THE GENERAL EQUATION §+ kf(y}d+g(y)=bkp(p), ¢p=t+« 35

Let { be the solution of

fl—c=1+<zc+§'2——91:2~2/30:a:, £(0)=o,
dx
and z=(_+u, so that
z—Z=u(2C+u)+O(k“), #(0)=0. (1)
We have u>w, where
GO w04, w(©0)=0
dz - > w — Y
so that w> — Lk ¢ [ ¢ da, )
0

We have [=x+0(1), {=0, so that
—w<LE *etT < Lk 4eltosloskr o -4

It follows from (1) that
du _a -A ~4

Finally Lemma 5 (iv) gives d{/dxz> 4 (},, l,) = L, where I, is any upper bound !
of 1+a, so that

dz A
d~x>L—Lk s

and |g]|2L%>L, as desired.

§ 23. We now introduce some permanent notation for important points (or time-
points) connected with a trajectory I', which we suppose to start in some §,,' and
not to meet a gap, or, more generally, to have V, V'>V*+14 at any U or U’
concerned, in the range under consideration.

Z’s are time-points where p=1n, N’s points? where p=1x (a Z’ is accordingly
an N and N’ a Z, but the letter, Z or N, corresponds to the aspect we are empha-
sizing). In a “long descent’” Z’s correspond (very) approximately to ‘‘vertices” or

maxima (and Z'’s in an “ascent” to “inverted vertices”). Z is a real vertex after a

1 To be defined in § 24 following.
2 Initials of zenith and nadir.
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ZyZ
% [
y=3(1+H) .'. Z ]K

y=0
W ~ 11U
y= -1 o
K’ o
y=-4(1+H) o
A
ZyZ'
Fig. 4.

shoot-through.! Z, is the first Z after U’, Z; is the last Z before U. N’s (in a de-
scent) give approximate minima, but this is unimportant. The last few waves of a
descent are near y=1, and may meet it, near the points N concerned: an intersec-
tion U,, and in particular U, is “near” the N (a distance O (Dk ) away). It is con-
venient to be able to say that U,, or U, is “at” theN concerned. When two I'" have
their U’s near the same N, we say they have U’s ‘“‘together at N”’, or simply ‘‘to-
gether”. All this about Z’s and N’s happens also, with dashes, in “inverted” form.

An intersection of a shoot-through from a U with y=—1 we call W’ and that
with y= —1(1+ H) we call K’.2 This allocation of dashes to W’ and K’ corresponds
to treating U to U’ as a “half-cycle” (a ‘“dashed” one). Another important kind of
half-cycle, however, is Z, to Z;. After Lemma 9, a I' that is “gap-free”, or one
that always has V,V’'>V*+19 at U, U’, enters a new 8, (actually an 8) after each
shoot-through, and executes successive half-cycles U to U’, U’ to (the next) U, ...;
or again Z; to Z;, to Zy, ...

We understand by Z, U, W, K both points of I", and also time-points (abscissae).
We use all the letters freely as names of times, and speak, e.g., of “the time-range
Z,—-1 to Z,+1".

The y-range |y|<1 we call Z.

! Exceptionally a “start” in an S, ‘‘at” Z, may (also may not) have a £ ; this is never im-
portant.
2 This notation has occurred by anticipation in § 19.
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§24. Let A=[V*/M]+1 (the integer A is a special A4 (L, b)). Consider now a I
of 8 from its start “at” Z, to Z;;. By Lemma 3 (ii) we have §=0(D), and conse-

quently
Jf@)=bp—(G+9)/k=bp+0(DEk™);

and in particular, since p(Z)=0,

|9(Zn)| <Dyt (1Sm<24).
In the y-identity

t
F(y)=F(yo) +b(py— 11 (@o)) — k7 f gdt— (G~ 10)/k,

we have Pi(@e)=p A+ O Dk ¥)=1+0(DEk™Y),
and F(y)=F(H+O0Dk)=F(H)+ 0Dk

At Z,, we have p,=1; so
|F (yz,)—F (H)| <Dk,

and so lyz,, —H|<Dyk™ (1=m=22).

Let now D*=Max (D, D,, D,, L}), where L} is a certain L defined in §67,! and
define the stream S* by

(8%) lyo—H|<D*E, gyl <D*k7,  |po—ja| <Dkt

We write I' (2mn) for T' translated a time 2mn forward, with the obvious meaning
for S(2mmn) etc. Then we see that S* includes S, the streams 8 2mm), m=1,2,... 2
from their starts on, and S{—2m=n), m=1,2,..., A from Z, on.

We now repeat the (‘‘expansion’) process above, but starting with S* in place
of 8§ and D* in place of Df, and taking this time A=2. A ' of S* satisfies, for
m=1,2, |9, | < D3k, |y.,—H|<D,k'. We now take the DI of §20 to be
Max (D*, D,, D,), and define 8, (as in Lemma 9) by

(Sy) lyo— H|<DFE™,  |9|<DIE™, |go—in|<Dik %

8; will now contain S* and S*(—2nx) from Z, on.2

To sum up, 8, §*%, 8, are continuous simply-connected convex? streams (in respect

1 This is needed for the topological argument occurring much later. The definition of L3 in
§ 67 starts from first principles, and can be read now, but it is too long to be incorporated here.

2 Also S* (27) from its start, but we do not need this.

3 These are ilrnportant properties (even though we do not need their full force). We cannot

define, e.g., S* as Z 8§ (2m n), since this sum need not be connected.
|
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of their initial conditions). 8, contains §*, and 8*(—2n) from Z, on. S* contains S
and S(+2ma) for m=1,2, ..., from their starts or from Z, on. 8* is the most im-
portant stream, but for some of its properties we need to call on its slight enlarge-
ment S;; the practical upshot is that we shall be concerned with 8, alone for some
considerable time.

After Lemma 9, a I" of S, that has V> V*+14 at its first U, shoots through,
and then becomes a member of the § at the ensuing Z,, so that we have only an
§ to deal with after the first shoot-through. (None the less we have to make a
prolonged study of S,.)

t
§ 25. We proceed to develop the properties of a I' connected with 7=% f f(y)dt,
¢

for ultimate use in “T-form” (see the Introduction, §18). These are concerned as
much with “reversed” trajectories, or motions (r.m.), as direct ones (d.m.), and we
distinguish the cases throughout. We begin with an important and rather delicate

result about a shoot-through.

Lemma 12. Suppose a d.om. I' of S,, so far gap-free, has a U’ with V' = V* +184,
and so shoots through wpwards, and suppose the time range t; <t <t, is in U' K. Then

i,
S g
7 (0)

where D<p<D. The corresponding (“reversed”’) result for the r.m. has py(t,)/4y(t;) on
the right-hand side.

By Lemma 8, writing y= — 1+, G() =%— F (y), we have > V*,v'> V*> L, and
v+ kG- D, <j<v/ +kG+Dy. (1)
Taking t, =0, t,=¢ we have

_ de’(y) kd@
kff‘“ f fMax(V* v +kCG-Dy) @)
(

Yo)

G (n) increases from =0 to 2, after which @> L. Let n* be the 7 (near y= —1)
for which kG (*)=D,, so that D<k?n* <D (we need these inequalities later in § 29).
If yo and y are both less than —1+%* then g, and ¥ both lic between V* and D,
and y/y, lies between two D’s. Also, by (2),
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kdG D,
< - < =
0= kffdt Of 7 V*<D’

exp (— kffdt) lies between D’s, and so exp (—Iaffdt)/(y’/y'o) does, as desired.
Suppose next that y,< —1+#%*<y. Then

7
kdG kdG
— <
kffdt fV* v +kG—D,
7t

_ Dy T RG—D,
v %y v D, -,

<D+ log (v'+ kG- D,) <log (D¥).
On the other hand

13 n
[ kd@ v +kG+D
k| fae= | S0 = 1
Jf =)l vskasD, 8y + D, +D,
r’*

>log {D (' + kG + D))} > log (Dy).
i
Hence exp (— k ff d t) /¥ lies between two D’s, and combining this with the
0

t
particular value t=0, § =y,, we have exp (— k f f dt) /(9/4,) between two D’s as desired.
0

If both y, y> —1+7* we have, on the one hand (since v'> V*),

t

n
kdG v +kG—D
—k( dt = L
K <fv'+kG—Dl log %G () — D,

Y e

<log — ,+w(%)_ 3)

and on the other

t n
kdG v +EkG+D
—k| fdt = !
Off >f'v'+kG+D1 log kG ) + D,
s

y
- J 4
>log, %@ (73) D 4)

Finally {v' +kG (n,) —D,}/{v' + kG (n,) + D,} increases, with G (z,), as 7, increases from
n* to 2, after which it is 14+ 0(Dk™!): at %* it has the value v'/(»' +2D,)>D. So
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v+ kG (ny) —D,>D @ + kG () + D,)> Dy, (5)
whence also v+ kG (ny) + D, <D + kG (ny) — D)< Dy, (6)

It follows from (5), (6), (3) and (4) that exp (—kffdt)/(g]/y'o) lies between two D’s.
This completes the proof of the Lemma.

t
§26. For a I', whether d.m. or r.m., we define r=r(t)=kffdt. The origin
1]

t=0 is here arbitrary; this is partly a convenient abbreviation, and all results gen-
eralize to a range (f),t) with v—1(t) for 7. Note that a given stretch PQ of a I
has t=0,t=¢ at P, @ for a d.m., and at Q, P for the r.m., but the associated 7 is

the same in each case.! We state results (as always) for one kind of half-cycle only.

Lemma 13. Suppose throughout that t=0, and that the range (0,t) belongs to a T'
starting in some S, and thereafter having V, V' = V*+16 at all the U, U’ concerned. Then

(a) e <Dk (dm. or rm.),
t

t
(b) fe"dt<ch*, e"fe’dt<Dk* (each d.m. or r.m.),
0

0
() e"<e * ift=1 (d.m. or r.m.).
(d) If the range (0,t) is in (d.m.) WU? (a fortiori if it is in a long descent Z,U),

t ¢
7> —D, fe"dt<ch_*, e“’fe’dt<Dl<:~gf (each for d.m. or r.m.).
H

0

(e) If (0,t) is in the (d.m.) range (W, W + k),

t
e Tdt<DE, e"fe’alt<Dk‘1 (each for d.m. or r.m.).

0

(f) If (0,¢) is in an r.m. WU',

S o

£
fe’dt <Dkt (rm.).
0

t
1 Note however that e.g. the two J'e—’dt are not the same; thus, f ¢ " dt for r.m. becomes
: 0
e f €" dt for d.m. over the same range.
0

2 See §23 for the definition of W. (i) Where a pair of letters (here W, U or Z,, U) occur
together like this it is naturally understood that the second is the first of its kind after the first.
(ii) The r.m. corresponding e.g. to the d.m. WU is called UW, but a d.m. UW would be a different
“piece” of I' (namely UW’Z’ ... Z,’ U’ W); we have accordingly to note in the text that, strictly
speaking, WU is a d.m. There is, however, an obvious convention that where nothing is said a d.m.
is in question.
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o
Also f eWdt<DE™  (r.m.).2
W
() For t=k" we have the lower bounds
¢ ¢
fe”dt>Lk'1, e"’fe’dt>LIc"1 (each for d.m. or r.m.).
0 0

Proof of (a) and (c). We begin with (a) in the special case t<1. Then I' can
enter X at most once, and the worst case is when I’ is in X throughout (0, ¢), since

T is increasing when y is outside X. This case is covered by Lemma 12, since
L<|gol. |g|<Lk

Consider next (c¢).2 This is the same result for d.m. and r.m., and we operate
with a d.m. Let G be any time-interval of length 1 (of the kind the Lemma is
concerned with). Now in the first place («), a shoot-through, U’Z say, has y in-
creasing and lasts only time O(Dk t); also ZZ,, say, is above y=1-+ L. We show
next that (B), if L, is a small enough L, a ¢ contained in Z, U3 is below y=1+ 1L,
during one time-interval at most, of length small with L,. Now (i), over @, I' is, to
error o(1), part of a curve F(y)=C+b(1+p,(p)) which does not go below y=1
(§16); moreover since F(y) increases with y in y>1, and because of the special
hypothesis about p, (§1 and Lemma 2), the line y =1+ L,, for suitably small L, (and
in a time-interval limited to 1) cuts this curve at most twice, and then at points a
distance apart small with L,. Next, (ii), by Lemma 3 (i) (2), at any crossing of
y=1+L, by T we have both |y|=|bp(p)/f+0(Dk™¥)|>L and |j|<D. It follows
that the first and last crossings must be the only ones, since any other must be
within o(l) of either the first or the last (I' and the curve differing by o(l)), and
this is incompatible with (ii). This establishes (8).

A little consideration of («) and (8) shows that for any G I is in |y|<1+ L,
for a single interval I at most, and that G'—I has time-measure > L (it consists in
general of two intervals). Now 720 except in I, and the increment A 7 over I satisfies
e 4" < Dk, by the special case of (a). In G—1I we have v> Lk and the increment of
7 over G—1I is at least Lk|G—I|>Lk. This establishes (c).

It is easy to see that as a result of (¢) we may suppose in all the results to
be proved that t<1. For example, if n<t<n+1, we have

1 This is the special case where =0 is W. J‘etdt is very sensitive to the position of t=0 (and
0

we must avoid a fallacious ‘“‘a fortiori”).
? The natural order of the proofs is different from that of the results.
3 ZZ, and Z,U overlap by a length > 1.
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t 1 m+1 t
n—
m=0
0 m n

n-1
< Se™ I +e T,
0

t
where the I's are of the form fe”dt with ¢<1, and an upper bound for. the I's
0

carries over to the left-hand side with an extra factor L only. Since this argument
applies both to d.m. and r.m., and since f e *dt for d.m. becomes e * f e’ dt for r.m.

and vice versa, we have disposed also of the latter form. In other results the reduec-.
tion to ¢<1 is trivial (or irrelevant).

The result (a) has been proved already for <1 and obviously extends, by (c),
to the general case. We have, then, proved (a) and (c), and may suppose in what
follows always that t<1.

§ 27. Proof of (b). We now provisionally assume (d), postponing its proof, and
consider (b). In (b) it is enough to prove the first part (for both d.m. and r.m.),
because of the interchange of j'e"dt and e * f € dt between d.m. and r.m. (similar

cases will recur). Next, we can reduce the proof of this first part to the special
cases when the relevant stretch of d.m. lies respectively in (i) U'—1 to U’, (i) U'W,
(iii) WU.X For, assuming the special cases, and remembering that we need consider
only one kind of half-cycle, suppose (0,t) overlaps some of (i) to (iii); suppose, e.g.,
it overlaps all three. We have then, for the d.m. case, writing 7y for =(U’), etc.,

t U w t
Jerdi=[eTdt+e v [t W dite v e w0 [ W,
0 0 U w

The first two integrals on the right belong to the special cases (with f-origins at the
lower limits) and are (by hypothesis) < DFk}; and the third, by (d), is <Dk % Also
e "0 <1 (since =0 in (i)), and e W v’ < DE, by (a). So

t

[e*dt<Dk*+1-Dkt+1-Dk-Dk <Dk,
0
as desired.

In the r.m. case, when the order is OW U’t, we have

t w 74 t
fe"’dt= fe"dt+e"er’("’W)dt+e"W-e’(’U"’W’fe""'U"dt.
0 ()] w U

1 The restriction <1 ensures that the stretch can have at most one (connected) piece in z.
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By hypothesis the first two integrals are O(Dk?), and the third is O(Dk~¥) by (d).
¢

Also e <1, and e ®v "< Dk by (a). It follows that J.e"dt<DIc* as desired.
0

Take now the special cases. (i) and (iii) are covered by (d), and it remains to
¢

prove [e"dt<Dk* for a range in U’W, and for both d.m. and r.m. Now by Lemma
0

12 e *<D|y/4,|, D|9o/y| in the two cases. In either case e *<Dk/L, and (b) fol-
lows since the range of integration <U'W <Dk,

§ 28. Proof of (d). We give next the postponed proof of (d), with i<1. We
have 7>0 except in dips, which last a time O(D% !) and have depth O(Dk™?), so
that in a dip v=kf> —Lk|y—1|> — Dk} Tt follows (since a unit time interval
can overlap at most one dip) that v> — D.

The third result is equivalent to the second (with the two parts reversed) and
we take this (of course for both d.m. and r.m.). Next, it is enough to prove (both
d.m. and r.m.) for the special cases when (0, ¢) lies respectively in (i) WK, (ii) KZ,,
(iii) Z,Z,, (iv) Z,U. [See Fig. 4, § 23.] This follows by the argument used for (b),

here simpler because the factors e %, ¢ "2z K, ete., (for either d.m. or r.m.) are less

t
than e " <e”=D (by the first part). We have, in fact, je"dt<D times (a sum of
0

integrals belonging to special cases). We take now the special cases, in each of which
we mostly consider the d.m. and r.m. together, and are doing so unless the contrary

is indicated.

¢
In case (i) e "<1 and t<|K—-W|<Lk™, so J‘e"dt<Lk'1.
0

¢ )
In case (ii) T=kf>Lk and [e"dt< [e " dt<Lk.
(1] 0

In case (iv) we have, writing y=1+%, §>L for |[t—U|<1 (Lemma 11 (5)), and
so, over Z;U, n=L|t—U|, 1>Lk|t—U|. For a d.m., writing t=uk ™}, U=wuok ?,
we have then

¢ u
2 Lk[|t—U|dt=L | |u—u,|du,
0 0
[ ] 13
and so Jerdt< [exp {—L[|u—wy|du} bk tdu<Li?
0 0 0

(the last inequality being independent of the value of u,); this is the desired result
with the stronger L for D.
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For an rm., and so U<0<t, we have 7> Lkt, 1> Lkt and

t o0
[emdt< [et dt<Dkt,
as desired. ’ ’

Take finally case (iii) in which once more the argument applies at once to d.m.
and r.m. Let N be the time nearest {=0 at which ¢= —1x; thisisin Z,Z,.! Over
ZIZ, we have |§|<D, and so, over the range including both (0, t) and N (of length
at most -+ 1) we have

F(y)—F(1)=b(l+p,(p)+C+0(DE™). (1

At N we have 1+ p,=0; also F has a minimum at y=1 and F (y) — F(1)=0; hence
C> —DEk™. Since F(y)—F(1)<Ly?% (1) now gives %*>L(1+p,)— Dk, or

n*>L|t—N]2- Dk, 2)

by Lemma 2 (4) [¢p+}sm=t—N]. But also > — Dk}, and this combined with (2)
is easily verified to give
n>D|t—N|-Dk % (3)

Now (for the #’s concerned) f>L,n when #>0, f=L,n when n<0. So

4 t ¢
v=k[fdt=Lik [ ndt+ Lk [ ndt
0 (n20) (n<0)

t t
>Lk[ndt+Lk [ (-Dk Yde
0

(n<0)
¢
>Dk[|t—N|dt- D,
0
by (3) and because the range in which <0 is O(Dk™?!). Writing now, as above,
t=uk}, N=u,k % we have

u
r>DJ‘|u—ulldu—D,
0

oc

i
fe“’dt< f exp (——Df|u—u1|du—D)k_%du<Dk"*,
0 0 0

as desired.

1 In the extreme case of an r.m. with {=0 at Z, we take, of the two equidistant N’s, the one
in Zl Z I
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We have now disposed of all the special cases, and so have completed the
proof of (d).

§29. Proof of (e), (f) and (g). In (e) the two parts are equivalent, and we
take the first. In this we have y>1+L, and so 7>Lk, except in the range
(W, W+E™"), in which 7>0. It follows (for d.m. and r.m.) that

k~1

je ’dt<fe‘”“dt+ f 1-de<Lk™.

In (f) we have, by Lemma 12 (reversed),

e_’>D|y'0/g]|,
t

u .
Je’dts fD —y—
Y

H H

di=D 1o,
I?/ol

0

where 7y=y,+1. If ,<2%" defined in the proof of Lemma 12, this is O(D#*/L)<
Dk} and if 5,>27" it is

O (D 7o/ {k (G () — G (3 1p))}) = O (D 1/ (L e 13))
<Dk 'y*'<Dk L

We have therefore proved the first part of (f). For the second

[ u
f f <Dk,
o I?IW|
w

In (g) the two parts are equivalent, and in the first

as desired.

1
v<k[ Ldt=L for t<k,
0 '
!
and fe”dt> f e "dt>Lk™.

§30. LeEMma 14. Let T' satisfy the hypotheses of Lemma 13, and suppose further
that 0 <t<3m. Then, for d.m. or r.m.

J= fe—r(n)dnfeﬂf)dé_ H’ e"’q“éd&dq<Dk L3

0<é<n<t
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Lemma 15. There is an L3 with the following properties. Let T' satisfy the hypo-
theses of Lemma 13, and suppose further that (0, t) is contained in (W, U,) and that
t<Lik. Then® for the d.m. (only)

LtJ=L% jf e"mtedEdy <},
0<é<n<t
We include here, for later convenience, a result with a special time-origin, and

an integrand of opposite type, namely exp (z,— 7¢).

LEvmA 16. Let T' satisfy the hypothesis of Lemma 13, and let t =0 be the special
point U'. If further t<3m, then, for the d.m.,

¢
[[ enedgdn<D|[edt
0<{<n<t 0
Proof of Lemma 14 for r.m. We take first the cases in which £=0 is outside X,
and the r.m. I over (0, ) enters or crosses ¥ downwards (for the standard case WU’).

0

A

B

v
Y
Fig. 5.

We begin with the most complicated case in which X is crossed, and write «, §, ¥
for W, U’, t. Then J <wu, + u,+uy+u,, where the ranges of £ and # in the four u’s
are respectively restricted by (i) 0<&<p<a; (i) a<n<p, &£<p; (ii) f=<n<y,
E<PB; (iv) f<E<n<y. (There is some overlapping, and in (ii) we drop the restric-
tion £<%.) We have (changing some names of variables of integration %), references

(a), (b), ..., being to the various parts of Lemma 13,

[ t o
w=[at(e[erdg) = [de@DEH) DI, )
0 0 h

by (d).

1 ¥ is the upper bound of ¢’ in |y|sL* [§ 11.
2 This cannot confuse, since the changes are made only in identities.
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B B B 3
Next, Uy = U e"dt) (f e’dt) = (f e dt) (f e’"’adt), (2)
o [ o 0
k% B b4 -3
and Uy = (f e_’dt) (f e’dt) = U e‘("’ﬁ)dt) AL (f e"’adt). (3)
B 0 B 0

The last factors on the right-hand sides of (2) and (3) are each
B a B
[edt—e[edr+ [ =dt=0(DE)+0DEY)=0(DE™),
0 0 3

by (e) and (f) respectively. The first factor on the right in (2) is O (Dk?), by (b).
The first factor on the right in (3) is O(Dk%), by (d) [applied to the (opposite
kind of) half-cycle whose d.m. ends at U’], and the second factor is O(Dk), by (a).
Thus

u,=0(Dk)O(DEk)=0(DEk™?),

uy=0 (D) O(DE YO (Dk)=0(DE}).
t
TFinally Uy = fydt (e"fe’éd&) = fdt-O(Dk"*’)zO(Dk‘*),
B 8 8

by (d) [again for the half-cycle ending at U’]. This completes the proof for the case
considered.

The cases when O is above y=1 and ¢=y is in or above X are effectively
particular cases of the foregoing one. u; und u, disappear, and the treatment of u,

is as before. If there is a wu, it becomes
e o Y
Uy = Ue“"’a’dt) (e‘ to!J‘e’alt—l- fe"’a dt) .
a 0 a

The first factor is O(Dk?) by (b) as before; the first term of the second factor is
O(Dk™"), as before; and the second one is O (Dk™!) by the second part of (f).

Take next the case when t=0 is in X. When I’ crosses y= —1, or when y> g8,
we have (with overlapping)

J Sy uy -+ ug,
where the variables in wu,; , ; are subject respectively to (i) 0<£<pB, 0<yn<p;
(i) 0<é<p, f<y=<y; (ii) f<E<y<y. We have by Lemma 12, reversed for
rm., exp (—7,+7) <Dy &)/ (). So
B 8

uISD(fy(E)df) (f dgt) <D-2-(B/L)y<Dk}
(since f<DkY), ’ ’
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8
Next Uy = (f e’E"ﬁd&) (f'e“’n“'ﬂ’dn);
0 [3

B
the first factor is O (D j 'Z—Eg d.f) <D, since |gg|> L; the second is O (Dk™}), by (d);
0

and so u,<Dk %,
y n y
Finally uy < fdnfe“"l"é)dfs fd'qu“l’<Dk‘*
8 B 8

by (d). So J<DFk % as desired.

When y<f we have J< f f , which is », of the previous case and accord-
ingly O(Dk~%). psess?

There remains to be considered only the case when I' has no point in common

with ¥ and then we have
3n 7 3=
I< [dy(e™[etdé)< [dyg Dk =Dk},
) 0 0

by (d). This completes the proof of Lemma 14 for r.m.

§31. Proof of Lemma 14 for d.m. We begin with the most complicated case
when 3 is crossed (upwards), and write «, 8, ¥y for U’, W, t. We have

f et EdEdy Suy+ up+ug + Uy + ug,
0<e<y<t

where in the five u’s we have respectively (i) 0<&<z<q; (ii) 0<é<a, a<n=<f;
(iil) aSESP, a<y<P; (iv) 0<ESP, f<n=<y; (v) BSE<n=y.

4

WI B

Ufa

Fig. 6.
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We have
« n 3n
w, < [dy[e™n*tdr< [dy Dk =Dk},
0 0 0
by (d).
o B
Next u2=(f e"’adt)( e’("’«’dt)-

1] o

The first factor is O(D%k¥), by (d). The second, by Lemma 12, is

]
0(Dfldt)<p-%=p, since ¢, > L.

[: 4

So uy<DE*.
In u, we have exp (—7,+1:) <Dy (%)/y (&), and so

8
u3<D-2f dy,t<D(,6—a)<Dk“*,

o

since the time over af is O(Dk™}).
8 4
Next, u, = (f e""ﬂ)dt) (f e dt) .
0 8

The first factor is O (Dk}), by (b); the second is O (Dk™?) since y>1+ L for t — > k!

and so
y  Btk1 o
=< 1de+ [ eteae
8 8 prk—1

So uy <Dk},

14 n Y
Finally ug= [dn[en*tdé< [dy Dkt <Dk ?
B 8 B

by (d).

Take next the case when 0 is in X; we may suppose (a fortiori) that y>B.
We have J<wu;+u,+u;, when in u, , ; we have respectively (i) 0<£<p, 0<9=<§8;
({) 0<E<B, p<y=<y; (i) f<E<pn=<y.

We have u;<Dk™* as for u;. Also (practically as for u, of the last case)

88 8
D M fd_t D —':’
Uy < !!g(é)dfdrl<00 y'< p<Dk

since y > L.

4 — 573805. Acta mathematica. 98. Imprimé le 20 novembre 1957.
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8 4
Finally Uy = (f e dt) (f e"’dt) ,
0 8
in which the second factor is O(Dk™?) by (d), and e<1 in the first, so that
uy =0 (DEk™F).
There remains the case when I in (0, ¢) has no point in common with ¥, and then

t n
J=[dy(e™n[eedé)
0 0
in which the bracket is O(Dk %) by (d). This completes the proof of Lemma 14
for a d.m.

§ 32. Proof of Lemma 15. If t=0 in W Z, and the L3 (of the condition ¢ < Lj k)
is chosen small enough, we have y>1+L except in (W, W+%!), during which
7,—7:2=0. So

7 £l P

Jemmedes [ 1-dé+ [e ™ dE=0(k™),

0 0 -1
and L{ J <} provided Ly is small enough. We may therefore suppose (0, £) is inZ, U.
Let Ny, N, ...,N, be the N’s (points with @= —}x) contained in (0, ¢), so that
O0<N,<--<N,<U.! The equation of I' between N, and N,,; is

F(y)—F(1)=b(1+p,(p))+Cr+0(DEk™), (1
where —((3’,;—0,,_1)=;‘7 f gly)dt>LE™. 2)
Np1

At N, we have F(y)—F(1)>0, 1+ p,(p)=0, so that C,> — DEk™. By adjusting the
error term in (1) we may therefore suppose Cp=>C,>0. For n<y let JP, J? be

ff e edEdy,
with integrations over the respective ranges
Ny—$n<E<n=<N, N, <E<y<N,+ia
(these overlap neighbours with n—1 and n+ 1 respectively). Now

exp (— 1, + 1) <e M if y—E>1m; also ”e"n”fdfdn=0(Dk"*)

1 The N near U is after Z,U, and in the extreme case when (0, t) extends to U, N, is approxi-
mately 27 before U.
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for a range of 5 of length <3}xn (and £<9), by Lemma 14; in particular J, J@ =
O (Dk™}) (uniformly in ). By rejecting appropriate areas of integration with n —&>ix
(contributing O (k*e™**) to J) we are left with something less than the sums of the
J$ and JP;

J< il(Js>+J$>+0(Dk-*)).1 3)

We proceed to. evaluate JQ, JP: they are effectively alike, and it is enough to
consider JP. It follows from (2) and C,>0 that C,>(v—n)Lk™'. For the range
(No—%m, No+3n) we have® for y=1+9

L2F (y)~F(1)=b(1 +pi (@) +Ly—n)k ' —Dk™*
>L({t—N,2+L(v—n)k'—DEk 4)
Also n>—Dk % (5)
It follows from (4) and (5) [cf. § 28 (2)] that

n>L|t—N,|+Liv—n)kt-Dk},
and consequently

n>L|t—Ny|+Lv~n) k" ¥>0 (n<y—D). (6)
We proceed to show that

JP <Lk log 1% (n<v—Dy). (7)

From this (and the corresponding upper bound for J%°) the result of Lemma 15 will

v—D,
follow. For we may replace > in (3) by > , and then, after (7), and supposing
1 1
t<2m Ak and so y<Ak (where A will be chosen presently), we have for J® =3 J®,

v-1

Ak
JP <Lk log vilfr-ﬁpk-* <Lk log L2k
1 - 1

n

+Dk}
Ak

<Lk f 1og%dx+1)k—*
0

<L k"'{Aklog (Lyk)—~ Ak log (Ak)+Ak}+DEk™t
<IL,A(log (Ly/A)+1)+ Dk}
<¥/Li,

! Incidentally, we have got rid of the odd pieces (0, N,), (N,, t).
? We have momentarily two meanings for 7, but they are easily distinguishable.
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provided A is chosen to be a sufficiently small L. If then Lj is chosen sufficiently
small we shall have, for ¢t <L}k,
L}J<L}(JP+J®+ Dk Y <l+i+ Dk i<y,
as desired.
Consider then (7), and in J@ write =N, +k tu, =N, +k v, so that
0<u<v<3mk:. We have from (6), and f>L(y—1)

n
T~ 7 =Lk [ (t—N,)dt+ Lk (v-n)} (&)
£

=L[sds+Lr—n)(v—u),

JP<LE™* [[ e Fdudo,

o<u<v<yynk?
where E=L@-uwd)+Lp—n}@w—u)=Lv—u) v+ @—n)}).

Performing the wu-integration first we have

3, nkd 3, ak?

L l_e—Lv(u+(N~n)§) Lf dv
(2) « 2 - - o -
I “k j v+ (v —n)? dv<k v+ (v —n)t
0

L (37/2) ke ) L Lk
=7 lo ( w—n) +1 <Ic logv_n,

the desired result (7).

t

§33. Proof of Lemma 16. It is enough to prove j e *dt<D, or again the
0

3n K 3n K
worst case f——- f + f<D. In f we have ¢ *<Dy/y(0)<Dy by Lemma 12, and
0 0 K 0

K

<D[ydt-=DK=D.
0

oy

3n

3n 3In
Also f =e”Kfe" ""K)dt<Dkfe“L"(‘“K’dt<D,
K K K

by (a), and since v>Lk in (K, 37).

§ 34. We now take up the question of the behaviour of two neighbouring I'; ,,
more particularly of their ‘“convergence”. We suppose always in what follows that
I’} , have started in some S; and have been gap-free before' the moment under

1 If the moment is one of an arrival at y= =1 we are nof assuming anything about this.
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consideration, with their U, , and U; o “together” at the relevant N and N’. After
Lemma 9 T, , belong to the 8; (and indeed the 8) at the Z, following each common
shoot-through. and we may suppose without loss of generality that Z,, and its neigh-
bouring Z,, are the first such points.
We set out some permanent notation.
If X is a number associated with a I' (e.g. y(¢), V, w) we denote X (I',) — X (I",)
by AX. We write w=y,—y,=Ay,
u=i—§, yfﬁ—g (y satisfies 1<y <Lf).
We consider sometimes d.m., sometimes r.m., from an “arbitrary” origin {=0.
For either d.m. or r.m. we define?
t
T=k f udt, so that T=Icu=kA—F;
Ay

1]
t t
and w1=ngdt= fywdt.
0 0

Since ¥ lies between L’s w, can be thought of as a modified integral of w; it is
exactly this when g=y. The suffix is used to suggest such an integration.

We delfine also, each for either d.m. or r.m.,
we=w(0),  wy=w(0), Ty="T(0).

For dm. we define cy=1,+Tyw, for rm. &=1b,—Tyw, and for general ¢
c@)y=w+Tw, é(t)=w—Tw. c(t) satisfies the identity

ety —c(t) = — [ Agdt=—wy (t;) +w, (&), 1)
iy

as is easily verified.
For the d.m. and r.m. with the same origin t=0 the w, and 7', are the same,
the 4, equal and opposite; and é,= —c, (generally ¢(¢) = —c(—t)). As for 7 in §§ 25-34,

for a given stretch of time taken in opposite direction as (0,t), the two T are the
t

same (but e.g. the fe‘Tdt are not the same).
0 .

! This runs parallel to our use of 7 in §§ 25-34.
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The w differential equation for d.m. has the two equivalent forms

w=—Tw+cy—w,,
(W)

d
7t (e"w)= eT(co —w,)

and that for an r.m. the forms?

w="Tw+é—w,
W) d _ r,.
E"(e Tw)=e"T (G,—w,)-
§ 35. We shall often have to use certain developments from (W), (W); we label
them for reference, with ‘“barred” labels for r.m. results.

¢
For d.m. w=wye " +e " [ e (6o w,) dt (W)
]

We generally normalize (by renumbering Iy, , if necessary) to w being initially posi-
tive; i.e. wy>0, or, if wy=0, then w4y,>0.

With normalized w we have, up to the next? intersection (if any)

w<wye "+c,p(f) (up to intersection),

t
p=e"[e"dt. (W2)
0

Substituting this in the w, = f ywdt in (W,), in which 1<y<Lf, we have, for

normalized w,

¢
wel Zwg—wyp+¢, (f e"dt— 9 x) - (to -intersection),
’ (Wa)
p=Lf [[ e Tedgdn, =L [[[ eT&™nTtdédndl,
o0sfsnst osg<n<(st
and we use ¥ always for numbers satisfying 0<8<1.?
If we drop w, from the right-hand side of the inequality we obtain the two further
inequalities

! These are of course valid for the w=y,—y, of any pair I'; , whatever.
2 That is, the next after ¢=0 if w,=0, %,>0.
* The & is needed in the inequality because ¢, may be negative.
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t
w= —wpe "y +cop (1-dy /fert) (to intersection),
0
t t (W4)
W=y (1—19x/J'ert—(wo/co)up/fert)
0 0

of which the second (though true generally) is specially appropriate for use when

co > 0.
t

For r.m. w=wye”+e” [T (G—w,) dt. Wy
0

For normalized w we have, up to the next intersection (if any)

¢
we T Swy+ G, f e Tdt (to intersection), (W)
0

and substituting as in the d.m. case we obtain?

t
we T =wy (1—§)+ c'o(_“ e "dt—97) (to intersection), .
0 (W)
p=Lf [[ e™*Tededy, g=Lf [[[ e T+ TedEdydc.
o<g<nse 0<g<nstst
The special value ¢=1 is important here, and we define the constant u, (associated

with the origin ¢=0) by
1

po=[eTdt (r.m.).
0
If there is no intersection of the r.m. up to =1 we can (using c,= —¢,) translate
(W, 3) (with t=1) into the following d.m. result:

given there is no infersection of the d.m. for time 1 before t=0, and
that w,>0, we have®
< (Ws)
Mo Cp =W,y 5

po €0 (L =37 (1)/ o) >wy (L =5 (1)) -,

where [, as always and constantly in what follows, denotes a number of the form
O(e™P*). The ¢ in the second inequality comes from wye 7.

The discussion that follows is long and intricate. The main work is to prove

1 Our treatments of d.m. and r.m. do not run quite parallel, which is why (W,) and (Wy, ,)
do not.
1 1
2 u, is here of course, f e Tdt for the r.m. (or Je_ T3¢ for the d.m.).
0 0
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that either I'; , do not intersect, or else they differ by O({) after a certain point.
We concentrate first on the cases of non-intersection.

We start (for the present) at a Z,, which we may suppose to be the first one
after the start in §; at Z, and we study the behaviour of w over the half-cycle
2,7,

We shall use a mesh of trajectories I' of §;, “intermediate” to I', , and with

consecutive ordinates at Z, differing by at most k™% where a is either 10 or 11.

§ 36. In the Lemmas that follow we take for granted the hypothesis that I’y , are
Is of the S; at Z, and that (in accordance with our convention that letters denote
points the first of their kind). Z; is a period later than Z,

LemMMA 17. Let Q be an arbitrary time-origin in (Z,—1, Z; +1). Then wy=w (Q) =
O(Dk™). Also, normalizing to w,>0, we have a linkage of c(Q), w(Q) ¢y, we]:
ProCo— & <Wy<2pgcy+{;
and in this uyS Lk, so that

Lk tcy—C<wy<Lk™ey+1{.
In particular all this is true for w(Z,), c(Z,), and further w(Z,)=0 (Dk™").

COoROLLARY 1. There is a ' such that if w(Z,)> " then c(Z,)>Lkw(Z,)(>0).

CoroLLARY 2. If w(Q)=0, then w(Q)=0((); in particular this is true for
Q=1Z,.
We have for a I' of the 8, at Z,, “starting” at fy, y,, Yo, say,’

¢
1 .
F=F(yo)+b(p1<<p)—p1(%))—,;(fgdtw—yo)- (D
t
As in §22, p,(p)=1+0(Dk™"). F(y,)=F(H)+0(DFk™"). Let G be the range (Z,—3,
Z,+3) (this includes both the d.m. and the r.m. from  to time f=2). Lemma
3 (i) (1) is valid with y=0(1), §=0(1) in G. Hence we have in @G, for I'| ,,
AF=0(DFk") and so w=0(Dk™); also

y=bp/f—(G+9)/(kf)

for y,, 5, and so w(Z;,)=0(Dk™), since p(Z,)=0.

1 We should naturally take Z were it not that Z, may be the first Z and T' have no Z.
Cf. § 23.
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We prove next that for origin Q:

¢
FO<LE?, g0)<SLEk™[e"dt for the r.m., and t<1. 2)
0
In G we have y, ,>1+L, T>Lk, T>Lkt (dm. or r.m.). For r.m.

e‘Tr)+TESexp (— kadt) =exp (—Lk(n—&)),
K

1 ”
and so P gL;“fdnfe‘“‘""f’d5<Lk‘1,
0 0

and consequently also

¢

F< LY (f e Tede) ( [[ e Tndndl) =y

0 0<n<i<t

t
e Tdt<Lk'[e"dt
0

Oty o

1
so that (2) is proved. Since Lk<T <Lk, u(Q)= fe‘Tdt with origin at t=Q (r.m.)
0

1
lies between two fe_thdt=Lk_1,
Lk '<u(Q)<Lk™, (3)
as stated in the Lemma.
Consider now the r.m. from Q to {=1, or the first intersection of I'; , (if any),
whichever happens first. We distinguish two cases: (i) an intersections happens first,

(ii) no intersection before ¢=1.

Case (i). Consider the r.m. from the intersection as new origin for a (further)
time 1 or to the next intersection, whichever happens first. We have w,<0, and

w<0 in the range. (W,), written with —w for w to normalize, is valid, with w,=0,

Cy= —wy=|1,|- Since the results (2) are valid we infer that
¢ ¢

—we "=} || [e T dt, or we TS — L, [e T dt. (4)
0 0

This shows, first that there is no (second) intersection, and so, secondly, that (4) is
valid at t=1, when it gives 1, = 0(l). Incidentally this establishes Corollary 2.

Consider now the d.m. from the intersection of I'; , up to Q. There is no intersection
before €, and (W,) is valid with wy=0, cy=|u,|, so that

1
0<w<|iy|p<C, and w,=0([|w|dt)=0().
0
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In particular w(Q)=0({), and also, taking t=ty in w= —Tw+w,—w,, we have
Ww(Q)=0(%), and so ¢(Q)=0({). To sum up, in case (i) (of intersection) w(Q),
¢(Q)=0(0).

Case (ii). In this case (W, ;) and (2) are valid over 0<¢<1 of the r.m. with
wy=w (L), G= —c(Q); in particular they are valid at {=1. Since the left side of
(W,) is positive we have

w(Q) - 1 (Q) ¢ (Q)>0. ()

Substituting in (W,), with ¢=1, from the inequalities (2) for ¢, 7, and observing
that the left side is O (), we have

>3 w(Q)—p( Q)11 c(Q) (6)

(6) and (6) give the ¢, w linkages at Q of the Lemma. These are proved for case
(ii), but are valid also (trivially) in case (i), when w(Q), and ¢(Q) are O({). The
remaining results of the Lemma follow in virtue of (3), and Corollary 1 is a trivial

consequence of the Lemma.

§ 37. We must now introduce a mesh. With a=10 or 11 (always) we can divide
the interval between the ordinates of I'y , at Z, (which is O(Dk™!) into at most
N<DEk*! equal intervals of common length e<k *[N=1 if w(Z,)<k *]. By con-
tinuity, a I' of the S; of §§ 19 and 24 at Z, can be found to pass through each
point of division.! We will denote a consecutive pair of these by I'; ,, and take
over the w, T, ¢, u ete., notation with the understanding that they refer to the pair I'; ,.

The Lemmas immediately following are restricted to the half-cycle Z, Z;, but not
always to the range Z, U of Lemma 3 (d) (which is only part, though the worst part,
of Z,Z;). They are all about an arbitrary pair I'; , of the £ mesh;? they will

mention I'y , explicitly as a safeguard.

§38 We give a short name to a hypothesis often made about I'; ,: namely
that starting at Z, as consecutives of o k™ * mesh (0 <w(Z;))<k™?%), they have their U, ,
together and have V, ,>V*+4§. We call this hypothesis (H). We sometimes say also
that I'y , satisfy (H), with the obvious meaning. We denote the earlier and later of
Us . by U_, U, (we do not as yet know even that U, , will be together), and by
I'_ and I'; the corresponding I' of T ,.

1 Their assertions are to be true for both values of a.
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Suppose that (0, ¢) is in (Z,, U_), or again that it is in (Z,, Z;) and I'; , satisfy
(H); suppose further that in (0, {) we have |w|<k 5. Then for T (formed from I'; ,)

we have T'=17+0 (k-k®), where 7 is formed from T, and
T=71+0(k3), etT=e*"(1+0 (k?)),

gince t<Lk. Further, in the (H) case with £ in (U._, Z1), we have 3 (I';)> L over
a range of time length L before U,, and since |w(U_)|<k™® it is easy to see that
|U;—U,|<Lk™®. Similarly and more crudely we have | W;s— W|<Lk™®; points like
U, W are “displaced” by O(k™®) as between I'; ,. It follows that, subject to the
hypotheses just mentioned, we can take over Lemmas 13 to 16, about a 1, “in T-form”,
1.e. with our present T in place of the v, with the understanding that the factor % on the
right-hand side in Lemma 15 is replaced by % (to cover a factor 1+ 0 (k™%)).! We shall
be constantly using this principle and will refer to it shortly by saying “Lemma so

and so in 7'-form”. References (a), (b), ... will be to parts of Lemma 13.

§39. Lemma 18. Suppose that t, is in (Z,, U_), and that in (Zy, t,) 'y, , do not
intersect and 0<w<k™°. Then

(1) w(ty), c(t,) satisfy the linkage relations

1 (tg) e (tg) = w (%), 1 (8o) € (£) > tw(ty) -,
or w (by) <2 p () c{fe) +C.

(ii) p(ty) satisfies® Lk <pu(ty)<Dk™*, and u(U-)SLEk 2.
We have further in (Z;, &)
w<Dkw(Z)+¢.

The range Z,<t,<Z;+1 is covered by Lemma 17, and we may suppose
to>Z,+1. Consider the r.m. from f, as origin over ¢<1; this lies in (Z,,¢,) (with
no intersection and w< k%),

By (W;) with ¢=1 (and w, for w(f), ete.)
Mo Co = Wy, (1)

Ho €0 (1= 7 (1)/p1g) > wo (1 - (1)) — <. (2)

1 Note (i) that the 7-lemmas involve a hypothesis ¥V = V*+ % where there is a U, duly ful-
filled under our present hypotheses; (ii) since the 7-lemmas sometimes mention U, W', etc., we have
to cover the effect of their “displacement’.

2 For unrestricted ¢ we have Lk ' < (&) <D
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By Lemma 14 in T-form we have

p)=L} [[ e™n*Tededn<Dk Y,

0<é<p<1
1
=L [[[ e Tdidgd;<L([e"de)( [[ e Tt Tndydl)
0<E<n<i<l 0 0<n<E<t

<Ly, Lyp(l)y<DEk ¥y,

(1) and (2) now give the linkages of the Lemma.

The inequalities for u (f,) =y, are cases of (g), (d) of Lemma 13, in T-form. For
1

the special point f,=U_ we have u(U_)>L[e*dt (rm.). In the rm. from U. |g,]
0

lies between two L’s, T between two Lk] y—1|’s or two Lkt’s, e’ between two
exp (— Lk#)s, and so u between two L& ¥s as desired.

For the last part we observe that in (Z,, ,) c(f) is decreasing, by (1) of § 34,'
so that c(4) <c(Z,). So

w(ty) <2p(ty)c(Z) +E<Dk *e(Z)+¢,

and by Lemma 17 ¢(Z,)<Lkw(Z,)+¢, so that w(ty) <Dkt w(Z,)+¢, which is equi-

valent to the desired result.

§40. LemMA 19. Suppose that (0,t) is in (Z,, U_), that t,< L3k, and that
there ts no tndersection of T'y ,, and O0<w<k™> in (Zy, t,). Then in (0, )

(i) w<wye T+cop(t),
(i) w2e@)(1-38—9 Dk *wy/c,)

i) w>tep®)—0
t

where (we recall) <p=e'Tfert.
0

The first inequality is a case of (W,).
By the second inequality in (W,),

t t
wzcotp(l—ﬂx/fert—%w/fert)- 1)
0 1]

1 It is decreasing in any range in which w>0.
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Now
t 1] t
p<L _” eTn_TédfdnSL(feTndn)(J‘e_deS)SDk_*fert, (2)
0<é<n<t 0 0 0
: 13
<Lt [[f et TrTiatdyde <Ly ([etdl)( [[ e Tt TedEdy) (3)
0<é<n<y 0 O<é<p<t

t
in which the first bracket is f e’ dt. Substituting in (1) from (2) and (3) we have
0

w=cop(1-9 LT [f e™*Tdgdn—o Dk} wy/c) - (4)
0<é<nst
By Lemma 15 in 7-form the factor of # is <$, and (ii) follows.
Rewrite (ii) as
w=(1—3cop—& Dk wyp. (5)

By Lemma 18 wy<2puyco+{ and ¢y> — . If ¢,>0 the first of these substituted in
(6) gives (iii); if ¢y <0 the right side of (iil) is negative and the inequality trivial
since wy> 0.

The following special result involves rather similar reasoning, and in order not

to interrupt a later argument we include it here.

Lemma 20. Suppose that there is mno intersection of I'y ,, and w<k™> in
(Z,, U_+1,), where 0<t,<37. Suppose further that U, , are together, with V, ,=V*+6
(so that U_ is U,). Then for 0<t<t, we have [with U, as effective origin]

w(Us+8)=c(Us) pu, ) 1 =9 Dk — 9 Dw(U,)/c(Us)).

By (W, we have (1) as before, but the rest is different. By (3) and Lemma
14 in T-form the factor of @ is O(Dk™1). Also

t t
p/[eTdt<L U e Tedgdy [[e"di<D
0 1}

0<é<nst
by Lemma 16 in 7-form (and inverted). This gives the desired result.

§41. We divide the range (Z,,U_) at t,=2Z,, &, ..., t,;,1=U_ in the following
way. Bach f,—1,_; lies between L,k and L3 k; where L, is suitably small, and for
n<y t, is at a Z(f,,, =U_ is exceptional). It is evidently possible to make such a

division, and we have »<L. We write wy, cn, n etc. for w(ts), c(ts), u(tn), ete.,
¢

and ¢, (¢) for (p(t)=“e‘Tfert” formed from the d.m. with origin £,. We have
0
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ty ty~1

Pu-1lta)= [T Dart [

t,-1 tp—1

in which the first term is u,, and (since 7T increases by at least Lk when ¢ in-
creases by 1) the second is #{; thus

¢n—1(tn)=,un+0c- N

Further, since 7' lies between two Lk’s in the range of integration concerned in un,

we have
unSLE (n<vw). (2)
We have now

LEMMa 21. There is a ¢, (independent of n) such that if 'y , have 0<w(Z,) <k
and w(Z,)>{,, then for each n of 1<n<wy+1:

(a) there is mo intersection before t,;
(b) O<w<k™® up to t,.

Further, for 1<n<vy.
(e) % pn € < wy, fin € = 3w, >0, wa=Lw,_, (n>1);
(d) wy > Lw (Z,).

We have stated the Lemma in a form suited to an inductive proof. We suppose
throughout that w(Z,)>({,, successively rechoosing [, (smaller) as the run of the
argument requires it.

For n=1 ({;=2,) (c) is true, by Lemma 17, provided {, is suitably chosen (the
last part does not arise), and (a), (b), (d) are trivial. Suppose now that (a) to (d)
are true up to »—1, and consider them for n. Consider the d.m. from ¢, , till the
first intersection, if any, or w=k° or t=t,, whichever happens first. After (a), (b)
for n—1, Lemma 19 (ii) is valid in the range, with #,_; for t=0. In this, by (c)

for n—1, ¢,_1>0 and wn_l/cn_1S5‘u,,_1<Lk‘1. Hence (in the range)

W ps Py (1= 33— DE 3>} n1pn_1>0. (3)

This shows incidentally that an intersection is not the first event.

Next, over any range from Z, in which there is no intersection we have, by (W,),

w<w(Z,)e” T2 + ¢ (Z,) @z, (0).
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This is valid in particular over our present range, where it gives w<#k°, since
¢(Z) 9z, <Lkw(Z,) - Dk} <Dk by Lemma 18, and Lemma 13 (d) in 7-form.
So w=k™® is not the first event. Hence we arrive at £, with no intersection since Z,,
and w<%~® throughout. (3) is now valid at ¢, and gives

Wn >} fin Cn_1> 0. 4)
Next, Lemma 18 is valid with ¢, for #;,, so that

M Cn < Wn, (5)
HUn Cn>fwn— (. (6)
For n restricted by l<n<p we have u,<Lpun._1 (by (2)). Hence from (4)
Wn=Lpn_16n_1, and so, by (c) for n—1.
wa=Lw,_1 (n<y). (7
By iteration this further gives (since v <L)
wnZLyw(Z) (n<vw). (8)
It follows from (6) and (8) that if ,, is increased so that {,>6¢'/L, we have
(when w(Z,)> ;) pn ¢n =% wy.* This, together with (5) and (7) gives (c) for » (when
n<v). (d) is true for n(n<v) by (8).
We have now completed the induction from n—1 to = [(a) and (b) for n<»+1,
(c) and (d) for n<v], and proved Lemma 21.

In particular I'y , do not intersect before U_.

We record some further consequences of what we have proved.

LemMwma 21. CoroLLARY. With the hypotheses of Lemma 21 we have

(e) w(U_)> Lkt w(Z,).

(£) w<Lktw(Z)+¢ in (Z,;+1, U_), in particular at U_.
(8) Li*w{U_)>c(U_)>Lkw(Z,)—¢>LitwU_)-¢.
(h) wU_), w(U.), c(U-)=0 (k).

We have from (4), (c¢) for », and (2)

w (U—) =Wyy1> L,u'v+1 C, > L,uv+1 ,u;l w, > Lk,uv+1 w (Z1)9

1 Since this £, is independent of n it is clear that un ¢, >4 wy will be true for the earlier values
of n also.
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in which g,,1=p(U-), and lies between two Lk}, by Lemma 18 (ii). Hence we
have (e).
Next, (W,) gives in (Z,+1,U.)

wsw(Z,) e T T +c(Z,) ¥z, (1)
<C+e(Zy) (@) +98) <l+Lkw(Zy) p(?)
<Dkt w(Z,)+¢,

which is (f).
By (6) with n=»+1,

c(U)>Lu (U )w(U_)~(>Lk Lkt w(Z,)-¢,

giving the second part of (g), and the third follows by (f) (for U_). The first part
is a case of (5).
The results of (h) follow from (f), (g), and

[w(U-)|<|e(U-)|+Lkw(U-).

§42. LEMMA 22, There is a {, with the following properiies. Suppose that Ty ,
have their w(L'y 5, Z,)>C,, and have their U, , together. Then the intermediates of the
k™ mesh' have their U’s in the interval (Uy, U,), and do not intersect before U,, so
that U, , have U, <U,, and no intersection before U,.

Further, the V’s decrease as the U’s increase (Vy>V,>V,>V,).

We have also

(@) w<Lktw(Z,) in (Z,+1, U,).

(b) The ratio of any two of kw(Z,), k¥ w(U,), ¢ (Us,) lies between two L’s.
(¢) ¢(Us), w(Uy), w(Us)=0(k").

(d)% For the original T, , we have w<Lktw(Z,) in (Z,+1, U,).

The final (d) follows from (a), and addition over the non-intersection mesh.

We suppose w ([ 4, Z,)> DKk "¢, where D is chosen so that the inequality
makes w(I'; 4, Z;)>{', and we rechoose [’ as we proceed so that successive require-
ments are fulfilled. In the first place we choose {’ so that the I'; , do not intersect
before U._.

1 A %M mesh is a case of a k=0 one (Lemma 21 has k_m).

2 (d) is not used until § 68.
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Ty L

y= 1 “UL” “UR”

Fig. 7.

We need momentarily to deal again with possible arrivals of a I' at y=1 (down-
ward and) earlier than its U. We call such a point of arrival “U”’, and the associated
—g+bk(Ll+p), “V”. Suppose now till further notice that I';, , arrive at “U.”, “Uz”,
as in the figure, we sometimes abbreviate the “U’’s to L, R. In any case I'y , do
not intersect before “U.”, and it is I'y that arrives at “U.”, I, at “U”’. With obvious

notation we have now the identities

R R
“VL =V +y, y=c(B)— [gly) dt = c(L)— [g(y,)dt. (1)
L L
For this we have

R
[~ g5+ bk +p)F=k[F (y)) — F ()} + [ g(ys)dt,
L

R
[—gatw+bk(1+p)la— V. = —k[AF1z—0+ [g(ys)dt,
L

R
—y =V’ =V =[~w—kAFla+ [g(y) dt,
L

whence the first form for . The second follows by (1) of §34.

We suppose now that one of “U.”, “Up” is U_. Then by the first form for
y when “Ujz” is U_, and by the second when “U.” is, we have

7>C(U_)_L(“UR”—“UL”)- (2)
We show next that (in either of these cases)
| 42| >L in the range (“U.”, “Ug”). (3)

If Upis U. we have “V3p”">V*—4, and, in the notation of Lemma 6, 1 +a>L at
“Ug”; then the desired result follows from Lemma 11 (5). If “U,” is U_, then
~ g (L)y=v,—w(U_)>L—k">L. Also s=y,(L)—1=w(L)<k™® The retardation |, |
is less than L% and cannot reduce the velocity by more than L%~® in the y-inter-
val s. Hence |9,|>L in (“U.”,“Uz”), as desired.

5— 573805. Acta mathematica, 98. Imprimé le 18 novembre 1957,
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It follows now from (3) that |“U” —“Ug”|<Lw(@)<LE w(Z;)+¢ (by (f) of
§41), and so, from (2), that

y>c(U)— L w(Z,)— (> (Lyk— L k) w(Z,) — ¢,
by (g) of §41. For suitable {, we have accordingly ¥ >0, and so
“VL”>“VR”. (4)

Let I'; be the I" next before I';. To establish the Lemma it is enough to prove
that Uy;< U,, that U, , are together, and that V;> ¥V, For we can start again with
I'; as a new I',, and repeat the process. If U_ is the earlier of U, , there are two
cases: (i) U, is U_; (i) Uy is U_. In (i) there is no intersection of I'; , before U,,
and Ty has a “U;” “together” with U, and “U;”<U,. By (4) “V;">V,=V*-3§,
so that “U;” is U, and U, , are together with V,> V,. This completest he proof for
case (i).

In case (ii) we have —y,(Us)=v5—w(Us)>L—k*>L, and T', must reach y=1
(near ¥,), since a retardation Lk® cannot destroy velocity L in space w(Uj)<k ™.
So T, has a “U,” near U;,. We have what we want [after (4)] provided “U,” is U,.
But if “U,” is not U, then I',, which certainly meets y=1 at a “U,” near and
earlier than U, (because of non-intersection) has “U,” not U, (since U, , are to-
gether). Since, by (4), “V,”>V;=>V* -4, this is false, and the proof of case (ii) is
completed.

The remaining results of the Lemma are immediate consequences of (e) to (h)
of §41, when the ¢’ of w(Z,)>{' is suitably rechosen.

§ 43. We are now in a position to follow I'; , beyond U,.

Lemma 23. If ' is suitably rechosen, then, provided w(Z,)>{', and I'y, 5 satisfy
(H), the Ty ; have w<k™> and no intersection in (U, Zi) [so none in (Zy, Z1)). Also

w(Z1) S Lw(Z,), ¢(Z1)S Lkw(Zy).

Lemma 22 is valid, and we continue to rechoose {’. Consider the d.m. from U,
until the first intersection, or w=k° or t=2Z,;, whichever happens first. Over this
range Lemma 20 is valid. It follows from Lemma 22 (b) that ¢(U;)>0 and also
that the bracket in Lemma 20 exceeds i, so that

w>1c(Us) o, (8)>0, (1)

and in particular an intersection is not the first event.
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By (W,) w<w(Z,) e T T2 +¢(Z,) gz, ()< k5, (2)

since exp {—(T'—T3z)} <Dk, and @z ({) <Dk by (a) and (b) of Lemma 13. Hence
t=2Z; is the first event, and there is no intersection in (Z,, Zy).
(1) is valid at Z,, and gives, after (b) of Lemma 22,

w(Z1)> Lk w(Zy) pu, (Z1),

in which (since Z;— U,;>1) @u,>pu(%1)>Lk™ . Hence w(Z;)> Lw(Z,).
By (2) with ¢=Z;, by the method of §41 (1), by (2) of §41, and by (c) of Lemma 13,

w(Z1)<C+c(Zy) (u(Z)+ )<+ Lk e(Z) <l + Lw(Z,),

by Lemma 17. For suitable {’ this gives w(Z;)< Lw (Z,).
Finally, by Lemma 17

¢(Z)S Lkw(Z)+ ¢S Lkw(Z,) ¢,
and for suitable {’ this gives ¢(Z;)S Lkw(Z,). This completes the proof of Lemma 23.

§ 44. We can now state the following key result about non-intersection.

LEMMA 24. There is a [T with the following properties. Let T, , belong to 8, at
Zy. Then:

1) of w@y 4 Z)>C1, I, do not intersect in (Z,, U,). Also the ratios of any
two of kw(Z,), k* w(U,), ¢(U,) lie between two L’s.

(i) if, further, T, , satisfy (H), of § 38, then there is mo intersection before Us.
Also the ratio of any two of kw(Z,), kw(Z1), ¢(Z,), ¢(Z1), K*w(U,), ¢(U,), B w(Usy),

c(U3), lies between two L’s.

We employ a k™' mesh at Z,: for suitably chosen f this makes w(Z,)>{,
and for suitable {’ the results of Lemmas 22, 23 are valid. Hence there is no inter-
section of the I'; , up to U, and U; in cases (i) and (ii) respectively. Also in the
second case w(Z;) lies between two Lw(Z,). So on the one hand w(Z;)>{’ for a
suitably rechosen (f, and on the other the I' at Z; constitute a £ !° mesh.! Lemma
22 (inverted) is accordingly valid over (Z;, U.); I'y, do not intersect before Uy;
w(Z))SLw(Z%,), and ¢(%1)SLkw(Z,). Further, in virtue of Lemma 22 (b), we
have Lkw(Z,) > c(Uj) > Lk*w(Us) > Lkw(Z,) in the first case, and Lkw(Z,)>

1 The device of two meshes is avoided in the Introduction, but the apparently simple line
taken there does not f{it in with ‘the present lay-out.
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Lkw(Zy)>c(Us)>Lk*w(Uy)>Lkw(Z1)>Lkw(Z,) in the second. Finally, the non-inter-
section and the various inequalities are additive, and extend from the pairs I'; , to

the original I', ,. This completes the proof of Lemma 24.

§ 45. We now take up the (easier) question about intersection. We suppose that
I';,, belong to the S, at Z,, but there is no mesh in what follows, and w, ¢, etc.,
refer always to I'; ,.

We restart the dashes to {’s (the {’ used above have served their turn). We

have now (U. being the earlier of U, ,, U’ the earlier of Uj, 2).

Lemma 25. Let T, , belong to 8,. Given a [, then if |w(Z,)|<{ we have |w],
|, |c|<&(L) over (Z,,U.). This is true also over (Z,, U_) provided Ty, , satisfy (H).

In applications the {’ becomes a definite {, and the { denoted by {({’) to show
its dependence on {’ also becomes one.'

With a hypothesis |w(Z;)|<{’, and normalization to w(Z,)>0, we have 0<
w(Z,)<k™ a fortiori, and we may take over for I, , various results of Lemmas
about I'; ,. We abbreviate (within the present proof) () to (.

By Lemma 17, with Z, for Q, we have ¢(Z,)=0({). Consider the d.m. from Z,,
normalizing to w being initially positive. Up to the first intersection, or till w=%k"%2
or till t=2Z;, (W,) gives

O<sw=sw(Z)+c(Zy)p(t)<(,

and so also Ww=0({) in virtue of

w=—Tw+c(Z)+0([|w|dt). 1)

Since w=~k"° is clearly not the first event we have w, 1w =0({) up to the first inter-
section or Z;.

If there is an intersection before U_, consider the d.m. from this intersection
till the next intersection, or w=k°, or t=2Z;. (W, ,) are valid with wy=0, w,=0({),

and become (normalizing since w is negative)

0< —w<|iy| @) <<k (2)
t

—w> || e 7 ([T dt— D). (3)
0

By § 40(3) and Lemma 15 in 7-form (see § 38) the factor of [2] in (3) exceeds

1 Tt seems unnecessary and wasteful to call on a blank cheque notation here.
 Without w<k™> we have no information about @, in spite of the drastic hypothesis.



THE GENERAL EQUATION §+kf(y)y+g(y)=bkp(p), ¢p=t+a 69

Lo(t) provided t<U_ and {<Ljk, and it follows that a second intersection before
U_ cannot occur within time L3k after the first. Up to the new intersection, if
any, (2) gives w=0({) and so, by (1), w=0(¢), and ¢(t)=w+ Tw=0(). The argu-
ment can evidently be repeated, and we arrive in at most L steps at U_ with at
most L intersections, and w, =0 ({) throughout.

For the second part, consider the d.m. from U_ as origin, and let wy=w(U_)
be, say, positive. Then wuntil the next intersection, or w=k%, or t=2;, we have
(whatever the sign of ¢,) by (W,)

w<wge T+ cp=0(C),

since w, w, and 80 ¢y, are O({) at U_. There is nothing more to prove unless there
is an intersection before Z;. If there is one, consider the d.m. from it as origin.
We have 1,=0((). Until the next intersection, or |w|=k"%, or {=Z;, we have by

(W5, 3), normalizing,

0< —w<|wy|pt)<Z<k5, 4)
4

—w=|wy|e " ([e"dt—9y). (5)
(1]

t
Since the range is <3z (and |w|<k™®) we have 9y <3 [e”dtby §40 (3) and Lemma
0

14 in T-form, so that an intersection is not the first event. Hence there is no further
intersection up to Z, and further (4) gives w=0(¢), and (1) gives w=0({) also.

We now have w(Z;)=0({), and can apply the first part to the range (Z;, U).
This completes the proof of the Lemma.

§46. We record for reference a number of identities and near identities, not
all of them new. In them I', , belong to S, at” Z, they have their U, , together,
and we consider the range to U’, the earlier of Uj, (about which we make no as-
sumptions). )

c)=w+Tw=w+EAF;

( 0y
clt)—c(t) =~ [Agdt=—[w)i;
Y

U,
c(U)=~AV+ [gly)d¢, c(Uy, )= —AV+0(Aw);
U,

) U, ) ' 2)
c(Us)=AV'~ | g(y)dt and c(Ui2)=AV'+ 0(Aw),
U

provided Uj,s are together.
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If —Aw>0 [equivalent to U,<U,], then w(U1)§L(—Aw).} 3)

If Ui, are together and Aw’>0, then w(U;)S L(Aw’).

(1) is old, and the identities for ¢(U,), ¢(Usz) are proved on the lines of (1) of
§42. The inequalities in (2) follow from the identities and the second part of (1).
In, say, the second part of (3) we have (Us<Uj)

U, U,
w(Us)=~1-y,(Us)=— [ gydt= [ gpdt
Uy U
in which L<yg, <L (by Lemma 11 (5)), and the range has (positive) length Aw'.
We have now
LeEMma 26. Suppose I'y , of 8, with w(Z,)>0, satisfy (H). Then
| w>Lk™ (- AV)=¢
over a time Lk beyond Zi+1.%
In the first place we may suppose w(Z;)>>any relevant {’. For if w(Z)<{’
w, W, ¢ are O({) in (Z,, Z;) by Lemma 25. By (3) Aw=0({), and by (2) AV=0(()
and the inequality of the Lemma reduces to O({)>O0({)—{ and is true trivially.
In particular we choose ¢’ so that w(Z;)>(f when, by Lemma 24, I'; , do not
intersect before Ué(=U'_), and further so that Lemmas 22, 23 are valid.
Next, it is enough to take the case of consecutives of the k' mesh, for by
Lemma 22 these satisfy Vj, ,= V*+4, and the desired inequality is additive (whether
or not the mesh has intersections, though in fact it has not). For suitable ' we

now have, by Lemma 24, non-intersection, and w<k™® up to U,; also
w(Z1) S Lw (Zy). )

For suitable {’ we have, by Lemma 22 (b), replacing the two w(Z;) by w(Z) in
virtue of (4),
Lkw(Z) <Lk w(Uy) <c(Us) < Lk w(U,g) < Lkw (Z). (5)

Next, by (2) and (3)
c(Us)=—AV+0w(Uy))=—AV+ 0k tc(Uy)),
so that ¢(Us) S L(—AV), and by (5),
w(Z)S LE (= AV). (6)

Next, by Lemma 19 (ii) (inverted), with £=0 at Z; and t,=L3k, we have for
0=<t<it, ,
w>c(Z)(1—30—9 Dkt w(Z)/c(Z1) 9 (). (7)

1 By taking more, but unnecessary, trouble, we could replace le +1 by Z,+ L.
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By Lemma 23 ¢(Z1)> Lkw (Z;) (8)

(for a suitable ('). The large bracket in (7) is then > L, and from (7) and (8) we

have
w>Lkw(Z1) @ (t). 9)

For t=1 ¢ (#)=>u(t)>Lk™", and so, by (6) and (9),
w>LE (- AV)
over a range from Z;-+1 of length Lk, as desired.

§47. Lemma 27. If Ty, of 8; have w(Z,)> 0, then c(t)> —{ in (Z,, U_); if they
further satisfy (H), then c(8)> —( in (Z;, U).

CorovrLrLARrY. If Iy, have “U,”, “U,” together, with “U,” to the left, then
“V >V =0 (k4.

If w(Z,)>{ for a suitable ¢’ Lemma 24 (i) and (ii) give ¢(U,)>0, ¢(Usz)>0
in the respective cases. Further I';,, do not intersect in (Z,, U,), (Z,, Us) respectively,
and c(#) is decreasing in the respective ranges by § 46 (1). So the desired results are
true when w(Z;)>{’. When w(Z,)<{" we have ¢=0({) in the respective ranges, by
Lemma 25. This completes the proof.

The corollary follows from the result of the lemma, the identities (2) of § 46
which (being identities) are naturally true also for “U,”, “U,”, and the fact that
|“Uy—“U’ | =0(DE Y.

§48. We now introduce ‘‘pseudo-V’s”. We have again to counsider downward
arrivals at y =1 other than U’s, and again use the “U”, “V” notation of § 42, with
“inverse” notation for y= —1. The points N, primarily at points where ¢=—1m,
now become specially important, and we use N also for the trajectory point on y=1,
and also for its neighbourhood, along with the “at’” notation. We say a I' is gap-free
before N if it has not met a gap at an earlier N or N’ (N’ corresponds to y= —1
and ¢=1m); and gap-free before and at N if in addition I' does not meet a gap
“at” N.

We define
VO =D, )= —g—k(F@Hy)—-FA)+bk+p). 1)

[
This satisfies Vi) -V(@¢,)= f gdt, 2)
ty

which is a variant of the g-identity. There is a corresponding inversion
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YO =g+kF(y)—F(-1)+bk(1—p,), 3)
but ¥, — W are essentially the same function, since
VO+WR=k(F(QL)—F(—1)+2b)=—(4—2b) L. 4)
If T" has a “U” at N we have
BEU?) = —§(“U)+ Dk (L+ 9, (U”) =V,

N
and YN)-V(U”)= [ gdt=0(N-“U")=0(Dk}).
-
Thus to error O(Dk })=0(%4), W(N)=“V”, and in particular W(N)="V if “U”
is U. If there is a U at N and 0<r<IL we have (see § 18)

N

YW -2rm) =V~ [ gdt=V-rM+0O®k™), ®

N-2rn

and this is true whether or not there is a “U” at N—2rax. Our pseudo-“V’”’s are
the W(N) (their inverses ¥ (N’)): they agree to error O(k™*) with V’s and “V’”’s
where there are U’s or “U’’s but further exist where either there is no “U”, or
where we do not know in the first instance that there is one. Their full connexions
with actual V’s and “V”’s are set out in the following Lemma, which is incidentally
vital. In this V, stands for V*g5(—1) (in the notation of Lemmas 5 and 6). After
Lemma 6 the “V” of a tangential “U” (with v=0) is Vy,+O0(k *), and V, is

effectively the minimum value of a “V”.

LEmma 28. Let T' belong to 8** at Z,, and let its U be at Ny. Let N<N,.
Then :

(@) If there is mo “U” at N, then W(N)<V,+O0(k™*). In particular, tf Y(N)>

Vo+ 10 there is a “U” at N. If there is a “U” at N, then W(N)>Vy+0 (k™ 4).

(b) If W(N)>V*—30 there is a U at N.

() If T has a U at N then V*—0< V< V*+M-—26.

(a) First part. Since Y (N) increases by M +O0 (k™*) for increase 27 of N up
to the U we may suppose (a forliori) that there is a “U” at N +2x (and none at N).
Now I' and I'(—2#), which is I' moved backwards a distance 27, i.e. the trajectory
y(t+27x), belong to S,.* The difference of their y’s at Z, is y(Z;)—y(Z,) for the

* Not §;.

% This is the sole raison d’étre of 8,. It might seem that (a), the key to Lemma 28, is “obvious”
and susceptible of some other easy proof. Actually it is rather deep, and a proof more from first
principles would set up a ‘‘linkage’ like that of §, @ in Lemma 6 at a “U”, but, since there is no
“U”, generalized to a neighbourhood of N. Our view is that we have chosen the lesser evil.
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I'(-2a)

trajectory I', and we have

Zy

E(F(yz)—F(yz)) = [gdt—gz,+9z>L.
Z,

This difference is accordingly >Lk™'. By Lemma 24 I' and I'(—27) do not inter-
sect before their U_, which is U —2x>“U” —2x =N, and they form a “tube”. By con-
tinuity an intermediate I'; exists. touching y=1 near N. By Lemma 27 Cor. its
“V” at N+2x exceeds that of I' by O(Dk ) (Lemma 6), and so

VWO, N+270)>V{, N+27)+0(k4).
We now have, on the one hand
Y@, N)y>W{T, N)+0(k ™),
and on the other, since I'; has v=0 at N,
VI, N)<“V(N)+0 (k)< Vo +0 k™4,
and the first part of (a) follows. The second is trivial and the third old.
(b) Since V*>¥,+ L the hypothesis implies a “U” at N. But then

“YP=WN)+OHE *)>V*-4,
and the “U” is a U.
(¢) We must have W(N—-2r)<V*—14; for if there is no “U” at N—-2xn we
have W(N-2a)<V,+0(k *)<V*—%4, by (a); and if there is a “U” its “V” is
<V*-9§, and B(N—-2a)<“V’+0(k )< V*—15. Hence

VN <VWN -2+ M+0(k )< V*+ M35,
as desired.

§49. LEMmma 29. Given an N, the 8* at « suitable Z, (depending on N) contains
a continuous stream of I, each with a “U” at N, and with U (N) ranging from V*—346 to
V*+ M —44. This includes a substream with “V’’ ranging from V*—26 to V*+ M —54.

1 The “U’’ and “V” are of course U and V when V > V*—4§. The bounds could be made wider
but we state what is actually used.
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Take any TI' of 8*; call it 'y, and let its U be at N,, so that
V*—0+0(1) <V [Ty, Noy<V*+ M—35+0(1).
Then YT @n), Ny<V*+M—36+0(1)—2M+0(1)<V*-34,
also I'y(47) belongs to S*.

Now we can “interpolate” between two Is, by taking the segment in the r.p.
(representative point, see § 1 of the Introduction) space between the extreme ones,
and obtain a stream with all the intermediate values! of ¥ (&,). Thus we can
find a I', “between” T, and I'y(4x) with W}, No)=V*—34. This has its U not
earlier than N, since otherwise there would be a ‘‘first” intermediate I' from
Iy(4n) with Y(N,) < V*—30, but U earlier than N,; on the other hand, by
the continuity of ¥ this “first” I' would have W(Ny)=V*—5+ M +o(l)>V*-34.
It now follows from Lemma 28 that I'; has its U at Ny+ 27, and I', (—2x) (also be-
longing to S8*) has its Y(N,)=V*—86+ M +o(l), and U not earlier than (in fact
at) N,. We can now interpolate between I'; and I'; (—2x) in a similar manner, with
VY (N,) ranging from V*—38 to V*+ M —44. And the argument from continuity of
WV (N,) shows again that the I' concerned have their U not earlier than N,. This
being so, they have each a “U” at N, by Lemma 28, and so “V”=U+o0(1). Since
“V” varies continuously in the stream we have the result about the range of “V’’.

The Lemma is thus true for N,, and we have only to “translate” S§* by N — N,.

§50. LEMMA 30. Suppose ', , belong to 8* at Z,, and have U, , together at N, with
Vio=V*+6. Let U. be at N', and let W, ;=W (.4 N), U12=V ([, ,, N'), AV=
V,—V,. Then (i) we have the following results.

(a) LIAY| -k ¥ <|AY |<a|AV|+EE,
where o 18 an L satisfying 0 <o <1.

(b) Either [AY], k|lw(Z)], |AW <k},
or else sgn AW = —sgn A W=sgn w(Z,).

() If kw(Z)>k™% or if —AVU>k}, or if AW >k}, then UL is U,.
(i) If further Uy, are together, we have the following results:
(d) LIAV|=¢<|AV' |<a|AV|+C.
(e) Either |AV |, klw(Z)|, |AV'| <3,
or else L|AV|<|AV'|<a|AV| and sgn AV'= —sgn AV =sgn w(Z,).

! The whole segment may have s and W's outside the extremes; we then take the appropriate
subsegment.
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In what follows we use « generally for an L satisfying 0 <a <1, rechoosing it
(larger) as the argument proceeds.

We normalize to w(Z,)>0. We have

~AWY=c(N), AW =c(N), i)
AY+AY=— [Agdt. @)

If w(Z)<(f, we have w,w=0() in (N, U.), AW and AW are O(¢), and so
are AV, AV’ in part (ii). The various parts of the Lemma are all true trivially or
vacuously.?

We suppose then, in both (i) and (ii), that w(Z,)>¢’ >{¥, rechoosing (' as we
proceed. Then in the first place I'; , do not intersect before U.. We have then,
from (2), (3) of § 46, and Lemma 24,

c(Uy)s Lkw(Zy), c(UL)S Lkw(Z,), 3)
—AV=c(U)+0w(U))=¢(U,) (1 +0 Dk *)=Lkw(Z,)>O0. (4)

In (ii) we have in addition U’ =Uj,
¢(Us)S Lkw (Z,) (8)
AV =¢c(Us)(1+0 Dk %)= Lkw(Z,)>0. (6)

In both (i) and (ii) we have ¢ (N)—c(U,)=0(Dk}), ¢c(N')—c (U_)=0(DEk}),
so that, by (1) and (3)

—AV=2c¢(U) FDk ¥ 2Lkw(Z,)T Dk} }

7
AV 2c(U)F Dk 2 Lwk(Z)F Dkt @)

Also, as we saw in § 48,
—AV=~-AV+0Dk}), (8)
and similarly, in (ii), AV =AW +0(DEk™?). 9

Next we have in (i), by (2),

»
AY=(-AY)- [Agdt.
N

1 Provided {3 > k¥, which we suppose.
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In the integral we have Ag> Lw>0 everywhere, and w>Lk™ ' (—AV)—{ over a
part range of length Lk, by Lemma 26. So

AW <(~A®)—LE(LE (—=AV)=)<(1~-L)(—AW)+ Dk, (10)

by (8).
Also (7), (3), (4), and (8) give

AVW>Lkw(Z)- Dk >Le(U)~DEk*>L(—AV)-DEk }>L(-AW-—Dk*t (11)

We now have (a) from (10) and (11), and (b) from (7).

In (c) we have, after (7), A9 > Lk ? in all three alternatives. Suppose, if pos-
sible, that U’ is not Us; but U;. By the non-intersection of I'y 5 there is a “U;” at
N’ and Us (N')<“V3’+O0(Dk™}). On the other hand

V:(N')>V(N)+ Lk >V, +0(Dk )+ Lk

Combination of these gives “Vy” > Vi>V*—¢, and “Uy” is Us after all. Thus (c), and
so the whole of part (i), is established.
Consider now part (ii) (in which all the numbered results hold). We have
Uy Uy
c(Us)—c(Uy)=— [Agdt<—L [wdt<—L((-AV)-0), (12)
U, U,

since w>0 in (U,, Us), and by Lemma 26 w>Lk™ ((—AV)—{) over a range of
length Lk. It follows from (4), (6), and (12) that

AV <Q+0E*N{(—AV)—(Q+0F “)L(—AV)}+¢
which gives (— AV and AV’ being positive, by (4) and (5))
AV <(Q-L)y(-AV)+¢, (13)

and so the second inequality of (d). The first one follows from (4) and (6).

In (e), if one of (—~AV)>{, kw(Z;)>{, AV’ >{ holds, then all three hold
with L, ' in place of (', and with a suitable (' and kw(Z;)> L, {’ (3) to (13) are
valid, and — AV, AV’ are positive. With a fresh choice of {’ and a diminished «
(d) holds without the ’s. Since, finally, we have (sufficiently) normalized to w(Z,)> 0,
we have now established (e).

This completes the proof of the Lemma.

1 Without the { because we are (sufficiently) supposing w (Z,) > {’.
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§ 51. We now need the result that, roughly, for fixed V the ensuing V' varies
smoothly with b. The exact result deals in ¥ and is as follows: we postpone the

proof, which is rather long.

Lemma 31. There is a function 6(b), continuous in B, or {=<b=<3j— 1, de-
pending only on the functions f, g, p (and so independent of k and S, and of V(N)
below), and satisfying L<0=<2, with the following properties. Suppose that o ' of S*
has its U ot N, with V=V*+ 08, and that the ensuing U’ s at N'. Let b be a small
negative increment of b, salisfying 0< —db<L, k™", and leaving b+0b in B, where
L, is an L to be chosen later. With the new b let a T' of S* have the same U (N) as

before.! Then with the usual incremental notation we have
OW(N' —2m)=0@)kdb+0 (k). (1)

N’ does not jump to the left (in the change from b to b+06b) if (—kdb)>6 (ie.
if —0b is not too small). In this case (1) is valid with N' in place of N'—2m.
We have for V¥, M, qua functions of b,

SV, 6 M=0(k*).
It is further true that

00=0(k*) for Po+LEk'<b<Z—g2

100

§ 52. For each b of B now let P=V*+6}, Q=V*+M—6% Let I'p be a T
of §* with its U at N and with W (I'p, N)=P, and let the ensuing U’ be at N'.
Let T'g be a I' of 8* with W (I'q, N)=Q. Such trajectories I'p, I'g exist by Lemma 29.
With the notation of Lemma 30 and I';=T¢, I';=Tp, we have —AVY=Q~P>1L,
and so, by (¢) of the Lemma, I'g has its U’ not earlier than Ny.3 We abbreviate
W (L5, 0, No) to P’, Q. With these understandings we now have

LEMMA 32. The interval B consists of a set B, of intervals i,, a set B, of inter-
vals iy, and a third “‘excluded” set E of intervals of total length O (6%). For a b of B,
P', Q both lie in the range (P-+06%, Q—0%); for a b of B, P’ is in (P+6%, Q—4%),
Q below V*-—206% The state of things is described graphically in figs. 9 and 10, and it

1 (1) The initial conditions of §* do not involve b, (2) there is a small “‘sheaf” of possible I';
owing to ‘“play”, and our error terms have to cover this; (3) it is a logical possibility (when Tis
very extreme in S*) that there may not exist a second I' with the new b. In this case the Lemma
is true vacuously: the point does not arise in applications.

2 This could be extended to the whole of B if need be.

3 An abbreviation for “U’ is not at an Nj earlier than N'”.
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18 further true that in both cases, PP’, Q@ ‘“‘cross and shrink”; P’ is above @', and
the lengths' PQ, P' Q' satisfy

L-PQ<P Q<a-PQ,

where o s an L satisfying 0 <o < 1.

Let by be the right-hand end of an i, or an i, and let Ng be the N’ for b=5,.
Then for b of the i, or iy, N’ is not earlier than Ngy. Further a T’ of 8* with W(N)=R
where P<R<Q, has its U’ not earlier than N’ (= Ny), and we can define? R’ =Y (I's, N').
Also if R, R, are two R’s of (P, @), RR' and R, R; cross and shrink; more precisely

L-RR,—k <R Rj<a RR,+k?

(in particular either of R, R, may be either of P and Q).

The length P' Q' is 1(b)+ O (6Y), where 1(b)<a M. 1(b) is independent of k, o.
The length of iy is k™" (M —1)/0+ 0 (6%)), that of i, is k™' (I/0+ O (6%)) where in each
case the b of M, 1, 0 is taken at the right-hand end of the i. Both lengths lie between
two LEk™'3

We begin with some preliminary observations. We abbreviate £™' to e, and
we shall be working to errors O (8%). Our 4; ; are going to have lengths of order &,
and we are to ignore a total length O (6%) in b, absorbable in E. We therefore start
from a b, which is inside B by an amount 6! at each end. We then consider a
decrease of b from b, of amount Le. Inside this stretch, which we will call I, we
can ignore stretches of length O (gd?) (absorbable in E). In particular we may de-
crease an “inconvenient” initial b, by any convenient amount Legd}.

Next, the variations of M, V*, P, @, over an I are O (k™*) (Lemma 31), which
is very small compared with 8% the upshot of this is that we can effectively sup-
pose M =M (b,), etc., over I; the applications of this principle will be made more
or less tacitly to avoid further complicating a rather tangled story.

The position N’ of the Lemma is determined, for each b, by 't If N, is the
N’ for b=b,, W (T's, by, Ng) lies between V*—2¢ and V*+ M +2§. Lemma 31 tells

1 Taken signless throughout, as are R P, R’ @, etc. below.

2 (1) Recall that N’ is determined by I'p (for each b), (2) the definition of R’ is consistent
with that of P’ and @’.

3 The complications, and in particular the different powers of § involved, arise because (i) we
wish the excluded intervals to be a small proportion of B, (ii) as a result of this, the behaviour
when b is near an end of an ¢ is rather extreme.

4 We suppose throughout that a single representative I'p or I'g is selected, for each b, from
the two (small) sheaves of possible ones.
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VE+e M V*+ M
v - ot
Q-
Pl
P
¢
4P+ ot
y*+ 6t P V* 4+ ot
V* y* \
V* - 26} px - 25t \
o

Fig. 9. (i) b belonging to By; (ii) b belonging to B,.

us that a decrease £6% of b from b, (i) leaves N’ not earlier than N, from then
and during subsequent decrease,! (i) decreases W (I'p, N') by at least Lét.2 If now,
for by, U (Cp, No) is above @, then a suitable decrease Led? of b will bring it below
Q— 0% (but within O (6%)). If, on the other hand, P, for b, is below P+ 4%, a suit-
able decrease Led* will bring ¥ (I's, Ng) below V*—248* (but within O (6%)). In this
case, by Lemma 28, and (i), the N’ of I'» is now at Ng+2mx; and if we then shift
to the new b, and take the diagram with the appropriate new N'(=DNg+27), we
shall have P’ (slightly) below @ —d*. We may accordingly suppose (by absorption in E)
that for b=>b, P’ lies between P+ 6% and Q—6%.3

For this (new) b, let B be a value in P<R<Q, and let 'y be a I' of S* with
V¥ (N)=R. We shall prove now that

(a) Tz has its U’ not earlier than N,.

1 If we were dealing in increasing b this could fail, and our discussion would be even more
awkward than it is.

2 The 6§ ¥ (V) form of Lemma 31 is available.

3 The completion of the diagram, and division into two cases, depends on, and awaits, the dis-
cussion of @',
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Taking this momentarily for granted we may then define (consistently) B’ =9 (I's, No).
Then we have further, for any two R, R, of (P, Q)

(b) L-RR,—k* <R Ri<«a*RR, +k*.

(b) follows from (a) and Lemma 30, and we turn to the proof of (a). With the
notation of Lemma 30, and TI';=Tj, I'y=T5, let U. be at N’; we have to show
that N’> N;. There are two cases: («) R—P<k™¥ (8) R— P>k %,

Case (n). By Lemma 30 we have

W e N)—W 5 N')=0 (k}). (1)
If N'<N,, then on the one hand
Y {p N)=U s, No)-M+0DEH<(Q-0H-M+O0DEH< V-6, (2
and on the other Uy is at N’, so that
YW@ N)>V*—6+0(DE™Y). 3)

Since the combination (1), (2), (3) is impossible, (a) is true in case (x).

Case (B). By Lemma 30 (¢) U’ is Uy and N >N, as desired.

This is all for a single b, for which P’ satisfies P,+d*<P' <@Q—4*. We now
let b decrease through I. Abbreviatel W (I's, o, Ng) to Vs o. By Lemma 31 U5, Uq
descend with the same constant velocity 6 (b,) (With respect to kb), to exror O (k™),
and their difference remains constant, to this error. This constant we denote by
1(b,); 1(b) lies between two L’s.

Further, as we have seen, N’ will not jump to the left of N, and, after (a),
Tz has its U’ not earlier than N’ (= N,); this is true in particular of Tg.

Let us suppose, momentarily, that U, starts below and within O (&%) of the
value @, then over a stretch of length & ((M —1)/0 (b,) + O (6%)) from b, ¥> and Vg lie
between P+6% and Q-—¢%. Since N’ has not jumped to the left it follows from
Lemma 28 that N’ (determined by I'p) is still Ny, and VYp and Vo can be identified
with P, @'. We have accordingly P’, @ lying in the range (P, ¢); we are in case
(i), and the stretch of b is an 7.

As b continues to decrease there ensues a stretch of length O (¢4%), which we
consign to E, beyond which Wy is below V*—246%. Next comes a stretch of length
£(1/0+ 0 (6%)) during which ¥r remains above the value P+ 8%, ending by being only

1 We do not have P'=v;> unless N’, determined by I'p, is still Z\'é for the new b.
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O (6%) above. As before, N'=N;, and W5, W, are identified with P’, Q'. P’, Q' are
accordingly disposed as in case (ii), and the stretch of b is an i,.

The ensues a stretch of length O (g6%), consigned to E, after which W5 is just
below V*—268% and Ug is an amount I+ O (6*)> L lower still. We make a fresh
start from here, with new b, It is by now clear that the new N is the old one
+27m. The diagram, based on the new Ny will be case (i); moreover we are in the
situation momentarily taken above as starting point (with new b,, N’). We can now
repeat the processes described, and a little reflection will convince the reader that

we have established all the results set out in the Lemma.l

§ 53. There are further developments for case (ii). Consider a point R between
P and @, and a I'p of §* with ¥ (N)=R, and let us define? R’ = (I's, N’'). For
' we have, after Lemma 32, that Uy is not earlier than N’, that RR’, Q@'
cross and shrink, with error O (k™*), as do RR', PP'. We recall that in case (ii)
Q<V*—268% P'>P=V*16% Since a continuous stream of I'y exists for P<R<Q,
it follows by continuity that there is an Ry,=V, such that Ry=V*. There is a (small)
range of possible V,; we suppose that a unique representative is selected for each
b (of an 4,).

Next, V, lies between P+d¥(=V*+6*+6) and @Q— 6 (=V*+ M -5t —4).
For if, e.g., Ry=V, <P+ 6% we should have R, P <4}, RyP' <o R, P+k ¥ <(xdt+k7}),
and so ’

V*=Ro>P — (a0t +k¥) > V*+ 6t — (a6 + k¥ > V¥,

a contradiction. The other case is similar.

When b decreases through i, V, decreases, to error O (8!), from @+ O (6*) to
P+0 (8%). (The speed is actually approximately constant, though we shall not prove
this.)

We are now in a position to prove

LeEMMA 33. Suppose bEB,. Then if R belongs to the range R, or V*+6t <R<
V*+M—6 Tr® has its successive U, U’,... at N,N+lp, N+2(}p), ... where
p=2(2n—1)m=2(N'—N).

1 The suffix 0 in N(’) is scaffolding for the proof, and disappears from some of the statements
of the Lemma.

For the statements about R’, note that the b, of (a) and (b) may be any b of an ¢, or %,.

2 Consistently with the definitions of P/, Q’.

3 Recall that there is a small sheaf of I'g for a given R; the various results are true which-
ever members of the sheaf or sheaves are taken.

6 — 573805. Acta mathematica. 98. Imprimé le 18 novembre 1957.
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If B, R, belong to R, then I'g, T'g, quasi-converge; that is to say y(I'r)—y(I'z) =0(0)
and §(L'r)—9(Tg)=0(0) for large t.

For b€ B, there are two cases:

(@) If R belongs to R, or V*+8<R<V,—06% then T'zp has its successive
U,0,.. aa NyN+Lp, N+2(3p), ....

If R, R, belong to R, then D'y, Tz, quasi-converge.

(8) If R belongs to Rp, or V,+S8<R<V*+ M — 8%, then T'y has ils successive,
U,U', .. at NNN+Lip, , N+2(3p,), ... where py=p+4n=22n+1)n.

If R, R, belong to Rs then ', I's, quasi-converge. R, is a proportion 1-Lo% at
least of (V*, V,), which has length at least 6%. Ry is the same proportion at least of
(V,, V*+ M), which has length at least 63.

The last clause is a consequence of what was proved above.

It will be enough to take the more difficult b€ B,, for which the argument is
easily adapted to b€ B,.

We begin by proving the two addenda:

(@) In (&), for all R of Ry, Uy is at N’, and W (T'z, N') and Vz lie in a range

(V*+ Lok, V,—LéY), and so in Ry diminished by Lot at each end.

(b) In (B), for all R of Rs, Un is at N'+2n, and W (T's, N’ +27) and V7 lie in the

range (V,+ L%, V*+ M —Lot), and so in Ry diminished by L 6% at each end.

It will be enough to take the slightly more complicated (b). The range R; is
(T, ), where T'= V*+6§. By Lemma 32 [RR, and R’ R; cross and shrink] 7" lies
between two values V*— L &%, and ¢ lies between 7" —a- QT and 7"~ L-QT. Since
QT=QV, — 68> 03— 68> Lo}, it follows by easy calculations that @ + M and 1"+ M
lie in (V,+Lét, V*+ M —Lé%), and for an R of TQ R’ + M lies in this interval, to
error k_%, so that (with new L)

V,+Lo*<R +M<V*+ M- Lot 1)

Since by Lemma 32 Uy is not earlier than N’, it follows from Lemma 28 that
Uz is at N'+2z. Then W (I'z, N'+2n) and V5 are B +M-+0 (Dk™ %), and they
satisfy (1) with new L. This proves (b).

After (b) we use, for case (f), a diagram based on N’'+ 2z for the right-hand
ordinate, or N+ p,. [In case (x) we use N'=N+p.] Since R’ is in the diminished
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Fig. 10.

Rp, the Uz next after Uy is at N'+2p;, the next Uz is at N’+3p,, and so on;
also (R’), which we call R” is W(I'z, N+ 2 p,), and so on for R, .... The Vi, Va, ...

corresponding to the Ug, Uy, ... differ from R’, R”, ... by O(Dk‘%), and lie inside
a diminished R;. Starting now from a pair of Is, I's, I'z, we can apply Lemma 30
in its AV form. We have

[V - Ve | <a| VG — VL + L,
from which it follows that
VG — Ve =0 () for large m. (2)
It remains to deduce that y(T'z)—y(Tz)=0(() and y(Tz)—9 ('z)=0 ({) for
large ¢! Since (2) is true for all large m, it is enough, after Lemma 25, to prove,
in the notation and context of § 46, etc., that A V=0 ({) implies w(Z,)=0({). We

may suppose (normalizing) that w(Z,)>({{ (else we have what we want). Then by

Lemma 24

1 The conclusion is “obvious”, but it happens that it was not convenient in earlier Lemmas
to record just the combination required.
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c(U)SLitwU,)S Lkw(Z,). (3)
The quasi-identities (2) and (3) of § 46 combine to give
c(U)=—AV+0w(U,)),
and from this and (3) ~AV=c(U)(1+0 (1),
|AV|>Lc(Uy)>Lkw(Z,),

so that w(Z;)<{, as desired.

§ 54. Theorem 1.1 For b€B,, when RER, I'r converges to a periodic ' of period
(2n—1)2n. For b€ B,, when RER,, I'r converges to a pertodic T of period (2n—1)2 z;
when RE Ry it converges to a periodic I' of period (2n+1)2z.

Before going on to the proof of this some remarks about the scope of its re-
sults may be welcome. The theorem proves at once (after Lemma 29) that for b€ B,
there is a sheaf of Is in any S8* which all converge to one of a set? of 2» —1 with
period (2n—1)2x and that for b€ B, there is one sheaf converging to one of a set of
I’ of period (2n—1)2x, and another sheaf converging to a set of period (22+1)2x.
It is fairly clear that, roughly speaking, and in some sense, most trajectories behave
in one of these ways (for b€ B, + B,). To make this statement precise would give a
good deal of trouble, and it would be of doubtful value since any particular formula-
tion would probably seem rather arbitrary.? We shall be content, therefore, to sketch
the general setting.

In the first place it is clear from the work of Lemmas 6 to 9 that we could,
if called upon, prove that I"s satisfying much wider conditions (than starting in an
8*) sooner or later enter an S or §'. Next, the I”s of an § can be classified, in a
fairly natural way, by their y(Z;)’s. The Lemmas connecting w (Z,) and c¢(U,)
(which is more or less —AV) for a mesh go to show, and could be developed to
do so rigorously, that a small proportion of the possible range of V, or its near
equivalent W (I", N), which range is approximately (V*, V*+ M), corresponds to a small

1 For convenience of reference we recall: R and I'g are defined in § 52, 'y being a I' of §*
defined in § 24 with U (I, N)=R. Ris V*+0  <R<V*+ M-t Ryis V*+ot<rR<v,-08"; Ry
is Ve+ 8" <R <V*+ M~ The very fundamental V, is discussed in the Introduction, and defined
in § 53. The integer 2n—1 is 2 (N’—N)/2 71, and N’ is defined (for each b) in Lemma 31, § 51.

“Convergence” means that both y (I'g) —y (I') and y (I'r) — 4 (I') tend to 0.

2 The set consists of displacements by 0, 27, ... (2n—1)2x of a single I'.

3 Because so much would depend on how the initial conditions were weighted. The full truth
is probably that all trajectories except a nowhere dense set in the phase space behave so.
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proportion of the range of the y(Z;) in an S. Thus a classification in terms of
R=Y (I, N) inherits the “naturalness” of one by y(Z,;), and this classification by
R is that used in the theorem. Finally the ranges R, s of B are the total possible
ones, with small diminutions.

§ 55. Proof of Theorem 1. It is enough to prove that if I', , quasi-converge
and have all their V, ,, Vi 2> V*+4, then they converge strictly. For suppose this
proved, and consider the part, sufficiently representative, of Theorem 1 about b€ B,
and R€R; Our assumption implies that any two I'g, I'z, (R, B, €R;s) converge, and
in particular, since (by § 53 (b)), R’ belongs to R, it implies that I'; and I'z (p,)
converge. If then y, is y(I'z) at t=mp,, we have Ymi1—Yn—>0, Jms1—Yn—0. If
(Y, Y) is a limit point of the set of points (ym, ¥n), the trajectory T'y with y=7,
y= Y at £=0 is clearly periodic. Its R belongs to Rz and by the assumption I'p
converges to it.

We have accordingly to prove that w—>0, w->0, in the notation of §§ 34 et seq.
We have w=0 (), w=0/({), hypothesis (H) of §38 is always valid, and we may
take over Lemmas 13 to 16, about 7, in T'-form.

There are two cases: (i) ', , have no intersection beyond some point, (ii) they
have an infinity of intersections.

Case (i). Suppose that w is ultimately positive. Then, first, w,, which is an in-
creasing function, must be bounded. Otherwise, we should have, for an arbitrarily
large G and 1>¢,(@), c—w; < — G, and so [(W, of §34]

¢
w=wye T+e T [ (cg—w,)e” dt
0
ts ¢
<(wo+coIert) e‘T—Ge‘Tfert.
o to

By Lemma 13 (a) the first term is less than a constant independent of @, while
for t>k"! the second is less than — Lk '@, so that w is ultimately negative, a con-
tradiction that shows that w, is bounded. Since w>0 and w is bounded, we must
have w—0; and then w—0 since #% is bounded.

§56. Case (ii). Let the intersections be I,, n=1, 2, ..., and w, =w(I,). In the
first place we have for any ¢ in I, I,

|w| <D || k. (1)
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For, taking ¢=0 at I,, and supposing w, and w non-negative, say, we have

t
w=e T f(iv,,—-'wl) e"dt
0

t
<w,e " [e"dt< Dkt w,
0

by (b) of Lemma 13.
Consider now the r.m. from I,.;, taken as t=0, up to time ¢=1, or till we
reach I,, whichever happens first. If w is, say, non-negative, we have from (W,)

[§ 35], with &=ty
t

we""ziunﬂ(fe‘Tdt—L I1f e-Tc+Tn-Ted5dndc)- 2)
0 0<é<nsest

t
The triple integral < (fe‘Tdt)( H e‘Tt"Tnd'qu),

0 0<p<i<t

and the second factor <Dk}, by Lemma 14. Hence, from (2),

t
y T -7
w=}wpe” [eTdt,
0

and in particular I, is not reached before t=1. At t=1 we have

1
w(1) =3 awn,qe™® J‘e‘Tdtz%'Lb“l-e""-Lk"l,
0

w (1) > e wypg.

On the other hand this w (1), being a w of I, I,41, satisfies (1), or |w (1)| < Dk? |y |.
Hence |wn 1| <3|w,|.

We have now w,—0, and so, from (1), w—>0 uniformly. Finally w must also
—0 since % is bounded. Thus I'; , converge, and the proof is completed.

§ 57. We now take up the postponed proof of Lemma 31. It is more con-
venient to take the inverted form in which ¥ (N’) is given the same for the two
s and we have to prove W (N—2n)=0(b)kdb+0 (k™ *). We use I'; for the I"
with b, T', for that with b+0b, and y, , for their y's. We abbreviate k™' to &.

N—-2=n
Since YN —2x)+ W (N)=2b—9Hk+ [ gdt (1)
K
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N-2=xn
we have YW (N—-2m)=2k6b+ f dgdt. Let N, be the nadir (p= —1x) between
e

Z, and Z,.,. Let N, be the last N, in the long descent such that y>1+%* for

N,<t<N, where «=% (the index has to be between 1 and 1). We shall find that.
Ny N-—2x

f dgdt and f dgdt are negligible,

N’ Ny

N
We begin by disposing of f ; this is crude. In the first place, Z is a time
i

Z
O (Dk™%) after N’ and f gdt=0 (Dk™%) for each of I ,. To this error we may start
8

at the later of the two Z. From this point to N, we have (for each I') y=0 (1)
[Lemma 11], and so, by the y-identity.

F(y)=F(Z)+b(p,(t)—p, () +0(e)
=F (H)+b(p, (t) — 2,1 (%)) + 0 (De),
since Z—H=0(D¢), Z—Zy=0(Dk™}). Hence
5F(y)=0(3b)+0 (De)=0(De),

and so, since y>1+L, dy=0(D¢), and so 6g=0 (D¢). Thus

Ny
[ 6gdt=0(DE™Y),
A

and so
N, N—-2=x
8V (N—2m)=2kdéb+ [dgdt+RBR+0O Dk}, R= [ bgdt. @)
N N,

v

Consider now the range (N; N,). In an intermediate (N,, N,.1) we have

¢
F(y)=bpten—c@G+ [gdt) (1<n<y—1; N,<t<Nuy), (3)
Nﬂ
where Cns1—Cp= —s'fgdt, 4)
(n)
Nn+1
and we abbreviate J. to f . Also, writing #=y—1, we have, by Lemma 3 (3)
Ny, (n)

§+bp/f=0(n7?). (5)
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It follows from (2) that
6‘19(N—2n)=2k6b+6(kcl)—é(kc,)+R+0(Dk“*). (6)

We begin with 8 (kc,). The formula (3) is actually an identity for all {, Taking
n=1 and {=U' we have

Ny
F(~D)=c;+b-e{v'+ bk(1-p, (U} +e [ gdt
A

N N,
=c,+b—eV'+¢ fgdt-i-s fgdt.
'/ N

-
In this V'~ ¥ (N')=0(Dk™?), [ =0 (Dk™*). Hence
o

N
d(ke)= —kdb+0 Dk H+ [dgdt
>

=—kd8b+0 Dk}, (N

since we saw above that the integral last written is O (Dk™!). From (6) and (7) we
have (summing up for convenience of reference)
N-2xn
8Y(N—-2m)=kdb—08(ke,)+R+0 (Dk}), R= [ dgdt. (8)
Nﬂ
Thus, apart from the discussion of R, the calculation of 61 is reduced to that of
0 (kc,). Our method for this is to operate with 6 on (3), (4), (5), with b satisfying
0< —kéb<L,.

§ 58. Consider the range, R, say, from N, up to N,, or up to the first moment
when |8y|=Aen™!, whichever happens first. Here A>1 is a number that will ulti-
mately be chosen to be a certain L, (itself depending on the ‘“‘given’” L, of the Lemma).
Among the consequences we shall deduce from the hypothesis that |dy|<Aen™' in
R is an inequality which, when the substitution A=1L, is made, yields |[dy|<
1L,en™ (in R). It follows that |dy|=Aexn ™! is not the first event, so that R ex-
tends to N,, and further that |dy|<3iL,en' in (N,, N,). We suppose, tacitly as
usual, that the upper bound k,=k, (8, A) is rechosen to suit the argument; with the
final substitution k, becomes a normal k,(d).

We begin by recording some results for later convenience. In the range B we
have, writing 7, for y (N,)—1,
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77=y—12k_%; [6n]=|0y|<Aen™; p+88n2Ly for 0<H<1. (9!

[2-0togni-otog iy [S-omy-ouh  [Z-owh=0ah. o

(n) (n) (n)

The first part of (9) is true by definition; the second by definition; the third
by the first and second.2
We have in (N,, N,.1)

:
F(y)—F<1>=<F(Nn>—F<1»+b(1+p1>-a<y—y(N,,)+Nfgdt),

and so "
7> L(F (y)— F (1)) > Ly + L Min {(¢— N,)%, (¢~ Nus1)?} - Le,

from which the results of (10) follow by straightforward calculation.

§ 59. We now operate on (3), (4), (5) with §, observing that 1/f(y)=0 (n7"),
n+06n>Ly, and so 1/f(y+d8y)=0(n""), 6 (1/f)=0 (7% 7). Operating on (3) we have

f(y)éy-l—O((6y)2)=pléb+6cn—81f dgdt—edy. (11)
Operating on (5), we have "
3G=0(Sby)+0B7 7Y +0 (e =0 (Aeq™). (12)
Also On)2=0(A*y™?),
and ]fdgdt|<Lf|5n]dt<LAs [ntdt<LAelogk,
A ) )

by (10). Substituting from these and (12) in (11) (and combining the worst elements

of the errors®), we have
dy=206b(p/f)+dcn/f+O(A%¥y 7 log k). (13)
Next we have, operating on (4),

8 (kens1)— 0 (kew)= — [dgdt=— [(g'6y+0(dy))dt.
(n) (n)

1 Numbering of formulae is consecutive throughout the proof of Lemma 31.
2 And (to mention it for once) by a rechoice of k, (L, d, A).
3 8o as to have a single error-term.
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Substituting for the dy’s in this from (13) we have

d(kcnir)— b (kea) (1—2 [@(y)dt)+0b [Xdt

—0(A2slog k) [7*dt=0 (A2ek™7 log k)
(n)
by (10), where

eW=g/f, X=pg/f=p1o. (15)

Now [@dt=0([57'dt)=0 (log k), by (10), so that
(n) (n)

1—¢ [@dt=exp (—¢ [ pdt)+0 (& log? k). (18)
(n) (n)

We have further, by (4) (summing), and (7),

Nn Nn
8(ken)=0(ke,)— [ 8gdt=0(1)+0(Ae) [ 7 dt=0(A log k), (17
N N,y

since n=0 (k). Substituting from (16) and (17) in (14), and keeping only the worst

error, we have

8 (kens1)— 8 (kow) exp (—¢ [ pdt)= —8b [ Xdt+0(A*ek 7 log k),
(n) (n)

or writing

t
v=y(t)=¢ [ @dt, yo=p (Nn), tn =" 8 (kca), (18)
N

Uns1—tn= —8bePn+1 [ Xdt+0 (A2ePn+1 ek log k). (19)
(n)

In (N,, Nn1) we have y—y, =0 (¢ log k), and so
i1 [Xdt— [ Xdt=e'n [O(c log k) X dt
(m o5} (n)

=0 (e log k) e*n In‘l dt=0 (ce¥n log? k).
(n)

Hence, since 6b=0 (g), (19) becomes

Uns1— Un= — 0D je”th+0(A2eeW" K7 log k).
(n)
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Since y is increasing, n=0(k), and w,=kdc,= —kdb+ O (Dk™¥), this gives

Nn
Un= —kb—08b [ ¢ X dt+0 (A ¥k 7 log k),
Ny

or by (18), kb —0 (kca) = 0n kb + 0 (A2k T log k), (20)
Nﬂ

where O,=1+eVnfge¥n f e’ Xdt. (21)
Ny

In this ¢ is positive and increasing, and (since |p,|<1) £|X|<eg /f=1v, so that

¥,
ge ¥n fne"’th lies between +(1—e¥2), and so
Ny
2¢"m<@,<2. (22)
It follows from this and (20) that
d(key)=0(1). (23)

We now have from (13),

|dy|<Len™+Len™+ LA% (e nlog k)5,
in which 2573 log k<ek? log k,
so that |6y| < (L' +L" Ak log k) eq™,

where L’ and L” depend on L,. If we take A =3 L’ in this we have [dy|<3L'en™'=
1Aen'. Then, as explained above, R extends to N, and we have, from (8)
and (20),

N-2n
SY(N-27)=0,k8b+0(k 7 log k)+ | dgdt. (24)
NI’
N-2n
§ 60. We now consider R= f dgdt (returning later to the further calculation
N,

1 4

of ®,). The curve I'; between N,_; and N,,; has an equation of the form
F(y)=C+b(1+p,)+0(e),

and (since 1+p, =0 at N’s) this must also be of the form?!

t We write F' (N,_1) for F (y (N,-1)), ete.
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Fy)=F (N,-1)+b(1+p,)+0 (e),

and we must also have F(N,)=F (N,_1)+ O (¢). By the definition of N,, 5 takes a
value =<k * somewhere in (N,, N,,;). On the other hand, since N,_, is in R, we
have at N,_;,

n=k™% |dn|<Len'<Lik* ', n+0dn>Lk"

Since F—F (1)2 L»? it follows by straightforward calculation that

F(N,_,)—1, F(N,)-12Lk2* =Lk, (25)
and

OF (N,)=0F (N,-1)+0(e)=0 (1,-161m,-1) =0 (). (26)
Next, we have for the time from N, to N—2=x
(N—2m)— N, =0 (k). (27)

For over an intermediate stretch (N,, N,.:) we have

Nn+1
| gdt>M+o(1)>L.
Nn
Hence
Np
F(Ny)-FQ)=(F(N,)—F(1))—e((Na)—y(N,) + fgdt)
N!'

<Lk '—e(—L+Ln-»),

by (25). The left-side being non-negative, we have n—v<L+Lkl-%, which is equi-
valent to (27).

§ 61. We now employ another ““A-argument”; this time the final choice of A
is a D. We consider the range R,, from N, up to t=7, where 7 is the earlier of
N—2z and the N of U, N, say,! or else the first moment when |dy|=Ak"},
whichever happens first: we shall find that r=N—-2nx.

We have in R,.

¢ 1
[6gdt=0(AE ) (¢—N,) =0 (AkT1), (28)
N

v

by (27). Also, operating on

! This is temporary notation, and N, is not between Z, and Z,.
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t
F(y)=F(N,)+b(p,—p (V) —e@—g(N)—¢ [gdt,
N,

v

and using (26), (27), and (28), we have in R,,

OF (3)=0 () + O (s Ak"1%) =0 (e). (29)
From this we shall deduce that, in R,
|8y|=|6n|<D kL. (30)
We have (in R;) 5, n+dn> — Dk}, and we distinguish four cases:

i) 5 n+én=0;

(ii) 5, n+dn=<0;

(iii) =0, n+dn=<0;

(iv) %<0, n+dén=0.
n+én n+dn

én
In (i) 6F= [ fQ+wydu= [ Ludu>[ Ludu=L (67>
7 n 0

and (30) follows from (29).
In (ii) |6n]|<|n+dn|+|y|<DE}.
In (iii) we must have <Dk}, because if >D'k™t we should have
7 i
[6()|=| [ fQ+wdu|=|[f(1+u)du|-Dk*>Ly*~Dk*>LL' k™,
ntdn 0
which contradicts (29) for a suitable choice of D’. With <Dk ! we have
|n|<|n|+|n+dn|<Lbkt+Drk <Dk %

Finally in (iv) we have |5|<D’ k™% Then either |6%]|<D” k% which gives what
we want, or else y+d5> (D" —D')k %, and then

@ -pkt DDk} DpEt
8F= [ fQ+wdu> [  Ludu— [ L'udu
_pr-1 Y 0

D’ is fixed in this, and if we choose D'’ suitably (large enough), we have  F>LD" k™,
which contradicts (29) if, again, D" is large enough. We have now proved (30).
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§ 62. We now take A =2D,: then the event | dn|=Ak™} is not the first, and
R, extends to N, and we have (30), or |dy|<D; k™%, in R,. We have now

e -1 3. -1 -1
[ 8gdt=0(Dk™%) (N,—N,)=0 (( Dk %) =0 (Dk 1),
N

and so from (24), trivially modified,
SV (N)=0, kdb+0 (k4).

Next, we have N,>N—2a. For otherwise we should have Ny<N—42x and

U, at N, and consequently
VT, No)=V (T, Ng)+0,k6b+0(1)<VY ('}, Ny)+o(1),
which since ©, is positive and 8b negative,
<V,—-2M+0(l)
S(V*+M+o(1))~2M+o0(1)
<V*-L,

and this is incompatible with U, being at N,. We have, accordingly, U, at N~2=n

or later, and
N

SV(N-22)=0,kdb+0(k™*), ©O,=l+e¥+ee¥n [ Xevdt (31)
N,

§ 63. We turn to the evaluation of 0,. Let 9o =nn=y (N5)—1.2
We shall need the result:

01=4+0(De), (32)
where A (an L) is the positive root of
F(l+2)=%—2b, (33)

and it is convenient to begin with this. We saw in § 57 that within a range L of
N, we have
F (y)=F (H)+ b (p, (1) = P1 (Zo)) + O (D).

Substituting t=N,, p, (})= —1, p; (Z,) =1, F(H)=% in this we have

1 We presently need [see (36) below] a new variable g, whose particular case ¢n has the
value 7.
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F(l+p,)=%—-2b+0(Dg),
and (32), (33) follow.

§ 64. The equation of I'; in the range (N,, N,.1), where n<v, is

Fy)=F(1+e)+b(1+p)+0(e). (34)
Also F(ltenn)=F(1+es)=~¢[gdt—c(§ (Nar) =9 (Na)
(n)
~—c[gdt+0(k), (35)

(n)

since by (5), with t=N,, §(N.)=0 (e9;%) =0 (¢4*%), and similarly for § (Ny.1). Let
the (periodic) curve
F@=F(1+g)+b(l+mp), (36)

for a parameter 9>0, be y=Y (¢, 0)=Y (f,0;5). ¥ has a minimum 1+p where
=—in. Let

2n
D) =] ¢{¥ (o, 0} dt [pw)=g &/fW
0

2n
@ )=[ g{¥ (o, )} dt,
0
Q(o)=f(1+0) ®(0)/C (o), (37)

2n
P =[ p,)p{¥ (0. t)dt,
0

i 2
J(@)=P (@D () Qo) exp ([ Q(0)do)=P (o) f (1+0) G (o) exp ([ Q (0) dp).
e e

The calculations that follow are inevitably rather long, and it will perhaps be
clearest if we set out first the “formal” work, with errors ignored.
We have, by (18),

2n
Yarr—yn=2¢ [@@)di~e [ o{¥ (on, )} dt=2®,,
(n) 0

where we abbreviate @ (p,) to ®@,, and similarly for G, Q, P, J; we also write
fa, Fn for f(1+p,), F(1+0,).! By (35)

1 y, the only other function to take a suffix n, is a funection of ¢, with yp, =y (Np). Otherwise,
apart from f and F, where the use is “obvious”, the suffix is attached only to functions of ¢ with
capital letter names (?, G, Q, P, J).
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2n
(@ns1—0n) o~ Frpy—Fu~ —c [g(g)dt~ —& [ g{¥ (0n, )} dt= —sGn.  (38)
(n) 0

Hence Yol ™ YPa ™~ — (Qn-{»l_Qn) D, fn G;I =—-0, (Qn+l “Qn)

7% A
v~ [ Qdo~ [Qdp. (39)

en On

Next [using (15)]
2n
[Xevdi~ern [Xdt~ern | p (0) p{Y (on, )} dt=Ppevn,
(n) (n) 0 '

and so, by (38) and (39),

2
e[Xevdt~ —P, exp ([ Qdo) fn G2t (@ns1— 0n) = — T (On+1—0a)-

(n) o
N, v—1 [4] 4
So e Xe?dt=S e[~ [Jdo~[Jdg,
N, 1 (n) e ey
and, collecting, we have
N, A
@,=1l+eW+se™ [ Xetdt~1+E (o) (1+ [Jdg),
N

2 & (40)
E (p) = exp(- J'ng), A the root of F(1+2)=§—b.

e

Of the functions of ¢, ®, @, Q, P, J, the first three are positive for >0, and
near 9=0 it is not difficult to show that:

©=0(ogp), G*=0(1), Q=0(f(1+e)®)=0(glog 9),} )

P =0 (log p), J =0 (o log p), E =0 (1).

Thus we can finally, with negligible error, replace g, (which is O(4¥™%) by 0, and
obtain finally ©,~ 6 (b), where

i A
0)=1+E(1+[J(e)dg), E=exp(—~[Q(o)dg), (42)
0 0

where J (p) is defined in (37). The integrals are convergent uniformly in b, and 6

is continuous: it depends only on the functions f, g, p, and on &.
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Finally |p,|<1, so that, by (37) |P|<®, and
i i i
E[|Jlde<E [Qexp ([Qdo)dg=E (E'-1)=1—E.
0 0 e

Hence by (42) 2E<06(b)<2, and L6 (b)<2.

§65. We now take up the question of errors.! We abbreviate, for the range
(Na, Nas1), Y(on, t) to Y™, We recall that for n<y

2
7

nZk_%, on =k 7.

(43)
We have, in (N,, Np.1), always for n<v,
Fy)=F(1+g.)+b(1+p)+0(e),
F(Y®)=F(1+gx)+b(1+py),
and so - YY) (y+ 9 (Y™ —y)=0e),
from which, after (10), we can deduce
y—Y®=0(7n™"), [ly—Y™|dt=0(slog k), (44)
)
and ¢@)—@(YP)=(y—Y™) ¢ (y+3 (Y ~y)=0(sn -5 )=0(en™).
By (18)
Yasi—pn=c[ @) dt=c [ (Y ™) dt+0 () [y dt
) () (n)
—s®,+ 0 (k2"), by (10). (45)

Next, by (35),

F(l+gnu)—F(1+0,)=—¢[gdt+0 (%)
(n)

-10 10
= —e[g(Y™)dt+0(e) [ly— Y™|dt+0( )= —eGu+ Ok 7)
(m) (n)

by (37), (44), and ¢’ =0 (1). The left-hand side is

(Qn+1 - Qn) f {1 +0n + 9 (0n+1 - Qn)}:

1 We have tried to reduce this to the minimum needed to produce conviction, and omit some
minor details of calculations.

T— 573805, Acta mathematica. 98. Imprimé le 18 novembre 1957.
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and we find successively that
-5
(@ns1—02)=0(e0:")=0(k"7), @ns15Lon, (46)

—&eG,+0 (k_%)= (0n+1—0n) fn(1+0 (89;2))’

~10 -10
—e=(0ns1—0n) fa Ga'+O (K" T) + 0 (207 0n*£07°) = (@ns1—0n) }n GZ + O (k7 7),  (47)
which we shall use for transforming sums into integrals. From (45), (46), (47), (37),
and since @, =0 (log g.)=0 (log k) by (41),

10

Pni1=Pn= — (@n/Gr) (—Ga) + O (") = —Qu (ons1—0x) + O (k77 log k)

on
= [ Qdo+0((oni1—en)® Max |Q)+O(E ). (48)
en+t1 Cn+1=0=0n

We can repeat the argument for (44) with an arbitrary ¢ of (gn.1, 9») in place
of on, getting
y—Y (o, )=0(en");

and this gives also (Y, t)-1)'=0(n""=0(™). (49)

Further, since F (Y)=F (1+p)+b(1+p;), we have
oY
f(1+e)—f(Y)a—Q, (50)
oY 1
and so, from (49), a—g=0(gn y=0(1). (51)

(49) and (51) enable us to estimate the g-derivatives of the various functions
of . Thus, using (10), we have in. (N,, N,.1)

2n
v - [¢ @ a-o( [rra)-0eH-ouh, 52)
0 e (n)
P'(@)=0(g™)=0 (), (53)
25
similarly @ (0)= fg’ (Y)%%dt=0 (g Jn_l dt) =0 (p log o). (54)
0 (n)

Since /' (1+90)=0(1), G (9)=0(1), we have by (41)
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d
(04 (g)=%(®f(1+g)G“)=0(9<D')+0((D)+0((I)92 log ),

Q' (p)=0( log ). (55)
From J=Pf(1+0)G'E™, B'=0(1), (63), (54), and (41),
J' () =0 (P'0)+ 0 (P)+0 (Po@)+0 (J)=0 (log g) = O (log k). (56)
From (55), (46), (48),

[ on
Yarl— Yo = fng+’0(829;2loggn)+0(k-1-‘)= { Qdo+0@E 4, (57)
Cn+1 fn+1

Yn = deg+0(k-A). (58)
on
By (45) and (41) we have in (N,, Nny1)
Y= Pa=YPni1—yYa=0 (e log k), (59)
so that X e?=p, () @ (y) exp [yn + O (¢ log k)],
and in this
P@=¢(Y®)+0(en™ Max [¢' )= (Y™)+ 0 (c0:%) =@ (Y™) + O (k%)
This leads [p is O (1)] to
‘ 2z
[Xerdi=en[ pg(Y™)dt+0(k*)+0(c log k| p| dt) =e?n P, + 0 (k4).
(n) 0 (n)

From this, (47), (58), and P, =0 (log k),
e [ Xerdt=(=(gni1—ga) fn Gi* + O (k724) (¢ Po+ O (k%))

(n)

2
= —(gn+1—0n) f» G3" P (exp ([ Qdo) + O (k™)) +

on
+0(knA)IQn-fl_infn’*‘O(k_l—A)
= —Ju(0n41—02) + O (k| @ni1—0n|fn log k) + O (k™14)
=—Ja (Qn+1 _Qn) +0 (k—l_A),
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by (46),

on
= J‘Jd9+0((gn+l_en)2 Male'|)+0(k‘1'A)

n+1

= [ Jdo+0 (%) by (46) and (56).

en+1

It now follows from (21) and (58) that

A
0,=1+E (o) (1+ [Jdg)+ 0 (k*).
(24
By (41) and 9,=0(k™*) we can replace g, in this by 0, to the same error. This
completes the proof of the formula (1) of Lemma 31.

§66. If —kdb>3 we have (returning to the actual notation in Lemma 31)
WN'-27,b+6b)<W (N'—2m, b)— L4,

and this is less than V*—§— L§, since otherwise W (N'—2m, b)>V*—8+ L4, and
(for 8) U’ would be at N'—2z7; (or earlier), contrary to hypothesis. This proves the
clause of Lemma 31 about N’ not jumping to the left, and its consequence, that
the formula for 6 is valid also at N'[U (e, N)=W Iy, N —2a)+ M, 2 to
error O (k™*), and M,— M,=0 (k™*)].

It remains to consider 6 V*, 6 M, 66.

That 8 V*=0 (k') is immediate from the explicit formula (Lemma 10).
M is defined (see §18) by M=[g(Y)dt, where F(Y)=F(1)+b(1+p,), and
$a
the integration is over a period, say M= f . Then M =M,+ M,, where
~1a

—patk—t 37
M1= J. + ‘[ s -M2=J.:
~3n 3o} R
2
and Ris (—im+k% §n—kY).

We have M, =0 (k%) for all b, and 6 M, =0 (k™ }).
In R we have (Y —1)2> L (F(Y)—F (1)) > L1 where 7 is the distance of ¢ from
the nearer of —lm, 3z, so that Y—1>Lv>Lk™}, f(¥Y)>Lk *. We now have, for

a range of b including the given one,
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l——‘ ” Y)——dt|<LHZ ,dt— f|1+p1dt<Lk%
R

Then 6 M,<Lk*db<Lk % and so finally [ M|<Lk %
We prove finally that 66=0 (k" *), in the range 33<b<%=3l;— Lk '. This in-

cludes B, and B,, and could, of course, be extended to the whole of B if necessary.

It is enough to prove the result for 0< —kéb<}L, (since we can make a fresh
start at 1L, for 1L, to L,). Let by=b, b,=b+0b, by=b-+L k; let O,=10(b,),
Vo= (N’ —2m, by), and similarly for suffixes 1, 2. Then we have

Yi—Vo=F (b, —bg) O+ O (k*), Yo—Vo=F (by—by) O+ O (k™*),

and so by subtraction U;— Y;=k(b,—b,)0,+ O (k *). On the other hand U;— U=
k (b, —b;) 6,0 (k~4). Hence % (By—b,) (8, —0,)=0 (k) and finally 0;—0,=0 (k™)
since k(b,—b,) =1 L,.

§67. We come now to the study of the non-stable motions when b€ B,.! The
lay-out of §§ 34-56 was designed for the long proof of “convergence”, and what we
now require sometimes calls for minor variants that would have unduly complicated
the account. Where the situation and arguments are reasonably familiar we will
abbreviate.

In what remains of the paper we use U for any arrival at y=1 from an S*,
gap-free before that point, and similarly for U’. ¥V and V’ have the usual associated
meanings. If necessary we call the U with V= V*—§ the “true U”.2

The locus y= Y (), or

F(-1)=F(Y)=3-F(Y)=b(1-p(9)) )

consists of three disjunct periodic curves (o 3 as in fig. 11. (Compare fig. 2 of the

Introduction.) C; and C, are each at least distance L from y=1.

LeEMMA 34. Suppose that a T of an S*' has a U’ at y= —1, near N', or Z, of
fig. 4, and with V'=V*—-26%, and let Z,, Z,, ... be (as usual, for given Z;) 2m,
47, ... later. Then T emerges from |y|<1 at latest near Z,; it crosses y=1 with y> Lk,
and then shoots up to near C; and begins a long descent.?

1 We suppose from now to the end that b€ B,.

2 The new U’s generally satisfy inequalities like V > v*—26%, and are “nearly” true U’s; or,
again, they are true U’s for enlarged gaps. It is obvious that we could meet all requirements by
rechoosing d to be e.g. the cube of the original one, altering the dependent D’s ete. accordingly.

3 (i) N’ and Z, are the same time abscissa, under different aspects. (ii) The extremes of be-
haviour (subject to W =V*-2 6%) are: on the one hand to enter S* (Z,); on the other to approach
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y=H Z, Z,
\C.V/
y=1
¥
y=-1
Fig. 11.

CoroLLARY. At Z, and Z; we have
|y (Zao,s) ~ H|<L3 k7, |9 (Zo0) [ < L3 R,

when L3 = Max (a, {(4 V*+ 14 m)/f(H)}), m= Max |g| for an eventual I, and a is
the A, of Lemma 3(5) with d=minimum of y—1 for C,. [Thus ' enters S*(Z,) and
8* (Zy))-

We write n=y+1, Vpg)=F(-1)~-F(y)=5—F(y).
t
Then J=V'+k{G—F ) -b(1—p)}+ [(—g)dt. @)
)

This shows that between C; and C,, where the curly bracket is positive, we have y
positive and of order k except near C, and C,, so that in particular the last clause
of the Lemma follows from the “y> Lk one.

Let I be a small L. We have two cases: (i) I' gets above C,+1 [C, translated
upwards by ] at ¢, before Z, (ii) I" does not. In (i) we have ¥'>L and y>Lk

C, near Z, (as the Lemma asserts), but without entering s* (Z,); then s* (Z;) is the first s* entered,
and Zg the first Z later than the place of the S*. This should explain the réle played in what fol-
lows by Z;. We are approaching a study of the “delta’, and spreading out is natural.
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from ¢, and until y=1 or until I’ returns to C,+!, which last is clearly impossible.
This disposes of case (i).

Case (ii). T' remains below Cy+1 up to Z,. We will show that
Z,
- [¢(Vydg>L. 3
N

It will then follow that if L is chosen small enough,
z,
[(—g)dt>L. 4)
o

For (3) we observe that, since —F and ¢ are odd and increasing functions of
y in —1<y<1, we have —¢g(Y)=h (F(Y)), where b is odd and increasing. By (1)

—9(Y)=h(c+bp,(p), c=§—5>0.

Since p; (p+x) = — p; (p), we have

ini2n tntn

- [ 9Mde= [ {h(c+bp (@) +h(c—bp ()} dg.
in in

The large bracket is positive since ¢>0 and % is increasing, and the value of the

integral, depending as it does only on b and the fixed functions, is > L, as desired.

We now have (4). Take t{=0 at Z,, and consider the range |t|§k_%. In this
we have

bk(1—p)=3ba, kt*+0 (k™ *). ()
Hence from (2), (4), and V'=TV*-26%, we have
n>V*+L+k (Y () —1bay ). (6)
We now distinguish the cases

(@) 7o=n(Z,)=0,
(B) m<0.

Case (x). By Lemma 4 [R; ;] we have 7 >u, wherel

w=V*+L+k (¥ (u)—L1ba,t?), u(0)=0;

1 With a new L slightly smaller than the old.
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and since ¥ is increasing in — 1<y <1, we have further >4 so long as y<1. The

transformation u=ck %z, t=yk ¥z of §13 gives

%=1+L+kyc‘l‘l"(ck‘*z)—x2, 29=0,
and in this kyc'¥=22+0 (k" ¥z%). Hence, up to t=1"% or zzk%, whichever hap-

pens first (and this makes y<1) we have

d—z>1+L+z2~z2.
dx

By Lemma 5 we have zzké for some x<UL, or t<Lk_%(<k_§), and so also

7)>'Ll=L(dz/dx)>Lk% at a time O(Ic_%) at most after Z,. As in Lemma 8 this is

followed by an inecrease of 4 to Lk in a short time, so that case («) is disposed of.
Case (). We consider the r.m. from Z, (as t=0) to t= k5. With n= —{ the
r.m. satisfies,

(VALY (=) —bbaykt?,  Lo=—1,=0.

By Lemma 4 [>wv, and, since W (—¢) is increasing for positive increasing [, also

é>1}, where
b=V*+L+kV (—v)—}ba,kt?, v,=0.

Transforming and using Lemma 5 as before, we have #>Lk! at a time O (k°¥), and
this involves a crude rush to a large y in a short time. Thus (ii) (§) is impossible,
and the proof of the Lemma is completed.

Taking now the Corollary we have y>1+4d in (Z,— 1, Z;), where d is { Min (y—1)
for C;. By Lemma 3 (5)

|9 (Z2,5)|<ak '<L3 kY,

where o is the 4, (d) concerned.
Next, by (2), we have, since F(—1)=%=F (H),

22,3
F(y(Zs,o)=F H)+k(V —§(Zo,s)) -k [ gdt,
U)

|F(y(Za,s))— F (H)|<L k™", L=2V*+Tam, (7)

where m is max |g| for an eventual trajectory. Since y(Zs, ;) is near H, we have
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| (y (Ze.s) = F (H)| =|(y (Ze.5) — H) { {H + 3 (y (Ze,5) — H)}
2|y (Z..5)— H|}f (H),
and the first inequality of the Corollary follows from this and (7).

§68. LEmmA 35. (i) Two I' of S*(Z,) with U’s together, and with the same
V, where V=V*—26%, differ by O(0) at 2,. (i) If T; of S*(Z,) has a U; at N
Vy2V*—206%, and if T, starts at Z, with the same y,, and |9, (Cy) — 9o (T | <2 L3 k77,
then T'y has a U, at N with V,—V,=0(1).
(i) Normalizing to w(Z,)>0, suppose that w(Z;)>(f, the number defined in
Lemma 24. There is no intersection to U,, and —Aw>0, and by Lemma 24
c(U,)>Lkw((U,). 1)
We have also (2) and (3) of § 46, giving
c(U)=—-—AV+0(Aw), (2)
w(U)>L|Aw|! (3)

Since AV =0 these three are incompatible, and we infer that w (Z,) <.
(ii) With the w, 7T, ¢ notation and origin at Z, we have ¢, =1, and || <2 L5k "
We have

¢
w=e"" [ (sy—w,) e” dt.
0

Until [w|=|u,|, or ¢t=2Z,+1, whichever happens first, we have

¢
and |w]<L|uwg|e T [ e"dt.
0

Since #1,2>1+L, and so T>Lk, this gives |w| <Lk |uw,|<|,}. So t=2,+1 hap-
pens first, and |w|<Lk || <Lk up to Z,+1, and in particular at Z;. In what
follows we may suppose |w(Z,)|> (T and £, of Lemma 22; in the opposite case easier
arguments lead to a final V,—V,=0((). Then by Lemma 22 (d) we have, up to
U_, the earlier of the true U’s of T, ,

! These results, stated for true U’s, are true for any U’s with v> L (or ¥V > V,+ L). The proofs
need no real change, but it should be noted that the result “|y{ > L near U” that is called on is
specifically established for a U with v> L in Lemma 11 (5).
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|w| < Litw (Z) <Lk, 4)
in particular |w@U.)|<L .
And by Lemma 24 c(U.)<Lkw(Z)<Lk™. (5)

There is evidently a good deal to spare, and it is not difficult to deduce (by argu-
ments we have used before) that, whether I, is above or below I') near U,, I'; has
a U, within Lk " of U,, and then (see §46) that

AV=—-c(U)+0(Aw)=—c(U;)+0w(U))=0(l)

as desired.

§ 69. Consider a continuous stream of I' from an 8*' arriving at N’, or Z,,
on y= —1. We shall say that a I" of the stream ‘“goes through G'” if it has a U’
with V*—26'<V’'<V*+26% and that I’y s go through the + and — ends of G,
if Vi=V*+26%, Vi=V*—26 Similarly for a G. For G, or G, we have similar
definitions, but with a gap V,+24%.

We now recall Lemma 33 and its addenda (a), (b). These (in inverted form) lead
to the following consequences.

(i) T12 and more generally, I"s of the stream with V' between V*-+06 and
V*+ 26, or between V*—26% and V*— 6%, all miss all subsequent gaps.

(ii) For a & I'; behaves as follows. It shoots through to a Z near N’, Z,, makes
a long descent, and has its true U, at an N with N—N'=2(2n—1)z, and Y, (V)
lies between V*-+L o6 and V*—L(S%.

By (2) of § 67 with t=2Z; (as p,=1, y=o0(l)) we have

k(F(Zy)— F(H)=V*+26t—3C+0(l),
where C'= f g(Y)d o (the integral being taken over a period of the curve C,). Hence
Cy

I, crosses the ordinate at Z; at a point, @, say, with ordinate given by
y (T Z)—-H=E(V*+26-30)/f (H)+o (k™). (1)
(iii) I', behaves as follows. It makes a dip, shoots through near Z;, and enters
8*(Z,), by Lemma 34 Corollary. By Lemma 33, addendum (b), it has its true
U, at N+4nm, with V*+L6%<'U(N+4n)< V*+M—L5%, and consequently has
V,-2M+L&<V,(N)<V*—M— L.
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The calculation for @,, the point of T'y at Z,, gives
y Uy, Zg)—H=E""(V*—28*+ M -20C)/f (H)+ o0 (k7"), (2)

and incidentally I', is above I', from Z; to U, (since w(Z;)>({}, and there is no
intersection).

The relations of the U, and V¥, are appropriate to G, G, and G, being in the
delta described in § 29 of the Introduction, and at the right places, of fig. 6 of the
Introduction. There is now, by continuity, a sub-stream of the original one through
@', a “tube” of Is cutting the Z; ordinate between @, and ,, inclusive, with one
{(at least) through each point of the segment.! No I’ starting inside the tube at Z,
can cross I', by more than O({); consequently all I" of the tube have their true U not
earlier than N. The value of U (N) for such a I' tells us, in the light of Lemma 28,
just where the true U is2 We observe further that for continuously varying I'V
varies continuously so long as v=0 is not involved, and this does not arise in what
follows (all ¥ concerned being >V*—-24*>V, +L).

The final upshot is as follows. There are segments g,, ¢,, g, (disjunct) of @, @,
The “saub-tube” thronugh g, arrives, after a long descent, at N and ‘“‘goes through the
G, there”. Similarly for g, and g,:G, and G, are at N+ 2x. The streams ‘‘through”
G,, G, are similar in all respects (except for inversion) to the original one ‘‘through”
&', and the process repeats.> The stream ‘“‘through” @, consists of “normal” I' (not
near a V-gap); it arrives, after a long ascent, at a new N’, (2n—1)zn beyond

N+2n If AV, AV’ represent differences for the extremes of the G, stream we have

[Lemma 30 (e)], |AV'|>LA V>L&E. Since this is large compared with 248} the G,
stream ‘“‘surrounds” the G’ at N’, and there is a sub-stream “through” the &, and
the process repeats from there.

We have now, as described in § 30 of the Introduction, a I" which passes “through”
all the G and @ [the G,, G, are intermediaries] of any possible “structures” built
from the triple alternatives that occur at successive G or . Given such a structure
there is, in the first instance, after our discussion above, a stream through the @,
G’ of any finite piece —X <#<X of it. The maximum set S (X) of r.p. corresponding
to I' with this property, is bounded, and closed, and shrinks as X->oo; it must

1 We ‘“‘begin” at the “last’” (from I';) through @, and “end” at the “first”’ through Q,.
® For example, if v (N) lies between V*-M+26 and V*—20 the true U is at N + 27, where
V-V (N+2a) =0 (1).

2 The new {e.g.} g; on Zg will not be an ezact inversion of a1
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possess at least one limit-point, which corresponds to a I' through the structure from

— oo to oo,

§ 70. It remains finally to show that where the structure is periodic, there is
a strictly periodic I' with the structure. This calls for a topological argument.

We may start the ‘“period” at any G or (. Suppose, to fix ideas, that G’ is
followed by @,. We take the Z, associated with the initial @' (6 beyond it); and
we take as representative point coordinates of a I' £=y(Z;)— H, n=y(Z,).

Consider first a continuous stream! from an 8’ through the first G’, and the
g, at Z, explained in § 69. There are Is of the stream through the + and — ends
of G, (and going within’C of the + and — ends of g,, and so of G,), with r.p.’s
P,, P_, say. Take now the rectangle N (see fig. 12) in the (&, 5) plane bounded
by §=£&(P.)=£., and 5= -_|-L3Ic’l. By (6) of the proof of Lemma 30 [“w(Z,)>
LE'|AV|’] the T of the stream with V =V"* has a £=§&, such that (§,— &,)/(&- — &)
lies between L’s (it is actually nearly 1), and the & of a I' of the stream for which
V>V*+36% is at least distant L (& —&,) from &_. By Lemma 35 (i), the ' be-
longing to N on the ordinate through such a & have V’s differing from the one of
the stream by o(l). These I”s have V> V*+ ¢* and miss all subsequent @, G’. Hence
we have a vertical dotted line at least L, (X Y) to the right of XZ, to the left of
which the I”s all miss all G, G’; and there is a similar region on the right.

We now abandon the stream we started with, and consider the open set X of
all points of N representing I' that go strictly through &,, the @ and G of the
period of the structure, and finally through the G, at G, 4 p, where p=2m=n is the
period. By what we have just said, it lies between the dotted lines. Since a I' through
an end of a G, G’ misses the later ones, the boundary of Z consists of

(1) a set of intervals, like HR, on XY and Z W, taken open;

(ii) a closed set B, of r.p. of I' that go through the + end of ¢, + p, having
gone strictly through earlier G, G’; and

(iii) a corresponding set B_.2

The set of I' corresponding to any path in R from P, to P_ must have a
member through the - end, and one through the — end, of G, +p. There must
therefore be at least one continuum, like H KJ, extending from XY to ZW, con-

sisting of B, points, and a similar one for B_; and there must be a consecutive

1 This is used for some construction, and later discarded.
2 B; and B_ are not necessarily composed of continuous curves, but this does not affect our
argument,
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pair, with opposite signs, as HKJ, M N, part boundary of a domain A contained
in f; A is shaded in the figure. The boundary of A may further have pieces which
are continua of B, or B. points, like RST, UV. We show next that A is simply-
eonnected. Suppose that this is not so. Then there is a simple closed curve C in A
containing points of the frontier of A in its interior as well as its exterior domain.
Let E be a component of the frontier of A in the interior domain of C. It consists
entirely of B, points or entirely of B_ points, B, points, say. Then there is a closed
connected set E+I(E) of points not belonging to A consisting of ¥ and possibly
one or more domains whose frontiers belong to K. It will be sufficient to prove that
there is a continuum Z, of B, points such that B, meets ¥ and is not contained
in E+1(E). Points of E, and E belong to the frontier of A and are connected in
the frontier and so £ is not a component of the frontier and we have a contra-
diction.

Now the I' corresponding to a B, point of B+ I(E) goes strictly through the
+ end of G,+p, ie. its V at G,+p is V*+26, having gone strictly through the
earlier G, G’. The values of ¢ at (/| + p for all the B, points of E + I (E) have a least upper
bound 7. If 7 is small enough and 7<t<t7+ 1t there will be a [' with r.p. inside C
going strictly through the earlier gaps and arriving at @+ p at time ¢ with V=V*+2¢
{(reverse the I' with the appropriate ¢, § derived from ¢, V). The r.p. is a B, point,
and by (iii) is exterior to E 4 I (K); the range (z, v+ 1) provides an enlargement of

E+1(E) by a continuum E, containing exterior B, points, as desired. I" is accord-
ingly simple-connected.
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The transformation T from P, (&, %), to P, (&, '), where &=y (Z,+p)—H,
n' =9 (Z;+p), is topological in A. We shall show that there is a fixed point of T
in A, which then corresponds to the desired periodic I'. Suppose there is no fixed

point of 7 in A. Then a continuous vector, or arrow, P—P’, exists for all points

P of A. Now the disposition of the arrows at boundary points of A is a follows.
If P is a B, point, TP (considered as a point of N at Z,) corresponds to a I through
the + end of (the first) Gy; further since I' is in 8* (Z,+ p) [Lemma 34], it has arrived
at G, from an S*. By Lemma 35 (i) its r.p. is distant O () from P,. The arrow from
such a P points nearly at P,. Similarly for B_ points. A boundary point on XY
corresponds to a I' through all the G, G’; hence its |y (Z;+p)|<Lik =19, by
Lemma 34. TP has accordingly |7]|<7,, and the arrow from such a P has a down-

ward component. Similarly one from a boundary point on Z W has an upward one.

It follows from these facts, and the continuity of the arrow in Z, alone, that when
P describes a simple closed contour whose maximum distance from the boundary
of A is small, the arrow rotates either through +2zx or —2x (which it is depends
on the disposition of the signs on the two continua joining XY, Z W, and the sense

of description). This is incompatible with there being no fixed point in A.

ERRATA

CORRECTIONS TO THE PAPER: “On non-linear differential equations of the second
order. III. The equation §—k(1 —y*)y+y=>buk cos (ut+a) for large k, and its gener-
alizations” BY J. E. LITTLEWOOD:

Page 277, line 11 Read O(A(d)k™") for O(A(d,d') k™)
286, line 16 should read

v
V'+V=—@¢-2bk- [ydt, (1)
U

299, Fig. 5 (V*+ M) should be higher.



