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w t .  We  enter  now on our  complete  account  of the  more  general  equa t ion  

ij+kit(y)~+g(y)=bkp(q~), ~ = t + ~ .  

The  funct ions  i t, g, p are fixed, b is non-negat ive ,  and  k is large and  posit ive.  We 

proceed to  s ta te  the  long list of assumpt ions  abou t  it, g, p. I t  m a y  help  towards  easier 

reading  to  imagine  t h a t  it and  g are polynomials  and  p a t r igonometr ica l  po lynomia l :  

in so fa r  as hypotheses  abou t  the  smoothness  of f, g, p are  concerned our  a rgumen t s  

are not  essential ly different  f rom w h a t  t hey  would then  be, and  the reader  m a y  t rus t  

us to have  t aken  care of the  details.  H e  m a y  similarly t ake  on t rus t  details abou t  

the  cons tants  connected wi th  these funct ions,  and  the  var ious  appeals  to  the  ], g, p 

d ic t ionary  (w 3) t h a t  occur  in the  a rguments .  

p has  cont inuous p" ,  is periodic wi th  per iod normal ized to 2 zt, has mean  value 0, 

and  is skew-symmetr ic ,  i.e. p (z~ + ~ ) =  - p  (~). Any  integral  f p dq~ is periodic;  we define 

Pl (~) be t h a t  one for which the  mean  value is 0. I t  also is skew-symmetr ic .  I t  is 

now an  essential  a s sumpt ion  t h a t  Pl attains its upper (and consequently also its lower) 

bound once only in a period. We normal ize  p to  m a k e  1 the  upper  bound  of Pl, to 

be a t t a ined  a t  ~ g. So Pl (~ zt) = - pl  ( - ~ ze) = l, p ( + ~ 7t) = 0. p '  ( - ~ 7t) is non-negat ive ;  

we suppose it a positive cons tan t  a 2. 

it(y) is even, wi th  cont inuous it". I t  has a single pair  of zeros, normal ized to  

+__ 1; / '  (1) is a positive cons tan t  al ,  and  it has a posi t ive lower bound  in (say) y_>2. 
y 

We define F(y)=f i t (y )dy;  F is odd. We  normal ize  ] to make  F ( - 1 ) ( c e r t a i n l y  
0 

positive) ~. This  will make  ~ the  crit ical value of b, as for  van  der  Pol ' s  equa t ion ;  

the  behaviour  for  b > ~ is crude, and  we suppose for s impl ic i ty  t h a t  0 < b < 2 as before. 

1 -- 573805, Acta mathematica. 98. I m p r i m 6  le 19 n o v e m b r e  1957. 
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We define H,  a cons tan t  > 1 ,  b y  F ( H ) = F ( - I ) = ~ .  1 

The final a s sumpt ions  are  a b o u t  g: we suppose i t  odd, wi th  cont inuous  g". We 

should in a n y  case suppose t h a t  g" has  a posi t ive lower bound.  In  order  to avoid  

cer ta in  complicat ions we suppose g'>_ 1. 2 

w 2. Constants  L are t h roughou t  posi t ive cons tants  depending only  on the  func- 

t ions [, g, p, and  the  cons tan ts  implied in O's are a lways  of t y p e  L. 

Before going on we s ta te  the  essent ial  

L E ~ M A  1. Suppose (as always) that O<_b <_2. Then every trajectory F ultimately 

satisfies 
lYl<_L ', 

where we may  suppose L~' > 20, say. a I f  it satisfies these at t = t o, then it will satisfy 

lyI-<L *, I l<_L*k re, t>_to. 
I /  b > O, F (strictly) crosses y = 0 infinitely often. 

This is p roved  (for still more  general  [, g, p) e l sewhere )  

w 3. I n  the  l ight of L e m m a  1 we define, s l ightly extending  the  na tu ra l  meaning 

of the adject ive,  an " e v e n t u a l "  F to  be one sat isfying I Y l <_ L~, I Y l <_ L~ k a t  the  

(arbi t rary)  origin of  t ime  t = 0. I t  t hen  satisfies I Y [ <_ L*, I Y l <- L* k for t >_ 0. 

We m a y  observe  t h a t  this u l t ima te  behav iour  holds (for a sui table L~ and  L*) 

subjec t  to v e r y  general  condit ions on [, g, p.4 Once g ran ted  this,  i t  is enough for our  

fu r ther  purposes  t h a t  the  more  s t r ingent  condit ions we impose on f, g, p should hold 

in the  res t r ic ted  range  l Y I -< L*. 

We give for  convenience of reference a "d i c t i ona ry"  of f, g, p. 

L EMMA 2. p ( ~ ) s  has continuous p" .  I t  has period 2 rc and mean value O, and 

p (q) + ~z) = - p (q~). Pl (q)), the integral of p with mean value O, has Pl (~ § ~z) = - Pl ((P). 

= 1 and nowhere else, and attains its pl attaius its upper bound, which is 1, at q ~ - - ~ ,  

lower bound - 1  at ~ ~ - -  1~ and nowhere else. 

p( -F~ :~ )=O,  p , (___ l~ )=  ~ a s ,  a z>O;  p l ( •  _ 1 .  (1) 

i In van der Pol's equation this critical height H has the value 2. We choose to normalize the 
critical b to -~ rather than H to 2. 

s Since the period is normalized to 2 :r this is a real restriction on one parameter of the equa- 

tion and may be unnecessary. We could alternatively assume that ]' >0 in 1 <y <H. 

3 Constants with *'s (and with or without suffixes) are permanent (see w 4 below). 

4 See M. L. CARTWRIOHT and J. E. LITTLEWOOD, Ann. o/ Math., 48 (1948). 
5 ~ is the phase, and is of the form t +r162 since the period is 2x~. We work sometimes in ~, 

sometimes in t. We have of course 
p' = d p/dg~ = d p/dt = p. 
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- I  

Fig. 1. Graph of: P (y). 

F o r  ] ~ ] < ~ we have 

Ip(-~+~)l<_Ll~l, (2) 

l + p l  ( -  ~-:~ + yJ) = 1 a2~p~ + 0(y~a ), (3) 

Lye2_< 1 + P l  ( -  ~ r~ + YJ)-< Lv2 ~, (4) 

with corresponding results /or Pl (~ g + v2) = - Pl ( - �89 rc + v2). 

/ is even, with continuous /". g is odd, with continuous g". 

/(+1)--o, ~(T1)= +~, / ' (+1)= +a .  a~>O. (5) 

F ( H ) = F ( -  D -~ H>I .  (6) 

y = l + ~ ;  / ( y ) = a ~ + O ( ~  ~) ([y]_<L*); ~ ( y ) / ~ L  (O<_y<_L*). (7) 

$ ' ( y ) - F ( 1 ) = ~ a ~ y ~  +O(~ 3) (lyl_<L*); 

$ ' ( y ) -  F(1)  >_0 (y_> - H ) ;  (8) 

L~2<_$ ' (y ) -F(1 )<_L~  ~ ( - ~ ( I  + H)<_y<_L*); 

g" is continuous, and 1 <_ g' <_ L*, /or I Y l <- L*. (9) 

(1) is agreed, and (2), (3) follow from (1) and the continuity of p". The second 

inequality in (4) is a trivial corollary of (3); the first, however, depends on the fact 

that  the lower bound P l ( - ~ )  is attained at ~ - - - - - - ~  only. 

The results about  / and F are either agreed, or simple consequences of (5)and 

the continuity of /". (9) is agreed. 

w ~. N o t a t i o n  f o r  u p p e r  b o u n d s .  W e  use L (as we said above) for positive 

constants depending only on the functions /, g, p; and we use A (x, y . . . .  ) for positive 
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constants depending only on these functions and the x, y . . . .  In  the rather rare cases 

when A is used as an index [as log Ak, or /c -A] it means a positive absolute con- 

stant. We use D for constants A (~) depending on a J whose rSle is similar to that  of 

the ~ in the Introduction 1 (w 12). This ~ is to be thought of as "small": it has in the end 

to be less than some definite L; we suppose always, and tacitly, tha t  ~ satisfies any 

inequality J < L called for by the run of the argument. Each L, D, A (), as it occurs 

will in general depend on previously occurring ones; the chain, e.g., of D's  could be 

made one of explicitly defined constants. 

Many L's  and /) 's  do not need identification. Where they need identification 

throughout a single argument we use temporary suffixes, restarting the suffixes again 

at  1 on the next occasion. We sometimes use dashes in the same way (when suffixes 

are too thick on the ground). Where constants need permanent identification we use 

stars (as well as suffixes): thus D~ (w 20) is always the same D. Suffixes to things 

other than constants L, D are used in many distinct senses; we hope that  these 

are sufficiently disparate not to be confused; our notational problems are very dif- 

ficult. 

The upper bounds implied in O's are always L's. 

We have to employ Lemmas with undetermined non-negative or positive con- 

stants d, d'; these are blank cheques, constants chosen in different ways on different 

occasions; when chosen, they may be 0, or L, or D, but are always one of these. 

The assertions of the Lemmas, which involve such things as A (d, d'), k o (d, d'), con- 

sequently involve D's at  worst, when they actually come to be applied. (Indeter- 

minate constants other than d, d' are sometimes used, but only temporarily and with 

ad hoc explanations.) 

The constant b requires some discussion. I t  is always (as explained in w 1) subject 

to 0_< b_<2, and for some results no restriction other than this is necessary. But 

both b = 0 and b = ~ are generally critical, and bounds of various things depend on 

the nearness of b to 0 or ~. Behaviour when b = 0 has considerable interest of its 

own, and our first intention was to introduce a second "5", ~', and a hypothesis 

b ~> J '  in the relevant contexts. By leaving the orders of J and ~' independent we 

should arrive at  results which were at least pointers to the case of small b (the real 

answers probably require such b to be a function of k). The complications of having 

more than one ~, however, proved almost prohibitive, and we adopted the simplifica- 

tion of making all 5 the same. I t  turned out in the end, however, that  even the 

1 See Paper III  Acta Math. Vol. 97 (1957). This paper will be referred to in future as the In- 
troduction. Both papers ~re based on joint work with M. L. CAItTW~IGHT. 
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assumpt ion  b > (~ ( ~ ' =  (~) led to  a ve ry  great  increase of complicat ion;  and our final 

hypothesis  (where the  critical values 0, ~ are relevant)  is b E B, where B is the range 

1-~0_<b < - 2 - ~  - a 10o .  ( 1 )  

We regret  this masking of behaviour  for small b, bu t  it seems the lesser evil. 

W h e n  b E B an A (b) or A (b, ~), if cont inuous in b, as i t  a lways is in practice, 

lies between two L ' s  or D ' s  respectively. 

The dependence of ko=ko(x, y . . . .  ) on constants  (of. In t roduc t ion  w167 5, 9 ) requ i res  

only a s h o r t  explanation,  k 0 (x, y . . . .  ) is a lways an A (x, y . . . .  ) and depends only on 

/, g, p and  the  x, y . . . . .  Where  we have Lemmas containing (unde te rmined)d ' s  the k 0 

na tura l ly  depends on thes d's. The k0's of Theorems generally depend on (~, bu t  never 

on undetermined parameters  (which Theorems never contain). 

A k o in a L e m m a  or Theorem is "suff icient ly large".  I t  has to be continual ly 

re-chosen as the argument, proceeds. Suppose, for example, we have proved X < D 1 k -�89 

where k > k  o. We then  have, e.g., X < k  -~ for k >  k0, where k0= max  (ko, D~), and say 

" X < D l k - i < k  -�89 by  re-choice of k0". I t  would be intolerable to ment ion all the re- 

choices, and, once having directed a t ten t ion  s t rongly to  the  point,  we shall more and  

more f requent ly  suppose taci t ly  t h a t  any  necessary rechoice is being made.  

w 5. We now seriously begin our long and intr icate story, which, after the  

l i terary excursions of the In t roduct ion ,  we shall no t  t ry  to lighten. W h a t  we have 

aimed a t  is to  make  things as easy as m a y  be for a reader who omits the proo/s 

of the  Lemmas  (or merely skims them for the  general idea) and concentrates  on 

their s ta tements  (and of course the connecting explanations).  We have taken  pains 

to  make  the chain of s ta tements  as lucid and efficient as we can. Each  L e m m a  of 

the chain, further,  has almost  always a self-contained proof;  clumsinesses t ha t  happen 

inside these proofs do no t  carry  over outside. P a r t  of the plan is to collect all needed 

results of a similar kind into one Lemma at  a time, and some of the Lemmas  are 

long "dict ionaries" .  

~ 6 .  LEMMA 3. (i) Let 0 _ < b < 2 ,  and let d be a non-negativeand d' a positive 

constant. Then there is a ]co(d, d') such that when k>_ko, the /ollowing properties hold. 

Suppose that an eventual trajectory has a piece X Y Z  lying entirely in y >_ 1 - d  k-�89 

suppose also that (a) X Y has time length at least d', (b) Y Z  contains a point at which 

~__1~ ,  (c) Y Z has time length at least k-�89 log k. Then /or any Q o/ Y Z, 
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I ~ l < A ( d , d ' ) ,  

In  the identity 

l i j l < A ( d , d ' ) k t ,  I i j l < A ( d , d ' ) k ;  

~] = bp (q)) + 0 (A (d, d') k-t); 

~)f=bp(qJ) + O(A (d,d') k - l [ y - l  [-1). 

(1) 

(2) 

(3) 

t 

E _ F ( 1 ) = C  + b ( l  + p l ( q ) ) _ k - l  f g d t _ ~ k  -1 (4) 
0 

we may substitute ~= 0 (A (d, d')) in the stretch Y Z .  

(ii) Let 0 <b <_ 2, and suppose that d is a positive constant, and that k>  k o, where 

k o is a certain k o (d). Then at a Q that has been preceded by a piece o/ an eventual 

trajectory lying in y> 1 +d, and lasting a time k -1 log~k at least, we have 

l Y I < A ( d ) ,  ] ? ) l < A ( d ) ,  I ~ ] l < A ( d ) ;  

with various consequences, e.g. (2) is valid with error term improved to O(A (d) k-l), or 

I Y/-- b p @) I < A1 (d) ]r (5) 

A]l.~ 

y= 1 -dk -~  

F ig .  2. Mr, M2, Ma c o r r e s p o n d  t o  c a s e s  (i), (ii), (iii) r e s p e c t i v e l y .  

We abbrev ia t e  cons tants  A (d, d') to A. 

We begin b y  proving the  result  I~)1 < A in (i). On the  t r a j ec to ry  we have  a lways 

I Y l -< L r  I n  any  piece of the  t r a j ec to ry  of t ime in terval  d'  I~)l cannot  everywhere exceed 

2 L~/d'. Hence  (see fig. 2) there  is an R of X Y wi th  l YR l < LId ' .  Le t  l Yl a t t a in  its 

m a x i m u m  v for R Z a t  M.  We m a y  in wha t  follows suppose t h a t  v is grea ter  t han  

a n y  par t icular  A tha t  arises, since otherwise we have  wha t  we want .  (In par t icular  

we sys temat ica l ly  reject  a l te rnat ives  v < A  as t hey  present  themselves.)  We suppose 

a lways  v > 1. 

We m a y  suppose M not  a t  R (M = R would give wha t  we want) .  B y  the  hypo-  

thesis abou t  Y Z, R Z contains  a point,  S within 2 ~ on one side or the  other  of M, 

for which ~s~-- - ~ ~- Le t  ~VM~ -- 1~ + V2 ' where [~v] _< 2 ~. 
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w 7. We m a y  suppose,  b y  prolonging Y Z  to  the  nex t  intersect ion 1 wi th  the  

line y = l - d k - � 8 9  t h a t  Z lies on this  line (the hypotheses  being sat isf ied a/or t ior i  in 

the  new case). We  have  now to  dist inguish three  cases: 

(i) M identical  wi th  Z (when YM is nega t ive  b y  the  g e o m e t r y  and  YM = --V); 

(if) M is not  Z, y M = - - v ;  

(iii) M is not  Z, YM= +v-  

I n  cases (i) and  (if) ~M = --V. F r o m  the  ~-identi ty,  wri t ing gl for  f g d t ,  we have  

~ls - YM = -- k ( F (Yz) -- F (1)) + k ( F (YM) -- ~ (1)) + b k (Pl (~s) - Pl (~M)) -- [gl] s .  

The  l e f t - h a n d  side is Ys + v _> 0. On the  r ight  the  f irst  t e r m  is non-posi t ive  b y  L e m m a  2 

(8); the  second is not  grea ter  t h a n  L k ~  b y  L e m m a  2 (8); the  four th  is less t h a n  

L since { t s -  tMI ~ 2 z .  We  have,  therefore,  

O<-Lk~2M+ bk(P~ (q~s) - P ~  (q~M)) + L. 

N O W  --  P l  (~0S) -~- P l  (~M) = 1 § P l  ( - -  1:7~ § ~)) ~__ L ~2, 

b y  L e m m a  2 (4). Hence  

by~<_L~eM+ L k  -1 in cases (i) and (if). (1) 

Nex t ,  in ei ther  of the  cases (if), (iii), M is s t r ic t ly  inter ior  to R Z ,  and  conse- 

quent ly  ijM= 0; whence b y  subs t i tu t ion  in the  differential  equat ion  

y M / ( y M ) = b p ( ~ M ) - - g ( y M ) ] ~  -1 i n  cases (if) and  (iii). (2) 

B y  (7) and  (2) of L e m m a  2, and  since ~M = - - ~ : ~ + ~ ,  we have  

V l ~ M { < b L { y J [ §  L k  -~ in cases (if) and (iii). (3) 

I n  case (if) we have  (1) and  (3), and  so also 

v ~ ~ <  b2L 2 ~p2 + L 2 k-2 < LbyJ2 + L k - ~  < L (L~2M+ L k -1) + L k  -1 < L~2M + L k  -~. 

Since we m a y  suppose v~> 2 L1, this gives 

{~M[</k -~, 

and  a /ortiori I~M{ < A k-�89 This last  inequal i ty ,  jus t  p roved  for case (if), is t rue  also 

in case (i) (when ~ M = ~ Z = - d E - � 8 9  I n  ei ther  case we now have  byJ~<A]c -1. 

1 This need not happen immediately. 
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Hence, summing up:  
~ M  = - -  V, 

In cases (i) and (ii) b ~ <  A k  -1, 

I ~ l <  A k  -�89 

(4) 

We continue to take  cases (i) and (ii) together, and now consider the reversed 

motion (r.m.) from M;  if v is its t ime variable we have t=~pM--T. The ~i-identity 

for this r.m. is 

dy 
dv 

v -  k (F  (y) - F (1)) + k (F  (y . )  - F (1)) + 

T 

D 

with y ( 0 ) - - I + ~ M ,  (dy/dv)o=v. We write y = y - l = k - t z ,  v=k-�89 P=P(z)= 

k (F (y) - P (1)), Po = P (Zo)- Then P,  Po >- 0, z 0 = k �89 ~M > -- A. The differential equation 

becomes 
dz 
- - = v +  P - P o + b k p ( - ~ + v 2 } ~  +O(k~)+O(v).  
dx 

Now by (4) and Lemma 2 (2), bkp(-lz~+v2)=O(k~)=O(k�89 and when we sub- 

sti tute from this and for T the last differential equation becomes 

dz 
d-x = v + P - Po + 0 (Ax) + 0 (A x~). (5) 

Let  X=log�89 then X<Llog�89 and (since the r.m. lasts a t ime k-�89 

which corresponds to a range y-1 log k of x, without y reaching L*) (5) has a solution 

in 0_<x<_X tha t  is bounded by  L k�89 

We show next  tha t  either v <  a certain A, as desired, or else dz/dx, initially 

positive, remains positive throughout  O<_x<_X. I f  dz/dx ever vanishes, let it vanish 

[irst at  x = ~ _ < X ;  then in (0,~) z_>z 0 > - A .  Now i f z  o < 0 , t h e n P - P o  > - - P 0  > - A ;  
z 

and if Zo>_0, then P - P o =  f(positive) dz>_O; in either case 
Ze 

dz 
~ x > V - A - A ~ - A ~ 2 > v - A - A X * > v - A - A l o g  (v + 2), 

which is positive a t  x =  ~ (contrary to hypothesis) unless v < A. 

We may  suppose, then, tha t  dz/dx>O and z>_z o in (0, X). In  this range we 

have certainly - 1  < y < L * ,  and so, by  Lemma 2 (8), 

Lz~ < p < Lz ~. 
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I t  follows now t h a t  
{ L z  * - A  (z• 

P - P 0  > L ( z - Z o )  2 (%>0) .  

For  if Zo<0,  then  z o = O ( A ) ,  P o < A ,  and  P - P o > L z 2 - A .  I f  %>_0, then  

(6) 

t ' -  Po= k f /d,__ k f L,7 e,7, 
~M ~M 

by  L e m m a  2 (7), and so 

P - P o  >- L k  (rl 2 - ~ )  = L (z ~ - z~) > L (z - Zo) 2, 

since Z>Zo; and  this completes the  proof of (6). 

F rom (5) and (6) we have in (0, X) for the case z o < 0 

dz  
- - > v - A - A X - A X 2  + L z 2 > v - A - A  log ( v + 2 )  + L z  2, 
dx  

(7) 

and a similar  inequali ty with L ( z -  z0) 2 in place of the  last term for the case z 0 >_ 0. 

Now either v is less t han  a certain A, as desired, or  else (7) gives, in, e.g., the  

c a s e  Z 0 < 0 ,  

d Z > ~ v +  Lz~, 

z f j and  then  log�89 (v + 2) = X = dx <_ < + < 2 = L v- ~- v ~  ' 
0 zo 0 

and v < A. I n  the case z 0 > 0, the a l ternat ive  to  v < A is 

dz  
~ x  > ~ v + L (z - zo) 2, 

and the  rest  is much  as before. 

We have now proved l Yl < A in eases (i) and  (ii). 

w  I t  remains to consider case (iii), in which yM=V: here we have to pay  close 

a t ten t ion  to  signs (of ~a and ~/M). 

We recall the  ident i ty  (2) of w 7 [valid for case (iii)]. 

YM/(YM) = b p (qJM) -- g (YM) k-l" 

This gives, by  L e m m a  2 (7) (whatever the  sign of ~M) 

bp (q)M) < LV~M-~ L k  -1, (1) 

(algebraically, note) and  also 
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V I~MI < Lb ]P(q)M)I A-Lk-1, (2) 

< L b l v ] + L k  -1, (3) 

by  L e m m a  2 (2) (since ~M = -- ~ ~ + v2). 

I n  the  ~-identi ty between M and  S of w 7 we have now for the lef t -hand side 

?]s-?/M the  lower bound - 2 v  in place of the  original 0; the  conelusiom:(il) of w  

consequently modified to 
b~)2 < i~2M+ L v k  -1. (4) 

Combining this with (3) (and using b<L,  v > l )  we have 

v~ ~7~M < Ll  ~ + L v  k -1, 

and  unless v 2< 2 LI,  which we can reject, we have 

v2~2M<Lvk -1, ]~M[ < L ( v k )  -�89 (5) 

We prove next that either v is less than a certain A (which we reject), or else 

~1> 0 /or a time interval k -�89 be]ore M. Suppose the  second al ternat ive false; then  there  

is a s ta t ionary  point  Z, with ?~=0, a t  t ime v < k  -�89 before M, and  we m a y  suppose 

it the nearest  such point  to  M.  The point  5: is in  X M  (since X M  has t ime-length 

a t  least d '>k - �89  hence y ~ > l - d k  -~, -dk-�89 and  so ~ _ _ _ ~ + d 2 k  -1. Con- 

sequent ly  

0 - v = ?~= - ~)M = -- k (F (y~) - F (1)) + k (F (YM) -- F (1)) + b k (Pl (~M -- 3) -- Pl (~M)) + [gl] M 

> - L k ~ l ~ + O + b k ( - ~ p ( q j M ) - L ~ 2 ) + O ,  

b kT p(q)M) > V -  L (k~?~M+ A) + O - b  k L k - I  + O > v -  L v - I -  A,  

by  (5). Unless v is less t han  a certain A, which we reject, this is greater  t han  �89 

and then 

bp (~M) > ~ vk-1 T -~ >-- ~ vk-�89 (6) 

On the other  hand  (1) and (5) give 

bp (q~M) < Lv�89 k-~ + L k  -~ 

which contradicts  (6) unless v < L ,  which we can reject. Then  ~ >  0 for an interval  

k -�89 before M, as stated. 

B y  (5) we now have, for tM--k-�89 <_t <--tM, 

- d k - � 8 9  <~<~M<Lv- �89  k-�89 (7) 



by  (1), 

b y  (5), 

unless v < A. 

THE (]ENERAL EQUATION y + k / (y) ?) -{- g (y) = b k p (~0), ~ = t + a 11 

The  ?)-identity be tween t and  tM gives 

?) = v + k (F (YM) -- F (y) ) + b k (Pl (q~) - Pl (qJM) ) + [gl]~ M 

>_ V + k (F (YM) -- F (y)) + b k (t - tM) p (q~M) -- L k (t - tM) ~ + O. (8) 

We  now dist inguish the  cases (i) r />  0, (ii) ~1 _<0, and  prove  in each case t h a t  

?) > ~v a t  the  poin t  in quest ion (of the  k -�89 interval) ,  or else v < A .  

YM 
I n  (i) y~>_y>_l and  F ( y M ) - : F ( y ) =  f /dy?_O.  

Y 
I n  (ii) ]~l<_dk-�89 and so 

F ( y M ) - - F ( y )  = (F(yM)-- F ( 1 ) ) -  ( F ( y ) - F ( 1 ) ) > - O - L r / ~ ,  

by  L e m m a  2 (8), > - A k -1. 

This last  inequal i ty  is therefore  t rue  in ei ther  case, and  then  (8) gives 

?) > _ _ v - A -  L k .  k-�89 Max (0, bp(gM))--  L + O  

> _ v - A - L k ~ v ] ~ M I ,  

> _ v - A - L y e ,  

~lv~ 

Ignor ing  the  v < A al ternat ives ,  then,  we have  ?)> ~ v th roughou t  the  t ime  in terva l  

k-�89 before M.  Bu t  then  a t  t ime  t M -  k -�89 we have  

*l <- ~IM-- i rk - � 89  <_Lv-~ k-~ - ~ vk-�89 

The  le f t -hand side being a t  least  - d k - � 8 9  this leads to  v < A ,  which is therefore  

established. 

We  t ake  nex t  the  (easier) proof t h a t  l Yl < A k�89 on Y Z .  Le t  X1 be the  point  of 

X Y of t ime ha l fway between tx and  tr. We have  I?)] < AI  (say) o n  X1Z (by the  ?) 

result).  Then  we cannot  have  1?~[>2hl / ( -~d ' )  on the  whole of X 1 Y  (or ? )wou ld  

somewhere  exceed A1) ; there  is therefore  a po in t  R of X I Y  a t  which I~al_<A. L e t  

the  m a x i m u m  of I?Jl for R Z occur a t  M.  We m a y  suppose M not  a t  R, which would 

give wha t  we want .  This t ime  we dist inguish two cases: 

(~) [~/M[_<dk -�89 (this includes the  case M = Z ) ,  

(fl) ~]M>dk -�89 

I n  ease (~) we use the  fact  t h a t  there  is an  S of R Z ,  within 2 ~  on one side 

or  the  o ther  of M,  with ~ s ~ - ~ g ,  and  then,  by  the  ?)-identity, 
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b k (1 + Pl (~M)) = b k (Pl (qM) -- Pl (qs)) 

= ?)M-- ?)S + k (F (YM) -- $' (1))  -- k ( F  (Ys) -- F (1))  + [~l]S M 

<_A + A + L k ~ M - O +  27eL<A.  

By Lemma 2 (2) the left-hand side is at  least bkLv22, where ~M ~ - 1 ~ + v 2 ,  

1~01_<2~; hence b ~ < A k  -1, and 

b lp(q~M) l < b L l ~l < L(by~2)�89 < h k -�89 

Since ]/(YM)I < L lrl~l < i k -t, 

we have ~M=l--k/~-g+bkplM<_lcAk-�89189189 

which proves what  we want.  

In  case (fl) M is strictly interior to R Z; consequently ym= 0, or 

0 = - -  k iyM ] (YM) -- k / '  (YM) ~)~M -- 9' (YM) YI~ + b k p" (qM). 

Since ]/(yM)]>LI~M[>Ak-�89 by Lemma 2 (7), 

[ {]M I <- A k�89 I - ]' (YM) ~l~ -- k-1 g, (y~) ~JM + b p' (~fM) l 

< A k  � 8 9  �89 

which completes the proof tha t  I Y I < A k �89 for Y Z. 

The proof of l Y] < A k is much like tha t  of the ~ result, but  simpler, since the 

term bkp" is crudely O(k). We differentiate once more and use y~V=0 in one half 

of the argument  (as for ~)): it is this tha t  requires us to assume the existence of 

continuous second derivatives of /, g, p.X 

We have now established (1) of the Lemma:  (2) and (4) are immediate conse- 

quences. For (3) we have 

1~] = b p ' -  g'y]c -1 - / ' y ~  - y k  - 1  = O ( i ) ,  

and so i j=O(A l Y - 1  I-~), and we have only to substitute this in 

? ) / - b p =  - g k - l - ~ ] k  -1. 

This completes the proof of part  (i). 

w 9. In  par t  (ii) let T = log  S k/k, and consider the r.m. from the point concerned 
t 

as t ime origin, over the t ime 0 < t < ~ .  Let  T= f / d t .  Since y>_l+d, we have ] > L d  
0 

(Lemma 2 (7)), T>_tLd. The r.m. is 

1 We need the inequal i ty  for y :  it is no t  a luxury .  



or 

F rom (1) we have  

and so 

ij= k / (y) ~)-g + b kp, ~ 

d 
d-t (Ye-kr) = (b k p - if) e -~r .  

y = k / i j §  ?)2-g" y §  

d 
dt  (?/e-~r) = (/c]' Y2 - g ' Y §  bIcp) e -kr. 

F r o m  (2) 

t t 

~e - ~ -  ~)o = f (b k V -  g) e - ~  dt  = f 0 (k) e - ~  ~ t  
o o 

t 

13 

(1) 

(2) 

(3) 

= o (k) f e - k ~  d t  = o (k) f e -~'L~ d t  = o (d- l ) ,  
o o 

Hence,  ei ther  ~o=O(d-1 ) ,  or else 

I ~ e  k T l > h l y 0 1 > l .  

T h e  last  a l te rna t ive  makes  [?)1 > c x p  (Ld log s k) a t  t ime  T, con t ra ry  to  ?)= 0 (Lk). 

Thus  Yo= O(d-1), as desired. 

For  ?)0 we argue similarly f rom (3), subs t i tu t ing  ~ = O ( L d  -1) on the  right-  

hand  side. For  ~) the  a rgumen t  is similar. 

This  completes  the  proof  of L e m m a  3. 

w t0 .  We t ake  nex t  the  k e y  L e m m a  B of the  In t roduc t ion ,  ( L e m m a  5, below) 

prefacing it  b y  L e m m a  C ( L e m m a  4, below); we res ta te  t h e m  for convenience ( they 

are una l te red  in form, except  for an  addi t ion to L e m m a  B). 

L EMMA 4. Suppose Yl, Y~ are respectively solutions o/ 

~ = O ( y , t ) +  Rl.~, 

where ~P is continuous in (y, t), RI, u continuous and RI> R ~ /or t>_t 0. 

(i) I /  now ?/1 (Q) >- Y2 (to), then Yl > Y~ /or t > t o. 

(ii) The conclusion is true i/ R 1 > R~ /or t >t  o only, provided we know independ- 

ently that Yl > Y2 /or small positive t -  t o. 

For  the  proof  see w 14 of the  In t roduc t ion .  

1 The argument of p involves - t  and a constant, but neither detail affects the reasoning. 
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LEMMA 5. Consider the (Riceati) equation, /or x>_O, 

d z  --=z2-x~+l+~-28x, z ( 0 ) = 0 ,  
dx  

where ~ > _-  1, and fl [urther satis/ies fl < 0 when a = -  1, so that z is posit ive/or small 

positive x. 

There is a .B o = flo (~r such that 

(i) i/  fl>flo [or O>fl>f lo  when r 1 6 2  then z changes sign t o  negative at an 

x=xo(~, fl)>0; 
(ii) i /  f l<flo,  then z-->+ oo at an asymptote x=xo( :c ,  f l ) > 0 ;  

(iii) i /  fl =rio, there is a solution in (0, ~ )  for which z >  0 and 

z = x + flo + F (x,  ~) ,  

where F ( x ,  ~) is continuous in (x ,~)* and F = O ( 1 / x )  as x--->oo. 

Further flo (or and ~'o (~) = :r § fl~ (cr are continuous and (strictly) increasing. 8o (~) 

is large with large positive o:. 

Final ly  8io(a) has the sign o/ ~ (and 80(0 )=  0). 

(iv) I f  8=8o(~) ,  0 < / l < - l + ~ - < l z ,  then d z / d x >  A (l , , l~)>O. 

z is posi t ive for small  posi t ive x, since z' (0) > 0 if ~ > - 1, and  z' (0) = O, z"  (0) = 

- 2 8 > 0  if ~ = - 1 .  

Le t  z = u + x + 8, ? = ~ + 82 (and 70 = ~ + 802) ; the  equa t ion  becomes 

du  2 
~ x = U  + 2 ( x + 8 ) u + ? = u ( u + 2 x + 2 8 ) + ? ,  u ( 0 ) = - 8 .  (1) 

Le t  Cz, Cu be the  curves z = z (x), u = u (x) (both for  x_> 0), de te rmined  by  the  equa-  

t ions and  their  initial  conditions, and  let  Fu be the  hyperbo la  

u ( u +  2 x +  2 f l ) + 7 = O .  

The slope of Cu can vanish  only a t  a point  of Fu. 

For  given ~ > _ -  1 there  are 3 mu tua l l y  exclusive possibili t ies in respect  of fl: 

(A) 2 Cz has a vert ical  a s y m p t o t e  where  z - ->+  co; (B) C~ crosses Ox (from posit ive 

to  negat ive  z) (C) nei ther  (A) nor  (B) happens ;  we say in the  respect ive eases t h a t  

fl 6 (A), (B), (C) (the classes v a r y  with  a). 

1 We include this obvious fact because it is explicitly used later. 
2 Initial of "asymptote". 
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u 

/ 

/ 

(i) 

u 

/ 

/ 

- f l  / 

(ii) 

Fig. 3. (i) r fl > 0. The region du/dx > 0 is shaded. (ii) r fl < 0. The region du/dx > 0 is shaded. 

(Erratum: in Fig. 3 (i) - f l  should be placed between - 2  fl and origo.) 
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i n  the  first place we have by  cont inu i ty :  

The classes (A), (B) are open, and  v a r y  cont inuously with ~, 

and f rom L e m m a  4 we have :  

I f  fiE(A) so does fl'<fl; if fiE(B) so does fl'>fl. 

(2) 

(3) 

Thus (A) and (B), unless one of t hem is null, are infinite open intervals, separa ted  

by  the  complementa ry  (C), which is either a closed interval  or  a single point.  

We aim first a t  proving the  following resul ts :  

(a)+ I f  ~ > 0 ,  a small positive f ie  (A), and  every large positive tiff (B). 

(a)_ If  - 1 < ~ < 0, then  fl = - I ~ 1�89 E (A), and  any  small negat ive fl E (B). 

(b) For  ~=~0, if f i e  (C), then  z>_O, 

z=x+fl+F(x,~), $'=O(1/x), 

and  (C) contains exact ly  one ft. 

(c)+ This fl is large with large positive ~. 

Suppose these results established. F r o m  (a)+, (a)_, (b)+, (c)+ and (2) (continuity) i t  

follows t h a t  a unique continuous fl0 (a) exists for all ~ (including a = 0), t h a t  fl0 (~) E (C), 

t h a t  rio(a) has the sign of ~, and t h a t  rio(s) is large with large posit ive ~. Fur the r  
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(i), (ii), (iii) of the  L e m m a  hold. I t  r ema ins  only to  p rove  (iv) and  t h a t  fl0 (~) and  

a + f l 0  ~ (cr are monotonic  increasing, and  these  we postpone,  going on now to  prove  

(a)+ to  (c)+. We can divide (b) into the  two cases (b)+ and  (b)_ corresponding to  

~ > 0  and ~ < 0 .  

Begin with  the  resul ts  involving ~ > 0 ,  name ly  (a)+, (b)+, (c)+. 

I n  (a)+ and  (b)+ we m a y  suppose ~ > 0 ,  f l > 0 .  So ~ > 0 ,  I ~  is as in fig. 3 ( i ) a n d  

does not  cut  Ou (the equa t ion  with  x = 0  has no real roots).  

C~ 1 s tar ts  a t  P ( 0 , - f l )  wi th  posi t ive slope ~. I f  C~ cuts Ox before cut t ing  F~, 

the  slope cannot  vanish  thereaf ter ,  we have  d u / d x > u 2 + ~  ,, and Ca, and  so also Cz, 

has  a vert ical  a s y m p t o t e  a t  an  x=xo(~,;3); fl belongs to Class (A). 

I f  C~ cuts Fu before cut t ing  O x, the  slope of C~ becomes negat ive  and  remains  

negat ive  thereaf te r ;  u is negat ive  a t  the  crossing, u = - 2  say,  and  subsequent ly  

decreases, so t h a t  l ul___ 2. Nex t ,  we m u s t  have  u <  - ~  (x+f l )  for some large x, since 

the  con t ra ry  inequal i ty  for all large x, combined  with  (1), would imply  

u +  2 x  § 2fl>_~(x § fl) 

du  
and  ~x < - l  lu ] (x + fl) § ~<_ - ~  2 (x + fl) + ~, 

so t h a t  u would go to  - c o  a t  least  as fas t  as - � 8 8  ~, a contradict ion.  Since 

u < - ~ (x § fl) implies z < - ~ (x + fl), this last  is t r ue  for some large x ; consequent ly  

Cz mus t  cross O x a t  a posi t ive x = x  o(~, fl), and  fl belongs to class (B). 

To sum up:  fl belongs to class (A) if Cu cuts Ox before Fu, and  to class (B) 

if i t  cuts Fu before O x. 

For  a small  posi t ive fl, C~, having  slope ~ > cr a t  P,  clearly cuts O x f irs t ;  and  

we have  the  first  pa r t  of (a)+. 

Suppose nex t  t h a t  fl is large and  positive. Then  d z / d x  is large and  negat ive  

for some posit ive x. For  suppose not ,  then  Cz does not  go to - ~ o  for finite x. 

Fur ther ,  by  L e m m a  4, Cz is below the  curve 

d--~=~+l+~, $(0)=0, 
d x  

which has an a s y m p t o t e  a t  x = l : ~ ( l + ~ ) - ~ = c ,  say,  and  satisfies ~<c',  say,  in 

0 _-_~2v.< ~ ( !  ~ I n  the  range  { c _< x ~ ~ c we have,  on the  one hand  z < c', and on the  other ,  

b y  hypothesis ,  d z / d x  > -  K, where K is independent  of fl, and  so z > _ 1  c K. Hence  

at x = l c ,  

1 Cu is an auxiliary curve for proving facts about C z. 
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dZ__<z2 + l + ~ _  2/5.�88 + icK)2 + l +o~_[ /sc, 
dx 

and  as this  is large and  nega t ive  we have  a contradict ion.  

So d z /dx  and  a ]ortiori d u/dx,  is large and  nega t ive  for some posi t ive x. B u t  

for such x Cu m u s t  have  a l ready  crossed Fu (since d u /dx  is posi t ive unt i l  Fu is 

crossed). Cu cannot  have  first  crossed O x, since it  would then  cont inue to move  

upwards .  This establishes the  second half  of (a)+. 

W h e n  /5 is of class (C), z remains  positive. Fur ther ,  Cu cuts ne i ther  Ox nor  F~, 

and  consequent ly  approaches  0 x be tween O x and  the  a sympto t i c  b ranch  of F~; henc 

u = 0 ( l /x ) ,  and  z = x + fl + 0 ( l /x ) .  I f  this  happened  for  two dist inct  /5's, /51 and  

/52>/51, we should have  z2=zl+( /5 , - /51)+O(1/x)>z  1 for large x, whereas  z2<z 1 b y  

L e m m a  4. We  have  accordingly p roved  (b)+. 

T h a t  fl0(~) is large wi th  large posi t ive ~ is ev ident ;  if ~ is large and  /5 is not,  

the  large initial  slope of Cu will t ake  it  across Ox, and /5 will no t  be of class (C). 

This  is (c)+, and  we have  p roved  all the  ~ > 0  results.  

w  We now take  up the  ~ < 0  results,  n ame ly  (a)_, (b)_. I n  (a)_ we have  

~<0,  /5<0. 

W h e n  v = O ,  or / 5 = -  I~1�89 the  u equat ion  is 

d u  g%=u2+2(x+/5)u, u(0)=l/51. 

This is soluble in finite te rms,  and  the  solution has  an  upward  a s y m p t o t e :  this 

proves  (a)_. 

For  small  negat ive  /5 we have  7 < 0 ,  and  Fu is as in fig. 3 (ii). Since d u / d x  

vanishes on and  only on Fu, C~ cer ta in ly  cannot  cross the  lower b ranch  of Fu. Hence  

if C~ crosses O x  (as it  clearly does for a small  nega t ive  /5), u t akes  a nega t ive  

value - ) t  and  thereaf te r  decreases further .  I f  we now had  u > _ - ~  (x +/5) for all large 

x, we should have  

du 
u+2(x+ /5 )>  1 - - <  - ~ ( x + / ~ ) +  7 _~(x+/5), d x -  

for large x, and  u would go to - oo like - �88 ~ x ~ a t  least, t he reby  crossing the  lower 

b ranch  of Fu, which is impossible.  Hence  for some large x u < -  ~ (x +fl) ,  and  so 

z < - ~ ( x + f l ) ,  Cz crosses O x, and /5 belongs to  class (B). (a)_ is now proved.  

Fo r  a fl of class (C) Cu mus t  go to  oo between Ox and the  upper  b ranch  of F~, 

since if i t  crosses the  F~, u would subsequent ly  increase;  for large x we should have  

2 -  573805.  Acta mathematica. 98. I m p r i m 6  le 19 n o v e m b r e  1957. 
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du/dx>u2+xu with  a ve r t i ca l  a symp to t e .  Hence  u=O(1/x), and  the  res t  of t he  

proof  of (b)_ is the  same as for  (b)+. 

I t  r emains  to  p rove  /50 (~) and  y0(~) (s t r ic t ly)  increasing,  and  f ina l ly  (iv). 

Consider  C1, C2, t he  Cz for  (~1, 80 (%)), (~2,/~0 (~2)) respect ive ly ,  and  le t  $ = z 1 - z  v 

W e  have  
~'=P~-2bx+a,  ~ ( 0 ) = 0 ,  P=zl+z 2, 

where a = ~1 - ~2, b =/~0 (0~1) - -  80 ((X2)' a n d  th is  gives  

X X 

~=ee'f (-2bx+a)e-Pidx, Pl= f Pdx. 
0 0 

As x - > o o ,  P=2x+O(1), Pl=x~+O(x). 
If  now % > ~  a n d  so a > 0 ,  ~ will t e n d  to  oo l ike  e e' unless  b > 0 .  Since 

~ = O ( 1 ) ,  b > 0  and  /~0(~) is increasing.  

Next ,  aga in  wi th  ~1 > ~ ,  le t  ~ = z I (x) - z 2 (x +/~1 -/~2) where we write/~1.2 =/~0 (~1, ~), 

71 ,  2 = 7 0  ((Xl, 2)" W e  f ind 

~'=P~1+(71-72), P=Zl(X)+Z2(X+fll-fl2), 
if: 

0 

W e  have  aga in  P = 2 x + 0 (1), P1 = x2 + 0 (x). Also ~ (0) < 0 a n d  we shall  have  7 -+  - oo, 

which is false, unless  7 1 - 7 2 > 0 ;  70(x) is incresing.  

I n  (iv) C~ cannot  cross the  h y p e r b o l a  z 2 - x 2 - 2 80 x + 1 + ~ = 0, since i ts  dz/dx would 

the rea f t e r  be negat ive ,  a n d  dz/dx>O for x>_0; also dz/dx-->l as x-->oo, dz/dx has 
i 

a posi t ive  m i n i m u m  A (a), cont inuous  in a,  and  the  des i red  resul ts  follows. 

w 12. " L i n k a g e  of v, co, V a t  'U f o r  a s e t t l e d  t r a j e c t o r y " .  1 This,  in full  de ta i l ,  and  

for genera l  ], g, p, is our  nex t  t ask .  

There  are  in po in t  of fac t  two d i s t inc t  sets  of c i rcumstances  in which we need 

to  e s t ab l i sh  " l i nkage"  a t  U on y = 1 be tween  v and  o~ (and V, which  is a combina t ion  

of v and  co). One, discussed a t  l eng th  in the  In t roduc t ion ,  is the  case of a r r iva l  a t  U 

a f t e r  a " long  descen t "  to  y =  1, wi th  possible  dips.  He re  we es tab l i sh  n o t  on ly  the  

l inkage,  b u t  (from L e m m a  3) also an  upper  b o u n d  for  I wl (one of o rde r  k - t ) .  The  

o the r  becomes i m p o r t a n t  on ly  much  la ter .  I n  this ,  on the  one h a n d  noth ing  is 

assumed a b o u t  the  previous  h i s to ry  of t he  t r a j e c t o r y  ear l ier  t h a n  a t ime  k -�89 log k 

before U; on the  o ther  h a n d  we are  given t h a t  eo is of order/c- �89 W e  give a sepa ra te  

1 Cp. Introduction w 11, 12. 
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Lemma for each case; when we come to proo/s, tiowever, it is natural  to establish 

first the restriction on eo in the first case, after which everything reduces to proving 

the second case (where the co-restriction is a hypothesis). 

In  dealing with linkage, we natural ly  transform our variables v, to (as in the 

Introduction) to parameters  m, fl appropriate for the application of Lemma 5. The 

s ta tement  of the two Lemmas is further complicated by  (i) the necessity of working 

with undetermined d, d'; (ii) the need for a specific error . term in the "linkage". 

We set out first some permanent  notation. F o r  a t rajectory (in the first instance 

otherwise unrestricted) arriving a t  U on y =  1 from above, let 

~t1= _ 1 ~ _ ~ ,  ]o~[~<az; --~lv=v; V = v + b l c ( l + p i ( ' l ~ - t - o ) ) ;  (1} 

and let the change of variables to ~, fl be defined by 

fl=2-�89189 ( - P ( - l g - ~ ~  / (2} 

l+ot=v/v* ,  V*=v*=al�89189 j 

rio(m) is the function of Lemma 5. 

We have now 

1 < <_ 2, and let d be a non.negative, and d ' a  positive constant. LEMMA 6. Let ir 

Suppose that an eventual trajectory F satislies the two /ollowing sets o I conditions (A) 

and (B): 

(A) it ends with a piece W U  (U on y = l )  lying in y>_l and of time-length at least 

k-~ log k. 

(B) W U is preceded by a piece X YW;  the whole o/ X W (and so o/ X U) is in 

y >_ 1 -dk- �89 X Y has time-length at least d'; and Y U contains a point at which 

q~=_ _ i n .  

I /  now /urther k>_ko(d,d'), then we have upper bounds (tot v ,w ,  V ,~ , f l )  as 

/ollows, in which A is an abbreviation /or A (d, d'): 

(a) Io~l<A~-% 
(b) 0_<v< V_<A; 

(e) I~[<i  

(d) 0 _ < I + ~ < A .  

1 We de]ine V* by V* = v*. 



20 z. •. ~vrLEWOOD 

And we have linkage given (in terms o/ ~, fl) by 

(e) fl =rio(a)  + 0 (k-�89 log A k). 1 

We note /or convenience the asymptotic relations 2 (/or k large, eo small) 

(f) 
V =  V * ( l + a + f l o ~ ( ~ ) ) + O ( h k  - t l o g  A b). I 

Finally we have (/or re/erence) 

(g) V* = v*, L < V* < L. 

L~MMA 7. The conclusions o/ Lemma 6, with d absent from k o and A's,  are valid 

(in form s) when (B) is replaced by 

(B') Io~l<_d' k-~. 

We prove first (a) of L e m m a  6. I n  L e m m a  6 L e m m a  3 (4) is valid for Y U, 

so t h a t  for points Y U 

F (y) - F (1) = C + b (1 + Pl (~0)) + 0 (A It-l) .  (3) 

NOW YU contains a point  S where ~0-- - ~ ,  and  so 1 +p(~0)=0; also F ( y s ) - F ( 1 )  >_ 0; 

hence C >  - A / c  - i ,  and taking y =  1, ~0=~0v in (3), we have 

b (1 + Pl (~0v)) < - C + 0 (A k -1) < 0 (A k-l),  

and so from L e m m a  2 (4) 4 
o~ 2 = 0 ( A  k-l), 

as desired. 

w t3 .  Every th ing  now reduces to  proving L e m m a  7; for in L e m m a  6 we have 

proved (a), i.e. condit ion (B') is fulfilled with A (d, d') for d',  and  this leads to  the 

same final results. Our a rguments  are now based on (B') and the  fact  t h a t  the  r .m. 

f rom U does no t  go outside 1 _< y_< L* within a t ime k-  �89 log k. 

I n  the  O-identity for the direct mot ion (d.m.) f rom U, viz. 

t 

= - v - k (F  (y) - F (1)) § b k (p~ (q:) - p, (q)v)) - / g dr, 
t u 

1 W e  do no t  a i m  a t  b e s t  poss ible  powers  of log k in  the  er ror  t e rm,  t he  more  so t h a t  we can  

a b s o r b  a fac to r  A b y  c h a n g i n g  t he  A. 

2 These  are  s t r a i g h t f o r w a r d  c a l c u l a t i o n s  f rom (a) . . . . .  (e), a n d  t he  p rope r t i e s  of t he  func- 

t ions  p, Pl. 

a d '  has  a new m e a n i n g  in  L e m m a  7, and  d does no t  occur.  

4 The  specia l  a s s u m p t i o n  a b o u t  Pl is  i n v o l v e d .  
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we write t =  Tv--T to obtain the r.m. with t ime variable zero a t  U. This gives 

d ~ = ~ +  k (F(y) - ~ ( 1 ) ) -  (Pl ( _ 1  ~ _  ~ _  3 ) -  pl ( - ~ -  ~ ) ) +  (3) bk 0 

=v+ k (F(y)-  F (1)) + blcp ( -~ r -o~ )  ~ -  l b kp' ( - l  ~-o~) ~ + O (k~s) + O(v), 

with y ( 0 ) =  1, or ~ (0)= 0. In  this we write 

~ = y - l = c k - � 8 9  ~;=Tk-�89 

where c, F are given in terms of the fundamental  constants by  

l c T a t =  1 , ~Tac-tba~=l, 
and then write 

~ + 1 = 7 c - l v ,  f l=�89189 -1, 

which yield the values of w 12 for ~, /~. 

The result  of the substitutions is 

dz p , ( _ l ~ _  
dx=l+~+,p(z)  p , (_~:r; )x~-2~x+O(k-~x3)+O(k-~x) ,  

where ~p(z)=~p(z,k)=~,c-lk(F(y)-F(1)). Since w=O(Ak-�89 the coefficient of x 2 is 

- l + 0 ( A k - � 8 9  Thus the r.m. from U, in (z,x) form, is 

dz 
d--~=l+~+~p(z)-x~-2flx+xe(x), z(0) =0 ,  (1) 

where, over the range 0 _ x _ ~ -1 log k, 

(x) = 0 (A k-�89 (1 + x +  x~), (2) 

and /3 = 0 (k~ ~o) = 0 (A). (3) 

�9 The solution z is finite and non-negative in the range, y satisfies 1 _<y_< L*, and 

so, by  Lemma 2 (8), ~o satisfies 

and 

From this state of things 

results of the Lemma.  

We begin by  proving 

(which is (d) of the Lemma).  

~0 = z 2 + 0 (k-  ~ za), (4)  

L1 z2 ~ ~p (z) ~ .L2z 2. (5) 

[and for suitable ko(d , d')] we have to deduce the 

I + ~ < A  (6) 
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For  x_< 1 (and sui table  k e (d, d')) we have  

] - x ~ - 2 f l x + x e ( x ) ] <  I + A + A k - ~  <A1.  

Suppose now t h a t  1 + a > A l + l ;  t hen  f rom (1) 

dz  > l + v 2 (z) > l+ L2z2; 
dx 

by  L e m m a  4 z is above  the  solution of d z / d x  = LszS+ l, which has an  a s y m p t o t e  a t  

x=�89189 This n u m b e r  is less t h a n  1 if l is a suitable chosen L, and  we have  

then  a contradic t ion wi th  "z < oo (0 < x < 1)". Hence  1 + ~ > Ax + 1 implies l < L, and  

this proves  (6). 

For  O < x < ? - l l o g k  (and sui table /co) we have  

[1 + cr  s -  2 f l x + x e  (x)l < A + ?-Slog 2 k + A  log k + A k - � 8 9  log a k < 2 7  -s log s k. 

dz  
Hence  dx = ~ + 2 v~ ?-s log~ k (0 _<_ x _< ? - s  log k), (7) 

where Iv ~ ] _< 1. 

We prove  nex t  t h a t  in the  shor ter  range  0_<x_<~ ? - s  log k 

dz  
d-x < l~ k. (8) 

For  suppose not,  so t h a t  d z / d x = l o g a k  for  the  f irst  t ime  a t  an  x = ~  satisfying 

_ ~ ? log k. Consider now the range f rom ~ to  ~1, where ~1 is e i ther  ? -  1 log k, or else 

t h a t  x > ~  a t  which first  d z / d x = O ,  whichever  is least. I n  (~, ~l) Z is non-decreasing 

a n d  so  

d~>_ ~ -  2 ?-2  logs k >_ L~ - 2 ? log s k >_ L s z ~ (~) - 2 log s k = (L jL~)  (L lz  2 (~) - L log s k) > 0, ? -2  Z s ~ 2 

since LlZS(~)>~;0(~) = ~ -  2 0 ? - S l o g S k  =log3k-2vqe?-21ogSk>~logak .  (9) 

Hence  the  a l te rna t ive  d z / d x = O  does not  happen  first ,  so t h a t  ~ 1 = ?  -s  log k. Thus  in 

(~, ? - t  log k )  

z > z ( ~ ) >  Llog  ~l' k, 

d ~ > L  s - 2 ? - S l o g S k  Z s > 1 L - - ~ . ~ S  z-* ~ 

lo~ [ dz  L 
~ ] o g k < _ l o g k - ~ =  j d x <  t ~ < - - < l  

J ~Lsz z(~) 
z (D 

by  (9). This being false, we have  es tabl ished (8). 
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For the  range 0 < x_< �89 ~ - 1  log ]~ w e  n o w  have I z I < t 7 -1 l~ 4 k, by  (8); also 

[el(X)l<Ak-�89 by  (2). F rom these and  (1), (4) the  z, x equat ion  now becomes 

dz  
d ~ = l + ~ q  - 2:2 - -  X2 - -  2 / ~  X- l -  Z 81 (X) ,  Z ( 0 )  = 0 ,  

[ e 1 (x) I < A k -  t log  12 k < k -  �89 log  A k.  

Let  0 = f l -  fl0 (~), let ~ = ~ (x, ~) be the solution in 0_< X ~ �89 7 -1 log k of 

d$  ~z 
d ~ = l + c r  -- x~-- 2 flo (:r x, ~(0) = 0 ,  

and let u = z - ~ .  We shall  prove t h a t  ]0]_<2 k-�89 logA'k, the reby  establishing the  re- 

maining result  (e) of the  Lemma.  Suppose tha t ,  on the  contrary ,  101> 2 k - t  log A' k, 
and suppose first t ha t  0 is positive. Then  2 0 -  el (x )>  0. Now u satisfies 

du  
d-x = u (~ + z) - (2 O--e 1 (x)) x, u (0) = O, 

and by  Lemma  4 u< w, where 

dw d-~=w(r +z)-Ox, w(0)-=0, 

X X X 

and so w=-Oexp(f(r fxexp(-f(r (10) 
0 o 0 

Now, by  Lemma  5 (iii), I $ - x l = l f l 0 ( a ) + F ( x , a ) l  < A ,  since - I < ~ < A ,  and 

by  (8) we have 0 <  z_< x log a k. Hence  

x x x x 

f x e x p  ( - - f  ( : + z ) d x ) d x > y x e x p  ( - f  ( x + i + x l o g 3 k ) d x ) d x  
0 0 0 0 

x 

= f x exp ( -- A x -  ~ (1 + log S k) x 2) dx 
0 

> A  log -S k (11) 

for x =  1 and  therefore for  x >  1. So for x > l  we have from (10) 

]w[=  --w>O exp ( f ~  d x ) . A l o g - 3  k, 
0 

]w] _> (2 k -�89 log a' k). exp ( ix  ~, _ Ax) -  A log -3 k (1 < x < ~ ~- t-1 log k). (12) 
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On the other hand, 

I w l  = - w _ <  - u =  < x + A + x  log  a k. (13) 

(12) and (13) are incompatible (for a suitable k0) when x = �89 7-1 log k, and the assumed 

inequality for 0 is false. 

In the case of negative 0, assuming 0 < - 2  k -�89 loga'k, we have w non-negative, 

u>~w, and so w _ < z - $ _ < z + l ~ ] ,  and the rest of the argument is the same. 

This completes the proof of Lemma 7 (and Lemma 6). 

w tt~. L ~ M ~ A  8. ("Dip or shoot-through at a U".) Let ~ < _ b < 2 .  Let the piece 

W U o/ F satis/y the conditions (A), (B) o/ Lemma 6. Abbreviate constants A (d, d', 6) 

to A. t 

(i) Suppose V-> V* + ~; then /or k-> k o (d, d', ~}) the d.m. /tom U 1 shoots through 

and reaches 2 y = - l ( l + H )  in time at most A k  -�89 Up to this moment we have 

-3 ->  V* > L, and 
-~) = v + k (F ( y ) -  $' (1)) + 0(A) ;  

and /inally the velocity o~ arrival at y =  - ~  (1 + H) satisfies - ? )>  L k. 

(ii) Suppose V ~  V * - ~ ;  then /or k->ko(d,d' ,~),  (a) the d.m. /rom U makes a dip 

o/ depth Ak-�89 at most below y = l ,  emerging at time Ak-�89 at most later. I t  then {b) 

pursues approximately the curve C1, the branch o/ 

F(y)  - F(1)  = b (1 + Pl (~)) 

lying in y_>l, and (c) i/ F has been above y = l - d k  -�89 /or a time 3rl be~ore u it 

arrives at y = 1 again at a time approximately 2 ~ later. 

In either case F satisfies, up to its arrival at U, the hyl0otheses, and therefore 

the conclusions, of Lemma 6. 

The d.m. from U, taking t = 0  at U, is 

- ?) = v + k ( F  (y) - F (1)) - b k (Pl (q~v + t) - p l  (~v))  + g~ 

= ( v + k ( F ( y ) - F ( 1 ) ) ~ - b l c { p ( - ~ - o J ) t + ~ p '  ( -  l r e -m) t2~+O(k ta )+O( t ) .  (1) 

= (v + k ( F  (y) - F (1))}  + 0 (k o~ t) + 0 (k t 2) + 0 (k t a) + O (t). (2) 

1 I n  app l i ca t i ons  A become  D's .  The  b l a n k  cheques  d, d '  a re  s t i l l  i nvo lved ,  v i a  t he  h y p o t h e s e s  

(A), (B). 
W h a t  we do (while  we  a re  a b o u t  it) ,  is  to  fol low t he  shoo t - t h rough  up  to  a p o i n t  a d i s t a n c e  

L below y = - l :  t h i s  is a more  c o n v e n i e n t  p lace  t h a n  y = - 1 for  the  n e x t  s t a r t i n g  po in t .  
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Let  c, ~, ~, 8 be the numbers  and ~(z) the  funct ion of w 13, and write y =  1-ck- �89 

t=~,k-�89 (1) then  gives (with an  e(x) different  f rom t h a t  of w 

d x - l + ~ + ~ ( - ~ ) - x S + 2 8 x + x e ( x ) ,  ~ ( 0 ) = 0 ,  ( (3) 

e (x) = O ( h  k -�89 (1 + x + xS). ] 

( that  is, formally,  (1) of w 13 with - $  for z and - 8  for 8). 

Case (i). V_> V* + d. By  L e m m a  6 (f) we have a + 8~ (cr > L ~, and so, by  L e m m a  5, 

> A (~) and 8o (~) > A1 (5). Since 

18- o( )1 < log a k < (6), 

by  L e m m a  6 (e), we have f l>A ((~). 

Consider now (3) for the range of x after  0 to the  value for which (for the first 
1 1 

time) ~ = 0, or I E I = k~, or x - / c~ ,  whichever happens first. I n  this range 2 fl + e (x) > 0 
_ ! + 3  

and y J ( - ~ ) = ~ 2 + 0 ( k  2 10), and  so 

d S>l+�89 
dx 

By L e m m a  4 $ ~> w, where 

dw 
d - - x = l + ~ + w S - x 2 ,  w ( 0 ) =  0. 

B y  L e m m a  5 w>_0 and  w has an asympto te  to  + ~ a t  x = x o ( a ) <  A2(5). Hence two 
1 

of the  al ternat ives fail, and ~ reaches the value + k~ before x = A 2 (5) a t  most, which 
1 

corresponds to t = A k-  �89 a t  most ,  and then  - ~ = (c/y) d ~/d x > L ~2 _ A > L kg. Fur ther  

~_>x, since ~ is no t  less, by  L e m m a  4, t h a n  the  solution of 

du 
d-x= l +u 2 - x  2, u ( 0 ) = 0 ,  

which is u=x;  hence d$ /dx> 1 + ~ >  1 throughout, equivalent to -~)> V*. 

Retu rn  now to  (1). We have - ~ > V *  up to  a t ime t l<Ak- -~ ,  and at  t=tl,  
1 1 

y - 1 = - c ki~-~. Consider the range from t = t 1 until either - y = V*, or y = - 1 (1 + H), 

or t - t l = k - ~  , whichever happens  first. I n  this range (2) gives 

( - ~) - {v + k (F  (y) - F (1))} = O (h), (4) 

since w = 0 (Ak-�89 I n  part icular  
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- y > k  ( F ( y ) -  F ( 1 ) ) -  A I >  L~k  (1 _ y ) 2  A1 

b y  L e m m a  2 (8). Fu r the r  - # > V * > 0  and  k ( 1 - y ) 2 > _ k ( 1 - y ) ~ = t = L k  ~, and  so 

- y  > i L2k (1-y)2.  (5) 

1 1 

Now this mot ion,  i/ uninterrupted, makes  y go to  - o o  in t ime O(k-~-~)  with 

- y > V* throughout .  We  infer t h a t  of the  three  a l te rnat ives  it  is y = - -~ (1 + H)  t h a t  

happens  first,  and  in t ime  a t  mos t  ( A + l ) k - � 8 9  a f te r  U, and  then,  by  (5), - # > L k .  

This completes  the  proof of case (i). 

w t5.  Case (ii). V <  V*-(~.  Much of this is parallel  to  case (i). B y  L e m m a  6 (f) 

we have  ~ < - A ( ( ~ ) ,  so tha t ,  by  L e m m a  5, r i 0 ( a ) < - A 1 ( 5 ) ;  also 1fl-flo(~)[<�89 

and  so fl < - ~ A 1 ((~). Consider the  ~, x equat ion  [(3) of w 14] for the  range of x af ter  
1 1 

0 to  the  value for which (for the  first  t ime) ~ = 0 ,  or [ r  or x =  k~, whichever  
_1+__8 

happens  first. I n  this range  2 fl + ~ (x) < 0, and  yJ ( - ~) = ~2 + 0 (k ~ 10), and  so 

d ~ <  1-4- �89162 2. 

B y  L e m m a  4 ~ < w, where 

dw 
T x = l + � 8 9  w(0) = 0 .  

B y  L e m m a  5 (since a < 0) w, init ial ly posit ive,  becomes negat ive  a t  x = A (~) and  is 

bounded  by  an A (~r before this point .  We infer t h a t  obvious a l te rnat ives  fail, and  

t h a t  the  d.m. f rom U'  makes  a dip, as described in (ii). 

i 
w  Let  the  dip emerge a t  U', with yv,=v'>-O. 1 We take  t = 0  a t  U ' , a n d w e  

have  now to discuss the  d.m. f rom U' ,  for  which 

Now for t < k - ~  

9 = v' - k ( F  (y) - F (1)) + b k (pl (~v" + t) - P l  (~gu')) - gl" 

b k (pl (q~u. + t) - p l  (q~v.) ) = b kt p ( - �89 ze + O), 

where 0 = -  ~o+ (q~u,-qpu)+v~t, which is (a) small,  and  (b) grea ter  t han  - c o ,  which 

is posit ive with - f l  ( L e m m a  6). Since p ' ( - - ~ z t )  is positive, 

b k p ( -  ~ze + O ) > _ b k p ( - ~ z t - e o ) = L b  ~ ]fll k�89 Ak�89 

1 The dashes in U', v' are temporary  nota t ion  only, inside the proofs, and  while we are dealing 
wi th  dips. 
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Hence for t < k - i  the d.m. has 

?)>_ - ]C ( F  ( y )  - F (1))+ (A]C �89 - L )  t =  CP ( y ,  t ) .  

Since the  first t e rm in (I) is -]C (L(y-1)3+ 0 (y -1 )a ) ,  the locus ( I )=0  has a branch 

s tar t ing a t  t = 0, y = 1, and  lying above y = 1 for 0 < t_< It-i, and  (I)_> 0 for points  

between this and y = 1. Since ~ >_ 0 for small positive t it clearly follows t h a t  ~ >_ 0 and 

y_>l  so long as t_<]c-i. During this time, and  af terwards until  y next  descends to  

y= 1, F satisfies the conditions of L e m m a  3, with d= A, and  therefore satisfies the 

two relations 
?)/= bp (q~) + 0 (A ]C-�89 (1) 

F-F(I)=C +b(I +p~(~))+O(Ak-~). (2) 

:But f rom time ]C-} to  a suitable~ L~ we have - I ~ § 2 4 7  I, and b p ( ~ ) >  

bL]C-}. The r ight  side of (1) is then  positive (for suitable ]Co); so y remains a t ime 

a t  least L in y_> 1. 

By  taking t=O, y = l  in (2) we see t h a t  C satisfies C=O(bw)+O(A]c-�89 I t  

follows that ,  to  error O(]C-A), F pursues up to  t = 2 ~  the  branch C 1 of 

F - F ( 1 )  = b  (1 + p~ (~)) 

in y_>l ,  as (b) of L e m m a  8 (ii) asserts, and the  error is of the form O(]c-A). 

w t7 .  Final ly we have, in (c), to  deal with the  point  ment ioned in (ii) of w 13 

of the In t roduct ion ,  and  prove t h a t  F does reach y = l  near the  end of C 1, and 

in fact  by  t ime t v .+2~ at  latest.  Suppose this false, and  (with the  nota t ion  of 

Lemma 6) let Yl = Y (t), y~ = y (t + 2 ~r), w = y~ - Yl, and consider the range R, "r < t <_ tv., 

where z=tu . -k- �89  We are to  show t h a t  y 2 = l  for some t of R. Suppose on 

the  cont ra ry  tha t  y~> 1 in R. 

Now the  ?~-identities for yl.2 are of the  forms 

~)= - k F ( y ) +  Rl,~ (1) 

~ + 2 g  t + 2 ~  

where, since f p d t = 0 ,  we have R 2 - R  I = -  f g d t ,  
t t 

and so R~ - R~ < - L, (2) 

since Yl, Y~ > l - d k -  �89 in ~ .  I t  follows, by  L e m m a  4, t h a t  w < 0 ,  and  so y ~ < l ,  at  

$ = tu,, provided w < 0 at  some point  of ~.  I f  the  desired result  is false, then, we mus t  

1 e.g. an L 1 such the/t -�89 ~t + L l is halfway between -�89 ~ and the next zero of p (~). 
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have both  y~ > 1 and Y2-Yl  = w > 0 th roughou t  ~ :  we proceed to  show t h a t  these 

hypotheses  lead to  a contradict ion.  1 

Let  ~ '  be the middle th i rd  of ~.  I n  ~ '  (and indeed in ~)  the  results of 

L e m m a  3 (i), and  in par t icular  its (2), are valid for y1.9 So we have in ~ '  

- - Y l  / (Yl )  = --  b p  (~) + 0 (A k-�89 
and in this we have 

~0- ( - � 8 9  - ~ k - � 8 9  log k +  O ( A k - � 8 9  - L k - � 8 9  log k,  

and  so - b p ( q J ) > L k - � 8 9  Since l !~ l l<A,  by  (l) of L e m m a  3 

this gives 
/(Yl) > Ak-�89 log k. 

d w  
Now, by  (1), d t  - k X + R 2 - R I < - k X - L ,  

(i), and  Yl > 1, 

(2) 

Yz 

where X = F (Y2) - F (Yl) = f / d y  > w / (Yl) > A w k -�89 log k, 
Yl 

by  (2). So in ~ ' ,  or t l< t_<t2 ,  say, 

d w  
d--t~< - q w - L ,  q =  Ak�89 log k, 

d 
d t  (we~t)  < - L e ~t, 

t 

w < w (t l)  e -q(1- t,) _ L e -q~ f e qt d t  
1, 

< L e -q(~-t ' ) -  L q-1  (1 - e-q(t-tl)). 

This is negat ive for, say, t = t l + k - � 8 9  and gives the desired contradict ion.  

This completes the  proof of L e m m a  8. 

w 18. We consider now a series of successive dips, U 1 U~, U S U~ . . . . .  of which the  

first, U 1 U~, is subject  to  the  hypotheses  of L e m m a  8 (ii). I f  the  depth  of the dip 

U 1 U~ is d 1 k �89 we have d 1 < A. Then  F, taken  up to  U S, satisfies the conditions of 

L e m m a  6 with Max (d, dl )  for new d and the same d' as before. Hence,  with obvious 

notat ion,  v2, m~, V~ satisfy the bounding and linkage relations (a) to (g) of L e m m a  6, 

with the new d, d ' .  

1 The remainder of the argument is different from the one in the Introduction, because we are 
making weaker assumptions. 

2 The hypotheses of Lemma 8, of Lemma 6 and of Lemma 3 (i), are effectively the same. 
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F u r t h e r ,  U 1 U 2 is t he  curve C1, to  error  0 (/c-A). Now the  ~ - iden t i t y  be tween  U 1 

a n d  U 2 can  be wr i t t en  in t he  form 
Ua 

V 2 - V 1 = f g d t, 
Ul 

and  we have  in consequence 

V g -  V I = M  +O(k-A),  (1) 

where  M =  f g ( Y )  dt, a n d  y =  Y(t) is the  equa t ion  of t he  curve C 1. M is an  A(b) 

(depending on ly  on b and  the  f ixed funct ions)  and  lies be tween  two  L ' s .  

There  are  now th ree  a l t e rna t ives  concerning V2; (i) V 2 >_ V*+  (~, (ii) V 2 _< V*-(~ ,  

(iii) V* - 5 < V 2 < V* + ~ ; the  f i rs t  two cor respond  to  (i) a n d  (ii) of L e m m a  8, the  t h i r d  

we descr ibe  as  t he  " g a p "  case. I n  (i) the re  is a shoo t - th rough  as  in  L e m m a  8 (1); 

in (ii) t he re  is ano the r  d ip  U s U '  3, of d e p t h  d 2 k -  �89 < A k -  �89 fol lowed b y  U '  2 U3, approx i -  

m a t e l y  a per iod  l eng th  of t he  curve  C 1, as in L e m m a  8 (ii). A n d  so on. I f  k 0 is 

successively rechosen in  the  obvious  w a y  we shall  a r r ive  a t  a f inal  Un= U, with  

n<_I+[ (V*+(~) / (M-Lk -A) ] ,  and  e i ther  wi th  a V ( =  Vn) in the  gap  V*___D, or else 

a V >_ V* + 5 and  a shoot - th rough .  W e  have  n < L, and  the  f inal  k o is a k o (L, d, d', ~), 

where  d, d '  a re  the  p a r a m e t e r s  condi t ioning  I ~ a t  the  s t a r t .  F ina l ly ,  L e m m a  6 is va l id  

(with new d, d '  of t y p e  A) for  t he  s t re tch  ending in U, and  L e m m a  3 (i) is s imi l a r ly  

va l id  and  up  to  U. 

w 19. W e  cont inue these  add i t ions  to  L e m m a  8 by  pursu ing  the  shoo t - th rough  

of w 14 a s tage  fur ther .  W e  assume the  (minimum) hypo theses  of L e m m a  8 (i) [namely  

those  of L e m m a  6, toge the r  wi th  V > V* + ~]. As  we have  seen, ~0v = - -~ 7~-  ~o, where  

r  1 a n d  I ~ arr ives ,  a t  K ' ,  say,  2 on y = - ~ ( I + H ) ,  wi th  ? ) < - L k ,  a n d  in 

t ime  v = 0 ( A k - � 8 9  af te r  U. We proceed to  show t h a t  ~ vanishes ,  wi th in  t ime  A/c -'~ 

a f te r  U, a t  an  i nve r t ed  ve r t ex  ~z, for which 

] y z . +H]<Aak  -1, ] ~ 0 z , + l ~ ] < A , k  -~. (1) 

Consider  F b e y o n d  K' up to t he  t ime  when f irst  ~ -  0. The  d i f ferent ia l  equa t ion  

can be wr i t t en  
d 
d--t (?) ekt') = eks' (b k p - g), 

where  /x = f / d t .  I f  we t a k e  t = 0  a t  K '  th is  gives 

1 We retain the notation A for A (d, d', 5). 
The dash attached to K, and ~ below, is there to conform with what is later systematic 

notation. 
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t t 

 0e-kr, = e < bk f pe ' at- e g eke, at 
0 0 

t t t 

= b k p ( t ) f e - k E d ~  - f g ( ~ ) e - k S d ~ - b l c f ( p ( t ) - p ( v ) ) e - k S d T ,  (2) 
0 0 0 

t 

where E = f / ( y ) d T : .  Since y < - 1 - L  throughout we have ] ~ L  and e - k E ~ e - L k ( ~ - ~ ;  

also the second and third terms on the right side of (2) are 

t t 

0 0 

Also Yo= O(k). Hence (2) gives 

> - L k e  -Lkt  -t- b p  ( - ~ + ~p) (1 - e - L k t )  - L I e  - 1  ( 3 )  

where y J = ~ + ~ = - e o + ( t - t ~ ) .  Then p ( - ~ + ~ p ) = a ~ y ~ + O ( y ~  2) (for small ~), and the 

right side of (3) is certainly positive if (i) ~o_> k -�89 and (ii) t > k -�89 Since tK, -- tv  < A l~-�89 

accordingly vanishes a t  a t ime after U at  most  AIr189 so tha t  I ~ z , ~ - ~ l < A 2 b - � 8 9  

the second half of (1). 

Further,  by  the y-identity between U and Z' ,  

O= ?)z, = b k ( l  + p l  (qjr) ) - V -  k (F  (yz,) - F (1)) - gl 

= 0 (k (A b-�89 2) + 0 (1) - k (F  (Yr) - F (1)) 

= o ( A )  - k ( F  (Yz') - F ( - H ) ) ,  

so tha t  F ( y z , ) - F ( - H ) = O ( A k - 1 ) ,  and l y r + H l < A k  -1, as desired. 

Incidentally we have a t  any point of U E'  

!l = - k F  (y) + ~- k + 0 (A) = - b (F (y) - F (1)) + 0 (A). (4) 

For convenience of reference we add to this summing up the result (of Lemma 8) 

IYl > V * > L  over U K ' .  (5) 

w 20. We are supposing always tha t  1A~_< b _<-~ - l~-  

When we take d = 0  and d ' = l ,  the numbers ALe of (1) of w become definite 

D's,  A 1 ((~), A~(~), which we may  suppose to increase as 5 decreases. W e  now de/ ine 

(note the change from ~ to 1~) D ~ = M a x ( A I ( ~ )  ' A2(15)). [In the special case of 

van der Pol 's equation D~, with ~ for ~(~, is the D O of the Introduction (w 10).] We 
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are  now in  a pos i t ion  to  p rove  the  k e y - L e m m a  9, and  the  fu r the r  resul t s  in 

L e m m a s  10, 11.1 

W e  deno te  b y  (S) the  set  of in i t i a l  condi t ions  

(S) [~lol<__D~k-i, [yo-H[<D~k -1, I~0-1~l<D~k-*, 
and  we deno te  also b y  S the  class ( " s t r eam")  of F ' s  sa t i s fy ing  (S). There  is a cer ta in  

D~ >_D~ t h a t  we def ine l a t e r  (w W e  deno te  b y  ($1), S 1, etc. ,  t he  condi t ions  a n d  

" s t r e a m "  ob t a ined  b y  rep lac ing  D~ b y  D*. S j  conta ins  S.  

I n  consider ing behav iou r  connec ted  wi th  t he  bounda r i e s  y = + 1 of the  region Z,  

or  l Y[ -<1, we have  so far  h a d  on ly  to  consider  one of t h e m  a t  a t ime,  and  have  

s t anda rd i zed  to  y = l .  A n y  such behav iou r  ha ppe ns  also in " i n v e r t e d "  fo rm:  we 

sys t ema t i ca l l y  use dashes  to  denote  the  i n v e r t e d  form of the  undashed  th ing .  Thus,  

to  a U on y = l ,  wi th  ~ - � 8 9  V =  - ? ) ( U ) + b k ( l + p l ( - l g - r  V * - 6  t he re  

corresponds a U' on y =  - 1 ,  ~ v . ~ z t - w ' ,  V ' = ? ) ( U ' ) + b k ( 1 - p ~  (�89 V*-~ ,  and  

so general ly .  W e  shal l  s t a t e  resu l t s  for one fo rm on ly  a t  a t ime,  t a k i n g  the  oppos i te  

form as unde r s tood ;  b u t  somet imes  the  un inve r t ed ,  somet imes  the  inver ted ,  happens  

to  be t he  more  convenient .  This  use of dashes  among  o thers  should  never  l ead  to  

confusion:  our  p rac t ice  will be t h a t  if a dash  can m e a n  a n  invers ion i t  does (and if 

i t  canno t  i t  does k0(~ ) not) .  

w  L E M M A  9. Provided k>_ko(O), a F o/ S 1 (a /ortiori one o/ S) does not 

reach a certain y = l  + L, a /ortiori does not reach y = l ,  before time L k  at least. After 

possible dips it will arrive at y =  1 at U, where either (i) V is in the gap V* +.~, or 

elee (ii) V>-V*+(~. I n  case (ii), and, more generally, when V>_V*+lO, there is a 

shoot-through UE'  ending at an inverted vertex Z' satisfying the inverted /orms of (S), ~ 

namely 

(S ' )  lY0l(=0)_<DSk-i, [y~)+H[%D~k -~, IV;+~I<D~k-~, 
so that F belongs to an S', and repeats the behaviour just described until, i/ ever, it 

"arrives at a gap" (arrives at y=  +_1 with V or V' in V*-4-_~).a 

L ~ . ~ M A  10. (LinEage at U). For the F el Lemma 9 we de/ine ( repeat ing  some 

ear l ier  def in i t ions  for  convenience of reference) 

x These involve 3 parameters Y0, ?)0, ~~ so that the F are multiply represented. 
2 Not ($1), of course. 
s The argument will show that whatever D, D'  say, is chosen in place of D~, the results of 

the Lemma are valid provided k >_ k 0 (L, ($, D'): strictly speaking we should employ a blank cheque d, 
ultimately chosen to be D~, but this seems hardly necessary. (To introduce D~ before Lemma 9 
would waste space.) 
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1 + ~ = v / V * ,  
Then we have 

V*-8<_ V < L ;  

and the lin]cage 
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- ~ v = v ;  V = v + b ] c ( l + p l ( - ~ z e - c o ) )  

V*=v *=a~�89 a~ b �89 

fl= - 2-�89 a~ a~ ~ b�89 k�89 p ( - � 8 9  

(>_v); 

Ico[ < LIe-�89 L < I + ~ < L ;  

fl = fie (or) -- 0 (It -�89 log A It). 

]/~[<L; 

L]~MM), 11. A F o/ Lemma 9 satis/ies, #om its start up to U, 

[BI<D, [BI<D]C�89 

?)/(y) = b p  (~) + O(D]C-�89 

Over UK'  [K' is on  y = - 1 ( 1 + H ) ]  we have 

- ~ >  V*> L. 
Over U ~' we have 

(1) 

(2) 

(3) 

(4) 

(5) 

(1) 

(2) 

(3) 

?) = - ]C ( F  (y) - F (1)) + 0 (D) = - ]C F (y) - -~ ]C + 0 (D). (4) 

Over an interval o/ time-length 1, say, ending at U we have -?)> L. More ] 

generally, /or an arrival (possibly earlier than U) at y=  1 with v > L 1 we have i (5) 

- ?) > L2 (L1) over the unit interval ending with the arrival, where L 2 depends on Lv l  

w 22.  Proo/ o/ Lemma 9. I n  t he  n o t a t i o n  of L e m m a  3 we t a k e  X a t  t h e  s t a r t ,  

a n d  Y a t  t i m e  t = log s ]C/]C, or  w h e n  y f i rs t  reaches  ~ (1 + H) ,  wh icheve r  h a p p e n s  f irst .  
t 

Over  X Y, wr i t i n g  /1 = f / d r ,  we h a v e  
0 

d 
d~ (-~ekf ' )=ue~:' ,  u = - b ] c p + g .  (1) 

W e  have  

(1) gives  

~0 = .~ ~ + 0 (D It- �89 + 0 (log 2 ]C/]C) = a ~+O(D]C-�89 

p(qJ)=O(D]c�89 u=O(D]C�89 

- ~/= - ~Jo e-~:' + : u (t') e -k(:'(~ dr'. 
0 

The  e x p o n e n t i a l  in  t h e  i n t e g r a l  is < e - r k ( t - v ) ;  hence  

t 

[~)l < DIe-l" 1 + DIe�89 f e -Lk(t-v) dr'< DIe -~. 
0 

(2) 

1 Strictly speaking the L 1 should be a blank cheque: there is actually only one application, in 
w 42, when L 1 is a particular L. 
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This gives y>yo-L t>H-Dk- l -Lk- l logSk>~( l+H) ,  

so t h a t  it is t = log 2 k/It  t h a t  happens first, and  X Y has length log ~ k/k. 
We note  for later use t h a t  over XY we have bo th  (2) and, since p=O(Dk-�89 

9 = 0 (k y) + 0 (k p) + 0 (1) = 0 (D k~). (3) 

Nex t  we have,  for the  whole of F, 
t 

F-F(1)=C+b(l +pl(~))-k-l f gat-f/~ -1, 
0 

in which, on subst i tut ing t =  0, 

C = F (Y0) - F (1) - b (14- Pl (~o)) + Yo/c-l- 

Now F (H) = - ~v (I) = ~, 

F (Y0) = F (H) + 0 (Yo - H) = ~ + 0 (D ]c-1), 

1 + p~ (~0)  = 2 - (Pl (~- ~) - P l  (~o))  = 2 + 0 ((~o - ~ ~ ) )2  = 2 + 0 ( D / ~ - 1 ) ) ,  

and  so C=~-2b+O(Dk-1), and the  equat ion is 

t 

F -  F (1) = (4 - 2  b) + b  (1 -~- pl (~0)) - -  ] ~ - l f  ~ ~t__ y]C-1 _~_ 0 (n ]r (4) 
0 

There is a cons tant  l, an  L, such t h a t  F (1 + l) - F (1) = ~-~. Consider the  s t re tch 

of r f rom X to  the first arrival a t  y = 1 + 1. L e m m a  3 (ii) is valid, with d = l, and we 

have I?~I<L. Subst i tut ing this in (4) and  taking t to  be the t ime of arrival  at  

y = l + l ,  we have 

t 

k -1 f g d t > ( ~ -  2 b) + b (1 + pl  (~)) - L ~  -1 - D k -1 - (F  (1 + l) - F (1)) 
0 

- 1  ] > ~ + 0 - D k  - ~ > ~ ,  

so t h a t  t >LIc. A /ortiori the  s t retch f rom Y to  the  first arrival U 1 has t ime-length 

a t  least L k  ( >  1), and contains points  with ~ - 1 ~ .  I t  follows in the first place t h a t  

L e m m a  3 (i), wi th u 1 for Z and a new Y is valid for X Yup whence l Yl < L  and in 

par t icular  v x < L. By  w 18 we have the arrival  a t  U described in L e m m a  9, with D ' s  

for A's,  and a t  U we have V<VI+(n-1)M+L]c-A<L (since n,M<L), and  so 

~ < L .  

Next ,  for the case V >  V*q-(~, we recall the  results of w about  descent to Z ' :  

the  constants  A1. 2 have now d,d'=O, 1, and  become AI(~), A~(5). For  the extended 

case V >  V*+~(~ (the last pa r t  of L e m m a  9 we have to  consider) we have the 

desired result, abou t  D~ = Max (A 1 (~ 5), A~ (1 ~)). 

3 -  573805.  Acta mathematica. 98. I m p r i m d  le 20 n o v e m b r e  1957. 
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Proof of Lemma 10. We have proved (5), and V, o:<L, and from (5) a < L  im- 

plies f l < L .  This implies, since w is small, 1 Itol<Lk-�89 by the definition (3) of 

and /~ the properties of p(90). There remains of Lemma 10 only l + a > L .  Now 

ot + [3~ (ct) = V /V*  - 1 + 0 (k- �89 log A k) > - L 6, and cr +/~o ~ (cr decreases from 0 as a decreases 

from 0, so that  ~ r  L is possible only for a sma// L, and 1 + ~ > L as desired. 

Proof of Lemma 11. We recall the last sentence of w 18, in whose consequences, 

since the original d, d' are 0 and 1, A's become D's. We have accordingly (from 

Lemma 3 (i)) (1) and (2) of Lemma 11, except for a time log s k /k  at  the beginning. 

For  this stretch the first is included in (2) and (3) above, and the second follows 

from (3). The results (4) and (3) of the  Lemma are respectively (4) of w 19, in which 

A becomes D, and (5) of w 19. 

There remains only (5) of Lemma 11. In  the first place it is enough to prove 

this for time k-�89 log log k before U. For  then we have in the remaining time stretch, 

~ l = y - l > L k - i l o g l o g k ;  Lemma 3 (i) (3) is valid [with D for A(d,d ' )] ,  and so 

?) = b p (~0)/~ + 0 (D ]c -1 ~ - 2 )  

= b p ( q ) / f +  0 (D (log log k) -2) 

> L p  (cp)/(tv- t) - D (log log k) -2, since f < L~ I < L ( t v -  t), 

> L ,  since - ( c p + l z t ) > t o + ( t ~ - t ) > ~ ( t t , - t ) .  

For the stretch k-�89 log log k before U we have for the r.m., in the notation of 

w 12, over a stretch tha t  becomes x <  L log log k, 

d z  P ' ( - ~ r e - ~ 1 8 9 1 8 9  z(0) =0 .  dx - l + a + v / ( z )  p ' ( - ~ r )  

The coefficient of x 2 is - l + O ( D k - � 8 9  and /~=/~0(~)+O(k-�89 log Ak). Also $0=z2+ 

0 (k -�89 z 3) ; and we know that  

dz  
~x<_.L]~)I<L, so that  Izl<_Lx. 

I t  follows that  (over x_<Llog log k) 

dz  
d-x= 1 + ~+ z2- ~ -  23oX+ O(k-A). 

I Because  U is near  t he  curve  Cp L e m m a  6 has  I o~1< A k-�89 b u t  we canno t  use th is  since t h e  
A would  become a D (because the  dips  have  dep ths  0 (D /c - t ) ) .  The  proof  in L c m m a  6 is also dif- 
feren~ (and the re  is a s imilar  one  in t he  In t roduc t ion) .  
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L e t  ~ be t he  so lu t ion  of 

d ~  = 1 + ~ + ~ - x ~ - 2 fl0 x, 
d x  

a n d  z = $ + u, so t h a t  

(0) = 0, 

d - ~ = u ( 2 ~ + u ) + O ( k - A ) ,  u(0)  = 0 .  (1) 

W e  have  u > w, where  

d w  

d x  
--=2~w+O(k-A), w(O) =0, 

so t h a t  w > - L k  -A e ~ '  ~ e - ~ '  dx ,  
0 

W e  have  ~ = x + O ( 1 ) ,  ~ > 0 ,  so t h a t  

- -  w < L ~, - A e A  xs .~ j~  ]r - A eL( log  log k)" < lc-- A .  

(2) 

I t  follows f rom (1) t h a t  

~x>2U~ - L l c - A > 2 w ~ - L k - A >  - L k  -A 

F i n a l l y  L e m m a  5 (iv) gives d ~ / d x > A ( l l ,  l ~ ) = L  , where  12 is a n y  uppe r  b o u n d  l 

of 1 + cr so t h a t  

d z  
- - >  L -  L k  --4, 
d x  

d z  
and  191 >- L=-= > L, as  des i red .  

d x  

w 23. W e  now in t roduce  some p e r m a n e n t  n o t a t i o n  for  i m p o r t a n t  po in t s  (or t ime-  

points)  connec ted  wi th  a t r a j e c t o r y  F ,  which  we suppose  to  s t a r t  in  some 81,1 a n d  

n o t  to  mee t  a gap,  or, more  genera l ly ,  to  have  V, V ' >  V*+I(~  a t  a n y  U or  U '  

concerned,  in  t he  r ange  unde r  cons idera t ion .  

Z ' s  a re  t ime-po in t s  where  ~ - - l z t ,  N ' s  po in t s  ~ where  q ~ r  (a Z" is accord ingly  

an  N a n d  N '  a Z,  b u t  t he  letter, Z or  N ,  cor responds  to  t he  aspec t  we are  empha-  

sizing). I n  a " long  descen t "  Z ' s  cor respond ( v e r y ) a p p r o x i m a t e l y  to  "ve r t i ce s "  or  

m a x i m a  (and  Z " s  in  an  " a s c e n t "  to  " i n v e r t e d  ver t ices") .  E is a real v e r t e x  a f te r  a 

1 T o  be defined in w 2 4  following. 
2 Initials of zenith and nadir. 
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Z0~ ~ 
Q ve  

- '. w . J"  W' U" 

e 
�9 __ K '  ~ _ . . . . . _ . . _ ~ _ _  

V zi 
ZoZ" 

Fig. 4. 

shoot- through.  1 Z 0 is the  first Z after  U',  Zl is the last  Z before U. N ' s  (in a de- 

scent) give approximate  minima, bu t  this is un impor tan t .  The last few waves of a 

descent are near  y = 1, and m a y  meet  it, near the points  ~V concerned:  an  intersec- 

t ion Un, and in part icular  U, is "nea r "  the N (a distance O(Dk -t)  away).  I t  is con- 

venient  to be able to  say  t h a t  U~, or U, is " a t "  t h e n  concerned. VChen two F have 

their U's  near the same N,  we say t h e y  have U's " toge ther  a t  N " ,  or s imply " to-  

gether" .  All this about  Z ' s  and N ' s  happens also, with dashes, in " inver ted"  form. 

An intersection of a shoot - through f rom a U with y = -  1 we call W' and t h a t  

with y = - � 8 9  (1 + H )  we call K'. ~ This allocation of dashes to  W' and  K '  corresponds 

to  t reat ing U to U'  as a "half-cycle"  (a "dashed"  one). Another  impor tan t  k ind of 

half-cycle, however, is Z 1 to Z~. After  L e m m a  9, a F tha t  is "gap-free" ,  or one 

t h a t  always has V, V'> V* + ~  at  U, U', enters a new S 1 (actually an S ) a f t e r  each 

shoot- through,  and  executes successive half-cycles U to  U',  U' to  (the next)  U . . . .  ; 

or again Z 1 to Z~, to Z 1 . . . . .  

We unders tand  by  Z, U, W, K both  points of F, and  also t ime-points  (abscissae). 

We use all the  letters freely as names of times, and speak, e.g., of " the  t ime-range 

Z I - 1  to Z I + I " .  

The y-range l YI-< 1 we call ~.  

I Exceptionally a "start" in an S 1 "at"  Z 0 may (also may not) have a ~ ;  this is never im- 
portant. 

s This notation has occurred by anticipation in w 19. 
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w 2~,. Let  ~= [V*/M] + 1 ( the in teger  2 is a special  A (L, b)). Consider  now a F 

of S f rom i t s  s t a r t  " a t "  Z 0 to  Z2a. B y  L e m m a  3 (ii) we have  ff = O (D), and  conse- 

quen t l y  
?) / (y) = b p - (ff + g)/k = b p + 0 (n  k- ')  ; 

and  in pa r t i cu la r ,  since p(Z)= O, 

[?)(Zm)l < D l k  -1 (1 <m<_2X) .  
I n  t h e  ?)- identi ty 

t 

F (y) = F (Y0) + b (Pl - Pl  (~0)) - k-1 f g dt - (?) - ?)o)/k, 
O 

w e  h a v e  P l  (~%) = P l  (1 g -4- 0 ( D  k -  �89 = 1 + 0 (D k-  1), 

and  F (Y0) -- F (H + O (D k-~)) = F (H) + 0 (D k - l ) .  

A t  Zm we have  p ~ = l ;  so 

I F ( y z m ) - F ( H ) l < D k  -a, 

and  so [ y z m - H l < D z k  -1 ( 1 < m _ < 2 2 ) .  

L e t  now D* = Max (D~, D1, D~, L~), where  L* a is a cer ta in  L def ined  in w 67,1 a n d  

def ine t he  s t r eam S* b y  

(S*) lyo-H[<_D*k -1 , I?)0l_< D* k - i ,  [~%-~l_<n*k-�89 

W e  wri te  F (2tort) for  1 ~ t r a n s l a t e d  a t ime  2m7c forward,  wi th  the  obvious mean ing  

for S ( 2 m ~ )  etc. Then  we see t h a t  S* includes S, the streams S ( 2 m ~ ) ,  r e = l , 2  . . . .  ), 

/rom their starts on, and S ( - 2 m ~ ) ,  m= 1, 2 . . . . .  2 /rom Z o on. 

W e  now r e p e a t  the  ( "expans ion" )  process  above ,  b u t  s t a r t i ng  wi th  S* in place 

of S a n d  D* in place of D*, and  t ak ing  th is  t ime  Z = 2 .  A F of S* sat isf ies,  for  

r e = l ,  2, I?)~ml<Dak -~, l y ~ m - H l < D , k  -~. W e  now t a k e  the  D~ of w to  be 

Max  (D*, D a, D4), and  define $1 (as in L e m m a  9) b y  

(Sx) lyo--Hl<_D~k -1, I?)ol_<DTk-~, I~0-~l_<DTk-~. 

Sx will now conta in  S* and  S * ( - 2  ~) f rom Z 0 on. ~ 

To sum up,  S,  S*, S 1 are  cont inuous  s imply -connec ted  convex  a s t reams  (in respec t  

x This is needed for the topological argument occurring much later. The definition of L.~ in 
w 67 starts from first principles, and can be read now, but it is too long to be incorporated here. 

Also S* (2 ~t) from its start, but we do not need this. 
a These are important properties (even though we do not need their full force). We cannot 

define, e.g., S* as Z S (2 myt), since this sum need not be connected. 
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of their initial conditions). S 1 contains S*, and 8 " ( -  2 ~) f rom Z 0 on. S* contains S 

and S ( + 2 m . , ~ )  for m =  l,  2 . . . . .  f rom their s tarts  or f rom Z 0 on. S* is the mos t  im- 

por tan t  stream, bu t  for some of its properties we need to  call on its slight enlarge- 

ment  $1; the practical  upshot  is t ha t  we shall be concerned with S 1 alone for some 

considerable time. 

After  L e m m a  9, a F of S 1 t h a t  has V_> V*+�89 at  its first U, shoots through,  

and then  becomes a member  of the S a t  the ensuing Z0, so t h a t  we have only an 

S to deal  with after  the  first shoot- through.  (None the less we have to make  a 

prolonged s tudy  of S t )  

t 

w 25. We proceed to develop the properties of a F connected with z =/c f / (y) d t, 
0 

for ul t imate  use in " T - f o r m "  (see the In t roduct ion,  w 18). These are concerned as 

much  with "reversed"  trajectories, or motions (r.m.), as direct  ones (d.m.), and  we 

distinguish the cases throughout .  We begin with an  impor tan t  and ra ther  delicate 

result  about  a shoot- through.  

L ] ~ I M A  12. Suppose a d.m. F o/ S 1, so Jar gap-/ree, has a U' with V'>_ V*+~6,  

(~nd so shoots through upwards,  and suppose the time range tl <_ t <_t 2 is in  U ' K .  Then 

ta 

- ~ l d ~  ~(t~) 
e t, = ~ ~(t~) 

where D < ~ < D. The corresponding ("reversed") result /or the r .m. has ~ y (tl)//y (t2) on 

the right-hand side. 

By L e m m a  8, writing y = - 1 + 7, G (7) = ~ - F (y), we have y > V*, v' > V* > L, and 

v' + k G - D x  < ~ j < v '  + k G +  D r (1) 

Taking t 1 = 0, t 2 = t we have 

t (~) 

_k f /dt= f kdG(y) < f kdg _ 
. ? )  - Max ( V*, v' +/c G - D,)  
0 (Yo) 

(2) 

G(7 ) increases f rom U = 0  to 2, after  which G > L .  Let  ~* be the ~ (near y = - 1 )  

for which k G (7*) =/)1,  so tha t  D < k�89 < D (we need these inequalities later in w 29). 

I f  Yo and y are both  less than  - 1  +~*,  then Y0 and ?) bo th  lie between V* and D, 

and ?)/Y0 lies between two D's .  Also, by  (2), 
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t ~* 

O<_-k [dt<_ V* V * < D '  
0 0 

exp ( - - ~ f l a t )  lies between D's ,  and so exp (-kf/dt)/(,)/,jo) does, as desired. 

Suppose next  t h a t  Yo -< - 1 + ~* < y. Then 

t ~* 

-k / d t _ j ~ - +  v'+~O-Di 
0 0 ~* 

D ~ + I  ~ v'+kG-D1 
= V-~ g v - +  D 1 - D 1 

< D + log (v' + k G - D1) < log (D ?)). 

On the  other  hand  

t 2 -kftat>j kdG v'+kG+D 1 
- v ' + k G + D ~ = l ~  1 

0 t/* 

>log {D(v' + ka  + ~)~)} >_ log (D~). 
t 

t Ienee exp(-kffet)/~ lies between two D's, and combining this with the 
o 

t 

part icular  value t =  0, Y=Yo, we have exp ( - k f l  dt)/(~/r between two D 's  as desired. 
0 

I f  bo th  Yo, Y > -  1 + r  l* we have, on the one hand  (since v ' >  V*), 

and on the  other  

t 

- k  [dt< kdG - l o g  
~, v'+kG-D1 v'+kG(rio)-D 1 

< log v' + k G (~o) - D I '  

f f k d G  v'+kG+D 1 : .  - k  [dt> = l o g  
V' + k G -t- D 1 V' -t-/r G(r]0 ) -b D 1 

(3) 

(4) 
> log v' + k G (~o) + D1 

Finally {v' + k G (~1o) - D1}/{v' + k a (~/o) + D1} increases, with G (To), as ~/o increases f rom 

~* to 2, after  which it is l+O(Dk-1): at  ~* it has the value v'/(v'+2D1)>D. So 
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v' + lcG(~o) - D 1 > D (v' + k G ( ~ o  ) +/)1) > D?)0, (5) 

whence also v' § k G (~0) + D1 < D (v' § k G 0?0) - / ) 1 )  < Dy0. (6) 

I t  follows from (5), (6), (3) and (4) tha t  exp ( -k f /d t ) / (~j /~o)  lies between two D's.  

This completes the proof of the Lemma.  
t 

w  For a F, whether d.m. or r.m., we define v = v ( t ) = k f / d t .  The origin 
0 

t= 0 is here arbi t rary;  this is par t ly  a convenient abbreviation, and all results gen- 

eralize to a range (t0, t) with T--T(t0) for T. Note tha t  a given stretch PQ of a F 

has t = 0 ,  t = t  at  P, Q for a d.m., and a t  Q, P for the r.m., but  the associated v is 

the same in each case. 1 We state results (as always) for one kind of half-cycle only. 

LEMMA 13. Suppose throughout that t>O, and that the range (O,t) belongs to a F 

starting in some S 1 and thereafter having V, V' >_ V* + 10 at all the U, U' concerned. Then 

(a) e-~<Dk (d.m, or r.m.), 
t t 

(b) f e - ~ d t < D k  �89 e - ~ f d d t < D k � 8 9  (each d.m. or r.m.), 
o O 

(c) e -~<e  -L~: i/ t>_l (d.m. or r.m.). 

(d) I /  the range (0, t) is in (d.m.) WU ~ (a ]ortiori i / i t  is in a long descent Z1U), 

t 

T>--D,  f e - * d t < n k  -�89 e -* f e~d t<Dk- i  (each/ord.m. orr.m.). 
o 0 

(e) I /  (O,t) is in the (d.m.) range (W,W§189 

t t 

f e - ~ d t < D k  -1, e -~ fe~d t<Dk -1 
0 0 

(f) I /  (0, t) is in an r.m. W U ' ,  

t 

f e ~ d t < D k  -�89 (r.m.). 
o 

(each/or d.m. or r.m.). 

t 

1 Note  however  t ha t  e.g. the  two ~ e - V d t  are not the  same; thus ,  .f e - r d t  for r .m.  becomes 
t 0 

e - T S  eVdt  for d.m. over  the  same range.  
0 

2 See w 23 for the  definition of W. (i) Where  a pair  of let ters (here W, U or  Z1, U) occur 

together  like th is  i t  is na tu ra l ly  unders tood  t h a t  the  second is the ]irst of its kind af ter  the  first.  

(ii) The r .m.  corresponding e.g, to  the  d.m. W U is called U W ,  b u t  a d.m. U W  would be a different  

"piece"  of F (namely U W ' Z " . . .  Z 1" U" W); we have accordingly to note  in the  t ex t  tha t ,  s t r ict ly 

speaking, W U is a d.m. There is, however,  an  obvious  convent ion  tha t  where no th ing  is said a d.m. 
is in  question. 
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u ,  

Also f e ~-~Wdt < D k  -1 (r.m.). 1 
W 

(g) For t>_k -1 we have the lower bounds 

t 

fe-~dt>Lk -1, e-~fe'dt>Lk -1 (each for d.m. or r.m.). 
0 0 

Proof o/ (a) and (e). W e  begin  wi th  (a) in  t he  special  case t_<l .  Then  F can 

en te r  • a t  mos t  once, and  the  wors t  case is when I ~ is in ~ t h r o u g h o u t  (0, t), since 

T is increas ing  when y is outs ide  ~ .  This case is covered  b y  L e m m a  12, since 

L<I ~ I l<Lk. 
Consider  nex t  (c). 9 This  is t he  same resu l t  for  d .m.  a n d  r .m.,  a n d  we ope ra t e  

wi th  a d .m.  Le t  G be a n y  t ime- in t e rva l  of l eng th  1 (of the  k ind  the  L e m m a  is 

concerned with) .  Now in t he  f i rs t  place (~), a shoo t - th rough ,  U ' E  say,  has  y in- 

creasing and  las ts  on ly  t ime  0(D/c- �89  also EZ~, say,  is above  y = l + L .  W e  show 

nex t  t h a t  (fl), if L 1 is a smal l  enough L, a G con ta ined  in  Z 1 U a is below y =  I + L  I 

dur ing  one t ime- in t e rva l  a t  most ,  of l eng th  smal l  w i th  L 1. Now (i), over  G, P is, to  

er ror  o(1),  p a r t  of a curve F ( y ) = C + b ( l + p l ( c f )  ) which does  no t  go below y = l  

(w moreover  since F ( y )  increases  wi th  y in y > _ l ,  and  because  of the  special  

hypo thes i s  a b o u t  Pl (w 1 and  L e m m a  2), the  l ine y = 1 + L1, for  s u i t a b l y  smal l  L 1 (and 

in  a t ime- in t e rva l  l imi ted  to  1) cuts  th is  curve a t  mos t  twice,  and  t hen  a t  p o i n t s  a 

d i s tance  a p a r t  smal l  wi th  L 1. Nex t ,  (if), b y  L e m m a  3 ( i ) ( 2 ) ,  a t  a n y  crossing of 

y - - l + L  1 b y  F we have  bo th  ]?)[=[bp(c f ) / f+O(Dk- �89  and  ] ~ [ < D .  I t  follows 

t h a t  the  f i rs t  a n d  l a s t  crossings m u s t  be the  only  ones, s ince a n y  o the r  m u s t  be 

wi th in  o(1) of e i ther  the  f i rs t  or  t he  l a s t  (F a n d  the  curve  differ ing b y  o(1)), and  

th is  is i ncompa t ib l e  wi th  (ii). This  es tabl ishes  (fl). 

A l i t t l e  cons idera t ion  of (~) and  (fl) shows t h a t  for any G F is in [y I_<1 + L  1 

for a single i n t e rva l  I a t  most ,  a n d  t h a t  G - I  has t ime-measu re  > L (it  consists  in 

genera l  of two  in terva ls ) .  N o w  T_> 0 excep t  in I ,  a n d  the  i nc remen t  A T over  I sat isf ies 

e-A~<Dk,  b y  the  special  case of (a). I n  G - I  we have  T > L ] ~  and  the  i nc remen t  of 

T over  G - I  is a t  leas t  L k [ G - I [ > L I c .  This es tabl ishes  (e). 

I t  is easy  to  see t h a t  as a resul t  of (c) we m a y  suppose  in al l  the  resul ts  to  

be p roved  t h a t  t _< 1. F o r  example ,  if n < t _< n + 1, we have  

1 This is the special case where t= 0 is W. ff e T dt is very sensitive to the position of t = 0 (and 
0 

we must avoid a fallacious "afort iori") .  
The natural order of the proofs is different from that  of the results. 

3 ~ Z2 and Z 1 U overlap by a length > 1. 
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t m + l  t 

f f f e- 'd t= ~ e -'(m) e-r e-C~-~c~))dt 
m=O 

0 rn n 

n - 1  

0 

t 

where the I ' s  are of the form fe-Tdt  with t ~ l ,  and an upper bound for  the I ' s  
0 

carries over to the left-hand side with an extra  factor L only. Since this argument  

applies both to d.m. and r.m., and since fe-~dt  for d.m. becomes e-~fe 'dt  for r.m. 

and vice versa, we have disposed also of the la t ter  form. In  other results the reduc,  

tion to t ~  1 is trivial (or irrelevant). 

The result (a) has been proved already for t_< 1 and obviously extends, by  (c), 

to the general case. We have, then, proved (a) and (e), and m a y  suppose in what  

follows always tha t  t <  1. 

w 27. Proof of (b). We now provisionally assume (d), postponing its proof, and 

consider (b). In  (b) i t  is enough to prove the first par t  (for both d.m. and r.m.), 

because of the interchange of fe-~dt and e-~fe~dt between d.m. and r.m. (similar 

cases will recur). Next,  we can reduce the proof of this first par t  to the special 

eases when the relevant stretch of d.m. lies respectively in (i) U ' - 1  to U', (ii) U'  W, 

(iii) WU. 1 For, assuming the special cases, and remembering tha t  we need consider 

only one kind of half-cycle, suppose (0, t) overlaps some of (i) to (iii); suppose, e.g., 

it overlaps all three. We have then, for the d.m. case, writing zu. for ~(U'),  etc., 

t U '  W t 

fe-~dt= fe-~dt+e-~,,fe-(~-,~,'dt+e-'U,.e-"w-~')fe-('-'W)cZt. 
0 0 U" W 

The first two integrals on the right belong to the special eases (with t-origins a t  the 

lower limits) and are (by hypothesis) <Dki; and the third, by  (d), is <Dk  -�89 Also 

e-*v'<_l (since ~-->0 in (i)), and e-(*w-'u')<Dk, by (a). So 

t 

f e-*dt <Dk �89 1.Dk�89 + 1 . D k . D k  -�89 <Dk�89 
0 

as desired. 

In  the r.m. case, when the order is O W U't, we have  

t W U" 

fe-~dt=fe-~dt+e-~,fe-('-~w~dt+e-',.e-('u-'~"fe-(" ~')dt. 
0 0 W U 

1 The restriction t_ I ensures that the stretch can have at most one (connected) piece in ~. 
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By hypothesis the first two integrals are 0(Dk�89 and the third is O(Dk -�89 by (d). 
t 

Also e -~w_< 1, and e-(~u'-~w)<Dk by (a). I t  follows that  f e-~dt<Dk ~ as desired. 
0 

Take now the special cases. (i) and (iii) are covered by (d), and it  remains to 
t 

prove fe-~dt<Dk �89 for a range in U'W, and for both d.m. and r.m. Now by Lemma 
0 

12 e -~<Dl~ /~e l ,  D]yo/yl in the two cases. In either case e-~<Dk/L, and (b) fol- 

lows since the range of integration _~ U' W < D k- ~. 

w 28. Proof o] (d). We give next  the postponed proof of (d), with t <  1. We 

have ~ 0  except in dips, which last a time O(Dk -�89 and have depth 0(Dk-�89 ~so 

that  in a dip v = k f > - L k l y - l l  > - D / c  ~. I t  follows (since a unit  time interval 

can overlap at  most one dip) tha t  ~ > -  D. 

The third result is equivalent to the second (with the two parts reversed) and 

we take this (of course for both d.m. and r.m.). Next,  it is enough to prove (both 

d.m. and r.m.) for the special cases when (0, t) lies respectively in (i) WK, (ii) KZ1, 
(iii) Z1ZI, (iv) ZIU. [See Fig. 4, w 23.] This follows by the argument used for (b), 

here" simpler because the factors e -~K, e-~z~ -~K, etc., (for either d.m. or r.m.) are less 
t 

than e-'~<eD=D (by the first part). We have, in fact, fe-~dt<D times (a sum of 
0 

integrals belonging to special cases). We take now the special cases, in each of which 

we mostly consider the d.m. and r.m. together, and are doing so unless the contrary 

is indicated. 
t 

In  case (i) e - ~ l  and t<_IK-WI<LIr -1, so fe-~dt<Lk -1. 
0 

t 

In  case (ii) ~ = k f > L k  and fe-~d$< fe-Lktdt<Lk -1. 
0 0 

In case (iv) we have, writing y=l+~, iT>L for I $ - U I _ < I  (Lemma 11 (5)), and 

so, over ZzU, ~>_LIt-U[, ~>_Lklt-U I. For a d.m., writing t=uk-~, U=uolC-�89 
we have then 

u 

 >-Lkflt-Uldt>-Lf l -nld , 
0 0 

$ oo g 

and so fe-~dt< f e x p  { -L f lu -uo ldu}k- idu<Lk- �89  
0 0 0 

(the last inequality being independent of the value of %);  this is the desired result 

with the stronger L for  D. 
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For an r.m., and so U<O<_t, we have :r>_Lkt, T>_Lkt 2, and 

t oo 

fe-~dt< fe-L~t'dt<Dk-~, 
o o 

as desired. 

Take finally ease (iii) in which once more the argument  applies a t  once to d.m. 

and r.m. Let  N be the t ime nearest t = 0  at  which ~ - - ~ - ~ r e ;  this is in Z1Z~. 1 Over 

ZIZ t we have ] ~ I < D ,  and so, over the range including both (0, t) and N (of length 

a t  most re+ 1) we have 

2"(y)- 2"(1)=b(l + p~ (q~)) + C + O(nk-~). (1) 

At  N we have l + p l = 0  ; also 2' has a minimum at  y = l  and F(y)-2"(1)>.O; hence 

C> - D k  -1. Since F(y)-2"(1)<_L72, (1) now gives ~*> L(l  +pl ) -  Dk -1, or 

72> i l t -  N ] 2 -  D k -1, ( 2 )  

by Lemma 2 (4) [qJ+�89 But  also 7 > - D k  -~, and this combined with (2) 

is easily verified to give 
7 > D ] t - N I - D k - � 8 9  (3) 

Now (for the 7's concerned) />_L17 when 7_>0, />_L~? when 7 < 0 .  So 

t t t 

 =kIl '->Llk : + : 
o (~>_0) (n < O) 

t t 

>-L, k fr ldt+L~k f (-Dk-�89 
0 (~<0) 

t 

> Dk f lt- at- D, 
o 

by (3) and because the range in which 7 < 0  is O(Dk-~). Writing now, as above, 

t=uk  -�89 N = u l k  -�89 we have 

o 

fe-~dt< exp ( - D f l U - U l ] d u - D )  k - � 8 9  -�89 
o o o 

as desired. 

1 I n  t h e  e x t r e m e  c a s e  of  a n  r . m .  w i t h  t = 0 a t  Z 1 w e  t a k e ,  o f  t h e  t w o  e q u i d i s t a n t  N ' s ,  t h e  o n e  

i n  Z 1 Z I. 
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We have now disposed of all the special cases, and so have completed the 

proof of (d). 

w  Proo/ o/ (e), (f) and (g). In (e) the two parts are equivalent, and we 

take the first. In  this we have y > l + L ,  and so ~>Lk ,  except in the range 

(W, W+k-1) ,  in which ~_>0. I t  follows (for d.m. and r.m.) tha t  

Qo k - 1  t 

f e -  Lk t  f e - ~ d t <  _ dr+ f 1 . d t < L k  -1. 
0 0 0 

In  (f) we have, by Lemma 12 (reversed), 

e-=> Dl~)o/#l, 
t U" 

0 0 

where ~0=Yo+l .  If  ~o___2~* defined in the proof of Lemma 12, this is O(DT*/L)< 

D k- -~ ; and if 7o > 2 7" it is 

0 (D 70/{1r (G (70) - G (�89 70))}) = 0 (D 7o/(L k 7~))) 

<Dk-17.-~ <Dk-�89 

We have therefore proved the first part  of (f). For  the second 

as desired. 

and 

u" u" 

<Dk-', 
w W 

In  (g) the two parts are equivalent, and in the first 

k-1 

r < k  f L d t = L  for t<_k -1, 
0 * 

t k - 1  

f e -~d t  >_ f e - L d t > L k  -1. 
0 0 

w 30. LEMMA 14. Let F satis/y the hypotheses o/ Lemma 13, and suppose/urther 
that 0 <_ t <_ 3 ~. Then, /or d.m. or r.m. 

J=fe-~( ' )d7f:(r  = f f  e-~,+~r189 
0 0 O ~ < ~ < t  
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L~MMA 15. There is an L~ with the /ollowing properties. Let F satis/y the hypo- 

theses o/ Lemma 13, and suppose /urther that (0, t) is contained in (W, U1) and that 

t <<_ L~ k. Then 1 /or the d.m. (only) 

L~J=L~ ff e-~,S~r 1. 
O<~<~<_t 

We include here, for later convenience, a result with a special time-origin, and 

an integrand of opposite type, namely exp (vn-~r 

LEMMA 16. Let. F satis/y the hypothesis o/ Lemma 13, and let t = 0  be the special 

point U'. I /  /urther t <_ 3~, then, /or the d.m., 

t 

ff 
O<~<~<t 0 

Proof o/ Lemma 14 /or r.m. We take first the cases in which t = 0 is outside Y., 

and the r.m. F over (0, t) enters or crosses Z downwards (for the standard case WU'). 

), 

Fig. 5. 

We begin with the most  complicated case in which Z is crossed, and write a, fl, 7 

for W, U', t. Then J_<u  1 + u  2 + u  3+ua,  where the ranges of ~ and ~ in the four u 's  

are respectively restricted by  (i) 0 _ < ~ _ < : r  (ii) a_<~_<fl, ~_<fl; (iii) fl_<~_<7, 

_< fl ; (iv) fl_< ~ ~ ~ _< 7" (There is some overlapping, and in (ii) we drop the restric- 

tion $ ~ 7 . )  We have (changing some names of variables of integration2), references 

(a), (b) . . . . .  being to the various parts  of Lemma 13, 

ul= fdt(e-~fe~r f dt(O(Dk-�89 -~-, (1) 
0 0 0 

by (d). 

1 L~ is t he  upper  b o u n d  of g" in [y[_<L* [w 1]. 
2 This cannot  confuse, since the  changes  are  m a d e  only in identi t ies .  
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# # # # 

~z 0 cx 0 

v ~ y # 

# 0 # 0 

The last factors  on the  r ight -hand sides of (2) and  (3) are each 

# a # 
f e'-'=dt=e-'~f e'dv+ f e~-~adt=O(Dk-1)+O(Dk-1)= O(Dk-1), 
0 0 ot 

by  (e) and (f) respectively.  The first factor  on the r ight  in (2) is O(Dk�89 by  (b). 

The first factor  on the r ight  in (3) is O(Dk-�89 by  (d) [applied to the  (opposite 

kind of) half-cycle whose d.m. ends a t  U'],  and  the second factor  is 0 (Dk), by  (a). 

Thus 
u s = 0 (D  k -1 ) 0 (D  k ~) = 0 (D  k- �89 

u a = 0 (Dk -1) 0 (Dk -t) 0 (Dk) = 0 (Dk-~). 

Finally ua= f dt(e-'f e~*d~)= f dt.O(Dk-~)=O(Dk-~), 
# # # 

by  (d) [again for the  half-cycle ending a t  U'].  This completes the proof for the case 

considered. 

The eases when 0 is above y = l  and  t = y  is in or above Y~ are effectively 

part icular  cases of the  foregoing one. u a und  u 4 disappear,  and  the  t r ea tmen t  of u 1 

is as before. I f  there  is a u s i t  becomes 

~=(fe-"-~'d 0 (~-~fe~dt+ f~-~d O. 
ot 0 ~x 

The first factor  is O ( D k  t) b y  (b) as before;  the  first t e rm of the second fac tor  is 

0 ( D k - 1 ) ,  as before;  and  the second one is O(Dk -1) by  the second par t  of (f). 

Take next  the case when t=O is in Z. W h e n  17 crosses y = - l ,  or when y > f l ,  

we have (with overlapping) 
J < u  l +us+u3, 

where the  variables in Ul.e. a are subject  respectively to (i) 0 < ~ < / 5 ,  0_<zl_<fi; 

(ii) 0_~_<f l ,  / ~ < ~ < y ;  (fii) f l_<~<r/_<~. We have by L e m m a  12, reversed for 

r.m., exp ( - T, + ~)  < D ?~ (~)/?) (~). So 

o o 

(since fl < Dk- �89  
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Next  

the first factor is 0 

and so %<Dk-'L 

,,d 0 d 
o # 

31~(#) 
0 

since ] ~ l >  L ;  the second is O(Dk-~), by (d); 

Finally ua< fd~lfe-%-*Pd~< f d r l D k - ~ < D k  -~ 
# # # 

by (d). So J < D k - i ,  as desired. 

When 7 < f l  we have J <_ ff , which is u I of the previous case and accord- 
0_<~_<n_<# 

ingly 0 (Dk-�89 

There remains to be considered only the ease when F has no point in common 

with E and then we have 

3 ~  ~ 3:z 

1< fdr~(e-~,Tfe~ed$)< fd~Dk-'=Dk-~, 
0 0 0 

by (d). This completes the proof of Lemma 14 for r.m. 

w 3 i .  Proo[ of Lemma 14 /or d.m. We begin with the most  complicated case 

when Z is crossed (upwards), and write cr fl, 7 for U', W, t. We have 

f f  e-Tn+~d~d~]<-Ul q-Y,2-t-ua+ua q-us, 
o<~<_~<t 

where in the five u's we have respectively (i) 0 _< s _< ~ _< ~ ; (ii) 0 _< s _< ~, ~ _< ~] _< fl ; 

(iii) or  cr (iv) O < ~ < f l ,  f l<~/ -<7;  (v) f l-<~-<~/<7. 

; 

/ 
0 

Fig.  6. 
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We have 

by  (d). 

N e x t  

at ~1 3 ~  

0 0 0 

0 

The first fac tor  is O(Dk-�89 by  (d). The second, by  L e m m a  12, is 

 inoo 
r 

So u~ <Dk -�89 
I n  % we have exp (-z,+v~)<D~(zl)/y(~), and  so 

f dt<D(fl-e)<Dk-�89 %<D.2  ~ 
ix 

since the  t ime over aft  is 0 (D k-S). 

Next ,  . , =  (f (T 
0 

The first factor  is O ( D k t ) ,  by  (b); the second is O(Dk -1) since y >  1 + L  for t - f l > k  -1 
and so 

.~ fl + k - 1  

f <_ f 1. dr+ e-Lktdt. 

So u~ < D k -t. 

Final ly  us= fd~?fe-~,+T~d~< f d ~ D k - t < D k  -�89 

by  (d). 

Take next  the case when 0 is in •; we m a y  suppose (a /ortiori)that ~ > f l .  

We have J ~ u 1 + u 2 + u s, when in ul. 2. 3 we have respectively (i) 0 <_ ~ _< fl, 0 _< ~ _< fl ; 

(ii) O<~_<fl,  fl<_~<_y; (iii) fl<_~<_rl< Y. 
We have u 3 < D k -�89 as for %. Also (practically as for u 3 of the  last case) 

Ul<D/f ~(~)~*'~)aCa~7<D f dt<Dfl<Dk-~', 
0 0 0 

since y > L. 

4 - -  573805. A c t a  m a t h e m a t i c a .  98. I m p r i m 6  le 20 n o v e m b r e  1957. 
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Finally us: (f e ~ dr)(f  e -~ dO, 
o 

in which the second factor is O(Dk -�89 by (d), and e'___l in the first, so r 

u~=O(Dk-~). 

There remains the case when P in (0, t) has no point in common with N, and then 

t 

0 0 

in which  the bracket is O(Dk -�89 by (d). This completes the proof of Lemma 14 

for a d.m. 

w 32. Proo/ o/ Lemma 15. I f  t = 0 in WZ 1 and the L*~ (of the condition t_< L~ k) 

is chosen small enough, we have y > l + L  except in ( W , W + k - 1 ) ,  during which 

%-v~>_O. So 
k -1  r 

0 0 k - 1  

and L t  J < �89 provided L*~ is small enough. We may  therefore suppose (0, t) is inZ 1 U. 

Let  N1, N 2 . . . . .  N~ be the N ' s  (points with ~ - � 8 9  contained in {0, t), so tha t  

0 < N I <  ... < N , <  U. t The equation of F between Nn and N~+I is 

F (y) - F (1) = b (1 + p,  (~0)) + C~ + 0 (D k-I), (1) 

N n 

C 1 f where (C~- ~-t)=~r j g(y) d t > L k  -1. (2) 

Nn_ 1 

At Nn we have F (y) - F (1) _> 0, l + p l ( ? ) = 0  , so tha t  C n > - D k  -a. By ad jus t ing the  

error term in (1) we may  therefore suppose Cn-> C~_> 0. For n_< v let J(n 1), J(n 2) be 

ff e-~n+'~d ~ dr], 

with integrations over the respective ranges 

(these overlap neighbours with n - 1  and n +  1 respectively). Now 

exp ( - ~ + ~ ) < e  -Lk if r ] - ~ _ > � 8 9  also ffe-'n+'~d~dr]=O(Dk -�89 

* The  N nea r  U is al ter  Z , U  , and  in  the  e x t r e m e  case w h e n  (0, t) e x t e n d s  to  U, Nv is approx i -  
m a t e l y  2 re before U. 
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for a range of ~ of length _ < ~  (and ~_<~?), by  Lemma 14; in particular J~), J~ )=  

0 (Dk -�89 (uniformly in n). By  rejecting appropriate areas of integration with ~ - ~  > �89 

(contributing O(k~e -Lk) to J)  we are left with something less than the sums of the 
J(n 1) and T(2)" 

g ~ ~ (g~) + g~) +O(Dk-�89 ~ (3) 
n = l  

We proceed t o  evaluate J(n 1), J~): they are effectively alike, and it  is enough to 

consider J(~). ] t  follows from (2) and C, ~ 0 that  C, _> ( v -  n) L ]c -1. For  the range 

(N,-~z~,  N ~ + ~ )  we have s for y=l+~  

L ~ ~> F (y) -- F (1)=b (1 +=Pi (T}) + L { v -  n) k- 1 - -  D k- ~ 

> L (t - N . )  2 § L (v - n ) / r  _ D b -1 .  (4)  

Also ~ > - D/c- �89 (5) 

I t  follows from (4) and (5) [cf. w 28 (2)] tha t  

~> L [ t -  NnI+ L(~-n)�89189 -~, 
and consequently 

~>L]t-Nn]§162189 (n<~v-D). (6) 

We proceed to show that  
L k  

J(~) < L/~ -1 log - -  (n <_ v - D1). (7) 

From this (and the corresponding upper bound for j<l)) the result of Lemma 15 will 
y - D  1 

follow. For  we may replaee ~.. in (3) by ~.., and then, after (7), and supposing 
1 1 

t < 2 ~ A k and so v -< A k (where A will be chosen presently), we have for J(~) = ~ j(2), 
n 

,-1 Lk ak L~k+ 
J(e)<L/c-1 ~ log + D k  -�89 < L l k  -~ ~ log D]c -~ 

1 Y - - n  1 n 

A k  

< i l k - 1  f l~ 
0 

<Llk -~{Ak  log ( L ~ k ) - A k  log (Ak)+Ak}+Dl~ -�89 

< L1A (log ( L J A )  + 1) + D k- �89 

< 1 /T . *  ~/- '~1,  

x Incidentally, we have got rid of the odd pieces (0, N1), (N~, t). 
We have momentarily two meanings for ~, but  they are easily distinguishable. 
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provided A is chosen to be a sufficiently small L. I f  then ]~  is chosen sufficiently 

small we shall have, for t_<L~k, 

L* J < L* (jo) + j(2) + D/c-t) < 1 + ~ + D/c-�89 < �89 
as desired. 

Consider then (7), and in J ~  write ~---N,+/C-~'u, 7/=N~+k-~=v, so tha t  

O<_u<v<~-~z .�89 - 2  . . . . .  We have from (6), and / _ > L ( y - 1 )  

vn-  re >_L/C f ( t -  N.) dt + Lk  �89 (v-n) | (~1-~) 

= L f sds + L ( v - n )  �89 
u 

Jv<_ k' If  "dud , 
O<u<v<=l=~k �89 

where E = L ( v n - u  ~) + L ( v - n )  �89 ( v -u )>_L(v -u )  (v§ (v-n)�89 

Performing the u-integration first we have 

L f 1 - e  -Lv(v+(N-n)�89 L f dv 
J(n~)<_~ v+(v_n)�89 d v < ~  v+(v_n)�89 

0 0 

L l o g  [ ( 3 z / 2 ) k l + l  ) L 
= ~  \ (v_n)�89 <~- log - -  

the desired result (7). 

L/C 
V - - ~  

t 

prove f e-~ dt < D, 
0 

w Proo] o/ Lemma 16. I t  is enough to or again the 

3 ~  K 3 ~  K 

worst case f = f + f < D .  In f we have e-~<D~j/y(O)<Dy by Lemma 12, and 
0 0 K O 

K K 

f <_Df,)dt=l)K=v 
0 0 

3~z 3 ~  3~z 

Also f = e -~K f e-(~-~K)dt < Dk f e-Lk(t-~:) dt < D, 
K K K 

by (a), and since z > L k  in (K, 3:~). 

w 34. We now take up the question of the behaviour of two neighbouring I~1. 2, 

more particularly of their "convergence". We suppose always in what follows that  

F1. 2 have started in some Sz and have been gap-free be/ore 1 the moment under 

1 I f  t h e  m o m e n t  is one  of  a n  a r r i v a l  a t  y = • 1 w e  a r e  not  a s s u m i n g  a n y t h i n g  a b o u t  th i s .  
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cons idera t ion ,  w i th  the i r  U1.2 and  U~. ~ " t o g e t h e r "  a t  the  r e l evan t  N and  N', Af te r  

L e m m a  9 F L , be long to  the  S 1 (and indeed  the  S ) a t  the  Z 0 following each c o m m o n  

shoo t - th rough ,  a n d  we m a y  suppose  wi thou t  loss of gene ra l i ty  t h a t  Z 0, and  i ts  neigh- 

bour ing  Z1, a re  t he  ]irst such points .  

W e  set  ou t  some p e r m a n e n t  no ta t ion .  

I f  X is a n u m b e r  assoc ia ted  wi th  a F (e.g. y (t), V, ~o) we deno te  X ( P 2 ) - X ( F 1 )  

b y  A X.  W e  wr i te  w = Y2-  Yl = A y, 

A F  A g  
U = ~ y y ,  ~ W ~ y  (~' sat isf ies  l ~ r _ L ~ ) .  

W e  consider  somet imes  d .m. ,  somet imes  r .m. ,  f rom an  " a r b i t r a r y "  origin t = 0 .  

F o r  either d.m.  or  r .m.  we def ine  1 

t 

T=Ic udt, so t h a t  T ~ k u = k  A - y ;  

0 

t 

a n d  wl = f A gdt = ,I ~w dt. 
o o 

Since ~ lies be tween  L ' s  w 1 can be t h o u g h t  of as a modi f ied  in teg ra l  of w;  i t  is 

e x a c t l y  th is  when  g = y. The  suff ix is used  to  suggest  such an  in tegra t ion .  

W e  def ine  also, each for e i ther  d .m.  or  r .m.,  

w0 = w (0), ~0  = ~ (0), ~o  = ~" (0). 

F o r  d .m.  we define Co=~bo+Towo, for  r .m.  go=~bo-Towo, and  for genera l  t 

c (t) = ~b + T w ,  g(t) = ~b - Tw.  c (t) sat isfies t he  i d e n t i t y  

tt 

c (t~) - c (t l )  - -  - f A g d t = - w l  (t2) + w l  ( h ) ,  (1 )  
tl 

as is eas i ly  ver i f ied.  

F o r  t he  d .m.  and  r .m.  wi th  t he  same or ig in  t = 0 the  w o a n d  To are  the  same,  

the  ~b o equal  a n d  oppos i t e ;  a n d  c0 = -Co  (genera l ly  e ( t ) =  - c ( - t ) ) .  As for T in w167 25-34,  

for  a g iven  s t re tch  of t ime  t a k e n  in oppos i te  d i rec t ion  as (0, t), the  two T are  t he  
t 

same (bu t  e.g. t he  f e - r d t  are  no t  the  same).  
0 

1 This runs parallel to our use of ~ in w167 25-34. 
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The w dif ferent ia l  equa t ion  for  d .m.  has  t h e  two equ iva len t  forms 

(w) 
I ~ =  - T w + e o - W l ,  

d T T 
[~-~(e w)=e ( e o -w z )  

a n d  t h a t  for  an  r .m.  t he  forms I 

(w) 
w=Tw+eo -Wl ,  

d r ~i(e- w)=e-~ (eo-W~). 

w 35. W e  shal l  o f ten  have  to  use ce r ta in  deve lopmen t s  f rom (W), (W) ; we labe l  

t h e m  for reference,  w i th  " b a r r e d "  labels  for r .m.  resul ts .  

t 

For d.m. W=Woe-r +e-T f er (5o--wl)dt (W1) 
0 

W e  genera l ly  normal ize  (by  r enumber ing  I'1, 8 if necessary)  to  w being in i t i a l ly  posi- 

t ive  ; i.e. w o > O, or, if  w 0 = O, t hen  ~b o > O. 

W i t h  normal i zed  w we have,  up  to  t he  n e x t  z in te r sec t ion  (if any)  

w<_woe-T +eoq)(t) 
t 

q)=e-r f eT dt. 
o 

(up to intersection),} 
(W~) 

S u b s t i t u t i n g  this  in the  w l =  frwdt in (W1), 

no rmal i zed  w, 
t 

wer>:wo-Wo~V+co(~oerdt--~qg ) (to in tersec t ion) ,  } 

O<__~<__~<t O<_~<TI<_C<_t 

in which 1<7 -<L~, we have, for 

(Wa) 

a n d  we use z9 a lways  for  number s  sa t i s fy ing  0 _  ~_< I .  a 

I f  we d rop  w 0 f rom the  r i g h t - h a n d  side of t he  i nequa l i t y  we ob t a in  the  two fu r the r  

inequal i t ies  

I These are of course valid for the w f Y t - Y l  of any pair I~l. s whatever. 
That is, the next after t = 0 if w o = 0, wo > 0. 

a The @ is needed in the inequality because c o may be negative. 
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$ 

w : > - - w o e - T ~ §  ) (to intersection), / 
t t 

w>-e~176176 eTdt) I 
o o 

(W4) 

of which  t h e  second  ( though  t r u e  genera l ly )  is spec ia l ly  a p p r o p r i a t e  for  use  w h e n  

% >  0. 
$ 

For r .m.  w = w 0 e T + e r f e -  r (Co - Wl) d t. (W1) 
0 

F o r  n o r m a l i z e d  w we have ,  u p  to  t he  n e x t  i n t e r s e c t i o n  (if a n y )  

t 

w e-  r < W0 + 50 f e -  r d t ( to i n t e r sec t ion ) ,  (Wz) 
0 

a n d  s u b s t i t u t i n g  as  i n  t h e  d .m.  case we o b t a i n  1 

t 
w e-  r >_ WO (1 -- V~) + c0(f e-  r d t - v~ ~) (to in te r sec t ion) ,  

0 

o<_~<_~<t o<_~<~<~<_t 

(W3) 

T h e  special  v a l u e  t ~ 1 is i m p o r t a n t  here,  a n d  we def ine  t h e  c o n s t a n t  /~o (assoc ia ted  

w i t h  t h e  o r ig in  t = O) b y  
1 

/~o= f e -r  d t  (r .m.).  
0 

I f  t he re  is no in te rsec t ion  of t he  r .m.  up  to  t = 1 we can  (using c o = -  50) t r ans l a t e  

(W2, a) (with t =  1 ) i n t o  t he  fol lowing d .m.  r e su l t :  

given there is no intersection of the d.m. /or time 1 before t = 0, and 

that w o > O, we have 2 
/~o Co -< Wo (Ws) 

/~o Co (1 - ~ 0)//~0) > Wo (1 - ~ (1)) - ~, 

where ~, as  a lways  and  co ns t a n t l y  in  w h a t  follows, deno tes  a n u m b e r  of t he  form 

O(e-1)k). T h e  ~ i n  t h e  second  i n e q u a l i t y  comes  f rom Wo e-T(-1). 

T h e  d i scuss ion  t h a t  fol lows is l ong  a n d  i n t r i c a t e .  T h e  m a i n  w o r k  is to  p rove  

x Our treatments of d.m. and r.m. do not run quite parallel, which is why (Wa) and (W,. 4) 
do not. 

1 1 
2 ~u ~ is here of course, f e-Tdt  for the r.m. (or f e-T(-t')dt" for the d.m.). 

0 0 
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t h a t  either F1. z do no t  intersect,  or  else t hey  differ by  0($)  af ter  a certain point.  

We concentra te  first on the  cases of non-intersection.  

We s tar t  (for the present) a t  a Z 1, which we m a y  suppose to  be the  first  one 

af ter  the s tar t  in S 1 a t  Z o and  we s tudy  the  behaviour  of w over the  half-cycle 
! 

Z 1 Z 1 .  

We shall use a mesh of trajectories F of S~, " in te rmedia te"  to F1. ~ and  with 

consecutive ordinates a t  Z 1 differing by  a t  mos t  ]c -~, where a is either 10 or 11. 

w 36. I n  the Lemmas  t h a t  follow we take  for granted the  hypothesis  t h a t  F L 2 are 

F ' s  of the $1 a t  Z 0, and  t h a t  (in accordance with our  convent ion  t h a t  letters denote  

points the /irst of their kind). Z 1 is a period later  than  Z 0. 

LEMMA 17. Let ~ be an arbitrary time-origin in (Z 1 - 1, Z 1 + 1). Then w o = w (~) = 

O(DIc-1). Also, normalizing to wo>_O, we have a linkage of c(~),  w ( ~ ) [ c  0, w~]: 

,ao Co- ~ <  Wo < 2,ao Co+ ~; 

and in this H o ~ L k  -1, so that 

Llc-l  c o - ~  < wo < L k - l  co + ~. 

I n  particular all this is true /or w(Z1) , c(Z1), and /urther ~b(Z1)=O(Dk-1). 

C O R O L L ~ R r  1. There is a ~' such that i/ w(Z1) > ~' then c(Z1) > L k w ( Z 1 )  (>0).  

COROLLARY 2. I/ W(~)=0, then z b ( ~ ) = 0 ( ~ ) ;  in particular this is true /or 

= Z r 

We have for a F of the S 1 a t  Z0, " s t a r t ing"  a t  to, Yo, Yo, say, 1 

t 

~'=F(yo)+b(pl(q~)-pl(q~o))-~r g d t + ~ - ~ j o  �9 (1) 

to 

As in w pl(qJo)=l+O(Dk-1) .  F ( y o ) = F ( H ) + O ( D k - 1 ) .  Let  G be the range ( Z 1 - 3  , 

Z 1 + 3  ) (this includes bo th  the d.m. and the r.m. f rom ~ to  t ime t=2) .  L e m m a  

3 (ii) (1) is valid with ~j=O(1) ,  ~ = 0 ( 1 )  in G. Hence we have in G, for Fl.e, 

A F = O ( D l c  -1) and so  w=O(Dk-1); also 

g = b p / l -  (~ + g)/(k 1) 

for Yl. 3, and  so ~b(Z1)=O(Dk-1), since p ( Z 1 ) = 0 .  

1 We  shou ld  n a t u r a l l y  t a k e  ~- were  i t  no t  t h a t  Z o m a y  be t he  f i rs t  Z and  r h a v e  no ~ .  

cf. w 23. 
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We prove next  t ha t  for origin ~ :  
t 

~ ( t ) < L k  -~, ~(O<_Lk-l fe-Tdt  
0 

/or the r.m., and t <_l. (2) 

In  G we have Yl. 2>l+L ,  T > L / c ,  T>_Lkt (d.m. or r.m.). For  r.m. 

e-r ,+r~<_exp (--  fLkdt)=exp ( - L k ( ~ - ~ ) ) ,  

1 '1 

and so ~ <_L* f d~] f e-a~(n-~)d~e,<Lk -1, 
0 0 

and consequent ly  also 

t t t 

0 o<_~<~<t 0 0 

1 

so tha t  (2) is proved.  Since L k < ~ ' < L k ,  ~u(~)=  fe-Tdt with origin a t  t = ~  (r.m.) 
0 

1 

lies between two f e-L~tdt = L k  -1, 

L k -1 < l~ (~) < L k -1, (3) 
as s ta ted  in the Lemma.  

Consider now the r.m. f rom f~ to t = 1, or the first intersection of I" L 2 (if any) ,  

whichever happens first. We distinguish two cases:  (i) an  intersections happens  first, 

(ii) no intersection before t = 1. 

Case (i). Consider the r.m. f rom the intersection as new origin for  a (further) 

t ime 1 or to  the next  intersection, whichever happens  first. We have ~b 0 < 0, and  

w_<0 in the  range. (W3), wri t ten with - w  for w to  normalize, is valid, with Wo=0,  

c0 = - ~ b o =  I~b0] �9 Since the results (2) are val id we infer t h a t  

t t 

-we-T>_�89 or we -r<_ --�89 (4) 
0 0 

This shows, first t h a t  there is no (second) intersection, and  so, secondly, t h a t  (4) is 

valid a t  t =  1, when it  gives ~b0=O(~ ). Inc identa l ly  this establishes Corollary 2. 

Consider now the  d.m. f rom the  intersection of F1. ~ up to  ~ .  There is no intersection 

before ~ ,  and  (W2) is valid with w 0 = 0 ,  c o = [~b 0 [, so t h a t  

1 

0_<w--<[Zbo]~<~, and w~=O(flw]dt)=O($). 
0 
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I n  part icular  w ( ~ ) = O ( ~ ) ,  and  also, taking t = t n  in z b = - T w + ~ b 0 - w l ,  we have 

~b(~)=O(~) ,  and  so e ( ~ ) = O ( ~ ) .  To sum up, in case (i) (of intersection) w(~ ) ,  

c ( ~ )  = o (~). 

m 

Case (ii). I n  this case (W,,a) and  (2) are valid over  0_<t_<l of the r.m. with 

w o = w  (~), go = - c ( ~ ) ;  in part icular  t hey  are valid a t  t =  1. Since the left side of  

(W~) is posit ive we have 

w ( ~ )  - / ~  (~)  c (~)  > 0. (5) 

Subst i tut ing in (Wa), with t =  1, f rom the inequalities (2) for ~, 2, and  observing 

t h a t  the  left side is 0 (~), we have 

> �89 w (~) - / ~  (~)  (1 - �89 a)  e (~).  (6) 

(5) and (6) give the c, w linkages at  ~ of the Lemma.  These are proved for case 

(ii), bu t  are valid also (trivially) in case (i), when w(~) ,  and  c (~ )  are 0(~).  The 

remaining results of the L e m m a  follow in vir tue of (3), and Corollary 1 is a trivial 

consequence of the Lemma.  

w 37. We mus t  now int roduce a mesh. Wi th  a = 10 or 11 (always) we can divide 

the interval  between the  ordinates of F1. ~ a t  Z1 (which is O ( D k  -1) into a t  mos t  

N < D k  a-1 equal intervals of common  length e _< k -a  [N = 1 if w (Z1) _/c-a] .  B y  con- 

t inui ty,  a F of the $1 of w167 19 and  24 at  Z 0 can be found to pass th rough  each 

point  of division. 1 We will denote  a consecutive pair  of these by  F3. a, and  take  

over the w, T, c,/~ etc., no ta t ion  with the unders tanding tha t  they  refer to the pair  I~s. 4- 

The Lemmas  immediate ly  following are restricted to the half-cycle Z1Z~, but  not  

always to the range Z 1 U of L e m m a  3 (d) (which is only part ,  though  the worst  part,  

of Z1Z~). They  are all about  an a rb i t ra ry  pair  Fs. 4 of the k -a mesh ;  1 t hey  will 

ment ion Fa. ~ explicitly as a safeguard. 

w 38 We give a short  name to a hypothesis  often made about  I~s. 4: namely  

tha t  starting at Z 1 as consecutives o[ a k -a mesh (O<w(Z~)<_k-a),  they have their Us. 4 

together and have Vs. 4 >-V*+ ~. We call this hypothesis  (H). We sometimes say also 

tha t  F1. ~ satisfy (H), with the obvious meaning. We denote  the earlier and later  of 

Us. 4 by  U_, U+ (we do not  as ye t  know even tha t  Us. 4 will be together),  and  by  

1 ~_ and F+ the corresponding I ~ of l~s. 4- 

1 Their assertions are to be true for both values of a. 
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Suppose  t h a t  (0, t) is in (Zl, U_), or  aga in  t h a t  i t  is in  (Z 1, Z1) and  1"3. 4 sa t i s fy  

(H) ; suppose  fu r the r  t h a t  in (0, t) we have  I w] < k -5. Then  for  T ( formed f rom F3. 4) 

we have  s = ~ +  0 (k-k-5) ,  where  T is fo rmed  f rom r a ,  a n d  

T = ~ + O ( k - 3 ) ,  e-~ r = e ~  (1 -p 0 (k-~)), 

since t < L k .  F u r t h e r ,  in the  (H) case wi th  t in (U_,Z~) ,  we have  ~ ( F + ) > L  over  

a range  of t ime  l eng th  L before U+, and  since I w ( U _ ) [ < k  -5 i t  is easy  to  see t h a t  

I U 3 -  U41 < L k  -5. S imi la r ly  a n d  more  c rude ly  we have  I W ~ -  W~ I < L k - 5 ;  poin ts  l ike 

U, W'  are  "d i sp l aced"  b y  O(k  -5) as be tween  1"3. 4. I t  follows t h a t ,  sub jec t  to  t he  

hypo theses  ju s t  men t ioned ,  we can take over Lemmas  13 to 16, about a "~, " in  T- form",  

i.e. with our present T in place o/ the ~, with the understanding that the factor �89 on the 

right-hand side in Lemma  15 is replaced by ~ (to cover  a fac tor  1 + 0 (k-~)). 1 We shal l  

be cons t an t ly  using this  pr inciple  a n d  will refer  to  i t  sho r t l y  b y  saying  " L e m m a  so 

and  so in  T- fo rm" .  References  (a), (b) . . . .  wi l l  be to  pa r t s  of L e m m a  13. 

w 39. LwMMA 18. Suppose that t o is in (Z1, U_), and that in (Z I, to) F3. a do not 

intersect and 0 < w < k -5. Then 

(i) W(to) , c (to) satisfy the linkage relations 

(to) c (to) -< w (to), ~ (to) c (to) > �89 w (to) - ~, 

or w (t 0) < 2 ~ (to) c (to) + ~. 

(ii) /~ (to) satisfies 2 L k -  1 </~ (to) < D k -  �89 and  # (U_) ~ L k -  �89 

We have /urther in (Z1, to) 

w < D k  �89 w (Z1) + ~. 

The range  Zl<_ to<_Zl+l  is covered b y  L e m m a  17, a n d  we m a y  suppose  

t o > Z 1 + 1. Consider  the  r .m.  f rom t o as origin over  t _< 1; th is  lies in (Z1, to) (wi th  

no in te r sec t ion  a n d  w <  k-~). 

B y  (Ws) wi th  t = l  (and w o for W(to) , etc.) 

/~0 CO ~ WO, 

/l o c o (1 - ~ (1)/~0) > Wo(1 - ~ (1)) - ~. 

(1) 

(2) 

1 Note (i) that the T-lemmas involve a hypothesis V >_ V* + �89 ~ where there is a U, duly ful- 
filled under our present hypotheses; (il) since the T-lemmas sometimes mention U, W', etc., we have 
to cover the effect of their "displacement". 

2 For unrestricted t we have L b -1 < p (to) < D k �89 
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B y  L e m m a  14 in T- fo rm we have  

r  f f  e-Tn+r~d~d~<Dk -�89 
o<~_<~<1 

1 

~ ( 1 ) = L ~  f f f  e-rc+rn-r ,d~d,d~.<~L(fe-r ,d~)(  f f  e-Tr dlTd~) 
o<~_<n<~<l o o<n_<r 

< L / t  o �9 L ~  (1) < Dk-�89 

(1) and  (2) now give the  l inkages of the  L e m m a .  

The  inequali t ies for /t ( to)=#o are cases of (g), (d) of L e m m a  13, in T- form.  Fo r  
1 

the  special poin t  to=U_ we have  /t(U_)>Lfe-'dt (r.m.). I n  the  r .m.  f rom U_ 1r 
o 

lies be tween two L's, :r between two L k I y - 1 ] ' s  or two Lkt's,  e -~ between two 

exp (-Lkt~) 's ,  and  so /t be tween  two Lk- i ' s  as desired. 

For  the  last  p a r t  we observe t h a t  in (ZI, to) e(t) is decreasing,  b y  (1) of w 34,1 

so t h a t  c (to) < c (Z1). So 

w (to) < 2 ~t (to) c (Zz) + ~ < D k-  �89 e (Zi) + ~, 

and  b y  L e m m a  17 c(Z1)<Lkw(Z1)+~, so t h a t  w(to)<Dkiw(Z1)+~, which is equi- 

va len t  to the  desired result .  

w  LEMMA 19. Suppose that (0, to) is in (Z1, U_), that to<_L~k, and that 
there is no intersection o/ I~a 4, and 0 < w < k -5, in (Z1, to). Then in (0, to) 

(i) w < w  oe-T+co~( t ) ,  

(ii) w>coq~(t)(1-}O-O" Dk-�89 

(iii) w>}coq~(t)-$,  

t 

where (we recall) q~ = e- T f e T d t. 
o 

The first  inequal i ty  is a case of (W2). 

B y  the  second inequal i ty  in (Wa), 
t 

w k c o q ) ( 1 - - ~ Z /  ( e rd t - -w~  / ( e r d t ) .  
1 3  Co I J  / 

o o 

(1) 

z I t  is  d e c r e a s i n g  i n  a n y  r a n g e  i n  w h i c h  w > 0 .  
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t t t 

•<L ff eT~-~ed~d,7<_L(fe~d,l)(;e-Ted~)<D~-'fe~dt, (2) 
O~<_~<_t 0 0 0 

t 

x<L: ff f  e~'-T,+Tzd~d~dC<_L~(feTr ff e-T~+T,d~d,7) (3) 
0_<~_<~7_<C o 0<~_<~<t 

t 

in which the first bracket is fe~'dt. Substituting in (1) from (2) and (3) we have 
0 

w>-coq~(1-v~L~ f f  e - r , + r C d ~ d z l - v q ' D k - + w o / C d "  (4) 
O<_~<_~<t 

By Lemma 15 in T-form the factor of z9 is < 3 z, and (ii) follows. 

Rewrite (ii) as 

w > ( 1 -  ] z$) co q~ - t$' D k-~ wo qJ. (5) 

By Lemma 18 Wo<2/10co+ r and C o > - C .  If  e0>0 the first of these substituted in 

(5) gives (iii); if e 0 _< 0 the right side of (iii) is negative and the inequality trivial 

since Wo > 0. 

The following special result involves rather  similar reasoning, and in order not  

to interrupt a later argument we include it  here. 

L~MMA 20. Suppose that there is no intersection o/ F3.4, and w < k  -5, in 

( Zx , U_ + to), where 0 <_ t o < 3 ~r. Suppose further that U3. 4 are together, with 113. 4 > V* + 

(so that U_ is U3). Then for 0<_ t<  t o we have [with U3 as effective origin] 

w(U3 + t) >_c(U3)q~t,~(t) (1-~ Dk-+-v~' Dw(U3)/c(U~)). 

By (W4) we have (1) as before, but  the rest is different. By (3) and Lemma 

14 in T-form the factor of v ~ is O(Dk-�89 Also 

t t 

v'/feTdt <L ff  eTn-rr 
o 0<~<_17<_t 0 

by Lemma 16 in T-form (and inverted). This gives the desired result. 

w  We divide the range (ZI, U_ ) at  t l = Z  ~, t 2 . . . . .  t ,+ l=U_ in the following 

way. Each t ~ - t ~ - i  lies between L l k  and L~k;  where L~ is suitably small, and for 

n ~ v  t, is at  a Z (t~+l = U_ is exceptional). I t  is evidently possible to make such a 

division, and we have v < L .  We write wn, ca, /xn etc. for w(t=), e(tn), tz(t~), etc., 
t 

and ~v~(t) for q D ( t ) = " e - r f e T d t  '' formed from the d.m. with origin t~. We have 
0 
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t n t n-1 

~lgn-1 ( t n )=  f e -(T`tn)- T) d t  + f , 
tn-1 tn-1 

in which the first te rm is /zn, and (since T increases by  a t  least L k  when t in- 

creases by 1) the second is vq(; thus 

Further,  since T lies between two L k's in the range of integration concerned in/zn, 

we have 
fin NL]r -1 (n_< v). (2) 

We have now 

L v . ~ . ~  21. There is a E1 (independent o/ n) such that i/ Fa.a have O<w(Z1)~ /c  -1~ 

and w (Z1) > ~1, then /or each n o/ 1 <_ n <_ ~, + 1 : 

(a) there is no intersection be/ore tn ; 

(b) 0 < w < k  -5 up to t~. 

Further, /or 1 <_ n <_ ~. 

(c) ~ ~u~ c~ _< w~, / ~  c .  _> ~ w~ > 0, 

(d) w~ > L w  (Zl). 

wn>_Lwn_l  ( n >  1); 

We have stated the Lemma in a form suited to an inductive proof. We suppose 

throughout tha t  w(Z1)> ~1, successively rechoosing ~1 (smaller) as the run of the 

argument  requires it. 

For n =  1 (t 1 =Z1) (c) is true, by  Lemma 17, provided (x is suitably chosen (the 

last par t  does not arise), and (a), (b), (d) are trivial. Suppose now tha t  (a) to (d) 

are true up to n - 1 ,  and consider them for n. Consider the d.m. from tn-1 till the 

first intersection, if any, or w = k  -~, or t = t , ,  whichever happens first. After (a), (b) 

for n - l ,  Lemma 19 (if) is valid in the range, with tn-1 for t=O.  In  this, by (c) 

for n - l ,  c n - l > 0  and Wn_l/cn_x<_51Un_l<LIc -1. Hence (in the range) 

w>__cn_1~n_l ( 1 -  ~ ~ - ~ '  Dk -~ )  >__ ~;cn_l ~n_l :>O. t3) 

This shows incidentally tha t  an intersection is not the first event. 

Next,  over any range from Z 1 in which there is no intersection we have, by  (W~), 

w _< w (ZI) e - ( r -  r z )  + e (Z1) ~z,  (t). 
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This is valid in particular over our present range, where it  gives w < k  -5, since 

c ( Z 1 ) ~ z < L k w ( Z a ) . D k - � 8 9  -1~189 by Lemma 18, and Lemma 13 (d) in T-form. 

So w = k -5 is not  the first event. Hence we arrive a t  tn with no intersection since Z1, 

and w < k -5 throughout.  (3) is now valid a t  t ,  and gives 

Wn ~-~ ~/~n On-1 > 0. (4) 

Next,  Lemma 18 is valid with t ,  for to, so tha t  

,an Ca <~ Wn, 

~.c.>�89 

For n restricted by l < n _ < v  we have /~ ,<L/ tn_ l  (by 

Wn > - i f l n - l C n - 1 ,  and so, by  (c) for n - 1 .  

w , > _ L w , _ l  (n<_~). (7) 

By iteration this further  gives (since v < L) 

w~ > L 1 w (Z 1) (n_< v). (8) 

I t  follows from (6) and (8) tha t  if El, is increased so tha t  ~ 1 > 6 ~ ' / L 1  we have 

(when w(Z1)> ~1)#~ cn _> ~ wn. 1 This, together with (5) and (7) gives (c) for n (when 

n < v ) .  (d) is true for n(n_<v) by  (8). 

We have now completed the induction from n - 1  to n [ ( a )and  (b ) fo r  n_<v + 1, 

(c) and (d) for n<_v], and proved Lemma 21. 

In  paxticular Fa. 4 do not intersect before U_. 

We record some further consequences of what  we have proved. 

L E M M A 21. C o R o L L A R Y. Wi th  the hypotheses o/ L e m m a  21 we have 

(e) w (U_) > L k �89 w (Z1). 

(f) w < L k � 8 9  in  ( Z I + I ,  U_), in  particular at U_. 

(g) L k  �89 w ( U _ )  > c (U_)  > L k w  ( Z , ) -  r  L k  ~ w (U_) - ~. 

(h) w(U_), ~(U_), c(U_)=O(k-~). 

We have from (4), (c) for v, and (2) 

W ( U _ )  = Wv+ 1 > L~/v+l  c~ > L,av+l  ,a~-i wv > Lk/a~+l w (Z1), 

(5) 

(6) 

(2)). Hence from (4) 

x Since this  ~x is i ndependen t  of n i t  is clear t h a t  ttn en >- ~ Wn will be t rue  for the  earlier values 
of • also. 
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in which /t~+l=~u(U_), and lies between two L k  -�89 by Lemma 18 (ii). Hence we 

have (e). 

Next,  (W2) gives in (Z 1 + 1, U_) 

w_< w (Z1) e -(T- Tz,) + e (Z:) ~z, (t) 

<~ +c(Z:) ( l~( t )+tg$)<$ + L k w ( Z 1 ) # ( t )  

< D k i w ( Z : )  + ~, 
which is (f). 

By  (6) with n = v + l ,  

c(U_)> Lts-~ ( U _ ) w ( U _ ) - $ >  L k ~ . L k ~  w ( Z 1 ) - ~ ,  

giving the second par t  of (g), and the third follows by (f) (for U_). The first part  

is a case of (5). 

The results of (h) follow from (f), (g), and 

l~(u_)J<_Ic(i_)l+ n~w(U_). 

w 42. L ~ M~A 22. There i8 a ~2 with the /ollowing properties. Suppose that F1. ~. 

have their w(F1. 2, Z 1 ) > ~ ,  and have their U1. 2 together. Then the intermediates o/ the 

k -a mesh: have their U's in the interval (U:, Us), and do not intersect be/ore U2, so 

that U3. 4 have U a < U4, and no intersection be/ore Us. 

Further, the V's decrease as the U's increase (V 1 > V a > V~ > V~). 

We have also 

(a) w < L ] ~ w ( Z O  in  (Z:+], Us). 

(b) The ratio o/ any two o/ kw(Z1), k~w(U3), c(Ua) lies between two L's. 

(c) c(U3), w(U~), w(u~)=o(k-~) .  

(d) 2 For the original Fx. 2 we have w<Lktw(Z1) in ( Z : + I ,  U1). 

The final (d) follows from (a), and addition over the non-intersection mesh. 

We suppose w(F L 2, Z 1 ) > D k U - l $  ', where D is chosen so tha t  the inequality 

makes w(F3. 4, Z1) > ~', and we rechoose ~' as we proceed so tha t  successive require- 

ments are fulfilled. In the first place we choose $' so tha t  the F3. 4 do not intersect 

before U_. 

1 A k -11 m e s h  is  a easo  of a k -10 one  ( L e m m a  21 h a s  k - l ~  

(d) is  n o t  u s e d  u n t i l  w 68. 
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We need momentar i ly  to  deal again with possible arrivals of a F a t  y = 1 (down- 

ward and) earlier t h a n  its U. We call such a point  of arrival  " U " ,  and the associated 

- ?) + b k (1 + Pl), " V " .  Suppose now till fur ther  notice t h a t  Fa, a arrive a t  "UL" ,  " U R " ,  

as in the  figure, we sometimes abbrevia te  the  " U ' " s  to  L, R. I n  any  case F3. 4 do 

no t  intersect  before "UL", and it is F 3 tha t  arrives a t  "UL", F a a t  "UR".  Wi th  obvious 

no ta t ion  we have now the  identities 
R R 

"VL"="VR" +~', 9 ' = c ( R )  - f g(yL) d t =  c (L) -  f g(y4)dt. (1) 
1, I, 

For  this we have 
R 

R [ - ?)a + b k (1 + Pl)]L = k IF  (Ya) - F (1)]~ + f g (Ya) dr, 
L 

R 

[-ga+d~+bk( 1 + P l ) ] R - " V L "  = -k[AF]R - 0 +  f g(ya) dt, 
15 

R 

- 7 , = " V ~ " - " V L " = [ - z b - k A  F]~+ f g(ya)dt, 
I, 

whence the  first form for 7. The second follows by  (1) of w 

We suppose now t h a t  one of "UL", " U n "  is U_. Then by the  first form for 

when " U n "  is U_, and  by  the  second when "UL" is, we have 

y >c(U_) -  L("UR"-"UL") .  (2) 

We show next  t h a t  (in either of these cases) 

[ ?)41 > L in the range (" UL", "UR"). (3) 

I f  UR is U_ we have " V n " _  > V * - ( ~ ,  and, in the  nota t ion  of L e m m a 6 ,  l + ~ > L a t  

" U n " ;  then the desired result  follows from Lemma 11 (5). I f  " U L "  is U_, then  

- ?)4 (L) = va - ~b (U_) > L - k -7 > L. Also s = Y4 (L) - 1 = w (L) </c -5. The re tardat ion [Y4 [ 

is less than  L]c ~, and cannot  reduce the veloci ty by  more than  L k  -a in the y-inter- 

val  s. Hence 17)41 > L in ( "UL" ,  "UR") ,  as desired. 

5 - -  573805.  Acta mathematica, 98. I m p r i m ~  le 18 n o v e r a b r e  1957. 
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I t  follows now from (3) t h a t  [" UL" -- " U R " I  <-Lw (L) < L k ~" w (Z~) + ~ (by (f) of 

w and  so, f rom .(2), t h a t  

? > c ( U _ ) -  L k � 8 9  (Ll k -  L 2 k i ) w ( Z x ) - ~ ,  

by  (g) of w 41. For  suitable ~s we have accordingly 7 > 0 ,  and  so 

"VL" > "VR". (4) 

Let  I~5 be the F next  before F 2. T o  establish the  L e m m a  it is enough to  prove 

t h a t  U 5 < Us, t h a t  Us. s are together,  and tha t  V 5 > V~. For  we can s tar t  again with 

F s as a new F2, and repeat  the  process. I f  U_ is the  earlier of Us. 2 there are two 

cases: (i) U s is U_ ; (ii) U s is U_. I n  (i) there is no intersection of I'5. s before Us, 

and  F5 has a " U  5 . . . .  toge ther"  wi th  Uz and  " U s " < U  s. B y  (4) " V s " > V ~ > V * - 5 ,  

so tha t  " U s "  is U~, and Us. ~ are together  with V 5 > V s. This completest  he proof for 

case (i). 

I n  case (ii) we have - ?}s ((75) = va - sb (Us) > L - k -~ > L, and F~. mus t  reach y = 1 

(near Us) , since a re tardat ion L k  9 cannot  des t roy  veloci ty  L in space w ( U a ) < k  -5. 

So I~2 has a "U2"  near  U 5. We have wha t  we want  [after (4)] provided "Us" is U s. 

Bu t  if "'Us" is no t  U2, t hen  FI, which certainly meets y =  1 a t  a " U I "  near  and  

earlier t h a n  U 5 (because of non-intersection) has " U I "  no t  U 1 (since U1. s are to- 

gether).  Since, by  (4), " V I " >  Vs>  V * - ~ ,  this is false, and the  proof of case (ii) is 

completed. 

The remaining results of the  L e m m a  are immediate  consequences of (e) to (h) 

of w 41, when the  ~' of w(Z1)>  ~' is sui tably rechosen. 

w 43.  We are now in a position to  follow Fa. a beyond U s- 

L~,MMA 23. 1I ~' is suitably rechosen, then, provided w ( Z 1 ) > ~ '  , and F1, ~ satis/y 

(H), the I'a, 4 have w < k  -5 and no intersection in (Us, Z~) [so none in (Z1, Z~)]. Also 

w ( Z I ) ~  Lw(Z~),  c (Z ; )~  Lkw(Z1) .  

Lemma 22 is valid, and  we cont inue to  rechoose ~'. Consider the  d.m. f rom U a 

unti l  the first intersection, or w = k  -5, or t = Z i ,  whichever happens first. Over this 

range Lemma 20 is valid. I t  follows f rom L e m m a  22 (b) t h a t  c ( U a ) > 0  and also 

tha t  the bracket  in L e m m a  20 exceeds �89 so t h a t  

w >  �89 c (u3) ~ .  (t) > 0 ,  (1) 

and  in part icular  an intersection is no t  the  first event.  
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By (W~) w _~ W (ZI) e - ( T -  TZ, ) + C (Z1) ~0z, i t)  • k -5, (2) 

since exp ( - ( T - T z , ) } < D k ,  and q~z,(t)<Dk �89 by (a) and (b) of Lemma 13. Hence 

t=Z1 is the first event, and there is no intersection in (Z1, Z~). 

(1) is valid a t  Z~, and gives, after (b) of Lemma 22, 

w (Z~) > L/c w (Z1) ~u: (Z;), 

in which (since Z'I - U a > 1) ~u8 >/u (Z;) > L k =1. Hence  w (Z~) > L w (Z1). 

By  (2) with t=Z~, by the method of w (1), by  (2) of w and by  (c)of Lemma 13, 

t i W (Zi)  < ~ "1- C (Zl)  (/g (Z~) ~- ~) < ~.~-Z/~ -~ c (Zi)  < ~ -~ i w  (Zl )  , 

by Lemma 17. For suitable ~' this gives w(Z;)<Lw(Z1). 

Finally, by  Lemma 17 

e (Z;) ~Llcw(Z1)+_~Lkw(Z1)  +~, 

and for suitable ~' this gives c (Z;)~ L kw (Zx). This completes the proof of Lemma 23. 

w 1,4. We can now state the following key result about  non-intersection. 

L~.MMA 24. There is a ~ with the /oUowing properties. Let F1.2 belong to S 1 at 

Z o. Then: 

(i) i/ w(F1.2, Z 1 ) > ~ ,  F1.2 do not intersect in (Z1, U1). Also the ratios o/ any 

two o/ kw(Z1), k�89 c(U1) lie between two L's. 

(ii) i/, /urther, F1. 2 satis/y (H), o/ w 38, then there is no intersection be~ore U2. 
p 

Also the ratio o/ any two o/ kw(Z1) , kw(Z'l), c(Z1), c(Z~), k~w(U1), c(U1), k�89 

U' c( 2), lies between two L's. 

We employ a k -11 mesh at  ZI :  for suitably chosen ~ this makes w(Z1)> $', 

and for suitable ~' the results of Lemmas 22, 23 are valid. Hence there is no inter- 

section of the F3. 4 up to U 3 and U~ in cases (i) and (ii) respectively. Also in the 

second case w(Z'l) lies between two Lw(Z1). So on the one hand w(Z~)>$ '  for a 

suitably rechosen $~, and on the other the F at  Z~ constitute a k -1~ mesh. 1 Lemma 

22 (inverted) is accordingly valid over (Z~, U'_); F3.4 do not intersect before U4; 

w(Z~)~Lw(Z1), and c(Z~)~Lkw(Z1). Further,  in virtue of Lemma 22 (b), we 

have Lkw(Z1)>c(Ua)>Lk �89  in the first case, and Lkw(Z1)> 

1 The device of two meshes is avoided in the Introduction, but the apparently simple line 
taken there does not fit in with ~he present lay-out. 
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L k w (Z~) > c (U~) > L k �89 w (U~) > L k w (Z~) > L k w (Z1) in the  second. Final ly ,  the  non-inter-  

section and  the  var ious inequali t ies are addi t ive,  and  ex tend  f rom the pairs  l"a. 4 to  

the  original 1"1. 2. This  completes  the  proof  of L e m m a  24. 

w 45. We now t ake  up the  (easier) quest ion abou t  intersect ion.  We  suppose t h a t  

1"1. 2 belong to the  S 1 a t  Z0, bu t  there  is no mesh in wha t  follows, and  w, c, etc.,  

refer  a lways  to  1"1.2. 

We r e s t a r t  the  dashes to  ~'s ( the ~' used above  have  served their  turn) .  We  

have  now (U_ being the  earlier of U L 3, U :  the  earlier of U~.~). 

L ~ M M X  25. Let FL2 belong to S r Given a ~', then i /  Iw(Z1) l<~'  we have Iwl, 

]~b[, ] c 1 < $ ( ~ '  ) over (Z1, U_ ). This is true also over (ZI, V'_) provided 1"1.2 satis/y (H). 

I n  appl icat ions the  ~' becomes a definite ~, and  the  ~ denoted  b y  ~ ( ~ ' ) t o  show 

its dependence on ~' also becomes one. 1 

Wi th  a hypothes is  I w (Z1) I < ~', and  normal iza t ion  to  w (Z1) >_ O, we have  0_< 

w (Z1)< k -11 a /ortiori, and we m a y  t ake  over  for  1"1. 2 var ious  results  of L e m m a s  

a b o u t  1"3. 4- We abbrev ia t e  (within the  present  proof) ~(~') to  ~. 

B y  L e m m a  17, wi th  Z 1 for  ~ ,  we have  c(Z1)=O(~ ). Consider the  d.m. f rom Z1, 

normaliz ing to  w being init ial ly positive. U p  to the  first  intersection,  or till w =  k -5, 2 
! 

or till t=Z1,  (W 2) gives 

O < w<- w(Z1) + c(Z1) q~(t) < ~, 

and so also ~b = O(~) in v i r tue  of 

- + C(Zl)+ o (f ]w] dr). (1) 

Since w =  k -5 is c lear ly not  the  first  event  we have  w, ~ = 0 ( $ )  up to  the  f irst  inter-  

section or Z'I. 

I f  there  is an  intersect ion before U_, consider the  d.m. f rom this intersect ion 

till the  nex t  intersection,  or w = k  -5, or t=Z~.  (W2. a ) a r e  val id wi th  w0=0 ,  ~bo=O(~), 

and  become (normalizing since w is negat ive)  

O < - w < l ~ o l ~ ( t ) < $ < k  -~ 

t 

o 

:By w 40 (3) 

(2) 

(3) 

and Lemma 15 in T-form (see w 38) the factor of ]~b0[ in (3) exceeds 

1 I t  s e e m s  u n n e c e s s a r y  a n d  w a s t e f u l  t o  c a l l  o n  a b l a n k  c h e q u e  n o t a t i o n  h e r e .  

2 W i t h o u t  w _< k - 5  w e  h a v e  n o  i n f o r m a t i o n  a b o u t  ~ ,  i n  s p i t e  o f  t h e  d r a s t i c  h y p o t h e s i s .  
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�89 7"(t) provided t<_ U_ and t_<L~ k, and it follows tha t  a second intersection before 

U_ cannot occur within t ime L~k after the first. Up to the new intersection, if 

any, (2) gives w=O(~} and so, by  (1), ~b=O(~), and c ( t )=~v+Tw=O(~} .  The argu- 

ment  can evidently be repeated, and we arrive in a t  most  L steps a t  U_ with a t  

most  L intersections, and w, ~b = 0(~) throughout.  

For  the second part ,  consider the d.m. from U._ as origin, and let wo=w(U_ } 

be, say, positive. Then until the next  intersection, or w =  k -5, or t=Z~, we have 

(whatever the sign of c0} by  (We) 

W ~ Wo e-- T-~ v07" = O (~), 

since w, sb, and so co, are 0 (~) a t  U_. There is nothing more to prove unless there 

is an intersection before Z~. I f  there is one, consider the d.m. from it  as origin. 

We have dvo=O(~ ). Until  the next  intersection, or I wl = k -~, or t=Z~,  we have by  

(We. a), normalizing, 
o <  - w  _< ]~'o] 7' (t) < ~ < / c  -5, (4) 

t 

-w_> I ol (J ox).  (5) 
0 

t 

Since the range is < 3= (and I w[ < k -5) we have v~ g _< w f e r dt  by w (3) and Lemma 
o 

14 in T-form, so tha t  an intersection is not the first event. Hence there is no further 

intersection up to Z~, and further  (4) gives w=O(~) ,  and (1) gives ~b=O(~) also. 

We now have w (Z1)= 0 ($), and can apply the first par t  to the range (Z~, U'_). 

This completes the proof of the Lemma.  

w 46. We record for reference a number  of identities and near identities, not 

all of them new. In  them F1. 2 belong to $1 at" Z0, they have their U~. ~ together, 

and we consider the range to U'_, the earlier of U' x,2 (about which we make no as- 

sumptions). 

c(t)=~+ ~'w=~b+ kAF; I 
(1) 

C(tz)--C(tl) = -- f A f d t =  -- [will: ; [ 
tt ) 

tr~ 
c(U1)= - A V +  fg(y~)dt, c(U~,2)= -AV+O(Aw); 

tZl 

~", (2) 
c ( U ~ ) = A V ' -  .~ g(y l )g t  and c(V'l .2)=AV' + O(Aeo'), 

provided U~,~ are together. 
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I f  - A eo > 0 [equivalent to U1 < U2], then w (U1) ~ L ( - h ~o). 
(3)  

I f  U~.~ are together and A~o '>0 ,  then  w(U~)~L(Aeo'). J 
(1) is old, and the identities for c(U1), c(U~) are proved on the lines of (1) of 

w 42. The inequalities in (2) follow from the identities and the second par t  of (1), 

In,  say, the second par t  of (3) we have (U~ < U~) 

U'2 U'I 

w ( U ~ ) = - l - y l ( U ~ ) = -  f ~jldt= f ~ldt 
U'1 U'l 

in which L<~jl<L (by Lemma 11 (5)), and the range has (positive) length Am'.  

We have now 

L ] ~ M ) ,  26. Suppose F1. ~ o/ $1, with w (Z1)> O, satis/y (H). Then 

w > L k  - I ' ( - A V ) - $  
over a time Llc beyond Z~ + 1.1 

In  the first place we may  suppose w (Zt) > any  relevant $'. For if w (Z1) _< ~' 

w, ~b, c are 0($) in (Z1, Z~) by Lemma 25. By (3) Ao~=O($),  and by ( 2 ) A V = O ( ~ )  

and the inequality of the Lemma reduces to O (~)> 0 ( ~ ) -  ~ and is true trivially. 

In  particular we choose ~' so tha t  w (Z1) > ~ when, by  Lemma 24, F1. ~ do not  

intersect before U~(=U'_) ,  and further so tha t  Lemmas 22, 23 are valid. 

Next,  it is enough to take the case of consecutives of the k -11 mesh, for by  

Lemma 22 these satisfy Va, 4 -> V* + ~, and the desired inequality is additive (whether 

or not the mesh has intersections, though in fact  i t  has not). For suitable ~' we 

now have, by  Lemma 24, non-intersection, and w < k -5 up to U~; also 

w (Z~) ~ Lw (Z1). (4) 

we have, by Lemma 22 (b), replacing the two w (Z1) by w(Z~) in For  suitable ~' 

vir tue of (4), 
L k w (Z;) < L k ~ w (U~) < c (Us) < L k -~ w (Us) < L k w (Z;). 

Next, by  (2) and (3) 

e (U~)  = - A V  + 0 (w  ( U 3 ) )  = - A V  + 0 (k  - t  c (U3) ) ,  

so tha t  c(U3)~L(-AV) ,  and by (5), 

w(Z~)~ L k - I ( -  A V). 

Next,  

o < t < t  o 

(5) 

(6)  

' = L2 k, we have for by  Lemma 19 (ii) (inverted), with t= 0 at  Z1 and t o * 

w >_ c (z;)  (1 - ~ ~ -  ~ ' D  k - t  w (Z;) /c  (Z~)) ~ (t). (7) 

1 By taking more, but unnecessary, trouble, we could replace Z1 + 1 by Z 0 + L. 
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By Lemma 23 c (g~) > L kw (g~) (8) 

(for a suitable ~'). The large bracket  in (7) is then > L ,  and from (7) and (8) we 

have 
w > L ~ w  (Z:) ~ (t). (9) 

For t > l  ~( t )_>/~( t )>Lk -I,  and so, by  (6) and (9), 

w > L k - I ( - A V )  

over a range from Z: + 1 of length L k, as desired. 

w 47. LEMMA 27. I /  F1; ~ of S: have w (Z1) > O, then c (t) > - ~ in (Z1, U_) ; i / they  

further satisfy (H), then c (t) > - ~ in (ZI, U'_). 

COROLLARY. I f  F1. 2 have "UI" ,  "Us"  together, with " U : "  to the left, then 

" V : "  > "V~" - 0 (k- A). 

I f  W(Zx)> ~' for a suitable ~' Lemma 24(i) and (ii) give c (U1)>0  , e(U~.)>0 

in the respective cases. Fur ther  F1, ~ do not  intersect in (Z1, UI) , (Z1, U~) respectively, 

and e (t) is decreasing in the respective ranges by  w 46 (1). So the desired results are 

true when w (Z1) > ~'. When w (Z1) _< ~' we have c = O (~) in the respective ranges, by  

Lemma 25. This completes t h e  proof. 

The corollary follows from the result of the lemma, the identities (2) of w 46 

which (being identities) are natural ly true also for " U I "  , "U2" , and the fact tha t  

["UI"--"U2" [ = O (D  ]r ~-), 

w  We now introduce "pseudo-V's" .  We have again to consider downward 

arrivals at  y = 1 other than  U's, and again use the " U " ,  " V "  notation of w 42, with 

" inverse"  notat ion for y = - 1 .  The points N, primarily at  points where ~ 0 ~ - ~  , 

now become specially important ,  and we use N also for the t rajectory point on y =  1, 

and also for its neighbourhood, along with the " a t "  notation. We say a F is gap-free 

before N if it has not  met  a gap at  an earlier 2V or N'  (N' corresponds to y = - 1  

and ~ v ~ l ~ ) ;  and gap-free before and a t  N if in addition F does not  meet  a gap 

" a t "  h r . 

We define 
~ ( t ) = ~ ( F ,  t )=  - ~ ) - k ( F ( y ) - F ( 1 ) ) + b k ( l  +p l  ). 

t, 
This satisfies '19 (t~) - "~ (tl) = j" g d t, 

tL 

which is a variant  of the ~oidentity. There is a corresponding inversion 

(:) 

(2) 
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~ '  ( t ) = y +  k ( F  ( y ) - F ( -  1)) + b k  (1 - P l ) ,  

b u t  ~ ,  - ~ '  a re  essent ia l ly  the  same  funct ion,  since 

~ d ( t ) + ' Y ' ( t ) = k ( F ( 1 ) - F ( - 1 ) + 2 b ) =  - ( ~ - 2 b )  k. 

I f  F has  a "U" a t  N we have  

a n d  

Thus  to  

(3) 

(4) 

19("U")= - y ( " U " ) + b k ( l  +p~("U"))="V",  

iv 
~ ( N ) - ~ ( " U " ) =  f g d t = O ( N - " U " ) = O ( D k - � 8 9  

, ,  V J t  

error  O(Dk-~-)=O(k-A), ~ ( N ) = " V " ,  a n d  in pa r t i cu l a r  ~ f (h r )=  V if  "U" 

is U. I f  there  is a U a t  N a n d  0 < r < L  we have  (see w 18) 

N 

~ ( N - 2 r ~ ) = V -  f g d t = V - r M + O ( k - ' ~ ) ,  (5) 
N - 2 r ~  

and  this  is t rue  whe the r  or  no t  the re  is a "U" a t  N - 2 r ~ .  Our  pseudo-" V"' s are  

the  ~ ( N )  ( their  inverses  ] 9 ' ( N ' ) ) :  t h e y  agree to  error  0 ( k  -A) wi th  V's  a n d  " V " ' s  

where there  a re  U's  or  " U ' " s  b u t  fu r the r  exis t  where  e i ther  there  is no " U " ,  or  

where  we do n o t  know in the  f i rs t  ins tance  t h a t  there  is one. Thei r  full  connexions  

wi th  ac tua l  V's and  " V ' " s  a re  set  ou t  in the  fol lowing L e m m a ,  which is inc iden ta l ly  

vi ta l .  I n  th is  V 0 s t ands  for V*fl~(-1) (in the  n o t a t i o n  of L e m m a s  5 a n d  6). Af t e r  

L e m m a  6 the  " V "  of a t angen t i a l  " U "  (with v=O) is Vo+O(k-A), and  V 0 is 

ef fect ively  the  m i n i m u m  va lue  of a " V " .  

L E p t A  28. Let F belong to S'1 at Zo, and let its U be at N O . Let N < N O . 

Then : 

(a) I[ there is no " U "  at N, then ~ ( N ) <  Vo+O(k-A). In particular, i/ ~ ( N ) >  

Vo+ �88 there is a "U" at N. I] the~e is a "U" at N, then ~ ( N ) >  Vo+O(k-A). 

(b) I /  ~ (N)>  V * - ~  there is a U at N. 

(c) I /  I ~ has a U at N then V*-~<_ V < V*+ M - ~ .  

(a) First part. Since ~q(N) increases  b y  M + O ( k  -A) for increase  2 ~  of /V up  

to  the  U we m a y  suppose  (a /ortiori) t h a t  there  is a " U "  a t  N + 2 , ~  (and none  a t  N) .  

N o w  F a n d  F ( - 2 ~ ) ,  which is F m o v e d  backwards  a d i s tance  2 g ,  i.e. t he  t r a j e c t o r y  

y ( t + 2 ~ ) ,  belong to  $1. 2 The difference of t he i r  y ' s  a t  Z 1 is y(Z1) -y (Z , )  for  t he  

I /~ot S 1. 
This is the sole raison d'gtre of ~ql. I t  might seem that (a), the key to Lemma 28, is "obvious" 

and susceptible of some other easy proof. Actually i t  is rather deep, and a proof more from first 
principles would set up a "linkage" like that of 8, ~t in Lemma 6 at a "U",  but, since there is no 
"U", generalized to a neighbourhood of N. Our view is that we have chosen the lesser evil. 
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F ( - 2 ~  

Fig. s. 

t r a jec to ry  I ~, and we have 
z ,  

k ( F ( y z ~ ) - F ( y z , ) )  = f g d t - ~ ) z ,  § L. 
z~ 

This difference is accordingly > L k  -1. B y  L e m m a  24 F and  F ( - 2 7 e )  do no t  inter- 

sect before their  U_, which is U -  2 ~  > " U " - 2  ~ = N, and  they  form a " tube" .  B y  con- 

t inui ty  an  intermediate  F~ exists, touching  y =  1 near  N.  B y  L e m m a  27 Cor. its 

"V~" a t  N + 2 ~  exceeds t h a t  of F by  O ( D k  -�89 (Lemma 6), and so 

~9 (F~, N + 2 ~ )  >~9(F,  N + 2 ~ ) + O ( k - A ) .  

We now have,  on the  one hand  

~ ( F , / V ) > Y ( F ,  N ) +  O(k-A), 

and on the  other,  since l~t has v = 0  a t  N,  

~q (F,, N) < "  V," (hr) + 0 (k- A) < V0 + 0 (k- A), 

and the  first par t  of (a) follows. The  second is tr ivial  and  the  third  old. 

(b) Since V*> V o + L  the  hypothesis  implies a " U "  a t  /V. Bu t  then 

" V " = ~ 9 ( N ) + O ( k - A ) >  V * - ~ ,  
and the "U"  is a U. 

(c) We mus t  have ~ 0 ( N - 2 : ~ ) <  V*- -~6 ;  for if there is no " U "  a t  N - 2 ~ z  we 

have 1 9 ( N - 2 ~ ) <  V o + O ( k - a ) <  V * - ~ 6 ,  by  (a); and if there is a " U "  its " V "  is 

< V * - ~ ,  and ~ ( N - 2 : z ) < " V " + O ( k - A ) < V * - ~ .  Hence 

*~(N)< I ~ ( N - 2 ~ ) +  M + O ( k - A ) <  V* + M - ~ 5 ,  
as desired. 

w 49. L E M M A 29. Given an N, the S* at a suitable Z o (depending on N)  contains 

a continuous stream of F, each with a " U "  at N ,  and with "~(N)ranging/rom V * - 3 5  to 

V* + M - 4 5. This includes a substream with " V "  ranging from V* - 2 (~ to V* + M - 5 (~.1 

1 The "U" and "V" are of course U and V when V>_ V*-~. The bounds could be made wider 
but we state what is actually used. 
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Take any F of S*; call it  Fo, and let its U be at  No, so that  

V * - ~  +o(1)  <]9(F0, No)< V * + M - ~ ( 9 + o ( 1 ) .  

Then ]9(F0(4~r), No)< V * + M - ~ ( J + o ( 1 ) - 2 M + o ( 1 ) <  V * - 3 ~ ,  

also F o (4v r) belongs to S*. 

Now we can "interpolate" between two r ' s ,  by taking the segment in the r.p. 

(representative point, see w 1 of the Introduction) space between the extreme ones, 

and obtain a stream with all the intermediate values I of ~9(No). Thus we can 

find a I~1 "between" F o and Fo(4Vr ) with ]9(F1, No)= V*-3(~. This has its U not  

earlier than No, since otherwise there would be a "first"  intermediate F from 

Fo(4~r ) with ]9(N0)_< V * - 3 ~ ,  but  U earlier than No; on the other hand, by 

the continui ty of ]9 this "f i rs t"  F would have ]9(N0)_> V * - ~ + M + o ( 1 ) >  V*-3(~. 

I t  now follows from Lemma 28 that  F 1 has its U at  N 0 + 2~r, and F I ( - 2 ~ r )  (also be- 

longing to S*) has its ] 9 ( N o ) = V * - 3 ( i + M + o ( 1 ) ,  and U not earlier than (in fact 

at) N 0. We can now interpolate between F 1 and F 1 ( -  2Jr) in a similar manner, with 

]9(No) ranging from V * - 3 ~  to V * + M - 4 &  And the argument from continuity of 

]9 (No) shows again that  the F concerned have their U not earlier than N o. This 

being so, they have each a "U "  at No, by Lemma 28, and so " V " = ] 9 + o ( 1 ) .  Since 

" V "  varies continuously in the stream we have the result about  the range of " V " .  

The Lemma is thus true for 2V0, and we have only to " t ransla te"  S* by N - N  0. 

w 50. LEMMA 30. Suppose F L 2 belong to S* at Zo, and have U1. s together at N, with 

V1. 2 ~ V* + (~. Let U t_ be at N', and let ]91. 2 = ]9 (F1.2, N), ]9~. e = ]9 (171.2, N'), A ]9 = 

]92- ]91. Then (i) we have the /oUowing results. 

(a) L[ • L 

where cr is an L satis/ying 0 < ot < 1. 

(b) Either ]A]9], k[w(Z1)], ]A]9 ' [<k-+ ,  

or else sgn A]9 '=  - s g n  A ]9=sgn w(Z1). 

(C) I] kw(Z1)>k-�89 , or i/ - A ] 9 > k - � 8 9  or i/ A ] 9 ' > k  - t ,  then U: is U~. 

(ii) I /  /urther U~.2 are together, we have the /ollowing results: 

(d) L[AVI-$ <IAV'[<ccIAVI+ ~. 
(e) Either IAVI, k]w(Z1)], I A v ' l < $ ~ ,  

or else L ] A V ] < ] A V ' ] < c t [ A V ]  and s g n A V ' = - s g n A V = s g n w ( Z 1 ) .  

1 The whole segment  m a y  have  r ' s  and ]9's outside the  ext remes  ; we then  take the appropr ia te  
subsegment .  
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I n  w h a t  follows we use ~ genera l ly  for  an  L sat isfying 0 < ~ < 1, rechoosing it  

(larger) as the  a r g u m e n t  proceeds. 

We  normal ize  to  w (Z1)> 0. We  have  

- A ~ = c ( N ) ,  A~'=c(N') ,  (1) 

N" 

A ~ ' + A ~ =  - f Agdt. (2) 
N 

I f  w(Zx)<~'~, we have  w, ~b=O(~)  in (N, U'_), A~9 and  A]9'  are  0(~) ,  and  so 

are AV, AV '  in pa r t  (ii). The  var ious  par t s  of the  L e m m a  are all t rue  t r iv ia l ly  or 

vacuously.  1 

We suppose then,  in bo th  (i) and  (ii), t h a t  w(Z1)> ~ ' >  ~*, rechoosing $' as we 

proceed. Then  in the  first  p lace  F1. ~ do no t  intersect  before U : .  We  have  then,  

from (2), (3) of w 46, and  L e m m a  24, 

c(U1)%ilcW(Zl), c(Ul_)%LlcW(Zl), (3) 

- A V = c (UI) + 0 (w (Ux) ) = c (U 0 (1 + 0 (D k-  �89 ~ L k w (Z1) > 0. (4) 

I n  (ii) we have  in addi t ion  U'_ = U~, 

U' c ( ~ )  % L/cw (Z1) (I~) 

A V' = c (U~) (1 + 0 (D k-�89 ~ Lkw (Zl) > O. (6) 

I n  bo th  (i) and  (ii) we have  c(N)-c(UO=O(Dk-�89 c(N')-c (U'_)=O(Dk-�89 
so tha t ,  b y  (1) and  (3) 

- - A ] 9 ~ c ( U 1 )  T Dk-�89 ~ Lkw(Z1)-T Dk-�89 } 
A ~'~c(U~_)~ Dk-�89 ~ Lwk(ZO~ Dk-�89 

Also, as we saw in w 48, 

- A  V= -A'lg+O(Dk.-i), 

and similarly,  in (ii), A V' = A ]9' + O (D/c-t) .  

N e x t  we have  in (i), by  (2), 

N' 
A ~ q ' = ( - A ~ ) -  f Agdt. 

N 

(7) 

(8) 

(9) 

1 Provided ~ > k ~ , '  which we suppose. 
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have A g > Lw > 0 everywhere, and w > L k  -1 ( - A V) - ~ over a In  the integral we 

par t  range of length L k, by  Lemma 26. So 

A ~ ' < ( - A ' ~ ) - L k ( L k - ~ ( - A V ) - ~ ) < ( 1 - L ) ( - A ~ f ) + D k  -�89 (10) 

by  (8). 

Also (7), (3), (4), and (8) give 

A ~ ' > L k w ( Z 1 ) - D k - i > L c ( U 1 ) - D k - � 8 9 1 8 9  -~. (11) 

We now have (a) from (10) and (11), and (b) from (7). 

In  (c) we have, after  (7), Av~'>Lk -�89 in all three alternatives. Suppose, if pos- 

sible, tha t  U'_ is not U~ but  U~. By the non-intersection of 1~1. 2 there is a "U~" at  

N' ,  and "O~(N')<"V~"+O(Dk-~). On the other hand 

~(N ' )>  ~f~ (N')+ Lk- i> V~ +O(Dk-i)+ Lk -~. 

Combination of these gives "V~"> V~ >_ V*-~, and "U~" is U~ after all. Thus (c), and 

so the whole of par t  (i), is established. 

Consider now par t  (ii) (in which all the numbered results hold). We have 

c ( U ~ ) - c ( U x ) = -  f A o d t < - i  f w d t < - L ( ( - A V ) - ~ ) ,  (12) 
UI Ux 

since w > 0  in (U1, U~), and by  Lemma 26 w > / k - l ( ( - A V ) - f f )  over a range of 

length Lk. I t  follows from (4), (6), and (12) tha t  

A V' < (1 + O (k-A)) {( -- A V) - (1 + O (k-A)) L ( - A V)} + 

which gives ( - A  V and A V' being positive, by  (4) and (5)) 

A V ' < ( 1 - L ) ( - h  V)+~,  (13) 

and so the second inequality of (d). The first one follows from (4) and (6). 1 

In  (e), if one of ( - A V ) > ~ ' ,  kw(ZO>~" , A V ' > ~ '  holds, then all three hold 

with L I ~ '  in place of $', and with a suitable ~' and kw(ZO>Ll~" (3) to (13) are 

valid, and - A  V, A V' are positive. With a fresh choice of ~' and a diminished 

(d) holds without the ~'s. Since, finally, we have (sufficiently) normalized to w (Z1)> 0, 

we have now established (e). 

This completes the proof of the Lemma.  

1 Without the ~ because we are (sufficiently) supposing w (Zx) > ~'. 
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w 51. We now need the  resul t  tha t ,  roughly,  for fixed V the  ensuing V' varies 

smoothly  wi th  b. The exact  resul t  deals in  ~9 and  is as follows: we postpone the  

proof, which is ra ther  long. 

LEMURS. 31. There is a /unction O(b), continuous in B, or i~<_b 9" 1 < ~ - ~ ,  de- 

pending only on the /unctions /, g, p (and so independent o / k  and 6, and o/ ~ (N) 

below), and satis/ying L <  0 <_ 2, with the /ollowing properties. Suppose that a F o/ S* 

has its U at !V, with V >_V*+ 6, and that the ensuing U' is at N'. JLet 5 b be a small 

n e g a t i v e  increment o/ b, satis/ying 0<_ - ( ~ b < L x  k- l ,  and leaving b + ~ b  in B, where 

L 1 is an L to be chosen later. With the new b let a F o/ S* have the same ~q(N) as 

be/ore. 1 Then with the usual incremental notation we have 

~ "  ( N ' -  2xe)=O(b)k(~b+O(k-A) .  (1) 

N' does not lump to the le/t (in the change /rom b to b+6b)  i/ ( - k 6 b ) > 6  (i.e. 

i/ - (~b is not too sma l l ) .  I n  this case (1) is valid with N'  in place o/ N ' - 2 7 c .  

We have /or V*, M, qua /unctions o/ b, 

6 V*, 6 M = O ( k - A ) .  

I t  is /urther true that 

(}O=O(k -A) /or i l  +Lk-*<_b<_i-i~a. 2 

w  For  each b of B now let P = V * + 6  �89 , Q = V * + M - 6  �89 . Let Fp be a F 

of S* with its U at  N and  wi th  Zo(Fp, N ) = P ,  and  let the ensuing U'  be a t  N ' .  

Let  FQ be a F of S* with l o (FQ, N ) =  Q. Such trajectories FF, FQ exist  by  Le lnma 29. 

W i t h  the no ta t ion  of Lemma  30 and  F I = F o ,  F e = F e ,  we have - A ~ 9 = Q - P > L ,  

and  so, by  (c) of the Lemma,  FQ has its U'  no t  earlier t h a n  N o)  We abbrevia te  

l 0' (Fp. Q, No) to P ' ,  Q'. Wi th  these unders tand ings  we now have 

L E M MA 32. The interval B consists el a set B 1 el intervals i 1, a set B 2 o/inter- 

vals i2, and a third "excluded" set E o/ intervals o/ total length 0 (6~). For a b o~ B 1 

P', Q' both lie in the range (P+(}~, Q-6~);  /or a b o/ B 2 P" is in ( P + ~ ,  Q-~5~), 

Q' below V * - 2  6 ~. The state el things is described graphically in /igs. 9 and 10, and it 

1 (1) The initial conditions of S* do not involve b, (2) there is a small "sheaf" of possible I ' ;  
owing to "play", and our error telans have to cover this; (3) it is a logical possibility (when 1 ~ is 
very extreme in S*) that there may not exist a second 1 ~ with the new b. In this case the Lemma 
is true vacuously: the point does not arise in applications. 

2 This could be extended to the whole of B if need be. 
a An abbreviation for "U'  is not at an N1 earlier than N'". 
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is further true that in both cases, P P ' ,  QQ' "cross and shrink"; P '  is above Q', and 

the lengths 1 P Q, P '  Q' satis/y 

L . P Q < P ' Q ' < ~ . P Q ,  

where :r is an L satis/ying 0 < :r < 1. 

Let b o be the right-hand end o/ an i L or an i 2, and let No be the N" /or b = b  o. 

Then /or b o/ the i I or i2, N '  is not earlier than No. Further a F o l S* with'@ ( N ) = R  

where P <_ R <_ Q, has its U' not earlier than N '  ( ~ No), and we can de/ine 2 R '  = ~q' (l~n, N ' ) .  

Also i I R, R 1 are two R ' s  o I (P, Q), R R '  and R1R~ cross and shrink; more precisely 

L .  R R I - k - ~  < R '  R~ < ~ .  R R I  + k - i  

(in particular either o t R, R 1 may  be either o I P and Q). 

The length P '  (2' is 1 (b) + 0 (~�89 where l (b) < ~ M.  l (b) is independent o I k, & 

The length o I i 1 is k -1 ( ( M - l ) / O §  (3�89 that o I i2 is k -1 ( I / O §  ( ~ ) )  where in each 

case the b o I M,  l, 0 is taken at the right-hand end o I the i. Both lengths lie between 

two Lk-~ .  s 

We begin with some pre l iminary  observations.  We abbrev ia te  k -1 to  ~, a nd  

we shall be working to errors 0 (~ ) .  Our il. 2 are going to have lengths  of order ~, 

and  we are to ignore a to ta l  length  0 ((~t) in  b, absorbable  in E. We therefore s tar t  

from a b 0 which is inside B by  an  a m o u n t  5�89 a t  each end. We then  consider a 

decrease of b from b 0 of a m o u n t  L e. Ins ide  this stretch, which we will call I ,  we 

can ignore stretches of length  0 (~ (~t) (absorbable in  E). I n  par t icular  we m a y  de- 

crease an  " i n c o n v e n i e n t "  ini t ia l  b 0 by  a n y  conven ien t  a m o u n t  L ~ 5  ~. 

Next,  the  var ia t ions  of M, V*, P,  Q, over an  I are O (k -A) (Lemma 31), which 

is very  small  compared with 5t; the upshot  of this  is t h a t  we can effectively sup- 

pose M =  M (bo) , etc., over I ;  the appl icat ions of this principle will be made more 

or less tac i t ly  to avoid fur ther  complicat ing a ra ther  tangled  story. 

The posi t ion N '  of the Le mma  is determined,  for each b, by  Fp. 4 If  No is the 

N '  for b=bo, ~ ' ( F p ,  b0, No) lies between V * - 2 ~  a nd  V * + M + 2 ( ~ .  Le mma  31 tells 

I Taken signless throughout, as are R P, R' Q', etc. below. 
2 (1) Recall that N'  is determined by l~p (for each b), (2) the definition of R" is consistent 

with that of P '  and Q'. 
s The complications, and in particular the different powers of ~ involved, arise because (i) we 

wish the excluded intervals to be a small proportion of B, (ii) as a result of this, the behaviour 
when b is near an end of an i is rather extreme. 

4 We suppose throughout that a single representative I~p or I'Q is selected, for each b, from 
the two (small) sheaves of possible ones. 
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Q 

V* + b�89 

V* 

V* - 2 ~  V*- 2b t 

Fig. 9. (i) b belonging to B1; (ii) b belonging to B v 
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us t h a t  a decrease e ~  of b f rom b0, (i) leaves  N '  n o t  ea r l ie r  t h a n  No from then  

and  dur ing  subsequen t  decrease,  1 (ii) decreases  ~" (F~, N')  b y  a t  leas t  L ~ .  u If  now, 

for b0, ~ '  (Fp,  No) is above  Q, t hen  a su i tab le  decrease  L ~  t of b will  b r ing  i t  be low 

Q - 5  ~ (but  wi th in  0 ( 5 t ) ) .  If ,  on the  o the r  hand ,  P ' ,  for  b0, is be low P + O ~ ,  a sui t -  

able  decrease  L ~ 5  ~ will  br ing  ~ '  (Fp,  No) be low V * - 2 5  ~ (bu t  wi th in  0 (6�89 I n  th is  

case, b y  L e m m a  28, a n d  (i), the  N '  of F~ is now a t  N 0 + 2 ~ ;  and  if we then  shif t  

to  t he  new b0, a n d  t ake  the  d i a g ra m wi th  t he  a p p r o p r i a t e  new N ' ( = N 0 +  2~) ,  we 

shall  have  P '  (sl ightly) be low Q -  ~ .  We may accordingly suppose (by absorption in E) 

that /or b=b  o P'  lies between P + ~  and Q - 5 i .  s 

F o r  th is  (new) b 0 le t  R be a va lue  in P < _ R < Q ,  a n d  le t  FR be a I ~ of S* with  

(N) = R. W e  shall  p rove  now t h a t  

(a) t 

F R has its U' not earlier than No. 

1 If we were dealing in increasing b this could fail, and our discussion would be even more 
awkward than it is. 

The (~ ~ t  (N') form of Lemma 31 is available. 
a The completion of the diagram, and division into two cases, depends on, and awaits, the dis- 

cussion of Q'. 
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Taking this momentar i ly  for granted we may  then define (consistently) R' = 79' (FR, N0). 

Then we have further, for any two R, R 1 of (P, Q) 

(b) L .  R R I - k - ~  < R' R~ <~ .  R R I  + k ~. 

(b) follows from (a) and Lemma 30, and we turn to the proof of (a). With the 

notat ion of Lemma 30, and F I = F R ,  F 2 = F e ,  let U'_ be a t  N' ;  we have to show 

tha t  3['>>_No. There are two cases: (~) R - P < k - i ;  (fl) R - P > k - i .  

Case (cr By Lemma 30 we have 

~ '  (FR, N')  - lq' (r~, N' )  = O (k-~). (1) 

I f  N ' < N 0 ,  then on the one hand 

19'(F~, N ' ) = l q ' ( F p ,  N o ) - M + O ( D k - ~ - ) < _ ( Q - 6 ~ ) - M + O ( D k - ~ ) <  V * - 6  ~, (2) 

and on the other U~ is a t  N' ,  so tha t  

~ '  (Fn, N ' ) >  V * - O + O ( D k - � 8 9  (3) 

Since the combination (1), (2), (3) is impossible, (a) is true in case (:r 

Case (fl). By Lemma 30 (c) U'_ is U~ and N_>N0 as desired. 

This is all for a single b 0 for which P '  satisfies P0 + 5~ < P '  < Q -  o~" We now 

let b decrease through I .  Abbreviate I ]9' (Fe. Q, No) to ]9~. Q. By Lemma 31 lq~, ~ 

descend with the same constant velocity O(bo) (with respect to kb), to error O(k-A), 

and their difference remains constant, to this error. This constant we denote by  

l(b0); l(b) lies between two L's. 

Further,  as we have seen, N '  will not jump to the left of No, and, after (a), 

FR has its U' not earlier than N ' (  >--NO); this is true in particular of I'Q. 

Let  us suppose, momentari ly,  tha t  19~ starts below and within O(~ �89 of the 

value Q, then over a stretch of length e ( ( M -  1)/O (b0) + 0 (5t)) from b 0 ]9~ and ~ lie 

between P + 5  ~ and Q - 6  ~. Since N '  has not jumped to the le/t it follows from 
t t t 

Lemma 28 tha t  N '  (determined by Fe) is still No, and ~0e and Zoo can be identified 

with P ' ,  Q'. We have accordingly P ' ,  Q' lying in the range (P, Q); we are in ease 

(i), and the stretch of b is an i x. 

As b continues to decrease there ensues a stretch of length 0 (e6~), which we 

consign to E, beyond which ~ is below V * - 2 5  t. Next  comes a stretch of length 

e (l/O+O (6~)) during which ]9~ remains above the value P +  ~ ,  ending by  being only 

1 We do not have P'= ~p unless N', determined by Fp, is still NO for the new b. 
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t P t 

0 ((~�89 above .  As  before,  N' = N o ,  and  ~p ,  ~Q are  iden t i f i ed  wi th  P', Q'. P', Q' are  

accord ing ly  d isposed  as in case (ii), a n d  the  s t r e t ch  of b is an  i 2. 

The  ensues a s t r e t ch  of l eng th  O(eS�89 consigned to  E ,  a f t e r  which  ~r is jus t  

below V * - 2 ( ~ ,  a n d  ~ is an  a m o u n t  l + O ( ( ~ ) > L  lower still .  W e  m a k e  a f resh 

s t a r t  f rom here,  wi th  new b 0. I t  is b y  now clear  t h a t  the  new No is t he  o ld  one 

+ 2 g .  The  d iagram,  based  on the  new No will  be case (i); moreover  we are  in t he  

s i tua t ion  m o m e n t a r i l y  t a k e n  above  as  s t a r t i ng  po in t  (with new bo, N'). W e  can now 

r e p e a t  t he  processes descr ibed,  and  a l i t t l e  ref lec t ion  will  convince the  r eade r  t h a t  

we have  es tab l i shed  al l  t he  resul t s  set  ou t  in  t he  Lemma .  1 

w 53. There  are  fu r the r  deve lopmen t s  for  case (ii). Consider  a po in t  R be tween  

P a n d  Q, and  a FR of S* wi th  ~ r  a n d  le t  us def ine 2 R ' = ~ q ' ( F R ,  N ' ) .  F o r  

FR we have ,  a f te r  L e m m a  32, t h a t  U~ is no t  ear l ier  t h a n  N ' ,  t h a t  RR' ,  QQ' 

cross a n d  shr ink,  w i th  error  0 (k-A), as do RR' ,  P P ' .  W e  recal l  t h a t  in case (ii) 

Q ' <  V * - 2 ~  ~, P ' > P =  V*+5 ~. Since a cont inuous  s t r eam of FR exis ts  for p<_R<_Q, 

i t  follows b y  c o n t i n u i t y  t h a t  t he re  is an  R 0 = V,  such t h a t  R0 = V*. There  is a (small)  

range  of possible  V,; we suppose  t h a t  a un ique  r ep re sen t a t i ve  is se lec ted  for  each 

b (of a n  i2). 

Nex t ,  V,  lies be tween  P + ~ } ( =  V*+5�89 ~) a n d  Q _ ( ~ t ( =  V*+M-(~�89189 

F o r  if, e.g., R 0 = V,  < P + ~ we should  have  R 0 P < (~}, R0 P '  < ~" R0 P + b -  t < (~ 5~ + Ic- ~), 

and  so 

r * = R o > P ' - ( ~ � 8 9  V* + ~ � 8 9  ( ~ � 8 9  + k-~)  > V*, 

a cont rad ic t ion .  The  o the r  case is s imilar .  

W h e n  b decreases  t h r o u g h  i2, V,  decreases,  to  e r ror  O(Ot), f rom Q+O (5t) to  

P + O  ((~). (The speed is a c t u a l l y  a p p r o x i m a t e l y  cons tan t ,  t hough  we shal l  no t  p rove  

this.)  

W e  are  now in a pos i t ion  to  p rove  

L E M M A  33. Suppose bEB 1. Then i/ R belongs to the range "R, or V*+Oi<_R <_ 

V*+M-(~�89 FR3 has its successive U, U', ... at N , N + l p ,  N + 2 ( ~ p )  . . . .  where 

p = 2  ( 2 n -  1 ) g = 2  ( N ' - N ) .  

t 

z The suffix 0 in NO is scaffolding for the proof, and disappears from some of the statements 
of the Lemma. 

For the statements about R', note that the b o of (a) and (b) may be any b of an i z or i2- 
2 Consistently with the definitions of P ' ,  Q'. 
a Recall that there is a small sheaf of FR for a given R; the various results are true which- 

ever members of the sheaf or sheaves are taken. 

6 -  573805. Acta mathemaCica. 98. Imprim6 le 18 novembre 1957. 
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I[ R, R t belong to }~, then FR, Fn, quasi-converge; that is to say y ( F a , ) - y ( F R ) = 0 ( ~ )  

and y (FR,) -- ?) (I~R) = 0 (~) ]or large t. 

For b E B 2 there are two cases: 

(~) I[ R belongs to ~ ,  or V*+O�89 V . - ( ~ ,  then FR has its successive 

U, U', ... at N , N + ~ p ,  N + 2 ( ~ p )  . . . . .  

I /  R,  R 1 belong to ~ ,  then FR, Fa, quasi-converge. 

(fl) I /  R belongs to }~, or V. + ~t <_ R <_ V* + M -  ~�89 then FR has its successive, 

U, U', ... at N, N+~pI ,  N+2( IT1)  . . . .  where p l = p + 4 ~ = 2 ( 2 n + l ) g .  
1 

I /  R, R I belong to ~ then Fa, Fn, quasi.converge. ~ is a proportion 1 - L ~1~ at 

least o/ (V*, V.), which has length at least ~ .  ~ is the same proportion at least o/ 

(V.,  V*+ M), which has length at least (~. 

The last clause is a consequence of what was proved above. 

I t  will be enough to take the more difficult b E B~, for which the argument is 

easily adapted to b E B 1. 

We begin by  proving the two addenda: 

(a) In  (o~), /or all R o/ ~ ,  U'n is at N',  and ~'  (Fn, N') and V'R lie in a range 

(V*+ L 8!, V . -  L ~ ) ,  and so in ~ diminished by L ~ at each end. 

(b) In  (fl), /or all R o/~p, U'n is at N ' + 2 g ,  and Y' (Fn, N '+2 r r  and V'R lie in the 

range (V. + L (~�89 F* + M - L ~ ) ,  and so in ~ diminished by L ~ at each end. 

I t  will be enough to take the slightly more complicated (b). The range ~ is 

(T, Q), where T =  V. + ~l. By Lemma 32 [RRI and R" R~ cross and shrink] T' lies 

between two values V* - L (~t, and Q' lies between T'  - cr Q T and T' - L .  Q T. Since 

Q T = Q V ,  - ~ > (~�89 - (~ > L (~, it follows by easy calculations that  Q' + M and T'  + M 

lie in (V. + L ~�89 V* + M -  L ~t), and for an R of T Q R' + M lies in this interval, to 

error k-S, so that  (with new Z) 

V. + L(5i <R" + M < V* + M - L ~ i .  (1) 

Since by Lemma 32 U~ is not earlier than N',  it  follows from Lemma 28 that  

u '  N '  ~ '  N '  ' R is at  + 2 ~ .  Then (FR, + 2 ~ )  and VR are R ' + M + O ( D k - � 8 9  and they 

satisfy (1) with new L. This proves (b). 

After (b) we use, for case (fl), a diagTam based on N ' +  2 ~ for the right-hand 

ordinate, or N + p l .  [In case (~) we use N ' = N + p . ]  Since R' is in the diminished 
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V, + 5t 

V. 

Q ' + M  

V.  

V* + 5�89 

V* 

V* - L5  i 

V* - L5  t 

V ~ 

T" 

, Q '  

Fig. 10. 

~ ,  the  UR nex t  a f ter  U~ is a t  N ' + 2 p l ,  the  nex t  U~ is a t  N ' + 3 p l ,  and  so on; 

also (R') ' ,  which we call R "  is ~9 (Fro N + 2 Pl), and  so on for R ' " ,  . . . .  The V~, V~' . . . .  

corresponding to  the  U~, U~ . . . .  differ f rom R' ,  R " ,  .. .  b y  O (Dk-�89 and  lie inside 

a diminished ~ .  S tar t ing  now f rom a pair  of F 's ,  FR, FRI, we can app ly  L e m m a  30 

in its A V form. We  have  

[ v(m+I)R,  - -  V~+I)] < ~ I Vc~)R~ - v(Rm)[ + ~, 

f rom which i t  follows t h a t  

V (m) -  v ( rn )=o  (~) for  large m. (2) 

I t  remains  to  deduce t h a t  y ( F a , ) -  y (FR) = 0 (~) and  ~ (FR,)-- y (Fn) = 0 (~) for  

large t. I Since (2) is t rue  for all large m, it  is enough, a f ter  L e m m a  25, to  prove,  

in the  no ta t ion  and  contex t  of w 46, etc., t h a t  A V =  0 ($) implies w ( Z 1 ) = O  ($). We  

m a y  suppose (normalizing) t h a t  w (Z1)> $~ (else we have  w h a t  we want) .  Then b y  

L e m m a  24 

1 The conclusion is "obvious", but it happens that it was not convenient in earlier Lemmas 
to record just the combination required. 
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c (U1) ~ Lk�89 w (U1) ~ L k w  (Z1). 

The  quas i - ident i t ies  (2) a n d  (3) of w 46 combine  to  give 

e (U~) = - A  V+O(w(U~)), 

and  from this  a n d  (3) - A V = c (U1) (1 + 0 (k-�89 

[A g [>  Lc(U1)> Lku,(Z1)  , 

so t h a t  w (Z1)< ~, as  desired.  

(3) 

w 54. Theorem 1.1 For b E B 1, when R E}~, Fs  converges to a periodic F o/period 

( 2 n -  1)2ze. For bEB2, when R E ~ ,  FR converges to a periodic F of period ( 2 n -  1 ) 2 g ;  

when R E ~  it converges to a periodic P o/ period ( 2 n + 1 ) 2 ~ .  

Before going on to  t he  proof  of th is  some r e m a r k s  a b o u t  t he  scope of i ts  re-  

sul ts  m a y  be welcome. The  theo rem proves  a t  once (af ter  L e m m a  29) t h a t  for  b E B  1 

the re  is a sheaf of F ' s  in  a n y  S* which  al l  converge  to  one of a set  2 of 2 n -  1 wi th  

per iod  (2 n -  1)2 z~ and  t h a t  for b E B z the re  is one sheaf  converging to  one of a set  of 

1" of per iod (2 n -  1) 2 g,  a n d  ano the r  sheaf  converging to  a set  of per iod  (2 n + 1) 2 ~.  

I t  is fa i r ly  clear  t ha t ,  roughly speaking, and in some sense, most t r a j ec to r i e s  behave  

in  one of these  ways  (for b E B 1 -{-B2). To make  th is  s t a t e m e n t  precise would  give a 

good dea l  of t rouble ,  and  i t  would  be of doub t fu l  va lue  since a n y  pa r t i cu l a r  formula-  

t ion  would  p r o b a b l y  seem r a the r  a r b i t r a r y )  W e  shall  be content ,  therefore ,  to  ske tch  

the  general  set t ing.  

I n  t he  first  p lace  i t  is clear f rom the  work  of L e m m a s  6 to  9 t h a t  we could,  

if cal led upon,  prove  t h a t  F ' s  sa t i s fy ing much  wider  condi t ions  ( than  s t a r t i ng  in an  

S*) sooner or  l a te r  en te r  an  S or S ' .  Nex t ,  the  l " s  of an  S can be classified, in  a 

fa i r ly  n a t u r a l  way,  b y  the i r  y(Zi) 'S.  The L e m m a s  connect ing  w (Z1) and  c(U1) 

(which is more  or  less - A  V) for a mesh go to  show, a n d  could be deve loped  to  

do so r igorously,  t h a t  a smal l  p ropor t ion  of the  possible range  of V, or  i t s  near  

equ iva len t  ~ (I ~, N) ,  which range  is a p p r o x i m a t e l y  (V*, V* + M),  corresponds  to  a smal l  

1 For convenience of reference we recall: R and r n  are defined in w 52, r n  being a 1 ~ of S* 
defined in w 24 with ~ ( 1  ~, N)=R. ~ is V* +~�89 <_ R <_ V* + M - ~  �89 ~a is V* + ~  <_R <_ V.-~'Is; ~# 
is V, + (~2/s _<R _< V* + M - ~�89 The very fundamental V. is discussed in the Introduction, and defined 
in w 53. The integer 2 n - 1  is 2 (N'-N)/2~z, and N'  is defined (for each b) in Lemma 31, w 51. 

"Convergence" means that both y ( F R ) - y  (r)  and y (I~R)-# (F) tend to 0. 
s The set consists of displacements by 0, 2 z~, . . .  (2 n - 1 ) 2  z of a single F. 
a Because so much would depend on how the initial conditions were weighted. The full truth 

is probably that, all trajectories except a nowhere dense set in the phase space behave so. 
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proportion of the range of the y(Z1) in an S. Thus a classification in terms of 

R = ~  (P, N) inherits the "naturalness" of one by y(Z1), and this classification by 

R is tha t  used in the theorem. Finally the ranges ~ . ~  of R are the total possible 

ones, with small diminutions. 

w 55. Proo] o] Theorem 1. I t  is enough to prove that  if F1.2 quasi-converge 

and have all their V1. 2, V~.e > V*§ ~, then they converge strictly. For suppose this 

proved, and consider the part, sufficiently representative, of Theorem 1 about b E B 2 

and R eRp. Our assumption implies tha t  any two FR, FR, (R, RleR~) converge, and 

in particular, since (by w 53 (b)), R' belongs to ~ ,  it  implies tha t  FR and FR (Pl) 

converge. If  then ym is y(FR) at  t=mPl, we have ym+l-y~-->0, ~m+l--~m-->0. If 

(Y, 17) is a limit point of the set of points (y~, ~m), the trajectory F 0 with y= Y, 

~= Y at t=O is clearly periodic. Its R belongs to ~ and by the assumption Fn 

converges to it. 

We have accordingly to prove that  w-~0, w-->0, in the notation of w167 34 et seq. 

We have w=O (~), io=O (~), hypothesis (H) of w 38 is always valid, and we may 

take over Lemmas 13 to 16, about v, in T-form. 

There are two cases: (i) F1. 2 have no intersection beyond some point, (ii) they 

have an infinity of intersections. 

Case (i). Suppose that  w is ultimately positive. Then, first, w 1, which is an in- 

creasing function, must be bounded. Otherwise, we should have, for an arbitrarily 

large G and t> t0 (G ), c-w1< -G,  and so [(W1 of w 

t 

w=woe-T § -r f (co-wl) er dt 
0 

to t 

0 to 

By Lemma 13 (a) the first term is less than a constant independent of G, while 

for $>k  -1 the second is less than -Lk-XG,  so that  w is ultimately negative, a con- 

tradiction that  shows that  w I is bounded. Since w > 0 and ~b is bounded, we must 

have w-->0; and then w-->0 since 9) is bounded. 

w Case (ii). Let  the intersections be In, n = i ,  2 . . . . .  and wn=w(In). In the 

first place we have for any t in In I~+~ 

Iwl<DIw lk*. tl) 
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For,  taking t = 0 a t  In,  and  supposing ion and  w non-negative,  say, we have  

t 
w=e -r  f (~v~-Wl) er dt 

0 

t 

<_ion e- r f er dt  < D k �89 go n, 
0 

by  (b) of L e m m a  13. 

Consider now the  r .m. f rom In+l, t aken  as t = O ,  up to  t ime t = l ,  or till we 

reach In,  whichever happens first. I f  w is, say, non-negative,  we have f rom (W3) 

[w 35], with 50=~bn+l 

(' ) w~-~>_io.+, f e - ~ d t - L  f f f  e-~'c+~',-',d~o~,Tdr �9 (2) 
~0 0<~_<~9_<C_.< t 

The triple integral  _< 

and the  second factor  < D k  -�89 b y  L e m m a  14. Hence,  f rom (2), 

t 

W~--I~ Wn" +1 er f e - r d t ,  
0 

and  in part icular  In  is no t  reached before t = 1. A t  t = 1 we have  

1 
> 1 - f e - r  elk W(1)_~Wn§ T(1) d r >  1 �9 . Lk-1 ,  - - ~ W n + l  " 

0 

W (1) > e Lk  ~3.+1" 

On the  other  hand  this w (1), being a w of In  In  +1, satisfies (1), or [ w (1) I -< D k t [ ~bn I" 

H e n c e  ] ion+l  I __~ 1 [ ~)n [. 

We have now wn-->0, and so, f rom (1), w->0  uniformly.  Final ly  w mus t  also 

-->0 since 0) is hounded.  Thus  F1.2 converge, and  the  proof is completed.  

w 57. We now take  up the  postponed proof of L e m m a  31. I t  is more  con- 

venient  to  take  the inverted form in which ~q' (N')  is g iven the  same for the two 

F ' s  and we have to  prove ( ~ ( N - 2 ~ ) = O ( b ) k ( ~ b + O ( k - A ) .  We use F1 for the F 

with b, F2 for t h a t  with b+~b, and  YL ~ for their y's. We abbrevia te  k -1 to e. 

N - 2 ~  
Since ~ ( N - 2 ~ ) + ~ ' ( N ' ) = ( 2 b - . ~ ) k +  f gdt  (1) 

N" 
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N-2zt 

we have ~ ( N - 2 z t ) = 2 k c ~ b +  f t)gdt. Let  N ,  be the nadir (~-------~rt) between 
N" 

Z,  and Zn+ 1. Let  N, be the last N .  in the long descent such tha t  y > l + k  -~ for 

N,  ~ t_<N~, where ~ = ~ (the index has to be between 1 and ~). We shall find tha t ,  
Ml ~--2~ 

f Ogdt and f ~gd~ are negligible. 
~' Nv 

/v, 

We begin by disposing of f ; this is crude. In  the first place, E is a time 

O(Dk -�89 after iV' and f gdt=O(Dk-�89 for each of F1, 3. To this error we may start  
N* 

at  the later of the two ~. From this point to N 1 we have (for each I') 9 = O ( 1 )  

[Lemma 11], and so, by the @-identity. 

F (y) = F (~) + b (p, (t) - p, (E)) + O (e) 

= F (H) + b (p, (t) - Pl (Z0)) + 0 (D e), 

since ~ - H = 0 (D e), ~ - Z o = 0 (Dk-�89 Hence 

~ F (y)=O (O b) + O (De)=O (D e), 

and so, since y > l + L ,  ~ y = O ( D e ) ,  and so 8 g = O ( D e ) .  Thus 

and so 

f 8gd t=O(Dk- i ) ,  
M" 

N~ ~/--2= 

~ '~ (N-2~)=2k(~b+ f~gd t+R+O(Dk- �89  R= f ~gdt. (2) 

Consider now the range (N 1 N~). In  an intermediate (Nn, Nn41) w e  have 

t 

F(y)=bpl+cn-e (@+ f gdt) 
1%, 

(1 < n _ < ~ -  1; Nn~t~Nn+s), (3) 

where 

Nn+l  

and we abbreviate f to 
~n 

Cn+t--Cn= --8 f gd$, 
(n) 

f . Also, writing ~ / = y - 1 ,  we have, by Lemma 3 (3) 
(n) 

(4) 

9 + b p/ f  = 0 (e T-u). (5) 
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I t  follows from (2) tha t  

~ ~ ( N -  2 z~) = 2 k,~b + 5 (kc~)- ~ (kc,) + R + O (D k,-i). (6) 

We begin with ~ (]r The formula (3) is actually an identi ty for all t. Taking 

n = l  and t = U '  we have 

F ( - 1 ) = c l + b - e { v ' +  b k ( 1 - p z  (U'))} + e  f gd t  
U" 

= C l + b - s V ' + 8  f gd t -~8  f@dt. 
U" _~' 

In this V ' -  ~'  (N') = 0 (Dk-t) ,  f = O (Dk-t) .  Hence 
U' 

~V 1 

5(kcl)= - kOb+O(Dk- �89  f 8gdt  
.y," 

= -k~b+O(D]c-J) ,  (7) 

since we saw above that  the integral last written is O(Dk-t) .  From (6) and (7)we 

have (summing up for convenience of reference) 

5 ~ ( N - 2 ~ ) = k ~ b - ( ~ ( k c , ) + R + O ( D k - � 8 9  R =  f ~gdt.  (8) 

Thus, apart  from the discussion of R, the calculation of ~ is reduced to tha t  of 

(k c,). Our method for this is to operate with ~ on (3), (4), (5), with ~b satisfying 

0<_ -k~b<_L r 

w 58. Consider the range, 7~, say, from N I up to N,, or up to the first moment 

when ]~Yl = A e~ -1, whichever happens first. Here A >  1 is a number that  will ulti- 

mately be chosen to be a certain L 2 (itself depending on the "given" L 1 of the Lemma). 

Among the consequences we shall deduce from the hypothesis tha t  I~yl_<Ae~ -1 in 

is an inequality which, when the substitution A = L  2 is made, yields I ~ y l <  

~L2e~ -1 (in R). I t  follows that  I~yl=Ae~7 -1 is not the first event, so that  R ex- 

tends to N~, and further tha t  I~yl<12L2e~ -1 in (N 1, N,). We suppose, tacitly as 

usual, tha t  the upper bound k 0 = k 0 (8, A) is rechosen to suit the argument; with the 

final substitution k 0 becomes a normal k 0 (~). 

We begin by recording some results for later convenience. In the range R we 

have, writing ~n for y ( N , ) - 1 ,  



~ S~E~AL ~QUATIO~ # + k / (y) ~ + g (y) = b k p (9), ~0 = t + :r 

_2 
~l=y-l>_k ~; I~vl=lOyl_<A,v-~; ~+aOv~L~ for 0<va_<l .  

f ae , f = o = 0 (log ~?~) = 0 (log k); ~ = 0 (~/;') = 0 (k~); J 7 '  (1;3) = 0 (k~). 

(n) (n) (n) 

89 

(9) 1 

(10) 

The first par t  of (9) is t rue  by  definition; the second by  definition; the th i rd  

by  the  f i rs t  and second)  

We have in (Nn, Nn+x) 
t 

F(y)-F(1)=(F(Nn)-F(1))+b(I  +p~)-e(y)-?)(N.)+ fgdt), 
~n 

and so 

~?' > L (F  (y) - F (1)) > Lv~ + L Min ((t - Nn) ~, (t - Nn+l) 2} - Le,  

f rom which the  results of (10) follow by s t ra ight forward  calculation. 

w 59. We now operate on (3), (4), (5) wi th  (~, observing t ha t  1 / ]  ( y ) = 0  (v-l), 
+ ~ ~? > L~?, and so 1 / ]  (y + ~ y) = 0 ( - 1 ) ,  (~ (1//)  = 0 (~-~ ~ ~?). Operat ing on (3) we have 

t 

/(y)(~y+O((~y)~)=pl~b+~c~-~ f 5gdt -e~) .  (11) 

Operat ing on (5), we have 

( ~  = 0 ((~ b~ -1) + 0 ( ( ~ .  ~-~) + 0 (~ ~?-2) = 0 (A e ~?-3). (12) 

Also (~r/) ~ = 0 (A 2 ~2 ~-2), 

t 

and I f g tl<L fl  ldt<LA  l t<LA log k, 
/v n (n) (n) 

by  (10). Subst i tu t ing from these and (12) in (11) (and combining the  worst  elements 

of the  errorsS), we have 

(~ y = (~ b (Pl//) "~- ~ Cn//"~- 0 ( i  2 e ~ ?-4 log k). (13) 

Nex t  we have,  operat ing on (4), 

8(kc~+~)-~5(kc~)= - f Sgdt= - f (g'~y+O(eSy)~)dt. 
(n) (n) 

1 N u m b e r i n g  of formulae  is consecutive t h r o u g h o u t  the proof of L e m m a  31. 

And  (to men t ion  it  for once) by  a reehoice of k 0 (L, rS, A). 

s So as to have a single er ror- term.  
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Substituting for the O y's in this from (13) we have 

O(kc.+~)-O(kc.)(1-e fcp(y)dt)+e}b f Xd t  
(n) (n) 

by (10), where 

= 0 (A s e s log k) f ~l" dt = 0 (A s e k-~ log k) 
(n) 

(y) = g ' / t ,  x = p ,  g ' / t  = p~ 9 .  

(14) 

(15) 

Now fgdt=O(f~-Xdt)=O(log k), by (10), so tha t  
(n) (n) 

1 - ~ f v dt  = exp ( - ~ y V at)  + 0 (~s log,  k). 
(n) (n) 

(16) 

We have further, by (4) (summing), and (7), 

~n lvn 
(~(lcc~)=~(kcl)- f (~gdt=O(1)+O(Ae) f ~-I dt=O(Alog k), 

~1 Nx 
(17) 

since n =  0 (/r Substituting from (16) and (17) in (14), and keeping only the worst 

e r r o r ,  w e  h a v e  

(~ (kc.+1)-5 (kc . )exp  ( - e  f q~dt)= -Ob f Xdt+O(A2ek -~ log k), 
(n) (n) 

or writing 
t 

~ = ~o (t) = e f cp dt, ~o. = ~ (N.), u .  =e  ~- ~ (kc.), (18) 

U n + I - - U ~ ,  = - O b e  ~"+x f Xdt+O(ASeu -~ log k). 
(n) 

(19) 

In (Nn, N.+I) we have ~ o - ~ . = 0 ( e  log k), and so 

, ~ . + ,  f x a t -  y,~Xat=,,.yO(~logk)Xat 
(n) (n) (n) 

= 0 ( e  log k)e ~. S~-adt=O(ee~n log s k). 
(n) 

Hence, since ~b = 0 (8), (19) becomes 

u.+a-u.= -Ob Se~Xdt+O(A2eeYnk -~ log k). 
(n) 
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Since ~v is increasing, n = O ( k ) ,  and u l = k ~ c l = - k ~ b + O ( D k - � 8 9  this gives 

zV n 

un= - k ~ b - t ~ b  f ev X dt  + O (A2 eV.k-~ log k), 
Nx 

or by (I8), k d b - d ( k c ~ ) = O ,  k d b + O ( A 2 k - ~  log k), (20) 

~r n 
where O~ = 1 §  -vn +ee  -~n f eVXdt .  (21) 

-Nl 

In this y, is positive and increasing, and (since ] p, I -< 1) ~ ] X ] _< e g ' / /=  ~, so that  

~r n 

ee - ~  f e V X d t  lies between _+(1-e-~n), and SO 

I t  follows from this and (20) tha t  

We now have from (13), 

2 e -v.  _< 0,, -< 2. (22) 

(ken) = 0 (1). (23) 

I$y I<Le~I - I  + Le~I-I + LA2  (8 ~ ~1-3 log k)~ -1, 

in which e~/-3 log k~<~k-~ log k, 

t __1 
so that  [ ~ y[ < (L' + L '  A ~ k ~ log k) e 7/-1, 

where L '  and L "  depend on L 1. I f  we take A = 3 L "  in this we have [ O y l < ~ L ' ~  -~= 

-~Ae~ -1. Then, as explained above, ~ extends to N,, and we have, from (8) 

and (20), 
~ - 2 n  

5 ~ ( N - 2 z e ) = O , k ~ b + O ( k  - l  log k)+ f (~gdt. (24) 
iv, 

~ / - 2 n  

w 60. We now consider R =  f J g d t  (returning later to the further calculation 

of E)~). The curve F 1 between N~-I and N,+I has an equation of the form 

F (y) = C + b (1 + p~) § 0 (e), 

and (since 1 §  = 0 at  N's) this must also be of the form 1 

I W e  w r i t e  ~ ( N v _ l )  f o r  F (y ( N ~ - I ) ) ,  e t c .  
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F (y) = F (N,-1) + b (1 + Pl) + 0 (e), 

and  we must  also have F (N, )=  F (N,_I)+ 0 (e). By  the definition of N ,  ~ takes a 

value _< k -~ somewhere in (N~, N,+I). On the other hand, since N,-1 is in ~, we 

have a t  Nv-1, 

~> k -~', ]8~I<L~-~ <Lk~'-I, ~+ O~I> Lk -~'. 

Since F - F  (1 )~L~*,  it follows by  straightforward calculation tha t  

and 

F ( N , _ I ) -  1, F ( N , ) - I ~ L k  -2r _4 - L k  ~, 

Next,  we have for the t ime from N, to N - 2  

(25) 

(26) 

3 
( N - 2 g ) - N ~ = O  (k~). (27) 

For over an intermediate stretch (Nn, N.+I)  we have 

Hence 

Nn+l 

I 
Nn 

gdt> M +o(1)> L. 

F ( N . )  - F (1) = (F (N,) - F(1) )  - ~ (~)(Nn) - # (N,)  + f g a t )  

4 
<Lk ~ - e ( - L + L ( n - v ) ) ,  

1_4- 
b y  (25). The left-side being non-negative, we have n - v < L + L k  7, which is equi- 

valent to (27). 

w 61. We now employ another "A-argument" ;  this t ime the final choice of A 

is a D. We consider the range ~1, from 2Vv up to t = v ,  where ~ is the earlier of 

N - 2 ~  and the N of U2, N O say, 1 or else the first moment  when I(~yl=Ak -~, 
whichever happens first: we shall find tha t  v = N - 2 ~ .  

We have in ~l- 

t 
1 

f(~gdt=O(Ak -�89 ( t -N , )=O(Ak  ~), (28) 

by  (27). Also, operating on 

1 This  is t e m p o r a r y  n o t a t i o n ,  a n d  N o is n o t  b e t w e e n  Z 0 a n d  Z 1. 
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t 

/r 

and using (26), (27), and (28), we have in ~1, 

1 
F (y) = 0 (e) + 0 (cA k-~)  = 0 (e). (29) 

From this we shall deduce that,  in R1, 

[Oy]=]OT[<D~k-�89 (30) 

We have (in R1) ~/, y + 0 7  > - D k - i ,  and we distinguish four cases: 

(i) 7, ~/+~/_>0; 

(ii) 7 , 7 + 0 7 - < 0 ;  

(iii) ~/_>0, ~+0~/_<0; 

(iv) 7_<0, 7 + ~ / _ > 0 .  

In (i) OF= f /(l+~)au~ f L u d u ~ f L u a u = L ( 0 7 ) ' ,  
~ 0 

and (30) follows from (29). 

In (fi) ]07]~[~§247 

In (iii) we must have ~ <Dk-�89 because if ~ > D '  k -�89 we should have 

]O(F)I=] f / ( l q - u ) d u ] > - ] f / ( l + u ) d u [ - D k - l > - L ~ l  ~ - D k - I > L L ' k - 1 ,  

which contradicts (29) for a suitable choice of D'. With 7 < Dk - �8 9  we have 

107 f-< I~l + l~ + 071 < L~-~ + D k ~  < D k } .  

Finally in (iv) we have I~1[ < D '  k-�89 Then either 10~/[ < D "  k -�89 which gives what 

we want, or else 7 + 0 7 > ( D " - D ' ) k  -�89 and then 

(D"--D')k -}  (D"-D')k-�89 D'k-�89 

~F_> f l ( l + u ) e u >  f L 'ueu-  f L"u~u 
- -D k - �89 0 0 

D' is fixed in this, and if we choose D"  suitably (large enough), we have 0 F > L D "  k-l, 

which contradicts (29) if, again, D" is large enough. We have now proved (30). 
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w 62. We  now t a k e  A = 2 D I :  then  the  even t  [ ~ l = A k  -~ is not  the  first ,  and  

~1 extends  to  No, and  we have  (30), or  [~y[<Dlk-�89 in ~ r  We have  now 

No 
1 3 1 

f ~ g d t = 0 (D k -~) (N o - iV,) = 0 (k~ D/c-s )  = 0 (D k - ~ ) ,  

and  so f rom (24), t r iv ia l ly  modified,  

~W(No)=O, kOb+O(k-A). 

Next ,  we have  N o_> N -  2 ~. Fo r  otherwise we should have  N o _< N -  4 ~ and  

U 2 a t  No, and  consequent ly  

~ ( P s ,  No) =~r ( r l ,  No)§ kSb+o(1)<~(F1,  No)+O (1), 

which since ~)~ is positive and 0 b negative, 

<_ V 1 - 2 M + o ( 1 )  

<_(V* § M + o ( 1 ) ) - 2 M  § 

< V* - L, 

and  this is incompat ib le  wi th  U s being a t  N 0. We have,  accordingly,  U S a t  N - 2  

or later,  and  
N~ 

~'lq(N-2ze)=O,k(~b+O(k-A),  (9, = 1 + e - ~  + ~e-~n f Xe~dt  (31) 
hra 

w 63. We  tu rn  to  the  eva lua t ion  of 0 , .  Le t  on = 7 - = Y  ( N ~ ) -  1.1 

We  shall need the  result:  

el  = 2 + 0 (D  e), (32) 

where ~ (an L) is the positive root o[ 

F (1 + 2) = ~ - 2 b, (33) 

and  i t  is convenient  to  begin wi th  this.  We  saw in w 57 t h a t  wi th in  a range  L of 

N 1 we have  

17 (y) = F (H) + b (Pl (t) - p~ (Zo)) + 0 (De). 

Subst i tu t ing t =N1, p~ ( t ) = -  1, Pl (Zo)= 1, F ( H ) = ~  in this we have  

a W e  p r e s e n t l y  n e e d  [see (36) b e l o w ]  a n e w  v a r i a b l e  ~o, w h o s e  p a r t i c u l a r  c a s e  ~n h a s  t h e  

v a l u e  ~n.  



95 

F ( l  + o 1 ) = ! a - 2 b + O ( D e ) ,  

and (32), (33) follow. 

w 64. The  equat ion of 1~1 in the  range (Nn, Nn+l), where n < u ,  is 

F (y) = F (1 + 0n) + b (1 + px) + 0 (e). (34) 

Also F (1 + O n + l  ) - -  .~ (1 + On) = -- e f g dr- -  e (~) (Nn+l) - ?) (Nn)) 
(n) 

= - e f g d t + O ( k - a ~  (35) 
(n) 

since by  (5), with t = N~, .0 (N,~) = 0 (e t/~ ~) = 0 (e k2~), and similarly for r (Nn+l). Le t  

the  (periodic) curve 
_~ (y) = ~' (1 + o) + b (1 + p~), (36) 

for  a parameter  o>O,  be y =  Y( t ,  O)= Y( t ,  O; b). Y has a min imum 1 +  O where 

t ~ - ~ .  Le t  

2~ 
(I)(0)= ~ q0{Y(0, t ) } d t  [cp(y)=g ' (y ) / / (y ) ] ,  

o 

2 ~  

(7 (O)= f  g { Y  (o, t ) }d t ,  
o 

(0) =1 (1  +0 )  (I) (o)/G (0), (37) 

2st 
P(o)=f  P~ (t)q~{Y (o, t )d t ,  

o 

J (0) = P (o) (I)-1 (0) ~-~ (0) exp ( f ~ (0) d0) = P (0) f (1 + o) G -x (0) exp ( f ~ (0) d0)" ] 
Q 

The calculations tha t  follow are inevi tably ra the r  long, and i t  will perhaps be 

clearest if we set out  first the " fo rma l"  work, with errors ignored. 

We have,  by  (18), 
2~t 

ifln+i--~0n=e f q~(y)dt~~ f qJ {r  (r t)} dt=edPn, 
(n) 0 

where we abbrevia te  (I)(Qn) to (I)~, and similarly for (7, ~ ,  P,  J ;  we also write 

/~, F~ for / (1 + Qn), F (1 + 0,). 1 B y  (35) 

1 %  the only other function to take a suffix n, is a function of t, with 'Pn =~o (Nn). Otherwise, 
apart from ] and F, where the use is "obvious", the suffix is attached only to functions of ~ with 
capital letter names (tiP, G, ~, P, J). 
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(0.+1-0.) 1. ~ v . + , -  F . ~  - e  fa(y)at~ - ~ f  a{Y(e., t)) at= - ~ o . .  
( . )  0 

(38) 

Hence ~ ) n + l  - -  ]On ~ - -  ( 0 . + 1  - -  On)  (I)" / n  o n l  = - -  ~ ) "  ( e n + l  - -  ~ n )  

On On 

Next  [using (15)] 
2~ 

f Xe'dt~e' .  f Zd t~e ' . f  pl (1)~ {Y (o., t)) dt =-t"...., 
(n) (a) 0 

(39) 

and so, by (38) and (39), 

). 

I x ~ a t ~  - P .  exp (Iaao) t.o~l(o.+l-o.)= - s .  (0.+1- ~.). 
(n) on 

f xe"at= "~ ~ f ~  f J a o ~ f J a e ,  
,N~ 1 (n) ev ov 

So 

and, collecting, we have 

O ~ = l + e - ~ , + e e  -~, f X e ~ d t ~ l + E ( q , ) ( l +  f Jdo) ,  
N1 ev 

E ( e ) =  exp(- .lane), a the root of F ( l + 2 ) = w  
Q 

(40) 

Of the functions of ~, c~, G, f~, P, J, the first three are positive for 0 > 0, and 

near 0 = 0  it is not difficult to show that:  

(I) = 0 (log q), G ~1 = 0 (1), ~ = 0 (t (1 + O) ~P) = 0 (q log q), 

P =  0 (log q), J=O(~ log ~), E• = 0  (1). J 
(41) 

Thus we can finally, with negligible error, replace 0. (which is 0 (k-~)) by O, and 

obtain finally |  0 (b), where 

O(b)=l+E(l+fJ@do), E= exp ( - f a ( ~ ) d 0 ) ,  (42) 
0 0 

where J (~) is defined in (37). The integrals are convergent uniformly in b, and 0 

is continuous: it depends only on the functions f, 9, p, and on b. 
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Fina l ly  Ipll_< 1, so tha t ,  b y  (37) I Pl_<qb, and  

2 a 

flJlae-<E fa 
0 O e 

Hence  b y  (42) 

w 65. We 
(Nn, Nn+l),  Y(~n, t) to  y(n). We  recall t h a t  for  n < ~  

We have,  in (N~, N~+I), a lways  for  n<v ,  

F ( y ) = F ( 1  + e n ) + b ( 1  + p l ) + O  (e), 

~, (y(n)) = F (1 + 0n) + b (1 + ~01), 

and  so ( Y -  Y(~)) l (Y + v~ (y(n) _ y)) = 0 (e), 

97 

2E<_O(b)<_2, and  L<O(b)<_2. 

now t ake  up  the  quest ion of errors. 1 We abbrev ia te ,  for  the  range 

f rom which, a f te r  (10), we can deduce 

y -  y(~)= 0 (e~/-1), 

(43) 

f [ y _  y(n)] d t = 0 (e log k), (44) 
(n) 

and  ~0 (y) - ~ (Y(")) = ( y -  y(n)) ~0' (y + v~ (Y(") - y)) = 0 (e ~/-1.7-2) = 0 (e 7-3). 

B y  (18) 

, t , .+,- , I . ' , ,=ef  q~(y) dt=~ f ~ (Y("')dt+O(~')f~-adt 
(n) 

b y  (10). 

(n) (n) 

= ~ r  + 0 (k-2+~), (45) 

Next ,  by  (35), 

F(1 +e.+I)-F(1 +e,)= - s f g d t + O ( k - ~ )  
(n) 

= - e ~ g ( r ( = ' ) d e + O ( e ) ] l y -  Y(~'l d e + O  _,o ,o (k ~)  = - ~ G~ + 0 ( k -T )  
(n) (n) 

b y  (37), (44), and  g ' = O ( 1 ) .  The  lef t -hand side is 

( ~n+ l  - -  ~n)  I {1  -}- On -'}- "0 ~ (On+ l  - -  ~On)}, 

1 We have tried to reduce this to the minimum needed to produce conviction, and omit some 
minor details of calculations. 

7 -  573805. Acta mathematica. 98. Imprim~i le 18 novembre 1957. 
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and we find successively t ha t  

(0n+I -- On ) = 0 (8 O; 1) = 0 (k--~), 0n+l ~ L 0-, 

-- 8 an  + 0 (k - ~ )  = (0n+ 1 -- On ) !rt (1 + 0 (e0~2)), 

(46) 

_ 10 10 -e=(O=+l-On)/,~a;l+O(k T)+O(eo'~x'O,,'eO~)=(On+I-O,,)/nGV, I+O(k-'~'), (47) 

which we shall use for  t ransforming sums into integrals.  F rom (45), (46), (47), (37), 

and since ap, = 0 (log 0n) = 0 (log k) by  (41), 

~/)n+l - -  ~ l )n  = - -  ( ( ~ n / a n )  ( -- ~ an)  ~- 0 (k - ~ )  = -- n n  (0n§ - 0n) -~- 0 (]r  log k) 

Qn 

= f n d o + O ( ( o . + l - O n )  Max In'l)+o(k-l-A) 
qn+l OnTl<-O<---On 

(48) 

We can repeat  the  a rgument  for  (44) with an a rb i t ra ry  O of (0n+l, On ) in place 

of 0~, gett ing 

Y -  Y (0, t) = 0 (e~/-1); 

and this gives also ( Y (0, t) - 1) -1 = 0 (~/-1) = 0 (0-1). (49) 

Fur ther ,  s ince _F (y )  = p (1 + 0) + b (1 + 201), we have 

/ (1 + o) = t ( r )  a Y (50) 

and so, f rom (49), O---Y=O (0~/ -1 )=0  (1). (51) 
a0  

(49) and (51) enable us to es t imate  the  0-derivatives of the  various functions 

of 0" Thus ,  using (10), we have in (N, ,  Nn+l) 

27t 

o (n) 
2 

P '  (0) = 0 (0 -1) = 0 (kT), (53) 

2n 

similarly G' (O) = fg '  (Y)~dt=O(o  f~-ldt)=O(o l ogo) .  (54) 

0 (n) 

Since / '  (1 + q) = 0 (1), G -1 (o) = 0 (1), we have by  (41) 
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(0) = d (4) / (1 + 0) G-z) = 0 (0 (I)') + 0 ((I)) + 0 ((I) 0 ~ log 0), 
0 

~ '  (o) = 0 ( log o). 

From J = P I ( I + o ) G - X E  - ' ,  g ' = o ( 1 ) ,  (53), (54), and (41), 

g '  (0) = 0 (P '  0) + 0 (P) + 0 (Po  G') + 0 (g) = 0 (log O) = 0 (log k). 

F rom (55), (46), (48), 

qn ~n 

V)n+i--~ I)n= f ~ d Q §  = f f l d o + O ( k - Z - A ) ,  
On+l qn+l 

a 

~, ,= f ~ d o + O ( k - a ) .  
on 

B y  (45) and (41) we have in (Nn, Nn+a) 

y~-v2. -< lp=+z- V. = O  (e log k), 

X e v = Pz (t) q (y) exp [v2. + O (e log k)], so t ha t  

and in this 

99 (y) = 99 (y(n)) + 0 (e 17-' Max 1 99'1) = q 9 (y(n)) + 0 (e e ;  3) = 99 (Y(")) + 0 (k- A). 

This leads [~ is 0 (1)] to  

2~ 

f x e "  d t = O ' n f  p 1 9 9 ( r ( n ) ) d t + O ( k - " ) + O ( e  log k f1991dt)=e,'n Pn +O(k-w). 
(n) 0 (n) 

From this, (47), (58), and Pn = 0 (log k), 

e f x e,' d t  = ( - (0n+l - on) In G~, z + o (k-z-a))  (e 'pn Pn + 0 (k-W)) 
(n) 

11 

= --(0n+I--0n)19,t Gn I P,, (exp ( f a d Q ) + O ( k - a ) ) +  
Qn 

+ o (k -w) 10.,~ - 0. I/.  + o (k -'-w) 

= - Jn (On+, -- On) + 0 (k -A ]On+' -- On ]In log k) + 0 (k -z-A) 

= - J .  ( O . + ,  - O . )  + 0 ( k - ' - a ) ,  

99 

(55) 

(56) 

(57) 

(58) 

(59) 
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by (46), 
Q~ 

= f Jd~+O((~n+l-~,)  ~ Max IJ'D+o(]c -~-A) 
en+l 

~n 

= f JdQ+O(k -l-A) 
On-t-1 

I t  now follows from (21) and (58) tha t  

by (46) and (56). 

O,  = 1 + E (e,) (1 + f Jae)  + o (k-A). 
q~ 

By (41) and Q,=O(k -A) we can replace ~, in this by 0, to the same error. This 

completes the proof of the formula (1) of Lemma 31. 

w 66. If - - k ~ b > ~  we have (returning to the actual notation in Lemma 31) 

lq' ( N ' -  2~,  b+Sb)<'~' ( N ' - 2 g ,  b) -L~ ,  

and this is less than V * - 5 - L S ,  since otherwise ~ ' ( N ' - 2 ~ ,  b ) > V * - ~ + L ~ ,  and 

(for b) U' would be at  N ' - 2 g  (or earlier), contrary to hypothesis. This proves the 

clause of Lemma 31 about N'  not  jumping to the left, and its consequence, tha t  

the formula for 5lq' is valid also at  N'['~'(FL2, N')='~'(F1.2, N'-2xe)+MI.~ to 

error 0 (k-A), and M1-M~=O(k-A)]. 

I t  remains to consider (~ V*, (~ M, ~ 0. 

That  (~ V*= 0 (k -1) is immediate from the explicit formula (Lemma 10). 

M is defined (see w 18) by M = f g ( Y ) d t ,  where $'(Y)=lv(1)+b(l+pl) ,  and 

the integration is over a period, say M = f . Then M= M 1 + Ms, where 
_1~ 

-in+k-�89 ~'~ 

f + f , 

and R is ( - o ! g + k  -�89 -~g-k�89 

We have M l = 0 ( k - � 8 9  ) for all b, and (~Mx=O(k-�89 

In ~ we have ( Y - 1) 2 > L (F (Y) - 2' (1)) > L z 2, where v is the distance of t from 

the nearer of - � 8 9  so that  Y - I > L v > L k - � 8 9  / ( Y ) > L k  -�89 We now have, for 

a range of b including the given one, 
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aM~ = ~ Y  a Y  /" l + p l  

R R R 

Then r -�89 and so finally [~MI<Lk-�89 
I < < 2 - -  1---L]C-1.  This in- We prove f inal ly  t h a t  ~ O = O ( k - ~ ) ,  in  the  range v ~ _ b _ s - 1 0 0  

cludes B 1 and  B~, and  could, of course, be extended to the  whole of B if necessary.  

I t  is enough %o prove the  result  for 0 _ < -  k6b_< 1L I (since we can make a fresh 

s ta r t  a t  ~L 1 for �89 1 to L1). Let  b 0 = b, b 1 = b + 5b, b 2 = b + L~ k- l ;  let 0o = 0 (be), 

7)o = ~ '  ( N ' - 2  ~, be), and  similar ly for suffixes 1, 2. Then  we have 

~ - ~ o  = ]c (bl - be) 0o + 0 (]c-n), ~ _  ~ o  = ]C ( b ~ -  be) 0o + 0 (k-  n), 

and  so by  sub t rac t ion  ~O~ - %01 = ]C (b2 - bl) 0 o + 0 (]c-n). On the  other  hand  %02 - ~ = 

k (b 2 -  bl) 01 -~ 0 (It-A). Hence ]C (b~-  bl) (01 - 0o) = 0 (k-A) and  finally 0 1 -  Oo = 0 (]c-n) 

since ]C (b~ - bl) _> 1 L1" 

w 67. We come now to the s tudy  of the non-s table  mot ions  when b EB2. ~ The 

lay-out  of w167 34-56 was designed for the long proof of "convergence",  and  what  we 

now require sometimes calls for minor  var ian ts  t h a t  would  have u n d u l y  complicated 

the  account .  Where the s i tua t ion  a nd  a rguments  are reasonably  famil iar  we will 

abbrevia te .  

In  what  remains  of the paper we use U for a ny  arr ival  a t  y = l  from an  S*, 

gap-free before t h a t  point ,  and  similarly for U' .  V a nd  V' have the  usual  associated 

meanings .  If  necessary we call the  U with V_> V * - ~  the " t rue  U".  ~ 

The locus y = Y (~), or 

F(- I)-F(Y)=~-F (Y)=b (l -PI (~9)), (l) 

consists of three  d is junct  periodic curves CI.2.3 as in fig. 11. (Compare fig. 2 of the  

In t roduc t ion . )  C1 and  C~ are each a t  least dis tance L from y =  1. 

L E M ~ A  34. Suppose that a F o[ an S*" has a U' at y =  - l ,  near N ' ,  or Z o o/ 

fig. 4, and with V ' >  l x * - 2 6  �89 , and let Z1, Z2 . . . .  be (as usual, /or given Zo) 2zr, 

4 zt . . . .  later. Then F emerges /rom I Y ] < 1 at latest near ZI; it crosses y = 1 with 9 > L k, 

and then shoots up to near C~ and begins a long descent. 3 

1 We suppose from now to the end that b 6 B2. 
The new U's generally satisfy inequalities like V _> V* - 2 ~�89 and are "nearly" true U's; or, 

again, they are true U's for enlarged gaps. I t  is obvious that we could meet all  requirements by 
rochoosing $ to be e.g. the cube of the original one, altering the dependent D's etc. accordingly. 

s (i) N'  and Z 0 are the same time abscissa, under different aspects. (ii) The extremes of be- 
haviour (subject to ~'>_ V*-2  ~�89 are: on the one hand to enter S* (Zo); on the other to approach 
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y= H Zo ZI 

y = l  

Fig. 11. 

C O t t O L L A R Y .  At  Z~ and Z a we have 

lY (z2,~)-HI < Ll k -', lY (Z2.3) [ < Ll k -~, 

when L~= Max (a, {(4 V* + 1 4 ~ m ) / / ( H ) } ) ,  m =  Max Ig[ /or an eventual F, and a is 

the A 1 o/ Lemma 3(5) with d = m i n i m u m  o/ y - 1  /or C 1. [Thus F enters S* (Z2) and 

s* (z~)]. 

W e  wri te  ~ y = y + l ,  ~ ( ~ I ) = F ( - 1 ) - F ( y ) = ~ - F ( y ) .  

t 
Then  y) = V' + k {(2 - F (y)) - b (1 - PI)} + f ( - g )  dr. (2) 

u" 

This shows t h a t  be tween C 1 and  C2, where  t he  cur ly  b racke t  is posi t ive,  we have  ?) 

posi t ive  a n d  of o rder  k excep t  near  C 1 a n d  C2, so t h a t  in pa r t i cu l a r  t he  las t  clause 

of the  L e m m a  follows f rom the  " ~ > L k "  one. 

Le t  l be a smal l  L.  W e  have  two cases: (i) F gets  above  C~ + 1 [C~ t r a n s l a t e d  

upwards  b y  l] a t  t o before Zo; (ii) F does not .  I n  (i) we have  t F > L  and  ?)>Lk  

C 1 near Z 1 (as the Lemma asserts), but without entering S* (Z1); then S* (Z~) is the first S* entered, 
and Z a the first Z later than the place of the S*. This should explain the r61e played in what fol- 
lows by Za. We are approaching a study of the "delta", and spreading out is natural. 
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f rom t o and  unti l  y =  1 or unti l  F re turns  to  C2 + l, which last  is clearly impossible.  

This disposes of case (i). 

Case (ii). I ~ remains  below C+. + 1 up  to  Z 1. We will show t h a t  

Zl 

- f g ( Y ) d q ~ > L .  (3) 
2r 

I t  will t hen  follow t h a t  if L is chosen small  enough, 

Zl 
f ( - g ) d t > L .  

U" 

(4) 

For  (3) we observe  tha t ,  since - F  and  g are odd and  increasing funct ions  of  

y in - l < y < l ,  we have  - g ( Y ) = h ( F ( Y ) ) ,  where h is odd and  increasing. B y  (1) 

-g (Y)=h(c+bp~(cp) ) ,  c = ~ - b > 0 .  

Since Pl (~ + 7e) = - Pl (q), we have  

f g(r)e : f {h (c + bpl (~)) + h (c - bp, (q~))} dqz 

The  large b racke t  is posi t ive since c > 0 and  h is increasing, and  the  value of the  

integral,  depending as i t  does only  on b and  the  f ixed functions,  is > L, as desired. 

We  now have  (4). Take  t = 0  a t  ZI, and  consider the  range  It] _< k-~. I n  this  

we have  

b k ( 1 - p l ) = ~  ba2kt2 + O (k-~). (5) 

Hence  f rom (2), (4), and  V ' >  V*-2(~�89 we have  

~ > V* + L + k (U~" ( 9 ) - l  ba2t2). (6) 

We now dist inguish the  cases 

(~) 90 = 9 (Zl) >- 0, 

(fl) 9o < 0. 

Rr Case (~). B y  L e m m a  4 [ 1.~] we have  9 ->u ,  where 1 

it = V* + L + k ( ~  (u) - ~ b a 2 t2), u (0) = 0; 

i W i t h  a n e w  L s l i g h t l y  s m a l l e r  t h a n  t h e  o l d .  
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and since ~F is increasing in - 1  _< y_< 1, we have further ~ > ~ so long as y <  1. The 

transformation u=c]g -�89 z, t = 7  ]g-�89 x of w 13 gives 

d z  
d--~ = 1 + L +  kTc -1 ~ (c]g -�89 z) - x  2, z o = O, 

and in this ]g~c-lVtZ=z2+O(k-�89 Hence, up to t=]g-~ or z = ~ ,  whichever hap- 

pens first (and this makes y <  1) we have 

dz  - - >  l + L + z 2 - x  2. 
dx  

1 _1( 
By Lemma 5 we have z=kg for some x < L ,  or t < L k  ~ <]g- , and so also 

~ > i e = L ( d z / d x ) > L k !  at  a t ime O(]g -~) at  most  after  Z 1. As in Lemma 8 this is 

followed by an increase of 9 to L]g in a short time, so tha t  case (a) is disposed of. 

Case (fi). We consider the r.m. from Z 1 (as t = 0 )  to t=]g-~. With ~ = - $  the 

r.m. satisfies, 

~> V * + L + ] g ~ F ( - ~ ) - ~ b a 2  ]gt2, ~o= - ~ 0  ->0" 

By Lemma 4 ~>v, 

> ~, where 

and, since ~ F ( - ~ )  is increasing for positive increasing ~, also 

i ~ = V * + L + k ~ t J ' ( - v ) - l b a ~ k t  ~, % = 0 .  

Transforming and using Lemma 5 as before, we have O > L k  ~ at  a t ime O(k-�89 and 

this involves a crude rush to a large y in a short time. Thus (ii) (fl) is impossible, 

and the proof of the Lemma is completed. 

Taking now the Corollary we have y >  1 + d in (Z 2 - 1, Zs), where d is ~ Min ( y -  1) 

for C 1. By Lemma 3 (5) 

]Y (Z2. 3)[--~ a ]g-1 _<i~ ]g-i, 

where a is the A 1 (d) concerned. 

Next,  by (2), we have, since F ( - 1 ) = ~ = F ( H ) ,  

Z2, 3 
F ( y ( Z 2 . 3 ) ) : F ( H ) + k - I ( V ' - ? ) ( Z 2 .  a ) ) - k  -1 f gdt ,  

U~ 

[ F ( y ( Z 2 , 3 ) ) - F ( H ) [ < L l k  -1, L l = 2 V * + 7 z e m ,  (7) 

where m is max ]g] for an eventual trajectory.  Since y(Z~.a) is near H, we have 
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IF (y (Z~. 3))-  F (H) I = I(Y (Ze. 3 ) -  H) ] (H + v a (y (Z2. 3 ) -  H)} 

->ly (z~. 3 ) - H i  1 / (H) ,  

and  the  f i rs t  i nequa l i t y  of the  Corol la ry  follows f rom th is  and  (7). 

w 68. L~ra~aA 35.  (i) Two F of S*(Zo) with U's together, and with the same 

V, where V > _ V * - 2 O  �89 diHer by 0(~)  at Z 1. (ii) I[  F I of S * ( Z  o) has a U 1 at N 

VIE V*-2(~ �89 and  i /  F 2 starts at Z o with the sameyo, and I?)0(F2)-~jo(F~)[_<2L* 3 ]c - l~  

then F 2 has a U s at N with V 2 - V 1 = o ( 1 ) .  

(i) Normal iz ing  to  w ( Z 1 ) > 0  , suppose  t h a t  w ( Z 1 ) > ~  , t he  n u m b e r  def ined in  

L e m m a  24. There  is no in tersec t ion  to  U 1, a n d  - A e o  > 0, and  b y  L e m m a  24 

c (U1) > L k w (U1). (1) 

W e  have  also (2) a n d  (3) of w 46, g iv ing  

c (U0 = - A V + 0 (A o) ,  (2) 

w ( u 0  > L[ A o [.2 (3) 

Since A V =  0 these  th ree  are  incompat ib le ,  a n d  we infer  t h a t  w (Z1)_< ~ .  

(ii) W i t h  t h e  w, T,  c n o t a t i o n  a n d  origin a t  Z o we have  c o = ~b 0 a n d  I,b01 ~ 2 L~ k -  1. 

We  have  

t 
w = e - T f  (dr o -- Wl) eTdt. 

0 

Unt i l  Iwl=l~bol, or t = Z  x+ 1, whichever  happens  first ,  we have  

2n+l 
Iw~l<-L f I~olat<Ll~,ol, 

0 

t 

and Iwl<Ll~,ol e-~" f e ~'dt. 
0 

Since yl. 2 > l + L ,  and  so T > L k ,  th is  gives  [wl<Lk-X[~bol<l~bol. So t = Z 1 + l  hap-  

pens  f irst ,  a n d  I w [ < i k  -~ [zbol<Lk -z u p  to  Z ~ +  1, and  in pa r t i cu l a r  a t  Z~. I n  w h a t  

follows we m a y  suppose  [w(Z1) I >~*  and  $2 of L e m m a  22; in the  oppos i te  case easier  

a rgumen t s  l ead  to  a f inal  V 2 -  V 1 = 0 ( ~ ) .  Then  b y  L e m m a  22 (d) we have,  up  to  

U_, the  ear l ier  of the  t rue  U 's  of I~l. 2 

x These results, stated for true U's, are true for any U's with v>L (or V> Vo+L ). The proofs 
need no real change, but it should be noted that  the result "t ~)]> L near U" that  is culled on is 
specifically established for u U with v>L in Lemma 11 (5). 
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in part icular  

And by  Lemma 24 

_ 3  
IwI.<L]c�89 ~, 

Iw(U_)]<L]r 

e (U_) <Llcw  (Z 1 )< L k  -1. 

(4) 

(5) 

There is evidently a good deal to spare, and it  is not difficult to deduce (by argu- 

ments we have used before) that ,  whether F~ is above or below F1 near U1, F~ has 

a U S within L k  -1 of U1, and then (see w 46) tha t  

A V = - c ( U 1 )  + O ( i  (D) = - c ( V l )  + O ( w  (U1) )  = o (1)  

as desired. 

w 69. Consider a continuous stream of I ~ from an S*'  arriving a t  iV', or Zo, 

on y = - l .  We shall say tha t  a F of the stream "goes through G'"  if it has a U' 

with V * - 2 5  �89  ~, and tha t  F1.2 go through the + and - ends of G', 

if V ~ = V * + 2 5  ~, V ~ = V * - 2 5  �89 . Similarly for a G. For G, or G', we have similar 

definitions, but  with a gap V, __2 5 �89 

We now recall Lemma 33 and its addenda (a), (b). These (in inverted form) lead 

to the following consequences. 

(i) F1.2, and more generally, F's  o/ the stream with V' between V*+5  �89 and 

V* + 2  5 ~, or between V * - 2  5 ~ and V * - 5  ~, all miss all subsequent gaps. 

(ii) For a G' F 1 behaves as follows. I t  shoots through to a E near N' ,  Z 0' makes 

a long descent, and has its true U 1 a t  an iv with I V - N ' = 2  ( 2 n - 1 ) n ,  and ~ l ( iv )  
2 1 

lies between V* + L 5~ and V, - L 5 ~. 

By (2) of w 67 with t = Z  a (as p1=1 ,  3 = o ( 1 ) )  we have 

k ( F ( Z s ) - F ( H ) ) =  V* + 2 5 � 8 9  +o(1) ,  

where C= f g (Y)dq~ (the integral being taken over a period of the curve C1). Hence 
Ct 

Fx crosses the ordinate a t  Z a at  a point, Q1 say, with ordinate given by  

y (I~l, Za)  - H = k -1  (V* + 2 5 �89 - 3 C) / / (H)  + o (k-~). (1)  

(iii) F 2 behaves as follows. I t  makes a dip, shoots through near Z I, and enters 

S* (Z2), by  Lemma 34 Corollary. By  Lemma 33, addendum (b), it has its true 
1 2 

U S at  1V+4~,  with V , + L S ~ < ~ ( I V + 4 ~ ) < V * + M - L 5  s, and consequently has 
1 2 

V,  - 2 M + L 5~ < ~ (iV) < V* - M - L O s .  
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The calculation for Q2, the  point  of F~ a t  Za, gives 

y (F,, Za) - H = k -1 (V* - 2 5 �89 + M - 2 C ) / / ( H )  + o (k- l ) ,  (2) 

and incidentally 1~2 is above 1~1 from Z a to  U s (since w (Za)> ~ ,  and there is no 

intersection). 

The relations of the ~ql and ~2 are appropr ia te  to  G1, G. and  G 2 being in the 

delta described in w 29 of the  In t roduct ion,  and  a t  the  r ight  places, of fig. 6 of the 

In t roduct ion .  There is now, by  continuity,  a sub-s t ream of the  original one th rough  

G', a " t u b e "  of l~'s cut t ing  the  Z a ordinate between Q1 and  Q2, inclusive, with one 

(at least) t h rough  each point  of the segment.  1 No F s tar t ing inside the  tube  a t  Z a 

can cross U z b y  m o r e  t h a n  0 (~); consequent ly  all I ~ of the tube have their true U not 

earlier than N .  The value of ~ (N) for such a 1 ~ tells us, in the  light of L e m m a  28, 

just  where the  t rue  U is3 We observe fur ther  t h a t  for cont inuously  vary ing  1 ~ V 

varies cont inuously  so long as v = 0 is no t  involved,  and  this does no t  arise in wha t  

follows (all V concerned being >_ V* - 2 b-~ > V 0 + L). 

The final upshot  is as follows. There are segments gl, g,, g.  (disjunct) of Q1 Q2 

The "sub- tube"  th rough  ~1 arrives, after  a long descent, a t  N and  "goes th rough  the  

G 1 there" .  Similarly for g, and g. :G~ and G. are a t  N + 2 ~ .  The streams " t h r o u g h "  

G1, G 2 are similar in all respects (except for inversion) to  the  original one " t h r o u g h "  

G', and  the  process repeats,  a The s t ream " t h r o u g h "  G. consists of "norma l"  F (not 

near a V-gap); it arrives, after  a long ascent, a t  a new N' ,  ( 2 n - 1 ) ~  beyond  

N + 2 7~. I f  A V, A V' represent differences for the  extremes of the  G. s t ream we have 
2 

[Lemma 30 (e)], I A V ' [ > L  A V > L ~ s .  Since this is large compared  with 2~$�89 the  G.  

s t ream "sur rounds"  the  G' a t  N ' ,  and there is a sub-s t ream " t h r o u g h "  the G', and 

the  process repeats f rom there. 

We have now, as described in w 30 of the  In t roduct ion ,  a U which passes " t h r o u g h "  

all the G and G' [ the G., G'. are intermediaries] of any  possible "s t ruc tures"  built  

f rom the  triple alternatives t ha t  occur at  successive G or G'. Given such a s t ructure  

there is, in the first instance, after  our  discussion above, a s t ream th rough  the  G, 

G' of any  finite piece - X_< t_< X of it. The max imum set S (X) of r.p. corresponding 

to  F with this property,  is bounded,  and closed, and  shrinks as X-->oo; it mus t  

1 We "begin" at the "last" (from rl)  through Q1 and "end" at the "first" through Q2- 
2 For example, if "~ (N) lies between V* - M + 2 ~ and V* - 2 (~ the true U is at N + 2 ~, whore 

v-~ (~v+2 ~)=o (1). 
a The new (e.g.) gl on Z3 will not be an exact inversion of gL. 
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possess at least one limit-point, which corresponds to a F through the structure from 

- c ~  to c~. 

w 70. I t  remains finally to show that  where the structure is periodic, there is 

a strictly periodic P with the structure. This calls for a topological argument. 

We may start the "period" at any G or G'. Suppose, to fix ideas, tha t  G' is 

followed by G,. W e  take the Z a associated with the initial G' (6~ beyond it); and 

we take as representative point coordinates of a F ~ =y (Za)-  H, ~ =Y (Za). 

Consider first a continuous stream 1 from an S'  through the first G', and the 

g, at  Z a explained in w 69. There are F's  of the stream through the + and - ends 

of G 1 (and going within ~ of the + and - ends of gl, and so of G1), with r.p.'s 

P+, P_, say. Take now the rectangle ~ (see fig. 12) in the (2, ~) plane bounded 

by ~=2(P~)=2_~ ,  and ~/= ~Lak -1. By (6) of the proof of Lemma 30 [ "w(Z , )>  

L k - l l A  V I"] the F of the stream with V = V* has a ~ = 20 such that  ( ~ 0 - ~ + ) / ( 2 - -  ~0) 

lies between L's  (it is actually nearly 1), and the 2 of a F of the stream for which 

V > V * + ~  '~ is at  least distant L ( ~ 0 - 2 +  ) from ~_. By Lemma 35 (ii), the F be- 

longing to 9~ on the ordinate through such a ~ have V's differing from the one of 

the stream by o (1). These F's  have V > V* + ~ and miss all subsequent G, G'. Hence 

we have a vertical dotted line at  least L 1 (X Y) to the right of X Z, to the left of 

which the F 's  all miss all G, G'; and there is a similar region on the right. 

We now abandon the stream we started with, and consider the open set • of 

all points of 9~ representing F that  go strictly through G,, the G and G' of the 

period of the structure, and finally through the G 1 at G 1 + p, where p = 2 m ~ is the 

period. By what we have just said, it lies between the dotted lines. Since a F through 

an end of a G, G' misses the later ones, the boundary of Z consists of 

(i) a set of intervals, like HR, on X Y and Z W, taken open; 

(ii) a closed set B+ of r.p. of F that  go through the § end of G l §  having 

gone strictly through earlier G, G'; and 

(iii) a corresponding set B_. * 

The set of F corresponding to any path in ~ from P+ to P_ must have a 

member through the § end, and one through the - end, of G l §  There must 

therefore be at least one continuum, like H K J ,  extending from X Y to Z W, con- 

sisting of B+ points, and a similar one for B_; and there must be a consecutive 

* This is used for some construction, and later discarded. 
B+ and B_ are not necessarily composed of continuous curves, but this does not affect our 

argument. 
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Fig. 12. 

p _  

pair, with opposite signs, as H K J ,  M N ,  part boundary of a domain A contained 

in ~; A is shaded in the figure. The boundary of A may further have pieces which 

are continua of B+ or B_ points, like R S T, U V. We show next that  A is simply- 

connected. Suppose that  this is not  so. Then there is a simple closed curve C in A 

containing points of the frontier of A in its interior as well as its exterior domain. 

Let E be a component of the frontier of A in the interior domain of C. I t  consists 

entirely of B+ points or entirely of B_ points, B+ points, say. Then there is a closed 

connected set E + I ( E )  of points not belonging to A consisting of E and possibly 

one or more domains whose frontiers belong to E. I t  will be sufficient to prove that  

there is a continuum E l of B+ points such that  E 1 meets E and is not contained 

in E + I ( E ) .  Points of E 1 and E belong to the frontier of A and are connected in 

the frontier and so E is not a component of the frontier and we have a contra- 

diction. 

Now the F corresponding to a B+ point of E + I (E) goes strictly through the 

+ end of G l + p ,  i.e. its V at G l + p  is V*+2~ ,  having gone strictly through the 

earlier G, G'. The values of t at  G 1 + p for all the B+ poiats of E + I (E) have a least upper 

bound ~. If  v is small enough and v - < t ~ + v  there will be a F with r.p. inside C 

going strictly through the earlier gaps and arriving at G 1 + p at  time t with V = V* + 2 

(reverse the F with the appropriate t, ?~ derived from t, V). The r.p. is a B+ point, 

and by (iii) is exterior to E +  I (E); the range (v, ~ + v) provides an enlargement of 

E +  I (E) by a continuum E 1 containing exterior B+ points, as desired. F is accord- 

ingly simple-connected. 
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The transformation T from P, (~, 7), to P ' ,  (~', 7'), where ~' = y (Z 3 + p) - H,  

7'  =Y (Za+19), is topological in A. We shall show tha t  there is a fixed point of T 

in A, which then corresponds to the desired periodic F. Suppose there is no fixed 

point of T in A. Then a continuous vector, or arrow, P->P',  exists for all points 

P of A. Now the disposition of the arrows a t  boundary points of A is a follows. 

I f  P is a B+ point, T P (considered as a point of ~ a t  Za) corresponds to a F' through 

the + end o/ (the /irst) G1; /urther since F is in S* (Z 2 + 19) [Lemma 34], it has arrived 

at G 1 /rom an S*. By Lemma 35 (i) its r.19. is distant 0 (~) /rom P+. The arrow from 

such a P points nearly a t  P+. Similarly for B_ points. A boundary point on X Y 

corresponds to a F through all the G, G'; hence its I~)(Za+19)l<L~k-~=~o, by 

Lemma 34. T P  has accordingly I~] <70, and the arrow from such a P has a down- 

ward component. Similarly one from a boundary point on Z W has an upward one. 

I t  follows from these facts, and the continuity of the arrow in A, alone, tha t  when 

P describes a simple closed contour whose max imum distance from the boundary 

of A is small, the arrow rotates either through + 2 g or - 2  g (which it  is depends 

on the disposition of the signs on the two continua joining X Y, Z W, and the sense 

of description). This is incompatible with there being no fixed point in A. 

E R R A T A  

CORRECTIO~S TO THE PAI'ER: "On non-linear di//erential equations o/ the second 
order. I I I .  The equation ~ ] - k ( 1 - y 2 ) ~ + y = b l ~ k  cos ( ~ t + ~ )  /or large k, and i~ gener- 
alizations" BY J.  E. LITTLEWOOD: 

Page 277, line 11 Read O ( A ( d ) k  -1) /or O ( A ( d , d ' ) k  -1) 
286, line 16 should read 

U" 

v '+  v =  - ( l - 2 b ) ~ -  I ydt, (1) 
u 

299, Fig. 5 (V* + M)'  should be higher. 


