The transformation T from $P,(\xi, \eta)$, to $P^{\prime},\left(\xi^{\prime}, \eta^{\prime}\right)$, where $\xi^{\prime}=y\left(Z_{3}+p\right)-H$, $\eta^{\prime}=\dot{y}\left(Z_{3}+p\right)$, is topological in $\bar{\Delta}$. We shall show that there is a fixed point of T in Δ, which then corresponds to the desired periodic Γ. Suppose there is no fixed point of T in Δ. Then a continuous vector, or arrow, $P \rightarrow P^{\prime}$, exists for all points P of $\bar{\Delta}$. Now the disposition of the arrows at boundary points of Δ is a follows. If P is a B_{+}point, $T P$ (considered as a point of \mathfrak{H} at Z_{3}) corresponds to a Γ^{\prime} through the + end of (the first) G_{1}; further since Γ is in $S^{*}\left(Z_{2}+p\right)$ [Lemma 34], it has arrived at G_{1} from an S^{*}. By Lemma 35 (i) its r.p. is distant $O(\zeta)$ from P_{+}. The arrow from such a P points nearly at P_{+}. Similarly for B_{-}points. A boundary point on $X Y$ corresponds to a Γ through all the G, G^{\prime}; hence its $\left|\dot{y}\left(Z_{3}+p\right)\right|<L_{3}^{*} k^{-1}=\eta_{0}$, by Lemma 34. TP has accordingly $|\eta|<\eta_{0}$, and the arrow from such a P has a downward component. Similarly one from a boundary point on $Z W$ has an upward one. It follows from these facts, and the continuity of the arrow in $\bar{\Delta}$, alone, that when P describes a simple closed contour whose maximum distance from the boundary of Δ is small, the arrow rotates either through $+2 \pi$ or -2π (which it is depends on the disposition of the signs on the two continua joining $X Y, Z W$, and the sense of description). This is incompatible with there being no fixed point in Δ.

ERRATA

Corrections to the paper: "On non-linear differential equations of the second order. III. The equation $\ddot{y}-k\left(1-y^{2}\right) \dot{y}+y=b \mu k \cos (\mu t+\alpha)$ for large k, and its generalizations" by J. E. Littlewood:

Page 277, line 11 Read $O\left(A(d) k^{-1}\right)$ for $O\left(A\left(d, d^{\prime}\right) k^{-1}\right)$
286, line 16 should read

$$
\begin{equation*}
V^{\prime}+V=-\left(\frac{4}{3}-2 b\right) k-\int_{U}^{v^{\prime}} y d t \tag{1}
\end{equation*}
$$

299, Fig. $5\left(V^{*}+M\right)^{\prime}$ should be higher.

