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1. Introduction 

i.~l. In recent years many  papers have been concerned with pairs of extremal 

problems which are conjugate in the sense that  the extremal values are the same 

[1, 5, 6, 7, 11, 12, 13, I6]. The conjugacy is usually related to the conjugacy of the 

Lebesgue classes L~ and nq where p-  1 + q- 1 = 1 ; ill the one problem one is maximizing 

an Lp norm, in the other minimizing an i q  norm. I t  is now well known tha t  the 

conjugacy of such problems and the existence of extremals can be derived from the 

Hahn-:Banach Theorem and related results. In  this process the following converse of 

Cauehy's Theorem is of great assistance: I f  W is a region whose boundary C consists 

of a finite number  of analytic Jordan  curves, and if g is a bounded measurable func- 

tion defined on C such tha t  f g o ) = 0  for all differentials eo analytic in the closure of 
C 

W, then g represents p.p. the boundary values of a function analytic in W. A proof 

of this theorem is given by Rudin [12] for the case of plane regions, and the theorem 

can be extended to Riemann surfaces. In  the present paper  a ra ther  more general 

theorem of this type is proved for Riemann surfaces (Theorem 2.2 and its corollary), 

enabling a greater variety of extremal problems to be handled. 

In  studying the conjugate extremal problems it is convenient to consider sepa- 

rately the cases l < p <  co, p = l  and p = o o .  The last two cases seem to have the 

more direct significance on Riemann surfaces, but  special difficulties are apt  to arise 

in their discussion. An account of the case in which the maximal problem is of type 

p =  1 has been given in [11]. The present paper  deals with the case in which the 

maximum problem is of type  p = oo, but its results are of greater variety owing to 
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the use of the more powerful form of the converse of Cauchy's Theorem which is 

referred to above. 

i .2 .  We begin by  introducing terminology and notat ion which will be used 

throughout the paper. W is a region of a Riemann surface W0: the closure W of W 

is compact,  and its boundary consists of a finite number  of analytic Jordan  curves 7j. 

I t  is known tha t  W is conformally equivalent to~ the surface obtained by  identifying 

pairs of sides in a polygon 

t 1 ! I r t 

in the complex plane, whose sides are analytic arcs [8]. To the sides x~ there cor- 

respond on W certain closed curves which we shall denote by  ~ (i = 1 to p ) : t o  the 

sides x~ there correspond closed curves which whe shall denote by  ~+v ( i=  1 to p): 

and to the sides mj there correspond the boundary curves 7s. I t  is easy to construct 

a closed l~iemann surface of genus p which contains W and for which the ~ (i = 1 

to 2p) form a canonical homology basis. I t  therefore involves no further l imitation 

on W to assume from the s tar t  tha t  W0 is a closed Riemann surface of genus p. 

We shall refer to curves ~,  ~+p as conjugate members  of the canonical homology basis. 

In  what  follows it is fundamental  tha t  for each value of j (j = 1 to q) there 

exist (i) a region Gj of W0 containing Fj, (ii) an annulus a <  I z] < b in the complex 

plane with a < 1 < b, (iii) a one-one conformal mapping of Gj onto the annulus such 

tha t  Fj is mapped  on the circumference U of the unit  circle. To show this we remark 

tha t  the s tandard theorems on the mapping of planar Riemann surfaces [8] ensure 

tha t  any planar region of W 0 containing 7j can be mapped  one-one conformally onto 

a plane region. Such a mapping takes ~,j onto an analytic Jordan  curve J in the 

plane. The interior of J can now be mapped  on the interior of the unit  circle, and 

since J is analytic this mapping can be extended across the boundary.  Combining 

the two mappings we obtain one which has all the required properties. 

The region Gj and the associated mapping are not  in any  way unique, but  it will 

be convenient to fix our a t tent ion on one such mapping in relation to each of the ~r 

Taking ~ to be a variable point  of Gj we shall always denote this mapping by  

�9 =2j(z) and call i t  the j-th annular mapping. We may  clearly suppose tha t  the 

points of Gj in W correspond to points inside ra ther  than  outside the circle U, and 

tha t  the curves ~ do not  intersect any  of the Gr The region Gj together with the 

mapping v =2j(z) define a local coordinate system valid on ~ .  This will be referred 

to as the ~-th annular coordinate system, and G~ will be called the j-th parametric 
annulus. 
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We shall describe a function g (~) defined on ~ as being of L-character on ~ if 

for each of the annular mappings ~:=~s(z) the function g[Pj(e'~ belongs to the Le- 

besgue class L(0, 2g). Moreover g('c) will be said to have bounded variation on 7 if 

each of the functions g[Ps(el~ has bounded variation over (0, 2~z): and g(~) will be 

called absolutely continuous on ~ if each of the functions g[~.j(ei~ is absolutely 

continuous in (0,2~).  Given a function /(~) defined on W and a function g(v) de- 

fined on ~j we shall say that  /(T) takes the boundary values g(v) on ~j if 

lim / [Pj (re'~ = g [;tj (e'~ 
r - + l  - 

for almost all 0 in (0, 2~). If this happens for all the ~s we shall say t h a t / ( ~ )  takes 

the boundary values g (~) on 7. 

We recall tha t  a function /(z) is said to belong to the class H~ (0 < p <  oo) if 
2 ~  

it is analytic in ]z] < 1 and if f if(re'~ is bounded for 0 ~< r <  1: and that  /(z)is 
0 

said to belong to the class Hoo if it  is bounded and analytic in I z l <  1. Now let ] (~) 

be a function defined on W. We shall say that  /(T) belongs to the class Hp(Tj) if 

f [;tj (z)] = g (z) + h (z) where g (z) is analytic on U and h (z) E H~. I t  is to be observed 

tha t  in making this definition we are interested only in the behaviour of / near the 

boundary ?j and do not  insist on analyticity throughout W. To that  extent  it  is not  

a direct generalization of the class H~. An equivalent formulation of the defining 

property is tha t  l[~j(z)] is analytic in some annulus a < i z  I < 1 and 

2~ 

f I1 [4, (re'~ I dO = 0 (1) 
0 

as r-->l: for a function analytic in such an annulus is, by Laurent 's  Theorem, of 

the form g(z)+h(z) where g(z) is analytic in ] z ] > a  and h(z) in  ] z I < l ,  and the 

equivalence follows from Minkowski's and related inequalities ([15] p. 67). If f (~) E Hp (?j) 

for all j =  1 to q we shall say tha t  ](~)E H~(7); and if in addition ] is analytic in 

W then we shall say that  f E H~ (W). 

We shall also say that  a differential d g, defined on W, belongs to the class 

K~(?s ) if dg=Gdh, where dh is a differential analytic on ?j and GEH~(?j) .  This is, 

in fact, equivalent to saying that  dg E K~0,j) if in terms of the j th  annulus para- 

meter  
dg = [F (z) + G (z)] dz 

where G (z) is analytic on U and F (z)E Hp. If d g E K~, (~) for all j = 1 to q we shall 
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say that  dg E Kv(~,). In the applications to Riemann surfaces considered in the present 

paper we are concerned only with the cases p = 1 and ~ .  

t . 3 .  The following properties of functions ](z) belonging to Hp are known or are 

corollaries of known theorems (see, for instance, [15] pp. 157-163). 

(i) l i m / ( r e  ~~ exists p.p. and is an integrable function of 0 over (0 ,2z) .  We 
r--~l  - 

denote it by /(do). 

(if) If / (z) E H v and / (e *~ E L q where p < q ~< ~ then / (z) E Hq. 

(iii) If / (d  e) is of bounded variation and / ( z )=  ~ anz ~ when Izl<l, then the 
n = O  

real and imaginary parts of ~ a= e ~ne are Fourier series of functions of bounded varia- 

tion. Hence ([15] p. 158) ](d ~) is absolutely continuous. 
2 : t  2 : t  

(iv) lim flf(rr176162 if 0 < p <  ~ ,  and as a corollary f/(e~~176 
r - - > l -  0 0 

if 1 ~< p ~< c~ (that is, we may use the boundary function [(e ~~ in applying Cauchy's 

Theorem). 
z 

(v) If p ~> 1, the function F (z) = f [ (z) d z has continuous boundary values F (e~~ 
0 

and [ (e i~ = d F (e~~ (e~~ 
I t  is convenient also to quote here a criterion of Smirnoff [14] for a function 

to belong to H~. 

If / ( z ) = .  t. g~ ),w)_aw, - ~ where g is  integrable on the unit circle U, then [(z) (vi) 
U 

belongs to H v for all p <  1. (A proof of this result will be found in [10].) 

The following properties of the classes H~ (~s) are immediate consequences of (i), 

(if) and (iii). If [(3)eH,,(~,j) then 

(vii) [ (3) has boundary values on ~j in the sense defined above, and the bound- 

ary function is of L-character if p~> 1 (when 3 is on ~j we shall use [@) to denote 

the boundary function); 

(viii) if [(3) is bounded on ~ then [@)e  H~o (~);  

(ix) if [(3) is of bounded variation on ~j then it  is absolutely continuous on ?r 

If d[EK~,(?j), then by definition d[=Gdh where G6H~,(~,j) and dh is analytic 

on ~.  When 3 is on ~j we shall use d[(3) to denote G(v)dh(3) and call this the 

boundary differential of d[. We derive from (iv): 

(x) if d]EKv(?j) and p~>l then f d [  may be handled by Cauchy's Theorem as 
rj 

if d/ were analytic on ~j. 
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2. Boundary value theorems 

2.1. In  this section we prove the criterion, referred to in the In t roduct ion ,  for 

functions defined on 7 to represent  the bounda ry  values of analyt ic  funct ions;  and 

we derive some more specialized results from it. The proofs depend on properties of 

normal  differentials of the third kind on closed Riemann surfaces, which we summa-  

rize in the following s ta tement  (for more detailed information see [9]). 

On the closed Riemann  surface W 0 with the canonical homology basis :r (i = 1 

to 2p)  let eo~. be the  differential of the third  kind which is analyt ic  except  for 

poles of residue 1, - 1  a t  3, T 0 respectively and which has vanishing :r 

(i = 1 to  p). Then the Principle of Exchange  of Argument  and Pa ramete r  states t ha t  
a T 

f ~o~. = f ~o,~. : and it follows that ,  in a region obtained from W 0 by  making  suitable 
ae .~ 

cuts, both  sides of this equat ion represent a funct ion of z which is analyt ic  except  

for logarithmic singularities at  a, a 0. The period of to,,. a round an a rb i t ra ry  analyt ic  

J o r d a n  curve has a constant  discont inui ty  across the curve but  is otherwise analyt ic  

as a funct ion of v. In  part icular  the ~-per iod of to= is a branch of an Abelian 

integral of the first kind. Finally,  suppose t h a t  in terms of a local coordinate system 

e o ~ . = M ( v , z ) d z .  Then for each value of z the  funct ion M ( v , z ) h a s  a removable  

singulari ty a t  v 0 (where it is undefined) and a simple pole a t  the  point  with local 

parameter  z; it is otherwise analyt ic  in the region obtained by  cut t ing W 0 along 

the ~ :  and d M (v, z) is an analyt ic  differential in W 0 except  for a pole of the  sec- 

ond order a t  z. I n  the  apphcat ions of this section we take  3 0 to  be a fixed point  in 

W 0 -  W, and  we denote  by  w, the differential r e of the  above summary .  

2.2. T H E O R E M .  Let C be the set o] di][erentials analytic in W o except for poles 

in W e -  W,  and let ]1, ]2 . . . . .  fN be linear ]unetionals on C such that, ]or each i and ~, 

[t (oJ~)e H 1 (~,) and It (to~) ~umps by a constant as T crosses ~j normally. Let g be a 

]unction o/ integrable character on 7 such that f g co = 0 ]or all diHerentials co, analytic 

in W,  which satisfy It (to)= 0 for all i = 1 to N.  Then there exists a ]unction H(T), 

vanishing when v E W e -  W,  which has the ]orm 

N 

H ( T ) = h ( T ) +  ~ at[t(o~), (2.2.1) 
t - 1  

where the at are constants and h@) is a member of H I ( W  ) which decreases p.p. by g 

as 3 crosses ~ in the direction o/ the outward normal ]rom W. 
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Proo]. We first remark tha t  there exists a differential ~ of the form 

hr 

~ = to~ + ~ ], (to~) ~,,  (2.2.2) 

where ~,  belongs to C and is independent of v, such tha t  ], (L~,)= 0 for all i = 1 to 

N when v E W 0 -  W. I t  is clearly sufficient to prove this on the assumption tha t  for 

each value of i from 1 to N there is a differential % E C such tha t  ]J(tos) =~ 0 but  

]~(toj)=O for all k~=?'; for otherwise the problem could be reduced to one with 

fewer functionals. But  then, ff we take 

co, (2.2.3) 
g ~ ,  = . /, ( t o , )  

the differential ~ ,  defined by (2.2.2) has the required property.  

We next  define H(v) by 

,f H (~) = ~ - ;  gf~,. (2.2.4) 

I t  then follows from the hypothesis of the theorem tha t  H ( ~ ) = 0  if "~ E W 0 - W. Also 

f 

i f  which is of the form (2.2.1) where the a, are constants and h ( v ) = ~ - ~ /  gto,. 

To prove tha t  h(v) has the required properties let us first suppose tha t  v ~ yj. 

Let  gj (z) denote g [2j (z)]. If  t is a local parameter  for v then f gto, is of the form 
rj 

f gj(z)/(t, z)dz (2.2.5) 
I ~ 1 - I  

where ] (t, z) is an analytic function of t for each value of z and an analytic function 

of z for each value of t. From this it follows by  a theorem of Hartogs ([4] p. 119) 

tha t  ](t, z) is expressible as a double power series in t and z and consequently tha t  

it is a continuous function of t and z and tha t  it possesses partial  derivatives which 

are also analytic functions of t and z. Under  these circumstances differentiation under 

the integral sign is justified and the integral (2.2.5) represents an analytic function 

of t. Thus h(v) is analytic in W. 
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When v is in the /cth parametric annulus and ?'* k it follows from the above 

that  f g co~ is an analytic function of v. However f g w~ is of the form 

IzJ-1 

where t = ~ l ( ~ )  and /(t, z) again represents an analytic function of both variables. 

Thus in the s parametric annulus h (v) is of the form 

1 ~ gk (z) dz 
2 ~ i  J z - t  

- - - -  -§ G (t) (2.2.6) 

where G(t) is analytic on [ t ] = l .  :Now the jump in the value of the integral as t 

crosses I t l = l  is known ([2] p. 116): in fact as t crosses the circle at  the point e ~ 

in the direction of the outward normal, the value decreases by gk(e t~) for almost 

all ~. Thus h (v) decreases by g as T crosses ~, from W into its complement. 

Finally we deduce from 1.3 (vi) tha t  h(v), being of the form (2.2.6), belongs to 

H~(yk) for all 0 < p <  1: and it then follows from 1.3 (ii) tha t  in fact h ( r ) E H I  (Yk). 

Since this is true for all k, and since we have proved h(v) to be analytic in W, 

therefore h (3) E H 1 (W). 

COROLLARY. I/ the /unctions /t(eo~) are all analytic on 7, then there exists a 

/unction H (r) E H 1 (y), with boundary values g on ~,, which is analytic in every region 

o/ W where all the /~ (eo~) are analytic. 

2.3. D~.~'INITION. Let  P and Z be finite (possibly empty)d i s jo in t  sets of 

points which lie on W but not on any of the ~ ;  let S be a subset of the integers 

1 to 2p ;  and let T be a subset of the integers 1 to q - 1 .  We shall say t h a t e o b e -  

longs to the class / ) ( P ,  Z, S, T) ff o~ satisfies the following conditions. 

(i) eo is the boundary form of a differential ~ E K 1 (7). 

(ii) ~ is analytic in W with the possible exception of simple poles at points of 

the set P.  

(iii) ~ has zeros at the points of the set Z. 

(iv) H i E S, the at-period of ~2 vanishes. 

(v) If j E T, the 7Fperiod of ~ vanishes. 

Furthermore we shall say that  a function g(v) defined on ~, belongs to the class 

ff (P, Z, S, T) if g (3) satisfies the following conditions. 
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(i) There exists a function H(v)E  H 1 (),) which on each contour yj differs p.p. 

from g(~) by a constant cj. 

(ii) H(v)  vanishes at  the points of P. 

(iii) At a point of Z, H(v) is analytic or has a simple pole. I t  is otherwise 

analytic in the region obtained by cutting W along the a~: and d H (v) is analytic 

in W provided that  ~ ~ Z. 

(iv) If i ~ S, dH(~)  has zero period around the curve ak which is conjugate to ~t. 

(v) If ~ r  then c j=0.  

2.t,. L~.MMA. I t  g E ~ ( P ,  Z, S, T), eoE~)(P, Z, S, T) and either gEHcr or 

eoEK~(y) ,  then f grg=O. 

Proof. Let  H be the analytic function which differs from g by a constant on 

certain of the yj. Then f H oJ= f g o~, since ~o has zero periods around the curves yj 

on which H and g differ. We now apply Cauehy's Theorem to the region obtained 

by cutting W along the a~. H m has no singularities in the cut region, and hence 

(compare [8] p. 174) 

fa =fH = _l[fdH fdH ] 
which is zero because in each product of two integrals one factor vanishes. 

2.5. LEMMA. There exists a single-valued function which is analytic and non- 

zero in W except /or poles and zeros of prescribed orders at prescribed points. 

Proof. There exists a differential of the third kind on W 0 whose only poles in 

W are prescribed poles of residue ___ 1. We cannot completely prescribe the periods. 

However, there are differentials which are analytic in W and have their a-periods 

and q - 1  of their y-periods prescribed ([1] p. 110). Combining these results we see 

that  there are differentials which are analytic on W, except for prescribed simple 

poles of residue • 1, whose ~-periods vanish and whose ?-periods are multiples of 

2 . i .  Let  ~ be such a differential. Then the function exp (f ~ ) i s  a rational function 

on W with prescribed simple poles and zeros. The general case follows at once by 

multiplication. 

2.6. LEMMA. (i) I /  aE W there exists a di//erential which is analytic in W ex- 

cept /or a simple pole o/ residue 1 at a, and vanishes at the points of Z. 
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(if) I f  1 <. k <~ 2 p there exists a function, analytic in W except on o~k, which van- 

ishes at the points of P and whose differential is analytic in W with non-vanishing 

period around the curve at which is conjugate to ak. 

Proof. (i) Let  ~ be a differential which is analytic in W except for a pole of 

residue 1 a t  a. Let  the points of Z be denoted by Q~ ( i = l  to m). For each k = l  

to m there is a single-valued analytic function which has zeros of the second order 

at  all the points ~j with j ~ k and a zero of only the first order at  Qk. A differential 

with the required properties may  be constructed by adding to eo a suitable linear 

combination of the differentials of these m functions. 

(if) Let  the points of P be denoted by aj ( j = l  to n). For each m = l  to n 

there is a single-valued analytic function gm which has zeros at  all the points aj 

with j ~ : m  but  which does not vanish a t  am. Let  ~o b e  a differential which is ana- 

lytic in W with vanishing ~,-periods and whose only non-vanishing a-period is its 

q-period. A function with the required properties may  be constructed by adding to 

an integral of this differential a suitable linear combination of the functions gin. 

2.7. THEOREM. If g i8 a function of L.eharacter on ~ such that f geo=O for 
F 

all o~ E l )  (P, Z, S, T) which are analytic on ~, then g E ff (P, Z, S, T). 

Proof. We select the functionals f| (~o) of Theorem 2.2 to be the following: the 

~j-periods of eo when j E T, the 09-periods of eo when j E S, and the functionals L~(0) 

where L~(z)dz  is the form taken by ~ in a particular local coordinate system in 

which z = 0  corresponds to a point in Z. All the functions f~(m~) are then analytic 

functions of v except on the curves ~ j ( jET)  and a j ( jES) ,  and a t  the points of Z 

where there can be simple poles: while the differentials d/l(eo~) are analytic in W 

except a t  the points of Z. I f  j E T then /w~ has a constant discontinuity across ~j 
r1 

but is otherwise analytic on ~;  while the remaining functions f~ (eo~) are analytic on 

the whole of :~. I t  follows tha t  H(T) defined by (2.2.4) has properties (i), (iii), (iv) 

and (v) of the class i f (P ,  Z, S, T). 

To show tha t  it also has property (if) we choose o ) i n  O ( P ,  Z, S, T ) t o  be 

analytic in W except for a simple pole of residue 1 at  a E P (Lemma 2.6). The sum 

of the residues of Heo in W is equal to f Heo: but f H w = f g w ,  which vanishes by  

hypothesis. Consequently H has a zero at  a. Thus g E ff (P, Z, S, T). 

2.8. T HE ORE M. I f  the differential o~ is integrable on ~ and if f / co  = 0 for all 

f E ff (P, Z, S, T) which are analytic cn ~, then ~o E ~) (P, Z, S, T). 

2 -- 583801. Ac ta  mathemat ica.  I00. I m p r i m ~  le 26 sep t embre  1958. 
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Proof. Let ~b be a differential analytic and non-zero in W except for simple 

poles at  the points of P and simple zeros at  the points of Z. Such a differential 

exists as the product of an arbitrary analytic differential with a suitable single-valued 

function ([,emma 2.4). Then for every differential ~p analytic in W 

F F 

since ~ / r  is a single-valued function, analytic in W except for simple poles at  the 

points of Z and vanishing at  the points of P, and hence belongs to ff (P, Z, S, T). 

Thus, by Theorem 2.7, o~/r E H,  @) and eo/r is a single-valued analytic function on 

W. Therefore to E K 1 (~), to is analytic on W with the possible exception of simple 

poles at  the points of P, and 09 has zeros at  the points of Z. 

Suppose now that  ] E ff (P, Z, S, T). Let F be the corresponding analytic function 

from which ] differs by a constant on certain of the ?j. Suppose j E T. We form a 

function ]1 by adding a non-zero constant c to ] on ?j. Then ]1 E ff (P, Z, S, T), and 

f ] , e o = 0  as well as f leo=0.  Hence f ceo=0, and so the ~j-period of to is zero. 
F F ~'t 

Next, there exists a function / vanishing at the points of P, whose differential is 

analytic in W and has all its periods zero except for the period around the 

curve ~k which is conjugate to ~ (Lemma 2.6). If i q S this function / belongs to 

ff (P, Z, S, T), and so 

0 =  f , o =  ~ , [ f ~ ,  fo~-fo~ fd,], 
r =j r aj a j+p  

by applying Cauehy's Theorem to W cut along the ~q, 

I t  follows that  the ~-period of to is zero, and hence m E ~9 (P, Z, S, T). 

3. Existence of solutions to extremal problems 

3.t .  The methods of Rogosinski and Shapiro [13] can be applied, in conjunction 

with the boundary-value theorems of the preceding section, to extremal problems on 

Riemann surfaces. We require a number of properties of normed linear spaces, and 

in particular of L and L ~176 A rather fuller summary than that  which follows is to 

be found in [13]: the basic results are proved in [3]. 
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(i) L e t  F be a no rmed  linear space over  the  field of complex numbers ,  and  let 

G be a l inear sub-space of F.  Le t  I (g) be a bounded  linear funct ional  on G. Then  

a bounded  linear funct ional  B on F is said to  be an  extension of I if B (g)=  I (g) 

for all g E G. Funct ionals  which are extensions of the  same  funct ional  on G will be 

called G-equivalent .  

(ii) The  norm of a bounded  linear funct ional  B on F,  denoted  b y  IIBI[~, is 

sup IB(/)I,  t e ~ .  
I l f l l< I  

(iii) Consider the  set  of bounded  linear functionals  on a no rmed  linear space ~'  

which are extensions of a funct ional  I on the  linear subspace G. B y  the  H a h n - B a -  

nach  Theorem there  exists in this set  a funct ional  with minimal  no rm on F,  and  

this min imal  norm is equal  to  the  norm of I on G. 

(iv) Le t  (a, b) be a finite interval .  We denote  by  L the  class of complex-va lued  

funct ions  integrable  over  (a, b): t hey  form a normed  vector  space with  norm defined 
b 

b y  IIg(t)II=flg(t)ldt. And we denote  by  L ~176 the  class of all essential ly bounded  
a 

measurable  complex-valued  funct ions in (a, b) : t hey  form a normed  vector  space with 

norm defined by  IIg[[oo=ess. sup IgI- 

(v) Given a n y  sequence {/n} in i ~ (a, b) with H In II ~< 1, there  exist  a subsequence 

{/nk} and  a funct ion / eL  with II/H~<I such t h a t  

b b 

t~ C 

for every  g E L. 

(vi) The  general linear funct ional  B on L(a, b) is of the  fo rm 

b 

B (/) = f ! (t) g (0 dt 
a 

where g e L ~176 Moreover  H B II = ess. sup I gl" 

(vii) I f  C is the  subspace of L~(a, b)consisting of cont inuous funct ions c(t), 

then  the  general  funct ional  B on C is of the  fo rm 

b 

B(c)= f c(t) dm(t) 
a 

where the  complex-va lued  funct ion re(t) is of bounded var ia t ion  in (a, b). Moreover  
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b 

II.llc=fldm(t)l 
a 

(compare [3] pp. 6 1 4 5 ) .  

(viii) Le t  S 1, S 2 be the  spaces of cont inuous functions on the intervals 11, 12 

respectively with the L ~ norm, and let $1 + Sz denote  their  direct  sum. Le t  a norm 

on S 1 + S~ be defined by  

(sup I 11, sup 
Then every bounded linear functional  B on S~ + S 2 is of the form 

B (s 1, s~) := L (sl) + M (82) 

where L is a bounded linear functional  on S 1 and  M is a bounded linear funct ional  

on S~. Moreover 
[[ B (s 1, s2)[[ = I[ L (Sl)]l + [[ M (s2)[[. 

These results can be extended in the  natura l  way  to  direct  sums of more  than  two 

spaces. 

3.2. LEMMA. Let dg 1 be a di[/erential inSegrable on 7. Then 

sup If t g,l<  Yl gl (3.2.1) 
7 

where in taking the 8upremum we consider ]unctions ] E ff (P, Z, S, T) with ess. sup. 

[f l~<l  on ~, and in taking the inf imum we consider di//erentials dg with d g - d g  1 

C O(P ,  Z, S, T). 

This lemma is an  immedia te  consequence of the fact  (Lemma 2.4) t h a t  

,p ~,, ,y 

for every funct ion and differential in the  classes considered. La ter  we shall be able 

to  assert str ict  equal i ty  in (3.2.1). 

3.3. T H E O R E M .  Let dg 1 be a diHerential inferable on •. Then among the/unc- 

tions ] e ~T (P, Z, S, T) which have ess. sup [ ][ ~< 1 on 7 there is one which maximizes 

lYld xl 
7 

Proo/. The functions f which are of L-character  and are essentially bounded 

on r form a normed vector  space with norm defined by  ] l / ] [~=ess .  sup [/[, and it 

is easy to just i fy the  use of properties analogous to  those of L ~176 (a, b). Let  I be the  
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linear functional on this vector space defined by 

I (/)= f / d e ,  

Then there exists a sequence {/n} in the subspace G of essentially bounded functions 

belonging to Y (P, Z, S, T) such that  H/n H~ = 1 and 

i (/.) = tr I lie, 
n--~oo 

because I[IHa is sup IiI.  Hence, by the property analogous to 3.1 (v), there exists a 
I l f l l= l  

subsequenee {/,k} and a function F wgth ess. sup lF  I ~< 1 such tha t  

f Fdg 
? ? 

for every dg integrable on y. In particular this holds for all dgEO(P ,  Z, S, T)ana- 

lytic on y. But  in this case the left-hand side is zero for each nk by Lemma 2.4, 

and it follows that  f F d g = O  for every dgEO(P ,  Z, S, T) analytic on ~,. Hence, by 
y 

Theorem 2.7, F E ff (P, Z, S, T). Also 

sup f /dgll=lllIIo=Jim f/   gl=f F d g l ,  

the supremum being taken over aU /E G with II/11 = 1. This completes the proof. 

3.4. THEOREM. Let dg 1 be a di//erential integrable on y. Then among the di/- 

~erentials dg such that d g - d g l  e t ) (P ,  Z, S , T)there is one which minimizes f]dg]. 

Moreover the minimizing di//erential dg has the property v 

fldg[=sup f/dgl, I/l~<l on ?, / e • ( P , Z , S , T ) .  

Proo/. Let C be the space of continuous functions on 0 < 0 < 2 g. Let  E be the space 

of q-tuples with elements drawn from C, and let the norm of (c1(0), cz(O) . . . . .  %(0)) 

be defined as the greatest of the q quantities 

sup Icj(O)], i = l  to q. 
0~0~2~ 

Let A be the class of functions which belong to ~ (P, Z, S, T) and are continuous 

on each of the ~j. Corresponding to each member / of A we can form a member 

(/1,/~ . . . . .  /q) of E by setting /j(0)=][~j(et~ The q-tuples of this type form a linear 

subspace F of E. 
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In terms of the jth annulus parameter z = r e  ~~ let dgl=hj(O)dO on 7j ( j = l  to q). 

Then dg z determines a bounded linear functional I on the space E, defined by 

2 ~  

t - 1  
0 

Let  B be any bounded linear functional on E which is F-equivalent to I .  Then, 

being a functional on E, it is of the form 
2 ~  

B [(cx, c~ . . . . .  c,)] = ~1 cj (0) d/tj (0) 
t . 

9 

where #~(0) is of bounded variation: and its norm on E is 

0 

We have here used 3.1 (vii) and 3.1 (viii). 

Let  / be a function analytic in W which vanishes at the points of P and at  

the point ~ in W. Then ] E A, and since B is F-equivalent to I, 

2:g 2 ~  

f ,,(o, f 1 - 1  t o l  �9 
0 0 

2 ~  

that is, 
t = l o  

0 

0 

where Mj (0) = f h t (0) d 0 - / ~  (0). Integrating by parts we obtain 
0 

2 n  

]; (O) Mj(O)dO = ~. / ,(O)[M,(2z~)- M,(O)]. 
1 - 1  1~1  

0 

Now let d e  be a differential analytic in W with the possible exception of a simple 

pole at a, and with ys-period equal to M j ( 2 g ) - M j ( 0 )  for j =  1 to q. In terms of 

the i th annular coordinate system let d ~ -  kj (z)dz. Then 

2rg 

0 Y 
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0 

by Cauchy's Theorem. Let Kj (0)=f k t (d ~ id~ Then integrating by parts, 
0 

2 n  

]; (0) K~ (0) d 0 = ~ ]j (0) [Kj (2 ~) - Kj (0)1. 
J = l  ~ 1 -1  

0 

2 n  

Thus 
0 

and so f V d ]= O 

where V is the function which takes the value i e -~~ [Kj(O)-Mj (0)] at  the point of 

~j with local parameter  e ~~ We have shown this to be true under the condition 

tha t  d/ is analytic in W, has zero periods and satisfies f d I= 0 for a set of arcs ~k 
Pk 

linking up a and the points of P.  Therefore, by  Theorem 2.2, V EHx(~, ). Bu t  

ie-~e[Kj(O)-Mj(O)] is of bounded variation in (0, 2~),  and so, by 1.3 (ix), V is 

absolutely continuous on ~,. Hence #t (0) is absolutely continuous in (0, 2 ~) for each 

j = l  to q; and so, setting p~(O)=Fs(O), we have Ft(O) EL and 

2 n  

B [c, (0), c 2 (0) . . . . .  cq (0)] = ~. f ct (0) Fj (0) dO. (3.4.1) 
t=1 �9 

0 

Moreover the norm of B on E is 

2n  

flF,(o)l o. 
t - 1 .  

0 

But  we know tha t  among the bounded linear functionals on E tha t  are F-equi- 

valent to I there is one with minimum norm, and tha t  this minimum norm is equal 

to the n o r m  of I on U. Now not only is it true, as we have proved, tha t  every 

such functional is of the form (3.4.1), but  every functional of the form (3.4.1) is a 

bounded linear functional on E. Thus we have proved tha t  among the sets of func- 

tions 'Fj (0) E L (0, 2 ~) such tha t  

2~ 2~ 

1 f f i l  . t - 1  . 

0 0 

for all (]1 (0) . . . . .  ]~(0)) E F there is one set which minimizes 
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2~ 

0 
and that  the minimal value is 

2~t 

sup 1~1-1 f [j(O)hr , [EA ,  [[1<<.1 on r. 
0 

In other words, among the differentials d g such that  

I/eg=fle.g, 
Y Y 

for all / e  A there is one which minimizes f I dg l :  moreover the minimizing differ- 
y 

ential d g has the property 

fldgl=sup f/dgl, II1<1 on 7, leA.  

In  view of Theorem 2.8 and Lemma 2.4 this is precisely what we seek to prove, 

except that  the above supremum is taken over a more restricted class of functions. 

In reality we have proved a rather stronger form of the theorem than was stated. 

The stated result follows immediately from the inequalities (Lemma 3.2) 

sup,~ ,f/eg~l<sup'~" !leg~ <inf f Idel., 

4. Boundary behaviour of the extremals 

4.1. In the theorems of w 3 the functions and differentials were not restricted 

to be analytic on 7 itself. But in certain circumstances we can show that  the ex- 

tremal functions and differentials are in fact analytic on y and consequently that  

they solve extremal problems in more restricted classes. We first prove three lemmas 

on the classical H v classes. 

4.2. LEMMA. I f  /(z) EH r and g(z) is analytic on the unit circumference U then 

/ (z) g (z) = F (z) + G (z) where F (z) E H v and G (z) is analytic on U. 

Proo/. The function /(z)g(z ) is analytic in some annulus a <  [z[ < 1 and is con- 

sequently of the form F (z)+ G (z) where F (z) is analytic in [z[< 1 and G (z) is ana- 

lytic in [z[ >a .  We now deduce from Minkowski's and related inequalities that  

2~t 

f [F(re~~ 
O 

as r - + l - ,  and F(z) accordingly belongs to H r. 
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4.3. L E ~ M A. 1[ F (z) E H I, G (z) is analytic on U, and F (z) + G (z) has real 

boundary values on U, then F (z) can be continued as an analytic /unction on U. 

Proo[. B y  L e m m a  4.2 

F (z) + G (z) 
F1 (z) + a l  (z) $ 

where F 1 ( z ) E H  1 and G 1 (z) is ana ly t ic  on U. Therefore  b y  1.3 (v) the  funct ion 

f dz [F  (z) + O (z)] __ ,  
SZ 

with sui table precaut ions  to ensure single-valuedness,  is cont inuous on a n y  arc of U. 

Bu t  also this funct ion is real on U. Thus  it can be cont inued analy t ica l ly  across U ,  

and  the  same is consequent ly  t rue  of F(z) .  

4.4. L E M M A. Suppose that 

(i) F (z) = G (z) + K (z) where G (z) e H ~ ,  K (z) is analytic on U ; 

(ii) h (z) = g (z) + Ic (z) where g (z) E H 1, k (z) is analytic on U ; 

(iii) almost everywhere on the part o/ U where h (z) * 0, [ F (z) ] and arg  F (z) h (z) d z 

are constant. 

Then both $'(z) and h (z) can be continued analytically across U. 

Proo/. We m a y  clearly suppose t h a t  ] F  (z) I = 1 and  P (z) h (z) d z  >10. Then  p.p. on U 

] F ( z ) h ( z ) d z  I= F ( z ) h ( z ) d z ,  

and  consequent ly  ]h (z)] = i z F ( z )  h(z). 

We deduce t h a t  the  funct ion 

h (z) - z 2 [ F  (z)] 2 h (z) 

has  real bounda ry  values, and  the  funct ion 

h (z) + z 2 [ F  (z)] 2 h (z) 

has  imag ina ry  bounda ry  values on U. I t  follows f rom L e m m a s  4.2 and  4.3 t h a t  

bo th  these funct ions can be cont inued as analy t ic  funct ions across U. Therefore  h (z) 

and  [F(z)]2h(z) are  analy t ic  on U, and  [F(z)] 2 is ana ly t ic  on U except  possibly for 

poles a t  zeros of h (z). Bu t  the  zeros of h (z) being finite in number ,  I F  (z)]8= 1 p.p. 

and  [F(z)] 2 is accordingly analy t ic  and  non-zero on U. Hence  F(z) ,  as well as h (z), 

is ana ly t ic  on U. 
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4.5. THEOREM. I /  F is an extremal /unction in Theorem 3.3 and d /  is an 

extremal di//erential in Theorem 3.4, and if dg 1EKI(7) ,  then both F and d/  are ana. 

lytic on 7. 

Proo/. By Theorem 3.4 and Lemma 2.4 

fl /l=lfFdg.l= 
But  since ess. sup IF I<1 on 7 equality is only possible if IF  I= 1 and arg F d /  

is constant p.p. on that  part  of 7 where d / * 0 .  We now express F and d / i n  terms 

of the jth annulus parameter as F(z) and h(z)dz .  Since dglEKx(7) ,  therefore also 

d /E  K 1 (7), and it  follows that  F (z) and h (z) satisfy all the conditions of Lemma 4.4. 

Consequently F and d~ are analytic on 7. 

The reasoning of this proof also shows that  the extremal function in Theorem 3.3 

is unique to the extent of an arbitrary constant multiple of absolute value one: for 

it can be expressed in the form 

Ald/l 

where A is constant. The uniqueness is independent of the condition dg I E K 1 (7). 

4.6. COROLLARY. i~t dglEKl(7). T h e n  

(i) Among the diHerentials dg analytic on 7 such that d g - d g I E • ( P , Z , S , T  ) 

there is one which minimizes f [dg[. 
7 

(ii) Among the /unctions /E if (P, Z, S, T) which are analytic and of absolute value 

not exceeding one on 7 there is one which mazimizes [f / dg  1 . 
Y 

(iii) The extrema in these two problems are equal. 

4.7. The conjugate classes ~0 (P, Z, S, T), i f (P ,  Z, S, T) can clearly be general- 

ized in a variety of ways to yield further conjugate extremal problems. For instance 

we can allow the differentials of O to have poles of order higher than the first if 

at  the same time we restrict the functions of if to have zeros of correspondingly 

higher order. Or, if fl is an arc of W which does not meet the curves at, we can 

restrict the differentials d /  of 0 by insisthig that  f d /  should vanish. In the cor- 

responding if-class we then have to allow the functions to have a discontinuity 

across fl and their differentials to have simple poles at  the end-points of ft. In these 

cases the preceding theory applies with little modification. 
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5. Applications 

5.t .  In  Corollary 4.6 take dg x to be a differential analytic in W with ~t-period 

equal to at ( i = l  to 2p). Take P , Z ,  T to be empty,  and let S be the set of all 

integers 1 to 2 p. Then the differentials of 0 (P, Z, S, T) which are analytic on ~ are 

precisely those which can be extended as differentials analytic in W with vanishing 

or-periods. Corollary 4.6 therefore takes the following form. 

(i) Among the differentials dg analytic in W with z-period equal to a t ( i=  1 

to 2 p ) t h e r e  is one which minimizes f ldgl. 

(ii) Among the functions F, which are integrals of differentials analytic in W 

with vanishing ~j-periods, and whose absolute value on F does not exceed 1, there is 

one which maximizes 

~. (a~P~+v- at+pP|) 
t - 1  

where P, is the period of d F around at. 

(iii) The extrema in these two problems are equal. 

These are the problems studied in [10]. 

5.2. In  Corollary 4.6 take d91 to be a differential analytic in W except for 

simple poles at  the fixed points a, ax in W. Take Z, S, T to be empty  s e t s ; a n d  let 

P contain just one point, namely ax. Then the differentials of ~0 (P, Z, S, T) which 

are analytic on y are precisely those which can be extended as differentials analytic 

in W with the possible exception of a simple pole a t  a~: and the functions of 

ff (P, Z, S, T) which are analytic on y are precisely those which can be extended as 

single-valued analytic functions in W vanishing a t  a~. Corollary 4.6 therefore takes 

the following form. 

(i) Among the differentials dg which are analytic in W apar t  from a simple 

pole of residue 1/2 zt a t  a and a simple pole at  a~ there is one which minimizes 

fldgl. 
(ii) Among the analytic functions on W whose absolute value does not exceed 

1 and which vanish a t  a 1 there is one whose absolute value a t  a is a maximum. 

(iii) The extrema in these two problems are equal. 

These problems have been studied by  Ahlfors [1]. 

5.3. In  Corollary 4.6 take dg~ to be a differential analytic in W. Take P,  S 

and T to be empty  sets;  and let Z contain just one point v 0. Then the differentials 
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of ~0 (P, Z, S, T) which are analytic on y are precisely those which are analytic in 

W with zeros a t  v0: and the functions of ~ (P, Z, S, T) which are analytic on y are 

precisely those which are analytic in W with the possible exception of a simple pole 

at  T O . Corollary 4.6 therefore takes the following form. 

(i) Among the differentials dq analytic in W, such tha t  d g - d g x  vanishes at  30, 

there exists one which minimizes f ld91. 
3" 

(ii) Among the functions f, analytic in W with the possible exception of a simple 

pole at  30 and with absolute value not exceeding 1 on y, there is one which maxi- 

mizes f /dg 1 . 

(iii) The extrema in these two problems are equal. 

In  the case when W is a plane region this s ta tement  can be further simplified 

as follows. 

(i) Among the functions h(z) analytic in W which take the value 1 at  z 0 there 

is one which minimizes 2 ~  Ih(z)lds. 
3' 

(ii) Among the functions [(z) analytic in gr with the possible exception of a 

simple pole at  z 0 and with absolute value not exceeding 1 on ~, there is one whose 

residue at  z 0 has maximum absolute value. 

(iii) The extrema in these two problems are equal. 

These problems should be compared with those studied in [6]. 

5.4. In Corollary 4.6 take dg 1 to be a differential analytic in W with a pole 

of the second order a t  a. Take Z, S and T to be empty  sets: and let P be the set 

whose only member  is a. We restrict ourselves to the case in which W is a plane 

region: we then require only a single parameter  for the whole of W and we write h (z)dz 

for d9, h I (z) dz for dg 1 and z 0 for a. Corresponding to differentials of ~0 (P, Z, S, T) 

we have functions with a simple pole a t  z 0, and the functions of ~ (P, Z, S, T) have 

a zero at  z 0. I f  we suppose hi(z) to have the form 

1 
hi (z) ( z -  Zo) 2 

then Corollary 4.6 yields the following result. 

(i) Among the functions h(z) analytic in 

expansion of the form 

W except at  z 0 where h(z) has an 
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1 a_ 1 
h (z) = (z - Zo) ~ + (z - ~ o )  + a~ + al (z - Zo) + " "  

1/ 
there is one which minimizes ~ ]h(z)]ds. 

(ii) Among the functions F (z) analytic in W, satisfying IF (z)[ ~< 1 and with the 

expansions 
F (z) =/~v (z - z0) + b I (z - %)2 + . . .  

about z 0, there is one which maximizes [fly[. 

(iii) The extrema in these two problems are equal. 

These problems have been studied in [5]. 

5.5. In Corollary 4.6 take W to be a plane region, and let P and T be empty 

sets. Let dgx=hl(z)dz where hl(Z ) vanishes at the points of Z with the single ex- 

ception of the point t where it is to take the value 1. Corollary 4.6 then takes the 

following form. 

(i) Among the functions h(z), analytic in W, which vanish at  the points of Z, 

with the single exception of the point t where they take the value 1, there is one 

which minimizes ~-~ I h (z) d z I. 

(ii) Among the functions which arc analytic in W except for simple poles at 

the points of Z, and whose absolute value on ~, does not exceed one, there is one 

whose residue at  t has maximum absolute value. 

(iii) The extrema in these two problems are equal. 

An equivalent statement of part  (ii) of the above result is as follows. 

(ii)' Among the functions analytic in W except for simple poles at the points 

of Z, with residue 1 at  t, there is one whose maximum absolute value on 7 is least. 

Par t  (i) can also be expressed in various equivalent ways. Let  G(z) be a func- 

tion which is analytic and non-zero in W except for a simple pole of residue - 1 at t 

and zeros elsewhere in Z. Then by setting h(z)=f(z)G(z) we obtain: 

(i)' Among the functions [(z), analytic in W, which vanish at  t and have 

1/ 
If(z)G(z)dz[ <1 

there is one which maximizes [f '(t)l. 
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N a t u r a l l y  we have  e q u a l i t y  be tween  the  e x t r e m a  in (i)' a n d  (ii)'. I n  [12] R u d i n  

t r e a t s  th is  p rob lem in the  special  case when G(z) is P'  ( z )where  Re P ( z ) i s  t he  

Green ' s  func t ion  of W wi th  pole  a t  t. 
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