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1. Introduction 

This paper deals with a mixed initial and boundary value problem for a linear, 

hyperbolic partial  differential equation of order n and with two independent variables. 

The values of the unknown function and its first n - 1  normal derivatives are spe- 

cified on an initial curve, and, in addition, the values of an appropriate number  of 

normal derivatives are given on a boundary curve which intersects the initial curve. 

A solution of the differential equation which assumes the given initial and boundary 

values will be found by an extension of Riemann's  well known solution of the initial 

value problem for a second order hyperbolic equation. The problem considered in 

the present paper is a special case of a mixed problem for which another method of 

solution has been given by Campbell and Robinson [2]. 

Hadamard  [6, 7] adapted Riemann's  method to deal with mixed problems for 

the second order equation. More recently, Bureau [1] and Durand [4] have treated 

mixed problems for second order equations by the same method. Rellich [9] has 

generalized Riemann's  method to solve the initial value problem for linear, hyperbolic 

equations of order greater than two. In  the present paper, a mixed problem for an 

equation of order greater than  two is solved by an extension of the methods of 

Rellieh and Hadamard.  The complete existence proof will not be given here, but a 

method of obtaining the associated Riemann function will be outlined. A more com- 

plete proof is given in the author 's  thesis [3]. 
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2. Preliminary results 

The  general  l inear par t ia l  differential  equat ion  of order n m a y  be wri t ten 

k 
L [ u ] ~  ~ ~ kCtAkj(x, Oku 

k-o j-o y)oxk_JOy j a o(x, y), (1) 

where kCj is the  binominal  coefficient, k! / ] !  ( I t - j ) ! .  

We assume t h a t  equat ion  (1) is hyperbol ic  in the region under  considerat ion.  

Hence,  if ~ and  ~ are a rb i t r a ry  paramete rs ,  

~ nCk An~#n-~ ~ k= ~-I (pJ $ + qJT]), (2) 
k=O t - 1  

where pt and  qJ are real and  

p i q ~ - p t q t * O  ( i *  j). (3) 

We assume fur ther  t h a t  (1) is normal ized so t h a t  

(i)t)2 + (qt)`) = 1 (j = 1, 2 . . . . .  n). (4) 

Wi th  this normal izat ion,  pJ and  qJ are the  direction cosines of the  character is t ic  

curves of (1). 

Define the  quan t i t y  Z" by  

n -  2 on--') W a 

Z~  k_On-`)Ck 0 yk [P~ q~ A~k + (q")`) An , k+ l -- (P")`) An, k+ l -- P~ q" An.k+`)] 

(a = 1, 2 . . . . .  n), (5) 

where w" (x, y) is a funct ion which vanishes,  toge ther  with all its der ivat ives  of order  

n -  3 and  less, on the  characteris t ic  curve with direct ion cosines p" and  qa. Rellich [9] 

has proved  t h a t  the  following formulas  hold on this characteris t ic  curve: 

n-~ on-`)W (' [ ~ OU OU OU OU] 
- p  n,~+l o x ~ A ~y  ] . _ ` ) C k o ~ = ~ : ~ y k [ q  A . k ~ x  " A  - - + q  n. l c + i ~ y - - p a A n ,  k+`) 

k -O  

= a U z a  ( a = 1 , 2  . . . . .  n), (6) 
sa  

n -1  o n - 1  W a  
C a a 

.-1 ~ x . - 1 - ~ _ j , ( q  A . ~ - p  An.k+1) 
k~O v o y  

n- 2 O n - 2  W a O 

= - (n - 1) k~o ~" n-3Ck Ox n-`)-k Oyk ~so [p"q"Ank--  (pa)`) A.,k+l + 

O Z" 
+ (q")`) An, k+l - p a q " A ~ k + ` ) ] + ( n - - 1 ) ~ -  ( a = l ,  2 . . . . .  n), 

vsa 
(7) 
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on-2  W o 
and  0 x "-2-k 0 yk ( - 1)"-a-k n (pO)k (qa).-2-k Za ~)~ (a = 1, 2 . . . . .  n). (8) 

In  (6) and  (7) the derivative with respect to  arc length on the characterist ic  curve, 

p~247176 is denoted by  8/8So. I n  (8), Do is defined by  

Do= FI (p~ qk pk qO) 
k-1 k::t:o 

(a = l, 2 . . . . .  n). (9) 

Final ly , Green's  theorem for the plane shows t h a t  

f f (v L [u] - uM [v]) dx dy 
G 

f {  . ~. (--1)m--kkGl m--k--l(~t~Xk--t {Oyl 
m=l k=0 l=O i=O 

F 

[~m--k--1 (Am, i+/+ 1 v) dx ~m--k-i (Am, t+t V) d- ] I 

"L 

k l'k ~ ~k (A~ v) 
where M [v] =k~=o ,-~o (--  ' k~', ~-x~---'y-Syj" (11) 

(10) 

I n  (10), (7 is a closed region in the  xy-plane  with the  boundary  F. The integral on 

F is to  be taken  in the counter-clockwise sense. 

3. Application of  Green's theorem to the mired problem 

In  the  mixed problem considered in this paper  the initial curve, I ,  is the seg- 

ment  0~<y~<a of the  y-axis, and  the boundary  curve, B, is the segment 0~<x~<c 

of the x-axis. We assume t h a t  no characterist ic curve is parallel to  the y-axis and  

t h a t  no characterist ic  curve is t angen t  to  the x-axis in the  region under  considera- 

tion. T h a t  is, we assume t h a t  po (x, y):~ 0 and  q~ (x, 0 ) *  0 for a = l, 2 . . . . .  n. 

Let q~ 0) /p~ 0) be negative for ~ = 1 ,  2 . . . . .  n - K  and positive for a =  

n - K  + 1 . . . . .  n. Thus,  there are K characteristics of positive slope and n - K  char- 

acteristies of negat ive slope a t  each point  of B. Le t  0 < K <  n. 

On I ,  the values of u, au/Sx . . . . .  On-lu//Oxn-1 are given as functions of y. 

These functions are to  be sufficiently differentiable with respect to  y so t h a t  all the  

derivatives of u of order n or less are continuous functions of y on I .  On B, the  

values of K of the quanti t ies u, 8u/~y . . . . .  ~n-1 u/Syn-1 are given functions of x. 

These boundary  values mus t  also be differentiable often enough so tha t  the derivatives 

3-- 583801. Acta mathematica. 100. Imprim6 le 20 septembre 1958. 
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of order n of u which can be formed from them are continuous functions of x. 

Moreover, we assume tha t  the behavior of the initial values and the boundary values 

in the neighborhood of the origin is such tha t  the derivatives of u of order n and 

less are continuous in the neighborhood of the origin. The reason for giving K 

boundary values is discussed elsewhere by Campbell and Robinson [2]. I t  is known 

from their results tha t  a function u which satisfies the differential equation (1 ) and  

the initial and boundary conditions can be found in a region of the first quadrant  

of the xy-plane provided tha t  the coefficients of (1) are sufficiently regular. 

We assume tha t  all the derivatives of the coefficients of equation (1 )which  

appear  in Green's formula, equation (10), possess continuous first derivatives with 

respect to x and y in the region under consideration. 

Let  R be a closed region in the first quadrant  of the xy-plane with the following 

properties: If  the point (x, y) is in R, it shall be possible to draw the n characteristic 

curves through (x, y) in the direction of decreasing x until they  all intersect either 

I or B. The characteristics so drawn must  remain in R. If the point is on B or 

I some or all of these characteristics may  have zero length. Such a region R will 

be called a region of determinacy of I + B. 

The application of Rellich's method to the mixed problem is complicated by the 

fact tha t  not  all of the derivatives of u which appear  in Green's formula are known 

on the boundary. Thus the function v must  be made to satisfy certain subsidiary 

conditions on the boundary in order to make the unknown terms disappear. 

Let  u be a solution of the mixed problem in a region, R, of determinacy of 

I + B .  We wish to obtain an explicit representation of u a t  the point P ( x  o, Yo) in R 

We draw the n characteristic curves F1, F2 . . . . .  F= back from P to meet  I or 

B at  P1, P~ . . . . .  P= and we suppose, for convenience, tha t  the characteristics are 

numbered in order of increasing slope. At most K of the points Pt fall on B. From 

each of those points Pt which do fall on B we draw the n - K  characteristic curves 

which lead back to I .  Let  the characteristic curve leading from Pt on B to I and 

with direction cosines p~, qJ be denoted by  F~. Let  F~ meet  I a t  ~ (Fig. 1). These 

curves break up the region bounded by  F1, F, ,  I and B into a finite number  o 

regions. Let  v (x, y) by a solution of the adjoint equation, 

M Iv] = 0, (12) 

in each of these regions, with continuous derivatives of order n. On F1 and Fn, 

v (x, y) and its derivatives of order less than n - 2  are to vanish. In  the interior of 

the region bounded by  F 1, F~, B and I ,  v and its derivatives of order less than  n - 2  
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Fig. I. 

are to be continuous everywhere, but the derivatives of order n - 2  and greater will 

have discontinuities across each of the characteristic curves Ft and F~. 

We now apply Green's formula (10) to each of the regions formed by the various 

characteristics and add the results. The left hand side contributes the integral J,, where 

ff vaodxdy. (13) 
PPt OPrt P 

This is a known quantity when v is known. The various integrals over I contribute 

Jl, where 

Pl 
I ~. m-1 k m-k-I ~'u~"~-Z-l(A'~'~+JV) dy. (14) 

J1= .. ,n~ ~-~'o ,-o ~ j~o~ (--1)'-kkC' "-k-~CJoxk-' Oy' OX"-~J-I Oy j 
0 

J1 is also known when v is known. The integrals on B contribue JB, where 

Pn 

J~= m~l k-o• ,oo2 ,~o2 (--1)'-k'fi",,,-k-lCJa~-,Oy, a~-~-j-~OyJ dx. (15) 
0 

Let C~ represent a segment of one of the characteristic curves drawn from P, pn, 

P, 1, etc. Let (x,,yl) be a point on C~. Then we define w ~(x,y) by 
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u'U (xl, Yx) = v (x x, Yx - 0) - v (x 1, Yl + 0), (16) 

where v (x 1, Y l -  0) and v (xx, Yl + 0) denote limits of v as (xl, Yl) is approached from 

below and above respectively. On F1 and F., w a and w n are defined by w x= v and 

w " = -  v respectively. Partial  derivatives of w ~ will denote the corresponding differ- 

ences of derivatives of the function v on the two sides of Cu. According to the 

assumptions made about v, w ~ and all its derivatives of order n - 3  or less vanish 

o n  C#. 

Then the integral on C u which results from the application of Green's theorem 

is given by 

'~ ~ ., k+l w~) + 
J,,= ( -1)  ~-~_ox ._.C~ ~ ox._,_~a~ f ~  o~"-~-~o~ 

Cp 

_{._qtjaU on-2(An, k+l wu) I~O'U, a n-~ ( A .  k+~ w~)] 

- P  Uu J + 
" - '  [~,  a '~-' (A,,~ u/') _u Ore-' (Am. ~,+, ,~')-1 / 

+ u m - .  ~ 1 k-0X ( - 1 ) m - ' " - l C ~ [  }~-~ '~-~5~ - / '  )~i:l-k~-~-~ k / d s .  (17) 

The remainder of the terms disappears because ur" and its derivatives of order n - 3  

and less vanish on C.. The direction of increasing s on C. has been chosen so that  

d x / d s = p  ~ and d y / d s = q  ~, where pU and q~ are the direction cosines of C.. 

Thus, the application of Green's formula yields the result 

J . = J t +  J B +  EJ~, ,  (18) 

where J8 and J~ are known quantities. 

The integrals J r  can be evaluated in terms of the values of u at  the end-points 

of C~ provided that  v satisfies certain conditions on C,. Let  P~ and P~' be the end- 

points of C,, where P~ is the point with the larger abscissa. 

shown that  
J .  = ( - 1)" [z . (p'.') u (P ' . ' ) -z .  (p~)u (P~)], 

O Z ~ ~- 2 a~-2 wU 
n --o s~ __ "-2Ck ~ O xn-2-X O y k ' provided that  = k_~n E u. 

on C~, where 

E~ = ( n _ l ) ~__~u [ pU qU A ,~ _ (pt~)2 A .  , ~, + x + 2 pU (qu) An, k . l _  q" A . . I , ' 2 ] -  

- ( n -  1)[q~{ 0 A ~  + O A . . k + l ~ _ 1 f i O A .  k+, + O A .  k+2~] + 
oy f 

+ q~ A~-a, ~ -  PU A~-1,~+1" 

Then Rellich [9] has 

(19) 

(20) 

(21) 
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Equation (19) results from the use of (6) and (7) and an integration by parts. Z" is 

defined by  (5). Equation (8) shows tha t  (20) is an ordinary linear first-order dif- 

ferential equation for Z" on C.. 

4. Intersections of characteristics in the interior of the region 

Consider a point P0 which is in the interior of the region bounded by I ,  B, 

r l  and rn  and which is the intersection of N of the characteristic curves which were 

drawn through the region. It- will now be shown tha t  there is no contribution to 

~ J ~  from this point. In  fact, i t  will be shown tha t  the functions Z g associated 

with the characteristics which cross at  the intersection are continuous across the 

intersection. 

We demonstrate first tha t  N <  n. In  view of inequality (3) it  is clear tha t  two 

different characteristic curves cannot  intersect twice. Thus the N characteristic curves 

must  originate a t  N different points from among the point P and the points P , ,  

P,-1,  etc. on the boundary. There are, a t  most, K such points on the boundary.  

Now K < n  by hypothesis. If  K < n - 1  then there are a t  most  n - 1  points from 

which characteristics could be drawn to meet  a t  Po and in this case 2V<n. I f  

K = n - 1 there is only one family of characteristic curves with negative slopes on B. 

Since two members  of this family drawn from different points can never meet,  N 

can only have the value 2 in this case. Since we are concerned with the case n > 2 

we again have N < n. Thus, in all cases, 2 ~< N < n. 
I I  

Let  the segments C~t and C~I (i = 1, 2 . . . . .  N) meet  a t  P0, where C~t and C~t are 

two segments of the same characteristic curve with direction cosines T/~t and ~ .  
t t l  

Let  Z "t', Z gt'', w~t" and w ~t'" be the corresponding functions on Ct, t and Cgt. The 

situation is illustrated in Figure 2. 

c;~ / c;, 

c ; , ~  G, 

C'; I x. C'.~ 
Fig. 2. 
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Since w ~t' and w ~'" are the differences of the function v across the characteristics 
! t t  

C~t and C.t it  is easily seen that,  a t  P0, 

N / On-~ w~V a "-2 uc"V" 
( k = o ,  . . . . .  (22) 

Since the derivatives of w ~ of order n - 3  vanish on C~ it follows that  

~,~-2 uy2 ~n-2  W ~ 
p~0xk+10yn_3_ r Fq~0xk0yn_~_~=0 (k=0 ,  1 . . . . .  n - 3 ) ,  (23) 

and hence that  

~xkOyn-2-~ = - -  ~y,,-2 (k=0 ,  1 . . . . .  n - 2 ) .  (24) 

If we substitute (24) into (22) we obtain, a t  Po, 

t ~1 ( ~ )  L ~y.--2 ~yn--2 J : 0  (k=0 ,  1 . . . . .  ~--  2). (25) 

Equations (25) are a system of n -  1 linear homogeneous equations for the N 

variables ~n-~w~t'/ay'~-2-~'~-2w~V'/ay n-2, where N < ~ n - 1 .  I t  is easily shown that  

when inequality (3) holds these equations have only the solution 

~n-2  w."t" r n-2 w."V" 
- -  - - -  ( 26 )  ayn-2 ~yn-2 

I t  then follows from (8) tha t  Z~V (P0)=Z~'~" (Po). (27) 

Thus Z ~ has no discontinuity at  the intersection Po. 

Finally, from (19) and (27), the contribution to F . J ,  from the point Po is zero. 

Thus, there is no contribution to F~ J~ from points of intersection of characteristics 

in the interior of the region bounded by I ,  B, U1, and Fn. 

There will, however, be a contribution to F, J~ from the points Pn, Pn-1, etc. 

on B. If u is given on B, this contribution is a known function and is of no further 

concern. However, when u is not given on B, these contributions must be con- 

sidered further. 

5 .  C o n d i t i o n s  o n  t h e  b o u n d a r y  

Before considering the contributions to  Z J ,  on B, we consider the boundary 

integral J~. On the boundary, K of the quantities u, O u/Oy . . . . .  ~n-1 u/~yn-1 are 

known. The general plan in the treatment of J s  is to integrate by parts on B until 
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all the differentiations of u with respect to x are removed. Then the coefficients of 

the unknown derivatives of u with respect to y are set equal to zero. This gives 

some further conditions on v. Finally, the terms at the points Pn, Pn_~, etc., which 

arise from the integration by parts, are combined with the terms from Z Ju on the 

boundary. Then the coefficient of u at these points is also set equal to zero if u 

is not given on B. This gives the last of the conditions to be applied to v. 

Let  

p,o 

f n m-1 k m-k-1 OkU om-Sc--i(Am, f+s+lV) dx, 
I =  2 2 E E (--1)m-kkC, (28) 

m-x k -o  ,~o S-o m'-k-ICSOX~-iOy' OXm-k-S-iOY s 
p ,  

where P '  and P "  are two points on B such that  v and its derivatives are continuous 

on P' P". When I is integrated by parts and the order of summation is altered t h e  

result is 

p,, 
f ~ rn-1 ~tU rn--|-I 

I = .,-1 ,-o7" ( -  ,)"-' o? ~ 
p,  

+ 

mCi+j+l 

m-- t -1  
0 (Am.t+s+lV)dx+ 

0 x "-t-j-x 0 yS 

~. ~. ~ (--1)m-~+ikCt m-k-lC, ox~-.i-t-l Oyt 
rn~l t-0 j-O k- t+l  l - O  

The identity 

~ni--k+l--1 IA  ~ ~"1 P'" 
_ _ _  t 'Cam,  t + J + l  y ._ ] |  �9 

O x"-k-s+i-l O yS _l e" 

(29) 

m -1-1  

~. (kC,)(m_k_lCj)=,nCt+j+x ( 0 4 i + ~ 4 m -  1) (30) 
k ~ t  

has been used in deriving (29). A proof of this identity is outlined by Feller [5]. 

Now the integration on B from O to Pn may be broken up into a sum of 

integrals on a finite number of segments on which v and its derivatives of order up 

to n are continuous. Thus, if we integrate by parts on each segment, we obtain 

Fli 

f /n~.l( o, ur : - , - ,  J s  = - 1) n-t ~75..t' ~ n ~ l + t + l  
t , - o  OY k s:o 

0 

xn_t_S_ x ~ yj t- R~ dx + S, (31) 

where Rl is a linear combination of derivatives of v of order less than n -  i -  1 and 

S depends on the values of u and v at the points O, P, ,  Pn-1, etc. on B. 

Now K of the values Otu/ay ~ (7=0, 1 . . . . .  n - 1 )  are known functions of x on B. 

We require tha t  the coefficients of the other n - K  derivatives 0' u/ay ~ vanish on B. 

That  is, if ~ u/lO yX is not given on B, we require that  
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n - k - 1  

1-0 

~n--k'--1 (An.]+k+ 1 V) 
0 x " - j - ~ l  ~ yJ + Rk = O, (32) 

where R~ is a linear combinat ion of derivatives of v of order less than  n - k - 1 .  

6. Intersections of characteristics with the boundary 

Finally,  we mus t  consider the remaining terms a t  the points P . ,  Pn-1, etc. on B. 

These terms result  f rom the  integrat ions b y  par ts  on the  b o u n d a r y  B and on the 

characteristics which intersect  a t  the points  In ,  In_ , ,  etc. We observe, f rom (29), 

t h a t  in tegrat ion by par ts  introduces no unknown funct ions a t  0 because u and  all 

its derivatives of order up t o  n - 1  are known on the initial segment I .  

Let  ~ characterist ic curves drawn from P meet  the boundary ,  B. Then  the  points  

a t  which these curves intersect B are P,-~+I,  Pn-~,+2 . . . . .  P ,  where ~ < K  (see Fig. 1). 

F r o m  each of these points  I'm ( m = n - ~ +  1 . . . . .  n) the n - K  characteristics F~ n 

0" = 1, 2 . . . . .  n - K )  with direction cosines pJ and qJ are drawn. 

Let  us now fix our a t ten t ion  on the poin t  Pm on B. Since it  has been shown 

t h a t  the funct ion Z u, associated with the segment  C,  of a characterist ic curve, is 

continuous across an intersection with another  characterist ic curve in the  interior of 

the region, we m a y  denote  the functions Z u by  Z ~ and Z~ which are associated with 

F~ (i = l, 2 . . . . .  n) and F~ (m = n - ~ + 1 . . . . .  n; ~ = 1, 2 . . . . .  n -  K) respectively. Then 

Pm is a t  the intersection of F~, the characteristic drawn from P,  and  the characteristics 

F ' / ( ] =  1, 2 . . . . .  n - K ) ,  the characteristics drawn from P~ to  I (see Fig. 3). 

i 
i 

I P. B P. 

Fig. 3. 
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Then, from equation (19), 

along the characteristics is 

[ ] ( - 1) ~ u ( P , D  z ~ ( P , ~ ) -  Y z ] '  (P,~) �9 
t - 1  

the contribution a t  P~ due to integration by part~ 

From (29), the contribution due to integration by  parts on B is 

(33) 

The identity 

[~n--k+l--1 (An . l+1+  1 v)  ] Pm-O 
T,,~, = L ~-~-~':~ ~ + u,,~,j P~+o" (35) 

In  (35), Utskl denotes a linear combination of derivatives of v of order less than 

n -  k + 1 -  1, and P z - 0  and Pm+ 0 denote limits as Pm is approached from the left 

and from the right respectively. 

I t  follows from (16) tha t  
n - K  

v (P~ - 0) - v (P~ + 0) = - w ~ (Pz) + ~ w[ (Pz). (36) 
t41 

A similar relation holds for the derivatives of v. But  the derivatives of w ~ and w[ 

of order less than n - 2  were assumed to vanish on Fm and F~': Hence, at  Pm, only 

the derivatives of order n - 2  in T~jkl in (35) play any  part .  Thus Utjkl plays no 

par t  and only those derivatives for which n - k  + l - 1  = n -  2 need be considered. 

Hence, we may  simplify the expression (34) considerably. Since l=k-1 ,  we 

must  have i = 0. Thus the terms at  Pz  due to integration by parts  on the boundary, 

which do not drop out, are given by 

. - .  R i- o.-,,, lP..-o 
~.. ( - -  1) n+l  n_IGI+I U (Pro) An.s+1 ( . )  [Ox.--:i:T-j ~ y i j  , . .  +o " (37) 

t-o 

n - t - 1  

~. n_ k_ lG j  = n_1~t_F1 (~ = 0 ,  1 . . . . .  ~ - -  2 )  ( 3 8 )  
k= l  

has been used in deriving (37). This identity is the special case of equation (30) 

with i = 0 .  

I f  Pm is the point P,, which is the point a t  which the integration on B ends, 

the same result is obtained. In  this case we may  consider tha t  v is identically zero 

outside the region to which Green's theorem was applied. Then all the statements 

made apply to this special ease. 

where 

n - 1  n - i - 2  n - ] - I  k - f - I  ~,c'-l--1 U (Pin) T|]kl, ( 3 4 )  

t-O t-0 k - I + l  l-O 
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F r o m  (36) it  is seen t h a t  

Ox~2-~ OyiJ pra + 0 -- 

,,- ~r 8 . -2  w;" (P~) 

t=x O x"-2-J a y j 
~.-2 w m (Pro). (39) 
8 x "-~-j 8 y~ 

From (8), we have  t h a t  

[ 1Pro - o . - ,  
= E ( - 1 ) " - "  n (p')' (q~)"-'~ - -  

LOx"-~-JOYJJ Pm+o , - a  ~ + 

zm 
+ ( - 1)"-J n (pm)J (q~),-~-2 __ 

D~ 
(j = 0 ,  1 . . . . .  n - 2 ) .  (40) 

Then  f rom (33), (37), a n d  (40) it  follows t h a t  the  contr ibut ion a t  Pro, Fm (Pro)U (P~) 

say,  which is due to in tegra t ion b y  par t s  on the  character is t ics  and the boundary ,  is 

{[ . -2  A n(P")j(qm)n-'-2] Z m -  
Fm(Pm) u (P ,~)=u(Pm)  ( - 1 ) ' +  E (-1)'+In-,C1+, n,t+, ~ J 1=0 

n-2 } 
- - 1)" + ~. ( - 1)J+' n_,C]+, A,. J+l ~ j Z~ �9 (41) 

l ~ ,  k 1=o 

I f  u is given on the  bounda ry  then  Fm (Pro)U (Pro) is a known  quan t i t y  when 

v is known.  I f  u is no t  given on the  bounda ry  we require t h a t  F m ( P m ) v a n i s h  

at  p . .  

Finally,  we m a k e  Zx, Z 2 . . . . .  Z n sa t is fy  

~. Z �9 (P) = ( - 1)". (42) 
r - '  

This completes  the  set  of conditions which v m u s t  satisfy.  

7.  Expl ic i t  representat ion  o f  the  so lu t ion  

Let  e~ = 1 if ~ u/O y~ is given on B and let  ek = 0 if ~ u /8  yk is no t  g iven on B. 

Fur ther ,  let  

'Pn 
I ~ m-1 ~JO~um-~-I om-t-l(Am,~+S+lV ) 

JB = . m-1 |=0~ ( -- 1)m-I Ei --,7 ~ -  t-OE mCf+I+l 0 9~n_l_j_ 1 0 y  ~ d x -  
O 

[ ~ ~ I  m-f-2 m-/-l k-,-1 
- E E ~ (-1)~-~+'~c,m-~-,c, • 

Lm=l  t=o i=o k - t + l  l=O 
~--I--1 ,~ ra--k-Fl--, O (A,., ,+s+, v)] 

• o ~ * - ' - ' - '  ou' U~-J -+v-~ ' - - ]~ -~-o  
(43) 
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I t  will be seen from (15), (28) and (29) tha t  JB is what  remains of J s  after  the 

integrations by parts  are performed and the values a t  the points Pn-~+l . . . . .  P~ are 

removed. J ~  contains only known functions. 

We can now express u (P) explicitly in terms of known functions. Because of 

(42) we have, from (18), 

u ( P ) = - J s + J 1 + J ' ~ +  ~_. (--1)'~zm(pm)U(P,~)§ ~ Fm(Pm) u(P,,)+ 
m - 1  ra= n - ~ + l  

n 

+ ~ ~ (-1)nZ'~(P~)u(P'~). (44) 
t=1 r n - n . - ~ + l  

As before, e 0 = l  if u is given on B and e 0 = 0  if u is not given on B. The points 

P1, P2 . . . . .  P~_~ are the intersections with I of characteristic curves drawn from P. 

The points P , _ ~  1 . . . . .  P~ are the intersections with B of characteristic curves drawn 

from P.  The points P~ are the intersections with I of characteristic curves drawn 

from Pm(m=n-o~+l . . . . .  n). Js, J~, J'a and Fro(Pro) are given by  (13), (14), (43) 

and (41) respectively. 

8. D i scont inu i t i e s  o f  v on  the  characterist ics  

The Riemann function, v (x, y) may be found by  a modification of the method 

used by  Campbell and Robinson [2] to solve the mixed problem. To see this, we 

must  examine the conditions which v (x, y) must  satisfy on the characteristic curves 

and on the boundary. 

The first step is to show tha t  the jumps of the derivatives of v of order n - 2  

are known across all the characteristics Ft and F~. This means tha t  we must  show 

tha t  all the functions Z t and Z~, are known on the corresponding characteristics. 

According to (8), all the derivatives of w ~ and w~ of order n -  2 are multiples of Z ~ 

and Z~, and the derivatives of uJ and w~ are just the jumps of the derivatives of 

v across the corresponding characteristics. Equation (20) can be written 

Z" 
n ~ - -  + K" Z" = 0. (45) 

os~ 

where K ~ is a function of the coefficients of equation (1). Hence each function Z ~ 

and Z~ is a solution of an ordinary, first-order, linear differential equation. In  order 

to specify Z l and ~ completely, the values of these functions must  be known at  the 

points P and P~ (i = n - a + 1 . . . . .  n). 
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At P, Rellich [9] has shown tha t  

Z' ( P ) =  ( -  1)n/n (i = l,  2 . . . . .  n). (46) 

Equa t ion  (46) is a consequence of (42) and the definition of the functions w c. The  

functions Z c (i = 1, 2 . . . . .  n) are completely specified by  (45) and (46). 

The functions Z~, which correspond to characteristics leading from points on the 

boundary  to the initial segment,  also satisfy the differential equations (45). I t  will 

now be shown tha t  their  values of the points Pc on the boundary  are specified by  

the  conditions imposed on v. 

I t  i s  convenient  to define new quanti t ies  A(~ ~) by  the  equation 

?Z-1 

~I (P~ ~ + qJ ~/) = ~ A(r c) ~n-r-1 ~r (i = 1, 2 . . . . .  n). (47) 
J = l  r - O  

We must  now derive some identities connecting the  functions A7 ), and the coefficients, 

AnT, of the differential equation.  I t  is clear from (2) t ha t  

n - 1  

~. ,*CTAnr~'*-r~r=(P'$+q*~) Z AT)$'-r-l~ r ( i = 1 ,  2 . . . . .  3). (48) 
r = 0  r - 0  

From (48) we deduce tha t  p~A(~ )=A~o, 

and 

Also, if we pu t  

equat ion (9), 

(49) 

p'AT)+~A(~I=nCTAn, ( r = l ,  2 . . . . .  R - - l ) ,  (50) 

qt A ~ I  = A,n. (51) 

= _qC and ~ = pC in (47), we have,  from the definition of Di in 

n - 1  

Dc = ~ A~ ) (p')' ( - qC)~-~-i (i = 1, 2 . . . . .  n). (52) 
r - 0  

I t  is easily shown from these equat ions t ha t  

n - k - 1  

~. nCJ..bkq_l An. s+k+l ( - 1) n-j-1 (pC)j (qC)n-z-j = ( _ qC),-1 A~) 
i - 0  

( i = 1 ,  2 . . . . .  n; k = 0 ,  1 . . . . .  R - - l ) ,  

and tha t  

(53) 

Equa t ion  (53) m a y  be verified by using (50) and (51) to  subst i tute  for ,~Cj+,+I An.j+~l.  

Equa t ion  (54) results f rom the  use of the iden t i ty  

n - 2  

Dc + ~. ( - 1)  n - j - 1  • n - lG- t -1  An.j+1 (pC)j (q,)n-2-j = n ( - q~)~-i A~) 
t - 0  

(i = 1, 2 . . . . .  n). (54) 
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n (n_ICj_{_I) = (.'E.- j -  1) (aCj+ l )  (55) 

and the use of (50) and (52) to substitute for An.j+1 and D~. Equations (53) and (54) 

are the identities connecting A~ ) and A ~  which it will be necessary to use. 

Let  us consider first the ease where u is given on the boundary. Then, at  all 

points of continuity of v and its derivatives on the boundary, we have n - K  con- 

ditions of the form 

n - k - 1  ~n--k'-I IA 
~.. nCj+l,+l" ~ n'J+k+l V) + R~,=O, (32) 
J-o ~x "-j-~-I a y  j 

where k is an integer between 1 and n - 1  inclusive, and R~ is a linear combination 

of derivatives of v of order less than n -  k - 1 .  Next,  differentiate this expression 

k -  1 times with respect to x to obtain 

n - k - I  ~n--$ V 
5 ncj+~+, An.,+~+, axn_j_~ ay~ ~ Ri = 0, (56) 
1-0 

where R~ contains only derivatives of v of order less than n - 2 .  

We now concentrate our at tention on the point Pm of Figure 3. Since the de- 

rivatives of v of order less than  n - 2  arc continuous everywhere in the region under 

consideration, we have, from (56), 

, -0  nC,+k+t An. J+k+l 0 X -n--~-2 ~ J  pm.+O = 0. (57) 

From (40) it then follows tha t  

n - K  n - k - 1  
~. ~- nCj-t-k-}-I An .  J-Fk+i ( - -  1)n-J-1 (p~)j (qt)n--Z--~ ZT'/D~ 

~-1 J-O 

n-k--1 

= ~ nCj+k+lAn, j+k+l ( - 1) "-j-1 (P'~)J (qm)n--J-2 Z"/Dm, 
1-0 

or, because of (53), 

(58) 

n - K  
(q~),t-1 A~ ) Z? A(m ) Z ~ 

, -1  D~ (q~)n-1 D~" (59) 

Since k takes on n - K  values of the integers from 1 to n - 1 ,  and since Z m is 

a known function, (59) is a system of n - K  linear equations for the n - K  quantities 

Z~ (Pro) (i = 1, 2 . . . . .  n -  K). I t  will be shown presently tha t  the determinant  of this 

system does not vanish. 
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Before showing t h a t  (59) possesses a solution we will consider the case when u 

is no t  given on the boundary .  I n  this instance one of equat ions (32) contains de- 

r ivat ives of order n - 1 .  This is the case k = 0  which was excluded earlier. Such a 

boundary  condit ion is no t  suitable for determining the discontinuities in the deri- 

vat ives  of order n - 2  a t  Pro. Thus, there are only n - K - 1  equat ions in the  system 

(59) and we need one more to  specify the functions Z~ uniquely.  This is provided 

by  (41). I t  was assumed that ,  if u is not  given on the boundary ,  then  the  coeffi- 

cient of u in (41) vanishes. This yields the  equat ion 

, -K  (q~)n-1 A(0 m) 
Z T A ~ ) Z ' ~ = ( q " )  n-1 Z". t-1 Mt ~-m (60) 

Equa t ion  (54) was used to simplify (41) and hence (60). 

Equa t ion  (60) is just  wha t  would result if k were allowed to  equal zero in (59). 

Thus,  whether  or no t  u is given on the  boundary ,  we have the n -  K equat ions 

Z (q~)n-1 A~) Z~n (P~) = (qm)~-~ A(~) Z~ (P~) (59) 
~ I D~ D ~  ' 

where k takes on n -  K values from 0 to  n -  1. If  we regard these as equat ions for 

the n -  K quanti t ies (q~)n-1 Z'~/D~ the  de terminant  of the  equat ion is 

A ~ -  ~(J)] (i, i = 1 ,  2, n - K ) ,  (61) 

where kl, ]r . . . . .  kn-K are the  n -  K values which ]c assumes. This de terminant  m a y  

also be wri t ten as 

A~ 1) A~ u) ... A(0 n-~) 

A(11) A(1 ~) ... A(I n-K) 

A I ~  -~ 

0 .o. 0 

0 . . . 0  

0 

1 

0 . . . 0  , 

1 

0 

(62) 

A~- I  A~ )- x ..- A(,~--1K~ 0. . .  0 

where each of the  last K columns contains n - 1  zeros and a one. There will be a 

one in the r th  row of one of these columns if the  functions A~ 1), A(~ 2~ . . . . .  A(~ '~-K~ do 

not  appear  in A 1 (i.e. if ~ru/~y~ is given on the boundary) .  
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I n  order to  demonst ra te  t h a t  the de te rminan t  A 1 does no t  vanish, we pre- 

�9 mul t ip ly  it by  the non-vanishing de terminant  Az, whose element in the r th  row and 

~th column is (p~)J (-qT)~-J-1, where r = l ,  2 . . . . .  n and ~ = 0 , 1  . . . . .  n - ] .  Now it 

follows f rom equat ion (47) t h a t  

n - 1  

(p~)~ ( _ q,),-j-1 A~) = 5~ D~ (i, r = 1, 2 . . . . .  n), (63) 
t - 0  

where ~ is the Kronecker  delta. Therefore 

A1 An = ~D1 Dz ... D~-KI (P')J(--qT)n-J-~l 

( r = n - K + l , n - K + 2  . . . . .  n; : = a  a , a  n . . . . .  ax), (64) 

where al, a 2 . . . . .  aK are K integers between 0 and n -  1. The exponents  ai are the  

orders of the derivatives of u which are given on the boundary .  Le t  

yr =qr/Pr (r= 1, 2 . . . . .  n). (65) 

Then  ~:~ is the slope of the characterist ic curve with direction cosines pT and qr. Thus  

A x A 2 = _+D 1 D2 ... D~_K (p~-K§ p~-K+2.., pn)n--1](~r)n--J--1 ] 

( r = n - K §  . . . . .  n; i = a l ,  an . . . . .  aK). (66) 

Now yT is, by  hypothesis,  positive on the  boundary  for r = n - K  + 1 . . . . .  n and 

the exponents  n - j -  1 are K different integers chosen from among 0, 1 . . . . .  n - 1. 

Under  these conditions, it can be shown t h a t  the de terminant  I(~:T)~-J-I[ does no t  

vanish. One proof of this has been given by  Campbell  and Robinson [2] in connec- 

t ion with their solution of the  mixed problem. The non-vanishing character  of the  

de terminant  1(7,~)n-J-11 can also be deduced from a theorem due to  Rosenbloom [8, 

Theorem 4] on symmetr ic  polynomials.  

F r o m  the definition of D~ in (9) and from inequali ty (3} it will be seen tha t  

D~ does not  vanish for r = 1, 2 . . . . .  n. Moreover, it was assumed earlier t h a t  pJ(x, y)~= 0 

for j = 1, 2 . . . . .  n. Therefore A 1 does no t  vanish and hence (59) has an  unique solu- 

t ion (q:)n-lZ~/D~ { i = l ,  2 . . . . .  n - K ) .  Since qt does not  vanish on the  boundary ,  

Z~ (Pro) is determined by  (59). 

Since this result  holds for all points Pm and since the functions Z~ n satisfy the 

differential equat ion {45), all the  functions Z~ (x, y ) a r e  known.  Therefore, the  jumps 

in the  derivatives of order n - 2  of v are known across every characteristic in the 

region. 
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9. D e t e r m i n a t i o n  o f  the  R i e m a n n  f u n c t i o n  

In this section we outline a method by which v (x, y) may be determined. A 

more complete existence proof may be found in the author's thesis [3]. The pro- 

cedure is based on Robinson's [10] solution of the initial value problem and on the 

solution by Campbell and Robinson [2] of the mixed problem. The reader is referred 

to these papers for many details which are omitted here. 

The function v (x, y) must satisfy the a~ljoint equation, (12), in the interior of 

each region formed by the characteristics which have been drawn. On the char- 

aeteristics 1" 1 and F~, which form part  of the boundary of the region R, v and its 

first n - 2  derivatives are known. Across the characteristics in the interior of R, 

the jumps of the derivatives of order n - 2  of v are known. The lower order de- 

rivatives are continuous across these characteristics. On the boundary, B, v must 

satisfy the n -  K conditions (32). 

We define fm (x, y) by 

n-1 0 n - i v  n-2 k ~ v  
z-0 " k z ~  r(m,,_ ( m =  1, 2, n). (67) fro(x, Y)= k-0 ~ A~m)(x'Y) Ox '~-~-k OJ'+k-oy ~'~' y) ~x~-Z~Y ~ . . . .  

In (67), b(~ ) (x, y) is an undetermined function of x and y, while A~ m) is defined by 

(47). Then, if v (x, y) satisfies the adjoint equation (12) and the functions b(k'~ ) (x, y) 

are chosen properly, the functions fm (x, y) satisfy the linear system of first-order 

equations 

m~frn mOfm=~_xb,,~f~: ( r e = l ,  2, n). (68) v _ . . . ,  

m 

In (68), bm~ is a known function of the coefficients of the differential equation and 

of the functions b (m)~ . The condition which b~"P must satisfy in order that  (68) hold 

is tha t  it  shall satisfy the first-order equations 

pm 0 b~'2 ) . qm 0 b([7 ) 
- ~ x  + ~ = a~) .  (69) 

G( m ) The function k~ is a quadratic function of the coefficients b(~ ). Explicit expressions 

for G(k~ ) and b,~ are given by Robinson [10]. 

The system (68) is a hyperbolic system with the same characteristic curves as 

(1) and (12). The quanti ty 
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is the  der iva t ive  of 1'm with respect  to  arc length along a character is t ic  curve with 

direct ion cosines p", qm. 

Now, from (47) it  can be seen t h a t  

x,~_,_kOy k ~p - ~ + q  ~y , ~  p ~ x + q  ' v + Lm ( m = 2 ,  3 . . . .  n). (70) 
k-O 0 

tr 

where .L m is a l inear combinat ion  of der iva t ives  of v of order n -  2 and  less. More- 

over,  the  expression in the  square  bracke ts  on the  r ight  hand  side of {70) is itself. 

a l inear combinat ion  of der iva t ives  of v of order  n -  2 and  less. Since, on F1, v and  

its der iva t ives  of order n - 2  and  less are known funct ions which are differentiable 

wi th  respect  to are length,  the  r ight  hand  side of (70) is known on F1. I t  follows 

therefore,  f rom (67), t h a t  1̀m (x, y) is de te rmined  on F1 for m = 2 ,  3 . . . . .  n. Similarly,  

1'm can be calculated on F ,  for m = 1, 2 . . . . .  n -  1. I t  also follows, by  much  the  same 

reasoning, t h a t  we can calculate the  j ump  of /1, /2 . . . . .  1'~-1, ]~+1 . . . . .  1'~ across a 

character is t ic  F~ or F~ with direction cosines pZ, qa. I t  is no t  necessary to  know 

1'1 on F1, because in determining 1'1 we in tegra te  the  equat ion 

/r k - 1  

along characteris t ics  with direction cosines pl, qt. Since none of these curves can 

intersect  F1, knowledge of Ix on  F I is unnecessary.  Similar  r emarks  app ly  to  /n on 

Fn and  /m on  F~ or F~. 

Finally,  ]1,/2 . . . . .  1`=_r mus t  be de te rmined  on B in t e rms  o f /n - r  . . . . .  ],. This  

is done with the aid of the  bounda ry  conditions (32) and  a sui table choice of the  

bounda ry  conditions for b(~ ). The  me thod  is exac t ly  the  same as t h a t  used in [2]. 

I t  is not  difficult to  show t h a t  the  de t e rminan t  D of t h a t  pape r  [2, equat ion  (7)] 

does not  vanish  for the bounda ry  conditions (32). 

The  me thod  of de termining 1'1, /2 . . . . .  /n is then  as follows: F rom a point  P' in 

the  interior  of R, the  n characteris t ics  are drawn in the  direct ion of increasing x to 

mee t  F1, F ,  or B. Each  of the equat ions (68) is then  in tegra ted  with respect  to 

arc length along the  corresponding characterist ic.  This  yields the  Vol te r ra - type  sys tem 

of integral  equat ions 

1'm(P')=1',,.(P~)+ ~ _lbm~/~d8 ( m = l ,  2 . . . . .  n). (71) 
p, 

4 -  583801.  A c t a m ,  athematiea. 100. I m p r i m 6  le 29 s e p ~ m b r e  1958. 
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The points P~, are the intersections of the characteristics with F1, F~ or B. The 

values /m0 (P~n) are the values of /m which have been calculated on F1, Fn or B. If 

P~ is on B, /~o (P'm) may be given in terms of other funct ions/ . - r+1 (P~) . . . . .  /~ (P~,) 

for which similar integral equations may be written. The functions Jz~ are the jumps 

of /m as it crosses the characteristics F, and Fr s. These jumps are known. The integral 

equations (71) can be solved by the method of successive approximation under con- 

ditions which are similar to those usually required for Picard's method to be applied. 

The functions b(k~ ) (x, y) satisfy a similar set of integral equations and may be 

found in the same way. In the case of these functions there is no discontinuity 

across the interior characteristics and their values on l~1 and Fn may be chosen more 

or less arbitrarily. 

The above reasoning follows the discussion of the mixed problem [2] quite closely. 

The main differences are that F1 and F.  have replaced the initial segment of that  

discussion and that  discontinuities across characteristics have been introduced. 

Finally, once /m (x, y) is known, equation (67) is a hyperbolic equation of order 

n -  1 for v. This equation can be treated in the same way. Because all the deriva- 

tives and jumps in derivatives of order n - 2  or less are given, the functions cor- 

responding to /~ can be determined. Thus, the order of the equation is successively 

reduced until we have a first-order equation for v which can be solved. Once v is 

known, equation (44) gives an explicit representation of the solution to the mixed 

problem which was originally posed. 
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