SOLUTION OF A MIXED PROBLEM FOR A HYPERBOLIC DIFFERENTIAL EQUATION BY RIEMANN'S METHOD

BY
L. LORNE CAMPBELL

Defence Research Telecommunications Establishment, Ottawa, Canada

1. Introduction

This paper deals with a mixed initial and boundary value problem for a linear, hyperbolic partial differential equation of order n and with two independent variables. The values of the unknown function and its first $n-1$ normal derivatives are specified on an initial curve, and, in addition, the values of an appropriate number of normal derivatives are given on a boundary curve which intersects the initial curve. A solution of the differential equation which assumes the given initial and boundary values will be found by an extension of Riemann's well known solution of the initial value problem for a second order hyperbolic equation. The problem considered in the present paper is a special case of a mixed problem for which another method of solution has been given by Campbell and Robinson [2].

Hadamard [6, 7] adapted Riemann's method to deal with mixed problems for the second order equation. More recently, Bureau [1] and Durand [4] have treated mixed problems for second order equations by the same method. Rellich [9] has generalized Riemann's method to solve the initial value problem for linear, hyperbolic equations of order greater than two. In the present paper, a mixed problem for an equation of order greater than two is solved by an extension of the methods of Rellich and Hadamard. The complete existence proof will not be given here, but a method of obtaining the associated Riemann function will be outlined. A more complete proof is given in the author's thesis [3].

2. Preliminary results

The general linear partial differential equation of order n may be written

$$
\begin{equation*}
L[u] \equiv \sum_{k=0}^{n} \sum_{j=0}^{k}{ }_{k} C_{j} A_{k j}(x, y) \frac{\partial^{k} u}{\partial x^{k-j} \partial y^{j}}=a_{0}(x, y) \tag{1}
\end{equation*}
$$

where ${ }_{k} C_{j}$ is the binominal coefficient, $k!/ j!(k-j)!$.
We assume that equation (1) is hyperbolic in the region under consideration. Hence, if ξ and η are arbitrary parameters,

$$
\begin{equation*}
\sum_{k=0}^{n}{ }_{n} C_{k} A_{n k} \xi^{n-k} \eta^{k}=\prod_{j-1}^{n}\left(p^{j} \xi+q^{j} \eta\right) \tag{2}
\end{equation*}
$$

where p^{j} and q^{j} are real and

$$
\begin{equation*}
p^{1} q^{j}-p^{3} q^{i} \neq 0 \quad(i \neq j) \tag{3}
\end{equation*}
$$

We assume further that (1) is normalized so that

$$
\begin{equation*}
\left(p^{3}\right)^{2}+\left(q^{j}\right)^{2}=1 \quad(j=1,2, \ldots, n) \tag{4}
\end{equation*}
$$

With this normalization, p^{j} and q^{j} are the direction cosines of the characteristic curves of (1).

Define the quantity Z^{σ} by

$$
\begin{array}{r}
Z^{\sigma}=\sum_{k-0}^{n-2}{ }_{n-2} C_{k} \frac{\partial^{n-2} w^{\sigma}}{\partial x^{n-2-k} \partial y^{k}}\left[p^{\sigma} q^{\sigma} A_{n k}+\left(q^{\sigma}\right)^{2} A_{n, k+1}-\left(p^{\sigma}\right)^{2} A_{n, k+1}-p^{\sigma} q^{\sigma} A_{n, k+2}\right] \\
(\sigma=1,2, \ldots, n), \tag{5}
\end{array}
$$

where $w^{\sigma}(x, y)$ is a function which vanishes, together with all its derivatives of order $n-3$ and less, on the characteristic curve with direction cosines p^{σ} and q^{σ}. Rellich [9] has proved that the following formulas hold on this characteristic curve:

$$
\begin{align*}
& \sum_{k-0}^{n-2}{ }_{n-2} C_{k} \frac{\partial^{n-2} w^{\sigma}}{\partial x^{n-2-k} \partial y^{k}}\left[q^{\sigma} A_{n k} \frac{\partial u}{\partial x}-p^{\sigma} A_{n, k+1} \frac{\partial u}{\partial x}+q^{\sigma} A_{n, k+1} \frac{\partial u}{\partial y}-p^{\sigma} A_{n, k+2} \frac{\partial u}{\partial y}\right] \\
& =\frac{\partial u}{\partial s_{\sigma}} Z^{\sigma} \quad(\sigma=1,2, \ldots, n), \tag{6}\\
& \sum_{k=0}^{n-1}{ }_{n-1} C_{k} \frac{\partial^{n-1} w^{\sigma}}{\partial x^{n-1-k} \partial y^{k}}\left(q^{\sigma} A_{n k}-p^{\sigma} A_{n, k+1}\right) \\
& =-(n-1) \sum_{k=0}^{n-2}{ }_{n-2} C_{k} \frac{\partial^{n-2} w^{\sigma}}{\partial x^{n-2-k} \partial y^{k}} \frac{\partial}{\partial s_{\sigma}}\left[p^{\sigma} q^{\sigma} A_{n k}-\left(p^{\sigma}\right)^{2} A_{n, k+1}+\right. \\
& \left.+\left(q^{\sigma}\right)^{2} A_{n, k+1}-p^{\sigma} q^{\sigma} A_{n, k+2}\right]+(n-1) \frac{\partial Z^{\sigma}}{\partial s_{\sigma}} \quad(\sigma=1,2, \ldots, n), \tag{7}
\end{align*}
$$

and

$$
\begin{equation*}
\frac{\partial^{n-2} w^{\sigma}}{\partial x^{n-2-k} \partial y^{k}}=(-1)^{n-1-k} n\left(p^{\sigma}\right)^{k}\left(q^{\sigma}\right)^{n-2-k} \frac{Z^{\sigma}}{\bar{D}_{\sigma}} \quad(\sigma=1,2, \ldots, n) . \tag{8}
\end{equation*}
$$

In (6) and (7) the derivative with respect to arc length on the characteristic curve, $p^{\sigma} \partial / \partial x+q^{\sigma} \partial / \partial y$, is denoted by $\partial / \partial s_{\sigma}$. In (8), D_{σ} is defined by

$$
\begin{equation*}
D_{\sigma}=\prod_{\substack{k=1 \\ k \neq \sigma}}^{n}\left(p^{\sigma} q^{k}-p^{k} q^{\sigma}\right) \quad(\sigma=1,2, \ldots, n) \tag{9}
\end{equation*}
$$

Finally, Green's theorem for the plane shows that

$$
\begin{align*}
& \iint_{G}(v L[u]-u M[v]) d x d y \\
& =\int_{\Gamma}\left\{\sum_{m=1}^{n} \sum_{k=0}^{m-1} \sum_{i=0}^{k} \sum_{j=0}^{m-k-1}(-1)^{m-k}{ }_{k} C_{t}{ }_{m-k-1} C_{j} \frac{\partial^{k} u}{\partial x^{k-1} \partial y^{1}} .\right. \\
& \left.\cdot\left[\frac{\partial^{m-k-1}\left(A_{m, i+j+1} v\right)}{\partial x^{m-k-j-1} \partial y^{\prime}} d x-\frac{\partial^{m-k-1}\left(A_{m, i+j} v\right)}{\partial x^{m-k-j-1} \partial y^{j}} d y\right]\right\}, \tag{10}\\
& M[v]=\sum_{k=0}^{n} \sum_{j=0}^{k}(-1)^{k}{ }_{k} C_{j} \frac{\partial^{k}\left(A_{k j} v\right)}{\partial x^{k-j} \partial y^{i}} . \tag{11}
\end{align*}
$$

In (10), G is a closed region in the $x y$-plane with the boundary Γ. The integral on Γ is to be taken in the counter-clockwise sense.

3. Application of Green's theorem to the mixed problem

In the mixed problem considered in this paper the initial curve, I, is the segment $0 \leqslant y \leqslant a$ of the y-axis, and the boundary curve, B, is the segment $0 \leqslant x \leqslant c$ of the x-axis. We assume that no characteristic curve is parallel to the y-axis and that no characteristic curve is tangent to the x-axis in the region under consideration. That is, we assume that $p^{\sigma}(x, y) \neq 0$ and $q^{\sigma}(x, 0) \neq 0$ for $\sigma=1,2, \ldots, n$.

Let $q^{\sigma}(x, 0) / p^{\sigma}(x, 0)$ be negative for $\sigma=1,2, \ldots, n-K$ and positive for $\sigma=$ $n-K+1, \ldots, n$. Thus, there are K characteristics of positive slope and $n-K$ characteristics of negative slope at each point of B. Let $0<K<n$.

On I, the values of $u, \partial u / \partial x, \ldots, \partial^{n-1} u / \partial x^{n-1}$ are given as functions of y. These functions are to be sufficiently differentiable with respect to y so that all the derivatives of u of order n or less are continuous functions of y on I. On B, the values of K of the quantities $u, \partial u / \partial y, \ldots, \partial^{n-1} u / \partial y^{n-1}$ are given functions of x. These boundary values must also be differentiable often enough so that the derivatives 3-583801. Acta mathematica. 100. Imprimé le 26 septembre 1958.
of order n of u which can be formed from them are continuous functions of x. Moreover, we assume that the behavior of the initial values and the boundary values in the neighborhood of the origin is such that the derivatives of u of order n and less are continuous in the neighborhood of the origin. The reason for giving K boundary values is discussed elsewhere by Campbell and Robinson [2]. It is known from their results that a function u which satisfies the differential equation (1) and the initial and boundary conditions can be found in a region of the first quadrant of the $x y$-plane provided that the coefficients of (1) are sufficiently regular.

We assume that all the derivatives of the coefficients of equation (1) which appear in Green's formula, equation (10), possess continuous first derivatives with respect to x and y in the region under consideration.

Let R be a closed region in the first quadrant of the $x y$-plane with the following properties: If the point (x, y) is in R, it shall be possible to draw the n characteristic curves through (x, y) in the direction of decreasing x until they all intersect either I or B. The characteristics so drawn must remain in R. If the point is on B or I some or all of these characteristics may have zero length. Such a region R will be called a region of determinacy of $I+B$.

The application of Rellich's method to the mixed problem is complicated by the fact that not all of the derivatives of u which appear in Green's formula are known on the boundary. Thus the function v must be made to satisfy certain subsidiary conditions on the boundary in order to make the unknown terms disappear.

Let u be a solution of the mixed problem in a region, R, of determinacy of $I+B$. We wish to obtain an explicit representation of u at the point $P\left(x_{0}, y_{0}\right)$ in R

We draw the n characteristic curves $\Gamma_{1}, \Gamma_{2}, \ldots, \Gamma_{n}$ back from P to meet I or B at $P_{1}, P_{2}, \ldots, P_{n}$ and we suppose, for convenience, that the characteristics are numbered in order of increasing slope. At most K of the points P_{i} fall on B. From each of those points P_{i} which do fall on B we draw the $n-K$ characteristic curves which lead back to I. Let the characteristic curve leading from P_{i} on B to I and with direction cosines p^{j}, q^{j} be denoted by Γ_{j}^{i}. Let Γ_{j}^{i} meet I at P_{j}^{i} (Fig. 1). These curves break up the region bounded by $\Gamma_{1}, \Gamma_{n}, I$ and B into a finite number o regions. Let $v(x, y)$ by a solution of the adjoint equation,

$$
\begin{equation*}
M[v]=0 \tag{12}
\end{equation*}
$$

in each of these regions, with continuous derivatives of order n. On Γ_{1} and Γ_{n}, $v(x, y)$ and its derivatives of order less than $n-2$ are to vanish. In the interior of the region bounded by $\Gamma_{1}, \Gamma_{n}, B$ and I, v and its derivatives of order less than $n-2$

Fig. 1.
are to be continuous everywhere, but the derivatives of order $n-2$ and greater will have discontinuities across each of the characteristic curves Γ_{i} and Γ_{j}^{i}.

We now apply Green's formula (10) to each of the regions formed by the various characteristics and add the results. The left hand side contributes the integral J_{s}, where

$$
\begin{equation*}
J_{s}=\iint_{P P_{1} O P_{n} P} v a_{0} d x d y \tag{13}
\end{equation*}
$$

This is a known quantity when v is known. The various integrals over I contribute J_{I}, where

$$
\begin{equation*}
J_{I}=\int_{0}^{P_{1}} \sum_{m=1}^{n} \sum_{k-0}^{m-1} \sum_{i=0}^{k} \sum_{j=0}^{m-k-1}(-1)^{m-k}{ }_{k} C_{t}{ }_{m-k-1} C_{f} \frac{\partial^{k} u}{\partial x^{k-i} \partial y^{i}} \frac{\partial^{m-k-1}\left(A_{m, i+j} v\right)}{\partial x^{m-k-j-1} \partial y^{j}} d y \tag{14}
\end{equation*}
$$

J_{I} is also known when v is known. The integrals on B contribue J_{B}, where

$$
\begin{equation*}
J_{B}=\int_{0}^{P_{n}} \sum_{m=1}^{n} \sum_{k=0}^{m-1} \sum_{i=0}^{k} \sum_{j=0}^{m-k \cdot 1}(-1)^{m-k}{ }_{k} C_{i m-k-1} C_{f} \frac{\partial^{k} u}{\partial x^{k-1} \partial y^{i}} \frac{\partial^{m-k-1}\left(A_{m, i+j+1} v\right)}{\partial x^{m-k-j-1} \partial y^{j}} d x \tag{15}
\end{equation*}
$$

Let C_{μ} represent a segment of one of the characteristic curves drawn from P, P_{n}, $P_{n 1}$, etc. Let $\left(x_{1}, y_{1}\right)$ be a point on C_{μ}. Then we define $w^{\mu}(x, y)$ by

$$
\begin{equation*}
w^{\mu}\left(x_{1}, y_{1}\right)=v\left(x_{1}, y_{1}-0\right)-v\left(x_{1}, y_{1}+0\right), \tag{16}
\end{equation*}
$$

where $v\left(x_{1}, y_{1}-0\right)$ and $v\left(x_{1}, y_{1}+0\right)$ denote limits of v as $\left(x_{1}, y_{1}\right)$ is approached from below and above respectively. On Γ_{1} and Γ_{n}, w^{1} and w^{n} are defined by $w^{1}=v$ and $w^{n}=-v$ respectively. Partial derivatives of w^{μ} will denote the corresponding differences of derivatives of the function v on the two sides of C_{μ}. According to the assumptions made about v, w^{μ} and all its derivatives of order $n-3$ or less vanish on C_{μ}.

Then the integral on C_{μ} which results from the application of Green's theorem is given by

$$
\begin{align*}
J_{\mu}=\int_{C_{\mu}}\{ & (-1)^{n-2} \sum_{k=0}^{n-2}{ }^{n-2} C_{k}\left[q^{\mu} \frac{\partial u}{\partial x} \frac{\partial^{n-2}\left(A_{n k} w^{\mu}\right)}{\partial x^{n-2-k}} \partial y^{k}-p^{\mu} \frac{\partial u}{\partial x} \frac{\partial^{n-2}\left(A_{n, k+1} w^{\mu}\right)}{\partial x^{n-2-k} \partial y^{k}}+\right. \\
& \left.+q^{\mu} \frac{\partial u}{\partial y} \frac{\partial^{n-2}\left(A_{n, k+1} w^{\mu}\right)}{\partial x^{n-2-k} \partial y^{k}}-p^{\mu} \frac{\partial u}{\partial y} \frac{\partial^{n-2}\left(A_{n, k+2} w^{\mu}\right)}{\partial x^{n-2-k} \partial y^{k}}\right]+ \\
& \left.+u \sum_{m=n=1}^{n} \sum_{k=0}^{m-1}(-1)^{m-1}{ }_{m-1} C_{k}\left[q^{\mu} \frac{\partial^{m-1}\left(A_{m k} w^{\mu}\right)}{\partial x^{m-1-k} \partial y^{k}}-p^{\mu} \frac{\partial^{m-1}\left(A_{m, k+1} w^{\mu}\right)}{\partial x^{m-1-k} \partial y^{k}}\right]\right\} d s \tag{17}
\end{align*}
$$

The remainder of the terms disappears because w^{μ} and its derivatives of order $n-3$ and less vanish on C_{μ}. The direction of increasing s on C_{μ} has been chosen so that $d x / d s=p^{\mu}$ and $d y / d s=q^{\mu}$, where p^{μ} and q^{μ} are the direction cosines of C_{μ}.

Thus, the application of Green's formula yields the result

$$
\begin{equation*}
J_{s}=J_{I}+J_{B}+\Sigma J_{\mu} \tag{18}
\end{equation*}
$$

where J_{s} and J_{I} are known quantities.
The integrals J_{μ} can be evaluated in terms of the values of u at the end-points of C_{μ} provided that v satisfies certain conditions on C_{μ}. Let P_{μ}^{\prime} and $P_{\mu}^{\prime \prime}$ be the endpoints of C_{μ}, where P_{μ}^{\prime} is the point with the larger abscissa. Then Rellich [9] has shown that

$$
\begin{equation*}
J_{\mu}=(-1)^{n}\left[Z^{\mu}\left(P_{\mu}^{\prime \prime}\right) u\left(P_{\mu}^{\prime \prime}\right)-Z^{\mu}\left(P_{\mu}^{\prime}\right) u\left(P_{\mu}^{\prime}\right)\right] \tag{19}
\end{equation*}
$$

provided that

$$
\begin{equation*}
n \frac{\partial Z^{\mu}}{\partial s_{\mu}}=\sum_{k=0}^{n-2}{ }_{n-2} C_{k} E_{k}^{\mu} \frac{\partial^{n-2} w^{\mu}}{\partial x^{n-2-k} \partial y^{k}} \tag{20}
\end{equation*}
$$

on C_{μ}, where

$$
\begin{align*}
E_{k}^{\mu}=(n-1) & \frac{\partial}{\partial s_{\mu}}\left[p^{\mu} q^{\mu} A_{n k}-\left(p^{\mu}\right)^{2} A_{n, k+1}+\left(q^{\mu}\right)^{2} A_{n, k \neq 1}-p^{\mu} q^{\mu} A_{n, k: 2}\right]- \\
& -(n-1)\left[q^{\mu}\left(\frac{\partial A_{n k}}{\partial x}+\frac{\partial A_{n, k+1}}{\partial y}\right)-p^{\mu}\left(\frac{\partial A_{n, k+1}}{\partial x}+\frac{\partial A_{n, k+2}}{\partial y}\right)\right]+ \\
& +q^{\mu} A_{n-1 . k}-p^{\mu} A_{n-1 . k+1} . \tag{21}
\end{align*}
$$

Equation (19) results from the use of (6) and (7) and an integration by parts. Z^{μ} is defined by (5). Equation (8) shows that (20) is an ordinary linear first-order differential equation for Z^{μ} on C_{μ}.

4. Intersections of characteristics in the interior of the region

Consider a point P_{0} which is in the interior of the region bounded by I, B, Γ_{1} and Γ_{n} and which is the intersection of N of the characteristic curves which were drawn through the region. It will now be shown that there is no contribution to ΣJ_{μ} from this point. In fact, it will be shown that the functions Z^{μ} associated with the characteristics which cross at the intersection are continuous across the intersection.

We demonstrate first that $N<n$. In view of inequality (3) it is clear that two different characteristic curves cannot intersect twice. Thus the N characteristic curves must originate at N different points from among the point P and the points P_{n}, P_{n-1}, etc. on the boundary. There are, at most, K such points on the boundary. Now $K<n$ by hypothesis. If $K<n-1$ then there are at most $n-1$ points from which characteristics could be drawn to meet at P_{0} and in this case $N<n$. If $K=n-1$ there is only one family of characteristic curves with negative slopes on B. Since two members of this family drawn from different points can never meet, N can only have the value 2 in this case. Since we are concerned with the case $n>2$ we again have $N<n$. Thus, in all cases, $2 \leqslant N<n$.

Let the segments $C_{\mu_{i}}^{\prime}$ and $C_{\mu_{i}}^{\prime \prime}(i=1,2, \ldots, N)$ meet at P_{0}, where $C_{\mu_{i}}^{\prime}$ and $C_{\mu_{i}}^{\prime \prime}$ are two segments of the same characteristic curve with direction cosines $p^{\mu_{i}}$ and $q^{\mu_{i}}$. Let $Z^{\mu_{i}}, Z^{\mu_{i}{ }^{\prime \prime}}, w^{\mu_{i}^{\prime}}$ and $w^{\mu_{i} "}$ be the corresponding functions on $C_{\mu_{i}}^{\prime}$ and $C_{\mu_{i}}^{\prime \prime}$. The situation is illustrated in Figure 2.

Fig. 2.

Since $w^{\mu_{i}{ }^{\circ}}$ and $w^{\mu_{i} "}$ are the differences of the function v across the characteristics $C_{\mu_{i}}^{\prime}$ and $C_{\mu_{i}}^{\prime \prime}$ it is easily seen that, at P_{0},

$$
\begin{equation*}
\sum_{i=1}^{N}\left(\frac{\partial^{n-2} w^{\mu_{i}}}{\partial x^{k} \partial y^{n-2-k}}-\frac{\partial^{n-2} w^{\mu_{i} "}}{\partial x^{k} \partial y^{n-2-k}}\right)=0 \quad(k=0,1, \ldots, n-2) \tag{22}
\end{equation*}
$$

Since the derivatives of w^{μ} of order $n-3$ vanish on C_{μ} it follows that

$$
\begin{equation*}
p^{\mu} \frac{\partial^{n-2} w^{\mu}}{\partial x^{k+1} \partial y^{n}-3-k}+q^{\mu} \frac{\partial^{n-2} w^{\mu}}{\partial x^{k} \partial y^{n-2-k}}=0 \quad(k=0,1, \ldots, n-3), \tag{23}
\end{equation*}
$$

and hence that

$$
\begin{equation*}
\frac{\partial^{n-2} w^{\mu}}{\partial x^{k} \partial y^{n-2-k}}=\left(-\frac{q^{\mu}}{p^{\mu}}\right)^{k} \frac{\partial^{n-2} w^{\mu}}{\partial y^{n-2}} \quad(k=0,1, \ldots, n-2) \tag{24}
\end{equation*}
$$

If we substitute (24) into (22) we obtain, at P_{0},

$$
\begin{equation*}
\sum_{i=1}^{N}\left(\frac{q^{\mu_{i}}}{p^{\mu_{i}}}\right)^{k}\left[\frac{\partial^{n-2} w^{\mu_{i}^{\prime}}}{\partial y^{n-2}}-\frac{\partial^{n-2} w^{\mu_{i}}}{\partial y^{n-2}}\right]=0 \quad(k=0,1, \ldots, n-2) . \tag{25}
\end{equation*}
$$

Equations (25) are a system of $n-1$ linear homogeneous equations for the N variables $\partial^{n-2} w^{\mu_{i}} / \partial y^{n-2}-\partial^{n-2} w^{\mu_{i}^{\prime \prime}} / \partial y^{n-2}$, where $N \leqslant n-1$. It is easily shown that when inequality (3) holds these equations have only the solution

$$
\begin{equation*}
\frac{\partial^{n-2} w^{\mu_{i}^{\prime}}}{\partial y^{n-2}}=\frac{\partial^{n-2} w^{\mu_{i}}}{\partial y^{n-2}} \tag{26}
\end{equation*}
$$

It then follows from (8) that $Z^{\mu_{i}{ }^{\prime}}\left(P_{0}\right)=Z^{\mu_{i}{ }^{\prime \prime}}\left(P_{0}\right)$.
Thus Z^{μ} has no discontinuity at the intersection P_{0}.
Finally, from (19) and (27), the contribution to ΣJ_{μ} from the point P_{0} is zero. Thus, there is no contribution to ΣJ_{μ} from points of intersection of characteristics in the interior of the region bounded by I, B, Γ_{1}, and Γ_{n}.

There will, however, be a contribution to ΣJ_{μ} from the points P_{n}, P_{n-1}, etc. on B. If u is given on B, this contribution is a known function and is of no further concern. However, when u is not given on B, these contributions must be considered further.

5. Conditions on the boundary

Before considering the contributions to ΣJ_{μ} on B, we consider the boundary integral J_{B}. On the boundary, K of the quantities $u, \partial u / \partial y, \ldots, \partial^{n-1} u / \partial y^{n-1}$ are known. The general plan in the treatment of J_{B} is to integrate by parts on B until
all the differentiations of u with respect to x are removed. Then the coefficients of the unknown derivatives of u with respect to y are set equal to zero. This gives some further conditions on v. Finally, the terms at the points P_{n}, P_{n-1}, etc., which arise from the integration by parts, are combined with the terms from ΣJ_{μ} on the boundary. Then the coefficient of u at these points is also set equal to zero if u is not given on B. This gives the last of the conditions to be applied to v.

Let

$$
\begin{equation*}
I=\int_{P}^{P} \sum_{m=1}^{P^{\prime \prime}} \sum_{k=0}^{m-1} \sum_{i=0}^{k} \sum_{j=0}^{m-k-1}(-1)^{m-k}{ }_{k} C_{i m-k-1} C_{j} \frac{\partial^{k} u}{\partial x^{k-i} \partial y^{i}} \frac{\partial^{m-k-1}\left(A_{m, \ell+j+1} v\right)}{\partial x^{m-k-j-1} \partial y^{j}} d x \tag{28}
\end{equation*}
$$

where P^{\prime} and $P^{\prime \prime}$ are two points on B such that v and its derivatives are continuous on $P^{\prime} P^{\prime \prime}$. When I is integrated by parts and the order of summation is altered the result is

$$
\begin{align*}
& I=\int_{P}^{P} \sum_{m=1}^{n} \sum_{i=0}^{m-1}(-1)^{m-t} \frac{\partial^{i} u y^{i}}{\partial y^{i}} \sum_{j=0}^{m-i-1} C_{t_{+j+1}} \frac{\partial^{m-i-1}\left(A_{m, i+j+1} v\right)}{\partial x^{m-t-j-1} \partial y^{i}} d x+ \\
& +\left[\sum_{m=1}^{n} \sum_{i=0}^{m-1} \sum_{j=0}^{m-i-2} \sum_{k=i+1}^{m-j-1} \sum_{i=0}^{k-i-1}(-1)^{m-k+l}{ }_{k} C_{i m-k-1} C_{f} \frac{\partial^{k-l-1}}{\partial x^{k-i-i-1}} \frac{u}{\partial y^{i}} \frac{\partial^{m-k+l-1}\left(A_{m, i+j+1} v\right)}{\partial x^{m-k^{-j}+l^{-1}} \partial y^{\prime}}\right]_{P^{\prime}}^{P^{\prime \prime}} . \tag{29}
\end{align*}
$$

The identity

$$
\begin{equation*}
\sum_{k=i}^{m-j-1}\left({ }_{k} C_{i}\right)\left({ }_{m-k-1} C_{j}\right)={ }_{m} C_{i+j+1} \quad(0 \leqslant i+j \leqslant m-1) \tag{30}
\end{equation*}
$$

has been used in deriving (29). A proof of this identity is outlined by Feller [5].
Now the integration on B from O to P_{n} may be broken up into a sum of integrals on a finite number of segments on which v and its derivatives of order up to n are continuous. Thus, if we integrate by parts on each segment, we obtain

$$
\begin{equation*}
J_{B}=\int_{0}^{P_{n}}\left\{\sum_{i=0}^{n-1}(-1)^{n-t} \frac{\partial^{t} u}{\partial y^{i}}\left[\sum_{j=0}^{n-i-1}{ }_{n} C_{i+j+1} \frac{\partial^{n-t-1}\left(A_{n, i+j+1} v\right)}{\partial x^{n-i+j+1} \partial y^{t}}+R_{i}\right]\right\} d x+S \tag{31}
\end{equation*}
$$

where R_{i} is a linear combination of derivatives of v of order less than $n-i-1$ and S depends on the values of u and v at the points O, P_{n}, P_{n-1}, etc. on B.

Now K of the values $\partial^{i} u / \partial y^{i}(i=0,1, \ldots, n-1)$ are known functions of x on B. We require that the coefficients of the other $n-K$ derivatives $\partial^{t} u / \partial y^{t}$ vanish on B. That is, if $\tilde{\partial}^{k} u / \partial y^{k}$ is not given on B, we require that

$$
\begin{equation*}
\sum_{j=0}^{n-k-1}{ }_{n} C_{j+k+1} \frac{\partial^{n-k-1}\left(A_{n, j+k+1} v\right)}{\partial x^{n-j-k-1} \partial y^{j}}+R_{k}=0 \tag{32}
\end{equation*}
$$

where R_{k} is a linear combination of derivatives of v of order less than $n-k-1$.

6. Intersections of characteristics with the boundary

Finally, we must consider the remaining terms at the points P_{n}, P_{n-1}, etc. on B. These terms result from the integrations by parts on the boundary B and on the characteristics which intersect at the points P_{n}, P_{n-1}, etc. We observe, from (29), that integration by parts introduces no unknown functions at O because u and all its derivatives of order up to $n-1$ are known on the initial segment I.

Let α characteristic curves drawn from P meet the boundary, B. Then the points at which these curves intersect B are $P_{n-\alpha+1}, P_{n-\alpha+2}, \ldots, P_{n}$ where $\alpha \leqslant K$ (see Fig. 1). From each of these points $P_{m}(m=n-\alpha+1, \ldots, n)$ the $n-K$ characteristics Γ_{j}^{m} $(j=1,2, \ldots, n-K)$ with direction cosines p^{j} and q^{j} are drawn.

Let us now fix our attention on the point P_{m} on B. Since it has been shown that the function Z^{μ}, associated with the segment C_{μ} of a characteristic curve, is continuous across an intersection with another characteristic curve in the interior of the region, we may denote the functions Z^{μ} by Z^{i} and Z_{j}^{m} which are associated with $\Gamma_{i}(i=1,2, \ldots, n)$ and $\Gamma_{j}^{m}(m=n-\alpha+1, \ldots, n ; j=1,2, \ldots, n-K)$ respectively. Then P_{m} is at the intersection of Γ_{m}, the characteristic drawn from P, and the characteristics $\Gamma_{j}^{m}(j=1,2, \ldots, n-K)$, the characteristics drawn from P_{m} to I (see Fig. 3).

Fig. 3.

Then, from equation (19), the contribution at P_{m} due to integration by parts along the characteristics is

$$
\begin{equation*}
(-1)^{n} u\left(P_{m}\right)\left[Z^{m}\left(P_{m}\right)-\sum_{j=1}^{n-K} Z_{j}^{m}\left(P_{m}\right)\right] \tag{33}
\end{equation*}
$$

From (29), the contribution due to integration by parts on B is

$$
\begin{equation*}
\sum_{i=0}^{n-1} \sum_{j=0}^{n-i-2} \sum_{k-i+1}^{n-j-1} \sum_{l=0}^{k-i-1}(-1)^{n-k+l}\left({ }_{k} C_{i}\right)\left({ }_{n-k-1} C_{j}\right) \frac{\partial^{k-l-1} u\left(P_{m}\right)}{\partial x^{k-i-l-1} \partial y^{i}} T_{i j k l}, \tag{34}
\end{equation*}
$$

where

$$
\begin{equation*}
T_{i j k l}=\left[\frac{\partial^{n-k+l-1}\left(A_{n, i+j+1} v\right)}{\partial x^{n-k-l+l-1} \partial y^{j}}+U_{i j k l}\right]_{P_{m}+0}^{P_{m^{-0}}} . \tag{35}
\end{equation*}
$$

In (35), $U_{i j k l}$ denotes a linear combination of derivatives of v of order less than $n-k+l-1$, and $P_{m}-0$ and $P_{m}+0$ denote limits as P_{m} is approached from the left and from the right respectively.

It follows from (16) that

$$
\begin{equation*}
v\left(P_{m}-0\right)-v\left(P_{m}+0\right)=-w^{m}\left(P_{m}\right)+\sum_{j=1}^{n-K} w_{f}^{m}\left(P_{m}\right) \tag{36}
\end{equation*}
$$

A similar relation holds for the derivatives of v. But the derivatives of w^{m} and w_{j}^{m} of order less than $n-2$ were assumed to vanish on Γ_{m} and Γ_{j}^{m}. Hence, at P_{m}, only the derivatives of order $n-2$ in $T_{i j k l}$ in (35) play any part. Thus $U_{i j k l}$ plays no part and only those derivatives for which $n-k+l-1=n-2$ need be considered.

Hence, we may simplify the expression (34) considerably. Since $l=k-1$, we must have $i=0$. Thus the terms at P_{m} due to integration by parts on the boundary, which do not drop out, are given by

$$
\begin{equation*}
\sum_{j=0}^{n-2}(-1)^{n+1}{ }_{n-1} C_{j+1} u\left(P_{m}\right) A_{n, j+1}\left(P_{m}\right)\left[\frac{\partial^{n-2} v}{\partial x^{n-2-j} \partial y^{j}}\right]_{P_{m}+0}^{P_{m}-0} . \tag{37}
\end{equation*}
$$

The identity

$$
\begin{equation*}
\sum_{k=1}^{n-1-1}{ }_{n-k-1} C_{j}={ }_{n-1} C_{j+1} \quad(j=0,1, \ldots, n-2) \tag{38}
\end{equation*}
$$

has been used in deriving (37). This identity is the special case of equation (30) with $i=0$.

If P_{m} is the point P_{n}, which is the point at which the integration on B ends, the same result is obtained. In this case we may consider that v is identically zero outside the region to which Green's theorem was applied. Then all the statements made apply to this special case.

From (36) it is seen that

$$
\begin{equation*}
\left[\frac{\partial^{n-2} v}{\partial x^{n-2-j} \partial y^{j}}\right]_{P_{m}+0}^{P_{m}-0}=\sum_{i=1}^{n-K} \frac{\partial^{n-2} w_{i}^{m}\left(P_{m}\right)}{\partial x^{n-2-j} \partial y^{j}}-\frac{\partial^{n-2} w^{m}\left(P_{m}\right)}{\partial x^{n-2-j} \partial y^{j}} . \tag{39}
\end{equation*}
$$

From (8), we have that

$$
\begin{align*}
& {\left[\frac{\partial^{n-2} v}{\partial x^{n-2-j} \partial y^{j}}\right]_{P_{m}+0}^{P_{m}-0}=\sum_{i=1}^{n-K}(-1)^{n-j-1} n\left(p^{i}\right)^{j}\left(q^{i}\right)^{n-j-2} \frac{Z_{i}^{m}}{D_{i}}+} \\
& \tag{40}\\
& \quad+(-1)^{n-j} n\left(p^{m}\right)^{j}\left(q^{m}\right)^{n-j-2} \frac{Z^{m}}{D_{m}} \quad(j=0,1, \ldots, n-2)
\end{align*}
$$

Then from (33), (37), and (40) it follows that the contribution at $P_{m}, F_{m}\left(P_{m}\right) u\left(P_{m}\right)$ say, which is due to integration by parts on the characteristics and the boundary, is

$$
\begin{align*}
F_{m}\left(P_{m}\right) u\left(P_{m}\right)=u\left(P_{m}\right) & \left\{\left[(-1)^{n}+\sum_{j=0}^{n-2}(-1)^{j+1}{ }_{n-1} C_{j+1} A_{n, j+1} \frac{n\left(p^{m}\right)^{j}\left(q^{m}\right)^{n-j-2}}{D_{m}}\right] Z^{m}-\right. \\
& \left.-\sum_{i=1}^{n-K}\left[(-1)^{n}+\sum_{j=0}^{n-2}(-1)^{i+1}{ }_{n-1} C_{j+1} A_{n, j+1} \frac{n\left(p^{i}\right)^{j}\left(q^{i}\right)^{n-j-2}}{D_{i}}\right] Z_{i}^{m}\right\} . \tag{41}
\end{align*}
$$

If u is given on the boundary then $F_{m}\left(P_{m}\right) u\left(P_{m}\right)$ is a known quantity when v is known. If u is not given on the boundary we require that $F_{m}\left(P_{m}\right)$ vanish at P_{m}.

Finally, we make $Z^{1}, Z^{\mathbf{2}}, \ldots, Z^{n}$ satisfy

$$
\begin{equation*}
\sum_{r=1}^{n} Z^{r}(P)=(-1)^{n} \tag{42}
\end{equation*}
$$

This completes the set of conditions which v must satisfy.

7. Explicit representation of the solution

Let $\varepsilon_{k}=1$ if $\partial^{k} u / \partial y^{k}$ is given on B and let $\varepsilon_{k}=0$ if $\partial^{k} u / \partial y^{k}$ is not given on B. Further, let

$$
\begin{align*}
& J_{B}^{\prime}=\int_{0}^{P_{n}} \sum_{m=1}^{n} \sum_{i=0}^{m-1}(-1)^{m-i} \varepsilon_{i} \frac{\partial^{i} u}{\partial y^{i}} \sum_{j=0}^{m-i-1} C_{m+j+1} \frac{\partial^{m-i-1}\left(A_{m, i+j+1} v\right)}{\partial x^{m-t-j-1}} \partial y^{j} d x- \\
& -\left[\sum_{m=1}^{n} \sum_{i=0}^{m-1} \sum_{i=0}^{m-t-2} \sum_{k=i+1}^{m-f-1} \sum_{i=0}^{k-t-1}(-1)^{m-k+t}{ }_{k} C_{i m-k-1} C_{f} \times\right. \\
& \left.\left.\times \frac{\partial^{k-l-1} u}{\partial x^{k-l-i-1} \partial y^{i}} \frac{\partial^{m-k+l-1}\left(A_{m}, \frac{i+j+1}{} v\right)}{\partial x^{m-k-j+l-1}} \partial y^{1}\right]\right]_{x-y=0} . \tag{43}
\end{align*}
$$

It will be seen from (15), (28) and (29) that J_{B}^{\prime} is what remains of J_{B} after the integrations by parts are performed and the values at the points $P_{n-\alpha+1}, \ldots, P_{n}$ are removed. J_{B}^{\prime} contains only known functions.

We can now express $u(P)$ explicitly in terms of known functions. Because of (42) we have, from (18),
$u(P)=-J_{s}+J_{I}+J_{B}^{\prime}+\sum_{m=1}^{n-\alpha}(-1)^{n} Z^{m}\left(P_{m}\right) u\left(P_{m}\right)+\varepsilon_{0} \sum_{m=n-\alpha+1}^{n} F_{m}\left(P_{m}\right) u\left(P_{m}\right)+$

$$
\begin{equation*}
+\sum_{j=1}^{n-K} \sum_{m=n-\alpha+1}^{n}(-1)^{n} Z_{j}^{m}\left(P_{j}^{m}\right) u\left(P_{j}^{m}\right) \tag{44}
\end{equation*}
$$

As before, $\varepsilon_{0}=1$ if u is given on B and $\varepsilon_{0}=0$ if u is not given on B. The points $P_{1}, P_{2}, \ldots, P_{n-\alpha}$ are the intersections with I of characteristic curves drawn from P. The points $P_{n-\alpha+1}, \ldots, P_{n}$ are the intersections with B of characteristic curves drawn from P. The points P_{j}^{m} are the intersections with I of characteristic curves drawn from $P_{m}(m=n-\alpha+1, \ldots, n) . J_{s}, J_{I}, J_{B}^{\prime}$ and $F_{m}\left(P_{m}\right)$ are given by (13), (14), (43) and (41) respectively.

8. Discontinuities of \boldsymbol{v} on the characteristics

The Riemann function, $v(x, y)$ may be found by a modification of the method used by Campbell and Robinson [2] to solve the mixed problem. To see this, we must examine the conditions which $v(x, y)$ must satisfy on the characteristic curves and on the boundary.

The first step is to show that the jumps of the derivatives of v of order $n-2$ are known across all the characteristics Γ_{i} and Γ_{j}^{i}. This means that we must show that all the functions Z^{i} and Z_{j}^{i}, are known on the corresponding characteristics. According to (8), all the derivatives of w^{i} and w_{j}^{i} of order $n-2$ are multiples of Z^{i} and Z_{j}^{i}, and the derivatives of w^{t} and w_{j}^{i} are just the jumps of the derivatives of v across the corresponding characteristics. Equation (20) can be written

$$
\begin{equation*}
n \frac{\partial Z^{\mu}}{\partial s_{\mu}}+K^{\mu} Z^{\mu}=0 \tag{45}
\end{equation*}
$$

where K^{μ} is a function of the coefficients of equation (1). Hence each function Z^{i} and Z_{j}^{\prime} is a solution of an ordinary, first-order, linear differential equation. In order to specify Z^{i} and Z_{j}^{f} completely, the values of these functions must be known at the points P and $P_{i}(i=n-\alpha+1, \ldots, n)$.

At P, Rellich [9] has shown that

$$
\begin{equation*}
Z^{i}(P)=(-1)^{n} / n \quad(i=1,2, \ldots, n) . \tag{46}
\end{equation*}
$$

Equation (46) is a consequence of (42) and the definition of the functions w^{i}. The functions $Z^{i}(i=1,2, \ldots, n)$ are completely specified by (45) and (46).

The functions Z_{f}^{i}, which correspond to characteristics leading from points on the boundary to the initial segment, also satisfy the differential equations (45). It will now be shown that their values of the points P_{i} on the boundary are specified by the conditions imposed on v.

It is convenient to define new quantities $A_{r}^{(i)}$ by the equation

$$
\begin{equation*}
\prod_{\substack{j=1 \\ j \neq i}}^{n}\left(p^{j} \xi+q^{j} \eta\right)=\sum_{r=0}^{n-1} A_{r}^{(i)} \xi^{n-r-1} \eta^{r} \quad(i=1,2, \ldots, n) \tag{47}
\end{equation*}
$$

We must now derive some identities connecting the functions $A_{r}^{(i)}$, and the coefficients, $A_{n r}$, of the differential equation. It is clear from (2) that

$$
\begin{equation*}
\sum_{r=0}^{n}{ }_{n} C_{r} A_{n r} \xi^{n-r} \eta^{r}=\left(p^{i} \xi+q^{1} \eta\right) \sum_{r=0}^{n-1} A_{r}^{(t)} \xi^{n-r-1} \eta^{r} \quad(i=1,2, \ldots, n) \tag{48}
\end{equation*}
$$

From (48) we deduce that $\quad p^{i} A_{0}^{(i)}=A_{n o}$,

$$
\begin{equation*}
p^{i} A_{r}^{(i)}+q^{i} A_{r-1}^{(i)}={ }_{n} C_{r} A_{n r}(r=1,2, \ldots, n-1) \tag{49}
\end{equation*}
$$

and

$$
\begin{equation*}
q^{i} A_{n-1}^{(i)}=A_{n n} . \tag{50}
\end{equation*}
$$

Also, if we put $\xi=-q^{i}$ and $\eta=p^{i}$ in (47), we have, from the definition of D_{i} in equation (9),

$$
\begin{equation*}
D_{i}=\sum_{r=0}^{n-1} A_{r}^{(i)}\left(p^{i}\right)^{r}\left(-q^{i}\right)^{n-r-1} \quad(i=1,2, \ldots, n) \tag{52}
\end{equation*}
$$

It is easily shown from these equations that

$$
\begin{align*}
\sum_{j=0}^{n-k-1}{ }_{n} C_{j+k+1} A_{n, j+k+1}(-1)^{n-5-1}\left(p^{i}\right)^{j}\left(q^{i}\right)^{n-2-j}= & \left(-q^{i}\right)^{n-1} A_{k}^{(t)} \\
& (i=1,2, \ldots, n ; k=0,1, \ldots, n-1), \tag{53}
\end{align*}
$$

and that
$D_{i}+\sum_{j=0}^{n-2}(-1)^{n-j-1} n_{n-1} C_{j+1} A_{n, j+1}\left(p^{i}\right)^{j}\left(q^{i}\right)^{n-2-j}=n\left(-q^{i}\right)^{n-1} A_{0}^{(i)} \quad(i=1,2, \ldots, n)$.
Equation (53) may be verified by using (50) and (51) to substitute for ${ }_{n} C_{j+k+1} A_{n, j+k+1}$. Equation (54) results from the use of the identity

$$
\begin{equation*}
n\left({ }_{n-1} C_{j+1}\right)=(n-j-1)\left({ }_{n} C_{j+1}\right) \tag{55}
\end{equation*}
$$

and the use of (50) and (52) to substitute for $A_{n, 9+1}$ and D_{i}. Equations (53) and (54) are the identities connecting $A_{k}^{(i)}$ and $A_{n k}$ which it will be necessary to use.

Let us consider first the case where u is given on the boundary. Then, at all points of continuity of v and its derivatives on the boundary, we have $n-K$ conditions of the form
where k is an integer between 1 and $n-1$ inclusive, and R_{k} is a linear combination of derivatives of v of order less than $n-k-1$. Next, differentiate this expression $k-1$ times with respect to x to obtain

$$
\begin{equation*}
\sum_{j=0}^{n-k-1}{ }_{n} C_{j+k+1} A_{n, j+k+1} \frac{\partial^{n-2} v}{\partial x^{n-j-2}} \frac{\partial y^{\prime}}{\partial}+R_{k}^{\prime}=0 \tag{56}
\end{equation*}
$$

where R_{k}^{\prime} contains only derivatives of v of order less than $n-2$.
We now concentrate our attention on the point P_{m} of Figure 3. Since the derivatives of v of order less than $n-2$ are continuous everywhere in the region under consideration, we have, from (56),

$$
\begin{equation*}
\left[\sum_{j=0}^{n-k-1}{ }_{n} C_{j+k+1} A_{n, j+k+1} \frac{\partial^{n-2} v}{\partial x^{n-j-2} \partial y^{1}}\right]_{P_{m}+0}^{P_{m}-0}=0 \tag{57}
\end{equation*}
$$

From (40) it then follows that

$$
\begin{align*}
& \sum_{i=1}^{n-K} \sum_{j=0}^{n-k-1}{ }_{n} C_{j+k+1} A_{n, j+k+1}(-1)^{n-j-1}\left(p^{i}\right)^{j}\left(q^{i}\right)^{n-2-j} Z_{i}^{m} / D_{i} \\
&= \sum_{j=0}^{n-k-1}{ }_{n} C_{j+k+1} A_{n, j+k+1}(-1)^{n-j-1}\left(p^{m}\right)^{j}\left(q^{m}\right)^{n-j-2} Z^{m} / D_{m} \tag{58}
\end{align*}
$$

or, because of (53),

$$
\begin{equation*}
\sum_{i=1}^{n-K}\left(q^{i}\right)^{n-1} \frac{A_{k}^{(i)} Z_{i}^{m}}{D_{i}}=\left(q^{m}\right)^{n-1} A_{k}^{(m)} \frac{Z^{m}}{D_{m}} \tag{59}
\end{equation*}
$$

Since k takes on $n-K$ values of the integers from 1 to $n-1$, and since Z^{m} is a known function, (59) is a system of $n-K$ linear equations for the $n-K$ quantities $Z_{i}^{m}\left(P_{m}\right)(i=1,2, \ldots, n-K)$. It will be shown presently that the determinant of this system does not vanish.

Before showing that (59) possesses a solution we will consider the case when u is not given on the boundary. In this instance one of equations (32) contains derivatives of order $n-1$. This is the case $k=0$ which was excluded earlier. Such a boundary condition is not suitable for determining the discontinuities in the derivatives of order $n-2$ at P_{m}. Thus, there are only $n-K-1$ equations in the system (59) and we need one more to specify the functions Z_{i}^{m} uniquely. This is provided by (41). It was assumed that, if u is not given on the boundary, then the coefficient of u in (41) vanishes. This yields the equation

$$
\begin{equation*}
\sum_{i=1}^{n-K} \frac{\left(q^{i}\right)^{n-1}}{D_{i}} A_{0}^{(i)} Z_{i}^{m}=\left(q^{m}\right)^{n-1} \frac{A_{0}^{(m)}}{D_{m}} Z^{m} \tag{60}
\end{equation*}
$$

Equation (54) was used to simplify (41) and hence (60).
Equation (60) is just what would result if k were allowed to equal zero in (59). Thus, whether or not u is given on the boundary, we have the $n-K$ equations

$$
\begin{equation*}
\sum_{i=1}^{n-K}\left(q^{i}\right)^{n-1} \frac{A_{k}^{(1)} Z_{i}^{m}\left(P_{m}\right)}{D_{i}}=\left(q^{m}\right)^{n-1} \frac{A_{k}^{(m)} Z^{m}\left(P_{m}\right)}{D_{m}}, \tag{59}
\end{equation*}
$$

where k takes on $n-K$ values from 0 to $n-1$. If we regard these as equations for the $n-K$ quantities $\left(q^{i}\right)^{n-1} Z_{i}^{m} / D_{i}$ the determinant of the equation is

$$
\begin{equation*}
\Delta_{1}=\left|A_{k_{i}}^{(j)}\right| \quad(i, j=1,2, \ldots, n-K) \tag{61}
\end{equation*}
$$

where $k_{1}, k_{2}, \ldots, k_{n-K}$ are the $n-K$ values which k assumes. This determinant may also be written as
where each of the last K columns contains $n-1$ zeros and a one. There will be a one in the r th row of one of these columns if the functions $A_{r}^{(1)}, A_{r}^{(2)}, \ldots, A_{r}^{(n-K)}$ do not appear in Δ_{1} (i.e. if $\partial^{r} u / \partial y^{r}$ is given on the boundary).

In order to demonstrate that the determinant Δ_{1} does not vanish, we premultiply it by the non-vanishing determinant Δ_{2}, whose element in the r th row and j th column is $\left(p^{r}\right)^{j}\left(-q^{r}\right)^{n-j-1}$, where $r=1,2, \ldots, n$ and $j=0,1, \ldots, n-1$. Now it follows from equation (47) that

$$
\begin{equation*}
\sum_{j=0}^{n-1}\left(p^{r}\right)^{j}\left(-q^{r}\right)^{n-j-1} A_{j}^{(i)}=\delta_{r t} D_{i} \quad(i, r=1,2, \ldots, n) \tag{63}
\end{equation*}
$$

where $\delta_{r l}$ is the Kronecker delta. Therefore

$$
\begin{align*}
& \Delta_{1} \Delta_{2}= \pm D_{1} D_{2} \ldots D_{n-K}\left|\left(p^{r}\right)^{j}\left(-q^{r}\right)^{n-j-1}\right| \\
& \quad\left(r=n-K+1, n-K+2, \ldots, n ; j=a_{1}, a_{2}, \ldots, a_{K}\right), \tag{64}
\end{align*}
$$

where $a_{1}, a_{2}, \ldots, a_{K}$ are K integers between 0 and $n-1$. The exponents a_{i} are the orders of the derivatives of u which are given on the boundary. Let

$$
\begin{equation*}
\gamma_{r}=q^{r} / p^{r} \quad(r=1,2, \ldots, n) \tag{65}
\end{equation*}
$$

Then γ_{r} is the slope of the characteristic curve with direction cosines p^{r} and q^{r}. Thus

$$
\begin{align*}
\Delta_{1} \Delta_{2}= \pm D_{1} D_{2} \ldots D_{n-K}\left(p^{n-E+1} p^{n-K+2} \ldots\right. & \left.p^{n}\right)^{n-1}\left|\left(\gamma_{r}\right)^{n-j-1}\right| \\
& \left(r=n-K+1, \ldots, n ; j=a_{1}, a_{2}, \ldots, a_{K}\right) \tag{66}
\end{align*}
$$

Now γ_{r} is, by hypothesis, positive on the boundary for $r=n-K+1, \ldots, n$ and the exponents $n-j-1$ are K different integers chosen from among $0,1, \ldots, n-1$. Under these conditions, it can be shown that the determinant $\left|\left(\gamma_{r}\right)^{n-j-1}\right|$ does not vanish. One proof of this has been given by Campbell and Robinson [2] in connection with their solution of the mixed problem. The non-vanishing character of the determinant $\left|\left(\gamma_{r}\right)^{n-j-1}\right|$ can also be deduced from a theorem due to Rosenbloom [8, Theorem 4] on symmetric polynomials.

From the definition of D_{r} in (9) and from inequality (3) it will be seen that D_{r} does not vanish for $r=1,2, \ldots, n$. Moreover, it was assumed earlier that $p^{j}(x, y) \neq 0$ for $j=1,2, \ldots, n$. Therefore Δ_{1} does not vanish and hence (59) has an unique solution $\left(q^{i}\right)^{n-1} Z_{i}^{m} / D_{i}(i=1,2, \ldots, n-K)$. Since q^{i} does not vanish on the boundary, $Z_{l}^{m}\left(P_{m}\right)$ is determined by (59).

Since this result holds for all points P_{m} and since the functions Z_{i}^{m} satisfy the differential equation (45), all the functions $Z_{i}^{m}(x, y)$ are known. Therefore, the jumps in the derivatives of order $n-2$ of v are known across every characteristic in the region.

9. Determination of the Riemann function

In this section we outline a method by which $v(x, y)$ may be determined. A more complete existence proof may be found in the author's thesis [3]. The procedure is based on Robinson's [10] solution of the initial value problem and on the solution by Campbell and Robinson [2] of the mixed problem. The reader is referred to these papers for many details which are omitted here.

The function $v(x, y)$ must satisfy the adjoint equation, (12), in the interior of each region formed by the characteristics which have been drawn. On the characteristics Γ_{1} and Γ_{n}, which form part of the boundary of the region R, v and its first $n-2$ derivatives are known. Across the characteristics in the interior of R, the jumps of the derivatives of order $n-2$ of v are known. The lower order derivatives are continuous across these characteristics. On the boundary, B, v must satisfy the $n-K$ conditions (32).

We define $f_{m}(x, y)$ by

In (67), $b_{k l}^{(m)}(x, y)$ is an undetermined function of x and y, while $A_{k}^{(m)}$ is defined by (47). Then, if $v(x, y)$ satisfies the adjoint equation (12) and the functions $b_{k l}^{(m)}(x, y)$ are chosen properly, the functions $f_{m}(x, y)$ satisfy the linear system of first-order equations

$$
\begin{equation*}
p^{m} \frac{\partial f_{m}}{\partial x}+q^{m} \frac{\partial f_{m}}{\partial y}=\sum_{k=1}^{n} b_{m k} f_{k} \quad(m=1,2, \ldots, n) . \tag{68}
\end{equation*}
$$

In (68), $b_{m k}$ is a known function of the coefficients of the differential equation and of the functions $b_{k l}^{(m)}$. The condition which $b_{k l}^{(m)}$ must satisfy in order that (68) hold is that it shall satisfy the first-order equations

$$
\begin{equation*}
p^{m} \frac{\partial b_{k l}^{(m)}}{\partial x}+q^{m} \frac{\partial b_{k l}^{(m)}}{\partial y}=G_{k l}^{(m)} . \tag{69}
\end{equation*}
$$

The function $G_{k l}^{(m)}$ is a quadratic function of the coefficients $b_{k l}^{(m)}$. Explicit expressions for $G_{k l}^{(m)}$ and $b_{m k}$ are given by Robinson [10].

The system (68) is a hyperbolic system with the same characteristic curves as (1) and (12). The quantity

$$
p^{m} \frac{\partial f_{m}}{\partial x}+q^{m} \frac{\partial f_{m}}{\partial y}
$$

is the derivative of f_{m} with respect to are length along a characteristic curve with direction cosines p^{m}, q^{m}.

Now, from (47) it can be seen that

$$
\begin{equation*}
\sum_{k=0}^{n} A_{k}^{1} A_{k}^{(m)} \frac{\partial^{n-1} v}{\partial x^{n-1}-\frac{k}{k} \partial y^{k}}=\left(p^{1} \frac{\partial}{\partial x}+q^{1} \frac{\partial}{\partial y}\right)\left[\prod_{\substack{j=2 \\ j \neq m}}^{n}\left(p^{\prime} \frac{\partial}{\partial x}+q^{\prime} \frac{\partial}{\partial y}\right) v\right]+L_{m} \quad(m=2,3, \ldots, n) . \tag{70}
\end{equation*}
$$

where L_{m} is a linear combination of derivatives of v of order $n-2$ and less. Moreover, the expression in the square brackets on the right hand side of (70) is itself. a linear combination of derivatives of v of order $n-2$ and less. Since, on Γ_{1}, v and its derivatives of order $n-2$ and less are known functions which are differentiable with respect to arc length, the right hand side of (70) is known on Γ_{1}. It follows therefore, from (67), that $f_{m}(x, y)$ is determined on Γ_{1} for $m=2,3, \ldots, n$. Similarly, f_{m} can be calculated on Γ_{n} for $m=1,2, \ldots, n-1$. It also follows, by much the same reasoning, that we can calculate the jump of $f_{1}, f_{2}, \ldots, f_{m-1}, f_{m+1}, \ldots, f_{n}$ across a characteristic Γ_{m} or Γ_{m}^{j} with direction cosines $p^{m} ; q^{m}$. It is not necessary to know f_{1} on Γ_{1}, because in determining f_{1} we integrate the equation

$$
p^{1} \frac{\partial f_{1}}{\partial x}+q^{1} \frac{\partial f_{1}}{\partial y}=\sum_{k=1}^{n} b_{1_{k}} f_{k}
$$

along characteristics with direction cosines p^{1}, q^{1}. Since none of these curves can intersect Γ_{1}, knowledge of f_{1} on Γ_{1} is unnecessary. Similar remarks apply to f_{n} on Γ_{n} and f_{m} on Γ_{m} or Γ_{m}^{\prime}.

Finally, $f_{1}, f_{2}, \ldots, f_{n-K}$ must be determined on B in terms of $f_{n-K_{+1}}, \ldots, f_{n}$. This is done with the aid of the boundary conditions (32) and a suitable choice of the boundary conditions for $b_{k l}^{(m)}$. The method is exactly the same as that used in [2]. It is not difficult to show that the determinant D of that paper [2, equation (7)] does not vanish for the boundary conditions (32).

The method of determining $f_{1}, f_{2}, \ldots, f_{n}$ is then as follows: From a point P^{\prime} in the interior of R, the n characteristics are drawn in the direction of increasing x to meet Γ_{1}, Γ_{n} or B. Each of the equations (68) is then integrated with respect to arc length along the corresponding characteristic. This yields the Volterra-type system of integral equations

$$
\begin{equation*}
f_{m}\left(P^{\prime}\right)=f_{m 0}\left(P_{m}^{\prime}\right)+\sum_{\alpha} J_{m \alpha}+\int_{P^{\prime}}^{P_{m}^{\prime}} \sum_{k=1}^{n} b_{m k} f_{k} d s \quad(m=1,2, \ldots, n) \tag{71}
\end{equation*}
$$

4-583801. Acta mathematica. 100. Imprimé le 29 septembre 1958.

The points P_{m}^{\prime} are the intersections of the characteristics with Γ_{1}, Γ_{n} or B. The values $f_{m 0}\left(P_{m}^{\prime}\right)$ are the values of f_{m} which have been calculated on Γ_{1}, Γ_{n} or B. If P_{m}^{\prime} is on $B, f_{m 0}\left(P_{m}^{\prime}\right)$ may be given in terms of other functions $f_{n-K_{+1}}\left(P_{m}^{\prime}\right), \ldots, f_{n}\left(P_{m}^{\prime}\right)$ for which similar integral equations may be written. The functions $J_{m \alpha}$ are the jumps of f_{m} as it crosses the characteristics Γ_{r} and Γ_{r}^{s}. These jumps are known. The integral equations (71) can be solved by the method of successive approximation under conditions which are similar to those usually required for Picard's method to be applied.

The functions $b_{k l}^{(m)}(x, y)$ satisfy a similar set of integral equations and may be found in the same way. In the case of these functions there is no discontinuity across the interior characteristics and their values on Γ_{1} and Γ_{n} may be chosen more or less arbitrarily.

The above reasoning follows the discussion of the mixed problem [2] quite closely. The main differences are that Γ_{1} and Γ_{n} have replaced the initial segment of that discussion and that discontinuities across characteristics have been introduced.

Finally, once $f_{m}(x, y)$ is known, equation (67) is a hyperbolic equation of order $n-1$ for v. This equation can be treated in the same way. Because all the derivatives and jumps in derivatives of order $n-2$ or less are given, the functions corresponding to f_{m} can be determined. Thus, the order of the equation is successively reduced until we have a first-order equation for v which can be solved. Once v is known, equation (44) gives an explicit representation of the solution to the mixed problem which was originally posed.

Acknowledgements

The author is indebted to Professor A. Robinson for suggesting the problem and for much helpful discussion during the course of the investigation. The material in this paper is based on a section of a thesis presented to the University of Toronto in partial fulfillment of the requirements for the degree of Doctor of Philosophy. The author also wishes to express his gratitude to the National Research Council of Canada for financial aid in the initial portion of this investigation.

References

[1]. F. Bureau, Les séries de fonctions fondamentales et les problèmes aux limites pour les équations aux dérivées partielles linéaires hyperboliques. Acta Math., 89 (1953), 1-43.
[2]. L. L. Campbell \& A. Robinson, Mixed problems for hyperbolic partial differential equations. Proc. London Math. Soc. (3) 5 (1955), 129-147.
[3]. L. L. Campbell, Mixed boundary value problems for hyperbolic differential equations. Thesis, University of Toronto, 1955.
[4]. E. Durand, Recherche des solutions de l'équation des ondes planes. Annales de la Faculté des Sciences de l'Université de Toulouse (4) 17 (1953), 229-264.
[5]. W. Feller, An Introduction to Probability Theory and Its Applications, Vol. I, p. 48. John Wiley and Sons, Inc., New York, 1950.
[6]. J. Hadamard, Sur un problème mixte aux dérivées partielles. Bull. Soc. Math. France 31 (1903), 208-214.
[7]. ——, Résolution d'un problème aux limites pour les équations linéaires du type hyperbolique. Bull. Soc. Math. France, 32 (1904), 242-268.
[8]. L. Kuipers \& B. Meulenbeld, Symmetric polynomials with non-negative coefficionts. Proc. Amer. Math. Soc., 6 (1955), 88-93.
[9]. F. Rewlich, Verallgemeinerung der Riemannschen Integrationsmethode auf Differentialgleichungen n-ter Ordnung in zwei Veränderlichen. Math. Ann., 103 (1930), 249-278.
[10]. A. Robinson, On the integration of hyperbolic differential equations. J. London Math. Soc., 25 (1950), 209-217.

