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I n  the s tudy  of p-groups the chief difficulty lies in the  fact  t ha t  the number  of such 

groups is very  large. I t  is therefore of interest to  s tudy  certain classes of p-groups, and 

the present paper  is devoted to such a topic. 

Let  G be a group and let x, y be elements of G. We define the commuta to r  [x, y] and 

the t ransform xz by  the formulae: 

[x, y] = x - l y - l x y ,  x ~ = x[x, y] = y - l x y .  

For  subsets U, V of G, [U, V] denotes the group generated by  all commuta tors  [u, v], 

where u E U, v E V. We define the lowe~: central series 

G >1 ?2(G) >i ?s(G) >~... >1 ?~-1 (G) >1 ?f(G) >7... 

of  G induct ively as follows: 

?2(G)=[G,G],  ?,(G) = [?,_I (G), G] (i = 3 , 4  . . . .  ). 

I f  there exists an integer k such tha t  ?k (G) = l ,  then G is said to be nilpotent, and if k is 

the smallest such integer, k - 1 is called the  c/ass of G. 

p is to  denote a prime number  and a p-group is a group of order a power of p. I t  is 

well known tha t  all p-groups are nilpotent,  and we m a y  therefore speak of the class of a 

p-group. I f  m, n are integers and 3 ~< m ~< n, it is convenient  to  denote by CF (m, n, p) the 

set of all groups G of order p" and  class m - 1 in which 

(~,-1 (G) : ~, (G)) = p (i = 3, 4 . . . .  m). 

Similarly ECF  (m, n, p) denotes the set of those groups G of CF (m, n, p) in which G/? 2 (G) 

is e lementary Abelian. These two classes of groups are to be investigated. Many of our  

earlier results can also be s tated for another  class of groups which we denote by  NCF  (m), 

and which consists of all ni lpotent  groups G of class m - 1 in which each of the groups 

?I_I(G)/?~(G) (i = 3, 4 . . . . .  m) is an infinite cyclic group. The general considerations on 
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which our investigation of these groups is founded are based on a paper of P. Hall [3] 

together with a few remarks which are developed in w 1. 

Perhaps the most interesting groups considered are the p-groups of maximal class, 

tha t  is, the p-groups of the greatest  class which is compatible with their order. In  w 2 we 

begin by  discussing the most elementary properties of the~e groups and their generaliza- 

tions to the classes of groups considered. Two characteristic subgroups are then intro- 

duced and these play a fundamental  par t  in the discussion which follows. Our aim is to 

find what we call the degree of eommutat ivi ty  of our groups and, in particular, to find 

whether or not this is greater than 0. The main result is Theorem 2.11 which asserts tha t  

a considerable proportion of the groups in question have degree of commutat iv i ty  greater 

than  0. We conclude w 2 by  a result (Theorem 2.16) on the maximal number  of generators 

of the derived group of a group of CF(m,n,p). 
In  w 3 we consider the groups of ECF(m,n,p) and show tha t  their s tudy reduces 

essentially to tha t  of p-groups of maximal class. The problem of finding the degree of 

commutat iv i ty  is continued and results in this direction are Theorems 3.8, 3.10, 3.12, 3.13 

and 3.14. The power-structure of these groups is also investigated. In  w 4 all groups of 

order p~ and class 5 and all 3-groups of maximal class are found. 

Apar t  from their intrinsic interest p-groups of maximal class are also of interest on 

account of certain applications. Thus it is sometimes the case tha t  in characterizing all 

p-groups with a given simple property,  we find tha t  these groups generally have a simple 

structure but tha t  exceptionally certain p-groups of maximal class also have the given 

property. The best-known instance of this is the problem of finding all p-groups with just 

1 subgroup of order  p: such a group is either cyclic or is a generalized quaternion group 

(which is a 2-group of maximal class). The consideration of such problems tends to take 

us outside the scope of the present work and is accordingly not discussed here. The author 

hopes, however, to return to this question in a later paper. 

A paper on p-groups of maximal class has already appeared, namely by A. Wiman [12]. 

The discussion given in the present work is to some extent based on Wiman's  ideas, and 

we wish to express our indebtedness to this author. Unfortunately the conclusions tha t  

we have reached do not coincide with those of Wiman, and so we have made the present 

work independent of [12]. A detailed comparison will not be made, but  it may  be said 

tha t  it is in I I  and I I I  of [12] that  statements are made which seem to us to be in general 

untrue. 

The author also wishes to express his deep gratitude to Prof. P. Hall, of King's  College, 

Cambridge, whose suggestions and encouragement were of the greatest value to him when 

he was working on the material of this work. 
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t .  We  begin b y  s ta t ing some of the  known results  which are of fundamen ta l  impor-  

tance for our  purpose.  Amongs t  these the  following theorem plays  an  i m p o r t a n t  p a r t  in 

the  construct ion of ni lpotent  groups.  

T H E O R E M  1.1. Let G be a group 9enerated by a set X o[ elements. I] Y @ a set o/ele- 

ments which together with ~, ~1 ( G) generate 7, ( O), then ~, ~t ((7) is generated by Y,+2 ( G) together 

urith all commutators Ix, y], where x ,y  run through X ,  Y respectively. This is true [or i = 1, 

2 . . . . .  provided that yl(G) 48 interpreted to mean G. 

~ o r  the  proof  we refer the  reader  to  P. Hal l  [3], Theorem 2.81. 

The  following result  is due to  L. Kalou jn ine  [7] and  [8]. 

T H E O R E M  1.2. Let G be a group, and let 

H = H  o ~>H, ~>H 2 >7... ~H, >~... 

be a series o/ normal subgroups o] G. I[ L is any subgroup o[ O such that [L, H,_I] ~< H i 

(i = 1, 2 . . . .  ), then 
[9b(L), H,]  ~< H,+j (i = 0, 1 . . . .  ; j = 2, 3 . . . .  ). 

We shall need an appl icat ion of this involving another  characterist ic subgroup.  For  

any  group (7, we define 7, ((7) to be t h a t  subgroup  of (7 for which ,/, (G)/y, ((7) is the  centre 

of G/},,((7) (i = 2, 3 . . . .  ). Thus  ~2(G) = (7, and  for i > 2 ~/,((7)/> y,_l(G). 

I f  in Theorem 1.2 we pu t  L = (7, H = ~, ((7), and define the  subgroups  H~ induct ively  

by  the rules H 0 = H, and Hk~ , = [H~, G] for k>~ 0, we find t h a t  [),j(G), Hk] ~< Hs+k. Bu t  

by  the  definit ion of ,1,, H 1 ~ 7,(G); hence, Hj <<.7,+j_, ((7), for j >/1. Thus,  

[yj(G), 7,((7)] = [~J((7), H0] < Hj < Y,+s-, (G). 

C O R O L L A R Y  1. In  any group G, [Tj(G), ~?,(G)] <<. },t+r (G) (i, j = 2 ,  3 . . . .  ). 

Using },, (G) ~< y,+,(G) we obta in  the  well known result: 

C O R O L L A R Y  2. In  any group (7, @,((7), rj(G)] < r l+ j (G)  (i, j = 2 ,  3, ...). 

We shall also need the  upper central series, 

1 = ~'o (G) < $,  (G) ~< ... ~< ~|-1 (G) < ~1 ((7) ~< . . . .  

of a group G, which is defined induct ively  b y  the  rules: $0 (G)=  1, ~,(G)/$~_I(G) is the 

centre of G/~,_ 1 (G) (4 = 1, 2 . . . .  ). Then  (7 is u l lpotent  of class m - 1 if and  only if ~m-1 ((7) 

= (7, $~_~ (G) # (7, and  in such a group 7, (G) ~< ~m-, (G), bu t  y~ (G) $ $~-,-1 (G). I t  follows 

t h a t  for i = 1, 2 . . . .  , m - l ,  

[G, ~,+~(G)] < 7,+, (G) < ~m-,-~ ((7), 

a n d  so  ~Y,+t (G) ~< ~m-, (G). 
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I n  Theorem 1.2 we m a y  pu t  L = G, Hi  = ~k_z(G) (l = 0,1 . . . .  , k) and  Hi  = 1 (l >/~). 

We  find t h a t  for 0 ~< ~ + l < k, 

[7~(G), ~_l(G)] < ~_,_l(G), 
or, pu t t ing  i =/c - 1: 

C O r O L L a r Y  3. I n  any group G, [7~(G), $~(G)] ~< $~_~(G) (2 ~< i ~< i). 

Fur ther ,  for a n y  group G we denote  by  

G >~ G' >~ G" ~ ... >~ G (t-1) >1 G ~f~ >1 ... 

the  derived series of G, which is defined induct ively by  

G ' = [ G , G ] = y z ( G ) ,  G ( 0 = [ G  (t-1), G (f-l)] ( i = 2 , 3  . . . .  ); 

also we denote by  (I)(G) the  Fra t t in i  subgroup of G. 

I f  xl, xa . . . . .  x~ are elements  of G we define the simple commutator Ix1, xz . . . . .  xn] by  

induct ion on n; for n = 2 it  is alreaxiy defined, and  for n > 2 we pu t  

[Xl, X2, . . . ,  Xn] : [[Xl, X2 . . . .  , Xn-1] ,  Xn]. 

I n  the  sequel we shall only  be concerned with  one of the subgroups  ~/t (G), namely  

~3{G), and  we shall therefore pu t  ~ ( G ) =  ~a(G). This subgroup possesses the  following 

proper ty .  

T H ~ o ~ w M 1.3. Suppose that G is a nilpotent group and that H is a subgroup o / G  with 

the property that H ~ (G) = G. Then H is normal in G and ~t (H) = ~t (G) , /or  i = 2, 3 . . . . .  

I t  is obvious t h a t  71 (H) ~< 7t (G). Le t  m - 1 be the  class of G: we prove  t h a t  7t (H) = 

7t(G) by  induct ion on m -  i. For  i = m it  is trivial,  since 7t(H), ~i(G) are then  both  

equal  to the uni t  subgroup.  For  i < m it  follows f rom the induct ive  hypothesis  t h a t  

7~+1(H) =T i l l (G) .  Now b y  hypothesis ,  G is genera ted b y  the  elements  of ~(G) and  H;  

hence by  Theorem 1.1, 7~(G) is genera ted  by  ~t f l (G) and  all commuta to r s  

Y = [ Y l ,  Y~ . . . . .  Yi], 

where each component  Yt of y is ei ther an e lement  of ~ (G) or of H.  But  b y  Theorem 1.2 

Corollary I,  [~/(G), ~j(G)] <~j+2(G) (~ = 2, 3 . . . . .  m - 2 ) ,  and  so any  c o m m u t a t o r  y, one of 

whose components  is an e lement  of ~ (G), is an  e lement  of ~t+1 (G). Hence  ~l (G) is genera ted 

b y  7 t + 1 ( G ) = ~ + I ( H )  and  all commuta to r s  of the  form of y, where y jEH.  Since each of 

these commuta to r s  belongs to ~'l (H), i t  follows t h a t  7t (G) ~< 7~ (H), and  therefore yt (G) = 

yt (H), as required. In  par t icular  H ~> 72 (H) = Y2 (G), and  so H is a normal  subgroup of G. 

I n  the manipula t ion  of commuta to r s  the  following formulae  are largely used: 

[xy, z] = Ix, zJ~[y, z], Ix, yz] = [x, z] Ix, y]~, (1) 
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where x, y, z are any elements of any group. We also note that  

[x -1, y] = [y, x] ~-', [x, y-i] = [y, x]~-'. (2) 

By (1), it follows that  if one of the components x or y is multiplied by an element of the 

centre of the group in which they lie, then the value of [x, y] remains unaltered. 

We shall also require results on the powers of a product of elements, of which the 

simplest is the following. 

THEORZM 1.4. I /  G is a group, x E G  and yETr(G), then /or  any integer n, 

[x",y]--[x, yn]~[x,y]" (rood r,+~(G)), 

(xy)=----x"y"[x, y]-(~) (mod 7r+a(G)). 

This  is t rue /or  r = 1, 2 . . . . .  i/ 71 (G) is interpreted to mean G. 

This is proved by a simple induction on n, using (1) and (2). 

We shall require the following consequences of Theorem 1.4. 

T H E O R E ~  1.5. Let G be a p-group. 

(i) I / n l ,  n 2 . . . . .  n~ are the invariants o / the  Abelian p-group G/Ta(G), and n I ~ ng. 

�9 .. >1 n,, then the exponent o/72 (G)/73 (G) i8 aS most  p,2.. 

(if) / ] / o r  some i >~ 2 7~(G)/7~+ l (G ) is o/ exponent p",  then the exponent o/ 7~+ l (G) /Tt§ 2 (G) 

is at most 19". 

( iii ) I / G / 7  z ( G) is an A belian group with two invariants 2,/~, where ~ >1/~, then 72 ( G) / 7a ( G ) 

is a cyclic group o/order  aS most p~. 

To prove (i), suppose that  G/72 (G) is the direct product of the cyclic groups generated 

by the elements x~72(G ) (i = 1, 2 . . . . .  r), where pn~ is the order of x~ modulo 72(G). Then 

G is generated by Xl, x 2 . . . . .  x~ together with the elements of 72 (G), and it  is easily deduced 

from Theorem 1.1 that  72(G) is generated by 73(G) and all the commutators [x~, xj] 

In such a commutator j>~2 and so ns~n2;  hence x[~'ET2(G), and by (1 < i < ] < r ) .  

Theorem 1.4 
[x~, xj]Pn'----[x~, x~n']~l  (rood 73(G)). 

72(G)/Ta(G) is therefore of exponent at most p'~. 

The proof of (if) is very similar: if G is generated by Yl, yg. . . . . .  Ys and 7~ (G) is generated 

by Zl, Z 2 . . . . .  z t and 7~+l(G), so that  by hypothesis zF"ET~+I(G), then by Theorem 1.1 

7~+1(G) is generated by all commutators [y, zs] and 7~+9.(G), whilst by Theorem 1.4, 

pm 7) m 
[y~,zj] ----[y, zs ]~-1 (modT~+2(G)). 
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To prove (iii), we observe as in (i) that  if x, y and ?2(G) generate G, then [x, y] and ?a(G) 

generate 72 (G), so tha t  ?2 (G)/?3 (G) is cyclic. The bound on the order of this group follows 

from (i). 

We conclude the present paragraph by  a remark on a formula oi P. Hall for a power 

of a product (see [3], w 3). I f  x, y are elements of a group, we define elements ~ (x, y) of 

this group inductively by the rules. 

(~l(x, y) = y, a~(x, y) = [at_l(x, y), x] (i = 2, 3 . . . .  ). 

Also, if G is a p-group, we denote by P,(G) (i = 0 ,  1 . . . .  ) the subgroup of G generated by  

all pi-th powers of elements of G. In  this notation we have the following result. 

THEOREM 1.6. Let G be a p-group, and let x, y be elements o/ G. Denote by Y the group 

generated by y and ?~ (G). Then 

(D if) (xy)J'=--x ~ (~ (~2 ...(~t ...G~ 
p - 2  

(mod P1 (Y') [Y, ?p-1 (G)] ]-I [?, (G), ?p_, (G)]), 

where a~ = a~(x, y). (For p = 2 we interpret ?~_I(G) to m e a n  ?2(G)). 
For p = 2 this is trivial, since 

(xy)2 = x20-120-2 [G2, (71], 

and so we need only consider the case when p is odd. The proof in this case is a slight 

modification of the proof given by  Hall for his formula. According to this proof, it is 

necessary first of all to arrange the various distinct commutators  of x and y in an order. 

Let  C~l, cw2 . . . . .  c~q~ be the commutators  of x and y of weight w, other than ~w. The order 

tha t  we take is 

0"2~ G3~ C31~ �9 �9 �9 C3q,~ �9 �9 �9 ~ Gw~ V w l ~  C w 2 ,  �9 �9 �9 ~ Cwq  w ,  . . . .  

I f  G is of class m - 1, all commutators of weight m are equal to 1, and we only consider 

those aw, cwj for which w < m. 

The proof proceeds by  stages, each stage being at tained by a number of steps. At the 

0th stage, we have 

(xy) p = x a l x a l . . ,  xal ,  

and the only point a t  which we wish to refine the procedure of Hall is in passing to the 

1st stage. This is done by  collecting all the elements x in the expression XalXal . . .  xa l  over 

on the left. To do this we may  begin with the following steps: 
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( X 0 " I )  p = X 2 0 " l  [ a l , X J O ' l X O ' I  . . . XO"  1 

= x~al  [al ,X]Xa 1 [ql,X] (11 . . .  x a  1 

= X2alx[ax,x]  [a l ,x ,x]al  [al,X](~l . . .  x a l  

= x3 ~1 [~1, x]~ [al, x,  x] a l  [a~, x] a ~ . . .  x a~ 

Here we have collected the first three elements x and  obta ined  

(xy) p = x3 al a~2a3al a2al . . .  xa l .  

Suppose t ha t  after collecting the first i elements x, where 1 < i < p, we have an  expression 

of the form 
(xy)  ~ = xtdld2 . . .  d~ x a l x a l  . . .  Xal ,  (3) 

in  which n~(i)  of the dl are equal  to a~, for w = 1, 2 . . . . .  m - 1. Then  

n~(1) = 1 n w ( 1 ) = O ( w = 2 , 3  , . . . ,  m -  1). (4) 

I f  i < p we can collect another  x over on the left, and  ob ta in  from (3) 

(xy)  ~ = xl+ l dl [dl, x] d~[d 2, x] . . .  dk [dk, x]a l  x a l  . . . xa l .  

Therefore n I (i + 1) = n I (i) + 1 (i = 1, 2 . . . . .  p - 1), (5) 

n w ( i + l ) = n w ( i ) + n w _ l ( i  ) ( i = 1 , 2  . . . . .  p - l ;  w = 2 , 3  . . . . .  m - l ) .  (6) 

By induc t ion  on i, (4), (5) and  (6) show tha t  

n w ( i ) = ( i w )  ( i = l ,  2 , . . . , p ;  w = l ,  2 . . . . .  m - l ) .  

Thus a t  the end of the first stage, t ha t  is, when all the p elements x have been collected 

on the left, we have an  equa t ion  of the form 

(xy)  ~ = x~ el e2 .. . el, (7) 

w h e r e ( P w )  o f t h e e ,  a r e e q u a l t o a ~ . I n p a r t i c u l a r ,  j u s t o n e o f t h e e j i s e q u a l t o ~ .  

The next  stage is to collect the elements a~ which occur in  (7), t hen  the elements  

a~, and  so on. At  e~eh step in  each stage a new commuta to r  is introduced,  which can be 

wr i t ten  as a commuta to r  in  a 1, a~, . . . ,  ap. All commuta tors  of weight less t h a n  m are 

collected after a finite n u m b e r  of stages, and  this is the end of the process. The expo- 

nen t  with which each of the commuta tors  appears is calculated by  Hall ,  and  using his 
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resul t ,  we f ind  t h a t  

(xy) =x" al az as ~31 . . . u S a ,  . . . O w  (~Wl Vw2  . . . C w q  w . . .  r (8) 

where, for 3 ~< w < p, nwj is divis ible  b y  p. 

Now since each c o m m u t a t o r  c~j which occurs wi th  posi t ive  e x p o n e n t  in (8) can be 

wr i t t en  as  a c o m m u t a t o r  of weight  grea ter  t han  1 in  al ,  as, . . . ,  a t ,  i t  follows t h a t  such a 

c~j lies in Y', a n d  so, for 3 ~< w < p, 

c:~JeP 1 (Y').  

F o r  w ~> p, we can write c~j = [a, b] say,  where  a and  b are  also c o m m u t a t o r s  in aL, a2 . . . .  a~. 

I f  a is of weight  i in  x and  y, t hen  b is of weight  a t  leas t  p - i in x and  y. Thus  if 2 <~ i ~< 

p - 2 ,  a 6 ~ ( G ) ,  b67r_~(G), and  

c~j e [7, (G), r~-, (G)]. 

I f  i = 1, t h e n . a  is e i ther  x or y, and  since i t  can be expressed as a c o m m u t a t o r  in al ,  a2, 

. . . .  a~, i t  follows t h a t  a = y = al ,  a n d  so a 6 Y. Also b ETp_ 1 (G), since p is odd,  and  

cwj e [ Y, ~_~ (G)]. 

I f  i > / p -  1, t hen  a 6~r_l(G),  and  b is a c o m m u t a t o r  in al ,  a s , - - - ,  a~, and  therefore  lies 

in Y. Thus  we again  ob ta in  
cwj e [ Y, r~-~ (G)]. 

Since PI(Y ' ) ,  [Y, 7~_1(G)] a n d  al l  [~(G) ,  ~_~(G)] (i = 2, 3 . . . . .  p - 2) are  no rma l  sub- 

groups of G, the  theorem follows f rom (8). 

2. W e  begin b y  f inding the  m a x i m a l  class of a p -group  of given order.  F o r  th is  we 

need  the  following remark .  

L ~ M M A 2.1. I /  G is a group and N is a normal subgroup o /G /o r  which GIN is cyclic, 

then G' = [G, •]. 

I t  is obvious  t h a t  [G, N] < G', and  so in order  to p rove  the  len~na we m a y  assume 

t h a t  [(7, N] = 1, t h a t  is, t h a t  N is conta ined  in the  centre  of G. Bu t  then  i t  follows t h a t  

G is Abel lan,  since GIN is cyclic (see [13], K a p .  IV,  p. 104), and  so G' = 1 as required.  

Now in a non-Abel ian  n i lpo ten t  group G, y~(G) = G' and  ys{G) cannot  coincide, and  

so b y  t a k i n g  N = 7~(G) in L e m m a  2.1, we see t h a t  G/~(G)  cannot  be cyclic. I n  par t icular ,  

in a non-Abel ian  p-group  G, y~ (G) is of index g rea te r  t h a n  p, and  if G/$~ (G) is of order  

p~, t hen  i t  is e l emen ta ry  Abel ian .  Also,  if G is a T-group of class m - 1 where m/>  3, t hen  

each of the  groups  ~ - 1  (G)/~t (G) is of order  a t  leas t  p (i = 3, 4, . . . ,  m), and  so G is of order  

a t  leas t  pro. Thus  a group of order  pm is of class a t  most  m - 1. 
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We shall refer to groups of order pm and class m - 1 for some m ~> 3 as p-groups o/ 

maximal  class. I f  G is such a group, 

(G : ~ ( G ) )  = p~, ()J,_~(a) : ~,(a)) = p (i = 3, 4, . . . ,  m). 

Thus G has just  p + 1 maximal  subgroups, and  these are all normal  in G. The remaining 

normal  subgroups are determined in the simple result: 

L z: M M A 2.2. I f  G is a p-group of maximal  class and N is a normal subgroup o/ G o/ 

index pr where r >~ 2, then N = YT (G). 

The group G I N  is of order pT, and therefore of class a t  most  r - 1 ; t ha t  is, ~, (G/N) = 1. 

Bu t  
rJ(r = r , ( G ) Y / N  (i = 2, 3, .. .), 

and so y~ (G) < N. But  

(G : r r  (a ) )  ~= p '  = ( a  : ~v), 

and so y, (G) and N,  being both of the same order, are equal. 

As s ta ted in the introduct ion we shall consider more general classes of groups. For  

CF(m, n, p) we m a y  generalize L e m m a  2.2 as follows: 

L E ~ M A  2.3. I /  GECF(m,  n, p) and N is a normal subgroup of G of order pt which is 

contained in Y2 (G), then N = ym-t (G). 

Obviously, yj(G) is of order pm-J. Thus if i = m -  2, the result is obvious, and  for 

m -  i > 2 we m a y  use induction on m -  i. Since N < y2(G), there exists a normal sub- 

group M of G of order p~+l, such tha t  

N < M < 72 (G), 

(see [13], Kap.  IV, p. 104), and by the inductive hypothesis,  M =Tm_t_l(G). Bu t  M / N  is 

a normal  subgroup of G I N  of order p, and  is therefore contained in the centre of G / N ,  

t ha t  is, [G, M] < N.  Hence 

N > / [ a ,  ~,m_,_ ~(a)]  = r ~ _ , ( a ) .  

But  N and ym-~ (G) are both  of order T ~, and are therefore equal. 

L e m m a  2.2 shows tha t  in a p-group of maximal  class the terms of the upper  central  

series a re  t h e  same as those of the  lower central series, but  in the reverse order. We now 

state the corresponding result for the groups of CF (m, n, p) and NCF (m). 

THEOI~EM 2.4. I /  GECF(m,  n, p) or GENCF(m) ,  then 

~-~(G) f~ ~,~(G) =~m_,(O) (i = 0 ,  1 . . . . .  m - 2 ) .  
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I n  the case when G E C F ( m ,  n, p), this is most  easily proved  as follows. By  a r emark  

made  in w 1, ~l(G)~>Tm-~(G), bu t  ~ t (G)~  ~'m_~_1(G). Hence ~ (G)N F2(G)>~Fm_~(G), since 

i -~ m - 2. Bu t  ff ~ (G) (] 79- (G} were of greater  order t han  7,,_~ (G), i t  would follow f rom 

L e m m a  2.3 t h a t  ~t (G) ~ 7~ (G) contains 7~-~-1 (G), and  this is not  possible. 

I f  G E N C F ( m ) ,  we mus t  adop t  a different procedure,  for L e m m a  2.3 has no dh'ect 

analogue for these groups . . In  rids case we proceed b y  induct ion on i: for i -- 0 it  is trivial.  

For  i > 0, we observe first t h a t  ~(G) fl 72(G) >~Tms~(G), just  as above.  Now suppose t ha t  

the  theorem is not  true: then  there  exists an e lement  a of $~ (G) N Y2 (G), which does not  

belong to  7~_~(G). I f  / <  m -  3, there  exists an integer r, such t h a t  a is an e lement  of 

y~(G), bu~ no~ of 7~§ where 2 ~< r < m -  i -  1. Since 7~(G)/y~+I(G) is cyclic, we m a y  

choose an  e lement  x which together  with 7r+l(G) generates  y~(G), and  since a does not  lie 

in 7~ ~1 (G), there  exists a non-zero integer,  g, such t h a t  a = x~y, where y E~,+I (G). Now 

let  z be a n y  eIement  of G. B y  Theorem 1.4, using (1), 

[z, a] = [z, x~ y] ~= [z, y] [z, x~]~ ~ [z, x] ~ (rood 7~+~(G)). 

Bu t  a e $t (G), and so [z, a] E $t-1 (G) N ~'2 (G). By  the  induct ive hypothesis  ~t-1 (G) ~) 72 (G) = 

7,,_t~(G). Since m - i + 1 >~ r + 2, i t  follows tha t  [z, a ] ~  7, ~z(G), and  so 

[z, x] ~ ~ 1 (rood 7~+2(G)). 

Bu t  by  Theorem 1.1, 7,~ ~ (G) is genera ted by  ~,, ~ (G) and  all e lements  [z, x] as z runs through 

G. Hence  7~+~(G)/Tr+~(G) is a group of exponent  a t  mos t  :r Since r + l  < m - l ,  this  

contradicts  the  definit ion of NCF(m) ,  and  so the  theorem is p roved  for i < m -  3. F o r  

i = m - 2 ,  it is, of course, tr ivial .  

For  the groups under  consideration, the  case m - 3 is not  wi thout  interest:  for example ,  

0.  Sehreier [9] determined all types  of groups in E C F  (3, n, p). Howeve r  the considerations 

of the present  work do not  app ly  to this case, and  we shall hencefor th  assume t h a t  m > 3. 

I n  this case the  basic s tep is the in t roduct ion of another  characterist ic  subgroup which we 

shall denote  by  y~(G) (cf. W i m a n  [1217. This  is defined for  a group G of CF(m,  n, p) or 

NCF(m) ,  where m > 3, by  the  p roper ty  t h a t  7~(G)/7~(G) is the  eentraliser in G/~a (G) of 

7~ (G)/7*(G); t h a t  is, 7~ ((7) is the  largest  subgroup of G such t h a t  

[~,~(a), r~(a)] < r,(a).  

Thus it  is clear t h a t  7~ (G) is a characterist ic  proper  subgroup of G which contains  7, (G). 

In  order to see how ~1 (G) is s i tuated in G, we prove  the  following. 

L E M M ~  2.5. Let G be a nilpotent group o/c lass  m - 1, where m > 3, and 8ulrtx~e that 

[or i ~- 3, 4 . . . . .  m, 7~-1 (G)/y~ (G) is cyclic. For i = 3, 4 . . . . .  m - 1, let Ks be the subgroup o/ 
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G delined by the/act that K,/~,,.I(G ) /8 the central~set in G/~,.I(G) o/r,_~(G)/r,.~(G). Then 

G/K~ is a cyclic group o/the same order as ~'t (G)/~I+I(G). 

To prove this suppose tha t  a is an element which together with ~(G) generates 

~t_l(G), and tha t  b is an element which together with ~+~(G) generates ~(G).  If  x is any 

element of G, then [a, x] lies in ~(G),  and so there exists an integer ~ such tha t  

[a, x ] - - b  e (mod r~+l(G)), 

or a ~ - -  a b ~ (rood ~ 41 (G)). 

I f  n is the order of ~(G)/~+I(G), and we map z into the residue class of integers modulo 

n containing ~, we obtain a homomorphism of G into the additive group of residue classes 

modulo n. K~ is the kernel of this homomorphism. The image is the whole group of residue 

classes, for as x runs through G, by  Theorem 1.1 the elements [a, x] and 7~.l(G) generate 

~t(G), and so the elements b ~ together with ~+I(G) generate ~(G).  Hence G/K~ is cyclic 

of order n. 

I t  follows from Lemma 2.5 tha t  if GECF(m, n, p) (m > 3), then ~I(G) is of index p, 

whilst if G ENCF(m) (m > 3), then G/yl(G ) is an infinite cyclic group. 

THEOR~.~  2.6. If  GECF(m,n,p) or GENCF(m) ( m > 3 ) ,  then the derived group 

~'1 (G) of ~1 (G) is contained in ~a (G). 

To prove this we may argue modulo ~4 (G), and may  therefore assume tha t  m = 4. 

~ (G) is generated by all elements [u, v], as u, v run through ~I(G), and so we have to 

prove tha t  [u, v] e y3(G). By the above remarks, there exists an element s of G which 

together with ~i (G) generates G. I f  [u, s] = x, [v, s] = y, then 

[u, v]" = [u', v'] = [ux, vy]. 

But  x, y are elements of ~2 (G), and it follows from the definition of Yl (G) tha t  they com- 

mute with u, v. Since also ),2(G) is Abelian, we find, using (1), tha t  

[ux, vy] = [u, v]. 

Thus [u, v] commutes with s. But  again [u, v], being an element of ~2 (G), commutes with 

each element of ~'I(G), and so [u, v] lies in the centre of G. I t  follows from Theorem 2.4 

tha t  [u, v] ~ ~3(G), as required. 

Next  we discuss the position of ~ (G) = ~ (G), as defined in w 1. 

T H E O ~  2.7. 1] GECF(m, n, p) (m > 3), then ~(G) /8 a subgroup of ~I(G) o] index 

p. I /GeNCF(m)  (m > 3), then ~(G) is a subgroup o/ ~(G), and ~(G)/~(G) is an in/inite 

cyclic group. 
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In both cases we prove that  ~1 (G)/~I (G) is cyclic as follows. H s is as defined in the 

proof of Theorem 2.6, we deduce from Theorem 1.1 that  ~2(G) is generated by ~s(G) to. 

gether with the elements [u, s] and [u, v], as u, v run through ~1 (G). By Theorem 2.6 the 

elements [u, v] lie in ~s(G), and may therefore be disregarded. Let a be an element which 

together with ~s(G) generates ~2(G). Then there exists a finite set of elements ul, u 2 . . . . .  

U r Of ~1 (G),  such that  

a-:-- I~ [uf, s] at (mod rs(G)), 
~-1 

where ~tl, A2, -.-, ~ are suitable integers. Let  

8 1  = 

so that  if [81,8 ] = 8~, then by (1) and Theorem 1.4, s~ ~ a (rood Ya (G)). Thus Ye (G) is gen- 

erated by ~s (G) and s 2. 

For any element u of ~I(G), we may therefore write [u, 8] --8[; we then define ~=u8~  ~ 

Thus ~1 (G) is generated by 81 and the elements ~. Now ~ E ~1 (G), and so by Theorem 2.6 

commutes modulo ~s(G) with each element of ~'I(G). But also ~ commutes modulo 

~s(G) with 8, for 

[a, s] = [us~ ~, s] = [u, 8] [s; ~, s] ~s.~ -~ "------ 1 (mod ys(G)), 

and so ~ lies in the centre of G modulo ~a(G), that  is, a E ~ (G). By Theorem 1.2, Corollary 

1, [~(G), ~(G)]  ~<~4(G), and so ~/(G) ~<~I(G). Hence yl(G) is generated by 81 and ~(G), 

and ~1 (G)/~I (G) is cyclic. 

To find the order of ~I(G)/~ (G), we use the fact that  according to Theorem 1.4, for 

any integer r 
[sl, s]:--s~ (rood rs(O)). 

By Theorem 2.6 s~ commutes modulo ~s (G) with each element of ~1 (G), and so 8~ e ~/(G) 

if and only if 8~ and 8 commute modulo ~s(G), that  is, if 8[e~,a(G). If G eCF(m, n, p), it 

follows that  s[ ~r](G), 81 {~ ~ (G), and therefore :~ (G)/~ (G) is of order p. If G ~NCF(m), it 

follows that  no positive power of 81 lies in ~ (G), and so ~I(G)/~ (G) is infinite. 

COROLLARY. I / G e C F ( m ,  n, p) or GeNCF(m),  then ~7(G) -- ~m_~(G). 

By a remark in w 1, ~ (G) ~< tm-~ (G). Also, by Theorem 1.2, Corollary 3 and Theorem 

2.4, for m > 3, 
< N = r e ( G )  

and so ~m_~(G)~ ~ (G) .  Suppose that  ~_~(G)>  ~/(G) ; then ~_~(G) is of finite index r in 

~ (G). Hence 8~ ~ ~_~ (G), and by Theorem 2.4 

[8~, 8] E ~m_a(G) N ~2(G) = ~a(G). 
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But  by  Theorem 1.4 [s~, _ r s] =sg. (rood ~a(G)), and so s26 ~a(G ). I f  G6 NCF(m) this is im- 

possible since r is finite, and if G E CF (m, n, p) this implies tha t  r >/p. In  both cases, we 

have a contradiction, and so ~m-~ (G) = ~(G). For m = 3 the corollary is trivial. 

In  future, instead of ~ (G) we shall speak of the more familiar group ~m-~ (G). We are 

now therefore considering groups with the following series of characteristic subgroups. 

G >~1 (G) > ~_2(G) ~> ~ ( G )  >~3(G) > ... > r~_l(G) >rm(G) = 1. 

In  this series all factor groups of successive terms are cyclic of equal order, except for 

~m-2(G)/~2 (G). This group is arbitrary, as is seen by  considering the direct product of a 

group in which it is the unit subgroup with an arbi trary Abelian group. 

Now according to Theorem 1.2, Corollary 2, in any group G, 

[~,(G), ~j(a)] <r,+j(G) (i, i = 2, 3 . . . .  ). 

This is in general the best possible result, as, for example, the Sylow p-subgroups of the 

symmetric groups show (see [6]). In  a particular group however, it may  happen tha t  a 

much stronger commutat ion law holds. Thus, if GeCF(m,  n, p) or GENCF(m) (m > 3), 

and 
[r~(G), rj(G)] < 7 f + , ~ ( a )  (i, j = 1, 2 . . . .  ), 

we say tha t  G has degree o/ commutativity k. (We do not assume tha t  k is the greatest  

such number). 

The aim of the present paragraph is to find conditions under which a group G has 

degree of commutat iv i ty  greater than 0, tha t  is, 

[r,(G), r j(G)] < 7,§247 (i, i = 1, 2, . . .) .  

In  particular, this requires tha t  

[r~(G), 7,(G)] ~< 7~+~(G) (i = 1, 2 . . . . .  m - 2). (9) 

For i = 1 this is always true by  Theorem 2.6, and for i = 2 it is always true on account 

of the definition of ~I(G). For 2 ~< i ~ < m -  2, (9) simply asserts tha t  ~l(G)/yl+2(G) is the 

eentraliser of ~(G)/~t+~(G) in G/~+~(G), for, in the case of the T-groups this centraliser 

cannot be larger than  a maximal subgroup, and in the case of the groups of NCF(m) this 

eentraliser must  have infinite index by  Lemma 2.5. Our next  result shows tha t  whether 

(9) holds or not is the crux of the matter .  

T H e O R E m 2 . 8 .  / ]  G 6 CF (m, n, p) or G6NCF(m)  ( m > 3 ) , a n d  

[~(G),  ~(G)] ~<~+2(G) (i = 1, 2 . . . .  , m - 2), 

then G has degree o /commut~ iv i t y  greater than O. 

This is proved by means of the following ]emma. 

5 -  583801. Acta mr~hematica 100. Imprim~ le 26 septembre 1958. 
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LEMM.~ 2.9. Sutrpose that GECF(m,  n, p) or O ENCF(m) (m > 4), and that G/~/m_l (G) 
has degree o/commutativity greater than O. Let elements s, s~ o /G be de/ined by the praperties 

that s and ~1 (G) generate G, s 1 and ~m-~ (G) generate ~1 (G). Write si =~t (s, sl) (i = 1, 2 . . . . .  

m - 2). Then/or  i = 2, 3, . . . ,  m - 2, st and ~1+1 (G) generate ~i(G), and 

[81, 8m--2] = [82, 8m__3] -1 . . . . .  [8t, 8m__i__l] (-1)1-1 . . . . .  [mrn_2, 81] (-1)m-1. 

Note  tha t  there is no ambigui ty  in the definition of s I. By  Theorem 1.1 y2(G) is 

generated by  Ya (G), Is1, s] = s2, and certain other  commutators ,  one of whose components  

lies in ~m_2(G), for G is generated by  s, s 1 and Sm_2(G). Since ~m_2(G) =~I(G), these other  

commuta tors  already lie in ~a(G), and so for i = 2, st and ~t+l(G) generate yt(G). For  i > 2 

we prove this by  induct ion on i: thus by  the inductive hypothesis  st_~ and ~t (G) generate 

~t_l(G). Hence by  Theorem 1.1 yt(G) is generated by  yt+l(G), [St-l, s] =st, and certain 

other commutators ,  one of whose components  lies in Yl (G). But  since G/~'m-1 (G) has degree 

of commuta t iv i ty  greater than  0 and i < m - 2, 

[Yt--1 (G), Yl (O)] < ~t+1 (O), 

and so these other  commuta tors  already lie in yl~l(G), and the result is proved. 

For  2 ~<i ~ < n z - 2 ,  

[8t, 8m_t_ l  ] = 8 ~ 1 8 ~ m - | - 1  = 8~ 1 [8t_1, 8]srn- t  1 = 8~ 1 [8~mi-$-1 ' 8sm--I - 1]. 

Since G/ym_ 1 (G) has degree of commuta t iv i ty  greater than  0, [st-l, 8m--t--l] E ~/m--1 (G), and 

so s~ml-t-1 is the product  of St-x and an element of the centre of G. Also s 8m-t-x = SSml-t, 

and so 
[8i, 8m--t--l] = 8~ 1 [81_1, 88ml- t ] .  

Working out  the r ight -hand side by  means of (1) and (2), and using the fact t ha t  [St-x, Sm-t] 

lies in the centre of G, we obtain 

[St, Sin-i-l] = [8t_1, 8re_t] -1, 
as required. 

Theorem 2.8 is trivial for m = 4, and we prove it for qn > 4 by  induct ion on m. Apply- 

ing the inductive hypothesis  to G/ym-I (G), we find tha t  O/ym-1 (G) has degree of commu- 

ta t iv i ty  greater than  0. Thus we have only to prove tha t  [yi(G), ~m-t-l(G)] = 1 (i = 1, 2, 

. . . .  m - 2). The conditions of Lemma 2.9 are satisfied, and so in the notat ion there adopted,  

[8t, 8rn-|-l] : [81, 8m_2] (-1)t-1. 

But  by  hypothesis,  [~1 (G), ym_~(G)] = 1, and so st and  sin-t-1 commute.  I t  is clear from 



ON A SPECIAL CLASS OF p-GROUPS 59 

Theorem 1.2, Corollary 2 that sl commutes with all sj for which j i> m - i, and that sm-i-1 

commutes with all sj for which j >~ i + I, and to [?~(G), ?m-i-1 (G)] = l, as required. 

Lemma 2.9 also has the following consequence. 

TH~.OREM 2.10. Suppose that GECF(m,n,p) or GENCF(m) (m>~5), and that 

G/?m-I (G) has degree o/commutativity greater than O. Then 

(i) i / m  is odd, G has degree o/commutativity greater than 0;  

(ii) i/ m is even, G has degree o/commutativity greater than 0 i/ and only i / ? j  m-1 (G) 

is Abelian. 

By Theorem 2.8 G has degree of commuta t iv i ty  greater than  0 if and only if 

[71 (G), ?m-s (G)] = 1, and in the notat ion of Lemma 2.9 this is equivalent  to [sl, sin_2] = 1. By  

L e m m a  2.9 this is so if and only if Isis_l, s ~ ]  = 1 when m is even, or [st(~_l), s�89 = 1 

when m is odd. This condition is always satisfied when m is odd, and when m is even it is 

satisfied if and only if [?tm_l(G), ?j~(G)] = 1, which is the condition for ?~m_l(G) to  be 

Abelian, according to Lemma 2.1. 

C o R O L L A R u I /  G e CF (m, n, p) or G e NCF (m) (m ~> 5), and ?~ (G) is Abelian, then G 

has degree of commutativity greater than O. 

This follows by  a very  simple induct ion on m. 

We now reach the main result of this paragraph.  

T H E O R E M  2.11. I /  GECF(m,n,p) ,  where m is odd and 5 ~ < m ~ < 2 p + l ,  or i/ 

G E N C F  (m), where m is odd and m >1 5, then (7 has degree o/commuta~ivity greater than O. 

l%r m = 5, this is a direct consequence of Theorem 2.10 (i), for G/?4(G ) necessarily 

has degree of commuta t iv i ty  greater than  0. For  m > 5 we proceed by  induct ion on m. 

Applying the inductive hypothesis  to G/?,~_s(G) we see tha t  this group has degree of 

commuta t iv i ty  greater than  0. Hence we m a y  apply  Lemma 2.9 to G/ym-1 (G), and de- 

fining s, sl, s 2 . . . . .  s~_ a as in this lemma we find tha t  

[8i, 8j] e ~2f,+.~ , 1 (a)  (i + j < m -- 3), (10) 

[Si, am_t_2] ~ [81, Sin_3] (-1)$-1 (rood ?m_l(G)) (i = 1, 2 . . . . .  m - 3). (11) 

Now if G/?,,_ 1 (G) has degree of commuta t iv i ty  greater than  0, we can apply Theorem 

2.10, and  since m is odd, we obtain  a t  once the required result. We shall therefore assume 

tha t  G/?m_~ (G) does not  have degree of commuta t iv i ty  greater than  0 and  obtain a contra- 

diction. B y  Theorem 2.8 it follows from this assumption tha t  (9) does not  hold for i = m - 3, 

and thus tha t  ?l(G)/?,,_l(G) is not  the centraliser of ?m_a(G)/?m_l(G). But  ?l(G) is gene- 

ra ted  by  s 1 and $~_2(G): thus s I cannot  lie in this centraliser, since Sm_z(G) certainly does 
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lie in it. And since 7m_3(G) is generated by  sin-3 and 7m_2(G) it follows tha t  [sm-s, sl] = Sin_9 

say lies in 7m_2(G) but  not  in 7"_1(G). 

B y  (11) [S~,Sm_4]--Sm_ 2 (mod7~_1(G)), 

and so [sin-2, Sx] ~ [s2, Sm-4] -1 Is2, Sm-4] ~'. 

Bu t  [s 2, s"_4]" = [s~.', a~_,] = [sz[s~, sx], '"-4[s~-4,  sl]]- 

Also [s~, sl] lies in 74(G) and thus commutes  with any  element of 7"_4(G): hence by  (1) 

Similarly [sm_4, sl] ETm_z(G) and thus  commutes  with sv Hence 

[,~, ..,_41 s' = [.~, sm-~l, 

and [sin-=, Sl] = 1. (12) 

Since s x and ~m_~(G) generate 71(G), it follows tha t  sm-~ commutes  with all elements of 

7x(G). Now s"_ 2 lies in 72(G) bu t  not  in 7m_l(G), and so by  Theorem 2.4 s"_9, does not  lie 

in ~, (G). Hence s~_~ cannot  commute  with s, and the element sm-x = [s"-2, s] is not  the 

uni t  element.  

Next  we prove by  induction on i t ha t  

o ( _ , ) I - I ( , _ i )  (i  = 2,  3 . . . .  m - 3).  (13)  [s,, sin-,-1] = ore- x 

For  i = 2 we have 

[sa, S~_s] = s2-x S~-ss2 = s~l[sx ,  s] " ' - s  = s ~ - l [ s ~ m - s , s ' m - ~ ] = s ~ l [ s , [ s x ,  s~_a],s[s ,s~a_s]].  (14) 

Now [s, s"_s] l ies  in  7m_~(G) and thus commutes  with s 1 and all elements of 79.(G) by  (12). 

B y  (1) and (2) it  follows from (14) tha t  

[s~, s~_3] = s~ x [sxs~l-~, s]  = s;,l_x, 

as required. For  i > 2 we have by  the inductive hypothesis  

__ ~ ( -  1)t(t--2) 
[ 8 | _ 1 ,  8 r n _ t ]  - -  o "  - 1 �9 

Now 

I s i s  S m _ L _ I  ] -~_ S~ -x  s~m-.t- X == S~ -1  [ 8 f _ l ,  S i s "  - I - -1  = S 7 1  fsSm--f-1 8s"-t-X] 
L t _  , 

^--I r^ ~ ( - I ) / - 1  
= 8 ;  x [81_ x [S~_x, 8"_~._X] , 8 [8, 8 " - I - I ] 1  = ~I t~i--I ~ " - 2  , SSml-d  

by  (11). Using (I) and (2) it follows tha t  

Is,, s"_ , -d  = [S,_x, s , ._,]-'  Is,._., s]~ -x~'-* -= s~-_"~ -x._l , ,  

as required. 
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Putt ing i = �89 - 1) in (13) we obtain s~(Yi -3) = 1, and from above sm_l~ = 1. This is 

impossible if GENCF(m). I f  GECF(m, n, p), it implies tha t  � 8 9  (rood p), and 

since m > 3, we have m >/2p § 3. This contradicts the hypothesis of the theorem and so 

the result is proved. 

COROLLARY. I/G ECF(m, n, p), where m is even and 6 <. m <<. 2 p + 2, or i/ GENCF (m) 

where m is even and m >~ 6, then G has degree of commutativity greater than 0 i~ and only i/ 

7�89 (G) is Abelian. 

For  we may  apply Theorem 2.11 to G/7m_I(G), which shows tha t  this group has 

degree of commutat iv i ty  greater than 0. The result therefore follows by  Theorem 2.10. 

We mention the following consequences of Theorem 2.11. 

THEOREM 2.12. Suppose that G is a p-group and that there exists an even integer m 

satisfying 4 <~ m ~ 2 p, such that Glum(G) ECF(m, n, p)/or some n. Then (~'m(G): ~',~ I(G)) ~p .  

T H E O R :E M 2.13. Suppose that G is a nilpotent group, and that there exists an even integer 

m >~ 4, such that G/~'m (G)E NCF (m). I/T/~'m+l (G) is the torsion subgroup o/~,, (G) /~+  1 (G), 

then Ym (G)/T is cyclic. 

Let  s, s I be defined in the usual way, and let x be an element defined by  the property 

tha t  x and 7~(G) generate 7~_1(G). By Theorem 1.1 and Theorem 1.2, Corollary 1, ~ ( G )  

is generated by  ~+1  (G) and the elements [x, s], [x, Sl]. Let N be the subgroup of G genera- 

ted by [x, s] and ym+l(G). Then y, , (G)/N is cyclic. 

I f  G is a p-group, suppose tha t  y,~(G)/N is of order p. Then G / N E C F ( m  + 1, n + 1, p), 

and by  Theorem 2.11 GIN has degree of commutat iv i ty  greater than 0. Thus Ix, sl] E/V, 

which is a contradiction. Hence N = 7~ (G), tha t  is, ym (G) is generated by Ix, s] and 7~+1 (G). 

The result now follows a t  once from Theorem 1.5 (if). 

Similarly, for Theorem 2.13, we obtain a contradiction if we assume tha t  ym(G)/2I 

is infinite~ and so ~m (G)/y,n+l (G) is an extension of a cyclic group by  a finite cyclic group. 

Hence the result. 

We shall not investigate further the conditions under which a general group of 

CF (m, n, p) has degree of commutat iv i ty  greater than  0, but  it will be proved later tha t  

the groups of ECF (m, n, p) for which m > p + 1 have this property.  We now wish to con- 

struct examples which show tha t  nothing more can be proved in this direction; tha t  is, 

we construct a p-group of maximal class of order p~r, where 6 <~ 2 r ~< p + 1, which does not 

have degree of commutat iv i ty  greater than 0. Thus, for p > 3 and 3 ~< r ~< �89 § 1), let E 

be an elementary Abelian group of order pr, with generators el, e2,.. ,  e~. Let  A bc the 

subgroup of the holomorph of E consisting of all elements which induce in E an auto- 

morphism of the form 
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et-->e,e~t (i = 1, 2 . . . . .  r -  1), er--~e, 

L e t  ax, a 2 . . . . .  at-1 be  the  au tomorph i sms  in A defined b y  

ca,_ ~ ~(_l~r+t-1 (~_Jl 1) (i = 1, 2, r -  1; i = 1 .2 ,  r - 1), 

e2J = er (?" = 1, 2 . . . . .  r -  1). 

Now if b is a n y  au tomorph i sm in A other  than  1 and  e~ = e,e~ (i = 1, 2 . . . . .  r - 1), define 

k to  be the  grea tes t  of the  integers  1, 2 . . . . .  r - 1 such t h a t  ak * 0 (mod p); then  ba(/_~ ~+%~' 

leaves i nva r i an t  all  e~ for which i ~> k. I t  follows t h a t  the  au tomorph i sm group A / E  is 

genera ted  b y  a~, a 2 . . . . .  a ,_ 1. W e  have  

[a,, aj] = 1 ( l < i < j < r - 1 ) ,  

a [ = l  ( i = 1 , 2  . . . . .  r - l ) .  

I t  is easi ly verif ied t h a t  A possesses an  au tomorph i sm ~ for which 

a~ = a~ ai-11 ( i = 1 , 2  . . . . .  r - 2 ) ,  ar- -- a~_l e~ 1, 

e~ = e i et-+ll (i = 1, 2 . . . . .  r - 2), er--1 = er_ 1, er - er. 

is of order  p,  and  we m a y  thus  form an  extens ion  G of A,  such t h a t  G / A  is of order  p,  

a n d  an  e lement  of G induces  t he  au tomorph i sm  ~ in A (see [13], K a p .  I I I , w  7). G is of 

order  p2r a n d  class 2 r - 1 ,  b u t  does no t  have  degree of c o m m u t a t i v i t y  greater  t h a n  0, 

since e l i  = er-1. 

The above  considerat ions  only  make  use essent ia l ly  of re la t ions  be tween c o m m u t a t o r s  

a n d  i t  is therefore  to  be conjec tured t h a t  the  calculat ions can be app l ied  more general ly .  

I f  for ins tance  we consider  n i lpo ten t  groups  whose lower cent ra l  factors are  cyclic of 

a r b i t r a r y  order, general iza t ions  of the  above  theorems can be ob ta ined .  The resul t s  are,  

however ,  r a the r  complicated;  the  price of genera l i ty  is a ve ry  considerable  loss of c lar i ty ,  

and  we have  therefore  been conten t  to  s ta te  the  resul ts  in the i r  s imples t  forms. 

W e  conclude the  present  p a r a g r a p h  b y  obta in ing  a resu l t  on the  m a x i m a l  n u m b e r  

of genera tors  of t he  der ived  group of a group of CF  (m, n, p). W i t h  la te r  a ims in mind  i t  

will be convenient  to  work  under  s l ight ly  more  general  hypotheses  t h a n  are  necessary  for 

th is  purpose.  Thus  we suppose t h a t  G ECF(m,  n, p) (m > 3), a n d  t h a t  if m > 5, G/yz_I(G) 

has degree of c o m m u t a t i v i t y  g rea te r  t h a n  0. B y  L e m m a  2.5 the  cent ra l i se r  K of Yz-2 (G) 

in G is of index p and  conta ins  Sm_2(G). There  are  therefore  a t  least  pm-,,(p _ 1)9. e lements  

of G which belong ne i ther  to  K nor  to  Yl (G): le t  s be such an  element ,  and  le t  S be t he  cen- 

t ra l i ser  of s in G. Clear ly  ~ - 1  (G) ~ S, a n d  we prove  t h a t  S f3 Y2 (G) = ~'z-1 (G). I f  in fact  
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there exists an element x of S N ~ (G) which does not belong to Ym-1 (G), then there exists 

an integer i, with 2 ~<i ~ m  - 2 ,  such that  x lies in ~t(G) but not in ~t+l(G). Thus x and 

~+1 (G) generate ~t (G); but s was chosen so tha t  it does not belong to the centraliser of 

~t(G) modulo yt+2(G), and so [x, s] cannot lie in ~ .~  (G). Since i ~< m -  2, and xES ,  this 

is a contradiction. 

L E M ~ A  2.14. Suppose that GECF(m, n, p) (m > 3) and that, i / m  > 5, G//~,~_I(G) has 

degree o/commutativity greater than O. Let s be an element of G which belongs neither to ~1 (G) 

nor to the centraliser o/7m-2 (G), and let S be the centraliser o/s  in G. Then S N ~2 (G) = 7m_t(G). 

Next we show tha t  we can proceed from 72 (G) to ~m-2 (G) by adjoining elements of S. 

T ~ E O R E M  2.15. Under the conditions o/ Lemma 2.14, a set T o~ elements o / S  can be 

chosen, which together with y2(G) generate Sm_2(G). 11 t, u E T, then [t, u] eTm_l (G). 

This may  be proved by induction on m. Thus for m > 4, there exists a set T of ele- 

ments which together with 72(G) generate ~ - 2  (G), such tha t  if t E T, then [s, t] ETa_ I (G), 

as is seen by  applying the inductive hypothesis to G/Tm_ 1 (G). This is also true for m = 4, 

since Sm_2(G) =~{G). Let x be an element which together with 7~_1(G) generates 7~_2(G), 

so tha t  by the definition of s, y = [x, s] * 1, tha t  is, y generates 7~_t(G). Thus for each 

element l E T ,  there exists an integer a such tha t  [s, t] = y~; we put  t = ~x ~, and denote by 

T the set of all elements t which arise in this way. Since m ~> 4, t ESm_2(G), and so ~m_2(G) 

is generated by  T and 72(G). Since also by (1) and Theorem 1.4 

[s ,  t] = [s ,  e x ~] = [8, x ~] y ~  = 1, 

we see tha t  T is contained in S. Finally, if t, u E T, then [t, u] ES N ~,2(G), and so It, u] e 

~_I (G) ,  by  Lemma 2.14. 

We shall need one or two consequences of Theorem 2.15. 

C o R o L ~. A R u 1. Under the same conditions S is o/order p~- "~ "2 and is o/class at most 2. 

First  of all we show that  S N ~_~ (G) is generated by T and ~ - I ( G ) ,  and is of order 

~0 ~-m+l. I f  x ~ S  fi ~_~(G),z can be written in the form yz, where y is a product of elements 

of T, and z ~ ( G ) ,  for ~_~.(G) is generated by T and ~(G) .  Since T is contained in S, 

it follows tha t  y E S: thus z = y - t x  ~S. Hence z ~ - 1  (G) by Lemma 2.14. Also, if t e T and 

t is of order p~ modulo ~(G) ,  then t ~ e ~ ( G ) N  S =~m_l(G). Thus, since ~m_~(G)/~(G)is 

of order p~-~n, it follows tha t  T and ~,m_t (G) generate a group of order ~ -~+~ ,  for [T, T] ~< 

~_~  (G). This proves the assertions. 

Next  we show tha t  S (I ~t(G) = S N ~_2(G). I f  x E S  N ~I(G) and s t is an element of G 

so defined tha t  s t and ~m-~ (G) generate ~t (G), then we can write x - s ~  y where y ~ _ ~  (G) 

for a suitable integer a. Thus 
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1 = [s ,  x ]  = [s,  s ~ y ]  = [s, y]  [s, s~] ~. 

But  [8, y]Eya(G), since ~m_2(G)=~(G), and so [s,s~]E?a(G ). Hence, modulo Ta(G) sr 

commutes with every element of G; tha t  is, sTE~/(G)=~_2(G).  Thus x E~_~(G), as 

required. 

Finally, if x ES, we can write x = s~y where y E~I (G). Since x and s lie in S, we have 

y E S  N y l ( G ) = S  N ta_2(G). Thus S is generated by s, T and ?z-1(G). Also, since sVES N 

?I(G) = S  N $~_2(G), S is of order p"-~+~. S is of class 2, since IT,  T] <<.y,,_l(G). 

C 0 R 0 L L A R Y 2. Under the same conditions the conjngacy class o / G  containing s is the 

coset sy2 (G). 

For by Corollary 1 s has pa -2  distinct conjugates in G. Since s ~ = s i s ,  x] for any ele- 

ment  x of G, each of these conjugates is of the form s y  where y E~2(G ). And since ~2(G) 

has just p~-2 elements, it follows tha t  each element of this form must  be a conjugate of s. 

THEOR~.M 2.16. Suppose that G ECF(m, n, p) (m > 3), and that r is the smallest positive 

integer such that there exists an element s o/ G, not belonging to ~I (G), /or which s vr lies in 

~2 (G). Then T2 (G) can be generated by /ewer  than p~ elements. 

Suppose tha t  this is not true. Then the index of the Frat t ini  subgroup ~b(y~(G)) of 

~2(G) in ~2(G) is at  least p rr, and so there exists a normal subgroup N of G, such tha t  

~(~2(G)) ~< N <~2(G), and ~2(G) /N  is elementary Abelian of order ppr. By considering 

G//N we see tha t  without loss of generality, it may  be assumed tha t  T2 (G) is an elementary 

Abelian group of order p f ,  for by  Lemma 2.3 G / N E C F ( p  ~ + 2, n', p) for some n ' .  By  

Theorem 2.10, Corollary, G has degree of commutat iv i ty  greater than  0. Hence Lemma 

2.14 may  be applied, and since s vr E S N ~2 (G), it follows tha t  s vr E ym-1 (G). 

I f  s I is an element which together with ~m-2 (G) generates $1 (G), we define st = a~ (s, sl) 

(i = 2, 3 . . . .  , m  - 1), so tha t  as in Lemma 2.9, si and ~t+l(G) generate ~t(G) (i = 2 ,  3, 

. . . .  m - 1). We prove by induction on k tha t  

. .  tk 
81 ~ . . .  8k+ 1 "~ 

For k = 1 this is clear; for k > 1 we assume the corresponding result for k - 1 and trans- 

form by s, using s~ =sts~+ 1. Since ?2(G) is Abelian, we may  deduce the stated result at  

once. Putting k = p ' =  m -  2, and using the fact tha t  ~,2(G) is of exponent p, we obtain 

8~ pr ~ 8 1 8 r a _ l .  

Thus s vr cannot belong to the centre of G. But  we have shown tha t  s vr E~_I (G)  and so 

we have a contradiction. Thus Theorem 2.16 is proved. 
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I t  is very easy to show tha t  Theorem 2.16 is the best possible result. Thus let E be 

an elementary Abelian group of order p~' generated by  elements sl, s 2 . . . . .  sr~. Let  a be 

the automorphism of E defined by s~ = s~st+z (i = 1, 2 . . . . .  pr _ 1) and s~ -- spr. Then a 

is of order p '  and we may  form an extension G of E, such tha t  G / E  is cyclic of order p '  

and an element s of G induces the automorphism a in E. Then GECF(p  r + 1, 2r, p), and 

~, (G) cannot be generated by  fewer than p '  - 1 elements. I t  is to be observed tha t  in the 

case r = 1 the group tha t  we have constructed is the Sylow p-subgroup of the symmetric 

group of degree p~. 

We mention two particular eases of Theorem 2.16. 

COROLLARY 1. I /  GECF(m, n, 2), and there exists an element s o / G  which does not 

belong to ~I (G), such that s2E~2(G), then ~2(G) is cyclic. 

COROLLARY 2. I /  GECF(m, n, 3), and there exists an element s o / G  which does not 

belong to ~1 ( G), such that s a E~2 ( G), then ~ ( G) is an A belian group ugth at most two generators. 

The first corollary is obvious. To prove the second we observe first tha t  ~2(G) can 

be generated by 2 elements, by Theorem 2.16. I t  follows tha t  [~2(G), ~3(G)] = 1 (see [1], 

Theorem 2). Since ~2 (G)/~a (G) is cyclic, it follows from Lemma 2.1 tha t  ~2 (G) is Abelian. 

3. The corollaries of Theorem 2.16 suggest tha t  far deeper results will be obtainable 

if some condition is imposed on G / ~ ( G ) ,  and we shall therefore assume henceforth tha t  

this group is elementary Abelian, tha t  is, tha t  GEECF(m,  n, p). For m > 3 such a group 

always possesses a subgroup of order pm and class m -  1 with the same lower central 

series as G. For by  the results of the previous paragraph G can be generated by two ele- 

ments x, y and ~ (G). Thus, if H is the group generated by x, y, H~  (G) = G, and so by  

Theorem 1.3, ~ ( H ) = ~ t ( G ) .  By hypothesis, x ~, y~ are elements of ~2(G)=~2(H),  and so 

H is of order pro, as required. Thus the s tudy of the groups of ECF(m, n, p) reduces 

essentially to tha t  of p-groups of maximal class, a t  least so far as the properties of the 

lower central series are concerned. The following lemma shows tha t  the groups of 

ECF (m, n, p) possess other subgroups which are p-groups of maximal class. 

LV.MMA 3.1. Suppose that GEECF(m,  n, p) (m > 3) and that, when m > 5, G/~m_I(G) 

has degree o/ commntativity greater than O. Then G possesses a subgroup K which is of order 

pm-~and clazs m - 2 ,  and ~l(K) = ~t+ l (G)  (i  = 1, 2 . . . . .  m - 2 ) .  

One of our principal aims is to prove tha t  if G E ECF (m, n, p) and m > p + 1, then G 

has degree of commutat iv i ty  greater than  0 (Theorem 3.8). This will be proved by  induc- 

tion on m and so, in Lemma 3.1 and a number  of the following results, we shall work under 

the hypothesis tha t  G/~rn_ 1 (G) has degree of commutat iv i ty  greater than  O. This hypo- 



6 6  N. BLACKBURN 

thesis is of course shown to  be unnecessary by  Theorems 2.11 and 3.8. I n  such a group 

our notat ion will be as follows, s denotes an  element which belongs neither to 71(G) nor  

to  the centraliser of 7~_~(G). s~ denotes an  element which belongs to  71(G) bu t  no t  t o  

~m_3(G). For  i = 2 ,  3 . . . .  , m - 1  we write s~=a|(s, sl). By Lemma 2.9 st and 7t+l(G) 

generate 7t (G) if 2 < i ~< m - 2. This is also true if i = m - 1. For  sin_ 2 and 7m-1 (G) generate 

~'m-3 (G), and s commutes  with every element of 7m-1 (G) but  does not  belong to the  een- 

traliser of 7m-3 (G) : thus s and Sin-2 do no t  commute,  t ha t  is, s~_ 1 =~ 1. I t  is also impor tan t  

to  observe t h a t  s ~ ETm_I(G ). For  since G/72(G ) is e lementary Abelian, s ' E  72(G); also s ~ 

certainly belongs to  the eentraliser of s, and so by  Lemma 2.14, s ~ E 7~-1 (G). 

To prove Lemma 3.1 we define K to be the group generated by  s and 72(G). Since 

72(G) is of order pro-2 and  s ~ E 7m_l(G) ~< 73(G), K is of order pro-1. Also s 2 and s are both  

elements of K and am_3(s, s~) = sin_ 1 r 1 ; thus K has class at  least m - 2. Since m - 2 is 

the maximal  class of a group of order pro-l, K is a p-group of maximal  class and 7~(K) is 

of order p,,-~-i  (i = 1, 2 . . . . .  m -  2). Since K ~>73(G), K is a normal  subgroup of G, and 

so 7~(K) is normal  in G. For  i /> 2 7~(K) -~<72(G), and so by  Lemma 2.3, 7~(K) =Tt+l(G). 

Also 
[73 (G), 72 (g)]  = [73 (G), 73 (G)] ~< 75 (G) = 74 (g) ,  

and  so 72(G)~  71(K). Bu t  these groups have the same order, and are therefore equal: 

thus the result is proved.  

We observe tha t  any  such subgroup K has degree of commuta t iv i ty  greater than  0, 

for 
[7,(K}, 7j(K)] = [7,+1(G), 7j+~(G}] ~< 7,~j§ = r~+~+1 (K). 

I t  is also to  be observed t h a t  by  repeated application of Lemma 3.1, if 2 ~< r < m -  3, 

we can construct  a subgroup L of G of order pm-r+l and class m -- r, with degree of com- 

muta t iv i ty  r - 1 ,  such tha t  7 j (L)=7r+j_I (G)  ( j =  1, 2 . . . . .  m - r ) .  This result is clue to 

Wiman  ([12], w 4). 

Our next  aim is to investigate the "power-s t ructure"  of the  groups of ECF(m,  n, p). 

For  small values of m, we obtain the following result. 

T H E O R E M 3.2. SupTose that G E ECF (m, n, p), where p is odd and 4 ~ m <. p + 1. 

Then G/Tm_I(G ) and 72(G) are o/ exponent p. I]  m <~ p, the elements o/ G o/ order at most 

p ]orm a characteristic subgroup o~ index at most p. 

B y  Theorem 2.11 G/Tm_I(G ) has degree of commuta t iv i ty  greater than  0, and  so 

there are at  most  2 maximal  subgroups of G which can be centralisers of the groups 

7j(G)/7~+2(G) (i = 2 ,  3 . . . . .  m - 2 ) .  G has p + 1 maximal  subgroups containing Sm_~(G), 

and so, since p is odd, we m a y  select two such subgroups, neither of which is the een- 
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traliser of any ?~ (G)/?~+~(G). Let s, s' be elements which together with ~m-2 (G) generate 

these two subgroups: then G is generated by s, s'  and Sm-~ (G). Let  S, T be defined as in 

Theorem 2.15. Thus G is generated by s, s', T and ?~(G), and it follows tha t  G is generated 

by  s, s '  and T. Now s" and, for each tET, t p are elements of S N ?2(G), since G/?2(G) is 

e lementary Abelian. Hence by Lemma 2.14 s ~ and t p lie in ?m_l(G). Similarly, by  consi- 

dering the centraliser of s', s' ~ lies in ?m-1 (G). Hence G/~'m-1 (G) is generated by a set of 

elements of order p. But  G/?,,_ 1 (G) is a regular p-group, since the class of this group is 

m - 2, which is less than p (see [3], Corollary 4.13, p. 73). Hence G/?,,_ I (G) is of exponent 

p (see [3], Theorem 4.26, p. 76). 

For m ~< p G is itself a regular p-group, since the class of G is less than p. I t  follows 

tha t  the elements of G of order a t  most p form a subgroup El, the index of which in G 

is equal to the order of PI(G). But  since G/?m_I(G) is of exponent p, PI(G)~<?m_l(G), 

and so E 1 is of index a t  most p in G. ] t  follows tha t  ?2(G) < E 1, and so ?2(G) is of expo- 

nent p. 

For  m = p  + 1 we observe tha t  by Theorem 2.6 72(71(G))~<?a(G). I t  follows tha t  

?f(?l(G)) ~< ?,~ 1 (G) by induction on i. Hence ?~(?I(G)) = 1, and so ?1 (G) is regular. Thus 

the elements of ?1 (G) of order at  most p form a subgroup F of index the order of P1 (?~ (G)). 

But  PI(?I(G))  ~< P ,  (G) ~< ?~-1 (G), and so F is of index a t  most p in 71 (G), and at  most 

p~ in G. Thus G / F  is Abelian, and so ?~ (G) < F. Hence ?~ (G) is of exponent p. 

The investigation of the power-structure in the case m > p + 1 rests upon the follow- 

ing result. 

LEm~A 3.3. I / G e E C F ( m ,  n, p) (m > p + 1), then 81VSV lies in yp+l(G). 
Here we need not assume that  G/ym_ 1 (G) has degree of commutat iv i ty  greater than 

0, for the lemma is essentially a result about  G/?~+2(G), and by  Theorem 2.11 this group 

has degree of commutat iv i ty  greater than 0. I t  is on the basis of this fact tha t  we may  

use the notation described, so far as s, s~, s~. . . . . .  s~ are concerned. 

For p odd we apply Theorem 1.6 to calculate (ssl) ~. Since the group generated by 

s 1 and ?~ (G) is contained in ?~ (G), this yields 

p p - 2  

(ss,) ~ ~- s~s~ . . ,  s!' ) . . .  s~ (mod P,  (?~ (G)) ]-I [?~ (G), ?~_, (G)]). 
~-1  

Since G/?r+ ~ (G) has degree of commutat iv i ty  greater than 0, 

[?, (G), ?~_,(G)] ~< ? ~ ( G )  (i = 1, 2 . . . .  , p - 2). 

Also, by appIying Theorem 3.2 to G/r~+~(G ), we see tha t  P~(r~(G)) <r,+l(G). 

Thus ( ss ,F= s~s~ ... s~ ~) ... s~ (mod ?~+,(G)). 
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This is also true for p = 2, for 

(881) 3 = 828158~[8~, 81]- 

Now 8 and so t are both elements of G which do not lie in 71(G), and so, by an above re- 

mark applied to G/yp+2(G), s ~ and (SSl) ~ lie in y,+l(G). Also, for i = 2 ,  3 . . . . .  p - 1 ,  

s! ~) e P~ (r~(G))<r~+~(G). Hence the equation reduces to 

sl~sp ~ --  1 (mod 7p+l(G)), 
as required. 

Lemma 3.3 is not necessarily true if m = p + 1, as the Sylow p-subgroup of the sym- 

metric group of degree pz shows (see below). 

We deduce now a result on the power-structure which is most conveniently stated 

for p-groups of maximal class. 

TH~.ORv. M 3.4. I /  G is a group o/order pm and class m - 1, where m > 3, then yl(O) 
is a regular p.group. 1] m > p + 1, a n d / o r  each i ~ 1, 2 . . . . .  m - p + 1, we urrite 

m - i = ( p - 1 ) q ~ + r t  ( 0 ~ < r ~ < p - 1 ) ,  

then ~q(G) has r~ invariants equal to q~ + 1, and p - r~ - 1 invariants equal to q~. 

Again the second sentence of this theorem is not true if m = p  + 1. For if p is odd 

and G is the Sylow p-subgroup of the symmetric group of degree p~, then ~,I(G) is an 

elementary Abelian group of order p~, as may  be seen from the defining relations given 

for this group in w 2. Thus y~ (G) has p invariants, all of which are equal to 1. Thus Theo- 

rem 3.4 shows tha t  i/ p is odd, the Sylow p-s~gogroup o / the  symmetric group o/degree pz 

cannot be a/actor group o / a  p-group o /max ima l  class o/order greater than p~+l. In  contrast,  

the Sylow 2-subgroup of the symmetric group of degree 4 (that is, the dihedral group 

of order 8) is always a factor group of a 2-group of maximal class of order greater than 8. 

To prove Theorem 3.4 we observe first tha t  since any  p-group of order less than pp§ 

is regular, it is clear tha t  Yl (G) is regular if m ~< p + 1. For m > p + 1 we consider P1 (Y1 (G)), 
which is a characteristic subgroup of G. By Lemma 2.2 PI(7I (G))=7~(G) ,  for some ~. 

By Theorem 3.2 applied to G/~,+I(G), PI(~,I(G))~:g,(G), or J t ~ p .  But  by  Lemma 3.3 

8~ does not belong to ~p+l (G), and so ~t cannot be greater than p, for si' EP 1 (71 (G)). Thus 

~t = p ,  and PI(~I(G)) = ~ ( G ) .  Hence PI(~,I(G)) is of index p~-i in ~'I(G), and so ~I(G) is 

regular (see [4], Theorem 2.3, p. 477). 

I f  X is any regular p-group, we denote by E~ (X) the subgroup of X consisting of 

all elements of X of order at  most p~; thus 

( B , ( X )  : 1) = ( x  : P , ( X ) ) .  
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H p ~ j  ~ m ,  we app ly  this equal i ty  with i = 1 to  the  group ~1(G)/Tj(G). Thus  

(El(71(G)/71(G)):1) = (71(G)  : 7 ~ ( G )  ) = p ~ - l .  

Hence b y  apply ing  L e m m a  2.2 to  71(G)/7j(G) 

E1 (71 (U)/TJ (a))  = 7,-~+1 (U)/Tj (U) 

We deduce by  induction on i t h a t  if m - 1 ~> i (p  - 1), 

E~(71(G)) = 7,.-,~-1~ (G). (15) 

For  i = 1, this follows a t  once by  pu t t ing  j = m. For  i > 1, we need only observe t h a t  

E, (71 (G))/E~-I (71 ((7)) = E 1 (71 (G)/E~-1(71 (G))) 

= E1 (71 (G)/~,m_(~_l)(~_~) (G)) 

= 7m-~<p-1) (G)/E~-I (71 (G)). 

I f  i ( p -  1)>~ m, then  E~(71(G))= 71(G), as is seen by  the  same argument ,  using the  fact  

t h a t  71(G)/7~ (G) is of exponen t  p. 

I t  follows f rom (15) t h a t  if l < ~ j < ~ m - i ( p - 1 ) ,  then  7j(G)>~Ef(71(G)), and  so 

Et(7j(G)) =7m_~(~_l)(G), for i = 1, 2 . . . . .  qj. Again Eqj+I(7~(G))=~j(G).  Thus  (Ek(~j(G)): 

Ek_l(Ts(G))) = p ~ - i  (/c = 1, 2 . . . . .  qj), whilst  (~j(G): Eqj(Tj(G)) ) =p~J. These indices give 

rise to the  par t i t ion  ( ( p -  1)qJ, rj) of m - ? ' .  The invar iants  of 7j(G) are the  par t s  of the  

conjugate  par t i t ion,  which are as s tated.  

C O R O L L A R Y  1. I /  G e E C F ( m , n , p )  ( m > p + l ) ,  then PI(Tj(G))=Tj+p_I(G), /or 

j = l ,  2 . . . . .  m - p + l .  

As remarked  a t  the  beginning of this pa rag raph  G possesses a subgroup H,  such t h a t  

H is a p-group of max ima l  class and  7~(H)=Tt (G)  (i = 2 ,  3, . . . ,  m -  1). I t  follows f rom 

Theorem 3.4 t h a t  for ?" = 1, 2 . . . . .  m - p  + 1, 7 j (H)  has p - 1 invariants:  thus  PI(Ts(H))  is 

a characterist ic  subgroup of H of order  pm-J-~+l, and  so P1 (Ts(H)) = ~J+~-1 (H), by  L e m m a  

2.2. This gives the  result  a t  once if ~ > 1. For  ] = 1 we observe t h a t  

[71 (H), 72 (r = [71 (H), 72 (H)] ~< 7,  (H) = 7,  (G), 

and  so 71 (H) ~< 71(G). Hence  P1 (71(G))/> P1(71 (H)) = 7~ (H) = 7~ (G). Bu t  for p odd, we 

can app ly  Theorem 3.2 to  G/7~,+I(G), and so P1(71(G)) ~< 7~(G); this is also t rue  for p = 2, 

since G/~,2(G ) is e lementary  Abelian. Hence P1(71 (G) )=  7p(G), as required. 

C O R O L L A R Y  2. I/ G 6 E C F ( m , n , p )  ( m > p + l )  and  G/7~_~(G ) has degree o/ com- 

mutativity greater than O, then s~s~ ~ ~-16~+~ (G) (i = 2, 3 . . . . .  m - p). 
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Without loss of generality it may  be assumed tha t  G is a p-group of maximal class. 

By Lemma 3.3 the result holds for i = 1, and so we may  use induction on i. By  the in- 

ductive hypothesis sF-l%+v-2 6y,+~_,(G), and so 

[8/'-1 s~+~_2, s] 6y,+~ (a). 
This commutafx)r is 

8,-+~_~ s,=~ (4_x) ~ 4+~ ~ = 8~-+~_~ 8C_~, (8~-1 s,)~ s,+~_~ 8,+~_1. 

By Theorem 3.4 ~1 (G) is regular, and so if H is the group generated by  %-x and st, 

(s~_ 1%)v=--S~_l s~ (mod P ,  (H')). 

Now H ~< 7~-1 (G), and since ~_1 (G)/yi+x (G), being of order p2, is Abelian, H '  ~< ?1+1 (G). 

Hence by Theorem 3.4 PI  (H') ~< y, ~p (G), and we obtain 

siXv 2 s.', st+v-2 st+v-l----1 (mod ?t+v (G)). 

Also by  Theorem 3.4 sF6~,~+~_I(G), and so sl' lies in the centre of G modulo ~h+v(G). 

Hence it commutes with st§ and so the result follows. 

We shall now investigate more closely the commutator-structure of the groups of 

ECF(m, n, p). We begin with the following lemma. 

LEMMA 3.5. Suppose that G6CF(m,  n, p) (m >4) ,  that G/~'m_,(G) has degree o/com- 

mutativity greater than 0 and that G has degree o/commutativity k >~ O. I/  

[s.,s.]=s~,J (mod y,+j+k+l (G)) ( l < ~ i < ] , i + ] . < r a - k - 1 ) ,  
, J u  - -  l . ~ t§  

then au+2- -~ ,+ ,  (modp)  ( l ~ < i < [ � 8 9  

and ~ t j + l + 0 % + l j ~ l  ~ (modi~) ( l < i < ~ ] - 2 ,  i + ] < < - m - k - 2 ) .  

(If x is any number, we denote by [x] the greatest integer not greater than x, as 

usual.) 

The hypothesis tha t  G/Tm_I(G) has degree of eommutat iv i ty  greater than  0 is of 

course only necessary when k = 0, and in tha t  case ensures that  we may  use the notation 

described. 

To prove Lemma 3.5, we observe tha t  for 1 ~ i < ] and i + ] ~< m - k - 2 

[s~+. 8,] = s &  s~,~l = s i h  is,, s] ~, = s~+~l [s~;, s %  

Hence [S~+l, sj] =s[+*l rs s ~*j ss]~l] (mod ?t+;~e+2 (G)). k I |+ l+k~  
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W e  calculate the  r igh t -hand  side b y  means  of (1) and (2). Thus  we have  

t~ i + k  ~ t + / + k  ~ i + / + k  ~ 

F8 8 =i) , 8T:I] = [81, Sj+l] '+J+~rs ='J 8;J1], [ l | + / + k  L | l . j §  ~ 

L t i + j + k '  L i + / + k  ~ 

Also [s~, s)-~] = [s~, S~+l] -~-+~ ~ s-=~+~ (mod ~ + ~ + ~  (G)). 
i + j + k + l  

Thus  [s~ s=~ s:~-~----s-='~§ (mod 7, ~+~+~ (G)). t + J + k '  1+1~ i ~ i §  

~s=l t  
[8t, 8J ~+1+k=8=+1 [8=+i, 8~+~k]~8~+ 1 (mod ;~i+i+k+2(G)), Again 

and so b y  Theorem 1.4, 

~ s ~'j "l=s-  s ~'j (mod 7,+j+k+z(G)). ~ t + / + k  ~ ' ~ J - -  i+l i+ /+k+l  

Hence  [st+z, 8 j ]~ s  =ij-~s+l (mod 7~+~+k+2(G)). i+y+k§ 
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L E M ~ M A 3.6. Suppose that G fi E C F  (m, n, p) (m > p + 1), that G/Vm-1 (O) has degree o/ 

commutativity greater ~han 0 and that G has degree o/commu~ativity k >10. Then [81, 89] E 

~9+~+2(G), and i/ /or i =2,  3 . . . . .  m - k - p - 1 ,  

then 

B y  L e m m a  3.3 s~s 9 

[~, sfsg] e.[r, (g) ,  79+,  (G)] < 7,+9+k+1 (G). 

Thus  by  (1) [s,, sp ] - -  [s[, s,]'9 (rood ~,+9+k+, (G)). 

Wi th  i = 1 this gives [Sl, sg] e~,9+k+2(G), as required. For  i > 1 we write 

Es,, ~,] = 8{~ ~+1 x, 

[s 1, s,]---s~+~k~ , (mod ~,+k+2 (G)), 

[s v, si] = s =' ~ (mod Y,+k+v+1 (G)). 
- -  t + k .  p 

is an e lement  of ~9+1(G), and  so for i = 1, 2 . . . . .  m - ] r  

(16) 

This reduces to  the  result  s t a ~ d ,  whether  i = i + 1 or ~ > i + 1. 

The  nex t  l emma  is of a similar nature ,  bu t  uses the  p - th  power  relat ionships t ha t  

we have  found. 
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so tha t  xE~+k+2(G). Hence by  Theorem 3.4, Corollary 1, x~ETt+k+~+x(G). Now 

[ sL  *,] = s ;v ( s i~)  p = s ;  ~ (81s~l+k+lx)v. (17)  

Let  L be the group generated by  s 1 and 7,+,+x(G), and let H be the group generated by  

s and s x. By  the argument  a t  the  beginning of this paragraph H is a p-group of maximal  

class, and y, (H) = y, (G) (i = 2, 3 . . . . .  m - 1). Clearly s 1E Yl (H), and so L ~< V1 (H). By  

Theorem 3.4 it  follows t ha t  L is regular. Hence 

(sxs ~* x )~ - - s~s  =~f x ~ (mod PI(L ' ) ) .  | + k + l  t+k+l  
B y  Lemma 2.1 

L '  = [L, 7,+k+l (G)] < 7,+k+2 (G), 

and so by  Theorem 3.4, Corollary 1, 

/)1 (L') < }'~+k+~+l (G). 

Thus  (sl s~*+k ~1 x~rJ =--s T1 s v='~+k+l (mod ~)f+/t+p+l (G))~ 

But  by  Theorem 3.4, Corol lary 2, 

p __  - x  ( m o d  F ~ + ~ + ~ + x ( G ) ) ,  8| +/C+I = S f + k + ~  

and so s~ r (s t S~k+ 1X)P-----'aI-+~+p (mod 71+k+p+t (G)). 

Hence by  (16) and (17) 

[s~, s,]----s~+v (mod 7,+~+~+1(G)), 
as required. 

This brings us to the key lemma. 

LEMMA 3.7. Suppose that GEECF(m,  n, p) (m > p  +2) ,  that G/7,,_ I(G) has degree 

o /commutat iv i ty  k, where 1 <. k <. m - p - 2, and that 

[ r , ( o ) ,  r ~ _ ~ _ , + , ( a ) ]  = 1 ( i  = 2,  3 . . . . .  m - b - 1 ) .  ( 1 8 )  

Then O has degree o /commutat iv i ty  k. 

Since it  is assumed t ha t  G/Tm_ x (G) has degree of eommuta t iv i ty  k, it~is only neces- 

sary to prove t ha t  

[~,(G), Ym_k_,(G)] = 1 (i = 1, 2 . . . . .  m -- b -- 1). (19) 

We begin by  showing tha t  (18) is t rue with i = 1, t ha t  is, 

[~1 (G), ~,,._~(o)] = 1. (20)  

For  i = m - k , m - k +  l . . . . .  m - l ,  

[Sl, 8i] = S'($tS, : [8, 81__118'8, : [S s', 8~l-1]Si "~ [8821:. St_ 1 [8,_1, Sl]]St. 
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Bu t  [81_1, 81] E[~m_k_2(G) ,  ~21 (G)] ,  and by  hypothesis  this group is contained in ym_l(G). 

Hence 
_S--1 

[81, 8|] = [882 1, 81__118 f = 8f 2 [82-1, 8|_118|. 

But  [as, a,] and [as, at_l] are  both  elements of [Ts(G), Fm-k-l((7)], and  by  (18) this group 

is the uni t  subgroup. Hence [al, s,] = 1, or, s 1 commutes  with each of the  elements sin-k, 

am-u+1 . . . . .  8m-1. Thus a 1 is contained in the  centraliser of ym_k((7). Now a 1 was defined to  

be any  element of Y1((7) which does not  belong to ~-s((7)-  Thus  if yE  ~m-2((7), we could 

use s l y  instead of sl, and  prove the same. Hence s ly  and therefore y itself belong to  the 

centraliser of ~'m-k((7). Hence all elements of Y1((7) belong to  this centraliser, and (20) is 

proved. I t  is to  be observed t h a t  (18), (20) and the hypothesis  on (7/7m-I((7) imply  t h a t  

(7 has degree of commuta t iv i ty  ]c - 1. 

To improve this to ]c we define T as in Theorem 2.15 and  observe tha t  for t E T 

[t, 8ra_k_l] = 8mt_.k .18m_k_l = [8, 8rn_k_2] t 8re_k_ 1 = [85, 8tm_k_2]8m_k_l . 

By the definition of T s t = s, and  

[Sin-k-S, t] ~ [~m-k-s ((7), ~1 ((7)] --< 7m-1 ((7)" 

Hence [t, Sm-~-l] = 1. I t  follows tha t  in order to prove (19) it is sufficient to prove t h a t  

[st, sm_~_,] = 1 (i = 1, 2 . . . . .  m - k  - 1), 

on account  of (18). We already have [s~, s~_k_f] E ~ _ t  ((7), since (7 has degree of commu-  

ta t iv i ty  b - 1, and we can therefore write 

[st ,  s = - k - t ]  = s ~t ( i  = 1 ,  2 . . . . .  m - k - 1 ) .  m-1 

We now apply  Lemma 3.5 and find tha t  

al - -  - a s - -  a s - - :  . . .  - -  ( - 1 ) ~ - ~ 0 ~ - k - 1  ( m o d  p ) ,  

since G/ym-1 (G) has degree of commuta t iv i ty  k. Also we apply  Lemma 3.6 and find t h a t  

since [81, 8m_p_k] ~ 7m--p+l (G),  it follows tha t  [ap, am-k-p] = 1, and  so :% ---- 0 (mod p). Hence 

- -  0 (mod p), and 
[s~, Sm_~_~] = 1 (i = 1, 2 . . . . .  m -- k -- 1), 

as required. 

T H E O R E M  3.8. If GE E C F ( m , n , p )  (m >~p + 2), then (7 has degree o/commut~tivi ty  

greater than O. 

This is a l ready known for m = p + 2, (or, if p = 2, for m = 5), on account  of Theorem 

2.11. For  greater values of m we use induct ion on m. Thus  (7/y,n_l(G) has degree of com- 

muta t iv i ty  1, and  since m >/p + 3 and 

6 - 583801. Ac~a mathemat/ca 100. Irnprim6 le 29 septembre 1958. 
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[~ (G), Tin-, (G)] = 1 (i = 2, 3 . . . .  , m - 2), 

we may  apply Lemma 3.7 with k = 1. Thus the result follows at  once. 

Analogous to Theorem 2.12 we deduce the following consequence of Theorem 3.8. 

THEOREM 3.9. Let G be a p-group o/class at least p + 1, and suppose that G/~+I  (G ) 

E ECF (p + 1, n, p). Then G E ECF (m, n', p), /or some m, n'. 

Let  m - 1 be the class of G. For p odd we proceed by  induction on m: thus G/Tm_I(G ) 

EECF (m - 1, n", p) by hypothesis if m = p + 2 and by  the inductive hypothesis if 

m > p + 2. The result is obtained by  an exact repetition of the argument  used to prove 

Theorem 2.12. 

For p = 2 this argument  does not quite suffice, and instead we prove tha t  the hypo- 

thesis of Theorem 3.9 implies tha t  ~ ( G )  is cyclic. I f  this were not so, then the ~rat t ini  

subgroup ~b (~2 (G)) of ~ (G) is of index at  least 4 in ~2 (G). By  hypothesis ~a (G) is a maximal  

subgroup of ~ (G) ,  and so q)(7~(G)) < ~a(G). Hence there exists a normal subgroup N of 

G such tha t  ~b@2(G)) ~< N <~a(G), and ~,~(G)/N is of order 4. I t  follows tha t  ~2(G)/N is 

elementary Abelian and tha t  G/NEECF(4 ,  n, 2). But  this implies by Theorem 2.16, 

Corollary 1 tha t  ~2 (G)/N is cyclic, which gives us a contradiction. Hence ~ (G) is cyclic, 

and each of the groups ~_I(G)/~i(G) (i = 3, 4 . . . . .  m) is cyclic. But  by  Theorem 1.5 (i) 

and (if), each of these groups is also elementary Abelian, and so is of order 2, as required. 

COROLLARY. I /  G is a 2-group, and G/~2(G ) is o/order 4, then G is a 2-group o/ 

maximal class, and ~1 (G) i8 cyclic. 

I f  G is non-Abelian it follows from Theorem 1.5 (i) tha t  ~a(G)/~a(G) is of order 2, 

and so we may  apply Theorem 3.9. Hence G is a 2-group of maximal class, and by  Theo- 

rem 3.4 ~1 (G) is cyclic. All 2-groups of maximal  class have of course been known for a 

long time, and very simple direct proofs tha t  ~21 (G) is cyclic can be given (see [10], page 

121). 

We see from Theorem 2.10 tha t  if GEECF(m,  n, p) and 6~< m~< p + 1, then Gfails 

to have degree of commutat iv i ty  1 if and only if the maximal  Abelian normal subgroup 

of G contained in 72 (G) is ?t�89 +1)1 (G). We now propose to examine the properties of the 

lower central series of G under the hypothesis tha t  a given term of this series is Abelian. 

Suppose first tha t  G is a metabelian p-group of maximal  class of order pro. By Theo- 

rem 2.10, Corollary G has degree of commutat iv i ty  greater than  0. By  Lemma 2.2 

the centre of ~I(G) is of the form ~ (G), where 1 ~< ~ ~< m. We shall show tha t  )~ ~< p. This is 

obvious if m ~<p + 1. I f  m > p  § 1, then s~sv is an element of ?v+l(G) by  Lemma 3.3. 

Thus sr is an element of ?r(G), but  not of ~,v+~(G), and it is therefore sufficient to show 

tha t  s~ lies in the centre of ~x(G). Now s~fi?~(G), and so s~ commutes with each element 
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of y2(G), since G is metabelian. But  also 8f commutes with sl ;  hence s~ commutes with 

each element of Yl (G), as required. Thus 

[r~ (a) ,  7~(a ) ]  = 1. 

More generally we prove by  induction on p - i  that ,  if m/> p + l, 

[yl(G),  y~(G)] -<< y~_p+t(G) (i = 2, 3 . . . . .  p). 

We have proved this for p - i -- 0; ff p - i > 0, then 

[71 (G), 7t+1 (G)] ~< Y~-v+t+l (G), (21) 

by the inductive hypothesis. Now 

[81, 8t] s = [81, 89] = [81181, 8], 8118f, 8]] = [8182, 8t8t+1]. 

By  (1) [81s2, 81 8i+1] = [8182, 8t+1] [8182, 8t] [816'2, 8i, 8|+1]o 

Hence by (21) [8182, sist+x] ~ [sis2, st] (mod Y~-v+*+l(O)). 

But  again by  (1) [81s2, st] = [ s l ,  s i ]  '~' [ '2 ,  st]  = [ s l ,  s t ] ,  

since y~ (G) is Abelian. Thus 

[sl, st] ~ ------ [8 l, st] (mod Y~-~+t+I (G)), 

or, [81, 8~] belongs to the centraliser of s modulo ~.-p+t+~ (G). Bu t  also [Sl, s,] lies in Y2 (G), 

and so by applying Lemma 2.14 to Glym_~+t+l(G) ,  we find tha t  [sl, st] is an element of 

7m-v+t (G). Clearly this implies the stated result. 

Finally we generalize this to the groups of ECF(m, n, p). 

THV. OR~.M 3.10. 1/ G EECF(m, n, p) (m >/p  + 1) and y2(G) is  A b e l i a n ,  then  

[71(G), 7xt(O)] <<- Txm_v+t(O) (i = 1, 2 . . . . .  p ) .  

The group generated by s and s 1 is a p-group of maximal class with the same lower 

central series as G, and so the result which we have proved above shows tha t  for i = 2, 

3 . . . . .  p, s 1 lies in the centraliser of yi(G) modulo 7~-v+t(G). Now s I denotes an arbi t rary 

element of 71 (G) which does not belong to ~ - 2  (G). Thus if y is a given element of ~ - 2  (G), 

this is also true for s l y  , and hence for y itself. Hence any element of )'i (G) lies in the cen- 

traliser of 7xt (G), modulo Ym-v+t (G), and so 

[~#1 (0 ) ,  r t  (0 ) ]  < rm-p+t (G) (i = 2, 3 . . . . .  p) .  

I t  remains to prove tha t  the derived group 71'(G) of yl(G) is contained in 7~-v+1 (G). 

This follows at  once from the following ]emma. 
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LEMMA 3.11. I /  G E E C F ( m ,  n, p) ( m > 3 )  and [71(G) ,y2(G)]<y , (G) ,  then 71' (O) <~ 

},T_~ (O). 
Let  T be defined as in Theorem 2.15, so t h a t  yl(G) is genera ted  by  81, T and  ?2(G). 

Hence  by  Theorem 1.1 ?x'(G) is genera ted  b y  [?I(G), ?2(G)], together  with the  e lements  

[81, t], It, u], as t, u run  th rough  T. I t  is therefore only necessary to prove  t h a t  these 

elements  lie in ?~_I(G). B y  Theorem 2.15 It, u] Eym_l(O)~Yr_l(G). To prove  it for [8, t] 

we observe t h a t  since t E S, 

[81, t] s = [81 s, t'] = [s ls~,  t] = [81, t] [81, t, 8~] [s~, t], 

by  (1). Since [71 (O), 72(G)] ~< 7r (G), it follows t h a t  [s 1, t] commutes  with s, modulo 7T (G). 

We  deduce t h a t  [81, t] EYr_l(G ) by  apply ing  L e m m a  2.14 to G/y~(G).  

We now consider a group G of ECF(m,  n, p) in which ys(G) is Abelian. Le t  K be 

defined as in L e m m a  3.1, so t ha t  y, (K) =y ,  ~ l (G) (i = 1 ,2  . . . . .  m - 2 ) .  Thus  ya(K) is 

Abelian, and  b y  Theorem 3.10 

[yx(K), y,_ICK)] <~ ym_v. ,_2(K)  (i = 3, 4 . . . . .  p § 1), 

or [y2(G), ~t(G)] ~yrn p+t-l(G) (i = 3, 4 . . . . .  p + 1). (22) 

We shall p rove  t ha t  O has degree of c o m m u t a t i v i t y  m - p - 2. I f  m = p + 3, this follows 

f rom Theorem 3.8 : thus  we m a y  use induct ion on m. B y  applying the  induct ive  hypothes is  

to  G/y , ,_I (G) ,  we see t h a t  this group has degree of c o m m u t a t i v i t y  m - p -  3. Also 

[y,(O), yp+,_,(O)] = 1 (i = 2, 3, . . . ,  p + 2), 

on account  of (22) and  the fact  t h a t  ya(G) is Abelian. Thus  b y  L e m m a  3.7 G has  degree 

of e o m m u t a t i v i t y  m - p  - 3 ,  and so 

[~ l (O) ,  y , (O) ]  < ~m-p+~-~(O)  (i = 1, 2 . . . . .  p + 2).  

:Hence we m a y  write 

[81, 84] ~--Sm -P+t--2 (meal ym_v+t_l(G)) (i = 2, 3 . . . . .  p + 1). 

Also, by  (23) we m a y  write 

& 
[8~, st] ---- sm-v+~_l (mod ym-p+~ (G)) (i = 3, 4 . . . . .  p). 

We now app ly  I . e m m a  3.5 and  obta in  

a ,  - -  ~ (rood p), 

~,+~ +f l j=-~j  (rood p) ( ] = 3 ,  4 . . . . .  p),  

~ - f l , -  . . .  - f t ,  (rood p). 

Hence  ~J - -a2  - (i - 3)fla (mod p) (i = 3, 4 . . . . .  p). 
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Bu t  b y  L e m m a  3.6 [sl, sp] lies in Ym-I (G) and 

Is2, %] = s/~-'i ; 

t h a t  is, ~p----/5p + x 2 -  0 (rood p). 

Hence ~2 - (P - 3)/5a ---- 0q +/53 ---- 0 (mod p). 

Hence ~ ----/sa - -  0 (mod p), (we neglect the trivial case p = 2), and so ~ ----/5~ ------ 0 (rood p) 

(i = 2 , 3  . . . . .  p + l ;  i = 3 , 4  . . . . .  p). 

Since the/s j  are zero, modulo  T, it follows tha t  Is2, st] lies in ym-~+~ (G) and so 

[y2(G), 7 , (G)]<  ~m_p+,(a) (i = 3 ,  4 . . . . .  p). 

Since the  g~ are zero, modulo p, it follows tha t  [Sl, s~] lies in V~-~+t-1 (G), and hence tha t  

sl lies in the centraliser of y~(G) modulo ?m_p+,_x(G). B y  the usual a rgument  it follows 

t h a t  this holds for any  element of V1 (G), and  thus  

IV1 (G), F~(G)] ~< Fm-p+~-x (G) (i = 2, 3, . . . ,  p + 1). 

B y  L e m m a  3.11 this is also t rue for i = 1. Since also ya(G) is Abelian, it follows tha t  G 

has degree of commuta t iv i ty  m - p -  2, as stated. 

We generalize this result in the following theorem. 

THEOI~EM 3.12. Suppose that GEECF(m,  n, p), and tha t  7a(G) is Abelian, where a 

is an integer s u c h  that m >1 p + 2a - 4 and a >~ 3. Then G has degree o~ commu~iv i t y  

m - p - 2 a + 4 .  

As is seen by  considering the case p = 2, this is not  always a very  powerful result. 

I t  is the best one, however, t ha t  the methods of the present work yield, and is p robab ly  

the best  possible result if a < p. lqoto tha t  it is incorrect for a = 2. 

Theorem 3.12 is trivial for m = p  + 2 a -  4, and  has already been proved for a = 3. 

I t  is proved in general by  a double induct ion on a and m under  which we assume t h a t  it is 

t rue (i) for smaller values of a and all values of m and (ii) for the given value of a and  

smaller values of m. Assuming t h a t  m > p + 2a  - 4 we m a y  apply  the result  to  G/ym-1 (G) 

on account  of (ii). Hence G/7m_I(G) has degree of commuta t iv i ty  m - p -  2a  + 3. L e t  K 

be defined as in Lemma 3.1, so tha t  K is a p-group of maximal  class of order p ~ - i  and 

v~(K) =7l+l (G)  (i = 1, 2 . . . . .  m - 1). Thus ya_x(K) is Abelian, and so, assuming tha t  a > 3 ,  

we m a y  apply  the result  to  K,  on account  of (i). Thus K has degree of commuta t iv i ty  

m - p -  2a + 5. Hence if i >~ 2, j >~ 2, 

b',(G), rAa)] = [7,,-1 (K), 7J,_x (K)] ~< 7'~+,+=-~-2~+s (K) = 7',+,+~-~-,.~+4 (G). (23) 

In  particular,  if 2 ~< i -<< p - 2a  - 4, 

[r,(G), r,,+2,,-,-2(G)] = 1,  
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and  so we can apply  Lemma 3.7. Hence G has degree of commuta t iv i ty  m - p - 2a  + 3, 

and in part icular  

[Ta(G), ~,(G)] ~ 7,+m_~._~a+4(G) (i ~ 1, 2, . . . ,  p + 2 a  -- 4). 

B y  (23) we have only to  prove t h a t  

[yt(G), 7,(G)] ~< 7 , + m _ , _ 2 a + 5 ( G )  ( i  = 1,  2 . . . .  , p + 2 a  - 5). 

Using (23) we deduce from L e m m a  3.5 tha t  if 

[81, 82] ----8~_p_2a+6 (mod ~m--p--2a+7 (G)), 

then [s x, s,] --=sm_~_~+~+4 ~ (mod ym_~_~a§ (i =: 2, 3, . . . ,  p + 2a  - 5). 

Bu t  by  L e m m a  3.6 [s 1, %] lies in Ym_2~+5(G), and  so ~ - ; 0  (rood p). Thus s 1 commutes  

with each element of y~ (G), modulo Ym-p-2,+~4 s (G), and by  the usual a rgument  we deduce 

tha t  
[ya (G), yt(G)] <~ ym_p_~a+t+5(G) (i = 2, 3 . . . . .  p + 2 a  - 5). 

This is also t rue  for i = 1, by  Lemma 3.11, and  so Theorem 3.12 is proved. 

I t  would be desirable to  obtain  a degree of commuta t iv i ty  for the  groups of 

ECF  (m, n, p) which depends only on m and p, bu t  the author  is unable to  do so. I n  the case 

p = 2 of course the problem is very  simple, for as we have already seen, [Yl (G), Y2 (G)] = 1, 

and  so by  Lemma 3.11, y~(G)<ym_l(G);  thus G has degree of commuta t iv i ty  m - 3 .  

For  p = 3, we have the following. 

T H ~ O R ~  3.13. A group o] ECF(m,  n, 3) (m >~4) ha,~ degree o / c o m m u t a t i v i t y  m - 4 .  

This m a y  be deduced at  once f rom Theorem 2.16, C~rollary 2 and  Theorem 3.10. 

Alternat ively we m a y  prove it by  induct ion on m. For  m = 5, the theorem is t rue by  

Theorem 2.11. For  m > 5, we find by  applying the inductive hypothesis  to G/ym_l(G) 

t ha t  G/ym_~ (G) has degree of commuta t iv i ty  m ~ 5. I f  we apply  the  inductive hypothesis  

to the group K defined in I ~ m m a  3.1, we find tha t  

[r2(G),  y , (G)]  = [y~(o),  r s (G)]  = 1; 

hence by  L e m m a  3.7 G has degree of commuta t iv i ty  m -  5. Hence 

[~2(0) ,  ~s(G)]  = 1, 

and  by  Lemma 2.1 y2(G) is Abelian. I t  follows from Theorem 3.10 tha t  G has degree of 

commuta t iv i ty  m -  4, as required. 

These results for p = 2 and p = 3 suggest t ha t  the desired degree of commuta t iv i ty  

for the groups of ECF (m, n, p) will be some such simple form as m - p - 1. Tha t  this is 

not  so is shown by  the case p = 5; for example there exists a group of order 514 and class 
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13 with degree of c o m m u t a t i v i t y  4 bu t  not  5. The  best  result  which our methods  yield 

for p = 5, and  p robab ly  the  best  possible  result,  is the following. 

T H E O R E M  3.14. Jr/ GEECF(m,n ,  5) and m > 5 ,  then G has degree o/commutativity 

[�89 -- 5)]. In  particular 71(G) is of class at most 3. 

To deduce t h a t  71(G) is of class a t  mos t  3 f rom the first  assertion, we observe t h a t  

72 (71 (G)) = [71 (G), 71 (G)] ~ 72+[�89 (G), 

7a (71 (G)) = [71 (G), 72 (71 (G))] ~ [71 (G), 72+tt(m-5)J (G)] ~< 73+2ri(m-5)J (G), 

and  similarly 

74 (71 (G)) < 74+3[i(m -5)1 (G). 

I f  m is odd it follows t h a t  74 (71(G)) = 1 for m >~ 7, and  if m is even, then  74 (71(G)) = 1 

for m >i 10. Bu t  for m = 8 7a(TI(G)) ~ 75(G), and b y  L e m m a  3.6 [71(G), 75(G)] ~Ta(G) = 1, 

since G has  degree of c o m m u t a t i v i t y  1; hence 74 (71 (G)) = 1. The only remaining cases are 

m ~< 6. For  m = 4 it  is t r ivial  and  for m = 5, 6 we see f rom Theorem 2.6 t h a t  72(71(G)) ~< 

73(G), and,  since G/75(G ) has degree of c o m m u t a t i v i t y  1, 

73 (71(G)) < [71 (G), 7s ((7)] < 75 (G). 
Hence 74 (71 (G)) = 1. 

Theorem 3.14 is t r ivial  for m = 6, and  for m > 6 we use induct ion on m. B y  Theorem 

3.8 G has  degree of c o m m n t a t i v i t y  greater  t han  0. We m a y  therefore assume tha t  m > 7. 

Applying the  induct ive hypothesis  to  G/Tm_ 1 (G) gives 

[7, (G), 7~ (G)] < 7~+J+ct(~- ~)~ ((7) (i + j < [�89 (m + 5)]). 

Applying the induct ive hypothesis  to  the  group K defined in L e m m a  3.1 gives 

[71 (K), 7J (K)] < 7~+J§ (K), 

and  this yields, for i = 2, 3, . . . ,  [�89 (m + 5)], 

[7~ (G), 7c~(m+~)l-~ (G)] = 1. 

Hence by  L e m m a  3.7 G has degree of c o m m u t a t i v i t y  [�89 (m - 6 ) ] .  I f  m is even this com- 

pletes the  proof. 

I f  m is odd, pu t  m = 2 r  + 1, so t h a t  r >~4, and  G has degree of c o m m u t a t i v i t y  r - 3 ;  

t h a t  is, 
[Tf (G), 7J((7)] ~< 7~ J+~-a (G) (i + j ~< r + 4). (24) 

Let [s~,s,]----s=tJ . (mod 7f+j+~ ~(G)) ( l ~ < i < j ,  i + i ~ < r + 3 ) .  :J $-~/+r-a 

B y  L e m m a  3.5 
a ~ , §  1 (mod 5) (i = 1, 2 . . . . .  [�89 + 1)]), (25) 

0~1+1 ~- g l + l j ~  6r (mod 5) (1 ~< i < i -- 2, i + }" ~< r § 2). (26) 
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B y  L e m m a  3.6 
a ~ - -  0 (rood 5), 

al~ + ~ - - 0  (mod 5) (i = 2 . . . . .  min  (r - 2, 4)), 

0~lt---- ~5t (mod 5) (i = 6, 7 . . . . .  r - 2). 
W e  deduce  t h a t  

( )  a ' r  ~ ( _  1),_ , i -  1 
,_1 k -  1 ~lJ+k-1 (mod 5) 

(27) 

(28) 

( 1 < i < i .  i + i ~ < r + 3 ) .  (29) 

This  is correct  for i = 1 ; for i > 1 we proceed b y  induc t ion  on i. I f  i < ~ and  i + ~ ~< r + 3, 

we have  f rom (26) 
a . - -  ~ - u  - ~ -1  ~+~ (mod 5), 

so t h a t  b y  the  induc t ive  hypothes is  

1 ( )  1 ( )  
0~j---- ~. ( - -  1) ~-1 i - - 2  ~_1 k - 1  ~ j + ~ - l -  ~ - ( - 1 )  ~-~ i - 2  k-1 k - 1  :t~+~ (mod  5). 

H 
Hence  av----al~+ ~ ( -  1) ~-1 2 ~-1 1 + ~ + ~ - 1 +  ( -  1) ~-1 ~u+~-1 (mod 5), 

a n d  (29) follows. 

More precisely  we m a y  deduce  t h a t  if g~2 = ~, t hen  for i = 2, 3 . . . . .  r + 2, 

~1t ~ ~ ( r o o d  5 )  (i  - -  2 ( r o o d  4 ) ) ,  

~ l t - - = ~  ( m o d  5 )  ( i - - 3  ( m o d  4 ) ) ,  ( 3 0 )  

0tl,-----3at (rood 5) ({----0 (mod 4)), 

: t l , - -  0 (rood 5) (i ~- 1 (mod 4)). 

F o r  i = 2, 3 . . . . .  9 th is  has  to  be p roved  r a the r  careful ly  f rom (25), (26) and  (27), pay ing  

pa r t i cu l a r  a t t e n t i o n  to  t he  cases which arise when r is small .  The  de ta i l s  are  as follows: 

= 3, a13 ~ g12 (by  (25)); 

= 4, ~2a ~ ~2a (by  (25)), ~2a ~ ~13 - a14, ~24 - -  ~14 - a15 (by (26)), ~15 ~ 0; 

= 6, a 1 6 ~  a 1 5 -  a25 (by (26)), a25 ~ - g 1 2  (by  (27)); 

= 7, a17--  als  - g2e, a2e ~ g25 - g ~  (by (26)), ~ s  ~ - g 1 3  (by (27)); 

= 8 ,  ~lS - -  ~17 - a~7, ~2~ = a2 ,  - aae, ~ae = aas - a45 (by (26)), ~45 --= - ~14 (by (27 ) ) .  

= 9 ,  ~19 --~ a l s  - a s s ,  ~28 ---- ~ - ~sT, a37 ~ -  a3e - a6e ( b y  (26 ) ) ,  0~46 ~ ~45 ( b y  (25 ) ) .  

F o r  i />  10 we use induc t ion  on i; b y  (28) and  (29), 

5 ( : )  
~ 1 , - ~ = ~ 5 , - ,  ~ ~ ( -  1) ~ -1  k-1  k 1 ~ l l§  ( r o o d  5 ) ,  
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This gives 

or, using (30), 

and  so by  (29) 
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or 4 u1~-3 -- 6 Uxt-2 § 4 ~1~-1 ---- ~1~ (rood 5). 

F r o m  this (30) readily follows. 

(30) comprises all the informat ion which L e m m a s  3.5 and  3.6 yield. To prove  t h a t  

~ 0  (rood 5) it  is therefore necessary to per form a fur ther  calculation with the  group 

elements,  and  this we do as follows. We have  

[81, 82] = 8 r ~ ,  

where x ETT ~1 (G). Transforming b y  82 we obta in  

[81', 8~'] - (8~')~x '-. 

B y  (24) [rr+x (G), rs(G)] = 1, 

and  so x 8' = x = 8;~[81, 82]. Hence,  since ~r(G) is Abelian, 

[8~', 8~'] = [at,  82] ~ [81, 82]. (31)  

N o w  [81, 88] . . . .  [82, - ~ - -  8r+l y~ 83] - -  8r+ 2 Z, 

where y Ey~ ~ a (G), z ET,+ 3 (G). Since 

[72(G), ~T§ = [rl(G),  7r+s(G)] = 1 

and  [81, sT+2], [82, 8r+1] are elements  of the  centre of G, we see f rom (1) and Theorem 1.4 

t h a t  
[8~ ~, 8~'] = [81 . . . . .  8r+l ,  82 8r+2] 

= [81, 82] [81 , 8T~-2] ~- [82 , 8 r+ l ]  . . . .  

[sT, 8~] ~ : [81, 8T+2]~[82, 8T+1] . . . .  �9 

OC~sr + o~1T+2--~ ~18o~T+1 (mod 5). 

OC(~3T -- ~2r+l § 30elf+2) ~ 0  (mod 5), 

~(~IT -2~1r+1 + ~1r+2 - ~1T+1 + ~1T+2 + 3~1T~ 2 ) ~ 0  (mod 5); 

t h a t  is, ~(~lr -3~1T+1)------0 (mod 5). 

Thus  by  (30), ( -  1y. 3 ~ 2 - - 0  (rood 5), 

and  so u--~ 0 (rood 5). B y  (30) and  (29) ~ j  ~ 0 (rood 5) for 1 ~< i < ], i + ] ~< r + 3. Hence  

[r , (G) ,  rJ(G)] < r , + . r - 2  (G) (2 < i < j, i + i < r + 3) 

and [81, 8,] er,+T_ I(G). 
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Since s I is an arbitrari ly chosen element of ZI(G) which does not  lie in ~m_2(G), it follows 

tha t  if yE$~_~(G), then sly belongs to  the centraliser of 7~(G) modulo 7f+,_l(G), and so 

[r l  (G), 7~ (G)] ~< 7~+,-i (G) (i = 2, 3 . . . . .  r + 2). 

By  Lemma 3.11 ~'1 (G) ~< y~ (G) 

and  so G has degree of commuta t iv i ty  r -  2 = [ � 8 9  5)]. This completes the proof of 

Theorem 3.14. 

~,. We conclude by  turning to the problem of determining the types  of p-groups in 

certain classes. Our pr imary  aims are to  find all 3-groups of maximal  class and all groups 

of order ps and  class 5. To this end we proceed as follows. 

Let  G be a metabelian group of order pn and class n -  1 where n ~> 4, and suppose 

tha t  
[71 (G), 7~ CG)] < r~-~ (G). 

We use the nota t ion of the last paragraph,  and so 

s~ == [s~_l, 8] (i = 2, 3 . . . .  , n - 1). (32) 

Suppose  t h a t  [s 1, s~.] = s~_2~ s~-1.~ (33) 

B y  Theorem 3.13 we m a y  take  ~ = 0 if p = 3; for p = 2  we take  ~ = ~  = 0 .  Also, by  

Theorem 2.11 we m a y  take ~ = 0 if n = 5; for n = 4 we take ~ =fl  = 0. Then 

S -~e [81, 83]=83"~183 [8, 82] sl83= [8", 8~']83~ [8821, 828n~-2183=[8, 82 n-2183, 

and  so [81, Ss] = S,-1, "~ (34) 

using (1) and (2). And  b y  exact ly  the same calculations, for n > 4 

[81, st] = 1 (i = 4, 5 . . . . .  n - 1). (~5) 

We shall now work out  (88~) ~. For  p > 3 we m a y  do this by  applying Theorem 1.6 

taking x = s, y = s~. The group there denoted by  Y is ~I(G), and by  L e m m a  2.1 Y" be- 

comes [~I(G), ~g(G)]. Since this is contained in yn-2(G) and by  Theorem 3.4, Corollary 1 

~'n_2(O) is e lementary Abelian, PI(Y ' )  becomes 1. I t  is clear from (35) and the fact  tha t  

G is metabelian tha t  [ Y, Y~-I(G)] becomes 1 and tha t  

V~2 
1-I [~, (G), r~- ,  (G)] = 1. 
t-2 



Hence  Theo rem 1.6 gives 

where ai = ai (s, sl). N o w  

O N  A S P E C I A L  C L A S S  O F  ~ - G R O U P S  

(saC)"- 0"~ -(f) I ~') - - o  o 1 0 2  . . .  G . . .  0 ~ ,  
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(s 8f) 3 = :  (81)'" (81)',f = : (8~ 8~ 8~): (8~ 8~) ~" 8f. 

Since again  Yl (G) is of class 2, we obtain,  using Theo rem 1.4, 

(8 8f? = :  d 8~ 8~ 8f 8~ 8f [8~ 8~, 8,] (~) [8., 8,] (~). 

Collecting toge the r  the  s~ and using the  fact  t h a t  

(s~:~ , : o - # ~ ,  

this gives (8 8f) 8 = 83 8~ ~ 8~ ~ s~ ~ , .  

Hence  for  all ~0 (s8 f )  v - ~ v l o ~ o ( f )  #~"v~ - -  o k o  1 o 2 . . .  8r)Cs._i 3', (39) 

since the  elements  s[, 8~ ~), ... all lie in ?~.(G) and  therefore  c o m m u t e  wi th  one an- 

other.  

B y  L e m m a  2.14 s r and  (s81) v belong to  V,_~(G). I t  follows f rom (39) t h a t  

s i s !  ~) . . .  sv  lies in ?,_~(G), and  we write 

F o r  p = 3  we have  

Since [?I(G),  ?~_2(G)]=1 ,  7x(G) is of class 2, and  so by  Theorem 1.4 

Hence  a - 8r -~(~) s -#(~) 2 - -  2 n - 2  n - 1  �9 

r8~ s-~(2)  o-#(~) s] - o" o- ~(~) Further  O ' 3 = L  2 n - 2  O n - 1  , - - o 3 o n - 1  , 

and for  i = 4, 5 . . . . .  P at = 8~. Again since 7n-9 (G) is e l ementa ry  Abelian, we see tha t  

for  i = 2 ,  3 . . . . .  p 

~!r) = 8!r):, 

and so (s81) =sVs~Cs  . . . .  s . . .  s b. 

For  ? =  2 71 (G) is Abel ian and  we s imply  have  

(8 817 = : (8, 8,): 8i = 8 ~ 81: 8~:. 
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s ~ = s ~ _ ~  (36) 

l o s  . . .  s ~ = ~ - l .  ( 3 7 )  

Finally by Theorem 2.15, Corollary 2 s s t  is a conjugate of s for 2 ~<i ~<n ~ 1, and so 

(sst) p, s p are conjugate. Thus (ss t )  ~ = s ~. By Theorem 1.6 or by a simple direct calculation 

this reduces to 
~, .(D 

ot+1- - .  8 ,+p-  1 = 1 ( i  = 2 ,  3 . . . . .  n -  1) .  ( 3 8 )  

Equations (32)-(38) are the defining relations of G, and it is easy to verify tha t  such a 

group exists for arbitrary ~, fl, y and ~ (except in the cases mentioned when n or Io is small) 

by using the theorem on cyclic extensions (see [13], Kap. III ,  w 7). 

I t  follows from (36), (37) and (39) that  

(8 8,~) ~ = 8~+_~ +~" (~). 

We deduce from this that  if ~ is not divisible by p, then 

(sf 81' .. .  8~.-_-~') ~ = 8~.~-+~f' +~f" (~). (40) 

For let ~' be a number such that  ~ '----1 (rood p); when p = 3 ,  we take ~' =~. Then 

8~81 , . . .  ~ n - 1  sn-1 is congruent to the ~-th power of s s l  "f' modulo 72(G)and is therefore a con- 

jugate of this element, by Theorem 2.15, Corollary 2. Hence 

(sf 81'... 8 ~ - ? )  ~ = (8 ~l'f ')% 

and (40) is obtained by applying the above formula for (ss~)  p. 

Now each group of this kind is determined by the four parameters (~, fl, 7, 5). We 

wish to find what relations exist between the sets of parameters of two isomorphic groups 

of this kind. Thus suppose that  G is another group and that  0 is an isomorphic mapping 

of G onto G. In (~ we use the notation ~, ~ instead of 8, s~ and we suppose that  the four 

parameters are (~, fl, ?, ~). From 7t(G) ~ = T t ( G )  ( i  = 2 ,  3 . . . . .  n - 1) follows 71(G) ~ = 71(G). 

Hence we may write 

~o = of of, 0~, 8~_i ~ = s~' s~' 8~n- 1 (41) 
o ~  0 2  " ' "  n - 1  ' * ' "  n - 1  ' 

where p does not divide ~#r  By (32) 

~ =  [ i l ,  l ] O =  [ ~ ,  ~ ]  = roll, oil, . . .  stln_ 1 o of ~ ~  ~ ~ . . .  S f n - l l  
k ~  v 2  n - 1  ' n 1 a"  

By working out each ~ in this way and substituting in all equations corresponding to 

(33)-(38), such as 
[~, ~] = { ~ - ~  ~ ~)o, 
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we obtain the transformation laws between the parameters (~, fl, y, (~) of G and the para- 

meters (~, fl, ~, ~) of G. (Actually of course there is no need to substitute in such equations 

as those corresponding to (38), since these are automatically satisfied on account of the 

general theory). The necessary and sufficient condition for isomorphism between G and 

(~ is therefore tha t  it is possible to find integers ~, ~, ~j with ~ i  ~ 0 (rood p) such that  

these transformation laws are satisfied. 

For the calculation of ~,  ~ . . . .  we need only proceed to a small degree of accuracy, 

and we find the following, using (1) and (2): 

- -  "~" ~ ~" (rood r4 (G)) (n ~> 4), = 0 2 o 8 

--=s~' (rood ~'4 (G)) (n = 4, 5), 

------s~'s~ "r (rood rs (O)) (n=  6), 

=s~ '7' s~ 2"~'~'n'+w (~) n'+e"' (n = 6), 

---r (mod rt+2G)) (2<~i<~n-2; n>~7), ~t = o |  o1+ 1 

z0 --~ (n>l 4). 
~ n - - l Z O n _ l  

I t  will simplify matters if we replace fl by another parameter e which we define as follows. 

For p =2 ,  3 we put  e =fl, ~=fl, and for p > 3 we put  

~ = ~ + � 8 9  ~ = ~ + � 8 9  

If  we now substitute in the equation 

[~, ~] = (~L~ ~._~) ~ 

and use the fact that  Y.-2 (G) is elementary Abelian when p is odd, we obtain the trans- 

formation laws 

a~l ~ , - 4  (mod p) (n ~> 6), (42) 

ETa ___~$n-S (mod p) (n/> 5, n :~ 6), (43) 

e q l - - ~  s - 2 a ~  (rood p) (n = 6). (43') 

To obtain the transformation laws involving y and ~ we use (40). This gives 

But also (~,)o = (~_z)e = s~_-lUn~, 
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~ ~n-2 ~1 ~ ~ ~-~-~ ~i-~ 8 ~ ~12 (3~) (mod p). (44) and so 

We also deduce from (40) tha t  

(s Sl) ~ - :+v+# c~ - - o n . _  1 �9 I. 

I t  follows tha t  the analogous formula in G holds, namely 

(~ ~)v = ~ §  (~). 

We transform this equation by 0 and substitute for each ~;  the left-hand side becomes 

"'" n-I "'" rL-1 I , 

and by  Theorem 2.15, Corollary 2 this is equal to (s~s~'+~') v. Hence we obtain 

I f  we substitute with (44) for ~ and, for p = 3, with (43) or (43') for ~ = ~, remembering 

tha t  for p = 3 ~ = ~ = 0, we obtain 

~ ) ~ - 2 ~ - ~ - 4 e ~ ,  ( ~ ) ( m o d  p). (45) 

(42)-(45) are the required transformation laws. The number  of types of groups of the 

kind considered is therefore equal to the number of classes of parameters,  where the para- 

meters (~, e, y, 5) and (~, ~, ~, $) belong to the ~ m e  class if and only if there exist numbers 

$, $i and ~11 with $~1 ~: 0 (rood p) such that  (42}-(45) hold. We determine this number by 

finding a standard set of parameters in each class. 

We consider first the case when 

[r~ (O), r~(G)] = y~_~(O), 

t ha t  is, when ~ ~ 0 (rood p), and this case arises only when p >~ 5, n ~> 6. In  (42) we may  

put  ~ = 1 and choose 7 h such tha t  a~h------1 (mod p), from which it follows tha t  in each 

class of parameters  there exists at  least one set in which ~ - -  1 (rood p). Therefore in each 

such class we may  consider the standard set to have ~ = 1, and for further reductions we 

only consider those sets in which ~ = 1. Thus by (42) 

and (43)-(45) reduce to 
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e ~  ( m o d p )  (n>~7); e ~ - - ~ - - 2 ~ 1  ( m o d p )  ( n = 6 ) ;  

5~ + ~ 1 ~  2~-6 (mod p); 7----~ "-~ (mod p). 

F o r  n > 6 we now argue in exac t l y  the  same way  with  e; in  al l  sets  in a given class 

e i ther  p d ivides  al l  the  e or  i t  d iv ides  none of them.  We consider  first  those  classes in 

which e ~ 0  (mod p), and  b y  p u t t i n g  ~ = e, ~1 = 0, we see t h a t  in each such class there  

exists  a t  leas t  one set  in which e = 1. Thus  we m a y  t ake  e = 1 in the  s t a n d a r d  set of each 

such class and  need only  consider  those  sets  in which e = 1. Thus  ~ ~ 1 (mod p), and  the  

t r a n s f o r m a t i o n  laws reduce to  

~6-~y~1 ( m o d p ) ;  ~ = ~  ( m o d p ) .  

I t  follows t h a t  y cannot  be a l t e red  wi th in  a class. I f  in any  class ~ ~ 0 (mod p), we choose 

a number  ~'  such t h a t  7~ '  - -  1 (mod p) and  p u t  ~1 = - ~ '6;  thus  the re  exists  a set in th is  

class hav ing  5 ~ 0  (mod p). I f  in a n y  class ~ ' ~ 0  (rood p), t h a n  6 cannot  be a l tered.  Thus  

we ob ta in  t he  2 p  - 1 s t a n d a r d  sets (1, 1, ~, 0) where  ~ = 1, 2 . . . . .  p - 1, and  (1, 1, 0, 6) 

where 6 = 0, 1 . . . . .  p - 1. 

I f  a = 1 b u t  e = 0, we observe t h a t  t h roughou t  the  sets of such a class e i ther  p d ivides  

or  i t  does not.  I n  the  l a t t e r  ease there  mus t  exis t  in each class a set wi th  6------0 (rood p), 

for we m a y  p u t  ~ = 1, ~1 = - 7 ' 5  as before. Wi th in  such a class 7 can be mul t ip l i ed  b y  

a n y  n u m b e r  of the  form ~n-2 wi th  ~ 0 (mod p), and  there  are  ( p - - 1 ) / ( n - 2 ,  p - 1 )  

res idue classes modu lo  p express ible  in th is  form, since the  number  of solut ions of the  

congruence ~-2__-- 1 (rood p) is (n - 2, p - 1). Hence  7 m a y  be reduced  to  one of (n - 2, 

p - 1) s t a n d a r d  forms, and  we ob t a in  th is  n u m b e r  of s t a n d a r d  sets of pa ramete rs .  W h e n  

~ 0  (mod p) a s imilar  a rgumen t  shows t h a t  ~ m a y  be reduced  to  one of (2n - 7, p - 1) 

s t a n d a r d  values  which are  not  divis ible  by  p or to  zero. Al toge the r  the  number  of Stan- 

d a r d  sets in which p does not  d iv ide  a is 

2 p + ( n - 2 ,  p - 1 )  + ( 2 n -  7, p -  1). 

I n  the  remain ing  cases s imilar  a rgumen t s  are  used and  t h e y  need only  be sketched.  

I f  ~ = 1 and  n = 6 we can make  e = 0 a n d  mus t  t hen  have  ~1 ~ 0 (mod p). I f  ~, ~ 0 (mod p), 

y can be assigned one of (4, p - l )  values,  and  so ~a__ 1 (mod p); 6 m a y  then  be chosen 

to  have  one of (p - 1)/(4,  p - l )  + 1 values,  a n d  so the  t o t a l  number  of s t a n d a r d  sets is 

p - 1 + (4, p - 1). I f  ~ , ~ 0  (rood p), 6 can' be ass igned one of 1 + (5, p - 1) values.  W e  

have  therefore  p roved  the  following. 

T H E O R E M  4.1. For  p > 3  the number o[ types o/metabelian groups G o/order p~ and 

class n - 1 in which 
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[r, (G), 73 (G)] = r . -~  (G) 

is 10 + ( 4 , 1 0 -  1) + (5, p -  1) i] n = 6  and 2 p +  ( n - 2 ,  10 -  1) + ( 2 n -  7, 10-  1) i] n >  6. 

W e  now consider the  case 

[r~ (G), 7~ (G)] =~ r . -~ (G), 

which arises when n ~> 5 a n d  p >~ 3. This  case is charac te r ized  b y  ~ = 0, e ~ 0 (rood p). 

F r o m  (43) and  (43') we see t h a t  we m a y  t a k e  e = 1 and  mus t  t hen  assume t h a t  ~ 1 ~ -~  -a 

(rood p). F o r  p > 3 we see f rom (45) t ha t ,  if p does no t  d iv ide  y, then  ~ m a y  be ass igned 

one of ( n -  2, p -  1) s t a n d a r d  values  and  from (44) t h a t  we m a y  t ake  5 = 0, whi ls t  if p 

d iv ides  7, t hen  ~} m a y  be assigned one of 1 + (2n - 6, p - 1) values.  F o r  p = 3 we m a y  

t ake  y = 0 and  mus t  then  have  ~ 1 ~ 0  (rood p) ;  ~ cannot  then  be a l te red  since ~ 2 ~  1 

(mod 3). 

T H E O R E M 4.2. For n ~ 5 and p > 2 the number o] types o] metabelian groups G of 

order p'~ and class n - 1 in which 

It1 (G), 7~(G)] = r . -1 (G) 

is 3 /or p =  3 and 1 -~ ( 2 n - 6 ,  p -  l) + ( n -  2, p - 1 )  for  10>3.  

F ina l ly  we consider  t he  case when ~l (6t) is Abel ian,  t h a t  is, when ~ ~ e ---- 0 (rood p) : 

this  arises when n i> 4 for all  10. I f  ~ is p r ime  to  10, then  ~ can be assigned one of (n - 2, 10 - 1) 

values  and  (~ can be chosen to  be zero. I f  p d iv ides  ~, t hen  t~ can be chosen to  be e i ther  

0 o r  1. 

T H E O R E M  4.3. For n >~ 4 the number o/ types o/ 10-groups o] maximal  dass o/order  

10n which lmssess an Abelian maximal  subgroup is 2 + (n - 2, p - 1). 

Theorem 4.3 was p roved  b y  W i m a n  [11]. The  number  of groups of order  105 and  

class 4 is b y  Theorems 4.2 and  4.3 3 + (4, 10 - 1) + 2(3, 10 - 1) for 10 > 3, and  this  coincides 

wi th  the  resul t  of Scbreier  [9]. Theorem 4.1 is in conflict  wi th  a resul t  of W i m a n  (see 

[12], page 344). 

Theorem 4.3 conta ins  the  wel l -known resul t  t h a t  the  number  of 2-groups of m a x i m a l  

class of order  2 n is 3 p rov ided  t h a t  n >~ 4. S imi la r ly  al l  3-groups of m a x i m a l  class m a y  

be de t e rmined  f rom Theorems 4.2 and  4.3. F o r  n >~ 5 there  exis t  3 groups  which  possess 

no Abe l ian  max ima l  subgroups :  thei r  defining re la t ions  are  (32)-{38) wi th  ~ = ~  = 0 ,  

fl = 1 and  (~ = 0, 1, 2. I f  n is even and  n >~ 4 there  exis t  4 groups wi th  an  Abel ian  m a x i m a l  

subgroup:  the i r  defining re la t ions  are  {32)-(38) wi th  ct =fl = ~ = 0, 7 = 1, 2 or ~ =fl = y = 0, 

(~ = 0, 1. I f  n is odd  and  n ~> 5 there  exis t  3 groups  wi th  an  Abel ian  m a x i m a l  subgroup :  

t h e i r  defining re la t ions  are  (32)-(38) wi th  ~ ~f l  = ~ = 0, 7 = 1 or ~ =f l  = 7 = 0, 5 = 0, 1. 

The  first  of these resul ts  is different  f rom t h a t  of W i m a n  [12]. 
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These  results  do not  enable us to  determine alt groups of order pe and  class 5 because 

not  all such groups are metabel ian.  Thus  let G be a non-metabe l ian  group of order p6 

and  class 5. We then  have  

1 < r~ (G) = It2 (G), r3 (G)] -<< r~ (G) 

b y  L e m m a  2.1: hence D,2(G),Ta(G)] =75(G). Thus  G does not  have  degree of commu-  

t a t i v i t y  greater  t h a n  0, and  so b y  Theorem 3.8 p > 3. Also the  eentraliser of ~4 (G) is a 

max ima l  subgroup different f rom 71 (G), and  so we m a y  choose s to be an  e lement  which 

belongs to  the  centraliser of 74(G) bu t  not  to 72(G). s 1 denotes as usual an element  of 

71(G) which does not  belong to 72(G), and  we define 

s 2 = [ s l , s ] ,  s 3 = [ s 2 ' s ] ,  s 4=[ s3 , s ] ,  s a = [ s  v s l ] .  (46) 

Then  s, and  7~+x (G) generate  75 (G) for i = 2, 3, 4, 5. B y  the  definit ion of s 

Is v s] = 1, (47) 

and  b y  L e m m a  2.9 [s~, s3] = s 5. (48) 

We  t rans form the  first  equat ion of (46) b y  s 2 and  obta in  

82 = [8~', 8 s'] = [S1181, S2] , 818, 82] ]. 

Since [81, s2] lies in 74(G) and  the  elements  of 74(G) commute  with s and  the  elements  

of 7s (G), this gives 

89 = [81, 8831] = [Sl, 831] 8 2 3 1 =  [83, 81] 82851 

b y  (1), (2) and  (48). Hence  [s~, sa]=s~  1. (49) 

Le t  us now pu t  ~ = s ,  81 = SlS~ and define ~2, sa, sa, ~5 b y  relations similar to (46). 

Then  s2 = 82 84 ~ 85 ~' 83 = S3' ~4 = 84' 85 = 85" 

Hence  [81, s2] = [sl s~, s2s~] = Is1, s2] s~ 2:, 

so t h a t  if Is1, s2] = s~ s~, then  [sl, s 2 ] -  s~ ~ - 2 :  - -  4 5 " 

Thus  by  sui tably  choosing $ we m a y  ensure t h a t  [sl, s~] = ~ .  We drop the  bars and  write 

[8~, 82] = 8~. (50)  

Final ly  by  Theorem 3.2 we m a y  write 

~ 0  p__ sf  -- s r.~, s" = s~, s~ = ss - s4 - s~ = 1. (51) 

(46)-(51) are therefore the  defining relations of G. 

7 -- 583801. Acla mathematica. 10O. Imprim4 le 25 octobre 1958. 
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To determine the types we shall adopt the same procedure as above. I t  will be seen 

tha t  this amounts to making a substitution 

8 " + 8 ,  81-">81,  

and finding what  conditions on ~ and sl are required to preserve each of the defining 

relations, apar t  from replacing the parameters;  we must  also find the relations between 

the old and the new parameters.  ~ and ~ are to be chosen to stand in the same relation 

to the characteristic subgroups of G as s and s 1 respectively. Hence we must  take 

�9 "" ~ ~2 " ' "  85 ~ ,  

where ~ is not divisible by  p. ~ ,  sa, s~, s~ are defined by relations similar to (46), and s o  

Thus the relation 

~2~s~ ~' (mod 73(G)) ; 

~4------s4 e ' '  (mod 75(G)); 

[~1, ~]  = ~  

---o~"' (mod (G))" 

s5 = s~ '~''. 

(mod 7s (G)) 

yields ~1------~* (mod p). (52) 

Similarly we must work out the relations 

~r = ~ ,  ~ = ~ .  

Now the group generated by  ~ and 72(G) is a regular p-group, since its order is p5 and 

p/> 5. Also 72 (G) is of exponent p, and so 

~P = 8 ~  = 8~5~. 

Also ~ = ~ = 8~ e' ' ' .  

Hence ~9. ~$~(~ (mod p), (53) 

and similarly ~s~l~)-- 7 (mod p). (54) 

There is one mord fact to be considered: the substitution must be so chosen that  

[ s l ,  ~2] = ~ ,  

and not merely that  this holds as a congruence modulo 75(G). However we may  ignore 

this because if this equation fails to be valid after the substitution made in reducing the 

parameters to a standard set, we may  make it true by  making a second substitution in 

which ~ = ~71 = 1 and all the ~f, ~j are zero except ~s- This will not affect the values of 

a, 7, ~ on account of the transformation laws (52)-(54). 
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To find the s tandard  sets of parameters  we consider first the case 

[~1 (G), ~ (G)] = 74 (G); 

this is characterized by  a ~ 0 (mod p). By  (52) we m a y  take  a = 1 and must  then assume 

tha~ r h _----~2 (rood p); (53) and (54) then become 

6 _ $ ~ ,  ~ = ? ~ s  (mod p) 

I f  p does not  divide ~, then  7 m a y  be reduced to one of (5, p - 1) s tandard  values, and  

we must  then assume tha t  ~5 ~ 1 (mod p). (~ m a y  then be assigned one of 1 § (p - 1 ) / (p  - l, 5) 

s tandard  values, and so altogether we obtain p - 1 + (p - 1, 5) s tandard  sets of para-  

meters. I f  ~, - -  0 (rood p), then ~ m a y  be assigned one of I + (p - l,  6) values. 

T H E 0 R E M 4.4. _h'or p > 3 the number o/types o] non-metabelian groups G o/order pe 

and class 5 in which 

[rl (a),  r2 (G)] = ~4 (a) 
is p + (p - -  1, 5) + ( p -  l ,  6). 

I n  the case [:Yl (G), ~ (G)] = Y5 (G), 

tha t  is, a ~ 0 (mod p), we proceed as follows. If  ~ is not  divisible by p, we may  suppose 

tha t  ~ = 1 by  (54) and must  then assume tha t  ~a~?l--1 (mod p). Hence ~ 4 ~ $  (mod p) 

and 5 can take  one of 1 + ( p - 1 ,  4) s tandard  values. I f  y------0 (mod p), then 5 can be 

assigned the value 0, 1 or a quadrat ic  non-residue modulo p by  (54). 

T H v. O R E M 4.5. For p > 3 the number o/types o/non-metabelian groups G o/order pe 

and class 5 in which 
[~I(G), r~(G)] = ~5(G) 

is 4 § ( p -  1, 4). 

F rom these results all groups of order p6 and class 5 can be determined and for p > 3 

the total  number  of them is 

2p  + 7 + 4 ( p -  1, 4) + 2 ( p -  l ,  5) + 2 ( p -  l,  6). 

The five classes into which these groups are divided in Theorems 4.1-4.5 are the five 

families into which they  fall in the sense of Hall [5]. Using the ideas of Hall 's  classifica- 

t ion theory  Easterfield [2] has determined all groups of order p6, and the above  results 

coincide with those of this author.  For  p = 2, 3 the groups of order p~ and class 5 are of 

course alrcady determined by Theorems 4.2, 4.3. 
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