ON A THEOREM OF DAVENPORT AND HEILBRONN

BY

B. J. BIRCH and H. DAVENPORT
Graduate College, Princeton, N.J. and University College, London

1. Let $\lambda_{1}, \ldots, \lambda_{5}$ be any 5 real numbers, not all of the same sign and none of them 0 . It was proved by Davenport and Heilbronn [7] that, for any $\varepsilon>0$, the inequality

$$
\begin{equation*}
\left|\lambda_{1} x_{1}^{2}+\cdots+\lambda_{5} x_{5}^{2}\right|<\varepsilon \tag{I}
\end{equation*}
$$

is soluble in integers x_{1}, \ldots, x_{5}, not all 0 . The mention of ε here is in reality superfluous, for if the solubility of

$$
\begin{equation*}
\left|\lambda_{1} x_{1}^{2}+\cdots+\lambda_{5} x_{5}^{2}\right|<1 \tag{2}
\end{equation*}
$$

is proved for all $\lambda_{1}, \ldots, \lambda_{5}$, then the solubility of (1) for any $\varepsilon>0$ follows, on applying (2) with λ_{j} replaced by $\varepsilon^{-1} \lambda_{j}$.

Our object in the present paper is to make this result more precise by giving an estimate for a solution of (2) in terms of $\lambda_{1}, \ldots, \lambda_{5}$. It would not be easy to do this with much precision by following the original line of argument, which depended on considering the continued fraction development of one of the ratios $\lambda_{i} / \lambda_{j}$.

The result we shall prove is as follows.
Theorem. For $\delta>0$ there exists C_{δ} with the following property. For any real $\lambda_{1}, \ldots, \lambda_{5}$, not all of the same sign and all of absolute value 1 at least, there exist integers x_{1}, \ldots, x_{5} which satisfy both (2) and

$$
\begin{equation*}
0<\left|\lambda_{1}\right| x_{1}^{2}+\cdots+\left|\lambda_{5}\right| x_{5}^{2}<C_{\delta}\left|\lambda_{1} \ldots \lambda_{5}\right|^{1+\delta} . \tag{3}
\end{equation*}
$$

In another paper [1] we have applied this result to general indefinite quadratic forms. We have proved that any real indefinite quadratic form in 21 or more variables assumes values arbitrarily near to 0 , provided that when the form is expressed
as a sum of squares of real linear forms with positive and negative signs, there are either not more than 4 positive signs or not more than 4 negative signs.

An important part in the proof of the present theorem is played by a result of Cassels [3] which gives an estimate for the magnitude of a solution of a homogeneous quadratic equation with integral coefficients. We use Cassels's result in the modified form which we have published recently [2]; this modified form is essentially the same as the special case of our present theorem when $\lambda_{1}, \ldots, \lambda_{5}$ are integers, but without the parameter δ. It is remarkable that the result obtained here when $\lambda_{1}, \ldots, \lambda_{5}$ are real is almost as good as that known for the special case when $\lambda_{1}, \ldots, \lambda_{5}$ are integers.

It may be of interest to remark that the use of Cassels's result is not, in principle, essential. The special case of the theorem in which $\lambda_{1}, \ldots, \lambda_{5}$ are integers could be proved analytically, and we could then use this in place of Cassels's result in the present work.

As a corollary to the theorem, we note that if $\lambda_{1}, \ldots, \lambda_{5}$ are fixed, and ε is an arbitrarily small positive number, there exist solutions of (1) with x_{1}, \ldots, x_{5} all $O\left(\varepsilon^{-2-\delta}\right)$ for any fixed $\delta>0$.
2. Throughout the paper $\lambda_{1}, \ldots, \lambda_{5}$ are real, not all of the same sign, and all of absolute value 1 at least. Let

$$
\begin{equation*}
\Lambda=\max \left|\lambda_{j}\right| . \tag{4}
\end{equation*}
$$

Let P be a positive number with the property that the inequality (2) has no solution in integers x_{1}, \ldots, x_{5} satisfying

$$
\begin{equation*}
0<\left|\lambda_{1}\right| x_{1}^{2}+\cdots+\left|\lambda_{5}\right| x_{5}^{2} \leqslant 500 P^{2} \tag{5}
\end{equation*}
$$

We shall ultimately deduce a contradiction when P is taken to be of the form $C_{\delta}\left|\lambda_{1} \ldots \lambda_{5}\right|^{(\alpha+\delta) / 2}$, with a suitable (large) C_{δ}, and this will prove the theorem. But for the time being (until Lemma 6) we make only the weaker supposition that $P \Lambda^{-\frac{1}{2}}$ is large (i.e. greater than a suitable absolute constant). This supposition is plainly essential from the nature of (5).

We define exponential sums $S_{1}(\alpha), \ldots, S_{5}(\alpha)$ by

$$
\begin{equation*}
S_{j}(\alpha)=\sum_{P<\left|\lambda_{i}\right| \mid x_{j}<10 P} e\left(\alpha \lambda_{j} x_{j}^{2}\right), \tag{6}
\end{equation*}
$$

where $e(\theta)=e^{2 \pi t}$.
Lemma 1. There exists, for any positive integer n, a real function $K(\alpha)$ of the positive variable α, satisfying

$$
\begin{equation*}
|K(\alpha)|<C(n) \min \left(1, \alpha^{-n-1}\right) \tag{7}
\end{equation*}
$$

with the following property. Let

$$
\begin{equation*}
\psi(\theta)=\Re \int_{0}^{\infty} e(\theta \alpha) K(\alpha) d \alpha \tag{8}
\end{equation*}
$$

Then

$$
\begin{align*}
0 \leqslant \psi(\theta) \leqslant 1 & \text { for all real } \theta \tag{9}\\
\psi(\theta)=0 & \text { for }|\theta| \geqslant 1 \tag{10}\\
\psi(\theta)=1 & \text { for }|\theta| \leqslant \frac{1}{3} \tag{11}
\end{align*}
$$

For a proof, see Lemma 1 of a paper by Davenport [4].
Corollary. We have

$$
\begin{equation*}
\mathfrak{\Re} \int_{0}^{\infty} S_{1}(\alpha) \ldots S_{5}(\alpha) K(\alpha) d \alpha=0 \tag{12}
\end{equation*}
$$

Proof. By (8) and (6), the left hand side is

$$
\sum_{x_{1}} \cdots \sum_{x_{5}} \psi\left(\lambda_{1} x_{1}^{2}+\cdots+\lambda_{5} x_{5}^{2}\right)
$$

where the summations are over the intervals occurring in the sums (6). By (10) and the hypothesis that (2) has no solutions satisfying (5), the sum is 0 .
3. We define $I(\alpha)$ by

$$
\begin{equation*}
I(\alpha)=\int_{P}^{10 P} e\left(\alpha \xi^{2}\right) d \xi \tag{13}
\end{equation*}
$$

Lemma 2. For

$$
\begin{equation*}
0<\alpha<\frac{1}{40} P^{-1}\left|\lambda_{j}\right|^{-\frac{1}{1}} \tag{14}
\end{equation*}
$$

we have

$$
\begin{equation*}
S_{j}(\alpha)=\left|\lambda_{j}\right|^{-\frac{1}{2}} I(\pm \alpha)+O(1) \tag{15}
\end{equation*}
$$

where the \pm sign is the sign of λ_{j}.
Proof. This is a special case of van der Corput's lemma ([8], Chapter I, Lemma 13). If $f(x)=\alpha\left|\lambda_{j}\right| x^{2}$, then for $P\left|\lambda_{j}\right|^{-\frac{1}{2}}<x<10 P\left|\lambda_{j}\right|^{-1}$ we have

$$
f^{\prime \prime}(x)>0, \quad 0<f^{\prime}(x)<\frac{1}{2}
$$

by (14). Hence
18-583802. Acta mathematica. 100. Imprimé le 31 décembre 1958.

$$
S_{j}(\alpha)=\int_{P\left|\lambda_{j}\right|^{-\xi}}^{10 P\left|x_{j}\right|-1} e\left(\alpha \lambda_{j} \xi^{2}\right) d \xi+O(1)
$$

and (15) follows on changing the variable of integration.
Lemma 3. For $\alpha>0$ we have (${ }^{1}$)

$$
\begin{equation*}
|I(\pm \alpha)|<\min \left(P, P^{-1} \alpha^{-1}\right) \tag{16}
\end{equation*}
$$

Proof. The estimate P is obvious from the definition (13). The second estimate follows from the alternative representation

$$
I(\alpha)=\frac{1}{2} \int_{P^{2}}^{100 P^{2}} \eta^{-\frac{1}{2}} e(\alpha \eta) d \eta
$$

and the second mean value theorem.
Lemma 4. We have

$$
\begin{equation*}
\Re \int_{0}^{\frac{1}{40} P^{P^{1}}} S_{1}(\alpha) \ldots S_{5}(\alpha) K(\alpha) d \alpha=M+R \tag{17}
\end{equation*}
$$

where

$$
\begin{equation*}
M>\frac{1}{6} P^{3}\left|\lambda_{1} \ldots \lambda_{5}\right|^{-\frac{1}{2}}, \quad|R|<P^{2} \Lambda^{\frac{1}{5}}\left|\lambda_{1} \ldots \lambda_{5}\right|^{-\frac{1}{2}} \tag{18}
\end{equation*}
$$

Proof. In the interval of integration, the condition (14) of Lemma 2 is satisfied for $j=1, \ldots, 5$, and so (15) holds for $j=1, \ldots, 5$. By (16),

$$
\left|\lambda_{f}\right|^{-\frac{1}{2}}|I(\pm \alpha)|<\left|\lambda_{f}\right|^{-1} \min \left(P, P^{-1} \alpha^{-1}\right)
$$

and the right hand side is >1 for all α in the range of integration. Hence (15) gives

$$
\left|\prod_{j=1}^{5} S_{j}(\alpha)-\left|\lambda_{1} \ldots \lambda_{5}\right|^{-\frac{1}{2}} \prod_{j=1}^{5} I(\pm \alpha)\right|<\left(\sum\left|\lambda_{2} \ldots \lambda_{5}\right|^{-t}\right) \min \left(P^{4}, P^{-4} \alpha^{-4}\right)
$$

where the summation is over all selections of four suffixes from $1, \ldots, 5$. Obviously

$$
\sum\left|\lambda_{2} \ldots \lambda_{5}\right|^{-t}<\Lambda^{\frac{1}{t}}\left|\lambda_{1} \ldots \lambda_{5}\right|^{-\frac{1}{2}}
$$

(${ }^{1}$) The notation < indicates an inequality with an unspecified constant factor. In general, these constants are absolute until Lemma 7, after which they may depend $\rho \mathrm{n} \delta$. There is an obvious exception when an unspecified constant occurs in a hypothesis, as in Lemma 9.
by (4). Hence

$$
\begin{aligned}
\int_{0}^{\frac{1}{40} P^{-1} \Lambda^{-\frac{1}{2}}} S_{1}(\alpha) \ldots S_{5}(\alpha) K(\alpha) d \alpha= & \left|\lambda_{1} \ldots \lambda_{5}\right|^{-\frac{1}{40} P^{-1}} \int_{0}^{\Lambda^{-t}} I(\pm \alpha) \ldots I(\pm \alpha) K(\alpha) d \alpha \\
& +O\left\{\Lambda^{ \pm}\left|\lambda_{1} \ldots \lambda_{5}\right|^{-\frac{1}{2}} \int_{0}^{\infty} \min \left(P^{4}, P^{-4} \alpha^{-4}\right) d \alpha\right\}
\end{aligned}
$$

and the last error term is

$$
O\left(\Lambda^{\ddagger}\left|\lambda_{1} \ldots \lambda_{5}\right|^{-\frac{1}{2}} P^{2}\right)
$$

and can be absorbed in R by (18). Thus it suffices to consider
where the signs are those of $\lambda_{1}, \ldots, \lambda_{5}$.
The error introduced by extending the integral to ∞ is

$$
\begin{aligned}
& <\left|\lambda_{1} \ldots \lambda_{5}\right|^{-\frac{1}{2}} \int_{\frac{1}{40} P^{-1} \Lambda^{-\frac{1}{2}}}^{\infty} P^{-5} x^{-5} d \alpha \\
& <\left|\lambda_{1} \ldots \lambda_{5}\right|^{-\frac{3}{2}} P^{-5} P^{4} \Lambda^{2} \\
& <P^{2} \Lambda^{t}\left|\lambda_{1} \ldots \lambda_{5}\right|^{-\frac{1}{2}}
\end{aligned}
$$

since $P>\Lambda^{\text {. }}$.
It remains to give a lower bound for

$$
\begin{equation*}
M=\Re\left|\lambda_{1} \ldots \lambda_{5}\right|^{- \pm} \int_{0}^{\infty} I(\pm \alpha) \ldots I(\pm \alpha) K(\alpha) d \alpha \tag{19}
\end{equation*}
$$

By (13) and (8), we have

$$
\begin{aligned}
M & =\left|\lambda_{1} \ldots \lambda_{5}\right|^{-1} \int_{P}^{10 P} \ldots \int_{P}^{10 P} \psi\left(\pm \xi_{1}^{2} \pm \cdots \pm \xi_{5}^{2}\right) d \xi_{1} \ldots d \xi_{5} \\
& =2^{-5}\left|\lambda_{1} \ldots \lambda_{5}\right|^{-\frac{1}{5}} \int_{P^{2}}^{100 P^{2}} \ldots \int_{P 2}^{100 p_{2}} \psi\left(\pm \eta_{1} \pm \ldots \pm \eta_{5}\right)\left(\eta_{1} \ldots \eta_{5}\right)^{-\frac{1}{2}} d \eta_{1} \ldots d \eta_{5}
\end{aligned}
$$

We can suppose without loss of generality that the sign attached to η_{1} is + and that attached to η_{2} is - . The region defined by

$$
\begin{gathered}
P^{2}<\eta_{3}<4 P^{2}, \quad P^{2}<\eta_{4}<4 P^{2}, \quad P^{2}<\eta_{5}<4 P^{2}, \quad 14 F^{2}<\eta_{2}<87 P^{2} \\
\left|\eta_{1}-\eta_{2} \pm \eta_{3} \pm \eta_{4} \pm \eta_{5}\right|<\frac{1}{3}
\end{gathered}
$$

is contained in the region of integration. Hence, by (9) and (11),

$$
M>2^{-5}\left|\lambda_{1} \ldots \lambda_{5}\right|^{-\frac{1}{2}} \frac{2}{3}\left(100 P^{2}\right)^{-\frac{1}{2}} \int_{14 P^{2}}^{87 P_{2}} \eta_{2}^{-\frac{1}{2}} d \eta_{2}\left\{\int_{P^{2}}^{4 P_{1}^{2}} \eta^{-\frac{1}{2}} d \eta\right\}^{3}>\frac{1}{6} P^{3}\left|\lambda_{1} \ldots \lambda_{5}\right|^{-\frac{5}{5}}
$$

This completes the proof.
4. Lemma 5. We have

$$
\begin{equation*}
\int_{0}^{\left|\lambda_{j}\right|}\left|S_{j}(\alpha)\right|^{4} d \alpha<\left|\lambda_{j}\right|^{-2} P^{2} \log P \tag{20}
\end{equation*}
$$

Proof. Putting $\alpha=\left|\lambda_{1}\right|^{-1} \theta$, we see that the integral on the left is

$$
\left|\lambda_{j}\right|^{-1} \int_{0}^{1}\left|\sum_{x} e\left(\theta x^{2}\right)\right|^{4} d \theta
$$

where the summation is over

$$
\begin{equation*}
P<\left|\lambda_{j}\right| x<10 P . \tag{21}
\end{equation*}
$$

Now

$$
\int_{0}^{1}\left|\sum_{x} e\left(\theta x^{2}\right)\right|^{4} d \theta
$$

is the number of solutions of $x^{2}+y^{2}=z^{2}+w^{2}$, where x, y, z, w all range over the interval (21). This number does not exceed

$$
\begin{equation*}
\sum_{n<N} r^{2}(n), \tag{22}
\end{equation*}
$$

where $r(n)$ is the number of representations of n as a sum of two integral squares, and

$$
N=200 P^{2}\left|\lambda_{j}\right|^{-1}
$$

It is well known that the sum (22) is $<N \log N$, and the estimate (20) follows from this.

$$
\begin{array}{ll}
\text { Let } & \lambda=\min \left|\lambda_{j}\right| \\
& \Pi=\prod_{j-1}^{5}\left|\lambda_{j}\right| \tag{24}
\end{array}
$$

Lemma 6. Provided $P>\Pi^{\ddagger}$, we have

$$
\begin{equation*}
\int_{\frac{1}{40} P^{-1} \Lambda^{-\frac{1}{4}}}^{\frac{1}{40} P^{-1}}\left|S_{1}(\alpha) \ldots S_{5}(\alpha)\right| d \alpha<\Pi^{-\frac{1}{2}} P^{2}(\log P) \Lambda^{\frac{1}{2}} . \tag{25}
\end{equation*}
$$

Proof. We suppose, during this proof only, that $\left|\lambda_{1}\right| \leqslant\left|\lambda_{2}\right| \leqslant \cdots \leqslant\left|\lambda_{5}\right|$, so that $\Lambda=\left|\lambda_{5}\right|$ and $\lambda=\left|\lambda_{1}\right|$. We split up the interval of integration into the 4 intervals

$$
\begin{equation*}
I_{k}: \frac{1}{40} P^{-1}\left|\lambda_{k}\right|^{-\frac{1}{2}}<\alpha<\frac{1}{40} P^{-1}\left|\lambda_{k-1}\right|^{-\frac{1}{2}} \tag{26}
\end{equation*}
$$

where $k=2, \ldots, 5$, In (26), the condition (14) of Lemma 2 is satisfied provided $j \leqslant k-1$. Thus, for α in I_{k}, (15) and (16) give

$$
\begin{equation*}
\left|S_{f}(\alpha)\right|<\left|\lambda_{f}\right|^{-\frac{1}{2}} P^{-1} \alpha^{-1}+1<\left|\lambda_{f}\right|^{-1} P^{-1} \alpha^{-1} \tag{27}
\end{equation*}
$$

for $j \leqslant k-1$. For $j \geqslant k$ we use merely the trivial estimate $\left|S_{1}(\alpha)\right|<P\left|\lambda_{f}\right|^{-t}$. Hence, in I_{k},

$$
\left|S_{1}(\alpha) \ldots S_{5}(\alpha)\right|<\Pi^{-\frac{1}{2}}\left(P^{-1} \alpha^{-1}\right)^{k-1} P^{5-(k-1)}
$$

Thus, provided $k \geqslant 3$,

$$
\begin{aligned}
& \int_{i_{k}}\left|S_{1}(\alpha) \ldots S_{5}(\alpha)\right| d \alpha<\Pi^{-\frac{1}{2}} P^{6-2(k-1)}\left(P^{-1}\left|\lambda_{k}\right|^{-\frac{1}{2}}\right)^{-k+2} \\
&=\Pi^{-\frac{1}{2}} P^{s}\left(P^{-1}\left|\lambda_{k}\right|^{\sharp}\right)^{k-2}<\Pi^{-\ddagger} P^{8} P^{-1} \Lambda^{\ddagger} .
\end{aligned}
$$

There remains the case $k=2$, corresponding to the interval I_{2}. Here (27) is still valid for $j=1$, and implies

$$
\begin{equation*}
\left|S_{1}(\alpha)\right| \leqslant\left|\lambda_{1}\right|^{-\frac{1}{2}}\left|\lambda_{2}\right|^{1} . \tag{28}
\end{equation*}
$$

For the remaining factors we use Lemma 5 . For $j=2,3,4$ we have

$$
\left|\lambda_{j}\right|^{-1} \geqslant\left|\lambda_{j} \lambda_{5}\right|^{-\frac{1}{2}} \geqslant \Pi^{-\frac{1}{2}}>P^{-1}>\frac{1}{40} P^{-1}\left|\lambda_{1}\right|^{-\frac{1}{3}} .
$$

Hence I_{2} is contained in the interval $0<\alpha<\left|\lambda_{j}\right|^{-1}$ of Lemma 5, and

$$
\begin{equation*}
\int_{I_{2}}\left|S_{j}(\alpha)\right|^{4} d \alpha<\left|\lambda_{j}\right|^{-2} P^{2} \log P \tag{29}
\end{equation*}
$$

For $j=5$ this argument fails, but as $S_{5}(\alpha)$ is periodic with period $\left|\lambda_{5}\right|^{-1}$, we can say that

$$
\begin{equation*}
\int_{I_{2}}\left|S_{5}(\alpha)\right|^{4} d \alpha<\left|\lambda_{5}\right|^{-2} P^{2}(\log P)\left\{1+P^{-1}\left|\lambda_{1}\right|^{-\frac{1}{2}}\left|\lambda_{5}\right|\right\} \tag{30}
\end{equation*}
$$

The estimate (29) for $j=2,3,4$ and the estimate (30) imply, by Hölder's inequality, that

$$
\int_{I_{2}}\left|S_{2}(\alpha) \ldots S_{5}(\alpha)\right| d \alpha<\left|\lambda_{2} \ldots \lambda_{5}\right|^{-\frac{1}{2}} P^{2}(\log P)\left\{1+P^{-1}\left|\lambda_{1}\right|^{-\frac{1}{2}}\left|\lambda_{5}\right|\right\}^{\frac{1}{2}}
$$

In view of (28), we obtain

$$
\begin{aligned}
\int_{I_{1}}\left|S_{1}(\alpha) \ldots S_{5}(\alpha)\right| d \alpha & <\Pi^{-\frac{1}{2}} P^{2}(\log P)\left|\lambda_{2}\right|^{\frac{1}{2}}\left\{1+P^{-1}\left|\lambda_{1}\right|^{-\frac{1}{2}}\left|\lambda_{5}\right|\right\}^{\ddagger} \\
& <\Pi^{-\frac{1}{2}} P^{2}(\log P) \Lambda^{\ddagger}+\Pi^{-\frac{1}{2}} P^{z_{14}}(\log P)\left|\lambda_{2}\right|^{\dagger}\left|\lambda_{1}\right|^{-\frac{1}{t}}\left|\lambda_{5}\right|^{\frac{1}{2}}
\end{aligned}
$$

Now

$$
\left|\lambda_{2}\right|^{t}\left|\lambda_{1}\right|^{-t}\left|\lambda_{5}\right|^{t} \leqslant \Pi^{t}\left|\lambda_{2}\right|^{t}\left|\lambda_{1}\right|^{-t}\left|\lambda_{5}\right|^{t} \leqslant \Pi^{t} \Lambda^{t}<P^{t} \Lambda^{t} .
$$

This gives the estimate (25), and the proof of Lemma 6 is complete.
5. Lemma 7. For $\delta>0$ there exists $C_{\delta}>0$ such that if $P>C_{\delta} \Pi^{\delta+\ddagger}$ then

$$
\begin{equation*}
\int_{\frac{1}{40} P^{-1_{\lambda}-t}}^{P \delta}\left|S_{1}(\alpha) \ldots S_{5}(\alpha)\right| d \alpha>\frac{1}{7} P^{3} \Pi^{-\frac{1}{2}} . \tag{31}
\end{equation*}
$$

Proof. By the Corollary to Lemma 1 and by Lemmas 4 and 6, we have

$$
M+R+R^{\prime}+R^{\prime \prime}+R^{\prime \prime \prime}=0
$$

where

$$
|R|+\left|R^{\prime}\right|<\Pi^{-\frac{1}{2}} P^{2}(\log P) \Lambda^{z}
$$

and

$$
\begin{aligned}
& R^{\prime \prime}=\int_{\frac{1}{40} P^{-1} \lambda^{-}}^{p^{\delta}} S_{1}(\alpha) \ldots S_{5}(\alpha) K(\alpha) d \alpha \\
& R^{\prime \prime \prime}=\int_{P^{\delta}}^{\infty} S_{1}(\alpha) \ldots S_{5}(\alpha) K(\alpha) d \alpha .
\end{aligned}
$$

By (7) and the trivial estimate $\left|S_{f}(\alpha)\right|<P\left|\lambda_{j}\right|^{-\frac{1}{2}}$ we have

$$
\left|R^{\prime \prime \prime}\right|<P^{5} \Pi^{-\frac{1}{2}} C(n) P^{-n d} .
$$

Choosing $n=\left[5 \delta^{-1}\right]+1$, we get

$$
\left|R^{\prime \prime \prime}\right|<C_{1}(\delta) \Pi^{-1}
$$

Hence

$$
\left|M+R^{\prime \prime}\right|<\Pi^{-\ddagger} P^{2}(\log P) \Lambda^{\ddagger}+C_{1}(\delta) \Pi^{-\ddagger}<P^{2} \log P+C_{1}(\delta) \Pi^{-\ddagger}
$$

In view of (18), the desired result, namely

$$
\left|R^{\prime \prime}\right|>\frac{1}{7} P^{3} \Pi^{-\frac{1}{2}}
$$

will hold provided that both

$$
\frac{P}{\log P}>C_{2} \Pi^{1} \quad \text { and } P^{3}>C_{2}(\delta)
$$

for a suitable absolute constant C_{2} and a suitable positive $C_{2}(\delta)$. Both these conditions are satisfied if $P>C_{\delta} \Pi^{\delta+t}$, with a suitable C_{δ}.

From now onwards we shall be concerned solely with values of α in the interval

$$
\begin{equation*}
\mathcal{J}: \frac{1}{40} P^{-1} \lambda^{-1}<\alpha<P^{d} \tag{32}
\end{equation*}
$$

6. For any integers a, q with $q>0$ and $(a, q)=1$ we define

$$
\begin{equation*}
S_{a, q}=\sum_{x=1}^{Q} e\left(a x^{2} / q\right) \tag{33}
\end{equation*}
$$

and for any integer ν we write

$$
\begin{equation*}
S_{a, q, p}=\sum_{x=1}^{Q} e\left(\left(a x^{2}+v x\right) / q\right) . \tag{34}
\end{equation*}
$$

Lemma 8. We have, for $(a, q)=1$,

$$
\begin{equation*}
\left|S_{a, q}\right|<q^{\frac{2}{2}}, \quad\left|S_{a, ~, ~}\right|<q^{\psi} . \tag{35}
\end{equation*}
$$

Proof. The first result is well known ([8], Chapter 2, Lemma 6), and the second follows from it; for instance, if q is odd then

$$
a x^{2}+v x \equiv a(x+\nu b)^{2}-a b^{2} v^{2}
$$

for $2 a b \equiv 1(\bmod q)$, so we have $\quad\left|S_{a, q, ~}\right|=\left|S_{a, q}\right|$.
The following approximation to $S(\alpha)$ is well known in principle. (1)
Lemma 9. Suppose that $A>1$ and that α is a real number satisfying

$$
\begin{equation*}
\alpha=\frac{a}{q}+\beta \tag{36}
\end{equation*}
$$

(${ }^{1}$) For the corresponding results for higher powers instead of squares, see [5] and [6].
where

$$
\begin{equation*}
(a, q)=1, \quad 0<q<A, \quad 40|\beta|<q^{-1} A^{-1} . \tag{37}
\end{equation*}
$$

Then

$$
\begin{equation*}
\sum_{A<x<10 A} e\left(\alpha x^{2}\right)=q^{-1} S_{a . Q} \int_{A}^{10 A} e\left(\beta \xi^{2}\right) d \xi+O\left(q^{1} \log 2 q\right) \tag{38}
\end{equation*}
$$

Proof. It will be convenient to suppose that neither A nor $10 A$ is near an integer; this supposition is permissible since the sum and the integral in (38) vary only by an amount $O(1)$ if α is varied by an amount $O(1)$. Strictly speaking, such a variation may disturb the condition $A>I$ or the condition (37), but these conditions are not used with any precision in the proof.

We first dissect the sum according to residue classes modulo q :

$$
\begin{equation*}
\sum_{A<x<10 A} e\left(\alpha x^{2}\right)=\sum_{z=1}^{q} e\left(a z^{2} / q\right) \sum_{\substack{A<x<10 A \\ x=z(\bmod q)}} e\left(\beta x^{2}\right) . \tag{39}
\end{equation*}
$$

The inner sum is

$$
\sum_{(A-z) / Q<y<(10 A-z) / Q} e\left(\beta(q y+z)^{2}\right),
$$

and by Poisson's summation formula this is

$$
\int_{(A-z) /(}^{(10 A-z) /(} e\left(\beta(q \eta+z)^{2}\right) d \eta+\sum_{\nu}^{\prime} \int_{(A-z) / \varnothing}^{(10 A-z) /(q} e\left(\beta(q \eta+z)^{2}+\nu \eta\right) d \eta
$$

where Σ^{\prime} is over $\nu \neq 0$ with the terms $\nu,-\nu$ taken together. Putting $q \eta+z=\xi$, and substituting in (39), we obtain
where

$$
\sum_{A<x<10 A} e\left(\alpha x^{2}\right)=q^{-1} S_{a . q} \int_{A}^{10 A} e\left(\beta \xi^{2}\right) d \xi+E
$$

$$
\begin{equation*}
E=q^{-1} \sum_{v}^{\prime} S_{a, q,-} \int_{A}^{i 0 A} e\left(\beta \xi^{2}+v \xi / q\right) d \xi \tag{40}
\end{equation*}
$$

Suppose for simplicity that $\beta>0$. We have

$$
\beta \xi^{2}+\nu \xi / q=\beta\left(\xi+\frac{v}{2 q \beta}\right)^{2}-\frac{\nu^{2}}{4 \beta q^{2}}
$$

and we note that

$$
\frac{|\nu|}{2 q \beta}>20 \mathrm{~A}
$$

by (37). This ensures that $\xi+\nu /(2 q \beta)$ does not vanish even when ν is negative, so putting $\{\xi+\nu /(2 q \beta)\}=\beta^{-1} \zeta$, the integral in (40) becomes

$$
e\left(-\frac{v^{2}}{4 \beta q^{2}}\right) \frac{1}{2} \beta^{-\frac{z}{\xi}} \int_{\zeta}^{\zeta_{2}}(\operatorname{sgn} \nu) \zeta^{-\frac{1}{2}} e(\zeta) d \zeta
$$

where

$$
\zeta_{1}=\beta\left(A+\frac{v}{2 q \beta}\right)^{2}, \quad \zeta_{2}=\beta\left(10 A+\frac{v}{2 q \beta}\right)^{2} .
$$

Since $\zeta_{1}>0$ and $\zeta_{2}>0$, integration by parts gives

$$
\begin{aligned}
\int_{\zeta_{2}}^{\zeta_{0}} \zeta^{-\frac{1}{2}} e(\zeta) d \zeta= & \frac{1}{2 \pi i}\left\{\zeta_{2}^{-\frac{1}{2}} e\left(\zeta_{2}\right)-\zeta_{1}^{-\frac{1}{2}} e\left(\zeta_{1}\right)\right\}+O\left(\zeta_{1}^{-\frac{1}{2}}\right)+O\left(\zeta_{2}^{-\frac{1}{2}}\right) \\
= & \frac{2 q \beta^{\frac{2}{2}}}{2 \pi i}(\operatorname{sgn} v)\left\{\frac{1}{\nu+20 A q \beta} e\left(100 A^{2} \beta+10 A v / q\right)\right. \\
& \left.\quad-\frac{1}{v+2 A q \beta} e\left(A^{2} \beta+A v / q\right)\right\} e\left(v^{2} /\left(4 \beta q^{2}\right)\right)+O\left(q^{3} \beta^{i}|v|^{-3}\right) .
\end{aligned}
$$

Substituting for the integral in (40), we obtain

$$
\begin{aligned}
E= & \frac{1}{2 \pi i} \sum_{\nu}^{\prime} S_{a .,-v} \frac{1}{v+20 A q \beta} e\left(100 A^{2} \beta+10 A v / q\right) \\
& -\frac{1}{2 \pi i} \sum_{\nu}^{\prime} S_{a . q,-\nu} \frac{1}{v+2 A q \beta} e\left(A^{2} \beta+A v / q\right)+O\left(\sum_{\nu}^{\prime}\left|S_{a . q,-\nu}\right| q^{2} \beta|v|^{-3}\right)
\end{aligned}
$$

By (35) and (37), the last error term is

$$
O\left(q^{2+\frac{1}{2}} \beta\right)=O\left(q^{\frac{1}{2}}\right) .
$$

It remains to consider the two sums over ν, and as they are essentially the same it will suffice to treat the second.

We have

$$
\sum_{\mid \nu \leqslant \leqslant Q^{2}}^{\prime}\left|S_{\alpha . q_{0}-\nu}\right||v+2 A q \beta|^{-1}<q^{ \pm} \sum_{|v| \leqslant q^{2}}^{\prime}|\nu|^{-1}<q^{+} \log 2 q .
$$

The sum over $|\nu|>q^{2}$ can be written as

$$
\begin{equation*}
\sum_{z=1}^{q} e\left(a z^{2} / q\right) \sum_{|v|>c^{2}}^{\prime} \frac{1}{v+2 A q \beta} e(v(A-z) / q), \tag{41}
\end{equation*}
$$

apart from a factor of absolute value 1. The inner sum here, by Abel's lemma, has absolute value

$$
<q^{-2}\|(A-z) / q\|^{-1}
$$

where $\|\theta\|$ denotes the difference between θ and the nearest integer, taken positively. As we supposed that A was not near to an integer, we have

$$
\|(A-z) / q\|>q^{-1} .
$$

Hence the double sum in (41) is $O(1)$, and we have

$$
|E|<q^{\frac{1}{2}} \log 2 q .
$$

This completes the proof of (38).
Corollary. Suppose that

$$
\begin{equation*}
\lambda_{j} \alpha=\frac{a_{f}}{q_{j}}+\beta_{j} \tag{42}
\end{equation*}
$$

where

$$
\begin{equation*}
\left(a_{j}, q_{j}\right)=1, \quad 0<q_{j}<P\left|\lambda_{j}\right|^{-1}, \quad 40\left|\beta_{j}\right|<q_{j}^{-1} P^{-1}\left|\lambda_{j}\right|^{\mid} . \tag{43}
\end{equation*}
$$

Then

$$
\begin{equation*}
\left|S_{j}(\alpha)\right|<q_{j}^{-\frac{z}{z}}(\log P) \min \left(P\left|\lambda_{f}\right|^{-\frac{1}{2}}, P^{-1}\left|\lambda_{j}\right|^{\mid}\left|\beta_{j}\right|^{-1}\right) . \tag{44}
\end{equation*}
$$

Proof. The hypotheses of Lemma 9 are satisfied when $A=P\left|\lambda_{j}\right|^{-1}, a=a_{j}, q=q$, and α is replaced by $\lambda_{j} \alpha$. The sum on the left of (38) then becomes $S_{j}(\alpha)$. Hence (${ }^{1}$)

$$
S_{f}(\alpha)=q_{j}^{-1} S_{\alpha j, q_{j}} \int_{P\left|\alpha_{j}\right|^{-\xi}}^{\left.10 P\right|_{j} \mid} e\left(\beta_{j} \xi^{2}\right) d \xi+O\left(q_{j}^{\xi} \log 2 q_{j}\right) .
$$

Using (35) and estimating the integral as in the proof of Lemma 3, we obtain

$$
\left|S_{j}(\alpha)\right|<q_{j}^{-\frac{1}{j}} \min \left(P\left|\lambda_{j}\right|^{-\frac{1}{2}},\left.P^{-1}\left|\lambda_{j}\right|\right|^{+}\left|\beta_{j}\right|^{-1}\right)+q_{j}^{\ddagger} \log 2 q_{j} .
$$

Since

$$
q_{j}^{\ddagger}<q_{j}^{-\ddagger} P\left|\lambda_{j}\right|^{-\ddagger} \quad \text { and } \quad q j<q_{j}^{-i} P^{-1}\left|\lambda_{j}\right|^{-}\left|\beta_{j}\right|^{-1}
$$

by (43), the result follows.
7. For any α in the interval (32), and for each $j=1, \ldots, 5$, there exist integers a_{j}, q_{j} such that

$$
\begin{equation*}
\left(a_{j}, q_{j}\right)=1, \quad 0<q_{j} \leqslant 40 P\left|\lambda_{j}\right|^{-\frac{1}{k}} \tag{45}
\end{equation*}
$$

and

$$
\begin{equation*}
\lambda_{j} \alpha=\frac{a_{j}}{q_{j}}+\beta_{j} \tag{46}
\end{equation*}
$$

where

$$
\begin{equation*}
\left|\beta_{j}\right|<q_{j}^{-1}\left(40 P\left|\lambda_{j}\right|^{-1}\right)^{-1} \tag{47}
\end{equation*}
$$

Thus (42) and (43) are satisfied, and consequently (44) is valid.
${ }^{(1)}$ It is of interest to note that if $q_{j}=1$ and $a_{j}=0$, so that $S_{a_{j} . q_{j}}=1$, this approximation reduces to that of Lemma 2.

It is important to note that none of a_{1}, \ldots, a_{5} is 0 , for $a_{5}=0$ would imply

$$
\left|\lambda_{j} \alpha\right|=\left|\beta_{j}\right|<\frac{1}{40} P^{-1}\left|\lambda_{j}\right|^{1},
$$

contrary to (32).
Let \mathcal{F} denote the subset of the interval \mathcal{J}, defined in (32), consisting of those α for which

$$
\begin{equation*}
\left|S_{f}(\alpha)\right|>P^{1-2 s}\left[\Pi^{-\frac{1}{2}}\left|\lambda_{j}\right|^{-\frac{1}{2}} \quad(j=1, \ldots, 5) .\right. \tag{48}
\end{equation*}
$$

Lemma 10. We have

$$
\begin{equation*}
\int_{y-y}\left|S_{1}(\alpha) \ldots S_{5}(\alpha)\right| d \alpha<P^{3-\delta / 2} \Pi^{-1} \tag{49}
\end{equation*}
$$

Proof- In J- \mathfrak{F}, one of the inequalities (48) is false, say that for $j=5$. Thus

$$
\begin{equation*}
\left|S_{5}(\alpha)\right| \leqslant P^{1-2 s} \Pi^{-z}\left|\lambda_{5}\right|^{-z} . \tag{50}
\end{equation*}
$$

By Lemma 5 and the periodicity of $S_{f}(\alpha)$, with period $\left|\lambda_{j}\right|^{-1}$, we have

$$
\int_{0}^{p \delta}\left|S_{f}(\alpha)\right|^{4} d \alpha<\left|\lambda_{j}\right|^{-1} P^{2+\delta} \log P
$$

It follows from the cases $j=1,2,3,4$ of this, and Hölder's inequality, that

$$
\int_{0}^{P \delta}\left|S_{1}(\alpha) \ldots S_{4}(\alpha)\right| d \alpha<\left|\lambda_{1} \ldots \lambda_{4}\right|^{-t} P^{2+\delta} \log P=\Pi^{-t}\left|\lambda_{5}\right|^{\frac{1}{2}} P^{2+\delta} \log P
$$

From this and (50), it follows that

$$
\int_{y-z}\left|S_{1}(\alpha) \ldots S_{5}(\alpha)\right| d \alpha<P^{s-\delta}(\log P) \Pi^{-\frac{1}{2}}
$$

whence (49).
8. It follows from Lemmas 7 and 10 that

$$
\begin{equation*}
\int_{z}\left|S_{1}(\alpha) \ldots S_{5}(\alpha)\right| d \alpha>\frac{1}{8} p^{3} \Pi^{-\frac{1}{2}} \tag{51}
\end{equation*}
$$

provided that the constant C_{δ} of Lemma 7 is taken sufficiently large. The remainder of the paper will be concerned with deducing from (51) a contradiction to the basic hypothesis made at the beginning of § 2.

It will be convenient to consider the parts of \mathcal{F} in which $\left|S_{1}(\alpha)\right|, \ldots,\left|S_{5}(\alpha)\right|$, q_{1}, \ldots, q_{5} are all of particular orders of magnitude. Let $T_{1}, \ldots, T_{5}, U_{1}, \ldots, U_{5}$ be positive numbers, and let $\mathcal{G}=\mathcal{G}\left(T_{1}, \ldots, U_{5}\right)$ denote the set of those α in \mathcal{F} for which

$$
\begin{align*}
& \frac{1}{2} T_{j} P<\left|\lambda_{j}^{\ddagger} S_{j}(\alpha)\right| \leqslant T_{j} P \quad(j=1, \ldots, 5), \tag{52}\\
& \frac{1}{2} U_{j}<\left|\lambda_{j}\right|^{\frac{1}{2}} q_{j} \leqslant U_{j} \quad(j=1, \ldots, 5) . \tag{53}
\end{align*}
$$

By (48) and the trivial upper bound for $\left|S_{j}(\alpha)\right|$, we can suppose that

$$
\begin{equation*}
P^{-28} \Pi^{-\frac{1}{2}}<T_{j}<20\left|\lambda_{j}\right|^{-\frac{1}{2}} . \tag{54}
\end{equation*}
$$

By (44),

$$
T_{j}<U_{j}^{-\frac{1}{z}}(\log P) \min \left(1, P^{-2}\left|\lambda_{j}\right|\left|\beta_{j}\right|^{-1}\right)
$$

whence

$$
\begin{equation*}
U_{j}<(\log P)^{2} T_{j}^{-2} \tag{55}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\lambda_{j}\right|^{-1}\left|\beta_{j}\right|<P^{-2}(\log P) T_{j}^{-1} U_{j}^{-\frac{1}{2}} . \tag{56}
\end{equation*}
$$

We have also $U_{j} \geqslant\left|\lambda_{j}\right|^{\frac{t}{2}} q_{j} \geqslant 1$ by (53).
Lemma 11. There exist $T_{1}, \ldots, T_{5}, U_{1}, \ldots, U_{5}$ such that the measure of the set \mathcal{G}, say $m(\mathcal{G})$, satisfies

$$
\begin{equation*}
m(\mathcal{G})>P^{-2}(\log P)^{-10} \Pi^{-\frac{1}{2}}\left(T_{1} \ldots T_{5}\right)^{-1} \tag{57}
\end{equation*}
$$

Proof. Since the numbers T_{j} and U_{j} are bounded above and below by fixed powers of P, it is clear from the nature of (52) and (53) that the number of choices for $T_{1}, \ldots, T_{5}, U_{1}, \ldots, U_{5}$ that need to be made to cover all α in \mathcal{F} is $<(\log P)^{10}$. Hence, by (51), there is some choice such that

$$
\int_{G}\left|S_{1}(\alpha) \ldots S_{5}(\alpha)\right| d \alpha>P^{3} \Pi^{-\frac{1}{}(\log P)^{-10} ~}
$$

For any α in \mathcal{G}, we have

$$
\left|S_{1}(\alpha) \ldots S_{5}(\alpha)\right| \leqslant P^{5} T_{1} \ldots T_{5} \Pi^{-\frac{1}{2}}
$$

by (52). Hence (57).
9. From now onwards we shall be concerned only with a particular set T_{1}, \ldots, T_{5}, U_{1}, \ldots, U_{5} for which (57) holds. We shall suppose, as we may without loss of generality, that

$$
\begin{equation*}
T_{1} \geqslant T_{j} \quad(j=2, \ldots, 5) \tag{58}
\end{equation*}
$$

Lemma 12. For each $j(1 \leqslant j \leqslant 5)$, the number N_{j} of distinct integer pairs a_{j}, q, which arise from all α in \mathcal{G} satisfies

$$
\begin{equation*}
N_{j}>(\log P)^{-11} \Pi^{-1}\left(T_{1} \ldots T_{5}\right)^{-1} T_{j} U_{j}^{\xi} \tag{59}
\end{equation*}
$$

Proof. The fact that α gives rise to a_{j}, q_{j} implies, by (46) and (56), that

$$
\left|\lambda_{j} \alpha-\frac{a_{j}}{q_{j}}\right|<\left|\lambda_{j}\right| P^{-2}(\log P) T_{j}^{-1} U_{j}^{-1} .
$$

This limits α to an interval of length

$$
\ll P^{-2}(\log P) T_{j}^{-1} U_{j}^{-t} .
$$

By (57), the number of such intervals must be

$$
\gg P^{-2}(\log P)^{-10} \Pi^{-\frac{1}{2}}\left(T_{1} \ldots T_{5}\right)^{-1} P^{2}(\log P)^{-1} T_{j} U_{j}^{\frac{1}{2}}
$$

and (59) follows.
Lemma 13. For $j=2,3,4,5$, the integers $a_{1}, q_{1}, a_{j}, q_{j}$ corresponding to any α in G satisfy

$$
\begin{gather*}
0<\left|a_{1}\right| q_{j} \ll\left|\lambda_{1}\right|^{\frac{1}{j}}\left|\lambda_{j}\right|^{-\frac{1}{2} P^{\delta} U_{1} U_{j},} \tag{60}\\
\left|a_{1} q_{j} \lambda_{j} / \lambda_{1}-a_{j} q_{1}\right|<\left|\lambda_{1}\right|^{-\frac{1}{\xi}}\left|\lambda_{j}\right|^{\frac{1}{2}}\left(U_{1} U_{j}\right)^{\frac{1}{2}}\left(T_{1} T_{j}\right)^{-1} P^{-2}(\log P)^{2} . \tag{61}
\end{gather*}
$$

Proof. As remarked in §7, we have $a_{j} \neq 0(j=1, \ldots, 5)$. Also $\left|\beta_{j}\right|$ is small compared with q_{j}^{-1} by (47). Hence, by (46),

$$
\left|\lambda_{j}\right| \alpha q_{j}<\left|a_{j}\right|<\left|\lambda_{j}\right| \alpha q_{j} .
$$

Thus, in particular,

$$
\left|a_{1}\right| q_{j}<\left.\left|\lambda_{1}\right| \alpha q_{1} q_{j} \ll\left|\lambda_{1}\right| \lambda_{j}\right|^{-} U_{1} U_{j} P^{\delta}
$$

by (53) and the fact that $\alpha<P^{\delta}$. This proves (60).
Next, by (46),

$$
a_{1} q_{j} \lambda_{j} / \lambda_{1}-a_{j} q_{1}=a_{1} q_{1}\left(a_{j}+q_{j} \beta_{j}\right)\left(a_{1}+q_{1} \beta_{1}\right)^{-1}-a_{j} q_{1}=q_{1}\left(a_{1} q_{j} \beta_{j}-a_{j} q_{1} \beta_{1}\right)\left(a_{1}+q_{1} \beta_{1}\right)^{-1} .
$$

This has absolute value

$$
\begin{aligned}
& <\left|\lambda_{1}\right|^{-1} \alpha^{-1}\left(\left|a_{1}\right| q_{j}\left|\beta_{j}\right|+\left|a_{j}\right| q_{1}\left|\beta_{1}\right|\right) \\
& <\left|\lambda_{1}\right|^{-1} \alpha^{-1}\left(\left|\lambda_{1}\right| \alpha q_{1} q_{j}\left|\beta_{j}\right|+\left|\lambda_{j}\right| \alpha q_{j} q_{1}\left|\beta_{1}\right|\right) \\
& =q_{1} q_{j}\left(\left|\beta_{j}\right|+\left|\lambda_{j} \lambda_{1}^{-1} \beta_{1}\right|\right)
\end{aligned}
$$

Using (56) and (53), we obtain the estimate
$\left.\lambda_{j}\right|^{j}\left|\lambda_{1}\right|^{-1} U_{1} U_{j}\left(T_{j}^{-1} U_{j}^{-1}+T_{1}^{-1} U_{1}^{-\frac{1}{2}}\right) P^{-2}(\log P)<\left|\lambda_{j}\right|^{\mid}\left|\lambda_{1}\right|^{-\frac{1}{2}} U_{1}^{\frac{1}{1}} U_{j}^{\frac{1}{j}} T_{1}^{-1} T_{j}^{-1} P^{-2}(\log P)^{2}$, the last step by (55). The lemma is proved.

Lemma 14. Suppose θ is real, and suppose there exist N distinct integer pairs x, y satisfying

$$
\begin{gather*}
|\theta x-y|<\zeta \tag{62}\\
0<|x|<X \tag{63}
\end{gather*}
$$

where $\zeta>0$ and $X>0$. Then either

$$
\begin{equation*}
N<24 \zeta X \tag{64}
\end{equation*}
$$

or all integer pairs x, y satisfying (62) and (63) have the same ratio y / x.
Proof. We can suppose that $X>1$, since otherwise $N=0$ by (63), and (64) is trivially satisfied. We can suppose also that $\zeta<\frac{1}{2}$; for if $\zeta \geqslant \frac{1}{2}$ we have

$$
N \leqslant(2 X+1)(2 \zeta+1) \leqslant 12 X \zeta
$$

There exist integers p, q such that

$$
(p, q)=1, \quad 0<q<2 X, \quad|q \theta-p| \leqslant(2 X)^{-1}
$$

If x and y satisfy (62) and (63), then

$$
|x p-y q| \leqslant|x(p-q \theta)|+|q(x \theta-y)|<X(2 X)^{-1}+q \zeta=\frac{1}{2}+q \zeta .
$$

If $q \zeta \leqslant \frac{1}{2}$ we obtain $x p-y q=0$, which gives the second alternative of the enunciation. If $q \zeta>\frac{1}{2}$, the number of possible residue classes for $x(\bmod q)$ is less than $2\left(\frac{1}{2}+q \zeta\right)+$ $+1<6 q \zeta$, and consequently the number of possibilities for x is less than

$$
6 q \zeta\left(2 X q^{-1}+1\right)<12 \zeta X+12 \zeta X
$$

Since x determines y with at most one possibility by (62), we obtain (64).
Lemma 15. Suppose that

$$
\begin{equation*}
P^{2-\theta \delta}>C_{\delta} \Pi \tag{65}
\end{equation*}
$$

for a suitable C_{δ}. Then, for each $j=2, \ldots, 5$ and for any \propto in \mathcal{G}, we have

$$
\begin{equation*}
\frac{a_{1} q_{j}}{a_{f} q_{1}}=\frac{A_{j}}{B_{j}} \tag{66}
\end{equation*}
$$

where A_{j}, B_{j} are relatively prime integers which are independent of α, and $B_{j}>0, A_{j} \neq 0$.

Proof. By Lemma 13, the integers $x=a_{1} q_{;}$and $y=a_{j} q_{1}$ corresponding to any α in \mathcal{G} satisfy

$$
\begin{gather*}
\left|x \lambda_{g} / \lambda_{1}-y\right|<\zeta \tag{67}\\
0<|x|<X \tag{68}
\end{gather*}
$$

where

$$
\begin{align*}
& \zeta \ll\left|\lambda_{j}\right|^{i}\left|\lambda_{1}\right|^{-1}\left(U_{1} U_{j}\right)^{\frac{1}{2}}\left(T_{1} T_{j}\right)^{-1} P^{-2}(\log P)^{2}, \tag{69}\\
& X<\left|\lambda_{j}\right|^{-1}\left|\lambda_{1}\right|^{\delta} P^{\delta} U_{1} U_{i} . \tag{70}
\end{align*}
$$

The values of x and y determine those of $a_{1}, q_{1}, a_{j}, q_{j}$ with $<P^{e}$ possibilities, for any fixed $\varepsilon>0$ (note that $a_{j} \neq 0$, as remarked earlier). Hence the number N of distinct integer pairs x, y that arise from all α in \mathcal{G} satisfies

$$
\begin{equation*}
N>P^{-s} N_{1}, \tag{71}
\end{equation*}
$$

where N_{1} has the significance of Lemma 12.
By Lemma 14 there are two possibilities: either all y / x have the same value, independent of α, which gives the desired conclusion for the particular j under consideration, or (64) holds. In the latter case we have

$$
P^{-\varepsilon} N_{1}<P^{-2+\delta}(\log P)^{2}\left(U_{1} U_{j}\right)^{\frac{1}{2}}\left(T_{1} T_{j}\right)^{-1}
$$

by (69), (70), (71). Using (59), we obtain

$$
\begin{gathered}
(\log P)^{-11} \Pi^{-\frac{1}{(}\left(T_{1} \ldots T_{5}\right)^{-1} T_{1} U_{1}^{\ddagger}<P^{-2+\delta+\varepsilon}(\log P)^{2}\left(U_{1} U_{j}\right)^{\frac{1}{2}}\left(T_{1} T_{j}\right)^{-1},} \\
P^{2-2 \delta} T_{1}^{2} T_{j}<\Pi^{\ddagger} T_{1} \ldots T_{5} U_{1} U_{j}^{\ddagger} .
\end{gathered}
$$

that is,
By (55), this gives

$$
T_{1}^{4} T_{j}^{4}<P^{-2+8 \delta} \Pi^{\frac{1}{2}} T_{1} \ldots T_{5} .
$$

Cancelling $T_{\text {j }}$ from both sides and using (58), we obtain

$$
T_{1}^{4} T_{j}^{3}<P^{-2+s s} \Pi^{\ddagger} T_{1}^{4}
$$

Since $T_{s}>P^{-2 s} \Pi^{-\frac{1}{2}}$ by (54), this implies

$$
P^{-6 \delta} \Pi^{-q}<P^{-2+3 s} \Pi^{t}
$$

which contradicts (65) if C_{δ} is suitably chosen. Hence the result.
Lemma 16. Suppose (65) holds. Then the integers $a_{1}, q_{1}, \ldots, a_{5}, q_{5}$, corresponding to any \propto in \mathcal{G}, are of the form

$$
\begin{equation*}
a_{j}=a a_{j}^{\prime}, \quad q_{j}^{\prime}=q q_{j}^{\prime} \quad(j=1, \ldots, 5), \tag{72}
\end{equation*}
$$

where $q>0, a>0$, and

$$
\begin{equation*}
a_{j}^{\prime}\left|H, \quad q_{j}^{\prime}\right| H_{5} \tag{73}
\end{equation*}
$$

where H is independent of α and

$$
\begin{equation*}
0<H<P^{17} \tag{74}
\end{equation*}
$$

Proof. Since $\left(a_{1}, q_{1}\right)=\left(a_{j}, q_{j}\right)=\left(A_{j}, B_{j}\right)=1$, the equation (66), which can be written as

$$
\frac{a_{j}}{q_{j}}=\frac{a_{1} B_{j}}{q_{1} A_{j}},
$$

implies that

$$
a_{j}=\frac{a_{1} B_{j}}{\left(a_{1}, A_{j}\right)\left(q_{1}, B_{j}\right)}, \quad q_{j}=\frac{q_{1} A_{j}}{\left(a_{1}, A_{j}\right)\left(q_{1}, B_{j}\right)} .
$$

Define a and q by

$$
a=\frac{\left|a_{1}\right|}{\left(a_{1}, A_{2} A_{3} A_{4} A_{5}\right)}, \quad q=\frac{q_{1}}{\left(q_{1}, B_{2} B_{3} B_{4} B_{5}\right)} .
$$

Then a and q are integers, and $a_{1} / a, q_{1} / q$ are integers, say a_{1}^{\prime} and q_{1}^{\prime}. Also a_{1}^{\prime} and q_{1}^{\prime} are divisors of $A_{2} A_{3} A_{4} A_{5}$ and $B_{2} B_{3} B_{4} B_{5}$ respectively.

Further, for $j=2, \ldots, 5$, we have

$$
\frac{a_{j}}{a}= \pm \frac{B_{j}}{\left(B_{j}, q_{1}\right)} \cdot \frac{\left(a_{1}, A_{2}\right.}{\left(a_{1}, A_{3} A_{4} A_{5}\right)}
$$

and the expression on the right is an integer, say a_{f}^{\prime}, which divides $B_{j} A_{2} A_{3} A_{4} A_{5}$. Similarly $q_{j} / q=q_{j}^{\prime}$ is an integer which divides $A_{j} B_{2} B_{3} B_{4} B_{5}$.

Taking

$$
H=\left|A_{2} A_{3} A_{4} A_{5}\right| B_{2} B_{3} B_{4} B_{5}
$$

so that H is independent of α, it remains only to prove (74). By (66) and (60), we have

$$
\begin{aligned}
\left|A_{j}\right| & <\left|\lambda_{1}\right|^{\ddagger}\left|\lambda_{j}\right|^{-\frac{1}{2}} P^{j} U_{1} U_{j} \\
B_{j} & <\left|\lambda_{1}\right|^{-\frac{1}{2}}\left|\lambda_{j}\right|^{\ddagger} P^{j} U_{1} U_{j}
\end{aligned}
$$

and similarly
Using (55) and (54), we obtain

$$
\left|A_{j}\right| B_{j}<P^{2 \delta} U_{1}^{2} U_{j}^{2}<P^{\rho \delta} T_{1}^{-4} T_{j}^{-4}<P^{19 \delta} \Pi^{2} .
$$

Hence, by (65),

$$
H<P^{768} \Pi^{8} \ll P^{17}
$$

This proves the lemma.
10. Lemma 17. For any non-zero integers f_{1}, \ldots, f_{5}, not all of the same sign, there exist integers y_{1}, \ldots, y_{5} such that

$$
\begin{equation*}
f_{1} y_{1}^{2}+\cdots+f_{5} y_{5}^{2}=0 \tag{75}
\end{equation*}
$$

and

$$
\begin{equation*}
0<\left|f_{1}\right| y_{1}^{2}+\cdots+\left|f_{5}\right| y_{5}^{2}<\left|f_{1} f_{2} \ldots f_{5}\right| . \tag{76}
\end{equation*}
$$

Proof. This is contained in our modified form of Cassels's result referred to in § 1.
Lemma 18. Suppose (65) holds. Then the integers a, q which correspond to any α in \mathcal{G}, in the manner of Lemma 16, satisfy

$$
\begin{equation*}
a^{4} q^{8}<P^{-2+5 \delta}\left(U_{1} \ldots U_{5}\right)^{2} \max _{1 \leqslant k \leqslant 5} T_{k}^{-1} U_{k}^{-\frac{1}{2}} \tag{77}
\end{equation*}
$$

Proof. By (46) and (72) we have

$$
\alpha\left(\lambda_{1} x_{1}^{2}+\cdots+\lambda_{5} x_{5}^{2}\right)=\frac{a}{q}\left(\frac{a_{1}^{\prime}}{q_{1}^{\prime}} x_{1}^{2}+\cdots+\frac{a_{5}^{\prime}}{q_{5}^{\prime}} x_{5}^{2}\right)+\left(\beta_{1} x_{1}^{2}+\cdots+\beta_{5} x_{5}^{2}\right)
$$

for any α in \mathcal{G} and any x_{1}, \ldots, x_{5}. Putting $x_{j}=q_{j}^{\prime} y_{j}$ for $j=1, \ldots, 5$, we obtain

$$
\alpha\left(\lambda_{1} x_{1}^{2}+\cdots+\lambda_{5} x_{5}^{2}\right)=\frac{a}{q}\left(a_{1}^{\prime} q_{1}^{\prime} y_{1}^{2}+\cdots+a_{5}^{\prime} q_{5}^{\prime} y_{5}^{2}\right)+\left(\beta_{1} q_{1}^{\prime 2} y_{1}^{2}+\cdots+\beta_{5} q_{5}^{\prime 2} y_{5}^{2}\right)
$$

The signs of $a_{1}^{\prime} q_{1}^{\prime}, \ldots, a_{5}^{\prime} q_{5}^{\prime}$ are the same as the signs of $a_{1} / q_{1}, \ldots, a_{5} / q_{5}$, and these are the same as the signs of $\lambda_{1}, \ldots, \lambda_{5}$. Hence $a_{1}^{\prime} q_{1}^{\prime}, \ldots, a_{5}^{\prime} q_{5}^{\prime}$ are non-zero integers, not all of the same sign. It follows from Lemma 17 that there exist integers y_{1}, \ldots, y_{5} such that

$$
a_{1}^{\prime} q_{1}^{\prime} y_{1}^{2}+\cdots+a_{5}^{\prime} q_{5}^{\prime} y_{5}^{2}=0
$$

and

$$
\begin{equation*}
0<\left|a_{1}^{\prime} q_{1}^{\prime}\right| y_{1}^{2}+\cdots+\left|a_{5}^{\prime} q_{5}^{\prime}\right| y_{5}^{2}<\left|a_{1}^{\prime} \ldots a_{5}^{\prime}\right| q_{1}^{\prime} \ldots q_{5}^{\prime} \tag{78}
\end{equation*}
$$

For the corresponding integers x_{1}, \ldots, x_{5}, we have

$$
\left|\lambda_{1} x_{1}^{2}+\cdots+\lambda_{5} x_{5}^{2}\right| \leqslant \alpha^{-1}\left(\left|\beta_{1}\right| q_{1}^{\prime 2} y_{1}^{2}+\cdots+\left|\beta_{5}\right| q_{5}^{\prime 2} y_{5}^{2}\right)
$$

and

$$
0<\left|\lambda_{1}\right| x_{1}^{2}+\cdots+\left|\lambda_{5}\right| x_{5}^{2} \leqslant 2 \alpha^{-1} a q^{-1}\left(\left|a_{1}^{\prime} q_{1}^{\prime}\right| y_{1}^{2}+\cdots+\left|a_{5}^{\prime} q_{5}^{\prime}\right| y_{5}^{2}\right)
$$

By the basic hypothesis made at the beginning of §2, the conditions (2) and (5) cannot both be satisfied. Hence either
or

$$
\begin{gather*}
\left|\beta_{1}\right| q_{1}^{\prime 2} y_{1}^{2}+\cdots+\left|\beta_{5}\right| q_{5}^{\prime 2} y_{5}^{2}>\alpha \tag{79}\\
\left|a_{1}^{\prime} q_{1}^{\prime}\right| y_{1}^{2}+\cdots+\left|a_{5}^{\prime} q_{5}^{\prime}\right| y_{5}^{2}>250 \alpha a^{-1} q P^{2} . \tag{80}
\end{gather*}
$$

We examine the second alternative first. By (78) it implies that

$$
\left|a_{1}^{\prime} \ldots a_{5}^{\prime}\right| q_{1}^{\prime} \ldots q_{5}^{\prime}>\alpha a^{-1} q P^{2}
$$

$18 \dagger-583802$. Acta mathematica. 100. Imprimé le 31 décernbre 1958.
whence

$$
a^{-5} q^{-5}\left|a_{1} \ldots a_{5}\right| q_{1} \ldots q_{5}>\alpha a^{-1} q P^{2} .
$$

Since $\left|a_{j}\right|<\left|\lambda_{j}\right| \alpha q_{j}$, this gives
whence

$$
\left|\lambda_{1} \ldots \lambda_{5}\right| q_{1}^{2} \ldots q_{5}^{2}>\alpha^{-4} a^{4} q^{6} P^{2}
$$

by (53).
We now examine the first alternative, namely (79). By (56),

$$
\left|\beta_{k}\right| q_{k}^{\prime 2}<P^{-2}(\log P) T_{k}^{-1} U_{k}^{-2}\left|\lambda_{k}\right| q_{k}^{\prime 2}
$$

and

$$
\begin{equation*}
\left(U_{1} \ldots U_{5}\right)^{2}>\alpha^{-4} a^{4} q^{6} P^{2} \tag{81}
\end{equation*}
$$

$$
\left|\lambda_{k}\right| q_{k}^{\prime 2}<\alpha^{-1} \frac{\left|a_{k}\right|}{q_{k}} q_{k}^{\prime 2}=\alpha^{-1} a q^{-1}\left|a_{k}^{\prime}\right| q_{k}^{\prime}
$$

Hence (79) and (78) imply

$$
\alpha \ll P^{-2}(\log P) \alpha^{-1} a q^{-1}\left(\max _{k} T_{k}^{-1} U_{k}^{-\frac{1}{2}}\right)\left|a_{1}^{\prime} \ldots a_{5}^{\prime}\right| q_{1}^{\prime} \ldots q_{5}^{\prime}
$$

Simplifying this as before, we obtain

$$
\begin{gathered}
\left(U_{1} \ldots U_{5}\right)^{2} \max _{k} T_{k}^{-1} U_{k}^{-1} \gg \alpha^{-3} a^{4} q^{6} P^{2}(\log P)^{-1} . \\
T_{k}^{-1} U_{k}^{-1} \gg(\log P)^{-1}
\end{gathered}
$$

by (55), and since $\alpha<P^{\delta}$, both the alternatives (81) and (82) imply (77), and this proves the lemma.
11. Completion of the proof of the theorem. Assuming (65) to hold, Lemma 18 gives the estimate (77) for the integers a, q corresponding to any α in \mathcal{G}. The expression on the right of (77) must, of course, be >1, otherwise the set \mathcal{G} would be empty. Since the number of solutions of $a^{4} q^{6}<Z$ in positive integers a, q is $<Z^{\ddagger}$ for $Z>1$, it follows that the number N of distinct pairs a, q which can arise from all α in \mathcal{G} satisfies

$$
\begin{equation*}
N^{4}<P^{-2+5 \delta}\left(U_{1} \ldots U_{5}\right)^{2} \max _{k} T_{k}^{-1} U_{k}^{-\frac{1}{2}} \tag{83}
\end{equation*}
$$

By (73) and (74), the number of distinct possibilities for $a_{1}^{\prime}, \ldots, a_{5}^{\prime}, q_{1}^{\prime}, \ldots, q_{5}^{\prime}$ is $<P^{\varepsilon}$ for any fixed $\varepsilon>0$. Hence the number N_{j} of distinct possibilities for a_{j}, q_{j} for any j from 1 to 5 satisfies

$$
\begin{equation*}
N_{j}^{4}<P^{\delta} N^{4} \tag{84}
\end{equation*}
$$

A lower bound for N_{f}, was obtained in (59). Combining this with (83) and (84), we deduce that

$$
(\log P)^{-44} \Pi^{-1}\left(T_{1} \ldots T_{5}\right)^{-4} T_{j}^{4} U_{j}^{2}<P^{-2+68}\left(U_{1} \ldots U_{5}\right)^{2} \max _{k} T_{k}^{-1} U_{k}^{-\frac{1}{k}}
$$

for $j=1, \ldots, 5$.
Let k be a suffix for which the maximum of $T_{k}^{-1} U_{k}^{-k}$ is attained. Take j to be any suffix other than k. The last inequality implies that

$$
T_{j}^{4} U_{j}^{2} T_{k} U^{k}\left(T_{1} \ldots T_{5}\right)^{-4}\left(U_{1} \ldots U_{5}\right)^{-2} \ll P^{-2+7 \delta} \Pi .
$$

It is convenient to put

$$
V_{i}=T_{i} U_{i}^{t}(\log P)^{-1}
$$

for $i=1, \ldots, 5$, so that

$$
\begin{equation*}
V_{i} \ll I \tag{85}
\end{equation*}
$$

by (55). We now have $\quad V_{j}^{4} V_{k}\left(V_{1} \ldots V_{5}\right)^{-4}<P^{-2+88} \Pi$.
Since $j \neq k$, it follows from (85) that

$$
1<P^{-2+8 \delta} \Pi \text {. }
$$

This contradicts (65) if C_{δ} is chosen sufficiently large, and this contradiction completes the proof of the theorem.

References

[1]. B. J. Birch \& H. Davenport, Indefinite quadratic forms in many variables. Mathematika, 5 (1958), 8-12.
[2]. --, Quadratic equations in several variables. Proc. Cambridge Philos. Soc., 54 (1958), 135-138.
[3]. J. W. S. Cassels, Bounds for the least solutions of homogeneous quadratic equations. Proc. Cambridge Philos. Soc., 51 (1955), 262-264. Addendum to this paper in vol. 52 (1956), 604.
[4]. H. Davenport, Indefinite quadratic forms in many variables. Mathematika, 3 (1956), 81-101.
[5]. ——, On Waring's problem for cubes. Acta Math., 71 (1939), 123-143.
[6]. ——, On Waring's problem for fourth powers. Ann. of Math., 40 (1939), 781-747.
[7]. H. Davenport \& H. Heilbronn, On indefinite quadratic forms in five variables. J. London Math. Soc., 21 (1946), 185-193.
[8]. I. M. Vinoqradov, The method of trigonometrical sums in the theory of numbers (trans. Roth and Davenport), London and New York, 1954.

