A THEOREM OF COMPLETENESS FOR COMPLEX ANALYTIC FIBRE SPACES

BY
K. KODAIRA and D. C. SPENCER
The Institute for Advanced Study and Princeton University

1. Introduction

We begin by recalling several definitions, introduced in the authors' paper [3], concerning complex analytic families of complex manifolds.

By a complex analytic fibre space we mean a triple ($\mathcal{V}, \boldsymbol{\varpi}, \boldsymbol{M}$) of connected complex manifolds \mathcal{V}, M and a holomorphic map ϖ of \mathcal{V} onto M. A fibre $\varpi^{-1}(t)$, $t \in M$, of the fibre space is singular if there exists a point $p \in \varpi^{-1}(t)$ such that the rank of the jacobian matrix of the map ϖ at p is less than the dimension of M.

Definition 1 . We say that $\mathfrak{\vartheta} \xrightarrow{\boldsymbol{\sigma}} M$ is a complex analytic family of compact, complex manifolds if $(\vartheta, \varpi, M$) is a complex analytic fibre space without singular fibres whose fibres are connected, compact manifolds and whose base space M is connected.

With reference to a complex manifold $V_{0}=\sigma^{-1}(0), 0 \in M$, we call any $V_{t}=\sigma^{-1}(t)$, $t \in M$, a deformation of V_{0} and we call $\mathfrak{V} \xrightarrow{W} M$ a complex analytic family of deformations of V_{0}.

Definition 2. A complex analytic family $\mathfrak{V}^{\mathbb{W}} M$ of compact, complex manifolds is (complex analytically) complete at the point $t \in M$ if, for any complex analytic family $\mathcal{W} \xrightarrow{\pi} N$ such that $\pi^{-1}(0)=\varpi^{-1}(t)$ for a point $0 \in N$, there exist a holomorphic map $s \rightarrow t(s), t(0)=t$, of a neighborhood U of 0 on N and a holomorphic map g of $\pi^{-1}(U)$ into \mathcal{W} which maps each fibre $\pi^{-1}(s), s \in U$ of \mathcal{W} biregularly onto $\boldsymbol{\varpi}^{-1}(t(s))$. The complex analytic family $\vartheta^{\boldsymbol{w}} M$ is called (complex analytically) complete if it is (complex analytically) complete at each point t of M.

Let $\mathscr{V} \underset{\sim}{\mathbb{W}} M$ be a complex analytic family of compact, complex manifolds and let $V_{t}=\varpi^{-1}(t)$ be the fibre of $\mathcal{\vartheta}$ over $t \in M$. Denote by Θ_{t} the sheaf over V_{t} of germs of holomorphic vector fields, and denote by $\left(T_{M}\right)_{t}$ the (complex) tangent space of M at the point t. Of fundamental importance in the study of the deformation of complex structure is the complex linear map

$$
\varrho_{t}:\left(T_{M}\right)_{t} \rightarrow H^{1}\left(V_{t}, \Theta_{t}\right)
$$

which measures the magnitude of dependence of the complex structure of the fibre V_{t} on the parameter t (see [3], Sections 5 and 6). A definition of ϱ_{t} will be given below (see formula (9)). For a tangent vector $v \in\left(T_{M}\right)_{t}$ the image $\varrho_{t}(v) \in H^{1}\left(V_{t}, \Theta_{t}\right)$ is called the infinitesimal deformation of V_{t} along v.

Our purpose is to prove the following theorem:
Theorem. Let $\mathfrak{\vartheta} \xrightarrow{\boldsymbol{w}} M$ be a complex analytic family of compact, complex manifolds and suppose that, for some point $t \in M$, the map $\varrho_{t}:\left(T_{M}\right)_{t} \rightarrow H^{1}\left(V_{t}, \Theta_{t}\right)$ is surjective. Then $\mathfrak{V} \xrightarrow{\mathbb{G}} M$ is (complex analytically) complete at t.

The proof of this theorem is elementary, in particular it makes no use of the theory of harmonic differential forms.

We remark that the question remains open whether $\mathfrak{V} \xrightarrow{\mathbb{T}} M$ is differentiably complete at $t \in M$ (in the sense of [3], Definition 1.7) if the map $\varrho_{t}:\left(T_{M}\right)_{t} \rightarrow H^{1}\left(V_{t}, \Theta_{t}\right)$ is surjective; in particular, Problem 6, Section 22 of [3], remains unsolved. If we assume the additional condition that $H^{2}\left(V_{t}, \Theta_{t}\right)=0$ at this particular point t, then it can be proved, by the method of harmonic differential forms, that $\mathfrak{V} \xrightarrow{\mathbb{T}} M$ is differentiably complete at t (see Kodaira [2]).

In [3] the authors constructed several simple examples of complex analytic families of compact, complex manifolds, namely:
(1) family of complex tori of arbitrary dimension n;
(2) family $\mathcal{V}_{n, h}$ of all non-singular hypersurfaces of order h on complex projective n-space ($n \geqslant 2, h \geqslant 2$);
(3) family of non-singular hypersurfaces on abelian varieties of arbitrary dimen: siön $n \geqslant 2$;
(4) family of compact Hopf surfaces.

It was shown in Section 18 of [3], on the basis of special properties of the families, that the families (1) and (2) are complex analytically complete, except for the case $n=2, h=4$ of (2) in which the map ϱ_{t} is not surjective. The (complex ana-
lytic) completeness of all four families (except the case $n=2, h=4$ of (2) in which the family is not complete) now follows at once from the above theorem.

We remark that each of the above families (except $\vartheta_{2,4}$) is differentiably complete (see [3]).

2. Complex analytic completeness (proof of the theorem)

Let $\mathfrak{V} \xrightarrow{\mathbb{W}} M$ be a complex analytic family which satisfies the hypothesis of our theorem, namely that, for some point $0 \in M$, the map

$$
\varrho_{0}:\left(T_{M}\right)_{0} \rightarrow H^{1}\left(V_{0}, \Theta_{0}\right)
$$

is surjective, where $V_{0}=\sigma^{-1}(0)$ is the fibre over the point $0 \in M$. Given an arbitrary complex analytic family $w^{\pi} N$ such that $\pi^{-1}(0)=V_{0}$ for a point $0 \in N$, we must show that there exist a holomorphic map $s \rightarrow t(s), t(0)=0$, of a neighborhood U of 0 on N into M and a holomorphic map g of $\mathscr{W} \mid U=\pi^{-1}(U)$ into ϑ which maps each fibre $\pi^{-1}(s), s \in U$, of W biregularly onto $\varpi^{-1}(t(s))$.

First we fix our notations. We denote by t a point $\left(t_{1}, t_{2}, \ldots, t_{m}\right)$ on the space \mathbf{C}^{m} of m complex variables and by s a point $\left(s_{1}, s_{2}, \ldots, s_{l}\right)$ on \mathbf{C}^{l}. We define

$$
\begin{aligned}
& |t|=\max _{r}\left|t_{r}\right|, \\
& |s|=\max _{r}\left|s_{r}\right| .
\end{aligned}
$$

Similarly we denote by z_{i} a point $\left(z_{i}^{1}, z_{i}^{2}, \ldots, z_{i}^{n}\right)$, by ζ_{i} a point $\left(\zeta_{i}^{1}, \ldots, \zeta_{i}^{n}\right)$, and let

$$
\begin{aligned}
& \left|z_{i}\right|=\max _{\alpha}\left|z_{i}^{\alpha}\right| \\
& \left|\zeta_{i}\right|=\max _{\alpha}\left|\zeta_{i}^{\alpha}\right| .
\end{aligned}
$$

If

$$
f: s \rightarrow f(s)=\left(f^{1}(s), \ldots, f^{\alpha}(s), \ldots, f^{n}(s)\right)
$$

is a holomorphic map of a domain $\left\{s||s|<\varepsilon\}\right.$ into \mathbf{C}^{n}, we write the power series expansion of $f^{\alpha}(s)$ in the form

$$
f^{\alpha}(s)=f_{0}^{\alpha}+f_{1}^{\alpha}(s)+\cdots+f_{\mu}^{\alpha}(s)+\cdots
$$

where $f_{\mu}^{\alpha}(s)$ is a homogeneous polynomial in $\left(s_{1}, s_{2}, \ldots, s_{l}\right)$ of degree μ. Moreover, letting

$$
f_{\mu}(s)=\left(f_{\mu}^{1}(s), \ldots, f_{\mu}^{\alpha}(s), \ldots, f_{\mu}^{n}(s)\right)
$$

we write

$$
f(s)=f_{0}+f_{1}(s)+\cdots+f_{\mu}(s)+\cdots
$$

and call this the power series expansion of the vector-valued holomorphic function $f(s)$.

We may assume the following:
i) M is a polycylinder: $M=\{t| | t \mid<1\}$ and $V_{0}=\omega^{-1}(0)$.
ii) \mathcal{V} is covered by a finite number of coordinate neighborhoods \mathcal{U}_{i}. Each \boldsymbol{U}_{i} is covered by a system of holomorphic coordinates $\left(\zeta_{i}, t\right)$ such that $\boldsymbol{\sigma}\left(\zeta_{i}, t\right)=t$ and

$$
\mathcal{U}_{\mathbf{i}}=\left\{\left(\zeta_{i}, t\right)| | \zeta_{i}|<1,|t|<1\} .\right.
$$

(We indicate by $\left(\zeta_{i}, t\right)$ a set of $n+m$ complex numbers $\zeta_{i}^{1}, \ldots, \zeta_{i}^{n}, t_{1}, \ldots, t_{m}$ and the point on \mathcal{U}_{i} with the coordinates $\left(\zeta_{i}^{1}, \ldots, \zeta_{i}^{n}, t_{1}, \ldots, t_{m}\right)$.)
iii) $\left(\zeta_{t}, t\right)$ coincides with (ζ_{k}, t) if and only if

$$
\zeta_{i}=g_{i k}\left(\zeta_{k}, t\right)
$$

where $g_{\boldsymbol{u}}\left(\zeta_{k}, t\right)$ is a vector-valued holomorphic function of $\left(\zeta_{k}, t\right)$ defined on $\boldsymbol{U}_{\boldsymbol{k}} \cap \boldsymbol{U}_{i}$.
iv) N is a polycylinder: $N=\{s| | s \mid<1\}$ and $V_{0}=\pi^{-1}(0)$.
v) W is covered by a finite number of coordinate neighborhoods w_{i} such that

$$
V_{0} \cap w_{i}=V_{0} \cap u_{i} .
$$

Each w_{i} is covered by a system of holomorphic coordinates $\left(z_{i}, s\right)$ such that $\pi\left(z_{i}, s\right)=s$ and

$$
w_{i}=\left\{\left(z_{i}, s\right)| | z_{i}|<1,|s|<1\} .\right.
$$

Moreover, on $V_{0} \cap \mathcal{W}_{i}=V_{0} \cap \mathcal{U}_{i}$, the system of coordinates (z_{i}) coincides with (ζ_{i}), i.e., $\left(z_{i}, 0\right)$ and $\left(\zeta_{i}, 0\right)$ are the same point on $V_{0} \cap \psi_{i}=V_{0} \cap U_{i}$ if and only if $z_{i}^{1}=\zeta_{i}^{1}, \ldots, z_{i}^{n}=\zeta_{i}^{n}$.
vi) $\left(z_{i}, s\right)$ coincides with $\left(z_{k}, s\right)$ if and only if

$$
z_{i}=h_{i k}\left(z_{k}, s\right)
$$

where $h_{u k}\left(z_{k}, s\right)$ is a vector-valued holomorphic function of $\left(z_{k}, s\right)$ defined on $\mathfrak{w}_{k} \cap w_{i}$.
Let

$$
b_{i k}\left(z_{k}\right)=h_{t k}\left(z_{k}, 0\right)
$$

By v) we have

$$
b_{i k}\left(\zeta_{k}\right)=g_{i k}\left(\zeta_{k}, 0\right)
$$

Let

$$
U_{i}=V_{0} \cap w_{i}=V_{0} \cap u_{i}
$$

and let

$$
N_{\varepsilon}=\{s| | s \mid<\varepsilon\}
$$

where $0<\varepsilon<1$. In view of ii) and v) we may write

$$
\begin{aligned}
\mathcal{U}_{i} & =U_{i} \times M, \\
w_{i} & =U_{i} \times N .
\end{aligned}
$$

We may suppose therefore that

$$
\begin{aligned}
& U_{i} \times N_{s} \subset U_{i} \times N=\mathcal{W}_{i}, \\
& \mathcal{U}_{i}=U_{i} \times M \subset \mathbb{C}^{n} \times M .
\end{aligned}
$$

In order to prove our theorem it suffices to construct a holomorphic map $s \rightarrow t=t(s)$ of N_{ε} into M such that $t(0)=0$ and holomorphic maps

$$
g_{i}:\left(z_{i}, s\right) \rightarrow\left(\zeta_{i}, t\right)=\left(g_{i}\left(z_{i}, s\right), t(s)\right)
$$

of $U_{i} \times N_{\varepsilon}$ into $\mathbf{C}^{n} \times M$ such that $g_{i}\left(z_{i}, 0\right)=z_{i}$ which satisfy the equations

$$
\begin{equation*}
g_{i}\left(h_{i k}\left(z_{k}, s\right), s\right)=g_{i k}\left(g_{k}\left(z_{k}, s\right), t(s)\right) \tag{1}
\end{equation*}
$$

whenever $z_{k} \varepsilon U_{k} \cap U_{i}$ and $|s|$ is sufficiently small (or, more precisely, $|s|<\varepsilon\left(z_{k}\right), \varepsilon\left(z_{k}\right)$ being a continuous function of z_{k} defined on $U_{k} \cap U_{i}$ such that $\left.0<\varepsilon\left(z_{k}\right)<\varepsilon\right)$. In fact, let $\left\{U_{i}^{*}\right\}$ be a covering of V_{0} such that the closure of each U_{i}^{*} is a compact subset of U_{i} and such that $\left\{U_{i}^{*} \times N_{\varepsilon}\right\}$ covers $\mathcal{W} \mid N_{\varepsilon}=\pi^{-1}\left(N_{\varepsilon}\right)$. Moreover, let $\delta<\varepsilon$ be a sufficiently small positive number and let g_{i}^{*} be the restriction of g_{i} to $U_{i}^{*} \times N_{\mathrm{d}}$. Since $g_{i}\left(z_{i}, 0\right)=z_{i}$ and $t(0)=0$, we infer that g_{i}^{*} maps $U_{i}^{*} \times N_{\delta}$ into $U_{i} \times M=U_{i}$. Thus g_{i}^{*} is a holomorphic map of $U_{i}^{*} \times N_{\delta}$ into \mathfrak{V}. Moreover, (1) implies that g_{i}^{*} and g_{k}^{*} coincide on the intersection $U_{i}^{*} \times N_{\delta} \cap U_{k}^{*} \times N_{\delta}$. Consequently the collection $\left\{g_{i}^{*}\right\}$ determines a holomorphic map g^{*} of $\mathcal{W} \mid N_{\delta}=\pi^{-1}\left(N_{\delta}\right)$ into ϑ which clearly maps each fibre $\pi^{-1}(s)$ of $\mathcal{W} \mid N_{\delta}$ biregularly onto the fibre $\varpi^{-1}(t(s))$ of \mathcal{V}. This proves our theorem.

Let

$$
\begin{equation*}
\boldsymbol{t}(s)=\boldsymbol{t}_{\mathbf{1}}(s)+\boldsymbol{t}_{\mathbf{2}}(s)+\cdots+\boldsymbol{t}_{\mu}(s)+\cdots \tag{2}
\end{equation*}
$$

be the power series expansion of $t(s)$ and let

$$
\begin{equation*}
t^{\mu}(s)=t_{1}(s)+t_{2}(s)+\cdots+t_{\mu}(s) \tag{3}
\end{equation*}
$$

Moreover, let

$$
\begin{equation*}
g_{t}\left(z_{i}, s\right)=z_{i}+g_{t \mid 1}\left(z_{i}, s\right)+\cdots+g_{i \mid \mu}\left(z_{i}, s\right)+\cdots \tag{4}
\end{equation*}
$$

be the power series expansion of $g_{i}\left(z_{i}, 8\right)$ and let

$$
\begin{equation*}
g_{i}^{\mu}\left(z_{i}, s\right)=z_{i}+g_{i 11}\left(z_{i}, s\right)+\cdots+g_{i \mid \mu}\left(z_{i}, s\right) \tag{5}
\end{equation*}
$$

We remark that $g_{i \mid \mu}\left(z_{i}, s\right)$ is a homogeneous polynomial in $\left(s_{1}, s_{2}, \cdots, s_{i}\right)$ whose coefficients are vector-valued holomorphic functions of z_{i} defined on $\left\{z_{i}| | z_{i} \mid<1\right\}$. For
any vector-valued holomorphic functions $P(s), Q(s)$ in ($s_{1}, s_{2}, \ldots, s_{1}$), we indicate by writing $P(s) \overline{\bar{\mu}} Q(s)$ that the power series expansion of $P(s)-Q(s)$ in $\left(s_{1}, s_{2}, \ldots, s_{l}\right)$ contains no terms of degree $\leqslant \mu$. Clearly (1) is equivalent to the system of congruences

$$
\begin{equation*}
g_{t}^{\mu}\left(h_{i k}\left(z_{k}, s\right), s\right) \overline{\overline{\bar{\mu}}} g_{i k}\left(g_{k}^{\mu}\left(z_{k}, s\right), t^{\mu}(s)\right), \quad(\mu=0,1,2, \ldots) \tag{6}
\end{equation*}
$$

Note that the power series expansions of both sides of (6) ${ }_{\mu}$ are well-defined at each point $z_{k} \in U_{k} \cap U_{i}$.

We insert here a remark on the first cohomology group $H^{1}\left(V_{0}, \Theta_{0}\right)$ of V_{0} with coefficients in the sheaf Θ_{0} of germs of holomorphic vector fields on V_{0}. Denote the covering $\left\{U_{i}\right\}$ by \mathfrak{U}. Since each U_{i} is a Stein manifold we have the canonical isomorphism (see Cartan [1], Leray [4])

$$
\begin{equation*}
H^{1}\left(V_{0}, \Theta_{0}\right) \cong H^{1}\left(\mathfrak{l}, \Theta_{0}\right) \tag{7}
\end{equation*}
$$

Let $\left\{\theta_{i k}\right\}$ be a 1 -cocycle on $\mathfrak{l}=\left\{U_{i}\right\}$ with coefficients in Θ_{0}, i.e., a system of holomorphic vector fields $\theta_{i k}$ defined respectively on $U_{i} \cap U_{k}$ such that

$$
\begin{equation*}
\theta_{i k}=\theta_{i j}+\theta_{j k}, \quad \text { on } U_{i} \cap U_{1} \cap U_{k} . \tag{8}
\end{equation*}
$$

We write $\theta_{t k}$ explicitly in the form

$$
\theta_{i k}\left(z_{i}\right)=\left(\theta_{i k}^{1}\left(z_{i}\right), \ldots, \theta_{i k}^{\alpha}\left(z_{i}\right), \ldots, \theta_{i k}^{n}\left(z_{i}\right)\right)
$$

with reference to the system of coordinates $\left(z_{i}\right)=\left(z_{i}^{1}, \ldots, z_{i}^{\alpha}, \ldots, z_{i}^{n}\right)$. The explicit form of the cocycle condition (8) is:

$$
\theta_{i k}^{\alpha}\left(z_{i}\right)=\theta_{i j}^{\alpha}\left(z_{i}\right)+\sum_{\beta=1}^{n} \frac{\partial b_{i j}^{\alpha}\left(z_{j}\right)}{\partial z_{j}^{\beta}} \cdot \theta_{j k}^{\beta}\left(z_{j}\right),
$$

where $z_{i}=b_{i j}\left(z_{j}\right)$. Using matrix notation we write this in the form

$$
\theta_{t k}\left(z_{i}\right)=\theta_{i j}\left(z_{i}\right)+B_{i j}\left(z_{j}\right) \cdot \theta_{j k}\left(z_{j}\right), \quad\left(z_{i}=b_{i j}\left(z_{j}\right)\right),
$$

where $B_{i j}\left(z_{j}\right)$ denotes the $n \times n$ matrix

$$
\begin{gathered}
B_{i j}\left(z_{j}\right)=\left(\frac{\partial b_{i j}^{\alpha}\left(z_{j}\right)}{\partial z_{j}^{\beta}}\right)_{\substack{\alpha-1,2, \ldots, n \\
\beta-1,2, \ldots, n}} \\
\beta_{i k r}\left(z_{i}\right)=\left.\frac{\partial g_{i k}\left(z_{k}, t\right)}{\partial t_{r}}\right|_{t-0}, \quad \text { where } z_{i}=b_{i k}\left(z_{k}\right),
\end{gathered}
$$

Letting
we obtain a 1-cocycle $\left\{\beta_{k k r}\left(z_{i}\right)\right\}$ on $\mathfrak{U}=\left\{U_{i}\right\}$ with coefficients in Θ_{0}. For any tangent vector

$$
v=\sum_{r=1}^{m} v_{r} \frac{\partial}{\partial t_{r}}
$$

of M at 0 , the infinitesimal deformation $\varrho_{0}(v) \in H^{1}\left(V_{0}, \Theta_{0}\right)$ is, by definition, the cohomology class of the 1 -cocycle

$$
\begin{equation*}
\left\{\sum_{r=1}^{m} v_{r} \beta_{t k r}\left(z_{i}\right)\right\} . \tag{9}
\end{equation*}
$$

By hypothesis, $\underline{o}_{0}:\left(T_{M}\right)_{0} \rightarrow H^{1}\left(V_{0}, \Theta_{0}\right)$ is surjective. In view of the canonical isomorphism (7), we infer therefore that any 1 -cocycle $\left\{\theta_{i k}\left(z_{i}\right)\right\}$ is cohomologous to a linear combination of $\left\{\beta_{i k r}\left(z_{i}\right)\right\}, r=1,2, \ldots, m$. In other words, for any l-cocycle $\left\{\theta_{i k}\left(z_{i}\right)\right\}$, we can find constants $\gamma_{1}, \ldots, \gamma_{r}, \ldots, \gamma_{m}$ and holomorphic vector fields

$$
\theta_{i}\left(z_{i}\right)=\left(\theta_{i}^{1}\left(z_{i}\right), \ldots, \theta_{i}^{\alpha}\left(z_{i}\right), \ldots, \theta_{i}^{n}\left(z_{i}\right)\right)
$$

defined respectively on U_{i} such that

$$
\begin{equation*}
\sum_{r=1}^{m} \gamma_{r} \beta_{i k r}\left(z_{i}\right)+B_{i k}\left(z_{k}\right) \cdot \theta_{k}\left(z_{k}\right)-\theta_{i}\left(z_{i}\right)=\theta_{i k}\left(z_{i}\right) \tag{10}
\end{equation*}
$$

where $z_{i}=b_{i k}\left(z_{k}\right)$.
We may assume that $\beta_{i k r}\left(z_{i}\right)$ and $B_{i k}\left(z_{k}\right)$ are uniformly bounded:

$$
\begin{equation*}
\left|\beta_{i k r}\left(z_{i}\right)\right|<K_{1}, \quad\left|B_{i k}\left(z_{k}\right)\right|<K_{1}, \tag{11}
\end{equation*}
$$

where $\left|B_{i k}\left(z_{k}\right)\right|$ denotes the usual norm of the matrix $B_{i k}\left(z_{k}\right)$. For any 1-cocycle $\sigma=\left\{\theta_{i k}\left(z_{i}\right)\right\}$, we define the norm $\|\sigma\|$ of σ by

$$
\|\sigma\|=\max _{i, k} \sup _{z_{i}}\left|\theta_{i k}\left(z_{i}\right)\right| .
$$

Lemma 1. For any l-cocycle $\sigma=\left\{\theta_{i k}\left(z_{i}\right)\right\}$, we can find γ_{r} and $\theta_{1}\left(z_{i}\right)$ satisfying (10) such that

$$
\begin{equation*}
\left|\gamma_{r}\right|<K_{2} \cdot\|\sigma\|, \quad\left|\theta_{i}\left(z_{i}\right)\right|<K_{2} \cdot\|\sigma\|, \tag{12}
\end{equation*}
$$

where K_{2} is a positive constant which is independent of σ.
Proof. We define

$$
\iota(\sigma)=\inf \max \left\{\left|\gamma_{r}\right|, \sup _{z_{i}}\left|\theta_{i}\left(z_{i}\right)\right|\right\}
$$

where inf is taken with respect to all solutions $\left\{\gamma_{r}, \theta_{i}\left(z_{i}\right)\right\}$ of the equations (10). It suffices to prove the existence of a constant K_{2} such that

$$
\iota(\sigma)<K_{2} \cdot\|\sigma\| .
$$

Suppose that such a constant K_{2} does not exist. Then we can find a sequence $\sigma^{(1)}, \sigma^{(2)}, \ldots, \sigma^{(v)}, \ldots$ of 1-cocycles $\sigma^{(v)}=\left\{\theta_{i k}^{(v)}\left(z_{i}\right)\right\}$ such that

$$
\iota\left(\sigma^{(\nu)}\right)=1, \quad\left\|\sigma^{(\nu)}\right\|<\frac{1}{v}
$$

$\iota\left(\sigma^{(\nu)}\right)=1$ implies that there exist $\gamma_{r}^{(\nu)}, \theta_{i}^{(\nu)}\left(z_{i}\right)$ satisfying

$$
\begin{gather*}
\sum_{r=1}^{m} \gamma_{r}^{(v)} \beta_{i k r}\left(z_{i}\right)+B_{i k}\left(z_{k}\right) \theta_{k}^{(v)}\left(z_{k}\right)-\theta_{i}^{(v)}\left(z_{i}\right)=\theta_{i k}^{(v)}\left(z_{i}\right) \tag{13}\\
\left|\gamma_{r}^{(v)}\right|<2, \quad\left|\theta_{i}^{(v)}\left(z_{i}\right)\right|<2 \tag{14}
\end{gather*}
$$

where $z_{i}=b_{i k}\left(z_{k}\right)$. Hence, replacing $\sigma^{(1)}, \sigma^{(2)}, \ldots$ by a suitable subsequence if necessary, we may suppose that

$$
\begin{gathered}
\gamma_{r}=\lim _{r \rightarrow \infty} \gamma_{r}^{(\nu)} \\
\theta_{i}\left(z_{i}\right)=\lim _{r \rightarrow \infty} \theta_{i}^{(\nu)}\left(z_{i}\right)
\end{gathered}
$$

exist, where the convergence $\theta_{i}^{(\nu)}\left(z_{i}\right) \rightarrow \theta_{i}\left(z_{i}\right)$ is uniform on each compact subset of U_{i} and $\theta_{i}\left(z_{i}\right)$ is holomorphic on U_{i}. Since

$$
\begin{equation*}
\left|\theta_{i k}^{(v)}\left(z_{i}\right)\right| \leqslant\left\|\sigma^{(\nu)}\right\| \rightarrow 0(\nu \rightarrow \infty) \tag{15}
\end{equation*}
$$

we obtain from (13) the equality

$$
\begin{equation*}
\sum_{r=1}^{m} \gamma_{r} \beta_{i k r}\left(z_{i}\right)+B_{t k}\left(z_{k}\right) \theta_{k}\left(z_{k}\right)-\theta_{i}\left(z_{i}\right)=0 \tag{16}
\end{equation*}
$$

Let $\left\{U_{i}^{*}\right\}$ be a covering of V_{0} such that the closure of each U_{i}^{*} is a compact subset of U_{i}. For each point $z_{i} \in U_{i}$ there exists at least one U_{k}^{*} which contains $z_{k}=b_{k i}\left(z_{i}\right)$. Hence we infer from (13) and (15) that $\theta_{i}^{(\nu)}\left(z_{i}\right)$ converges to $\theta_{i}\left(z_{i}\right)$ uniformly on the whole of U_{i}.

Letting

$$
\gamma_{r}^{\prime}=\gamma_{r}^{(v)}-\gamma_{r}, \quad \theta_{i}^{\prime}\left(z_{i}\right)=\theta_{i}^{(v)}\left(z_{i}\right)-\theta_{i}\left(z_{i}\right)
$$

for a sufficiently larger integer γ, we have therefore

$$
\left|\gamma_{r}^{\prime}\right|<\frac{1}{2}, \quad\left|\theta_{i}^{\prime}\left(z_{i}\right)\right|<\frac{1}{2}
$$

while we infer from (13) and (16) that

$$
\sum_{r=1}^{m} \gamma_{r}^{\prime} \beta_{i k r}\left(z_{i}\right)+B_{i k}\left(z_{k}\right) \theta_{k}^{\prime}\left(z_{k}\right)-\theta_{i}^{\prime}\left(z_{i}\right)=\theta_{i k}^{(v)}\left(z_{i}\right)
$$

This contradicts with $\iota\left(\sigma^{(\nu)}\right)=1$, q.e.d.
Now we construct $t^{\mu}(s)$ and $g_{i}^{\mu}\left(z_{i}, s\right)$ satisfying (6) by induction on μ. It follows from the identity

$$
h_{i k}\left(z_{k}, 0\right)=b_{i k}(z)=g_{i k}\left(z_{k}, 0\right)
$$

that $t^{0}(s)=0$ and $g_{i}^{0}\left(z_{i}, s\right)=z_{i}$ satisfy $(6)_{0}$. Suppose therefore that $t^{\mu-1}(s)$ and $g_{i}^{\mu-1}\left(z_{i}, s\right)$ satisfying $(6)_{\mu-1}$ are already determined. We define a homogeneous polynomial $\Gamma_{i k \mid \mu}\left(z_{i}, s\right)$ of degree μ in $\left(s_{1}, s_{2}, \ldots, s_{l}\right)$, whose coefficients are vector-valued holomorphic functions of z_{i} defined on $U_{i} \cap U_{k}$, by the congruence

$$
\Gamma_{i k \mid \mu}\left(z_{i}, s\right) \overline{\bar{\mu}} g_{i}^{\mu-1}\left(h_{i k}\left(z_{k}, s\right), s\right)-g_{i k}\left(g_{k}^{\mu-1}\left(z_{k}, s\right), t^{\mu-1}(s)\right)
$$

where $z_{i}=b_{i k}\left(z_{k}\right)$.
Lemma 2. We have the identity

$$
\begin{equation*}
\Gamma_{i k \mid \mu}\left(z_{i}, s\right)=\Gamma_{i j \mid \mu}\left(z_{i}, s\right)+B_{i j}\left(z_{j}\right) \cdot \Gamma_{j k \mid \mu}\left(z_{j}, s\right) \tag{17}
\end{equation*}
$$

where $z_{i}=b_{i j}\left(z_{j}\right)$.
Proof. For simplicity let $\Gamma_{i k \mid \mu}=\Gamma_{i k \mid \mu}\left(z_{i}, s\right), \Gamma_{i j \mid \mu}=\Gamma_{i j \mid \mu}\left(z_{i}, s\right)$ and $\Gamma_{j k \mid \mu}=\Gamma_{j k \mid \mu}\left(z_{j}, s\right)$, where $z_{i}=b_{i j}\left(z_{j}\right)=b_{i k}\left(z_{k}\right), z_{j}=b_{\text {gk }}\left(z_{k}\right)$. Since

$$
g_{i k}\left(z_{k}, t\right)=g_{i j}\left(g_{j k}\left(z_{k}, t\right), t\right),
$$

we have

$$
\Gamma_{i k \mid \mu} \equiv \bar{\beta}_{\boldsymbol{\mu}}^{\mu-1}\left(h_{i k}\left(z_{k}, s\right), s\right)-g_{i j}\left(g_{j k}\left(g_{k}^{\mu-1}\left(z_{k}, s\right), t^{\mu-1}(s)\right), t^{\mu-1}(s)\right)
$$

Using

$$
g_{j k}\left(g_{k}^{\mu-1}\left(z_{k}, s\right), t^{\mu-1}(s)\right) \underset{\bar{\mu}}{\equiv} g_{j}^{\mu-1}\left(h_{j k}\left(z_{k}, s\right), s\right)-\Gamma_{j k \mid \mu},
$$

we get

$$
g_{i j}\left(g_{j k}\left(g_{k}^{\mu-1}\left(z_{k}, s\right), t^{\mu-1}(s)\right), t^{\mu-1}(s)\right) \equiv g_{i j}\left(g^{\mu-1}\left(h_{j k}\left(z_{k}, s\right), s\right), t^{\mu-1}(s)\right)-B_{i j}\left(z_{j}\right) \cdot \Gamma_{j k \mid \mu}
$$

since

$$
g_{j}^{\mu-1}\left(h_{j k}\left(z_{k}, 0\right), 0\right)=b_{j k}\left(z_{k}\right)=z_{j}
$$

Hence we obtain

$$
\Gamma_{i k[\mu} \overline{\bar{\mu}} g_{i}^{\mu-1}\left(h_{i k}\left(z_{k}, s\right), s\right)-g_{i j}\left(g_{j}^{\mu-1}\left(h_{j k}\left(z_{k}, s\right), s\right), t^{\mu-1}(s)\right)+B_{i j}\left(z_{j}\right) \cdot \Gamma_{j k \mid \mu}
$$

Now, using $h_{i k}\left(z_{k}, s\right)=h_{i j}\left(h_{j k}\left(z_{k}, s\right), s\right)$, we get

$$
\begin{aligned}
g_{i}^{\mu-1}\left(h_{i k}\left(z_{k}, s\right), s\right)-g_{i j}\left(g_{j}^{\mu-1}\left(h_{j k}\left(z_{k}, s\right), s\right), t^{\mu-1}(s)\right)=g_{i}^{\mu-1}\left(h_{i j}\left(h_{j k}\left(z_{k}, s\right), s\right), s\right) \\
\quad-g_{i j}\left(g_{j}^{\mu-1}\left(h_{j k}\left(z_{k}, s\right), s\right), t^{\mu-1}(s)\right) \equiv \Gamma_{\mu} \Gamma_{i j \mu}\left(b_{i j}\left(h_{j k}\left(z_{k}, s\right)\right), s\right) \underset{\mu}{\overline{\Gamma_{i j}, \mu}}\left(b_{i k}\left(z_{k}\right), s\right) .
\end{aligned}
$$

Consequently we obtain

$$
\Gamma_{i k \mid \mu} \equiv \Gamma_{\mu} \Gamma_{i j \mid \mu}+B_{i j}\left(z_{j}\right) \cdot \Gamma_{j k \mid \mu}, \quad \text { q.e.d. }
$$

Our purpose is to determine

$$
t^{\mu}(s)=t^{\mu-1}(s)+t_{\mu}(s), \quad g_{i}^{\mu}\left(z_{i}, s\right)=g_{i}^{\mu-1}\left(z_{i}, s\right)+g_{t \mid \mu}(z, s)
$$

which satisfy (6) ${ }_{\mu}$. Letting

$$
t_{\mu}(s)=\left(t_{1 \mid \mu}(s), \ldots, t_{\mid \mu}(s), \ldots, t_{m \mid \mu}(s)\right)
$$

we have

$$
\begin{aligned}
g_{i k}\left(g_{k}^{\mu-1}\left(z_{k}, s\right)+\right. & \left.g_{k \mid / k}\left(z_{k}, s\right), t^{\mu-1}(s)+t_{\mu}(s)\right) \\
& \equiv g_{j k}\left(g_{k}^{\mu-1}\left(z_{k}, s\right), t^{\mu-1}(s)\right)+B_{i k}\left(z_{k}\right) \cdot g_{k \mid \mu}\left(z_{k}, s\right)+\sum_{r=1}^{m} t_{r \mid \mu}(s) \beta_{i k \mid r}\left(z_{j}\right)
\end{aligned}
$$

where $z_{i}=b_{t k}\left(z_{k}\right)$, while

$$
g_{i \mid \mu}\left(h_{i j}\left(z_{k}, s\right), s\right) \underset{\mu}{\bar{\mu}} g_{t \mid \mu}\left(z_{i}, s\right) .
$$

Therefore, (6) ${ }_{\mu}$ is equivalent to the equalities

$$
\begin{equation*}
\sum_{r=1}^{m} t_{r \mid \mu}(s) \beta_{t k \mid r}\left(z_{i}\right)+B_{i k}\left(z_{k}\right) \cdot g_{k \mid \mu}\left(z_{k}, s\right)-g_{t \mid \mu}\left(z_{i}, s\right)=\Gamma_{i k \mid \mu}\left(z_{i}, s\right) . \tag{18}
\end{equation*}
$$

Now the formula (17) shows that $\left\{\Gamma_{i k j \mu}\left(z_{i}, s\right)\right\}$ is a homogeneous polynomial in s of degree μ whose coefficients form a 1 -cocycle on $\mathfrak{U}=\left\{U_{i}\right\}$ with coefficients in Θ_{0}. Consequently, by the above remark (see (10)), we can find homogeneous polynomials $t_{r \mid \mu}(s)$ with constant coefficients and homogeneous polynomials $g_{i \mid \mu}\left(z_{i}, s\right)$ whose coefficients are vector-valued holomorphic functions on U_{i} which satisfy (18). This completes our inductive construction of $t^{\mu}(s)$ and $g_{i}^{\mu}\left(z_{i}, s\right)$.

Now we prove that, if we choose proper solutions $t_{r \mid \mu}(s), g_{i \mid \mu}\left(z_{i}, s\right)$ of the equation (18) in each step of the above construction, the power series

$$
t(s)=t_{1}(s)+t_{2}(s)+\cdots+t_{\mu}(s)+\cdots, \quad g_{i}\left(z_{i}, s\right)=z_{i}+g_{i \mid 1}\left(z_{i}, s\right)+\cdots+g_{t \mid \mu}\left(z_{i}, s\right)+\cdots
$$

converge absolutely and uniformly for $|s|<\varepsilon$ provided that $\varepsilon>0$ is sufficiently small.

Consider a power series
whose coefficients $f_{h_{1} h_{1} \ldots h_{l}}$ are vectors and a power series
with non-negative coefficients $a_{h_{1} h_{2} \ldots h_{v}}$. We indicate by writing $f(s)<a(s)$ that

$$
\left|f_{h_{1} n_{3} \ldots n_{l}}\right|<a_{n_{1} n_{2} \ldots h_{l}}
$$

Let

$$
A(s)=\frac{b}{64 c} \sum_{\mu=1}^{\infty} \frac{1}{\mu^{2}} c^{\mu}\left(s_{1}+s_{2}+\cdots+s_{l}\right)^{\mu}
$$

We remark that

$$
\begin{equation*}
A(s)^{v}<\left(\frac{b}{c}\right)^{v-1} A(s), \quad \nu=2,3,4, \ldots \tag{19}
\end{equation*}
$$

Let

$$
z_{k}+y=\left(z_{k}^{1}+y_{1}, \ldots, z_{k}^{\alpha}+y_{\alpha}, \ldots, z_{k}^{n}+y_{n}\right)
$$

We may assume that the power series expansion of $g_{t k}\left(z_{k}+y, t\right)$ in $n+m$ variables $y_{1}, \ldots, y_{n}, t_{1}, \ldots, t_{m}$ satisfies

$$
\begin{equation*}
g_{t k}\left(z_{k}+y, t\right)-b_{i k}\left(z_{k}\right)<A_{0}(y, t), \quad z_{k} \in U_{k} \cap U_{t} \tag{20}
\end{equation*}
$$

where

$$
A_{0}(y, t)=\frac{b_{0}}{c_{0}} \sum_{\mu=1}^{\infty} c_{0}^{\prime \prime}\left(y_{1}+\cdots+y_{n}+t_{1}+\cdots+t_{m}\right)^{\mu}
$$

Moreover, we may assume that

$$
\begin{equation*}
h_{i k}\left(z_{k}, s\right)-b_{i k}\left(z_{k}\right)<A_{0}(s), \quad z_{k} \in U_{k} \cap U_{i} \tag{21}
\end{equation*}
$$

where $A_{0}(s)$ is the function $A(s)$ in which the constants b, c are replaced by b_{0}, c_{0}.
For our purpose it suffices to derive the estimates

$$
\begin{equation*}
t^{\mu}(s)<A(s), \quad g_{i}^{\mu}\left(z_{i}, s\right)-z_{i}<A(s) \tag{22}
\end{equation*}
$$

by induction on μ provided that the constants b, c are chosen properly. For $\mu=1$ the estimates $(22)_{1}$ are obvious if b is sufficiently large. Assume therefore that estimates (22) μ_{-1} are established for some μ. We have

$$
\Gamma_{i k \mid \mu}\left(z_{i}, s\right) \underset{\mu}{\bar{\mu}} g_{i}^{\mu-1}\left(h_{i k}\left(z_{k}, s\right), s\right)-g_{i k}\left(g_{k}^{\mu-1}\left(z_{k}, s\right), t^{\mu-1}(s)\right)
$$

where $z_{i}=b_{t k}\left(z_{k}\right)$. Letting $\quad U_{i}^{\delta}=\left\{z_{i}| | z_{i} \mid<1-\delta\right\}$,
we first estimate $\Gamma_{i k \mid \mu}\left(z_{i}, s\right)$ for $z_{i} \in U_{i}^{\delta} \cap U_{k}$, where δ is a sufficiently small positive number such that $\left\{U_{i}^{\delta}\right\}$ forms a covering of V_{0}. Set

$$
G_{i}\left(z_{i}, s\right)=g_{i}^{\mu-1}\left(z_{i}, s\right)-z_{i}
$$

for simplicity and expand $G_{i}\left(z_{i}+y, s\right)$ into power series in $y_{1}, \ldots, y_{n}, s_{1}, \ldots, s_{1}$. Since by our hypothesis,

$$
G_{i}\left(z_{i}, s\right)<A(s), \text { for }\left|z_{i}\right|<1 \text {, }
$$

we get

$$
G_{i}\left(z_{i}+y, s\right)-G_{i}\left(z_{i}, s\right)<A(s) \sum \frac{y_{1}^{y_{1}} y_{2}^{y_{1}} \ldots y_{n}^{y_{n}}}{\delta_{1}^{y_{1}+v_{1}+\cdots+\eta_{n}}}, \quad \text { for }\left|z_{i}\right|<1-\delta,
$$

where \sum is extended over all non-negative integers $\nu_{1}, \nu_{2}, \ldots, \nu_{n}$ with $\nu_{1}+\nu_{2}+\cdots+v_{n} \geqslant 1$. Letting $y=h_{t k}\left(z_{k}, s\right)-b_{i k}\left(z_{k}\right), z_{t}=b_{t k}\left(z_{k}\right)$ and using (21), we obtain from this

$$
G_{i}\left(h_{i k}\left(z_{k}, s\right), s\right)-G_{i}\left(z_{i}, s\right)<A(s)\left\{\left(\sum_{v=0}^{\infty} \delta^{-\nu} A_{0}(s)^{v}\right)^{n}-1\right\}, \quad \text { for } z_{i} \in U_{i}^{\delta} \cap U_{k} .
$$

Since $A_{0}(s)^{p}<\left(b_{0} / c_{0}\right)^{p-1} A_{0}(s)$ for $\nu \geqslant 2$, we have

$$
\frac{A_{0}(s)^{v}}{\delta^{v}}<\left(\frac{b_{0}}{c_{0} \delta}\right)^{v-1} \cdot \frac{A_{0}(s)}{\delta}, \quad \text { for } v \geqslant 2
$$

We may assume that

$$
\begin{equation*}
\frac{b_{0}}{c_{0} \delta}<\frac{1}{2} \tag{23}
\end{equation*}
$$

since (20) and (21) remain valid if we replace c_{0} by a larger constant. Hence we have

$$
\frac{A_{0}(s)^{v}}{\delta^{v}}<\frac{A_{0}(s)}{2^{v-1} \delta}, \quad \text { for } v \geqslant 2 .
$$

Using this we obtain

$$
G_{i}\left(h_{i k}\left(z_{k}, s\right), s\right)-G_{i}\left(z_{i}, s\right)<A(s)\left\{\left(1+\frac{2 A_{0}(s)}{\delta}\right)^{n}-1\right\}<\frac{K_{0}}{\delta} A(s) A_{0}(s),
$$

or

$$
\begin{equation*}
g_{i}^{\mu-1}\left(h_{i k}\left(z_{k}, s\right), s\right)-h_{i k}\left(z_{k}, s\right)-g_{i}^{\mu-1}\left(z_{i}, s\right)+z_{i}<\frac{K_{0}}{\delta} A(s) A_{0}(s), \quad \text { for } z_{i} \in U_{i}^{d} \cap U_{k} \tag{24}
\end{equation*}
$$

where $z_{i}=b_{i k}\left(z_{k}\right)$ and where K_{0} is a constant depending only on n. Assuming that

$$
\begin{equation*}
b>b_{0}, \quad c>c_{0} \tag{25}
\end{equation*}
$$

we have

$$
A_{0}(s)<\frac{b_{0}}{b} \cdot A_{0}(s)
$$

and therefore

$$
A(s) A_{0}(s)<\frac{b_{0}}{b} A(s)^{2}<\frac{b_{0}}{c} A(s)
$$

Consequently we infer from (24) and (21) that

$$
\begin{equation*}
g_{i}^{\mu-1}\left(h_{t k}\left(z_{k}, s\right), s\right)-g_{i}^{\mu-1}\left(z_{i}, s\right) \&\left(\frac{K_{0} b_{0}}{\delta c}+\frac{b_{0}}{b}\right) A(s), \quad \text { for } z_{i} \in U_{i}^{\delta} \cap U_{k} . \tag{26}
\end{equation*}
$$

For any power series

$$
f(s)=f_{0}+f_{1}(s)+\cdots+f_{\mu}(s)+\cdots
$$

we denote by $[f(s)] \mu$ the term $f_{\mu}(s)$ of degree μ. Then we get from (26)

$$
\begin{equation*}
\left[g_{t}^{\mu-1}\left(h_{t k}\left(z_{k}, s\right), s\right)\right]_{\mu} \ll\left(\frac{K_{0} b_{0}}{\delta c}+\frac{b_{0}}{b}\right) A(s) \quad \text { for } z_{k} \in U_{k} \cap U_{i}^{\delta} \tag{27}
\end{equation*}
$$

Next we estimate $g_{i k}\left(g_{k}^{\mu-1}\left(z_{k}, s\right), t^{\mu-1}(s)\right)$. We expand $g_{i k}\left(z_{k}+y, t\right)$ into power series in $y_{1}, \ldots, y_{n}, t_{1}, \ldots, t_{m}$ and let

$$
L_{i k}\left(z_{k}, y, t\right)=\left[g_{t k}\left(z_{k}+y, t\right)\right]_{1}
$$

be the linear term of the power series. Then we have, by (20),

$$
g_{t k}\left(z_{k}+y, t\right)-b_{t k}\left(z_{k}\right)-L_{i k}\left(z_{k}, y, t\right)<\frac{b_{0}}{c_{0}} \sum_{\mu=2}^{\infty} c_{0}^{\mu}\left(y_{1}+\cdots+y_{n}+t_{1}+\cdots+t_{m}\right)^{\mu}
$$

Letting $y=g_{k}^{\mu-1}\left(z_{k}, s\right)-z_{k}, t=t^{\mu-1}(s)$ and using our inductive hypothesis (22) $)_{\mu-1}$, we obtain from this the estimate

$$
\left[g_{i k}\left(g_{k}^{\mu-1}\left(z_{k}, s\right), t^{\mu-1}(s)\right)\right]_{\mu}<\frac{b_{0}}{c_{0}} \sum_{\mu-2}^{\infty} c_{0}^{\mu}(m+n)^{\mu} A(s)^{\mu}
$$

Assume that

$$
\begin{equation*}
\frac{(m+n) b c_{0}}{c}<\frac{1}{2} . \tag{28}
\end{equation*}
$$

Then we have

$$
\sum_{\mu=2}^{\infty} c_{0}^{\mu}(m+n)^{\mu} A(s)^{\mu} \ll \sum_{\mu=2}^{\infty} c_{0}^{\mu}(m+n)^{\mu}\left(\frac{b}{c}\right)^{\mu-1} A(s) \ll \frac{2(m+n)^{2} b c_{0}^{2}}{c} \cdot A(s),
$$

and therefore

$$
\left.\left[g_{i k}\left(g_{k}^{\mu-1}\left(z_{k}, s\right), t^{\mu-1}(s)\right)\right]\right]_{\mu}<\frac{2(m+n)^{2} b b_{0} c_{0}}{c} \cdot A(s)
$$

Combining this with (27) we obtain

$$
\begin{equation*}
\Gamma_{i k \mid \mu}\left(z_{i}, s\right)<c^{*} \cdot A(s), \quad \text { for } z_{i} \in U_{i}^{\delta} \cap U_{k} \tag{29}
\end{equation*}
$$

where

$$
c^{*}=\frac{K_{0} b_{0}}{\delta c}+\frac{b_{0}}{b}+\frac{2(m+n)^{2} b b_{0} c_{0}}{c}
$$

Now we recall that the $\Gamma_{i k \mid \mu}\left(z_{i}, s\right)$ satisfy the cocycle condition (17). In particular we have

$$
\Gamma_{i k \mid \mu}\left(z_{i}, s\right)=B_{i k}\left(z_{k}\right) \cdot \Gamma_{k i \mid \mu}\left(z_{k}, s\right) .
$$

Combining this with (11) and (29) we get

$$
\begin{equation*}
\Gamma_{i k!\mu}\left(z_{i}, s\right)<c^{*} K_{1} A(s), \quad \text { for } z_{i} \in U_{i} \cap U_{k}^{\delta} \tag{30}
\end{equation*}
$$

For an arbitrary point $z_{i} \in U_{i} \cap U_{k}$ there exists one U_{j}^{δ} which contains z_{i}. Therefore we infer from (17), (29) and (30) that

$$
\Gamma_{i k_{j} \mu}\left(z_{i}, s\right)<2 c^{*} K_{1} A(s),
$$

and consequently, by Lemma 1 , we can choose solutions $t_{r \mid \mu}(s)$ and $g_{t \mid \mu}\left(z_{i}, s\right)$ of the equations (18) such that

$$
t_{\mu}(s) \ll 2 c^{*} K_{1} K_{2} A(s), \quad g_{t \mid \mu}\left(z_{i}, s\right)<2 c^{*} K_{1} K_{2} A(s) .
$$

On the other hand, it is clear that, by a proper choice of the constants b and c satisfying our requirements (25), (28), we obtain

$$
2 c^{*} K_{1} K_{2}<1
$$

Consequently we obtain

$$
t_{\mu}(8)<A(s), \quad g_{t \mid \mu}\left(z_{i}, s\right)<A(s) .
$$

This proves (22) ${ }_{\mu}$, q.e.d.

References

[1]. H. Cartan, "Variétes analytiques complexes et cohomologie". Colloque sur les fonctions des plusieurs variables tenu à Bruxelles, 1953, 41-55. Georges Thone, Liège; Masson et Cie, Paris, 1953.
[2]. K. Kodaira, "A theorem of completeness for differentiable families of compact complex manifolds" (to appear).
[3]. K. Kodaira \& D. C. Spencer, "On deformations of complex analytic structures, I-II". Ann. of Math., 67 (1958), 328-466.
[4]. J. Leray, "L'anneau spectral et l'anneau filtré d'homologie d'un espace locakement com. pact et d'une application continue". J. Math. Pures Appl., 29 (1950), 1-139.

