ON FREE GROUPS AND THEIR AUTOMORPHISMS

BY

ELVIRA STRASSER RAPAPORT

Stockbridge, Mass.

1. Introduction

The group A_{n} of automorphisms of a free group F_{n} on n free generators has been investigated by J. Nielsen [4]. Nielsen found generators and relations for A_{n}; it follows from his results that the elementary or t-transformations defined below generate A_{n}. Also, Nielsen found a recursive method to decide whether a given set of n elements of F_{n} generates the group. But for $n>2$ it still remained an unsolved problem to decide whether a given element of F_{n} could appear in a set of free generators of F_{n}. This problem was solved by Whitehead [6]; in a subsequent paper, Whitehead [7] proved the following powerful theorem:

Given a set of words W_{0}, \ldots, W_{k} in the generators of F_{n}, if the sum L of the lengths of these words can be diminished by applying automorphisms of F_{n} to the generators, then it can also be diminished by applying an automorphism of a preassigned finite sct of automorphisms (the so-called T-transformations defined below).

The group A_{n} is of importance for Dehn's "isomorphism problem" of group theory (Dehn, [1]). Its most significant application is furnished by Grushko's theorem (see Kurosh [2] and B. H. Neumann [3]) which shows the following: given a minimal set of n generators of a group G which is a free product of a finite number of its subgroups $H_{q}(q=1, \ldots, r)$. one can apply a transformation A of A_{n} to the generators a_{j} of G such that each of the resulting elements $A\left(a_{f}\right)$ belong to an H_{q}. The theorem of Whitehead and the theorem of Grushko have been used by Shenitzer [5] to devise tests for the free decomposability of groups with a single defining relation.

Whitehead uses difficult topological methods in proving his results. In the case where $n=3$, a purely algebraic derivation of his theorems has been given by the
author.(${ }^{1}$) The present paper contains an algebraic proof of the full Whitehead theorem and of some extensions and applications.

2. Definitions and notation

G will denote the free group $F_{n}=F\left(a_{1}, \ldots, a_{n}\right)$ on n generators.
\bar{W} will denote the inverse of the element W of G.
Superscripts e and e^{\prime} will denote +1 or -1 .
$a \rightarrow a b$ will mean that under the automorphism in question the image of the element a of G is the element $a b$ of G.

A permutation $a_{i} \rightarrow a_{k}^{e},(i, k=1, \ldots, n)$ will be denoted by p.
A simple automorphism or t-transformation, t, is an automorphism of G of the form $a_{i} \rightarrow\left(a_{i}^{e} a_{j}^{e^{\prime}}\right)^{e}, a_{k} \rightarrow a_{k}, k \neq i, i \neq j, i$ and j fixed but arbitrary.

A T-transformation is the following automorphism of G : let a, b, c, z denote fixed subsets of the generators of G and let d be a generator or the inverse of a generator, such that the sets a, b, c, d^{e} are disjoint and the set (a, b, c, z) contains every generator a_{i} of G just once. Then

$$
T\left\{\begin{array}{l}
a \rightarrow a d \\
b \rightarrow d b \\
c \rightarrow d c d \\
z \rightarrow z
\end{array}\right.
$$

is a T-transformation for every such subdivision of the generators.
The product $T_{2} T_{1}$ of two T-transformations, with $T_{1}\left(a_{i}\right)=v_{i}\left(a_{1}, \ldots, a_{n}\right)=v_{i}(a)$, $T_{2}\left(a_{i}\right)=w_{i}(a), T_{2} T_{1}\left(a_{i}\right)=v_{i}\left(w_{1}(a), \ldots, w_{n}(a)\right)$, will be given in the form

$$
T_{2} T_{1}\left\{\begin{array}{l}
a \rightarrow a d \\
b \rightarrow d b \\
c \rightarrow d c d \\
a^{\prime} \rightarrow a^{\prime} d^{\prime} \\
b^{\prime} \rightarrow d^{\prime} b^{\prime} \\
c^{\prime} \rightarrow d^{\prime} c^{\prime} d^{\prime}
\end{array}\right.
$$

with the appropriate subdivisions (a, \ldots) and $\left(a^{\prime}, \ldots\right)$ of the generators of G, and with the statements $z \rightarrow z$, and $z^{\prime} \rightarrow z^{\prime}$ omitted.
${ }^{(1)}$ E. S. Rapaport, On a theorem of J. H. C. Whitehead, Ph. D. thesis, New York University, 1955 (unpublished), sponsored by Professor Wilhelm Magnus, whose valuable aid in preparing the present paper is gratefully acknowleged.
$L(w)$ will denote the length L of the element $w=w\left(a_{1}, \ldots a_{n}\right)$ of G, defined as the sum of the absolute values of the exponents of the generators appearing in w. $L(\mathrm{l})=0$.
$L\left(w_{1}, \ldots, w_{k}\right)$ equals the sum of the lengths of the elements w_{1}, \ldots, w_{k}, by definition.
W is minimal t when $L(t(W))=L(W)$ for every t.
A is a level transformation on w if $L(A(w))=L(w)$.
A is a level transformation if $L(A(w))=L(w)$ for all the elements w in G.
$A_{1}=A_{2}$, if the automorphisms A_{1} and A_{2} of G map the generator a_{i} on the same element of G for every i.
$A_{1} \sim A_{2}$ is defined in section 6.
The element, or word, w of G modulo inner automorphisms is called the cyclic word w.

The special symbols $s, s_{i}, z(x y), z(x y),(x y z)$ are defined in section 4.1; $A(s)$ $T(s)$ in section 4.2.

An active generator under a T-transformation, T, is a generator of G whose image under T is not of length 1 , hence is not that generator itself.
A multiplier under T is the generator by which the active generators or their inverses are multiplied under T.

3. Results

The key result is theorem 1 below, proved in sections 4-9. Section 10 contains some consequences of theorem 1. Section 11 contains some applications of the method of proof used in sections 4-9.

Before stating theorem 1, I shall put it in graphic form for easy survey. Let a line between two points

mean that the words w_{1} and w_{2} of G are connected by a T-transformation: $w_{2}=T\left(w_{1}\right)$, where in the first diagram $L\left(w_{2}\right)=L\left(w_{1}\right)$, while in the second, $L\left(w_{2}\right)>L\left(w_{1}\right)$. Then the theorem asserts that if

then there exists a product $T_{k} T_{k-1} \ldots T_{1}=B$ of T-transformations such that $B\left(w_{0}\right)=w_{2}$ and the diagram for B (below) never touches the line "length of w_{1} " except at w_{2} in case $L\left(w_{2}\right)=L\left(w_{1}\right)$.
length of $w_{1}-$-- -

Theorem 1. Let $A=T_{2} T_{1}$, or $A=\bar{p} T$, such that
(1) $L\left(T_{1} w_{0}\right)>L\left(w_{0}\right)$,
(2) $L\left(A w_{0}\right) \leqslant L\left(T_{1} w_{0}\right)$,
where w_{0} is a cyclic word in G. Then there exists a factorization $B=B_{k} \ldots B_{1}$ of A such that for every intermediate word $w_{h}^{\prime}=B_{h} \ldots B_{1}\left(w_{0}\right), h<k, L\left(w_{h}^{\prime}\right)<L\left(T_{1} w_{0}\right)-{ }^{\prime} B$ is direct" - where the B_{i} are T-transformations or level transformations.

Coroleary: If w_{0} stands for a set of m words, the theorem is true.
To prove theorem 1 a means is found to characterize (generic) words w_{0} which satisfy the hypotheses above, in such a way that the properties required by the conclusion of the theorem are seen to be possessed by these words w_{0}. A properly chosen "syllable representation" of w_{0}, introduced in the sequel, leads to such a characterization.

4. Syllables and syllable representation

4.1. The word syllable will stand for a string of letters, but never a single letter, and a rule (or restriction) as to what letters may not precede or succeed it. To give a preliminary example, $(x y z) \mathfrak{u}$ designates the string of letters $x y z$ - but
not \mathfrak{u} also - whenever $x y z$ is not followed by u in a given sequence of letters $c a b \ldots x y z \ldots d ;(x y z)$ designates the string of letters $x y z$ regardless of what follows it. In these examples, the fact that no symbol stands in front of the parentheses means that any symbol is allowed to precede the syllable.

Let $w=x y z$ be a cyclic word in G, so that x is successor to z. Then I shall say that the symbol $(x y z)(z x)$ is a product of the (overlapping) syllables ($x y z$) and $(z x)$ and represents w. The product $(x y)(y z)(z x)$ also represents w.

The product $s_{1} s_{2}$ of the syllables s_{1} and s_{2} is defined when s_{1} ends with the first symbol in s_{2} read from left to right, and multiplication is juxtaposition. (The word represented by $s_{1} s_{2}$ contains this joining symbol of s_{1} and s_{2} just once.)

A word may have several such representations, but any representation in terms of a given set of syllables must conform to the given restrictions on the elements s_{i} of the set. If, for example, one has the syllables $s_{1}=(x y) z, s_{2}=(x y z), s_{3}=(z x)$, and $s_{4}=(y z)$, then $w=x y z$ is represented by $s_{2} s_{3}$ but not by $s_{1} s_{4} s_{3}$.

The reason for introducing a syllable representation is briefly as follows:
first, it turns out that it is possible to represent the (generic) word w_{0} uniquely in terms of a certain set S of syllables in such a way that the change of length of w_{0} under given T_{1} or $A=T_{2} T_{1}$ equal the sum of the changes of length of the constituent syllables of w_{0} - with "change of length of s_{i} " suitably defined and computable;
secondly, the two hypotheses of the theorem become conditions, in the form of inequalities, on the number of times certain of the syllables must occur in w_{0};
finally, these inequalities can be used to find a set of automorphisms containing B of the theorem.

At this point the following, rather trivial, yet necessarily sketchy example can be given. Let a, c, d be fixed generators of G, w_{0} an element of G, and $A=T_{2} T_{1}$ the automorphism given by $T_{1}: a \rightarrow a c, T_{2}: a \rightarrow d a$ (all other generators remaining unchanged under A). Then, $A^{\prime}=T_{1} T_{2}$ clearly equals A. Let

$$
s_{1}=(a \bar{c})^{ \pm 1}, s_{2}=(a z)^{ \pm 1}, s_{3}=(u v), s_{4}=(d a)^{ \pm 1}, s_{5}=(y a)^{ \pm 1}
$$

where y, u, v, z run through all generators and their inverses except that $s_{i} \neq s_{j}$ for $i \neq j$ and that $s_{i} \neq 1$, every i.

Let N_{i} be the number of times s_{i} occurs in w_{0}, and M_{i} the number of times s_{i} occurs in $T_{1}\left(w_{0}\right)=w_{1}$, when w_{0} and w_{1} are reduced (do not contain segments $g \vec{g}$). Suppose that
(i) $L\left(T_{1} w_{0}\right)-L\left(w_{0}\right)=N_{2}-N_{1}$,
(ii) $L\left(A w_{0}\right)-L\left(w_{1}\right)=-M_{4}+M_{5}$.

If now the hypotheses (1) and (2) of theorem 1 hold for w_{0} and A, then

$$
\begin{aligned}
\text { (1) } & N_{2}-N_{1}>0 \\
\text { (2) } & -M_{4}+M_{5} \leqslant 0
\end{aligned}
$$

It can be shown that under (i) and (ii), $N_{4}=M_{4}, M_{5}=N_{5}$ and $L\left(T_{2} w_{0}\right)-L\left(w_{0}\right)=$ $=N_{5}-N_{4}$. But then the last difference is equal or less than 0 , so that $T_{2}\left(w_{0}\right)$ is not longer than w_{0}; consequently A^{\prime} is direct, that is, A^{\prime} is a solution B of the theorem.
4.2. Next, the change of length of a syllable under an automorphism has to be defined. Let s be a syllable, $s=a_{1} a_{2} \ldots a_{j}$, where the symbols stand for, not necessarily distinct, generators or their inverses; let s be reduced. Let T be a T-transformation. The image under T of every generator a is of the form $U a V$, reduced. The words U, V may have lengths 0 . Then the image of s under T can be written as $U_{1} a_{1} V_{1} U_{2} a_{2} V_{2} \ldots U_{j} a_{j} V_{j}$, unreduced. Define $T(s)$ by

$$
\begin{equation*}
T(s)=T\left(a_{1} \ldots a_{j}\right)=a_{1} V_{1} U_{2} a_{2} V_{2} \ldots U_{j} a_{j}(\bmod 1)=W_{s}(\bmod 1) \tag{*}
\end{equation*}
$$

so that $T(s)$ is given by the word W_{s} on the right hand side after it has been reduced. This word is the image of s under T with U_{1} and V_{j} left off. For example, if $s=a b, T: b \rightarrow b c$, then $T(s)=a b$. If $T(s)$ is a syllable, then $T^{\prime}(T(s))$ is defined.

Syllables will be used as the building blocks of a cyclic word; in the latter every symbol has predecessors and successors; thus s will have a predecessor in w_{0}, hence U_{1} will have one in $T\left(w_{0}\right)$ unreduced; these predecessors will end respectively with a_{1} and $U_{1} a_{1}$. Therefore, U_{1} will appear just once in the product of the $T\left(s_{i}\right)$ intended to represent $T\left(w_{0}\right)$. Similarly for V_{j}. This shows that if w_{0} is represented by the product $\prod_{s_{i} \subset w_{0}} s_{i}$ of a subset of a set S of syllables s_{i}, then, with this definition of $T\left(s_{i}\right)$, the product $\prod_{s \subset w_{0}} W_{s}$ is defined and represents a (generally unreduced) form of $T\left(w_{0}\right)$.
4.3. Next, a set S of syllables must be found which is capable to represent every group element uniquely and satisfies requirements that will justify the use the set is put to. This use will consist in replacing w_{0} by its representation Πs_{i} in calculations of length and changes of length under certain products $T_{2} T_{1}$. The requirements can be read off the wording of the theorem as follows:

Suppose $A=T_{2} T_{1}$ and $A^{\prime}=\prod_{1}^{k} T_{i}^{\prime}$ given and that $T_{i}^{\prime}=B_{i}$ is claimed for each $i \leqslant k$ (section 3). If for the moment X stands for any one of the automorphisms $T_{1}, A, \prod_{1}^{r} T_{i}^{\prime}, \quad r=1,2$, then $\prod s_{i}$ can replace w_{0} in calculations of changes of length $L\left(X w_{0}\right)-L\left(w_{0}\right)$ if the condition (assuming $X\left(s_{i}\right)$ defined)

$$
\begin{equation*}
L\left(X w_{0}\right)-L\left(w_{0}\right)=L\left(X\left(\prod_{s_{i} \subset w_{0}} s_{i}\right)\right)-L\left(\prod_{s_{i} \subset w_{0}} s_{i}\right)=\sum_{s_{i} \subset w_{0}} L\left(X\left(s_{i}\right)\right)-\sum_{s_{i} \subset w_{0}} L\left(s_{i}\right) \tag{C}
\end{equation*}
$$

is satisfied. A method of constructing such a set is given in my doctoral dissertation (see section 1 of the present paper) for $G=F_{3}$; the method takes its departure from the 15 pairs of symbols $x y \neq 1$ that can be built out of generators and their inverses. It is seen there that the construction can be carried out for any $G=\boldsymbol{F}_{n}$ provided only that the set of all such pairs can be written down explicitly. In order to utilize this fact, I shall, in sections 5 and 6, "standardize" the generators and the automorphisms $T_{2} T_{1}$ in a way that will allow writing down the complete set of pairs needed for (indeterminate) $n \leqslant \infty$ as well as the construction of a single set $S o_{f}$ syllables usable for each of the suitably chosen representatives of the equivalence classes of section 6 .
4.4. Suppose that a set S of syllables has the property of affording unique syllable representation for every element of G and that for a certain set $\left(T_{k}\right)$ of T transformations
every $T_{k}\left(s_{i}\right)$ in the set $T_{k}(S)$ has the same terminal symbols as does $s_{i} ;$;
that is $s_{i}=(x \alpha y)$ implies $T_{k}\left(s_{i}\right)=(x \beta y)$ reduced.
By means of the lemma below I shall show that (C^{\prime}) implies (C), for $X=T$ or $T T_{k}$, where T is any T-transformation. Then if such a set S is given, together with $\left(T_{k}\right)$, $\left(C^{\prime}\right)$ is a means of verifying (C).

Syllable representation by means of a set S is unique if every combination of symbols, that is, every word w, can be written in just one way as a product of syllables from S; this will hold if every pair of consecutive symbols $x y$ that can be formed in $F_{n}=G, x y \neq 1$, occurs in the set either just once with no restriction on predecessors or successors, or else just once for each possible choice of the latter symbols.

The set S given in section 7 affords unique representation and satisfies (C^{\prime}) with respect to every automorphism actually used in computations of length in section 8.

The verification of this is left to the reader; it is greatly simplified by the lemma below and the standardization in section 5.

Lemma. Any set S of syllables which can represent all elements of G uniquely has the property (C) with respect to a single T-transformation, T.
In other words, changes of length in w_{0} under T are just those occurring in the syllables s_{i} of S, contained in w_{0}, transformed as separate words, albeit by the rule ${ }^{*}$) of section 4.2.

Proof. Take $T\left(w_{0}\right)$ unreduced; if a symbol introduced by T into w_{0} does not cancel out as $T\left(w_{0}\right)$ is reduced, it will appear in just one $T\left(s_{i}\right)$; this follows from the definition of $T\left(s_{i}\right)$. Thus, all that needs proving is that if the symbol cancels in $T\left(w_{0}\right)$, it cancels in just one $T\left(s_{i}\right)$. Let $W=T\left(w_{0}\right)$ unreduced; let w_{0} be reduced.
I. If x is a generator, then W contains no segment $x \bar{x} x$. For suppose the contrary:

$$
W=\cdots y x \tilde{x}^{k} x z \cdots
$$

Then the portions $x \bar{x}$ and $\bar{x} x$ of $x \bar{x}^{k} x$ were not in w_{0}, and as $T\left(x^{e}\right)=x x^{e}$ is im. possible, the symbols x were not in w_{0}. Then $T(y)=\cdots y x$ and $T(z)=x z \cdots$, which is impossible. It follows from this that if $s_{1}=(\cdots \bar{x}), s_{2}=(\bar{x} \cdots)$ and \bar{x} cancels in s_{1}, it cannot cancel in s_{2}.
II. To show that some symbol in s_{2} above cannot cancel some symbol in s_{1}, one needs to show that in $W=\cdots E \cdots E \cdots$, where E reduces to the empty word, $L(E)=2$ is always true. Suppose

$$
W=\cdots y \bar{x} x z \cdots u \bar{u} \cdots
$$

so that $\bar{x} x$ is not in w_{0}, hence \bar{x}, say, is not in w_{0}. Then $T(y)=\cdots y \bar{x}$, and so \bar{x} is the multiplier in T, y is active in T, and so $u \bar{u}=x^{e} \bar{x}^{e}$. If now $E \neq \bar{x} x$, drop all pairs $x \bar{x}, \bar{x} x$ in E and call the result E^{\prime}. Then E^{\prime} is of the form $\ldots z \bar{z} \ldots$ since $E^{\prime}=1$. If $z \bar{z}$ was in E, then $z \bar{z}=x \bar{x}$ or $\bar{x} x$, and so cannot be in E^{\prime}, hence $z \bar{z} \notin E$. But then

$$
E=\cdots z(\bar{x} x)^{k} \bar{z} \cdots
$$

and because of I. above, $k=1$, with

$$
W=\cdots z \bar{x} x \bar{z} \cdots
$$

and $\bar{x} x \not \ddagger w_{0}$. Suppose $\bar{x} \ddagger w_{0}$; then $T(z)=\cdots z \bar{x}, T(\bar{z})=x \bar{z} \cdots$, so $w_{0}=\cdots z \bar{z} \cdots$, contrary to the assumption that w_{0} is reduced. This concludes the proof of the lemma.

Now let S be a set of syllables satisfying the condition of the lemma and the condition (C^{\prime}) with respect to a given T_{1}. Then $\prod_{s_{i} \subset w_{0}} T_{1}\left(s_{i}\right)$ is defined and represents $T_{1}\left(w_{0}\right)$, by virtue of the definition of $T\left(s_{i}\right)$ for arbitrary T; moreover it represents the reduced word $T_{1}\left(w_{0}\right)$, by virtue of ($\left.\mathrm{C}^{\prime}\right)$, with $L\left(T_{1}\left(s_{i}\right)\right) \geqslant 2$. Hence the set $\left(T_{1}\left(s_{i}\right)\right)$ is a set of syllables to which the lemma is applicable with respect to any T-transformation T_{2}; hence S satisfies (C) with respect to $T_{2} T_{1}$.

5. Standardization ${ }^{(1)}$

Let T_{1} be given by

$$
\begin{array}{cc}
a_{1} \rightarrow a_{1} c & a_{f_{1}} \rightarrow \bar{c} a_{j_{1}} c \\
a_{2} \rightarrow a_{2} c & \vdots \\
\vdots & a_{k_{1}} \rightarrow a_{k_{1}} \\
a_{i_{2}} \rightarrow \bar{c} a_{i_{2}} & \vdots \\
a_{i_{2}} \rightarrow \bar{c} a_{i_{z}} & d \rightarrow T_{1}(d)
\end{array}
$$

in $F_{n}=F\left(a_{1}, \ldots ; a_{i_{1}}, \ldots ; a_{k_{1}}, \ldots ; c, d\right)$ with c and d^{e} not necessarily distinct. Represent a_{m} symbolically by $\bar{X}_{m} Y_{m}=a_{m}$, for every generator excepting c and d. Then under $T_{1}, a_{1}=\bar{X}_{1} Y_{1} \rightarrow \bar{X}_{1} Y_{1} c$, which will be written symbolically as $\left\{\bar{X}_{1} \rightarrow \bar{X}_{1}, Y_{1} \rightarrow Y_{1} c\right\}$, or equivalently, as $\left\{X_{1} \rightarrow X_{1}, Y_{1} \rightarrow Y_{1} c\right\}$. For example, $a_{j_{1}}=\bar{X}_{j_{1}} Y_{j_{1}}$ gives $\left\{X_{j_{1}} \rightarrow X_{j_{1}} c\right.$, $\left.Y_{j_{1}} \rightarrow Y_{j_{1}} c\right\}$.

Let \propto range over the set of symbols X_{r}, Y_{s} for which $X_{r} \rightarrow X_{r} c, Y_{s} \rightarrow Y_{s} c$. Then $\alpha=\left(Y_{1}, Y_{2}, \ldots ; X_{i_{1}}, X_{i_{2}}, \ldots ; X_{j_{1}}, \ldots ; Y_{j_{1}}, \ldots\right)$. Let β range over all other symbols X_{r}, Y_{s}. Then T_{1} is given by

$$
T_{1}\left\{\begin{array}{l}
\alpha \rightarrow \alpha c \\
\beta \rightarrow \beta \\
d \rightarrow T_{1}(d) .
\end{array}\right.
$$

Similarly, an automorphism T_{2} with multiplier d^{e} is given by

$$
T_{2}\left\{\begin{array}{l}
\alpha^{\prime} \rightarrow \alpha^{\prime} d^{e} \\
\beta^{\prime} \rightarrow \beta^{\prime} \\
c \rightarrow T_{2}(c)
\end{array}\right.
$$

where c is the multiplier in T_{1} and $\alpha \cup \beta=\alpha^{\prime} \cup \beta^{\prime}$.
(1) The procedure of this section may be interpreted as an embedding of $\boldsymbol{F}_{\boldsymbol{n}}$ in $\boldsymbol{F}_{\mathbf{2 n - 2}}$.

Set

$$
\begin{array}{ll}
x=\alpha \cap \alpha^{\prime}, & y=\text { complement of } x \text { in } \alpha . \\
z=\beta \cap \beta^{\prime}, & u=\text { complement of } x \text { in } \alpha^{\prime}
\end{array}
$$

Then $x \cup y \cup z \cup u=\alpha \cup \beta$, and the sets $x, y . u, z,(c, d)$ are disjoint pairwise. In their terms

$$
T_{1}=t_{1} t_{12} t_{11}\left\{\begin{array}{l}
t_{11}: x \rightarrow x c \\
t_{12}: y \rightarrow y c \\
t_{1}: d \rightarrow T_{1}(d)
\end{array} \quad T_{2}=t_{2} t_{22} t_{21}\left\{\begin{array}{l}
t_{21}: x \rightarrow x d^{e} \\
t_{22}: u \rightarrow u d^{e} \\
t_{2}: c \rightarrow T_{2}(c)
\end{array}\right.\right.
$$

where the statement $z \rightarrow z$ is omitted for brevity. Any pair $T_{2} T_{1}$ can be so written, with the proper choice of the sets $x, y, z, u,(c, d)$.

The images $T_{1}(d)$ may be $d c, \bar{c} d$, or "both": $\bar{c} d c$; accordingly let

$$
\begin{aligned}
& t_{13}: d \rightarrow d c \\
& t_{14}: d \rightarrow \bar{c} d
\end{aligned}
$$

so that t_{1} may equal t_{13}, t_{14}, or $t_{14} t_{13}$, or 1 . Similarly for $T_{2}(c)$, with

$$
\begin{aligned}
& t_{23}: c \rightarrow c d^{e} \\
& t_{24}: c \rightarrow \bar{d}^{e} c
\end{aligned}
$$

This result has two consequences. There are now only twelve symbols in F_{n}, namely x, y, z, u, c, d and their inverses, and hence a fixed number of syllables of length 2.(${ }^{1}$) Thus a fixed set S can be found (section 4.3) for all F_{n}. Furthermore, the sets $x, y, u, z,(c d)$ may be taken to stand for an arbitrary fixed partition of the symbols $X_{j}, \quad Y_{i}, c, d$; then every $T_{2} T_{1}$ is a product of certain of the $t_{i j}, j=1, \ldots, 4$, $i=1,2$, provided only that T_{i} stands for a T-transformation.

6. Equivalence classes

Before defining equivalence between automorphisms, it will be convenient to settle the case (section 3) when $A=\bar{p} T$, where p is a permutation of the generators and their inverses.
${ }^{(1)}$ Among all pairs one may form here, the 8 pairs $a \vec{a}$ stay invariant under all $T_{2} T_{1}$, or else $a \bar{a}=1$; the 16 pairs $a b$, where a and b range over x, y, z, u, never occur; similarly for the following: 16 pairs $\bar{a} \bar{b}, 16$ pairs $e^{e^{e}} a$ or $d^{e^{x}} a, 16$ pairs $\bar{a} c^{e^{x}}$ or $\bar{a} d^{e^{e}}$. Finally, the 16 pairs $\bar{a} b$ are generators, hence not syllables. The remaining pairs are the following and their inverses: $x \bar{y}, x \bar{u}, y \bar{u}, x \bar{z}, y \bar{z}$, $u \bar{z}, x c^{e}, y c^{e}, u c^{e}, z c^{e}, c c, d d, x d^{e}, y d^{e}, u d^{e}, z d^{e}, c d^{e}, \bar{c} d^{e} ; e= \pm 1$.

For every $\bar{p} T$ there is a T-transformation T^{\prime} such that $\bar{p} T=T^{\prime} \bar{p}$. To show this, designate] by c the multiplier in $T_{1}=T$, say $c=a_{i}^{e}$ and let ($a_{i}^{e^{\cdot}}, c$) denote the image of $a_{i}^{e^{\prime}}$ under T. Then $(c, c)=c$ and the set $\left(a_{i}^{e^{\prime}}, c\right), i=i, \ldots, n$, defines T. Let p be given by $a_{j}^{e} \rightarrow a_{i}^{e^{e}}, i, j=1, \ldots n$; in particular let $a_{r}^{e^{\prime \prime}}=d$ and $d \rightarrow c$. Then

$$
\begin{aligned}
& \underset{a_{i}^{e} \rightarrow a_{i}^{e} \rightarrow\left(a_{i}^{e^{e}}, c\right)}{\boldsymbol{p})} \stackrel{\bar{p}}{\rightarrow}\left(a_{j}^{e}, d\right) \\
& \underset{d \rightarrow c \rightarrow c \rightarrow d .}{p} \bar{p} \text {. }
\end{aligned}
$$

Thus, $\bar{p} T p: a_{j}^{e} \rightarrow\left(a_{j}^{e}, d\right)$, with $a_{r}^{e "}=d \rightarrow(d, d)$. The set $\left(a_{j}^{e}, d\right)$ defines a single T-transformation $T^{\prime}=\bar{p} T p$; hence $\bar{p} T=T^{\prime} \bar{p}$.

A permutation is a level transformation, so that $T^{\prime} \bar{p}$ is direct (section 3).
It follows also that $\bar{p} T_{2} T_{1} p=\left(\bar{p} T_{2} p\right)\left(\bar{p} T_{1} p\right)=T_{2}^{\prime} T_{1}^{\prime}$, which can be expressed by saying that $T_{2} T_{1}$ and $T_{2}^{\prime} T_{1}^{\prime}$ differ by nomenclature. The rest of the discussion of theorem 1 will concern forms $T_{2} T_{1} \neq \bar{p} T$.

Two automorphisms A_{1}, A_{2}, will be called equivalent, $A_{1} \sim A_{2}$, if for $A_{1}=$ $=T_{k} T_{k-1} \ldots T_{1}$

$$
A_{2}=\bar{p} C_{k} T_{k} C_{k-1} T_{k-1} \ldots T_{1} C_{0} p
$$

where p is a permutation and the C_{i} are inner automorphisms.
Since on cyclic words inner automorphisms are the identity transformation, the proof of theorem 1 is identical for automorphisms differing only by these. Conjugation of A_{1} by a permutation amounts to a change of nomenclature: if B is direct (section 3) for A_{1} then $\bar{p} B p=B^{\prime}$ is direct for $A_{2}=\bar{p} A_{1} p$. Thus it suffices to carry the proof for one element of an equivalence class.

The following shows that every equivalence class of the forms $T_{2} T_{1}$ is already generated by $t_{11}, t_{12}, t_{13}, t_{21}, t_{22}, t_{23}$ of section 5 .

Suppose T_{1} contained $t_{14}: t \rightarrow \bar{c} d$, and $A=T_{2} T_{1}$. Then $T_{1}(d)=\bar{c} d$ or $\bar{c} d c$. Let $C: a_{i} \rightarrow c a_{i} \bar{c}$ for every generator a_{i}, so that $A \sim C A=T_{2}^{\prime} T_{1}^{\prime}$, where under T_{1}^{\prime} either $d \rightarrow d \bar{c}$ or $d \rightarrow d$. If the latter holds, then $C A$ does not contain t_{14}; if the former holds, then let p be the permutation $c \rightarrow \bar{c} \rightarrow c$, and let $A^{\prime \prime}=\bar{p} C A p=T_{2}^{\prime \prime} T_{1}^{\prime \prime}$. Then $A \sim A^{\prime \prime}$ and under $T_{1}^{\prime \prime}$ the image of d is $d c$. Hence A is equivalent to a product of two T-transformations in which t_{14} does not occur.

Suppose in $A=T_{2} T_{1} t_{14}$ does not occur but $t_{24}: c \rightarrow d^{e} c$ does. Then $T_{2}(c)=\bar{d}^{e} c$ or $d^{e} c d^{e}$. Let $C: a_{i} \rightarrow d^{e} a_{i} \bar{d}^{e}$ for every generator a_{i}. As before, $A \sim C A=T_{2}^{\prime} T_{1}^{\prime}$ and $T_{2}^{\prime}(c)=c d^{e}$ or c. Since C leaves d fixed and since $C A=C T_{2} T_{1}=\left(C T_{2}\right) T_{1}$, we have
$T_{1}^{\prime}=T_{1}, T_{2}^{\prime}=C T_{2}$, so that t_{24} does not occur in $C A$. Hence A is equivalent to a product of two T-transformations in which t_{14} and t_{24} do not occur.

It follows that the theorem needs proving only for forms $T_{2} T_{1}$ generated by $t_{i j}, i=1,2 ; j=1,2,3$. This is done in section 8.

7. The set S

The symbol $(l m)$ will stand for the pairs $(l m)$ and $(l m)^{-1}$, that is $(l m)=(l m)^{ \pm 1}$.
The symbol $(l m) \overline{\mathfrak{a}}$ will abbreviate the collection of all pairs $(l m)$ not followed by the symbols \bar{x}, \bar{y}, d, or d, that is $(l m) \overline{\mathfrak{a}}=\left((l m) \overline{\mathfrak{y}},(l m) \overline{\mathfrak{y}},(l m) \mathfrak{D}^{e}\right)$.

Since x (or y, etc.) is a set of symbols X_{i}, Y_{j} (section 5), the statement " x is void" is clear. In a set of syllables containing the symbol x, whenever in the automorphism under discussion the set x is void, one merely drops all syllables containing x. Similarly, if in the automorphism under discussion $c=d$ or $c=d$, one drops all syllables containing, say, d; for then d is void.

With these conventions, the following is a set S usable in all computations necessary to prove theorem 1.

Pairs of the form $(\hbar k)^{e}$ and ($h h^{e}$), $h, k: x, y, z, u$, do not appear in S (section 5), and will, when necessary, be referred to as s_{0}.

$s_{1}=(d d)$	$s_{14}=(x \bar{c} \bar{u})$	$s_{27}=(y c d)$	$s_{40}=(u c) \overline{\mathfrak{a}}$
$s_{2}=(x \bar{z})$	$s_{15}=(x \bar{c} \bar{d})$	$s_{28}=(y c \bar{y})$	$s_{41}=(u d)$
$s_{3}=(x \subset d)$	$s_{16}=(x d)$	$s_{29}=(y c) \overline{\mathfrak{a}}$	$s_{42}=(u \bar{c})$
$s_{4}=(x c d)$	$s_{17}=(y \bar{z})$	$s_{30}=(y c d)$	$s_{43}=(u d)$
$s_{5}=(x c \bar{y})$	$s_{18}=(u \bar{z})$	$s_{31}=(y d)$	$s_{44}=(c c d)$
$s_{6}=(x c \bar{x})$	$s_{19}=(z c \overrightarrow{\mathfrak{a}})$	$s_{32}=(y \bar{u})$	$s_{45}=(c c d)$
$s_{7}=(x \boldsymbol{c}) \overline{\mathfrak{a}}$	$s_{20}=(z c d)$	$s_{33}=(y \bar{c} d)$	$s_{46}=(c c) \overline{\mathfrak{a}}$
$s_{8}=(x d)$	$s_{21}=(z c d)$	$s_{34}=(y \bar{c} \bar{c})$	$s_{47}=(d c d)$
$s_{9}=(x \bar{y})$	$s_{22}=(z c \bar{y})$	$s_{3 \overline{5}}=(y \bar{c} \bar{u})$	$s_{48}=(d c d)$
$s_{10}=(x \bar{u})$	$s_{23}=(z c \bar{x})$	$s_{36}=(y \bar{c} \bar{d})$	$s_{49}=(d c d)$
$s_{11}=(x \bar{c} d)$	$s_{24}=(z d)$	$s_{37}=(y d)$	$s_{50}=(d c d)$
$8_{12}=(x \bar{c} \bar{y})$	$s_{25}=(z \bar{c})$	$s_{38}=(u c d)$	$s_{51}=(d c) \overline{\mathfrak{a}}$
$s_{13}=(x \hat{c} \bar{c})$	$s_{26}=(z d)$	$s_{39}=(u c d)$	$s_{52}=(d c) \overline{\mathbf{a}}$.

The following observation will be used in section 8. Let each symbol in the set (x, y, u, z, c, d) stand for a fixed subset of the symbols X_{i}, Y_{i} (section 5) and define the form $T_{2}^{\prime} T_{1}^{\prime}$. Let $T_{2} T_{1}$ be given by

$$
T_{1}\left\{\begin{array}{l}
y \rightarrow y c \\
x \rightarrow x c
\end{array} ; T_{2}: u \rightarrow u d .\right.
$$

Then no symbol X_{i} or Y_{j} is active in both T_{i}, hence one can write $y^{\prime \prime}=x \cup y$ and $T_{1}^{\prime \prime}: y^{\prime \prime} \rightarrow y^{\prime \prime} c, \quad T_{2}^{\prime \prime}: u \rightarrow u d$, with $T_{i}^{\prime \prime}=T_{i}$, so that $T_{2} T_{1}=T_{2}^{\prime \prime} T_{1}^{\prime \prime}$ identically. This can be expressed by saying: $T_{2} T_{1}$ is of the form $T_{2}^{\prime \prime} T_{1}^{\prime \prime}$.

The results gotten so far may be summed up so: if T_{i} is a product of a subset of the automorphisms $t_{i 1}, t_{i 2}, t_{i 3}, i=1,2$, with x, y, z, u, c, d fixed but arbitrary sets of symbols X_{i}, Y_{j} (section 5), it suffices to prove theorem 1 for $T_{2} T_{1}$ acting on any word w_{0} satisfying the hypotheses (1) and (2) of the theorem. It is permissible to replace w_{0} by its representation $\prod_{s_{i} \subset w_{i}} s_{i}, s_{i} \subset S$ above, in computations of changes of length under such T_{i} and $T_{2} T_{1}$.

8. Computations

The following device is the key to demonstrating that if A and w_{0} satisfy the hypotheses (1) and (2) of theorem 1, then a proposed A^{\prime} has the properties of B in the theorem.

If $T: x \rightarrow x c$, then T and the (cyclic) word $x \bar{c} \bar{z}=w=\Pi s_{i}=(x \bar{c} \bar{z})(\bar{z} x)=s_{23} s_{0}$ cannot satisfy hypothesis (1), for $T(x \bar{c} \tilde{z})=x \tilde{z}=T(w)$ is shorter than w. For this T, s_{23} is ${ }^{\text {• }}$ a reduction syllable, that is $L\left(T s_{23}\right)-L\left(s_{23}\right)=-1<0$, and the word w contains reduction syllables in excess of increase syllables under T.

In general, if $L\left(T s_{i}\right)-L\left(s_{i}\right)=k_{i}$, and x_{i} stands for the (indeterminate) number of times s_{i} occurs in w_{0}, then $L\left(T w_{0}\right)-L\left(w_{0}\right)=\sum_{i} k_{i} x_{i}=I-R$, where I sums the positive, $-R$ the negative terms. If $A=T_{2} T_{1}$ and w_{0} satisfy (1) and (2), then $I-R=r>0$ for T_{1} and $I-R \leqslant r$ for A.

Suppose now that S is usable for $T_{2}^{\prime} T_{1}^{\prime}=A^{\prime}$, that $A^{\prime} \sim A$, and $T_{1}^{\prime}\left(w_{0}\right)=W$ is at least as long as $T_{1}\left(w_{0}\right)$. Then $I-R \geqslant r$ for T_{1}^{\prime} is a third inequality, with known coefficients, in the x_{i}. If adding these three inequalities gives a contradiction, then W is shorter than $T_{1}\left(w_{0}\right)$ and so A^{\prime} is direct.

For convenience, in the sequel x_{i} will be abbreviated to i.
0.1. Products of t_{12}, t_{22}.

$$
A\left\{\begin{array}{l}
y \rightarrow y c \\
u \rightarrow u d
\end{array}=A^{\prime}\left\{\begin{array}{l}
u \rightarrow u d \\
y \rightarrow y c
\end{array} ; A^{\prime}=T_{2}^{\prime} T_{1}^{\prime}\right.\right.
$$

If y, or u, or both be void, there is nothing to prove. The following shows that the
assumption $T_{1}^{\prime}\left(w_{0}\right)$ is longer than w_{0} gives a contradiction. The result holds whether d is void or not (section 7), that is whether $c=d^{e}$ or not.

By hypothesis (1), for $T_{1}, I-R=r>0$, or $I=R+r$:

$$
\begin{equation*}
17+27+29+30+31+32+37=22+33+34+35+36+r . \tag{1}
\end{equation*}
$$

By hypothesis (2), for $A, R+r \geqslant I$:

$$
\begin{align*}
22+33+34 & +36+43+r \geqslant \\
& \geqslant 17+18+27+29+30+31+37+38+39+40+41+42+2(32) \tag{2}
\end{align*}
$$

For $T_{1}^{\prime}, I>R$:

$$
\begin{equation*}
18+32+35+38+39+40+41+42>43 \tag{3}
\end{equation*}
$$

Adding these three inequalities gives $0>0$, a contradiction.
0.2. Products of t_{11}, t_{12}, t_{21}.

$$
A\left\{\begin{array}{l}
x \rightarrow x c \\
y \rightarrow y c ; A=t_{21} t_{12} t_{11} \\
x \leftarrow x d
\end{array}\right.
$$

If x is void there is nothing to prove; if y or d is void the result below still holds. If the assumption (3) below that $t_{11}\left(w_{0}\right)$ is longer than w_{0} gives a contradiction, then $t_{21} t_{12}$ is left to investigate, which is of the form 0.1 . (section 7) and can be made direct.

$$
\begin{gather*}
2+3+4+7+8+16+17+27+29+30+31+37=11+13+15+22+23+33+34+36+r \tag{1}\\
2(15)+22+33+34+36+r \geqslant\left\{\begin{array}{l}
2(2+3+4+6+7+8+16)+ \\
5+9+12+17+27+29+30+31+37
\end{array}\right. \tag{2}\\
2+3+4+5+7+8+9+16>11+12+13+14+15 . \tag{3}
\end{gather*}
$$

Adding these three inequalities gives $0>2(11+13)+12+23$, which contradicts the fact that $x_{i} \geqslant 0$ for every i.
0.3. Products of $t_{11}, t_{12}, t_{21}, t_{22}$.

$$
A\left\{\begin{array}{l}
x \rightarrow x c^{7} \\
y \rightarrow y c \\
x \rightarrow x d \\
u \rightarrow u d
\end{array}=A^{\prime}\left\{\begin{array}{l}
u \rightarrow u d \\
x \rightarrow x c \\
y \rightarrow y c \\
x \rightarrow x d
\end{array}\right.\right.
$$

If x (or u) is void, A is of the form 0.1 (or 0.2). Whether or not y is void, the result below holds.

If $t_{11}: x \rightarrow x c$ does not lengthen w_{0}, then $A t_{11}$ is left to investigate and this is of the form 0.1 ; thus one may assume the contrary; this is done under (3) below. If $t_{11}^{\prime}: u \rightarrow u d$ does not lengthen w_{0}, then $A^{\prime} \tilde{t}_{11}^{\prime}$ is left, which is of the form 0.2 ; the contrary is assumed under (4) below.

$$
\begin{gather*}
\left.\begin{array}{c}
2+3+4+7+8+10+16+17 \\
+27+29+30+31+32+37
\end{array}\right\}=\left\{\begin{array}{l}
11+13+14+15+22+ \\
23+33+34+35+36+r
\end{array}\right\} \tag{1}\\
\left.\begin{array}{c}
2(15)+14+22+33+ \\
+34+36+43+r
\end{array}\right\} \geqslant \\
\geqslant\left\{\begin{array}{l}
2(2+3+4+6+7+8+10+16+32)+5+9+10+12+17+ \\
18+27+29+30+31+37+38+39+40+41+42
\end{array}\right\} \tag{2}\\
2+3+4+5+7+8+9+10+16>11+12+13+14+15 \tag{3}\\
10+14+18+32+35+38+39+40+41+42>43 \tag{4}
\end{gather*}
$$

Adding these inequalities gives $0>2(11+12+13)+23$, a contradiction.
In the rest of the computations, if d is void, then every automorphism under discussion is of a form already treated. Hence it is now assumed that $c \neq d^{e}$.
1.1. Products of t_{12}, t_{22}, t_{23}.

$$
A\left\{\begin{array}{l}
y \rightarrow y c \\
c \rightarrow c d \\
u \rightarrow u d
\end{array}=A^{\prime}\left\{\begin{array}{l}
c \rightarrow c d \\
u \rightarrow u d \\
y \rightarrow y d \\
y \rightarrow y c
\end{array} ; A^{\prime}=T_{2}^{\prime} T_{1}^{\prime}\right.\right.
$$

If c is not active, A is of the form 0.1. If y, or u, or both be void, then either there is nothing to prove, or the results below still hold. Assume neither void. If T_{1}^{\prime} does not lengthen w_{0}, A^{\prime} is direct. In (3) below the contrary is assumed.

$$
\begin{align*}
& 17+27+29+30+31+32+37=22+33+34+35+36+r \tag{1}\\
& 21+22+33+36+43+49+50+r \geqslant \\
& \geqslant\left\{\begin{array}{c}
2(17+29+30+31+39+45)+18+20 \\
+25+27+28+30+32+40+41+46+47+48
\end{array}\right. \tag{2}
\end{align*}
$$

$$
\left.\begin{array}{l}
17+18+20+25+28+29+31+34+35+ \tag{3}\\
40+41+46+47+48+2(30+39+45)
\end{array}\right\}>21+37+43+49+50
$$

Adding these gives $0>0$, a contradiction.
1.2. Products of all $t_{i j} \neq t_{13}$.

$$
A\left\{\begin{array}{l}
x \rightarrow x c \\
y \rightarrow y c \\
x \rightarrow x d=t_{21}\left(i_{21} A\right)=t_{21} A^{\prime} ; t_{21}: x \rightarrow x d \\
u \rightarrow u d \\
c \rightarrow c d
\end{array}\right.
$$

If x is void, A is of the form 1.1. If c is not active, A is of the form 0.3. If u or y or both be void, the results below still hold. Assume neither void. Now, A^{\prime} is of the form 1.1 and is not direct by hypothesis; if $A^{\prime}\left(w_{0}\right)$ is not longer than $T_{1}\left(w_{0}\right)$, then (on the pattern of 1.1 , and by section 7) $A^{\prime}=A^{\prime \prime}$, where

$$
A^{\prime \prime}\left\{\begin{array}{l}
c \rightarrow c d \\
u \rightarrow u d \\
x \rightarrow x d \\
y \rightarrow y d \\
x \rightarrow x c \\
y \rightarrow y c
\end{array} ; A^{\prime \prime}=T_{2}^{\prime \prime} T_{1}^{\prime \prime}\right.
$$

and $A^{\prime \prime}$ is direct, so that $T_{1}^{\prime \prime}\left(w_{0}\right)$ is not longer than w_{0}. Then $t_{21} T_{2}^{\prime \prime}$ is left to investigate, which is of the form 0.2. Under (3) below the contrary is assumed: $A^{\prime}\left(w_{0}\right)$ is longer than $w_{1}=T_{1}\left(w_{0}\right)$.

If for $t_{11}: x \rightarrow x c, t_{11}\left(w_{0}\right)$ is not longer than w_{0}, then $A \bar{t}_{11}$ is left to investigate, which is of the form 1.1; under (4) below the contrary is assumed.

$$
\begin{gather*}
\left.\begin{array}{c}
2+3+4+7+8+10+16+17+ \\
27+29+30+31+32+37
\end{array}\right\}=\left\{\begin{array}{l}
11+13+14+15+22+23+ \\
33+34+35+36+r
\end{array}\right. \tag{1}\\
\left.\begin{array}{l}
13+14+2(15)+21+22+ \\
33+36+43+49+50+r
\end{array}\right\} \geqslant\left\{\begin{array}{l}
3(2+7+16+30)+4(4)+2(3+5+10+17+29+ \\
31+39+45)+6+8+9+18+20+25+27+28+ \\
32+40+41+46+47+48
\end{array}\right. \tag{2}\\
\left.\begin{array}{l}
3(4+30)+2(2+7+16+17+ \\
29+31+39+45)+3+5+6+10+ \\
12+18+20+25+27+28+32+ \\
40+41+46+47+48
\end{array}\right\}>\left\{\begin{array}{l}
11+15+21+22+23+33+36+ \\
43+49+50+r
\end{array}\right. \tag{3}
\end{gather*}
$$

$$
\begin{equation*}
2+3+4+5+7+8+9+10+16>11+12+13+14+15+23 \tag{4}
\end{equation*}
$$

Adding the last three inequalities gives $0>2(11)$, a contradiction.
2. Products of all $t_{i j} \neq t_{23}$.

$$
A\left\{\begin{array}{l}
x \rightarrow x c \\
y \rightarrow y c \\
d \rightarrow d c \\
x \rightarrow x d \\
u \rightarrow u d
\end{array}=A^{\prime}\left\{\begin{array}{l}
x \rightarrow x d \\
y \rightarrow y c \\
d \rightarrow d c \\
u \rightarrow u d
\end{array}=A^{\prime \prime}\left\{\begin{array}{l}
u \rightarrow u \bar{c} \\
u \rightarrow u d \\
x \rightarrow x d \\
d \rightarrow d c \\
y \rightarrow y c
\end{array}\right.\right.\right.
$$

where $A^{\prime}=T_{3}^{\prime} T_{2}^{\prime} T_{1}^{\prime}$ and $A^{\prime \prime}=T_{3}^{\prime \prime} T_{2}^{\prime \prime} T_{1}^{\prime \prime}$.
If u is void, $A^{\prime \prime}$ is of the form 1.1. (As soon as the symbols d and c are exchanged and section 7 is considered this becomes apparent.) Since 1.1. can be made direct in such a way that no intermediate word is longer than w_{0}, this case is already taken care of. Similarly for the other symbols. Thus, one may assume that u, etc. are not void. By the same token, $T_{1}^{\prime \prime}\left(w_{0}\right)$ may be assumed longer than w_{0}; this is done under (3) below; also $T_{1}^{\prime}\left(w_{0}\right)$ may be assumed not shorter than w_{0}; this is done under (4) below.

$$
\left.\left.\begin{array}{l}
\begin{array}{l}
1+2+4+7+10+16+17+26+ \\
29+30+31+32+43+47+52
\end{array}
\end{array}\right\}=\left\{\begin{array}{l}
11+13+14+21+22+23+33+34+ \\
35+38+44+50+r
\end{array}\right\} \begin{array}{l}
8+14+21+22+33+34+ \\
2(38)+44+50+r
\end{array}\right\} \geqslant\left\{\begin{array}{l}
3(10)+2(2+4+6+7+16+32+43)+ \\
1+3+5+9+12+15+17+18+26+29+ \tag{4}\\
30+31+39+40+41+42+47+52
\end{array}\right] \begin{aligned}
& 10+18+32+35+41+42+43>14+38+39+40 \\
& 2+3+4+5+2(6)+7+9+10+11+12+13+14+15+16+23 \geqslant 8
\end{aligned}
$$

Adding these gives $0>2(39+40)$, a contradiction.
This takes care of all categories save 3 : products of all $t_{i j}$. The fact that in every case a direct automorphism B was found with the property that no intermediate word is longer than w_{0} will be used in 3 . below.

Because the cases 3. require a great many inequalities, the following simplifying device is used. The set S so far used is large because it is usable for every case; but smaller sets suffice for just one category. A set usable for 3. alone, of fewest possible syllables, will be given. They will be devided into subsets as indicated by
the numbering, and in the computations the number of times $s_{i j}$ occurs in w_{0} will be designated by $i j$.

The symbol a stands for each symbol in the set (\bar{x}, \bar{y}, d^{e}); the symbol b for each in (\bar{x}, \bar{d}).

$$
\begin{aligned}
& s_{0}=\left(s_{0 i}\right)=((x c \bar{d}),(y c \bar{x}),(d c \bar{x}),(d c) \mathfrak{b},(y d),(u \bar{c}),(z d)) \\
& s_{1}=\left(s_{1 i}\right)=((x d),(x \bar{z}),(x c) \mathfrak{a}) \\
& s_{2}=\left(s_{2 i}\right)=((y \bar{d}),(d d),(y \bar{z}),(d \bar{z}),(x \bar{u}),(y c) \mathfrak{a},(d c) \mathfrak{a}) \\
& s_{3}=\left(s_{3 i}\right)=((x c \bar{x}),(y c \bar{y})(d c \bar{y}),(u c) \mathfrak{a},(c d),(c \bar{z}),(x \bar{y}),(u \bar{d}),(u \bar{z}),(c c) \mathfrak{a}) \\
& s_{4}=(x c \bar{y}) \\
& s_{5}=\left(s_{5 i}\right)=((u \bar{y}),(u \bar{d})) \\
& s_{6}=\left(s_{6 i}\right)=((c c \bar{d}),(u c \bar{d})) \\
& s_{7}=\left(s_{7 i}\right)=((d \bar{c} \bar{d}),(d \bar{c} \bar{z}),(c c \bar{x}),(u c \bar{x}),(z c \bar{y}),(y \bar{c} \bar{d})) \\
& s_{8}=\left(s_{8 i}\right)=((x \bar{c} \bar{d}),(x \bar{c} \bar{z}),(c c \bar{y}),(u c \bar{y})) \\
& s_{9}=\left(s_{9 i}\right)=((y c \bar{d}),(d c \bar{d}),(x \bar{d})) .
\end{aligned}
$$

3.1. Products containing t_{13} and t_{23}, with $e=+1$.

$$
A\left\{\begin{array} { l }
{ x \rightarrow x c } \\
{ y \rightarrow y c } \\
{ d \rightarrow d c } \\
{ c \rightarrow c d } \\
{ \begin{array} { l }
{ \text { a } }
\end{array} } \\
{ x \rightarrow x d } \\
{ u \rightarrow u d }
\end{array} \left\{\begin{array}{l}
x \rightarrow x c \\
y \rightarrow y c \\
d \rightarrow d c \\
c \rightarrow c d \\
x \rightarrow x d \\
u \rightarrow u d \\
g \rightarrow d g d
\end{array}=\left\{\begin{array}{l}
x \rightarrow x c \\
y \rightarrow y c \\
d \rightarrow d c \\
x \rightarrow x d \\
x \rightarrow x d
\end{array}=A^{*}\left\{\begin{array} { l }
{ x \rightarrow x c } \\
{ c \rightarrow d c } \\
{ y \rightarrow y d } \\
{ z \rightarrow z d }
\end{array} \quad \left\{\begin{array}{l}
x \rightarrow y c \\
d \rightarrow d c \\
z \rightarrow z d \\
c \rightarrow d c \\
y \rightarrow y d
\end{array}\right.\right.\right.\right.\right.
$$

where g runs through x, y, u, z, c. Moreover, A equals

$$
A^{\prime \prime}\left\{\begin{array}{l}
u \rightarrow u c \\
d \rightarrow d c \\
x \rightarrow x c \\
y \rightarrow y c ; A^{\prime \prime}=T_{3}^{\prime \prime} T_{2}^{\prime \prime} T_{1}^{\prime \prime} . \\
c \rightarrow c d \\
x \rightarrow x d \\
u \rightarrow u \bar{c}
\end{array}\right.
$$

Set $A^{\prime}=T_{3}^{\prime} T_{2}^{\prime} T_{1}^{\prime}$ and $A^{*}=T_{3}^{*} T_{2}^{*} T_{1}^{*}$, where $T_{1}^{*}=T_{1}, \quad T_{2}^{*}=t: \quad z \rightarrow z d ;$ also $T_{1}^{\prime}=T_{1}$, $T_{2}^{\prime}=t^{\prime}: x \rightarrow x d$.

The computation below gives the same result if any subset of (x, y, u, z) is void. If c or d is void, A reverts to a form discussed before. Similarly for 3.2, where $e=-1$. Assume therefore that none of the sets are void.

The product $T_{3}^{\prime \prime} T_{2}^{\prime \prime}$ is equivalent to the form 2. (exchanging the letters c and d, and setting x and y void in 2. makes this apparent), which can be made direct in such a way that no intermediate word is longer than the first word. Thus if $T_{1}^{\prime \prime}\left(w_{0}\right)$ is shorter than $w_{1}=T_{1}\left(w_{0}\right)$, then $A^{\prime \prime}$ either is direct or can be made direct. Under (3) below the contrary is assumed.

The product $T_{2}^{\prime} T_{1}^{\prime}$ is of the form 2. (with u made void in 2.), so it can be made direct in same manner. Thus if $T_{2}^{\prime} T_{1}^{\prime}\left(w_{0}\right)$ is shorter than w_{1}, then A^{\prime} either is direct or can be made so. Under (4) below the contrary is assumed. The same holds for $T_{2}^{*} T_{1}^{*}$, so it is assumed under (5) below that $T_{2}^{*} T_{1}^{*}\left(w_{0}\right)$ is not shorter than w_{1}.

Set $T^{0}: x \rightarrow x c, d \rightarrow d c$. If $T^{0}\left(w_{0}\right)$ is shorter than w_{1}, then $A \bar{T}^{0}$ is left to investigate, which is of the form 1.1. Under (6) below the contrary is assumed.

Let C be a conjugation of every symbol, except d, by d, and C^{\prime} a conjugation of every symbol, except c, by c. Since conjugations are the identity transformation on cyclic words, $I=R$ (see beginning of section 8) for C and C^{\prime}. This is what the equalities (7) and (8) below state.

$$
\begin{gather*}
1+2+5=6+7+8+r \tag{1}\\
2(6+7+8+r)=2(1+2+5) \\
3(6+7+8+r)=3(1+2+5) \\
2(6)+7+9+r \geqslant 3(1)+2(2+4)+3+5 \tag{2}
\end{gather*}
$$

Combining (1') and (2) gives

$$
\begin{align*}
& 5+9 \geqslant 1+3+7+r+2(4+8) \text {, or } \\
& 6+9 \geqslant 2+3+8+2(1+4) \\
& 1+(2-25)+34+38+39 \geqslant 07+61+(7-74)+(8-84)+r \tag{3}\\
& \left.\begin{array}{l}
01+02+03+2+25+37+4+ \\
5+2(1+31)
\end{array}\right\} \geqslant 6+71+72+75+76+83+84+93+r \tag{4}\\
& \left.\begin{array}{l}
05+1+12+2+23+24+36+ \\
39+5+82
\end{array}\right\} \geqslant 09+6+71+73+74+76+8+r \tag{5}
\end{align*}
$$

$$
\begin{gather*}
\left.\begin{array}{c}
06+1+22+24+25+27+33+ \\
37+4+52+75+76
\end{array}\right\} \geqslant 02+6+7+81+82+91+r \tag{6}\\
\left.\begin{array}{c}
01+03+06+24+27+33+52+ \\
6+72+9+92
\end{array}\right\}=04+09+11+21+35+38+76+81 \tag{7}\\
\quad 07+35+36+61+73+83=04+05+13+26+27+34 . \tag{8}
\end{gather*}
$$

Adding ($1^{\prime \prime}$), (2^{\prime}), ($2^{\prime \prime}$) and (3) to (8) gives $0 \geqslant 2 r+\cdots$, where the right hand side is at least as large as r, contrary to the definition of r. Thus, one of the automorphisms above is direct or can be made direct by previous results.
3.2. Products containing t_{13} and t_{23}, with $e=-1$.

$$
A\left\{\begin{array} { l }
{ x \rightarrow x c } \\
{ y \rightarrow y c } \\
{ d \rightarrow d c } \\
{ x \rightarrow x d } \\
{ u \rightarrow u d } \\
{ c \rightarrow c d }
\end{array} \sim A ^ { \prime } \left\{\begin{array}{l}
x \rightarrow x c \\
y \rightarrow y c \\
d \rightarrow d c \\
x \rightarrow x d \\
u \rightarrow u d \\
c \rightarrow c \bar{d} \\
g \rightarrow d g d
\end{array}=A^{*}\left\{\begin{array}{l}
x \rightarrow x c \\
c \rightarrow d \rightarrow \bar{c} \\
d \rightarrow \bar{c} d \\
y \rightarrow y c \\
z \rightarrow z d
\end{array}\right.\right.\right.
$$

where g runs through x, y, z, u, c.
Set $A^{*}=T_{3}^{*} T_{2}^{*} P^{*} T_{1}^{*}, t: x \rightarrow x c$, and $t^{\prime}: x \rightarrow x d$. Then $T_{3}^{*} T_{2}^{*}$ is equivalent to the form 2. and can be made direct; thus if x is void A^{*} can be made direct. If x is not void but $t\left(w_{0}\right)$ is shorter than $w_{1}=T_{1}\left(w_{0}\right)$, then $\tilde{t} A$ is left to investigate, which is equivalent to having x void. Assume then that $t\left(w_{0}\right)$ is not shorter than w_{1}; this gives the inequality (3) below.

Similarly, if $\tilde{t}^{\prime} A\left(w_{0}\right)$ is shorter than $w_{1}, \tilde{t}^{\prime} A$ is left to investigate, in which x is void. Assuming the contrary gives the inequality (4) below.

The results below remain the same if any subset of (u, y, z) is void.

$$
\left.\left.\begin{array}{c}
1+2+5=6+7+8+r \\
35+38+7+2(81)+r \geqslant\left\{\begin{array}{l}
2(01)+1+2(12+13+2-21-22+3-35-38)+ \\
2(4)+5+9
\end{array}\right. \\
01+1+25+37+4+93 \geqslant 02+03+73+74+81+82+r
\end{array}\right\} \begin{array}{l}
01+02+03+2(12+13+23+24+26+27)+ \\
25+3-35-37-38+4+5+91+92
\end{array}\right\}\left\{\begin{array}{l}
35+38+71+72+75+76+ \tag{4}\\
81+82+r
\end{array}\right.
$$

Adding (2), (3) and (4) gives $0 \geqslant r+26+27+2(82)$, contrary to the definition of r. Thus A^{*} is or can be made direct by previous results.

9. Corollary

The corollary to theorem 1 states (section 3) that w_{0} may stand for a set of words ($w_{01}, w_{02}, \ldots, w_{0 m}$). This is seen as follows.

Let a_{i} denote a generator of $F_{n}=G^{\prime}$ and let g denote a new symbol. Let w_{0} stand for the set of words above from a free group on any number of generators, finite or not, and suppose that n of these generators occur in w_{0}; denote them by $a_{i}, i=1, \ldots, n$, and let g be a_{1+n} in the group. It is no loss of generality in what follows to consider only the free subgroup $G=F\left(a_{1}, \ldots, a_{n}, g\right)$.

Form the cyclic word

$$
W_{0}=w_{01} g w_{02} g w_{03} g \ldots w_{0 n} g
$$

in G. Then the theorem holds for W_{0} in G. It will be seen to hold for w_{0} in $F_{n}=G^{\prime}$, and hence in any free group.

The direct automorphism B that takes W_{0} into $A\left(W_{0}\right)=A\left(w_{01} g \ldots w_{0 n} g\right)=$ $=\left(A w_{01} \cdot g \cdot A w_{02} \cdot g \cdot \ldots\right)$ has the following property: the image under B of an active generator differs from its image under A at most by a conjugation by a word w composed of multipliers in A. In particular, $B(g)=w g \bar{w}$, and for any T_{k}^{\prime} in B, $T_{k}^{\prime}(g)=w_{k} g \bar{w}_{k}$.

If w is the empty word, $w=1$, then B is an automorphism of G^{\prime}, and the corollary is true, provided that also $w_{k}=1$ for every k. Otherwise there is a smallest number k, with $w_{k} \neq 1$, and hence of length $\mathrm{I}: T_{k}^{\prime}(g)=w_{k} g \bar{w}_{k}$, and w_{k}^{e} is a generator. Set $T^{*}: g \rightarrow \bar{w}_{k} g w_{k}, a_{i} \rightarrow \bar{w}_{k} a_{i} w_{k}, i=1, \ldots, n$; the product $T^{*} T_{k}^{\prime}=T_{k}$ is a single T transformation. Replacing T_{k}^{\prime} by T_{k} in B gives another direct transformation of W_{0} into $A\left(W_{0}\right)$ but one with fewer factors that act on g. As B is a finite product of T-transformations, repetition of this procedure yields a direct transformation equivalent to B and with $w_{k}=1$. This transformation will be an element of the automorphism group of G^{\prime}, hence the corollary.

10. Some consequences of theorem 1

Theorem 2. If w_{0} is a set of elements and A is an automorphism of the free group $G, A\left(w_{0}\right)=w$, then there exist T-transformations $B_{i}, i=1, \ldots, k, \prod_{1}^{k} B_{i}=A$, such that every set of words $\prod_{1}^{r} B_{i}\left(w_{0}\right), r \leqslant k$, is at most as long as $\max \left(L\left(w_{0}\right), L(w)\right)$.

Proof. Suppose, for definiteness, that $L(w) \leqslant L\left(w_{0}\right)$. Let $T_{h} \ldots T_{1}$ be a representation of A in terms of T-transformations, with intermediate words $\prod_{1}^{g} T_{i}\left(w_{0}\right)=w_{g}$.

Let $w_{g^{\prime}}$ be a longest intermediate word such that $L\left(w_{g^{\prime}-1}\right)<L\left(w_{g^{\prime}}\right)$ or $L\left(w_{g^{\prime}+1}\right)<$ $L\left(w_{g^{\prime}}\right) ; L\left(w_{g^{\prime}}\right)=L$. Applying the corollary to $w_{g^{\prime}-1}, w_{g^{\prime}}, w_{g^{\prime}+1}$ and using the direct transformation B so obtained to replace $T_{g^{\prime}+1} T_{g^{\prime}}$ in A yields $T_{h} \ldots B \ldots T_{1}=A$, with intermediate (sets of) words of length at most L, but fewer longest ones than before. A finite number of these steps leads to the goal.

In particular, an automorphism B can be found for which there exist numbers $h^{\prime \prime} \leqslant h^{\prime} \leqslant k$, such that the lengths of the intermediate words W_{g} under B are monotone decreasing from 1 to $h^{\prime \prime}$, are unchanged from $h^{\prime \prime}$ to h^{\prime}, and are monotone increasing from h^{\prime} to k. This result implies theorem 3 of Whitehead [7], which states that if w_{0} and $A\left(w_{0}\right)$ are minimal T then they can be transformed into each other by level T-transformations.

Theorem 3. Words minimal relative to all single T-transformations are minimal relative to any automorphism.

Otherwise the automorphism B of theorem 1 would fail to exist for some factor $T_{2} T_{1}$ of such an automorphism.

Theorem 4. If w_{1} and w_{2} are minimal and are connected by an automorphism, then they contain the same number of distinct generators; moreover, if $k_{i j}$ is the number of times a_{i}^{e} occurs in $w_{j}, i=1, \ldots, n, j=1,2$, then the sets of numbers ($k_{i 1}$) and ($k_{i 2}$) differ by a permutation of the subscripts i.

Proof. By theorems 2 and 3 the (sets of) words w_{j} are connected by level T transformations, T^{\prime}, and possibly permutations. The effect of such T^{\prime} is to move the multiplier in T^{\prime} from some places of occurrence to others with a change of sign. This, as well as a permutation, leaves the set of numbers ($k_{i j}$) unchanged.

Theorem 5. If $w_{2}=A\left(w_{1}\right)$ is minimal, then the number of distinct generators in w_{1} can be diminished by applying a transformation if and only if w_{2} has fewer distinct generators than does w_{1}.

This follows from the two preceding results.

Theorem 6. If w contains a_{i} or \bar{a}_{i} for every $i, w \subset G=F\left(a_{1}, \ldots\right)$ and is minimal, then $A(w)$ contains, for arbitrary A, a_{i} or \bar{a}_{i} for every i.

For suppose $w_{1}=A(w)$ did not contain a_{1}^{e}; then $w=\bar{A}\left(w_{1}\right)$ would contain more distinct generators than w_{1}; this would contradict theorem 5 .

11. Some applications of the syllable method

Let $\left(b_{1}, \ldots, b_{k}, a^{\prime}\right)=\left(b, a^{\prime}\right), a^{\prime} \neq b_{i}^{e}$, denote any non-empty subset of the symbols $a_{1}, \bar{a}_{1}, a_{2}, \bar{a}_{2}, \ldots, a_{n}, \bar{a}_{n}$; let z run through all those a_{j}^{e} not equal to \bar{b}_{i} or \bar{a}^{\prime}, $i=1, \ldots, k$, as well as the identity element 1 . Let $w \subset G=F\left(a_{1}, \ldots, a_{n}\right)$; denote by $\left(b_{i} \vec{a}^{\prime}\right)$ the number of times the symbol b_{i} is followed by \bar{a}^{\prime} in w plus the number of times \bar{b}_{i} is preceded by a^{\prime} in w; denote by $\left(b_{i} z\right)$ the corresponding number summed over all values of z. (A symbol is followed by 1 in w if is the terminal symbol, and is preceded by l if it is the initial symbol there.)

Theorem 7. The word w is minimal if and only if the relation

$$
\begin{equation*}
\sum_{i}\left(b_{i} \bar{a}^{\prime}\right) \leqslant \sum_{i}\left(b_{i} z\right) \tag{*}
\end{equation*}
$$

holds for every set (b, a^{\prime}) in G.
Proof. The automorphism $b \rightarrow b a^{\prime}$ is a T-transformation whose effect is to replace each element b_{i} of the set (b) by $b_{i} a^{\prime}$. When $b_{i} \bar{a}^{\prime}$ occurs in w, the symbol a^{\prime} introduced by this T into $b_{i} \bar{a}^{\prime}$ cancels against \bar{a}^{\prime}; for an occurrence of $b_{i} z$ there is no cancellation. The excluded values for z yield the combinations $b_{i} \bar{b}_{k}$ and $b_{i} \bar{a}^{\prime}$; in the latter there is cancellation, in the former there is no change under T. Thus the condition (${ }^{*}$) states that the number of cancellations must not exceed the number of new symbols introduced by T. This condition is clearly necessary. Its sufficiency to make w minimal T, for any T-transformation, T follows from the lemma of section 4.4. It follows now from theorem 3 that under the hypotheses above w is minimal.

Theorem 8. "T-transformation" cannot be replaced by "simple, or, t-transformation" in theorem 1.

Proof. The relation (${ }^{*}$) of theorem 7, stated for simple automorphisms t, for $G=F\left(a_{1}, a_{2}, a_{3}\right)$ is of the form

$$
\begin{equation*}
(x y) \leqslant(x z) \tag{**}
\end{equation*}
$$

since now $\left(b_{1}, \ldots, b_{k}, a^{\prime}\right)=\left(b, a^{\prime}\right)=\left(b_{1}, a^{\prime}\right)$, or, briefly, $(x y)$.
A word in G satisfying this condition for every pair (x, y), where $x^{e}, y^{e^{\prime}}$ are generators, is minimal t.

Let v and u run through every symbol in G having exponent +1 , and set $a=a_{1}, b=a_{2}, c=a_{3}$ in G. Then G has an element which satisfies (**) for every pair (x, y) as well as the condition

$$
(a \bar{c})+(b \bar{c})>(a v)+(b u)
$$

(for notation see the introduction to this section), which contradicts one of the relations (${ }^{*}$).

This element is

$$
w=b \bar{a} b \bar{c} a c \bar{b} c c \bar{b} c \bar{a} \bar{c} b b \bar{a} b b c \bar{a} c \bar{a} b \bar{c}
$$

of length 24 and is minimal t but is reducible under the T-transformation $T: a \rightarrow a c$, $b \rightarrow b c$.

It may be noted that in F_{2} every T-transformation is a t-transformation, and since $w(a, b, c)$ above is the shortest word in F_{3} having this property, it is also shortest possible in any free group.

Theorem 9. If the word $T(w)$ is longer then w, then $T T(w)$ is longer than $T(w)$. More precisely, $L(T w)-L(w)=r>0$ implies $L\left(T^{2} w\right)-L(T w) \geqslant r$.

Proof. Let the inequality sign in the relation (${ }^{*}$) of theorem 7 be replaced by a true inequality for a fixed set $\left(b, a^{\prime}\right)$:

$$
\sum_{i}\left(b_{i} \bar{a}^{\prime}\right)<\sum_{i}\left(b_{i} z\right)
$$

and let it hold for the word $w \subset G\left(a_{1}, \ldots, a_{n}\right)$. Then under the T-transformation $T: b_{i} \rightarrow b_{i} a^{\prime}, i=1, \ldots, k, T(w)$ is longer than w.

In $T(w)=w_{1}, b_{i} a^{\prime}$ and its inverse occur more often than $b_{i} v=b_{i} \mathfrak{a}^{\prime}$ and its inverse, for all b_{i} combined, so

$$
\sum_{i}\left(b \mathfrak{a}^{\prime}\right)<\sum_{i}\left(b_{i} a^{\prime}\right) \text { in } T(w) .
$$

Clearly, the set ($b_{i} \boldsymbol{a}^{\prime}$) contains the set $\left(b_{i} \bar{a}^{\prime}\right)$ of consecutive symbols, and so for the number of their respective occurrences, also written as $\left(b_{i} \mathfrak{a}^{\prime}\right)$ and $\left(b_{i} \bar{a}\right):\left(b_{i} \bar{a}^{\prime}\right) \leqslant\left(b_{i} \mathfrak{a}^{\prime}\right)$; since z was to take on the value a^{\prime} too, $\left(b_{i} a^{\prime}\right) \leqslant\left(b_{i} z\right)$; hence

$$
\sum_{i}\left(b_{i} \bar{a}^{\prime}\right) \leqslant \sum_{i}\left(b_{i} \mathfrak{a}^{\prime}\right)<\sum_{i}\left(b_{i} a^{\prime}\right) \leqslant \sum_{i}\left(b_{i} z\right) \text { in } T^{\prime}(w) .
$$

Moreover, the difference between the two extremal sums in the last inequality is seen to be at least as great as that derivable from the first inequality above; hence if the latter be $r>0$, the former is at least equal to r.

References

[1]. M. Dehn, Ueber unendliche diskontinuierliche Gruppen. Math. Ann., 71 (1911), 116-144.
[2]. A. G. Kurosh, The theory of groups. 2nd ed. Translated from the Russian by K. Hirsch. Chelsea, New York, 1955/56.
[3]. B. H. Neumann, On the number of generators of a free product. J. London Math. Soc., 18 (1943), 12-20.
[4]. J. Nielsen, Die Isomorphismengruppe der freien Gruppen. Math. Ann., 91 (1924), 169-209.
[5]. A. Shenitzer, Decomposition of a group with a single defining relation into a free product. Proc. Amer. Math. Soc., 6 (1955), 73-79.
[6]. J. H. C. Whitehead, On certain sets of elements in a free group. Proc. London Math. Soc., 41 (1936), 48-56.
[7]. --_, On equivalent sets of elements in a free group. Ann. of Math., 37 (1936), 782-800.

