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1. IntrodIlction 

The group A,, of automorphisms of a free group F,, on n free generators has 

been investigated by J. Nielsen [4]. Nielsen found generators and relations for A,,; 

it follows from his results that the elementary or t-transformations defined below 

generate A,,. Also, Nielsen found a recursive method to decide whether a given set 
of n elements of F, generates the group. But for n > 2 it still remained an unsolved 

problem to decide whether a given element of F,, could appear in a set of free gen- 

erators of F,. This problem was solved by Whitehead [6]; in a subsequent paper, 

Whitehead [7] proved the following powerful theorem: 
Given a set of words Wo, . . . , W, in the generators of F,,, if the sum L of the 

lengths of these words can be diminished by applying automorphisms of F, to the 

generators, then it can also be diminished by applying an automorphism of a pre- 

assigned finite set of automorphisms (the so-called T-transformations defined below). 

The group A, is of importance for Dehn’s “isomorphism problem” of group theory 

(Dehn, [l]). Its most significant application is furnished by Grushko’s theorem (see 
Kurosh [2] and B. H. Neumann [3]) which shows the following: given a minimal set 

of n generators of a group C which is a free product of a finite number of its 
subgroups H, (q = 1, . . . , r). one can apply a transformation A of A,, to the generators 

a, of t? such that each of the resulting elements A (a,) belong to an H,. The theorem 
of Whitehead and the theorem of Grushko have been used by Shenitzer [5] to devise 

tests for the free decomposability of groups with a single defining relation. 

Whitehead uses difficult topological methods in proving his results. In the case 

where n = 3, a purely algebraic derivation of his theorems has been given by the 
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author.(z) The present paper contains an algebraic proof of the full Whi tehead theorem 

and of some extensions and applications. 

2. Definitions and notation 

G will denote the free group F , =  F (al, . . . ,  an) on n generators.  

W will denote the inverse of the element W of G. 

Superscripts e and e' will denote + 1 or - 1 .  

a-->ab will mean  tha t  under  the au tomorphism in question the image of the 

element a of G is the element a b of G. 

A permuta t ion  at--->a~, (i, k = 1 . . . . .  n) will be denoted by  p. 

A simple au tomorphism or t - t ransformation,  t, is an au tomorphism of G of the 

form a~--~(a~ a~e'e), ak--~ak, k:v i, i=v j, i and ?" fixed bu t  arbi t rary.  

A T- t ransformat ion  is the following au tomorphism of G: let a, b, c, z denote 

fixed subsets of the generators of G and let d be a generator  or the inverse of a 

generator,  such tha t  the sets a, b, c, d e are disjoint and  the set (a, b, c, z) contains 

every generator  ai of G just  once. Then 

l a--~ad 

T ~  b--->~b 
~ c---~cd 
( Z---->Z 

is a T- t ransformat ion  for every such subdivision of the generators.  

The product  T~ T i of two T-t ransformat ions ,  with T z (ai) = vi (a I . . . . .  an) = v~ (a), 

T~ (a~) = w~ (a), T~ T 1 (ai) = v~ (w I (a) . . . . .  w n (a)), will be given in the form 

a -->ad 

b -->~b 

c --->~cd 
T2 T 1  

a'-->a' d' 

b'-->~' b' 

c'-->c7' c' d' 

with the appropriate  subdivisions (a, ...) and (a', ...) of the generators of G, and 

with the s ta tements  z->z, and  z'-->z' omitted.  

(z) E. S. Rapaport, On a theorem o] J. H. C. Whitehead, Ph. D. thesis, New York University, 
1955 (unpublished), sponsored by Professor Wilhelm Magnus, whose valuable aid in preparing the 
present paper is gratefully acknowleged. 
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L (w) will denote the length L of the element w = w (al, ... an) of G, defined as 

the sum of the absolute values of the exponents of the generators appearing in w. 

L(1) =0.  

L(wl . . . . .  wk) equals the sum of the lengths of the elements wl, . . . ,  wk, by 

definition. 

W is minimal t when L (t (W))= L (W) for every t. 

A is a level transformation on w if L (A (w))=L (w). 

A is a level transformation if L (A (w))=L (w) for all the elements w in G. 

A1 = A2, if the automorphisms A1 and A s of G map the generator a~ on the same 

element of G for every i. 

AI,,~A 2 is defined in section 6. 

The element, or word, w of G modulo inner automorphisms is called the cyclic 

w o r d  w .  

The special symbols s, s~, z (xy), $ (xy), (xyz) are defined in section 4.1; A (s) 

T (s) in section 4.2. 

An active generator under a T-transformation, T, is a generator of G whose 

image under T is not of length 1, hence is not that  generator itself. 

A multiplier under T is the generator by which the active generators or their 

inverses are multiplied under T. 

3. Results 

The key result is theorem 1 below, proved in sections 4-9. Section l0 contains 

some consequences of theorem 1. Section 11 contains some applications of the method 

of proof used in sections 4-9. 

Before stating theorem 1, I shall put it in graphic form for easy survey. Let 

a line between two points 

0 
W 1 W2 Wl 

mean that  the words w 1 and w 2 of G are connected by a T-transformation: w 2 = T (wl), 

where in the first diagram L (w2) =/5 (wl) , while in the second, L (w~) > L (wl). Then 

the theorem asserts that  if 
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W 1 
length of w 1 / / r  

length of w o - - -  
wo 

% W 1 Wl mm ~ ~ 
or ~ w 2  or 

W 0 WO wz 

then there exists a product T~ T~_ 1 ... T 1 = B of T-transformations such that  B (wo) = w~ 

and the diagram for B (below) never touches the line "length of wl"  except at w~ 

in case L (w~) = L (wl). 

length of w I - 

f 
ro W2 

THEOREM 1. Let A = T ~ T  1, or A = ~ T ,  such that 

(1) L (T1 wo) > L (w0), 

(2) L ( A w  o) < L (T~ wo), 

where w o is  a cyclic word in  G. Then there exists a /actorization B = B ~ . . .  B 1 o/ A 

such that /or every intermediate word w'a = Bh ... B1 (wo), h < k, L (w'h) < L (T  1 wo) - -  " B  

is direct" - -  where the Bt are T.trans]ormations or level trans/ormation~s. 

COROLLARY: I] W o stands /or a set o] m words, the theorem is true. 

To prove theorem 1 a means is found to characterize (generic) worcls w o which 

satisfy the hypotheses above, in such a way that  the properties required by the 

conclusion of the theorem are seen to be possessed by these words w 0. A properly 

chosen "syllable representation" of w0, introduced in the sequel, leads to such a 

characterization. 

4. Syllables and syllable representation 

4. i .  The word syllable will stand for a string of letters, but  never a single 

letter, and a rule (or restriction) as to what letters may not precede or succeed it. 

To give a preliminary example, ( x y z ) U  designates the string of letters x y z  - -  but 
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not It a l s o -  whenever x y z  is not followed by u in a given sequence of letters 

cab  ... x y z  ... d; ( xyz )  designates the string of letters x y z  regardless of what follows 

it. In  these examples, the fact tha t  no symbol stands in front of the parentheses 

means tha t  any  symbol is allowed to precede the syllable. 

Let  w = x y z  be a cyclic word in G, so that  x is successor to z. Then I shall 

say tha t  the symbol ( x y z ) ( z x )  is a product of the (overlapping) syllables {xyz)  and 

(zx) and represents w. The product ( x y ) ( y z ) ( z x )  also represents w. 

The product s 1 s 3 of the syllables 81 and s~ is defined when 81 ends with the 

first symbol in 82 read from left to right, and multiplication is juxtaposition. (The 

word represented by 8183 contains this joining symbol of 81 and s 3 just once.) 

A word may  have several such representations, but  any  representation in terms 

of a given set of syllables must  conform to the given restrictions on the elements 8~ 

of the set. If, for example, one has the syllables 81={xy)$  , 82=(xyz ) ,  8a=(zx) ,  and 

s4= (yz), then w = x y z  is represented by  8~8 a but  not by  81s4s a. 

The reason for introducing a syllable representation is briefly as follows: 

first, it turns out tha t  it is possible to represent the (generic) word w 0 uniquely 

in terms of a certain set S of syllables in such a way tha t  the change of length of 

w 0 under given T 1 or A = T2 T 1 equal the sum of the changes of length of the con- 

stituent syllables of w 0 - -  with "change of length of st" suitably defined and com- 

putable; 

secondly, the two hypotheses of the theorem become conditions, in the form of 

inequalities, on the number of times certain of the syllables must  occur in w0; 

finally, these inequalities can be used to find a set of automorphisms containing 

B of the theorem. 

At this point the following, rather  trivial, yet  necessarily sketchy example can 

be given. Let  a, c, d be fixed generators of G, w 0 an element of G, and A = T  3T 1 

the automorphism given by T 1 :a-->ac, T2:a--->da (all other generators remaining un- 

changed under A). Then, A ' =  T 1 T 3 clearly equals A. Let  

81= (aS) • 83= (az) • 83= (uv), 84 = (da) ~1, 85= (ya) ~1, 

where y, u, v, z run through all generators and their inverses except tha t  s, =~ sj for 

i * j and tha t  st =~ 1, every i. 

Let  Nt be the number of times st occurs in w 0, and Mt the number  of times 

st occurs in T l ( W o ) = w  1, when w o and w 1 are reduced (do not contain segments 99). 

Suppose tha t  
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(i) L (T 1 Wo) - L (wo) = ~T 2 - N1, 

(if) L (A wo) - L (wl) = - M4 + Ms. 

I f  now the hypotheses (1) and (2) of theorem 1 hold for w o and A, then  

(1) N s -  N I > O  , 

(2) - M  4 + M  s < 0 .  

I t  can be shown t h a t  under  (i) and (if), N4=M4, M 5=N s and L (Tswo)-L (wo)= 

= N 5 - N  4. Bu t  then the last difference is equal or less than  0, so tha t  T~ (w0) is 

no t  longer t han  w0; consequently A' is direct, t h a t  is, A' is a solution B of the 

theorem. 

4.2. Next ,  the  change of length of a syllable under  an au tomorph ism has to  

be defined. Let  s be a syllable, s = a  1 a s ... aj, where the symbols s tand for, no t  nec- 

essarily distinct,  generators or their inverses; let s be reduced. Le t  T be a T-trans- 

formation.  The image under  T of every  generator  a is of the form U a V, reduced. 

The words U, V m a y  have  lengths 0. Then  the  image of s under  T can be wri t ten 

as  U l a  I V 1 U s a s V s ... Uj aj Vj, unreduced.  Define T (s) by  

T (s) = T ( a  1 ... as) = a  1V 1U sa  s V s ... Ujaj  (mod 1 )=  Ws (mod 1), (*) 

so tha t  T(s )  is given by  the word W, on the  r ight  hand  side after  it has been 

reduced. This word is the image of s under  T with U 1 and Vj left off. For  example, 

if s=ab, T:b-->bc, then  T(s)=ab. I f  T(s) is a syllable, then  T'(T(s)) is defined. 

Syllables will be used as the  building blocks of a cyclic word; in the lat ter  every 

symbol  has predecessors and  successors; thus  s will have a predecessor in w0, hence 

U 1 will have one in T (w0) unreduced;  these predecessors will end respectively with 

a 1 and  U 1 a r Therefore, U 1 will appear  just  once in the produc t  of the T (s~) in- 

tended to represent T (w0). Similarly for Vj. This shows t h a t  if w 0 is represented b y  

the product  1-I si of a subset of a set S of syllables st, then,  with this definition of 
8~ C Wo 

T (s~), the produc t  1-I Ws is defined and represents a (generally nnreduced) form of 
S e W  o 

T (Wo). 

4.3. Next ,  a set S of syllables mus t  be found which is capable to  represent 

every  group element uniquely and satisfies requirements  t ha t  will just i fy the use the  

set is pu t  to. This use will consist in replacing w 0 b y  its representat ion 1-~s~ in 

calculations of length and  changes of length under  certain products  T 2 T 1. The re- 

quirements  can be read off the wording of the theorem as follows: 
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k 

Suppose A=T~T I and A ' = l - [ T ~  given and tha t  T~=B~ is claimed for each 
1 

i~< k (section 3). I f  for the moment  X stands for any  one of the automorphisms 

T1, A, ~T'~, r = l ,  2, then 1-[s~ can replace w 0 in calculations of changes of length 
1 

L(Xwo)-L(wo) if the condition (assuming X(s~) defined) 

L(Xwo)-L(Wo)=L(X( l-I s~))-L( 1-I s~)= ~ L(X(s~))- ~ L(s~) (C) 
S i C w ,  s i C Wo S i C W ,  s i C wo  

is satisfied. A method of constructing such a set is given in my  doctoral dissertation 

(see section 1 of the present paper) for G =  Fa; the method takes its departure from 

the 15 pairs of symbols x y-~ 1 tha t  can be built out of generators and their in- 

verses. I t  is seen there tha t  the construction can be carried out for any  G=F,  
provided only tha t  the set of all such pairs can be written down explicitly. In  order 

to utilize this fact, I shall, in sections 5 and 6, "s tandardize" the generators and the 

automorphisms T~ T 1 in a way tha t  will allow writing down the complete set of pairs 

needed for (indeterminate) n~< co as well as the construction of a single set S of 

syllables usable for each of the suitably chosen representatives of the equivalence 

classes of section 6. 

4.4. Suppose tha t  a set S of syllables has the property of affording unique 

syllable representation for every element of G and tha t  for a certain set (Tk) of T- 

transformations 

every Tk (s~) in the set Tk (S) has the same terminal symbols as does si; t (c') 
J tha t  is s~=(xo~y) implies Tk(s~)= (xfly) reduced. 

By means of the lemma below I shall show tha t  (C') implies (C), for X = T or T Tk, 
where T is any  T-transformation. Then if such a set S is given, together with (Tk), 

(C') is a means of verifying (C). 

Syllable representation by  means of a set S is unique if every combination of 

symbols, tha t  is, every word w, can be written in just one way as a product of 

syllables from S; this will hold if every pair of consecutive symbols x y tha t  can be 

formed in F~=G, xy:vl ,  occurs in the set either just once with no restriction on 

predecessors or successors, or else just once for each possible choice of the latter 

symbols. 

The set S given in section 7 affords unique representation and satisfies (C') with 

respect to every automorphism actually used in computations of length in section 8. 
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The  ver i f ica t ion  of th is  is lef t  to the  reader;  i t  is g r ea t ly  s implif ied b y  the  l emma  

below and  the  s t anda rd i za t i o n  in  sect ion 5. 

L~MMA.  A n y  set S o/ syllables which can represent all elements o/ G uniquely 

has the property (C) with respect to a single T-trans/ormation, T.  

I n  o ther  words, changes of length  in w 0 under  T are  jus t  those  occurr ing in the  

syl lables  s~ of S,  con ta ined  in w0, t r ans fo rmed  as sepa ra te  words,  a lbe i t  b y  the  rule 

(*) of sect ion 4.2. 

Proo/. Take  T (w0) unreduced;  if a symbol  in t roduced  b y  T into  w 0 does no t  

cancel  ou t  as T (w0) is reduced,  i t  will appea r  in  j u s t  one T (s,); th is  follows f rom 

the  def ini t ion of T (si). Thus,  all  t h a t  needs p rov ing  is t h a t  if the  symbo l  cancels in 

T(wo), i t  cancels in ju s t  one T(s,) .  Le t  W = T ( w o )  unreduced;  le t  w 0 be reduced.  

I .  I f  x is a genera tor ,  then  W conta ins  no segment  x ~ x .  F o r  suppose  the  

con t ra ry :  

W . . . .  y x ~ x z  . . . .  

Then  the  por t ions  x ~  and  ~ x  of x f ~ x  were no t  in  w0, and  as  T ( x e ) = x x  e is im- 

possible,  the  symbols  x were no t  in w 0. Then  T (y) . . . .  y x and  T (z)= x z - . . ,  which 

is impossible.  I t  follows f rom th is  t h a t  if s 1 = (. . .  ~), s~ = (~ ..-) and  �9 cancels in  Sl, 

i t  canno t  cancel  in s~. 

I I .  To show t h a t  some symbol  in s 2 above  cannot  cancel  some symbo l  in  Sl, 

one needs to  show t h a t  in W . . . .  E . - - E - - . ,  where  E reduces  to  the  e m p t y  word,  

L ( E ) =  2 is a lways  t rue.  Suppose  

W . . . .  y ~ x z  ... u ~  ... 

so t h a t  ~?x is no t  in  w0, hence ~, say,  is no t  in w 0. Then  T ( y )  . . . .  y~ ,  and  so 

is the  mul t ip l ie r  in T,  y is ac t ive  in T,  and  so u ~  = a f t .  I f  now E :~ ~x,  d rop  al l  

pai rs  x~,  ~ x  in E and  call  the  resul t  E'.  Then  E '  is of the  form ... z S . . .  since 

E ' = I .  If  z~ was in E ,  t hen  z ~ = x ~  or ~x ,  a n d  so canno t  be  in E',  hence z ~ = E .  

B u t  then  

E . . . .  z (~x) ~ ~ . . . ,  

a n d  because of I .  above ,  k =  1, wi th  

W . . . .  z s  ... 

a n d  ~ x 4 : w  o. Suppose  s t hen  T(z )  . . . .  z~,  T ( ~ ) = x $ - . . ,  so w 0 . . . .  z $ . . . ,  con. 

t r a r y  to  the  a s sumpt ion  t h a t  w o is reduced.  This  concludes the  proof  of the  lemma.  
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Now let S be a set of syllables satisfying the condition of the lemma and the 

condition (C') with respect to a given T r Then 1-I T1 (st) is defined and represents 
siCw~ 

T 1 (Wo) , by  vir tue of the definition of T (s~) for a rb i t rary  T; moreover  it represents 

the reduced word T 1 (w0), b y  vir tue  of (C'), with L (T 1 (s,))>72. Hence the set (T 1 (s~)) 

is a set of syllables to which the lemma is applicable with respect to  any  T-trans-  

format ion T2; hence S satisfies (C) with respect to T2 T 1. 

Let  T 1 be given by  

5. Standardization (1) 

a I -->a I C a h -->5 ai, c 

a 2 --~a 2 c 
: aki..-~akj 

at, ---> S al, 

a~, -->Sat~ d ---> T 1 (d) 

in F,~=F(al ,  ... ; at . . . . .  ; ak . . . . .  ; c, d) with c and d e no t  necessarily distinct. Re- 

present am symbolically by  Xm Ym = am, for every generator  excepting c and d. Then  

under  T1, a 1 =X" 1 YV-~)~I Y1 c, which will be wri t ten symbolically as {X:I-~)~I, Yv-> Y1 c), 

or equivalently,  as {Xv-->X1, Y1--->YlC}. For  example, aj,=.Xt, Yj, gives {Xj.--->Xjc, 

Yj,-~ Ys, c}. 
Let  ~ range over the set of symbols Xr, Ys for which Xr.--->Xr c, Ys----> Y~c. Then 

=(Y1,  Y2 . . . .  ; Xt,, Xi . . . . .  ; Xs . . . . .  ; Yj . . . . .  ). Let  fl range over all other  symbols 

Xr, Y~. Then T 1 is given by  

/ 6~-->dr c 

d-o T 1 (d). 

Similarly, an au tomorphism T 2 with multiplier d e is given by  

[ ~'.___>~, d e 

2 2 fl'-->fl' 

C -+T 2 (C) 

where c is the multiplier in T1 and ~ U fl = a ' 0  fl'. 

(l) The procedure of this ~ection may be interpreted as an embedding of Pn in F2 n-2. 
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Set 
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X = ~ A ~ ' ,  

z: f l  n~', 

y = c o m p l e m e n t  of x in ~. 

u =  complement  of x in ~'. 

Then x U y U z U u = : ~ U f i ,  and  the sets 

the i r  te rms 

t l l  : x ~ x  c 

T 1 = t 1 tl2 t l l  ~ t12 : y - ~ y c  
I 
[ t 1 : d - - > T  1 (d) 

x, y. ~r z, (c, d) are  dis joint  pairwise.  In  

[ t21 : x--> x d e 

T 2 = t.) t2~ - t., 1 tee u - - > u d  ~ 

t 2 : c - - > T  2 (c) 

where the  s t a t emen t  z-~-z  is omi t t ed  for b rev i ty .  A n y  pair  T 2 T 1 can be so wri t ten ,  

wi th  the  proper  choice of the  sets x, y, z, u, (c, d). 

The images T 1 (d) m a y  be d e ,  e d ,  or " b o t h " :  5 d e ;  accord ingly  let  

t13 : d - - > d  c 

t14 : d- ->Sd ,  

so t ha t  t 1 m a y  equal  t13, t14 , o r  t14 tla, or 1. S imi la r ly  for T 2 (c), wi th  

t23 : C---->C d e 

t2~ : c ~ d  ~ c. 

This resul t  has two consequences. There are now only  twelve symbols  in F , ,  

namely  x, y, z, u, c, d and  thei r  inverses,  and  hence a f ixed number  of syl lables  of 

length  2.( 1 ) Thus a f ixed set S can be found (section 4.3) for all  F , .  Fu r the rmore ,  

the  sets x, y ,  u ,  z ,  (c d)  m a y  be t aken  to s t and  for an  a r b i t r a r y  f ixed pa r t i t i on  of 

the  symbols  Xj, Yi, c, d; then  every  T 2 T 1 is a p roduc t  of cer ta in  of the  t~j, ? ' -  1 . . . . .  4, 

i =  1, 2, p rovided  only  t h a t  T~ s tands  for a T- t r ans fo rmat ion .  

6. Equivalence classes 

Before defining equivalence be tween au tomorph i sms ,  it  will be convenien t  to 

set t le  the  case (section 3) when A = ~ T ,  where p is a p e r m u t a t i o n  of the  genera tors  

and  thei r  inverses.  

(1) A m o n g  all pa i r s  one  m a y  fo rm here,  t h e  8 pa i r s  a d s t a y  i n v a r i a n t  u n d e r  all T~ T 1, or  else 

aCt-  l; t h e  16 pa i r s  ab, where  a a n d  b r a n g e  ove r  x, y, z, u ,  n e v e r  occur;  s imi la r ly  for  t h e  fol lowing:  
]6 pa i r s  db, 16 pa i r s  ce'a or  de'a, 16 pa i r s  dce' or dd e'. Fina l ly ,  t h e  16 pa i r s  5b a re  g e n e r a t o r s ,  

hence  n o t  syl lables.  The  r e m a i n i n g  pa i r s  a re  t h e  f o l l o w i n g  a n d  t he i r  inverses :  x~), x ~ ,  y ~, x~,  y S, 
uS, .vc e, y c  e, uc  e, zc  e, cc, dd,  x d  e, y d  e, ud  e, zd  e, cd e, 5de; e = +_ 1. 



01q F R E E  GROUPS AND T H E I R  AUTOMORPHISMS 149 

For  every ~ T  there is a T- t ransformat ion T' such tha t  ~ T = T ' ~ .  T o s h o w  

this, designate~ by  c the  multiplier  in T 1 = T, say c = a~ and let (a~', c) denote the  

image of a~" under  T. Then (c, c ) =  c and the set (a~', c), i = i . . . . .  n, defines T. Let  p 

e" i, )" = 1, n; in part icular  let a~'" =d  and d->c. Then be given by  aj-->a~ . . . .  

p T 
e e* ~* aj-->a~ -->(a~ , c)-~(a e, d) 

p T ~  
d --> c -> c -> d. 

Thus, ~Tp:a~-->(a~, d), with a~"=d->(d, d). The set (a~, d) defines a single T-trans-  

format ion  T '  = ~ T p; h e n c e  ~ T = T' ~. 

A permuta t ion  is a level t ransformation,  so tha t  T ' ~  is direct (section 3). 

i t  follows also tha t  ~ T~ T 1 p = (~ T~ p) (~ T 1 p) = T~ T'I, which can be expressed 

by  saying tha t  T 2 T 1 and T~ T~ differ by  nomenclature.  The rest of the discussion 

of theorem 1 will concern forms T 2 T 1 =~ ~ T. 

Two automorphisms A1, A2, will be called equivalent,  A I , ~ A  2, if for A I =  

= T~ T~_  1 . . .  T~ 

As = ~ Ck T~ Ck_~ Tk_l ... T~ C o p 

where p is a permuta t ion  and the Ci are inner automorphisms.  

Since on cyclic words inner automorphisms are the ident i ty  t ransformat ion,  the 

proof of theorem 1 is identical for automorphisms differing only by  these. Conjuga- 

t ion of A 1 by  a permuta t ion  amounts  to a change of nomenclature:  if B is direct  

(section 3) for A 1 then  ~ B p = B '  is direct for A 2 = ~ A l p .  Thus it  suffices to carry  

the proof for one element of an  equivalence class. 

The following shows tha t  every equivalence class of the forms T 2 T 1 is a l ready 

generated b y  tll, tl~ , t~a, t21, t~2, t~a of section 5. 

Suppose T 1 contained t14:t--->Sd , and A = T 2 T  1. Then T l ( d ) = s d  or 5dc. Let  

C : ai-->ca~ 5 for every  generator  as, so tha t  A ,,~ C A  = T~ T~, where under  T~ either 

d-->d5 or d->d. I f  the lat ter  holds, then C A  does not  contain t14; if the former holds, 

then let p be the permuta t ion  c-->5-->c, and let A " = ~ C A p ~ T ~ ' T ~ ' .  Then A ~ A "  

and under  T~' the image of d is d c. Hence A is equivalent  to a p roduc t  of two 

T- t ransformat ions  in which t14 does not  occur. 

Suppose in A = T 2 T 1 t14 does not  occur but  t24: c-->~ec does. Then T 2 ( c ) = ( ~ e c  

or clecd e. Let  C:  a~-->-deatd7 ~ for every generator  ai. As before, A , , ~ C A = T ~ T ~  and  

T~(c )=cd  e or c. Since C leaves d fixed and since C A = C T  2T  I=(CT2)  T 1, we have 
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T ~ = T 1 ,  T ~ = C T 2 ,  so tha t  t u  does no t  occur in C A .  Hence A is equivalent  to  a 

p roduc t  of two T- t ransformat ions  in which t14 and t~a do no t  occur. 

I t  follows t h a t  the theorem needs proving only for forms T 9 Tx generated by  

tij, i =  1, 2; ~= 1, 2, 3. This is done in section 8. 

7 .  T h e  s e t  S 

The symbol  (Ira) will s tand for the  pairs ( lm)  and (lm) -1, t h a t  is ( l m ) =  ( lm)  .1.  

The symbol  ( I r a ) ~  will abbreviate  the collection of all pairs (1 m) no t  followed 

b y  the  symbols  ~, Y, d, or J,  t h a t  is ( l m ) ~ t =  ( ( Ira)~ ,  ( I ra)~ ,  ( l m ) b e ) .  

Since x (or y, etc.) is a set of symbols X~, Yj  (section 5), the s ta tement  " x  is 

void"  is clear. I n  a set of syllables containing the  symbol  x,  whenever  in the  auto- 

morphism under  discussion the  set x is void, one merely drops all syllables containing 

x. Similarly, if in the au tomorphism under  discussion c = d or c = J, one drops all 

syllables containing, say, d; for then d is void. 

Wi th  these conventions, the following is a set S usable in all computa t ions  nec- 

essary to  prove theorem 1. 

Pairs of the form (~k) ~ and (hh~), h, k: x ,  y ,  z, u, do not  appear  in S (section 5), 

and  will, when necessary, be referred to  as s o . 

s 1 = (dd)  814 = (x e~t) sg~ = (y c J) S4o = (u c) Ct 

s 2 = (x~) s15 = ( x e J )  %s = ( y c ~ )  s41 = (ud)  

s3 = (x c J)  sle = (x d)  s29 = (Y c) ~ s4,  = (u  e) 

8 4 = ( x c d )  S17 = (yS) Sao = ( y c d )  sea = (u~)  

8 5 = ( x c y )  818 = (US) %1 = (yd)  s44 = ( c c J )  

% = ( x c ~ )  s19 = (zca)  %9 = (ya)  s45 = ( c c d )  

s T = ( x c )  ~ S2o = (z c d)  s33 = (y  ed) see = (c c) 

s s = (x~) %1 = (zcJ)  sa4 = ( y e e )  s4~ = (dcd)  

83 = ix  ~) s= = ( zcg )  s35 = ( y e a )  s43 = ( Jcd)  

810 = (Xa)  S• = (ZC~) Sa3 = (y SJ)  S49 = (tic J) 

811 = (x ed) 824 = (25 d) 837 = (y(~) 850 = (Jc  t~) 

s19 = (x C~) s95 = (z 5) s3a = (u c ~) ss~ = (~ c) h 

s~a = (x55) sge = (z J) sa9 = (ucd)  s59 = ( t i c )~ .  

The following observat ion will be used in section 8. Le t  each symbol  in the  set 

(x, y, u, z, c, d) s tand for a fixed subset of the  symbols  X~, Y~ (section 5) and 

define the form T~ T~. Let  T 9 T 1 be given by  
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TIt y--~yc., T2:u-*ud.  
( X - ' ~ X C  

Then  no symbol  Xi or Y~ is act ive in both Tt, hence one can write y" =x  0 y and  

T'z':y"--~y"c, T~':u--->ud, with T ~ ' = T ,  so t h a t  T, TI=T2'T~" identically. This  can 

be expressed b y  saying: T 2 T 1 is of the  form T2' T~'. 

The  results go t ten  so fa r  m a y  be s u m m e d  up so: if T~ is a p roduc t  of a subset  

of the  au tomorph i sms  t~, t~2, t~ s, i = 1, 2, with x, y, z, u, c, d fixed bu t  a rb i t r a ry  sets 

of symbols  Xt, Ys (section 5), i t  suffices to prove  theorem 1 for T~ T 1 act ing on a n y  

word w 0 satisfying the  hypotheses  (1) and  (2) of the theorem.  I t  is permissible to  

replace w 0 b y  its representa t ion  l-I s~, s~ c S above,  in computa t ions  of changes of 
st e" w . 

length under  such Tt and T z T 1. 

8. Computations 

The following device is the  key  to demons t ra t ing  t h a t  if A and  w 0 sat isfy the  

hypotheses  (1) and  (2) of theorem 1, then  a proposed A' has  the  proper t ies  of B 

in the  theorem.  

I f  T: x-->xc, then  T and  the  (cyclic) word x #5 = w = 1-I si = (x #5) (Sx) = s~ss o cannot  

sat isfy hypothesis  (1), for T ( x # 5 ) = x S = T ( w )  is shorter  t han  w. For  this T, s~a i s '  

a reduct ion syllable, t h a t  is L ( T s ~ ) - L ( s 2 a ) = -  1 < 0 ,  and  the  word w contains re- 

duct ion syllables in excess of increase syllables under  T. 

I n  general, if L (Ts~) - L (si) = kt, and  x~ s tands  for the  ( indeterminate)  n u m b e r  

of t imes s~ occurs in w0, then  L ( T w o ) - L ( w o ) = ~ k ~ x ~ = I - R  , where I sums the  

positive, - R  the  negat ive  terms.  I f  A = T z T  1 and w 0 satisfy (1) and  (2), then  

I - R = r > 0  for T x and  I - R < ~ r  for  A. 

T '  T '  ' Suppose now t h a t  S is usable for 2 I = A ,  t h a t  A ' ,~ A ,  and T l ( w o ) = W  is 

a t  least  as long as T 1 (w0). Then I - R ~ >  r for T~ is a th i rd  inequali ty,  with known 

coefficients, in the x~. I f  adding these three inequalities gives a contradict ion,  then  

W is shorter  t han  T 1 (w0) and  so A' is direct.  

For  convenience, in the sequel x~ will be abbrev ia ted  to i. 

0 . i .  Products  of t~, t~2. 

A (Y--->YC=A' t u-->ud A' T' ' 
u-->ud ~y-->yc ; = 2T1. 

I f  y, or u, or bo th  be void, there is nothing to prove.  The following shows t h a t  the  
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assumpt ion  T': (wo) is longer t han  w 0 gives a contradict ion.  The  result  holds whether  

d is void or not  (section 7), t h a t  is whether  c = d  e or not .  

B y  hypothes is  (1), for  T1, I - R = r > O ,  or I = R + r :  

17 + 2 7  + 2 9 + 3 0 + 3 1  + 3 2 + 3 7  = 2 2 +  33 + 3 4 + 3 5 + 3 6 + r .  (1) 

B y  hypothesis  (2), for A, R + r >/I :  

2 2 + 3 3 + 3 4 + 3 6 + 4 3 + r ~ >  

/> 17 + 18 + 27 + 29 + 30 + 31 + 37 + 38 + 39 + 40 + 41 + 42 + 2 (32). (2) 

Fo r  T~, I > R :  

18 + 32 + 35 + 38 + 39 + 4 0 +  4 1 +  42 > 43. (3) 

Adding these three  inequalit ies gives 0 > 0, a contradict ion.  

0.2. Products  of tll, t12, t2:. 

/ X----~X C 
A y - > y c  ; A = t21 t12 tll. 

x<---xd 
I f  x is void  there  is nothing to  prove;  if y or d is void  the  result  below still 

holds. I f  the  assumpt ion  (3) below t h a t  tll (W0) is longer t han  w 0 gives a contradict ion,  

then  t~,t,2 is left  to  invest igate,  which is of the  fo rm 0.1. (section 7) and  can be 

made  direct. 

2 + 3  + 4 §  + 8 +  1 6 +  17 + 2 7 + 2 9  +30+31  +37 = 11 + 13 + 1 5 + 2 2 + 2 3 + 3 3 + 3 4 + 3 6 + r  (1) 

2 ( 1 5 ) § 2 4 7  + 3 4 §  { 2 5 ( 2 + 3 + 4 + 6 + 7 §  16)§  / 
+ 9 +  1 2 +  17 + 27 + 2 9 +  3 0 + 3 1  + 3 7  1 (2) 

2 § 2 4 7 2 4 7  1 6 >  l I  § 1 2 §  1 3 +  1 4 §  15. (3) 

Adding these three inequalit ies gives 0 >  2 (11 + 13) + 12 + 23, which contradic ts  the  

fact  t h a t  x~/> 0 for every  i. 

0.3. Products  of tll, tl~ , t~l , t22. 

�9 x - - > x  c ! u - - >  u d 

y - + y  c x-->x c 
A = A '  

x - + x  d y - + y  c 

u--->ud x-->xd 
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If x (or u) is void, A is of the form 0.1 (or 0.2). Whether or not y is void, the 

result below holds. 

If  t11: x-->xc does not lengthen w 0, then A tll is left to investigate and this is 

of the form 0.1; thus one may assume the contrary; this is done under (3) below. 

If t~l: u-->ud does not lengthen w0, then A'i~l is left, which is of the form 0.2; the 

contrary is assumed under (4) below. 

2 + 3 + 4 + 7 + 8 + 1 0 + 1 6 + 1 7 [  / 11+ 1 3 + 1 4 +  1 5 + 2 2 +  t 
(1) 

+ 2 7 + 2 9 + 3 0 + 3 1 + 3 2 + 3 7  ) = [ 2 3 + 3 3 + 3 4 + 3 5 + 3 6 + r  J 

2 ( 1 5 ) + 1 4 + 2 2 + 3 3 + } ~  

+ 3 4 + 3 6 + 4 3 + r  

) [ 2 ( 2 + 3 + 4 + 6 + 7 + 8 + 1 0 + 1 6 + 3 2 ) + 5 + 9 + 1 0 + 1 2 + 1 7 + }  

/ 1 8 + 2 7 + 2 9 + 3 0 + 3 1 + 3 7 + 3 8 + 3 9 + 4 0 + 4 1 + 4 2  
(2) 

2 + 3 + 4 + 5 + 7 + 8 + 9 + 1 0 + 1 6 > 1 1 + 1 2 + 1 3 + 1 4 + 1 5  (3) 

10+ 14+ 1 8 + 3 2 + 3 5  + 3 8 + 3 9 + 4 0 + 4 1  + 4 2 > 4 3  (4) 

Adding these inequalities gives 0 > 2 (11 + 12 + 13) + 23, a contradiction. 

In  the rest of the computations, if d is void, then every automorphism under 

discussion is of a form already treated. Hence it is now assumed that  c *  d e. 

Products of t12, t22, t23. 

y--->y c 

A c---->cd = A '  

u---->u d 

t . t .  

[ c--~cd 

u--->ud., A'  = T~ T~. 

l y-->y d 
[ y--~y c 

If c is not active, A is of the form 0.1. If y, or u, or both be void, then either 

there is nothing to prove, or the results below still hold. Assume neither void. If  

T~ does not lengthen w0, A' is direct. In (3) below the contrary is assumed. 

17+27 + 2 9 +  30+31 + 3 2 +  37 = 2 2 +  33+ 34 + 3 5 + 3 6 + r  (1) 

2 1 + 2 2 + 3 3 + 3 6 + 4 3 + 4 9 + 5 0 + r ~ >  

2 (17 + 2 9 + 3 0 + 3 1  + 3 9 + 4 5 ) +  18+20  

/ > ! + 2 5 + 2 7 + 2 8 + 3 0 + 3 2 + 4 0 + 4 1 + 4 6 + 4 7 + 4 8  

11 - 6 6 5 0 6 4  Acta mathematica. 99. Impr imf i  le 26  a v r i l  1 9 5 8  

(2) 
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1 7 + 1 8 + 2 0 + 2 5 + 2 8 + 2 9 + 3 1 + 3 4 + 3 5 +  / 
4 0 + 4 1 + 4 6 + 4 7 + 4 8 + 2 ( 3 0 + 3 9 + 4 5 )  t >21 §  + 4 9 + 5 0  (3) 

Adding these gives 0 >0 ,  a contradiction. 

1.2. Products of all t~j* t13. 

X~-~X C 

y--> y c 

A x-->xd =t~l(i21A)=t21A'; t~x: x-->xd. 

u---~ud 

[ c-->cd 

If  x is void, A is of the form 1.1. If c is not active, A is of the form 0.3. If u 

or y or both be void, the results below still hold. Assume neither void. Now, A'  is 

of the form 1.1 and is not direct by hypothesis; if A'(wo) is not longer than 

Tl(wo), then (on the pattern of 1.1, and by section 7) A ' = A " ,  where 

c -->cd 

u--->u d 

w--->x d 
A"  ; A"=T~'T'I ' ,  

y-->y d 

X->X, C 

y-->y c 

and A"  is direct, so that  T~'(w0) is not longer than w 0. Then t21T ~' is left to 

investigate, which is of the form 0.2. Under (3) below the contrary is assumed: 

A'  (w0) is longer than w 1 = T 1 (w0). 

If  for tn: x-->xc, ill (W0) is not longer than w0, then A i u is left to investigate, 

which is of the form 1.1; under (4) below the contrary is assumed. 

2 +  3 + 4 + 7 + 8 + 1 0 + 1 6 + 1 7 + ~  / 1 1 + 1 3 + 1 4 + 1 5 + 2 2 + 2 3 +  

2 7 + 2 9 + 3 0 + 3 1  + 3 2 + 3 7  l = { ( 3 3 + 3 4 + 3 5 + 3 6 + r  (1) 

3 ( 2 + 7 + 1 6 + 3 0 ) + 4 ( 4 ) + 2 ( 3 + 5 + 1 0 + 1 7 + 2 9 +  
13+ 14+2  (15)+21 + 2 2 +  } / 31 + 3 9 + 4 5 ) + 6 +  8 + 9  + 18 + 2 0 + 2 5 + 2 7 + 2 8 +  (2) 
33+  36+43  + 4 9 + 5 0 + r  ~> 

(32  + 4 0 + 4 1  + 4 6 + 4 7 + 4 8  

3 ( 4 + 3 0 ) + 2  ( 2 + 7 +  16+ 17+ 

2 9 + 3 1 + 3 9 + 4 5 ) + 3 + 5 + 6 + 1 0 +  

12+ 1 8 + 2 0 + 2 5 + 2 7 + 2 8 + 3 2 +  

4 0 + 4 1  +46  +47 + 48 

t 11 + 15+21 + 2 2 + 2 3 +  3 3 + 3 6 +  

/ 4 3 + 4 9 + 5 0 + r  
(3) 
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2 + 3 + 4 + 5 + 7  + 8 + 9 +  10+ 16> 11 + 12 + 13+ 14+ 1 5 + 2 3  (4) 

Adding the last three inequalities gives 0 > 2 (11), a contradiction. 

2. Products of all t~j* t23. 

[ x-+x c [ x-+x d I u-+u ~ 
| y-+yc [ u-->ud 

AId--->dc A'~Y-->YC =A"lx.-~xd 
= [ d--~dc 

( u--+ud ( u-+ud 

t t t i t  

where A' = Ta T2 T1 and A"  = Ta . . . .  T2 T1. 

I f  u is void, A" is of the form 1.1. (As soon as the symbols d and c are ex- 

changed and section 7 is considered this becomes apparent.) Since 1.1. can be made 

direct in such a way tha t  no intermediate word is longer than  w0, this case is 

already taken care of. Similarly for the other symbols. Thus, one may  assume tha t  

u, etc. are not void. By the same token, T~' (w0) may be assumed longer than  wo; 

this is done under (3) below; also T1 (w0) may  be assumed not shorter than  w0; this 

is done under (4) below. 

1 + 2 + 4 + 7 + 1 0 + 1 6 + 1 7 + 2 6 + }  = { 1 1 + 1 3 + 1 4 + 2 1 + 2 2 + 2 3 + 3 3 + 3 4 +  (1) 

2 9 + 3 0 + 3 1 + 3 2 + 4 3 + 4 7 + 5 2  3 5 + 3 8 + 4 4 +  5 0 + r  

/ 3 (10)+2 ( 2 + 4 + 6 + 7 +  16+32  + 4 3 ) +  
8+ 14+21 + 2 2 + 3 3 + 3 4 +  }>//1 + 3 + 5 + 9 +  12+ 15+ 17+ 1 8 + 2 6 + 2 9 +  
2 ( 3 8 ) + 4 4 + 5 0 + r  ~ 30+31  + 3 9 + 4 0 + 4 1  + 4 2 + 4 7 + 5 2  

(2) 

10+ 1 8 + 3 2 + 3 5 + 4 1  + 4 2 + 4 3 >  1 4 + 3 8 + 3 9 + 4 0  (3) 

2 + 3 + 4 + 5 + 2  ( 6 ) + 7 + 9 +  10+ 11+ I 2 +  13+ 14+ 15+ 16+23/>  8 (4) 

Adding these gives 0 > 2 (39 + 40), a contradiction. 

This takes care of all categories save 3: products of all t~j. The fact tha t  in 

every case a direct automorphism B was found with the property tha t  no inter- 

mediate word is longer than w 0 will be used in 3. below. 

Because the cases 3. require a great many  inequalities, the following simplifying 

device is used. The set S so far used is large because it is usable for every case; 

but  smaller sets suffice for just one category. A set usable for 3. alone, of fewest 

possible syllables, will be given. They will be derided into subsets as indicated by  
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the numbering,  and in the computa t ions  the number  oI t imes s~j occurs in w 0 will 

be designated by  i j. 

The symbol  a stands for each symbol  in the set (2, ~, de); the symbol  b for 

each in (2, d). 

So=(So~)=((xc~), (yc2), (dc2), (cTc)b, (yd), (uS), (zd)) 

81 = (81i) = ((xd), (x~), (xc) a) 

s2=(s~+)=((yd ), (dd), (y~), (dS), (x~), (yc) a, (dc) a) 

s3=(sat)=((xc2), (yc~) (dc~), (uc) a, (cd), (cS), (x~), (ud), (u~), (cc) a) 

s4 = (x c ~) 

+~ = (++~)= ((u~), (ud)) 

+~ = (+~+) =((ccd), (uc~)) 

sT=(sT+)=((dSd), (deS), (cc2), (uc2),  (zcy), (ySd)) 

ss=(ssi)=((xSd), (xeS), (cc~), (uc~)) 

s9 = (e~t) = ((yc~), (dccT), (x~)). 

3 . t .  Products  containing t13 and  t23 , with e = + 1. 

X--->X C 
' X---->X C 

x-->x c y-->y c 
y-->y c 

y-->y c d-->d c 
d--~d c 

d-->dc x-->xd 

~ A'  c--->cd = I x--->x~t=A* i A c-->cd x-->xd I 
x-->xd c --->dc 

u-->u d 
u-->ud . g--->d g ~ Y--->Y~ 

[z+zd 

X--->X r 

y-->y c 

d---->dc 
Z "-'->Z ~ 

c -->d c 
y-->yJ 

where g runs th rough  x, y, u, z, c. Moreover, A equals 

A,, 

�9 U " ' ~ U  C 

d---~d c 

X"->X C 

y--->yc ; A "  = T'a' T~' T~'. 

c--->cd 

X,---~X d 

u " - > u  ~ 
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Set A ' = T 3 ' T  'm'2~1 and A*=T~T*T~,2  where T~=T1,  T*=t:  z-->zd; also T~=TI ,  

T~ = t' : x-->xd. 

The computation below gives the same result if any  subset of (x, y, u, z) is 

void. I f  c or d is void, A reverts to a form discussed before. Similarly for 3.2, where 

e = -  1. Assume therefore tha t  none of the sets a r e  void. 

The product T~' T~' is equivalent to the form 2. (exchanging the letters c and d, 

and setting x and y void in 2. makes this apparent),  which can be made direct in 

such a way that  no intermediate word is longer than the first word. Thus if T~' (we) 

is shorter than Wl=Tl(Wo) , then A "  either is direct or can be m a d e d i r e c t .  Under 

(3) below the contrary is assumed. 

The product T~T~ is of the form 2. (with u made void in 2.), so it can be 

made direct in same manner. Thus if T~ T~ (wo) is shorter than wl, then A'  either 

is direct or can be made so. Under (4) below the contrary is assumed. The same holds 

for T~ T~', so it is assumed under (5) below that  T~' T~' (w0) is not shorter than w 1. 

Set To: x---~xc, d--->dc. I f  T~ is shorter than wl, then A T  ~ is left to in- 

vestigate, which is of the form 1.1. Under (6) below the contrary is assumed. 

Let  C be a conjugation of every symbol, except d, by d, and C' a conjugation 

of every symbol, except c, by c. Since conjugations are the identity transformation 

on cyclic words, I - R  (see beginning of section 8) for C and C'. This is what  the 

equalities (7) and (8) below state. 

1 + 2 + 5 = 6 + 7 + 8 + r  (1) 

2 (6+ 7 +  8 +  r ) = 2  (I + 2 + 5 )  (1') 

3 (6 +7 +8+ r)=3 (I +2+5) (I") 

2 (6) +7+9+r>~3 (I)+2 (2+4)+3+5 (2) 

Combining (l') and (2) gives 

5+9~> 1 + 3 + 7 + r + 2 ( 4 + 8 ) ,  or (2') 

6 + 9 > 1 2 + 3 + 8 + 2 ( 1 + 4 )  (2") 

1 + (2 - 25)  + 3 4  + 38  + 39/> 07 + 61 + (7 - 74)  + (8 - 84)  + r (3)  

0 1 + 0 2 + 0 3 + 2 + 2 5 + 3 7 + 4 + }  >~ 6 +  71 + 72 + 75+ 76+  83 + 8 4 + 9 3 + r  (4) 
5 + 2 ( 1 + 3 1 )  

05+  1 +  1 2 + 2 + 2 3 + 2 4 + 3 6 +  
t 1 > 0 9 + 6 + 7 1 + 7 3 +  74+  7~+ 8 +  r (5) 

3 9 + 5 + 8 2  ! 
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0 6 + 1 + 2 2 + 2 4 + 2 5 + 2 7 + 3 3 +  / ~ > 0 2 + 6 + 7 + 8 1 + 8 2 + 9 1 + r  
3 7 + 4 + 5 2 + 7 5 + 7 6  t 

(6) 

0 1 + 0 3 + 0 6 + 2 4 + 2 7 + 3 3 + 5 2 + }  6 + 7 2 + 9 + 9 2  = 0 4 + 0 9 + 1 1 + 2 1 + 3 5 + 3 8 + 7 6 + 8 1  (7) 

07 + 35 + 36 + 61 + 73 + 83 = 04 + 05 + 13 + 26 + 27 + 34. (8) 

Adding (1"), (2'), (2") and (3) to (8) gives 0 f > 2 r +  . . . ,  where the right hand side 

is at  least as large as r, contrary to the definition of r. Thus, one of the auto- 

morphisms above is direct or can be made direct by previous results. 

3.2. Products containing tla and t~3, with e = -  1. 

X--->~ C 

y-->y c 

d-->d c 
A ~ A '  

X "-> X C~ 

U-"->U ~ 

6 --> C (~ 

where g runs through x, y, z, u, c. 

X"--~ X~ 

~-->yc [ x-->xc 

d-->dc ] c-->d-->5 

x-->xJ = A*  ~ d-->gd 
! 

u --> u [1 | y --> y c 

c- >cJ [ z -->zd 

g-->dgd 

Set A*--  T*3 T'D*2* T t ,  t :x-->xc, and t' :x-->xc~. Then T~ T*2 is equivalent to the 

form 2. and can be made direct; thus if x is void A* can be made direct. I f  x is 

not void but  t (w0) is shorter than w 1 = T 1 (w0), then i A is left to investigate, which 

is equivalent to having x void. Assume then that  t (w0) is not shorter than Wl; this 

gives the inequality (3) below. 

Similarly, if i ' A  (wo) is shorter than Wl, i ' A  is left to investigate, in which x 

is void. Assuming the contrary gives the inequality (4) below. 

The results below remain the same if any  subset of (u, y, z) is void. 

1 + 2 + 5 = 6 + 7 + 8 + r  (1) 

2 (01)+ 1 + 2  (12+ 1 3 J - 2 - 2 1 - 2 2 + 3 - 3 5 - 3 8 ) +  
3 5 + 3 8 + 7 + 2  (81)+r~> ' (2) 

2 ( 4 ) + 5 + 9  

01 + 1 + 2 5 + 3 7 + 4 + 9 3 / > 0 2 + 0 3 + 7 3 + 7 4 + 8 1 +  82 + r  (3) 

0 1 . + 0 2 + 0 3 + 2 ( 1 2 + 1 3 + 2 3 + 2 4 + 2 6 + 2 7 ) +  t t 3 5 + 3 8 + 7 1  + 7 2 + 7 5 + 7 6 +  
>~ (4) 

2 5 + 3 - 3 5 - 3 7 - 3 8 + 4 + 5 + 9 1 + 9 2  ) (81 + 8 2 + r  

Adding (2), (3) and (4) gives 0>~r+ 2 6 + 2 7  + 2 (82), contrary to the definition of r. 

Thus A* is or can be made direct by  previous results. 
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9. Corollary 

The corollary to theorem 1 states (section 3) that  w 0 may stand for a set of 

words (W01 , W02 . . . . .  Worn). This is seen as follows. 

Let a~ denote a generator of F,,=G" and let g denote a new symbol. Let w 0 

stand for the set of words above from a free group on any number of generators, 

finite or not, and suppose ~hat n of these generators occur in Wo; denote them by 

as, i = l  . . . .  , n ,  and let g be al+ n in the group. I t  is no loss of generality in what 

follows to consider only the free subgroup G =  F ( a  1 . . . . .  an, g). 

Form the cyclic word 

W 0 = W0l g w02 g w03 g ... w0, g 

in G. Then the theorem holds for W 0 in G. I t  will be seen to hold f o r w  o i n F  n=G' ,  

and hence in any free group. 

The direct automorphism B that takes W o into A (Wo)=A (wolg ... w0ng)= 

= (Awol .g .  Awo2 .g . . . . )  has the following property: the image under B of an active 

generator differs from its image under A at most by a conjugation by a word w 

composed of multipliers in A. In  particular, B ( g ) = w g ~ ,  and for any T '  k i n B ,  

T '  (g) = wk g ~k. 

If W is the empty word, w =  1, then B is an automorphism of G', and the cor- 

ollary is true, provided that also wk= 1 for every k. Otherwise there is a smallest 

number k, with wk u= 1, and hence of length 1: T~ (g) = wk g ~ ,  and w ek is a generator. 

Set T*: g-->~kgWk, ai-->~,a~wk, i =  1 . . . . .  n; the product T* T'k=Tk is a single T- 

transformation. Replacing T~ by Tk in B gives another direct transformation of W 0 

into A (W0) but one with fewer factors that  act on g. As B is a finite product of 

T-transformations, repetition of this procedure yields a direct transformation equi- 

valent to B and with wk= 1. This transformation will be an element of the auto- 

morphism group of G', hence the corollary. 

10. Some consequences  o f  theorem 1 

T HEOR~,~ 2. I[ W o iS a set of elements and A is an automorphism of the [ree 
k 

group G, A (Wo)=w, then there exist T - t rar~ /or~ t io~  B~, i =  1 . . . .  , k, [IB~ = A ,  such 
1 

that every set o/ words ~ B~ (w.), r<~ k, is at most as long o~ max (L (w.), L (w)). 
1 

Proo[. Suppose, for definiteness, that  L (w) ~< L (Wo). Let Th ... T1 be a repre- 
g 

sentation of A in terms of T-transformations, with intermediate words 1-[ T~ (w0) = w~. 
1 
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Let  wg, be a longest intermediate  word such tha t  L (wg,-1) < L (wg,) or  L (wg,+l) < 

L (wo,); L (wg,)=L.  Applying the corollary to wg,-z, wg,, wg,+l and using the direct 

t ransformat ion  B so obta ined to replace Tg,+lTg, in A yields Ta ... B ... T I = A ,  

with intermediate (sets of) words of length at  most  L, bu t  fewer longest ones than  

before. A finite number  of these steps leads to the goal. 

I n  particular,  an  au tomorphism B can be found for which there exist numbers  

h"~h '<~ k, such tha t  the lengths of the intermediate  words Wg under  B are mono-  

tone decreasing from 1 to h" ,  are unchanged from h" to  h',  and are monotone  in- 

creasing f rom h' to  it. This result implies theorem 3 of Whi tehead [7], which states 

t ha t  if w 0 and A (w0) are minimal T then they  can be t ransformed into each other  

by  level T-transformations.  

T H E  O REM 3. Words minimal  relative to all single T-transformations are minimal  

relative to any automorphism. 

Otherwise the au tomorphism B of theorem 1 would fail to  exist for some factor  

T 2 T 1 of such an  automorphism.  

T H E O R E M  4. I f  W 1 and w 2 are minimal  and are connected by an automorphism, 

then they contain the same number of distinct generators; moreover, i/ kii is the number 

o/ times a~ occurs in wj, i = 1 . . . . .  n, ] =  1, 2, then the sets of numbers (kil) and (]ct2) 

differ by a permutation o/ the subscripts i. 

Proo/. By theorems 2 and 3 the (sets of) words wj are connected by  level T- 

transformations,  T',  and possibly permutat ions.  The effect of such T '  is to  move the 

multiplier in T'  from some places of occurrence to others with a change of sign. 

This, as well as a permutat ion,  leaves the set of numbers  (k~s) unchanged.  

T H E O R E M  5. I /  w 2 = A  (wz) is minimal,  then the number o/ distinct generators 

in w z can be diminished by applying a trans/ormation i~ and only i/ w 2 has /ewer 

distinct generators than does w z. 

This follows f rom the two preceding results. 

T H E 0 R E M 6. I /  W contains ai or 5t /or every i, w c G = F (a 1 . . . .  ) and is minimal,  

then A (w) contains, /or arbitrary A ,  a~ or & /or every i. 

For  suppose w z = A  (w) did not  contain a~; then  w = ~  (wz) would contain more  

distinct generators t han  wz; this would contradict  theorem 5. 
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11. Some applications of  the syllable method 

Let  (b 1 . . . . .  bk, a ' )=  (b, a'), a':~ b~, denote  any  non-empty  subset of the symbols 

al, 51 , a s, 52, . . . , a~ ,  5~; let z run  th rough  all those a~ not  equal to  $, or 5' ,  

i =  1 . . . . .  k, as well as the ident i ty  element 1. Let  w c G = F ( a  1 . . . . .  a~); denote by  

(b, 5') the number  of times the symbol bi is followed by  5'  in w plus the number  

of times bi is preceded by  a' in w; denote by  (b~ z) the corresponding number  summed 

over all values of z. (A symbol  is followed by 1 in w if it is the terminal  symbol,  

and is preceded by  1 if it is the initial symbol  there.) 

T~]~ o R EM 7. The word w is min imal  i/  and only i/  the relation 

(5t 5') <~ ~ (b, z) (*) 
i i 

holds /or every set (b, a') in G. 

Proo[. The au tomorphism b-->ba' is a T- t ransformat ion whose effect is to  replace 

each element b~ of the set (b) by  b~a'. When  b~5' occurs in w, the symbol  a '  in- 

t roduced by  this T into b~ 5' cancels against  5'; for an occurrence of b~ z there is no 

cancellation. The excluded values for z yield the combinutions b~ b~ and b~ 5'; in the 

lat ter  there is cancellation, in the former there is no change under  T. Thus  the con- 

di t ion (*) states t ha t  the number  of cancellations mus t  no t  exceed the number  of 

new symbols int roduced by T. This condition is clearly necessary. I t s  sufficiency 

to make  w minimal T, for any  T-transformation,  T follows f rom the  lemma of sec- 

t ion 4.4. I t  follows now from theorem 3 tha t  under  the hypotheses above w is 

minimal. 

T H ~ o R E M 8. "T-trans/ormation" cannot be replaced by "simple,  or, t-trans/orma- 

t ion" in theorem 1. 

Proo/. The relation (*) of theorem 7, s ta ted for simple au tomorphisms t, for 

G = F  (al, a2, a3) is of the form 
(xy)  <~ (xz) (**) 

since now (b 1 . . . .  , bk, a ')  = (b, a ')  = (bl, a'),  or, briefly, (xy).  

A word in G satisfying this condit ion for every pair (x, y), where x e, ye' are 

generators,  is minimal t. 

Let  v and u run  th rough  every symbol  in G having exponent  + 1 ,  and set 

a = a l ,  b = % ,  c = a  3 in G. Then G has an element which satisfies (**) for every pair  

(x, y) as well as the condit ion 

(a 5) + (b 5) > (a v) + (b u) 
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(for nota t ion  see the in t roduct ion to  this section), which contradicts  one of the 

relations (*). 

This element is 

w = b d b ~ a c b c c ~ c 5 5 b b ~ b b c S c S b 5  

of length 24 and is minimal t but  is reducible under  the T- t ransformat ion  T: a->a c, 

b-->b c. 

I t  m a y  be noted t h a t  in F~ every T- t ransformat ion  is a t - t ransformation,  and 

since w(a ,  b, c) above is the shortest  word in F a having this property,  i t  is also 

shortest  possible in a ny  free group. 

T H E 0 R E M 9. I /  the word T (w) is longer then w, then T T (w) is longer than 

T (w). More precisely, L (T  w) - L (w) = r > 0 implies L (T  2 w) - L (T  w) ~ r. 

Proof. Let  the inequali ty sign in the relat ion (*) of theorem 7 be replaced by  

a t rue inequali ty for a f ixed set (b, a '):  

(b, 5') < ~ (b, z) 
i t 

and let it hold for the word w c G (a 1 . . . . .  an). Then under  the T- t ransformat ion  

T: bi-->b~a', i = l ,  . . . ,  k, T ( w )  is longer t h a n  w. 

I n  T ( w ) = w l ,  b~a' and its inverse occur more often than  b i v =  bi a' and its in- 

verse, for all b~ combined,  so 

~ ( b  a ' ) < ~ ( b , a ' )  in T(w) .  

Clearly, the set (b t a ')  contains the set (bi5') of consecutive symbols,  and so for the 

number  of their respective occurrences, also writ ten as (b~ If') and (biS): (b~5')<~ (b I If'); 

since z was to take on the value a '  too, (bta')<~ (btz); hence 

(b~ 5') ~< ~ (b, a') < ~ (b, a') ~ • (b, z) in T (w). 
t t t I 

Moreover, the difference between the two extremal  sums in the last inequal i ty  is 

seen to be a t  least as great  as t ha t  derivable f rom the first inequali ty above; hence 

if the lat ter  be r > 0 ,  the former  is at  least equal to r. 

References 

[1]. M. DEItN, Ueber unendliche diskontinuierliehe Gruppen. Math. Ann., 71 (1911), 116-144. 
[2]. A. G. KUROSH, The theory o/groups. 2nd ed. Translated from the Russian by K. Hirseh. 

Chelsea, New York, 1955/56. 



ON FREE GROUPS AND THEIR AUTOMORPHISMS 163 

[3]. B. 1-I. NEUMA~N, On the  n u m b e r  of generators  of a free product .  J .  London Math. Soc., 
18 (1943), 12-20. 

[4]. J .  NIELSEn, Die  I somorph ismengruppe  der  freien Gruppen.  Math. Ann. ,  91 (1924), 
169-209. 

[5]. A. SHENITZER, Decomposi t ion  of a group wi th  a single defining re la t ion  into  a free prod-  
uct .  Proc. Amer. Math. Soc., 6 (1955), 73-79. 

[6]. J .  H .  C. WHITEHEAD, On cer ta in  sets of e lements  in a free group.  Proc. London Math. 
Soc., 41 (1936), 48-56. 

[7]. - - - - ,  On equ iva len t  sets of e lements  in a free group.  Ann.  o /Math . ,  37 (1936), 782-800. 


