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In t roduc t ion  

Let  (~ be a separable locally compact  group. Continuing the convent ion adopted  in 

our  papers [11] and  [12] we shall abbreviate  the  term "cont inuous un i ta ry  representat ion 

of (~" to  "representat ion of (~". I f  X is a proper  closed subgroup of (~ whose representat ions 

are in a suitable sense "all  known"  one m a y  pose the following two questions. (a) Which 

representations of 3( are the restrictions to  it of irreducible representat ions of ~ ?  (b) Given 

such a representat ion of 3( how can one construct  all irreducible representat ions of (~ 

of which it is the  restriction? W h e n  3( is the  ident i ty  subgroup question (a) has a trivial 

answer (apart  f rom questions of dimension) and question (b) is essentially the  same as t h a t  

of determining all irreducible representations of (~? However,  for other  choices of 3(, 

questions (a) and (b) can furnish a useful breakdown of the problem of determining all 

irreducible representations of (~ into two more accessible components .  I t  is the p r imary  

purpose of this paper  to  discuss questions (a) and (b) and  their application to  the  deter- 

minat ion of the representations of (~ in the  special case in which 3( is normal.  Actual ly  we 

shall find it more convenient  to  deal with the slight var ia t ion in which we identify represent- 

ations of 3( which are quasi equivalent  in the sense defined on page 195 of [12]. 

For  the  special case in which 3( is no t  only normal  bu t  commuta t ive  and  in which ~ is a 

semi direct product  of 3( and (~/3(  this program has been carried out  in outline in our paper  

(1) In large part the material in this paper has been described in outline in each of the following: 
(a) Two lectures given in Paris in October 1954 under the auspices of the "Colloque Henri Poincar6". 
(b) A series of ten lectures on group representations given under the auspices of the Princeton University 
physics department and supported by the Eugene Higgins fund. (c) A course in group representations 
given during the 1955 summer quarter at the University of Chicago. (d) A paper presented by title at 
the 1955 summer meeting of the American Mathematical Society (Abstract 61-6-726 t). Mimeographed 
lecture notes of the University of Chicago course have been issued by the University of Chicago mathe- 
matics department and it is possible that the Centre Nationale des Recherehes Seientifiques will publish 
a volume containing the texts of the lectures presented at the "Celloque Henri Poincar6". 
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[10]. (See also [11] for a clarification and reformulation of parts o f  [10]). When the auto- 

morphisms of the character group ~ of ~ defined by the inner automorphisms of (~ had 

orbits in ~ which were "sufficiently smooth" question (a) was given a complete answer and 

question (b) was reduced to the problem of finding the irreducible representations of 

certain subgroups of ~ / ~ .  I t  is natural to expect the same kind of reduction of question 

(b) even when the commutativity and semi direct product hypotheses are dropped. As we 

shall see, however, the abandonment of either hypothesis leads to a situation in which we 

may have to study not the ordinary representations of subgroups of q ~ /~  but  certain 

"projective" representations; that  is homomorphisms of these subgroups into the quotient 

groups of the unitary group by the subgroup of constant operators. 

At first sight this last circumstance would seem to be a serious obstacle in the way of 

using our program inductively to determine the representations of complicated groups in 

several stages. However, it turns out to be possible to carry out the whole discussion from 

the beginning for projective representations themselves, and when this is done it is still 

only projective representations which appear in answering question (b). We shall thus 

concern ourselves throughout with projective representations; ordinary representations, 

of course, being included as a special case. 

The abandonment of the hypothesis that  ~ is commutative leads to another difficulty 

in that  the rather complete duality theory for locally compact abelian groups is no longer 

available. However, combining the von l~eumann theory of direct integrals with a theory 

of "Borel structure" in the set ~ of equivalence classes of irreducible representations of 

we obtain a partial substitute. This substitute, worked out in [13] expressly for the needs of 

the present article, yields a decomposition theory for representations fully as complete as 

in the abelian case whenever the group ~ has only type I representations and a "sufficiently 

regular" Borel structure in ~ .  

Using the material in [13] and working from the beginning with projective representa- 

tions we obtain a generalization of the results of [10] in which the semi direct product hy- 

pothesis is dropped altogether and ~ is allowed to be any closed normal subgroup of ~ to 

which the decomposition theory of [13] applies. As in [10] we get a complete theory only 

when certain "orbits" in ~ are "sufficiently smooth". We hope to study the situation 

for non smooth orbits in a later article. 

We begin the paper with four sections on the general theory of projective representa- 

tions. Section one contains the basic definitions. Section two contains an extension to the 

infinite case of a classical device which enables one to deduce theorems about projective 

representations from corresponding ones about ordinary representations. In sections three 

and four certain known results about direct integral decompositions and about induced 
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representations are generalized so as to apply to projective representations. Sections five 

and six contain a detailed account of the material  on systems of imprimit ivi ty sketched in 

[10]; somewhat generalized to fi t  the needs of the present paper  and somewhat modified in 

other respects. In  sections seven and eight we apply  the results of the earlier sections to the 

s tudy of our main problem. Our principal result is theorem 8.4. The final section nine 

contains applications and examples. Here, amongst  other things, we show how a problem 

arising in quantum field theory can be formulated as the problem of finding certain projec- 

tive representations of a certain discrete group, we find quite explicitly the irreducible rep- 

resentations of the solvable group of all 3 • 3 unimodular real matrices with zeros above the 

main diagonal, and we prove a theorem tha t  can be used to show tha t  many  solvable groups 

have only type I representations. 

As far as purely algebraic aspects of our problem are concerned a large par t  of what  

we do is contained in a well known paper  of Clifford [3] dealing with finite dimensional 

representations of discrete groups and in earlier work to which he refers. Infinite dimensional 

projective representations of topological groups have been considered by  Wigner in [17] 

and more recently and systematically by Bargmann in [1]. Bargmann is chiefly concerned 

with the problem of finding all possible multipliers (see section 1 for definition) for a given 

group. Since we consider this problem only briefly in section nine, and then for a different 

class of groups, there is very little overlap between this paper  and Bargmann's .  Wigner's 

paper  studies the possible projective representations of the inhomogeneous Lorentz group. 

Given his determination of the possible multipliers for this group his results are deducible 

from our theory just as his results on the ordinary representations of this group were 

deduced from the theory in [10]. Mention should also be made of a very recent paper  of 

Takenouehi [15] which discusses briefly a special situation falling under our general theory. 

1. Elementary facts about projective representations 

Let ~ be a separable locally compact group. By a projective representation L of {~ we 

shall mean a mapping x--~L~ of ~ into the group of all uni tary transformations of some 

separable Hilbert space ~ (L) onto itself such tha t  (a) Le = I where e is the identi ty of {~ 

and I is the identi ty operator, (b) For all x and y in ~ ,  L~y is a constant multiple a(x,y) 
of LxLy, and (c) For each ~ and ~ of ~ (L) the function x--> (Lx(r y~) is a Borel function on 

~ .  The function a: x,y-->a(x,y) is uniquely determined by L and will be called the multi- 
plier of L. By a a representation of ~ we shall mean a projective representation whose 

multiplier is a. I t  is easy to see tha t  the multiplier a of the projective representation L 

has the following properties: (a) a(e) =a(e,~) =a(x,e)= 1 and la(x,y)l = 1 for all x and y 
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in (~. (b) a(xy ,  z )a(x ,y )  = a ( x ,  y z )a (y , z )  for all x , y  and z in •. (c) (7 is a Borel function on 

• (~. We call any  function from (~ • (~ to the complex numbers which has  these three 

properties a multiplier for (~. As we shall see later every multiplier for (~ is the multiplier of 

some projective representation L of ~ .  

For a fixed choice of a one can develop a theory of a representations which in most  

respects is completely analogous to the theory of ordinary representa t ions-- that  is to 

the theory of a representations with a (x ,y )~  1. I f  L and M are q representations we say 

tha t  they are equivalent if there exists a uni tary  transformation U from ~ (L) onto ~ (M) 

such tha t  U L ,  U -1 = M x for all x E ~ .  I f  ~1 is a closed subspace of ~ (L) such tha tLx (~1) -~ ~1 

for all x E ~ then the restriction of each L x to ~1 defines a new q representation L~, of (~ 

such tha t  ~ IL~ 1) = ~1 and which we may  refer to as a sub a representation of L. I t  is easy 

to prove tha t  the orthogonal complement of ~1 also defines a sub a representation and it is 

clear tha t  in an obvious sense L is the "direct sum" of these two subrepresentations. When 

there are no proper sub q representations of L we say tha t  L is irreducible; otherwise tha t  it 

is reducible. I f  L and M are a representations of (~ then we denote by  R (L, M) the set of all 

intertwining operators for L and M where by  an intertwining operator we mean a bounded 

linear operator T from ~(L)  to ~ ( M )  such TL~ = M x T  for all x E ~ .  We call L a /ac tor  (~ 

representation (or a primary a representation) if the center CR(L,L) of R(L,L) contains 

only multiples of the identity; tha t  is if R(L,L) is a factor in the sense of yon Neumann and 

Murray. The general theory largely reducing the s tudy of general representations to tha t  

of irreducible representations and factor representations extends without essential change 

to a representations. 

When it comes to the formation of Kronecker products of projective representations 

some of the parallelism with ordinary representations disappears. The Kronecker product of 

two a representations is not a a representation in general but  a a s representation. More 

generally let L be a a 1 representation of (~1 and let M be a a2 representation of (~ .  Then 

x , y - ~ L x  • M* will be a o" 1 • 0" 3 representation of (~1 • ~2 where al • (l~((xpyl),(x~,y~)) = 

al (Xl,X~)a2 (Yl, Y2). We call this representation the outer Kronec]cer produr~t L • M of L and 

M and we call a 1 • (~2 the outer product of the two multipliers al and a s. When (~1 = (~2 = 

then restriction of L • M to the diagonal (~ consisting of all x , y  with x = y defines a projec- 

t ive representation of (~ whose multiplier is simply the product  of the multipliers al and 

a2. We call this ala2 representation of (~ the Kronec]cer product L |  of L and M. 

Similarly if L is a a representation of (~ then x--~ (L*) -~ (where A* denotes the adjoint 

of A as an operator in the dual ~(L)  of ~(L);  the canonical anti  linear mapping of ~ (L)  

on ~ (L) being ignored) is a 1 /a  representation of (~ which we call the adjoint L of L. We 

note tha t  L |  is always an ordinary representation of ~ .  
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We remark tha t  when a 1 and a2 are distinct multipliers for {~ the theory of the a x 

representations of {~ can be as different from the theory of the a2 representations of ~ as 

the ordinary representation theories of two different groups. As we shall see, for example,  

we can choose ~ and a so tha t  while ~ is commutat ive it has factor a representations which 

are not of type I.  We can also choose ~ and a so tha t  while ~ is commutat ive  it has (to 

within equivalence) just one irreducible a representation and tha t  one is infinite dimensional. 

On the other hand there is a simple relation which may  exist between pairs of multi- 

pliers and which implies a complete parallelism between the corresponding a representation 

theories. Let  9 be a Borel function from ~ to the complex numbers of modulus one such 

tha t  Q (e) = 1. On setting % (x,y) =~ (xy)/9 (x)~ (y) we verify at  once tha t  a~ is a multiplier 

for {~. Let  ~1 and ~ be any two multipliers for ~ such tha t  ~ = a~ap Then if L is a a 1 

representation of ~ we compute easily tha t  L ' ,  where L'x = Q (x)Lx, is a ~ representation. 

Moreover it is not difficult to see tha t  L-->L' is a one-to-one correspondence between the a~ 

representations of {~ and the a~ representations of ~ which preserves equivalence, irreduci- 

bility etc. in such a manner tha t  once the theory of the a 1 representations of {~ has been 

worked out tha t  for the a~ representations follows a t  once. Accordingly when a~. = %a~ 

for some Borel function ~ such tha t  Q (e) = 1 we shall say tha t  al and as are similar multi- 

pliers. Multipliers of the form % we shall call trivial multipliers. I t  is obvious tha t  the multi- 

pliers for ~ form an Abelian group under multiplication and tha t  the trivial multipliers form 

a subgroup. Let  us denote these two groups by  the symbols ~ and ff$. The group ~ 1 ff$ 

whose elements are the similarity classes of multipliers for ~ we shall call the multiplier 

group of ~ and denote by )~15. 

2. A relationship between ordinary and projective representations 

In  many  cases generalizing a theorem about  ordinary representations to a corresponding 

theorem about  a representations presents no difficulties a t  all; the most  obvious minor 

modifications in the ordinary proof leading a t  once to a proof for ~ representations. How- 

ever this is not always so and even when it is it may  be a tedious task to make sure. Fortu- 

nately there is a simple device which often enables one to pass almost directly from the theo- 

rem for trivial a to the theorem for general a. This device is as follows. I f  a is any  multiplier 

for (~ we define a new group ~a  whose elements are pairs (~,x) with ~ a complex number  of 

modulus one and x E ~  and in which two pairs are multiplied according to the rule: 

(~, z) (/~, y) = (~/~/a (x, y), xy). There is no difficulty in verifying tha t  ( ~  thus defined is indeed 

a group with identity (1, s and with (a(x,x-1)//~, x -1) as the inverse of ~,x. The obvious 

topology, namely the direct product  of the complex number  topology with tha t  in (~, 
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will not do for our purposes since with it ~~  is not in general a topological group. Making 

use however of Theorem 7.1 of [13] we can introduce a suitable topology. Let  :~ denote the 

compact group of all complex numbers of modulus one. ~ and (~ then, as separable locally 

compact groups, have natural Borel structures which are "standard" in the sense described 

in [13]. The direct product of these defines a standard Borel structure in ~~  with respect to 

which x,y--->xy -1 is readily seen to be a Borel function. Thus ~a is a standard Borel group 

in the sense of section 5 of [13]. Moreover it  is trivial to verify that  the direct product of 

Haar  measure in :K with a right invariant Haar measure in {~ is a right invariant measure 

in {~a. Thus Theorem 7.1 of [13] applies and tells us that  ~~  admits a unique locally compact 

topology under which it is a separable locally compact group whose associated Borel struc- 

ture is that  just described. We suppose ~a equipped with this topology. Now for each 

representation L of ~ let L~ = ~Lx and designate by L ~ the mapping ~,x---~L~ We have 

then 

TH ~ o R v. M 2.1. _For each a representation L o / ~  the mapping L ~ is an ordinary represen- 

tation o / ~ ~  Moreover the correspondence L -+  L ~ is one-to-one and has /or  its range the set o/ 

all ordinary representations of (~~ which reduce on ~)( to a multiple o / t he  one dimensional 

representation 2, e--> 2. 

Proo/. The proof is straightforward and may be left to the reader. In subsequent sec- 

tions we shall give a number of examples of the use of the correspondence described in 

Theorem 2.1 in deducing theorems about a representations from theorems about ordinary 

representations. 

Lest the reader suppose that  this correspondence might be used to eliminate the con- 

sideration of projective representations altogether we hasten to point out that  in the main 

problem of this paper its application leads around a circle. In fact ~~  is itself a group 

extension of ~ by the group ~ of complex numbers of modulus one. Thus while the problem 

of finding the a representations of ~ can be reduced to that  of finding certain ordinary 

representations of ~~ the latter problem leads back to that  of finding the ~ representations 

o f  ~~ = ~ .  

As a further application of Theorem 2.1 we establish a connection between projective 

representations (as defined in section 1) and the continuous homomorphisms of ~ into the 

"projective group": Let  ~ (~) denote the group of all unitary transformations of the Hflbert 

space onto itself and let  ~/0 (~) denote its quotient group modulo the normal subgroup 

of scalar multiples of the identity I.  Then for each ~ and ~o in ~, I(V(~),~o)t depends only 

upon the :~ coset to which U belongs and hence defines a function on ~ (~). Let  us denote 

this function by /r We shall say that  the homomorphism x - + M x  from $ into ~Q(~) 
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is continuous if l,.~(Mx) is a continuous funct ion of x for all r and v 2 in ~.  This definit ion 

is easily seen to be equ iva len t  to  t h a t  given by  B a r g m a n n  in [1]. 

T H r O R E M  2.2. Let a be a multiplier/or the separable locally compact group q~ and let 

h be the canonical mapping o] 1/ (~(L))  on ~/~(~(L)). Then x--->h(Lx) is a continuoushomo. 

morphism o] q~ into l l  Q (~ (L) ). Conversely every continuous homomorphism o/q~ into ~l Q (~ ) 

is o/the ]orm x-+h(Lx) /or some a representation L o] q~. 

Proof. To prove  the  first  s t a t emen t  we need only show t h a t  [(Lx(r I is cont inuous 

in x for all r and  ~ in ~ (L). Bu t  2 , x ~ L ~  is an ord inary  representa t ion  q~a. Hence  (L~ (r 

is continuous on qfi~. Hence  12 (L~ (r = ](Lx (r is cont inuous on q~a. Hence  [(L~ (r 

is continuous on q~. To prove  the  converse let ~ be a Hf lber t  space and  let x-+Mx be a 

homomorph i sm of @ into  ~/Q(~) such tha t / , .~ (M~)  is cont inuous in x for all r and  ~ in ~ .  

We mus t  choose a representa t ive  Lx of each M ,  in such a manne r  t h a t  (L~(r is a Borel  

funct ion of x for all r and  v 2 in ~ .  Le t  r r . . . .  be an  or thonormal  basis for ~ .  Fo r  each 

x q q~ the  representa t ives  V~ of M~ differ f rom one ano ther  b y  factors  dr. Hence  for each 

j = 1, 2 . . . .  (V~ (r is zero for every  representa t ive  or for none. Le t  j be the  least  integer  

such t h a t  (V~ (r162 * 0 for a n y  representa t ive  V~ and choose as Lx the  (obviously unique) 

representa t ive  such t h a t  (L~(r162 > 0. Now let 0,~,r be a n y  three  elements  in ~ and  let  

O be the  set  of all x in q~ for which (Lx(r * O. We show nex t  t h a t  (L~(v2),O)/(L~(r I is 

continuous on O. Le t  Q(x) = I(L:(r162 Then  Q(x)(L:(r = I(Lx(r and 

is continuous in x. Hence  we need only show t h a t  (Nz(v2),O) is cont inuous where Nx = ~ (x)Lx. 

Let  (N: (~p),0) = u (x) + iv  (x) where u and  v are real va lued  funct ion and  let (Nx (r = w (x). 

Then  w is real and  continuous and  different f rom zero in O. Moreover  ] (N:( r  + ~),0)[ is 

cont inuous in x and  so is ](2V z (r + i~),  0]. Hence  (w (x) + u (x)) 2 + v (x) ~ and  (w (x) - v (x)) ~ + 

u (x) ~ are continuous.  Hence  w (x) 2 + v (x) ~ + u (x) ~ + 2 w (x) u (x) and  w (x) 2 + v (x) ~ + u (x ~) - 

2w(x)v(x)  are continuous.  Also u(x) ~ +v(x)  2 is continuous,  so w(x) ~ + 2w(~c)u(x) and  

w(x) 2 - 2 w ( x ) v ( x )  are continuous.  Hence  2u(x)  + 1 and  1-2v(x)  are cont inuous  on the  set  

0 where w(x) :~ O. Hence  (Nx(v2),0) is cont inuous on 0 as was to  be proved.  I t  follows a t  

once t h a t  (L~(r is continuous on the  set  Oj where (Lz(r162 0 and hence t h a t  

(Lx(r is a Borel  funct ion of x for all 0. Now let ~ be a n y  e lement  of ~ wi th  ]I~P[I = 1. 

Then  ~ is p a r t  of a basis and  b y  the  a rgumen t  jus t  given there  exists an  e lement  L'x in each 

M z so t h a t  (L~ (~),0) is a Borel funct ion of x for all 0. Le t  0~,02 . . . .  be  a countable  dense 

subset  of ~ and  let S~ be the  set  of all x for which (L~ (~),0~)(L~ (r 0. Then  (~ = 5 S~. 
1=1 

Lot  L~ = ~ (x)L~. Then  on Sr ~(x) is the  quot ient  of (L~(~),0r b y  the  p roduc t  of (L~(~),O~)/ 

(Lx (r 0~) wi th  (L~ (r162 and  hence is a Bete l  funct ion of x there.  Hence  ~ is a Betel  funct ion 

of x. Hence  (L~(~0),0) is a Borel funct ion of x for all ~ and  0 and  the  proof  is complete.  
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3. Deeomlmsitlon theory for ~ representations 

The global multiplicity theory for ordinary representations described in section one of 

[12] extends almost word for word to a representations. In  fact inspection shows tha t  this 

theory is almost completely independent of the object being represented and can be formu- 

lated without difficulty for quite general representations of quite general objects. At any 

rate the ]emmas and theorems formulated on pages 194 through 198 of [12] are all true for 

representation; the proofs being as given for ordinary representations. I t  follows in particu- 

lar tha t  the study of type I a representations may be reduced to the study of multiplicity 

free a representations. The correspondence between multiplicity free representations and 

measure classes in the dual object developed in sections nine and ten of [13] also has a 

complete analogue for a representations. However the proofs in the ordinary case do not 

apply in quite so immediate a fashion. We devote the rest of this section to the sup- 

plementary considerations needed to show that  the results are also valid for a repre- 

sentations. 

Let  ~ be a separable locally compact group and let a be a multiplier for ~ .  We denote 

the set of all equivalence classes of a-representations of ~ by {~r,~ and the set of all equiva- 

lence classes of irreducible a-representations of ~ by ~ .  We call ~~  the a-dual of ~ .  We 

introduce a Borel structure [13, section 1] in ~o just as we did for ordinary representations 

in [13] by regarding ~ as a subspaee of ~T.a and ~r,a as a quotient space of ~c,~. Here 

~c,o is the space of all "concrete" a representations of {~; concrete a representation and 

the Borel structure in ~c,o being defined by obvious analogy with the corresponding ordi- 

nary concepts. The Borel structure in ~c was shown in [13] to be standard by mapping it 

onto a ~  where am is the group algebra of {~ and then applying a corresponding theorem 

for representations of Banach algebras. Presumably a corresponding proof would work for 

~c,..  Rather than define and discuss a group algebras however we apply Theorem 2.1 of 

this paper. This theorem gives a one-to-one mapping of ~e.~ onto a certain subset of [~[ 

where ~1 = {~ and this mapping is obviously a Borel isomorphism. Moreover the range of 

this mapping is obviously a Borel set. Since {~ is standard it follows tha t  {~c,a is also stand- 

ard. Hence the first statement of the corollary to theorem 9.1 of [13] is true when ~c 

and (~ are replaced by ~c,~ and (~a respectively; that  is Theorems 8.1 through 8.6 of [13] 

remain true when a c and ~ are replaced by ~c, .  and ~a respectively. 

We turn now to section ten. The discussion preceding Theorem 10.1 applies equally well 

to a representations except for the verification that  the integrated representation x--> Mx 

is indeed a a representation. A different argument is needed to show that  (Mx(~b),~) is always 

a Borel function since the (L=(~),~) are not known to be continuous in x. However one 
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can apply Theorem 2.1 of the present paper to theL~ and deduce tha t  2,x--~2 Mxis a repre- 

sentation whence in follows tha t  x--~Mz is a a representation. Similar use of Theorem 2.1 

allows us to deduce the t ru th  of Theorems 10.1, 10.2 and 10.3 for a representations from 

the fact tha t  they are true for ordinary representations. The mappings C--->1s and 

L--~C(L) defined in the two paragraphs preceding Theorem 10.4 may  be defined in the 

same manner for (~ representations and it is obvious that  s (C o ) = 1~ (C) ~ and C (L ~ = C (L) ~ 

where C--~ C o is the mapping of measure classes in ~ "  into measure classes in (~1 induced by  

the canonical map of (~" into (~1. (Here I~ 1 = (~" of course.) Mautner 's  theorem for ~ repre- 

sentation is of course an immediate consequence of Theorem 2.1 of the present paper and 

Mautner 's  theorem for ordinary representations. Theorems 10.4 through 10.7 may  now 

be generalized to a representations using the obvious facts tha t  0 commutes with IZ and C 

and tha t  T intertwines L and M if and only if it intertwines L ~ and M ~ The proof of 

Theorem 10.8 applies without change to ~ representations. 

The ~ dual of a group may  have of course quite different properties from the ordinary 

dual. In  particular the ordinary dual may be smooth and of type I without this being true 

for the a dual for all a. 

4. Induced # representations 

Let a be a multiplier for the separable locally compact group (~ and let ~ be a closed 

subgroup of (~. Then the restriction of q to ~ is a mulitplier for ~ and we may  speak Of 

the a representations of ~ as well as of ~ .  In  particular the restriction to ~ of a a represent. 

ation of (~ is a a representation of ~. In  [10], [11] and [12] we have discussed a process for 

going from ordinary representations L of ~ to certain ordinary representations U L of (~ 

which we called induced representations. We show now tha t  this process can be generalized 

so as to work for ~ representations as well. The definition can be given most  rapidly by mak- 

ing use of Theorem 2.1. Let  0 denote the identi ty mapping of ~" into (~". The range of 0 

is the inverse image of the closed subgroup ~ under the canonical homomorphism of ~ 

on (~. Hence this range is a closed subgroup of ( ~  and is accordingly locally compact.  

Since 0 is obviously both an algebraic isomorphism and a Borel isomorphism it follows from 

the argument  in the last few lines of the proof of Theorem 7.1 of [13] tha t  it is a homeo- 

morphism as well. Now let L be an arbi trary a representation of ~. Then L ~ is an ordinary 

representation of ~" which may  be regarded as an ordinary representation of the closed 

subgroup 0(~ ") of (~". We form U r' as described in [11] and note tha t  it follows from 

Theorem 12.1 of [11] and Theorem 2.1 of the present paper  tha t  U L" is of the form V ~ for 

some uniquely determined a representation V of ~ .  Actually U r" is only defined up to an 

equivalence. However L--->L ~ preserves equivalences so V is well defined up to an equiva- 
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lence. We call V the a representation of (~ induced by the a representation L of ~ and denote 

i t b y  U L. 

We show next  that  an equivalent definition of U L may be given which is analogous 

to the definition given for ordinary representations in [11] and reduces to it when a = 1. 

Let  # be a quasi invariant measure in (~//~ and let us denote by ~ r .  the set of all func- 

tions [ from ~ to ~ (L) such that :  

(a) ([(x),~) is a Borel function of x for all ~E~(L) ,  

(b) [(~x) =(r(~,x)L~(/(x)) for all ~E~ and all x E ~ ,  

(c) f < 

The meaning of the integral in (c) is to be found in the fact tha t  the integrand is con- 

stant on the right ~ eosets and hence defines a function on ~/ /~ .  l~or each [ E ~ L  seth/II = 

f (f (x), / (x)) d/~ (z). Now let ~ be the Borel function on ~ which serves to define the Radon 

Nikodym derivatives of the translates of/~ as described in section one of [11]. For each 

[ E ~r. and each y E (~ let V~ ([) = g where g (x) = V~ (xy)/Q (x) [ (xy)/a (x,y). 

THEOREM 4.1. ~'~L is a vector space with respect to the obvious de/initions o/addition and 

m ttipti tion. It h e x e s  Hitbe  II II whe,  eq t every- 

where are identi/ied. For each yE~ and each ] E"~ L, V~(/) is also in ~,~r. and ]--->V~([) de/ines 
t t a unitary operator V~ in the Hilbert space associated with ~,~L. y--->V~ is a a representation o/ 

which is equivalent to the induced representation U L de/ined above. 

Proo]. For each member / of ~ L  let ]0 be the function from $ ~  to ~ (L) such that/0 (2,x) = 

2[ (x). I t  is routine to verify tha t  [->/~ is a one-to-one linear mapping of the set of all func- 

tions from (~ to ~ (L) which satisfy (a) and (b) of the definition of ,~L onto the set of all 

function from (~o to ~ (L) which satisfy (a) and (b') where (b') is (b) with a ~ 1, ~ = 0 (~o), 

L = L ~ and (~ = (~o. Now let k denote the natural one-to-one mapping of ~ / ~  on (~~176 

where 0 ~ = 0 (~). I t  is easy to see that  k is a Borel isomorphism. We define a quasi invariant 

measure # '  in ( ~ / 0  ~ by letting/~' (E) = #  (k -1 (E)) and we verify without difficulty tha t  

f([~176 f(/(x),[(x)) d#. Thus [__>/o is one-to-one and onto from ,~L to ,'~L'. 

Since we know from [11] tha t  ,'~L' is a Hflbert space it follows tha t  ~ is also and that  

]___>[o is unitary from one onto the other. Now a straightforward calculation shows that  
L o [___>[o takes the correspondence [--> V~ (/) over into the correspondence/0__> (1/~)U,,~ (]0) 

for all ~. All statements of the theorem now follow from this and known facts about ordinary 

representations in a straightforward and obvious manner. 

We devote the rest of this section to the deduction of theorems about induced o 
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representations from the corresponding theorems about  ordinary induced representations 

by  making use of the equivalence between U L' and (UL) ~ In  some cases a certain reformula- 

t ion of the theorems is necessary. 

THEOREM. 4.2. Let ~1 and ~ be closed subgroups o/ the separable locally compact 

group (~ such that ~1 c ~ .  Let (7 be a multiplier/or (~ and let L be a a representation o/ ~1" 
Let M be the a representation o / ~  induced by L. Then U r and U ~ are equivalent a representa- 

tions o/ O. 

Proo/. Form ~",  ~ ,  and ~ and identify the latter two groups with their canonical 

images in (~~ so tha t  we have ~y c ~ c (~a. Let  N be the representation of ~2 induced by  

L ~ I t  follows from Theorem 4.1 of [11] tha t  U L' and U N are equivalent and it follows from 

Theorem 4.1 of the present paper  tha t  N and :M ~ are equivalent. Thus U N and U ~ are 

equivalent. Hence U M~ and U L. are equivalent. Since (Theorem 4.1 of this paper)L-->L ~ 

commutes with L - ~  U L we conclude tha t  (UM) ~ and (UL) ~ are equivalent and hence tha t  

U M and U L are equivalent. 

Let  a be any  multiplier for O and let E denote the identi ty subgroup of (~. Since a 

reduces to one on E the one dimensional identi ty representation I is a a representation of 

E and hence induces a a representation of O. We call this a representation of O the regular 

a representation since it reduces to the ordinary regular representation when a = 1. In  

particular we see tha t  there exist (~ representations for every multiplier a. I t  is an immediate 

corollary of Theorem 4.2 tha t  U L is the regular a representation of 0 whenever L is the 

regular a representation of ~. 

THEOREM 4.3. Let a be a multiplier/or the separable locally compact group 0 and let 

L be a a representation o/ the  closed subgroup ~. Then the ( l / a ) =  5 representations o/ O, 

U s and U --Z, are equivalent. 

Proo]. Observe first tha t  ~, x-->~,x sets up an isomorphism between ~ "  and ( ~  which 

preserves Borel sets and hence is a homeomorphism as well. Moreover this correspondence 

is easily seen to take the representation L ~ of O ~ into the representation (L) ~ of O ~, L being 

a a representation of ~. Arguments similar to those used in proving Theorem 3.2 now 

enable us to deduce the t ruth  of the present theorem from the corresponding theorem 

about  ordinary representat ion--Theorem 5.1 of [11]. 

THEOREM 4.4. Let a 1 and a2 be multipliers/or the separable locally compact groups ~1 

and (~2. Let JL and M be (l x and a 2 representations respectively o/the closed subgroups ~1 and 

~2 o / ~ 1  and ~2. Then the (~1 • a~ representations U L• and U L • U M o / 0 1  • 02 are equiva. 

lent. 
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Proo/. Observe first  t h a t  the  mapp ing  (it, x), (p, y)-+it~t, x, y is a homomorph i sm of q~[' • 

~ '  on ((~1 • (~)~'• whose kernel  q~0 is the  set  of all (it, e), (/x,e) wi th  ~u = I/it .  (Here e denotes  

the  ident i ty  e lement  of the  appropr ia te  group.)  One can then  ver i fy  wi thout  diff iculty t h a t  

U ~ • V ~ reduces to  the iden t i ty  on q~0 and via the  canonical mapp ing  of ((~[' • q~')/q~o 

on (q~l • qfis) ~'• goes over  into (U • V) ~ This r emark  having  been made  it  is not  difficult 

to  deduce the  t ru th  of the  theorem f rom t h a t  of Theorem 5.2 of (11) along the  lines indicated 

in the  proof of Theorem 4.2 above.  I n  this deduct ion one has  need of the  following l emma  

whose proof is quite s t ra ight forward  and  m a y  also be left to the  reader.  

LEMMA 4.1. Let ~ be a closed subgroup o/ the separable locally compact group ~} and let 

~1t be a dosed normal subgroup o / ~  with ~t ~- ~. Let L be a representation o/ 0 which is the 

identity on ~t and let L' be the corresponding representation o/ ~/~t.  Then U L is the identity on 

~t and the corresponding representation o / ~ / ~  is equivalent to U L'. 

COROLLARY (of Theorem 4.4). I / L  is a a 1 representation o~ ~1 and we/orm U L, regarding 

al as the restriction to ~1 • e o /al  • as, then U L is equivalent to the Kronecker product o / L  

with the as regular representation o/(~s. 

We consider nex t  the  question of generalizing the  first  ma in  theorem (Theorem 12.1) 

of (11). There  is a difficulty in t h a t  the  t rans form of a a representa t ion  L by  an  inner auto-  

morph i sm need not  be a a representat ion.  Indeed  if M r = L8 x8-1 then  M is a a '  representa-  

t ion where a' (x,y) = a(sxs -1, sys  -1) and a 1 will not  in general  be equal  to a. This difficulty 

is easily overcome b y  mak ing  use of the  fact  t h a t  a and  a '  are similar multipliers.  

LEMMA 4.2. Let a be a multiplier/or the group ~), let s be an element o / ~  and let a' (x,y) = 

a (sxs -1, sys-1). Then the multipliers a and a' are similar. Indeed a' (x, y)/a (x, y) = g~ (xy)/  

(gs (x)gs (Y)) where gs (x) = (a (s x, s -1) a (s, x))/a (s -1, s). 

Proo/. Using repea ted ly  the  fundamen ta l  iden t i ty  defining a mult ipl ier  we have  the  

following str ing of equalities: 

a(sxs -1, sys -1) 

= ((7(8x, ys-1)q(8-1, 8ys-1))//q(SX,8 -1) 

= (a(sxy, s-l)a(sx, y)a(s-l, sys-1))/(a(y,s-1)a(sx, s-l)) 

= (a(sxy, s-1)a(s-l, zys-1)a(s, xy)a(x,y))/(a(y,s-1)a(sx,  s-1)a(s,x)) 

= [a(x,y)]  [ (a (sxy ,  s -1)a(s,xy))/(a(sx,s -1)a(s,x)]. 

�9 [(a(s-l,s)a(e,ys-1))/(a(s, ys-1)a(y,s-1))] 

= [a(x,y)] [(a(sxy, s-1)a(s, xy))/(a(sx,  s-1)a(s,x))]. 

�9 [(a(s-l,s)a(e,ys-1)a(y,s-1))/(a(sy,s-1)a(y,s-1)a(s,y))]. 
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Since a ( e , z ) -  1 for all z we get on regrouping and dividing by a(x,y)  

a ( s x s  -1, sys -1 ) /a (x , y )  

=[(a(sxy ,  s-1)a(s,xy))//a(s-l,s)][a(s-m,s)//(a(sx, s-1)a(s,x))] [a(s-l ,s)//(a(sy,s-1)a(s,y))] 

and  this completes the proof. 

COROLLARY. Let 6 be a closed subgroup o/th~ ~ ~eparable locally compact group 6~, let a be 

a multipli~,r /or (~ and let L be a a representation o/ 6.  Then /or all s E (,it the mapping 

x - ~ ( a ( s - l , s ) / a ( ~ . x , s - 1 ) a ( s , x ) ) L ~  1 is a a representation o[ the subgroup s 10s .  

We shall dcnote the a representat ion defined in the corollary by L ~. We leave it  to 

the reader to verify tha t  (LS) t L st for all s and  t in (~. 

THEOREM 4.5. Let (.iI be a separable locally compact group and let 61 and ~2 be closed 

subgroups o/(~ which are regularly related (1) in the sen~'e o/([11], p. 127). Let a be a multiplier 

/or (~ and let L be a a representation o /01 .  For each x E(~ consider the subgroup 62 N (x -1 61x) 

o[ (9 and the restriction to this subgroup o/ the representation L ~ o / x  -1 61X" Let :V  denote the a 

representation o/ 6', induced by this restriction. Then to within equivalence x V depends only 

upon the double eoset ~1 x 62 - d ( x )  to which x belongs so that we may write a V = x v where 

d = d (x). Moreover U L restricted to 62 is a direct integral over the set D o] 61 : 62 double cosets, 

with respect to any admissible measure in D, o/ the representations a V. 

Proo/. We form (~", 67, and  ~ and as above ident ify ~ and  6'~ with the corresponding 

subgroups of (_i~ ". We compute easily tha t  the canonical  homomorphism of (~" on (~ sets 

up a one-to-one correspondence between the ~ :  ~ double cosets on the one hand  and  the 

61 :~2  double cosets on the other. I t  follows tha t  6~ and  6'~ are regularly related so tha t  

we may  apply  Theorem 12.1 of [ l l ]  to the restriction to 6~ of the representat ion U L~ of 

(8~ ~. Now let x be any  element  of (~ and  consider the component  of this restriction associated 

with the double coset ~g (1,x)6~" By Theorem 12.1 it is the representat ion of 62 induced 
0 a by the representat ion ~, ]]-->/(1,x)(~.,+)(Lz.) , of the subgroup ~2 n ((1,x) -1 ~ ( 1 , x ) ) .  Bu t  

L(~ x)(+,, ,j)(1. ~) 1 = (;ta (x, x 1)/(a (x,~) a (xr 1, x-~))L:,~ ~ , = ,~L; 

and  (1,x) 1 6g(1,x ) = (x l ~ x ) - .  Thus the component  in question is the representat ion of 

~ induced by the representat ion (LX) ~ of the subgroup ( ~  ~ x -1 ~ x )  ". Bu t  U (z:~~ is jus t  

(1) Making use of the notions of [13] this theorem and the next may be given a somewhat nearer 
formulation, as follows. If we regard (~ as ~ Borel group and D as a quotient space of (~ the unique in- 
variant measure class in '(~ defines a measure class C in l). Saying that ~ and 62 are regularly related is 
then the same thing as saying that C is a countably separated measure class. Moreover by Theorem 6.2 
of [13] saying that C is countably separated is tim same as saying that C is standard. Finally the direct. 
integrals which appear in the conclusion of these theorems may be described simply as the integral of 
the V a over D with respect to the standard measure class C. 
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(UL~) ~ Moreover as we have already observed passing from M to M ~ commutes with the 

taking of direct integrals. The t ruth of the present theorem follows easily from these remarks 

and Theorem 12.1 of [11]. 

We deduce the final theorem of this section from Theorem 4.5 just as we deduced 

Theorem 12.2 from Theorem 12.1 in I l l ] .  We leave details to the reader. 

THEOREM 4.6. Let (~, 61, 62 be as in Theorem 4.5 and let (~ and ~ be multipliers/or (~. 

Let L and M be (~ and v representations o/ 61 and 62 respectively. For each x and y in (~ 

consider the restrictions o / L  z and M ~ to (x -1 61 x) N (y-1 62 Y)" Let ~' y V denote the representation 

o/ (~ induced by the Kronec]cer product o/ these two projective representations o/ (x -1 61 x) N 

(y-1 62Y)" Then (to within equivalence ) x '~v depends only upon the double coset 6 1 x y  -1 62. 

d ( x y  -1) to which x y  -1 belongs so that we may write dv  =x ' yv  where d =d(xy -1) .  .Moreover 

UL| U i is equivalent to the direct integral o/ the d V with respect to any admissible measure in 

the set D o/ 6 1 : 6 2  double cosets. 

5. Systems of imprimitivity 

The notion of "system of imprimit ivi ty" for infinite dimensional group representations 

introduced in [10] makes sense as it stands for ~ representations. In  this section and the 

next we shall s tudy this notion for a representations in considerably more detail than was 

done in [10] for ordinary representations. In  particular we shall give in section six an 

independent proof of the ~ generalization of the main theorem of [10]. One could presum- 

ably deduce this generalization from the special case proved in [10] by applying Theorem 

2.1. However in view of the central importance of the theorem for this paper and the fact 

that  [10] contains only the outline of a proof the former alternative seems more desirable. 

We begin with a brief account of projection valued measures. 

Let S be a metrically standard Borel space [13]. By a projection valued mesaure on 8 

we shall mean a mapping P, E--->PE, of the Borel subsets of S into the projections on some 
o o  

separable Hilbert space ~ (P) such tha t  PEnF = P~ P F = P F PE, Ps  = I ,  Po = 0 and PE : 
i=1 

PEj whenever E = [~ Ej and the Ej are disjoint. We say that  P and Q are equivalent if 
i=1 

there exists a unitary map U of ~ (P) on ~ (Q) such that  UPE U -1 = QE for all E. I f  p1, 

p2 . . . .  are projection valued measures we define their direct sum P = p l , p 2 $  ...  to be 

the projection valued measure such that  ~ ( P ) -  ~ (p1)r ~ (p2)r ... and PE(r162 . . . .  ) =  

P['(r P2E (r . . . .  As is well known [14] there exists for each P an element r of ~ (P) such 

that  PE( r  0 if and only if PE = O. Thus the Borel measure E-~(PE(r162  has as null 

sets exactly the sets E for which P ~ -  0. Thus every P has associated with it a unique 
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measure class (section 6 of [13]) which we shall call the measure class o] P and denote by C ~. 

The well known analysis of projection valued measures on the real line which yields the 

unitary equivalence theory of self adjoint operators (see Halmos [7]) applies without 

essential change to projection valued measures on S. The results may be described as 

follows. The algebra R(P) of all bounded linear operators T such that  TP~ = PET for 

all E is commutative if and only if there exists an element r in ~(P)  such that the Ps(r  

have ~ (P) as their closed linear span. Such a P is said to be uni/ormly one dimensional. 

If  ju is any finite Borel measure in S and P~ is defined as the bounded linear operator/--~vE / 

where ]EL2(S,#) and ~v~ is the characteristic function of E then P" is a uniformly one di- 

mensional projection valued measure whose associated measure class is that  containing p. 

P~ and P~ are equivalent if and only if # and ~ lie in the same measure class and every 

uniformly one dimensional P is equivalent to some P~. Thus ~u-~P~ sets up a one-to-one 

correspondence between measure classes in S and equivalence classes of uniformly one 

dimensional projection valued measures on S. We say that P and Q are disjoint if their 

associated measure classes are disjoint ([13] section 10) and that  P i s  uniformly k dimensional 

k = ~ ,  1, 2 . . . .  if P is the direct sum of/c replicas of some uniformly one dimensional Q. 

Every projection valued measure is uniquely of the form pn,~ pn,~ ... where nl, n 2 . . . .  

is a subsequence of ~ ,  1, 2 . . . . .  each pnj is uniformly nj dimensional and the P ' J  are mutually 

disjoint. As remarked in section 3 the multiplicity theory described in section 1 of [12] is 

really very general. In  particular it applies to projection valued measures and may be used 

to obtain an alternative derivation of the reduction to the uniformly one dimensional case 

just described. 

Let L be a a representation of the separable locally compact group ~.  By a system o] 

imprimitivity/or L we shall mean the pair consisting of a projection valued measure P with 

(P) = ~ (L) and an anti homomorphism h of ~ into the group of all Borel automorphisms 

of the domain $ of P such that  (a) If  [x]y denotes the action of h(y) on x then y,x-->[x] y 

is a Borel function, and (b) LyPsL;  1 =PEm~-I for all y E ~  and all Borel sets E ~  S. We 

shall call S the base of the system of imprimitivity. The measure class of P we shall refer 

to as the measure class o] the system. We note that  i f P  E = 0  then PE~y = L~-IPEL~:~ =0 

for all y E ~ .  Thus the measure class of the system is invariant under the action of ~ on S. 

We shall say that the system of imprimitivity P, h is ergodic if no measure class in S which 

is invariant under {~ is strictly "absolutely continuous" with respect to the measure class 

of P in the sense of being associated with a properly larger family of null sets. 

THEOREM 5.1. The system o] imprimitivity P, h Jails to be ergodic i /and  only i/there 

exists a Ps. di/]erent ]rom 0 and I such that Pso L~ = Lx P~, /or all y E ~ .  
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Proo/. If  P fails to be ergodic let/~ be a member of the measure class of P and let v 

be a member of an invariant measure class having more null sets than/u. Let ~ be a Borel 

function which is a Radon Nikodym derivative of v with respect to ~u and let E 0 be the 

set on which Q is 0. Since the v null sets are invariant, E 0 and E 0 y differ by a ju null set for 

all y. Hence PEo = PEE01~ for all y. Hence P e  commutes with all L~. PE, is obviously not 0 

or I .  Conversely ff E 0 exists then PEo =Pte~ for all y and E--->#(E N Eo) defines an in- 

variant measure class with a properly larger family of null sets. 

THEOREM 5.2. Let P,  h be an ergodic system o / impr imi t i v i t y /or  the a representation L. 

Then P is uni/ormly k dimensional /or some lc = oo, 1, 2 . . . . .  

Proo/. Let P = pn, O p n ,  0 .. .  be the canonical decomposition of P where P~J is uni- 

formly nj dimensional. Let Qj be the projection on the subspace corresponding to the 

summand P~J. I t  follows from the theory of the decomposition (loc. cir.) that  the Qj depend 

only upon the range of P. Since P and its unitary transform by each L~ have the same range 

it follows that each L~ commutes with each Qj. Hence each pair P 'J ,  h is a system of imprim- 

itivity for a subrepresentation of L. Hence the measure class associated with each Phi is 

invariant under (~. Since these measure classes are obviously absolutely continuous with 

respect to the measure class of P it follows from the ergodicity hypothesis that  they are 

identical with the measure class of P. Since they are at the same time mutually disjoint we 

have a contradiction unless there is only one term. This completes the proof. 

Now let (~ be a separable locally compact group and let h be an anti homomorphism 

of (~ into the group of Borel automorphisms of S such that  x, y--~ [x] y = h {y)(x) is a Borel 

function. Let C be any measure class in S invaxiant under q6 and let k = ~ ,  l, 2 . . . . .  As 

we have seen there is to within equivalence just one uniformly k dimensional projection 

valued measure on S whose measure class is C. Call it P. We devote the balance of this sec- 

tion to a partial analysis of the family of all possible a representations of (~ having P, h as 

a system of imprimitivity. We begin by exhibiting a certain canonical ordinary representa- 

tion with this property. Choose a finite member # of C and realize P as a projection valued 

measure with ~ (P) the set of all square summable functions with respect to # from S to 

some fixed k dimensional Hilbert space ~k and P~ multiplication by the characteristic 

function of E. For each y E (~ let ~y be a/u measurable function on S which is a Radon Niko- 

dym derivative of the measure E--># ([E]y) with respect to # and let ~ (y,x) = Q~ (x). For 

each / E ~ ( P ) =  ~2(S,#,;~k) and each y(~(~ let W y ( / ) = g  where g ( x ) = / ( [ x ] y ) e ( y , x  ). 

T H E 0 R E M 5.3. For each y E (~, W~ is a unitary operator. Moreover y--+ W~ is a represent- 

ation o/ (~  having P as a system o/ imprimit iv i ty .  



U N I T A R Y  R E P R E S E N T A T I O N S  O F  G R O U P  E X T E N S I O N S .  I 281 

Proo/. I t  follows easily from the definition of Qy that  for all Yl and Y2 in (~ we have 

~(yly2,x) = ~(yl,x)~(y2,[x]yl) for # almost all x in S. Moreover making use of this almost 

everywhere identity there is no difficulty in verifying not only that  each W~ is unitary but 

also that  Wy 1 Wy, = W~, y~ for all Yl and y~ in (~. Thus to show that W is a representation 

we need only show that  (W~(/), g) is ju measurable as a function of y whenever / and g 

are members of ~ (P). This will follow from the Fubini theorem once we know that  the arbi- 

trary choices in the Q~ may be made so that  ~ is measurable on (~ • S. That these choices 

may be so made we prove by applying Lemma 3.1 of [9]. If  E is any measurable subset 

of S then fQ(y,x)y~E(X)d/~(x) =/~((E)y) where YJE is the characteristic function of E. Thus 

Lemma 3.1 of [9] will apply once we know that  for each E, ~u([E]y) is measurable in y. 

There is also a boundedness restriction in the statement of the lemma but examination of 

the proof shows that  only the existence of the integrals is actually used. To prove the 

measurability of /~([E]y) choose a Borel set F differing from E by a ~u null set. Since 

~u([E]y) =#([F]y)  for all y it will suffice to prove that  the latter function is measurable. 

Let T be the mapping y, x-->y,[x]y. T is then a one-to-one map of (~ • S on (~ • S and 

T -1 takes y, x into y, [x]y -1. Thus T and T -1 are both Borel functions so T is a Borel auto- 

morphism. Thus T((~ • F) is a Borel set and hence so is T((~ • F) N {y • S) = y  • [F]y. 

Let v be a finite measure in (~ having the same null sets as Haar measure. Applying the 

Fubini theorem to the characteristic function of T{(~ • F) and the measure r • # we see 

that  ju ([F]y) is measurable in y and hence that  W is a representation. To show that  P is a 

system of imprimitivity for W one needs only compute (W~PE w~l(/))(x) and apply the 

almost everywhere identity involving ~ cited above. 

I t  is easy to see that  (to within equivalence) W is uniquely determined by h, k and the 

measure class of P and indeed that this is true for the pair P, W. We shall call it the 

permutation representation o/ ~ de/ined by h, k and C P. 

Now let ~e  denote the group of all unitary operators in ~ (P) which commute with all 

PE. I t  follows from the identity W~PE W; 1 = PtEj~ -1 that  W~ ~p W~ 1 = ~p. Thus each y ~ (~ 

defines an automorphism V ~ y(V)  = W~ V W~ 1 of ~p and the mapping of (~ into the group 

of automorphisms of ~p so defined is a homomorphism. 

THEOREM 5.4. Let (~ be any multiplier/or (~ and let Q, y-->Q~ be any ]unction/tom 

to ~p  which satis/ies the ]ollowing three conditions: 

(a) Q~Iy~ = a(yl,y2)Q~1yl(Q~) /or all Yl and y~ in (~. 

(b) Q~ = I.  

(c) (Q~(/),g) is a Borel /unction o / y / o r  all / and g in ~(P) .  

20 - 665064  Acta  mathematica.  99. Impr im~ le 25 j u i n  1958 
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Then y-->Q~ W~ is a a representation of (~ having P, h as a system o/imprimitivity. 

Conversely i / L  is any (~ representation o/ ~ having P, h as a system of imprimitivity then 

there exists a unique function Q,y-~Qu, from (~ to ~ satisfying (a), (b) and (c)and such that 

L~ = Q~ W~ for all y. 

Proof. Let L~ = Q~ W~, where each Q~ ~ ~ .  Then L~, ~, = a(y~, y~)L~L~, if and only if 

Q~,~, =a(y~,y~)Qu, W~,Q~,W~ ~, =a(yl,y~)Q~,y~(Q~.); that  is if and only if (a)is  satisfied. 

Moreover since L~ = Q~ We it follows that  L~ = I if and only if (b) is satisfied. Finally since 

(L~ (f), g) = (Q~ W~ (f), g) = ( W~ (f), Q* (g)) = ~ ( W~ (/),/~) (Q~ (fn), g) 

and 

(Q~ (f), g) = (L~ W* (f), g) = ( W* (f),L* (g) ) = ~ (f , W~ (fn) ) (Ly (fn), q) 

where (fn) is a complete orthonormal set for ~(P) ,  it follows that  y-+Ly is a a repre- 

sentation if and only if y-->Q~ satisfies conditions (a), (b) and (c). Since 

LyPsL~ 1 = Q~ W~PE W~IQ~ 1 = QyP~l~- lQ~ 1 = PtE1y -1 

it follows that  P,  h is always a system of imprimitivity for L. Finally if L is any repre- 

sentation of (~ with P, h as a system of imprimitivity then 

W~I L~PEL~ 1 W~ = W~l Pt~ly-1 W~ = PE. 

Thus Qy = W~ILuE~p.  This completes the proof of the theorem. 

THEOREM 5.5. Let Q and Q' satisfy (a), (b) and (e) of Theorem 5.4 and let L and L' be 

the corresponding a representations of (~. Then there exists a unitary transformation o / ~  (P) 

onto ~ (P) which carries each L~ into L'~ and each Ps into itself if and only i/there exists V E ~p 

such that for all y Q'~ = VQy ( y ( V ) )  -1.  Moreover there exists a proper closed subspace of ~ (P) 

which is invariant under all Ps and all Ly i /and  only if there exists a member V of ~p not a 

multiple of the identity such that Q~y(V) = VQ~ for all y E (~. 

Proof. The second statement follows from the first on taking Q = Q'. To prove the 

first we note that  the unitary operators taking each Ps into itself are just the members of 

Up and that  VQy W~ V -~ =Q'y Wy if and only if Q'y = VQ~ W~ V -~ W~ 1= VQ~y(V)-L 

We observe next  that  the members of ~p may be described in terms of functions from 

S to the group of all unitary maps of ~k on ~k. Indeed let A, x-+A (x) be any such function 

which is a Borel function in the sense that  ((A (x)(r is a complex valued Borel function 

~or all ~b and ~ in ~k. Then f-->g where g (x)=  A (x)(f (x)) is a unitary operator on ~ (P) 

which clearly belongs to ~p. We denote this operator by A ~. I t  is easy to ver i fythat  A~ = A~ 
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if and only if A 1 (x) = A2 (x) for almost all x and tha t  Wy A~ W~ 1 = B ~ where B (x) = A ([x] y). 

Moreover it follows from the discussion given in section 4 of [9] tha t  every member  of 

7~p is of the form A-. In  particular every Q~ is of the form A-. Thus each of our functions Q 

can be replaced by  a function R on (~ • S with values amongst the unitary operators 

mapping ~k on ~k and we deduce the following variant  of Theorem 5.4. 

THEOREM 5.6. Let a be a multiplier/or ~ and let R, y, x--> R(y,x)  be a ]unction/tom 

• S to the group el all unitary maps o] ~k on ~k. Suppose that R satis/ies the/ollowing three 

conditions: 

(a) For each Yl and Y2 in ~ we have R (Yl Y2, x) = a (Yl, Y2) R (Yl, x) R (Y2, [x] Yl)/or ~ almost 

all x in S. 

(b) R(e,x) in the identity/or almost all x in S. 

(c) For all r and ~2 in ~k, (R(y,x)(r is measurable as a ]unction on (~ • S, and/or 

each y E ~ is measurable as a ]unction on S. 

Then i/ we set R ;  (x) = R (y, x) the/unction y---> ( R ;  )- satis/ies (a), (b) and (c) o/Theorem 

5.4 and hence y-->(R~ )~ Wy is a ~ representations o] ~) having P, h as a system o] imprimitivity. 

Conversely i / L  is any ~ representation o] ~ having P, h as a system o/imprimitivity then 

there exists R satis]ying (a), (b) and (c) above such that L u = (R;)-  W u/or all y e ~ .  R1 and 

R 2 lead to the same L i / and  only i / they  are almost everywhere equal. 

Proo/. Except  for certain measure theoretic points which we shall now discuss the 

statements of the theorem are obvious consequences of the preceding remarks and Theorem 

5.4. To show tha t  (R;)  - satisfies (c) of Theorem 5.4 we must  show tha t  f (R(y,x)(](x)), 

g(x))d/~(x) is a Borel function of y for each ] and g in ~(P) .  I t  is enough to consider the 

case in which ] (x) = a (x) r and g (x) = b (x) ~ where a and b are complex valued functions and 

and v 2 are members of ~k since ~ (P) has a basis consisting of such functions. In  this case 

however the expression reduces to f a ( x ) ~ ) ( R ( y , x ) ( r  (x) which is measurable in 

y by the Fubini theorem. But  then the argument of Theorem 5.4 shows tha t  y--~ (R;)  Wy = 

Ly is measurable in y and has the algebraic properties of a a representation. Define L ~ as 

in section 2. Then (L~ is measurable on G ~ for all [ and g in ~(P) .  Since L ~ has the 

algebraic properties of an ordinary representation it is an ordinary representation. Hence 

L is a a representation of ~ .  Hence ((R~)~(/),g) is a Betel function as was to be proved. 

In  proving the converse the measure theoretic point to be established is tha t  the arbi t rary 

choices involved in putting the Qy in the form (R~)- can be made in such a manner tha t  (c) 

of the present theorem holds. Let  ~1,~2 . . . .  be an orthonormal basis for ~h. I t  will of course 

suffice to choose the R ;  so tha t  (c) holds when ~ and ~ are chosen from amongst  the ~t. 
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First of all let us put  the Qy in the form (R~)- in an arbi trary manner. Let r~j(y,x) = 

(R (y, x)(r162 Let E be any/~ measurable subset of S and let yJ~ be its characteristic func- 

tion. Then y~r and Y~ECj are members of ~ (P) so that  (Q~ (YJEr is a Borel function 

of y. But  this last expression is equal to f ~E (x) (R (y, x) (4 ~), r  (x) = f r~j (y, x)v2E (x) d/~ (x). 

I t  follows from Lemma 3.1 of [9] tha t  for each i and j there is a measurable function r~j on 

(~ • S such tha t  for each yE(~ we have r~j(y,x) =ri'j(y,x) for almost all x. The matr ix  

]] r~'~(Y,X)]l will then be tha t  of a uni tary  operator R' (y , x )  for ahnost all pairs y,x.  Let 

R "  (y, x) = R'  (y, x) whenever R '  (y, x) exists as a unitary operator and let R"  (y, x) be the 

identity operator otherwise. Then for all y in R "  (y,x) = R (y,x) for/~ almost all x and R "  

satisfies (e) of the present theorem. This completes the proof. 

6. Transitive systems of imprimit ivi ty  

Let P, h be a system of imprimit ivi ty for the a representation L of the separable 

locally compact group (~. We shall say tha t  the system is transitive if the range of h is 

a transitive group of transformations of S onto S; tha t  is if given x 1 and x 2 in S there exists 

yE(~ such that  [xl]y = x 2. Let P, h and P',  h' be systems of imprimitivity for the same a 

representation L. We shall say tha t  P, h and P',  h' are strongly equivalent if there exists a 

Borel isomorphism r of the base S of P onto the base S' of P'  such tha t  P'~CE~ = PE for all 

E and h'(y) = r 1 6 2  -1 for all yE(~. I f  there exists a Borel subset S o of S such that  S O 

is invariant under the action of ~ and Ps0 = I we shall call the system of imprimitivity 

obtained by restricting P and the h (y) to S o a trivial contraction of P, h. Each P has an 

obvious unique extension to the Borel field generated by its domain and the subsets of 

its P null sets. I f  P '  is a contraction of this extension to some Borel field which in- 

cludes the domain of P and is such tha t  P' ,  h is a system of imprimitivity we shall call 

P' ,  h a partial completion of P, h. We shall say that  the systems P, h and P',  h' are equi- 

valent if a part ial  completion of a trivial contraction of one is strongly equivalent to a 

partial completion of a trivial contraction of the other. I t  is clear that  ergodicity and di- 

mensionality are preserved under passage to an equivalent system. 

T H ~ 0 R E M 6.1. Let P,  h be a transitive system o / impr imi t iv i ty /or  a a representation L 

o/ the separable locally compact group ~ .  Let S be the base o / P  and let x o be a point o /S .  Let 

be the subgroup o/ (~  consisting o/al l  y such that [x0] y = x o. Then ~ is closed and the/unction 

y - ~  [x0] y maps the coset space ~ ) / ~  onto S in such a manner as to set up  a strong equivalence 

between a partial completion o / P ,  h and a system o/ imprimit iv i ty  P' ,  h' where the base o / P '  is 

( ~ / ~  and h' de/ines the canonical action o/ ~} on (~ /~ .  
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Proo/. I t  follows from the definition of system of imprimitivity that  y--->[xo]y is a 

Borel mapping. Hence if (~/~ is equipped with the quotient Borel structure then y--> [xo] y 

defines a one-to-one Borel map 0 of ~ / ~  onto S. Let ~ be a finite member of the unique 

invariant measure class in {~ and let a '  be the image of a in ~ / ~ .  Since S is metrically stand- 

ard there ~xists a Borel subset E o of S such that  E 0 as a subspace is standard, S - E o is 

a P null set and ~' ( (~ /~)  - 0  -1 (E0)) = 0. Since E 0 is countably separated so is O-l(Eo). 

Since 0 -1 (E0) is a Borel image of a Borel subset of the standard Borel space (~, 0 -1 (E0) is 

analytic and hence metrically standard by Theorem 4.2 of [13]. Hence the hypotheses of 

Theorem 7.2 of [13] are satisfied and we may conclude that ~ is closed and that  ~ / Q  is a 

standard Borel space. I t  follows now from Theorem 3.2 of [13] that 0 restricted to 0 -l(E0) 

is a Borel isomorphism. Hence the transforms by 0 of the Borel subsets of (~/Q differ from 

Borel subsets of S by null sets. The remaining statements of the theorem now follow trivi- 

ally. 

THEOREM 6.2. Every transitive system el imprimitivity is ergodic. 

Proo/. By Theorem 6.1 we need only consider the case in which the base of the system 

is a coset space with respect to a closed subgroup Q of (~ and on which (~ acts canonically. 

If  the system were not ergodic there would exist two distinct non trivial invariant measure 

classes in ~ / ~ .  This is impossible by Theorem 1.1 of [11]. 

While the converse of Theorem 6.2 is very far from being true there in general is an 

important special case in which it is true. 

THEOREM 6.3 Let P, h be an ergodic system o/imprimitivity with base S. Let S ~ be the 

space el all "orbits" o/ S under (~ where a subset'o/ S is an orbit i/ it is the set o/all  [x0]y 

/or some/ixed x o in S. I / t he  quotient Borel structure in S ~ is metrically countably separated 

then P, h is equivalent to a transitive system. 

Proo/. I t  will clearly suffice to show that  P~, = 0 where E '  is a Borel set which is the 

complement of some orbit. Since S ~ is metrically countably separated P, h is equivalent to 

a system whose orbit space is countably separated. Hence we may suppose that S- is 

countably separated and hence that every orbit is a Borel set. Now if 0 is an orbit such that  

Po ~= 0 then P s -  o = 0 since otherwise we would be able to deduce an immediate contradiction 

from the assumed ergodicity. Thus we need only show that  there exists at least one orbit 

which is not a P null set. Let/~ be a finite measure in the measure class of P and suppose 

that/~ (0) = 0 for every orbit 0. Let E l ,  E 2 . . . .  be the inverse images in S of a countable 

separating family for S-. Then each orbit is an intersection of the members of a subsequence 

of the Ej. Because of the ergodicity hypothesis each/~ (Ej) is either zero or ju (S) and any 

intersection of E / s  with measures equal to tu (S) has itself this measure. Hence every orbit 
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is contained in an  Ej  wi th/~ (Ej) = 0. Hence  S is covered by  a countable  family  of sets of 

measure  0. Thus  ~u(S) = 0 and  this contradict ion completes  the  proof. 

We devote  the  rest  of this section to a detailed s tudy  of the  s i tuat ion analyzed in 

Theorems 5.4 to 5.6 in the special case in which S is the  space ( ~ / ~  of r ight  cosets defined 

by  some closed subgroup ~ of (~ and (~ acts  canonically on (~ /~ .  Given any  funct ion g on 

~ / ~  there exists a unique funct ion go on (~ such t h a t  go (~x) = go (x )and  g (c (x)) =go  (x) for 

a l l  ~ E ~ where c (x) denotes the r ight  ~ coset to which x belongs. I n  par t icular  we m a y  

replace the  funct ion R of Theorem 5.6 by  a funct ion R 0 defined on (~ • (~. Conditions 

(a), (b), and (c) of t ha t  theorem m a y  evident ly  be expressed as follows in te rms  of R o 

(a'). For  each Yl and  Y2 in (~ we have  R 0 (Yl Y2, x) = 0 (Yl, Y2) Ro (Yl, x) R 0 (Y2, xyx) for a lmost  all x 

in (~. (b') R 0 (e, x) is the  ident i ty  for a lmost  all x in ~ .  (c') For  all ~b and ~ in ~ (R 0 (y, x) (r 

is measurable  on ~ • (~ and for each y is measurable  on (~. I n  wha t  follows it will 

be convenient  to adop t  the convent ion t h a t  an opera tor  va lued funct ion q->A(q) is  

measurable ,  Borel, continuous etc. if this is so in the  usual  sense for the complex valued 

funct ions (A (q)(~b),~) for all ~ and ~ in the  re levant  Hi lber t  space. 

We show nex t  t ha t  the  ident i ty  in (a') m a y  in a certain sense be " so lved" .  

LEMMA 6.1. Let B be any measurable/unction/tom (~ to the unitary operators o/ ~k and 

let 0 be a multiplier /or (~. Let RB(y,x)= (B- l (x)B(xy)) /a(x ,y) .  Then Rs satis/ies (a'), 

(b'), and (c') above, Conversely i/ R satisfies (a'), (b') and (c') there exists a Borel /unction B 

such that R (y, x) = RB (y, x) /or almost all pairs y, x. RB, (y, x) = RB, (y, X) /or almost all pairs 

i /and  only i/ there exists a unitary operator C such that B2(x ) = C BI (X )/or almost all x. 

Proo/. The proofs of the  first  and  third s ta tements  are immedia te  and  m a y  be left to 

the  reader.  To prove  the  second let S be a Borel funct ion such t h a t  S(y,x) = R(y,x) for 

a lmost  all pairs y, x. Then S (Yl, Y2, X) = O (Yl, Y2) S (Yl, x) S (y~, xy l )  for a lmost  all tr iples Yl, Y2, x. 

Hence  there exists xoE(~ such t h a t  S(yly~,Xo) =a(yl,y~)S(yl,xo)S(y2,xoyl) for  a lmost  

all pairs Yi, Y2 in (~ • (~. Bu t  whenever  this last  equat ion  holds we have  

S (Y2, xo YI ) = ( S-1 (Yi, xo) S (YI Y~, Xo))/o (Yl, Y2) 

so t h a t  S (Y2,Y3) = (1/0 (xo ly  a, Y2)) S-1 (x~lya,x0) S (x~ 1 y3y2,Xo) 

where Y3 = xoyl. But  

0 (XO 1 Y3' Y2) = 0 (XO 1, Ya Y~) 0 (Ya, Y 3)/~ (x~ 1, Ya). 

Thus  for a lmos t  all pairs Y2, Y3 we have  

S (y~, Y3) = (S (xo 1 Ya, x2)/a (xo 1, Ya))-i (S (Xo 1 Y3 Y~, Xo)/a (x~ 1, Y3 Y2)) (I /a (Ya, Y~). 
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Hence we need only take B ( y ) =  S(x~ly,xo)/a(xol ,y)  ill order to complete the proof of 

the lemma. 

LEM~tA 6.2. Let R satis/y (a'), (b') and (e') above and in addition let R(y,~x) = R(y ,x)  

/or all ~ in the closed subgroup ~ o/ (~ and all x and y in (~. Then the B o/Lemma 6.1 may be 

chosen so that B (~ x) = (~ (~, x)L~ B (x) /or all ~ E ~ and all x E (~ where ~--->L~ is a a representa. 

tion ot ~ which to within equivalence is uniquely determined by R. 

Proof. First let B 1 be any unitary operator valued Borel function such tha t  RB, (y, x) = 

R (y, x) for almost all pairs y, x. Then for each ~ E ~ we have Rs, (y,~x) = R ~  (y,x) for almost 

all pairs y,x. Thus 

(B~ 1 (~x) B 1 (~xy))/a (~x,y) = (B~ 1 (x) B 1 (xy)) /a  (x, y) 

or equivalently 

B 1 (~xy) B~ 1 (xy)/a (~,xy) = (B11 (X) B 1 (~x))/a (~,x) 

again for almost all pairs y,x.  In  other words for each ~ E ~ the unitary operator (Bl(~x) �9 

B~ 1 (x))/a (~,x) is almost everywhere equal to an operator L~ which is independent of x. 

We verify at  once tha t  L~ = I and tha t  L ~ ,  = a(~l, ~2)Lf,, L~. for all ~1 and ~2 in 6. To show 

tha t  L is a a representation we need only show tha t  it is a Borel function of ~. But  let a 

be any finite member of the unique invariant  measure class in (~. Then if ~ and ~o are in ~k, 

f(S~(~x)(B;~(x)(r is a Borel function and is equal to a((~)(Le(r 

The next thing we show is tha t  B 1 can be changed on a set of measure zero so tha t  the 

identity in question holds for all pairs ~, x E ~ • (~. We do this in two stages first constructing 

B~ in which the almost everywhere restriction applies only to x and not to ~. Note first 

tha t  since both sides are Borel functions we may  pass from the given almost everywhere 

condition to the conclusion tha t  for almost all x we have Bl(~x ) =a(~,x)L~Bt(x  ) for 

almost all ~. Let  /~ be a member  of the unique invariant  measure class in ~ such tha t  

f l(~) = 1. For each ~ and v 2 in ~k let A(~,~o,x) = (1/a(~,x))(L~lBl(~X)(~),~o)dfl(~). Then 

for each ~ and ~o, A(~,~fl, x) is a Borel function of x and for almost all x in (~ is equal to 

(BI(X)(r Moreover for all x we have IIA(~b,V,x)II~<Hr II~oll so tha t  there exists a 

unique bounded operator B~ (x) such tha t  A (~,% x) = (B~ (x) (~),v2). x--> B~ (x) is clearly 

a Borel function of x and furthermore 

(B2(~oX) (r = A (r x) 

= f (1/a (~, ~o x))(L~ ~ B~ (~ ~ox)(~), 1o)dfl (~) 

= f (1/a (~ ~ ,  t0x))(L~-,  B 1 (~x) (r (t) 

where fl' is another measure in ~ having the properties assumed for ft. Thus 
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(B2 (~0 x) (r 

= f  (a(~,~ol)/(a(~,x)a(~ol,~ox)a(~, ~5l))(L~,L~l  Bl(~x)(r 

= f (a (~0, ~51) a (~0, x) ) / (a  (~51, ~o) a (~, x) (L[  1 B~ (~ x) (r L~, (~v)) dfl (~) 

= a (~0, x)f  (1/a (~,x))(L~ 1 B~ (~x)(r (~)dfl (~). 

Let  N 1 be a Borel subset of (~ which is of measure zero and outside of which B 1 (~x) = 

a(~,x)L~Bl(x ) for almost  all ~E ~. Then for xE(~ - - N  1 we have 

(B2 (~0 x) (r = a (~0, x) (B 1 (x) (r (~v)) 

for all ~0 E ~ and all r and ~p in ~k. Thus for all xE(~ - N  1 we have B2(~x ) = a(~X)Bl(X ) 

for all ~ E ~ and  in part icular  (taking ~ = e) we have B 2 (x) = B 1 (x). Hence B2 (~ ~, ) = (r (~, x)- 

L~ B,  (x) for all xE ~ - N 1 and all ~ E ~. Now let N be the Borel set outside of which B (x) 

is un i ta ry  and B2(~x) =a(~,x)L~Bz(x) for all ~E~ .  Then N ~  N~ and hence is a null set. 

Moreover if x E (~ - N and $0 E ~ then 

B~(~ ~oX) = a(~ ~o,x)L~L~o a(~ ~o) B2(x) 

= a (~, ~o x) a (~o, x)L~L~, B, (x) 

=a(~,~ox)L~B2(~oX ) for all ~:E~. 

Thus N is a union of r ight  ~ cosets. Suppose tha t  there exists a Borel funct ion B3 such 

tha t  Ba(~X ) = a(~,x)L~B3(x) for all ~E ~ and all xE ~. Then if we set B(x) = Ba(x ) for all 

x E N and B (x) = B2 (x) for all x E (~ - N  we will have a B with the desired properties. We 

m a y  construct  such a B3 as follows. By  Lemma 1.1 of [11] there exists a Borel set S in (~ 

which intersects each r ight  ~ coset in just  one point. Each  x E (~ is uniquely representable 

in the form Ss where ~E ~ and sES. We set Bs(x ) = a(~,s)L~ and verify at  once tha t  B a 

satisfies the required identity.  If  c is the canonical mapping of (~ on ( ~ / ~  and c I is the restric- 

t ion of c to S then Cl 1 is a Borel function. Moreover Cl 1 (c (~s)) = s. Thus ~ and s are Borel 

functions of x. I t  follows tha t  B a is a Borel funct ion of x. We complete the  proof of the  

lemma by  showing tha t  the equivalence class of the representat ion L is uniquely deter- 

mined by  R. If  RB,(y,x)= RB,(y,x) for almost  all pairs y,x then by  Lemma 6.1 there 

exists a un i ta ry  operator  C such tha t  B~(x)= CB2(x) for almost  all x. Let  Bl(~X ) = 

a(~,x)LiBl(X ) and B2(~x) =a(~,x)M~B2(x) for all ~,x in ~ • (~. Then for all ~ E ~  

L$ = ( Bi (~x) B ~  (x))//a(~,x) = (C B2(~x) B~l (x)C-1)/a(~,x) = C M~C-~ 

for almost  all x. Thus L and M are equivalent  as was to be proved. 

Now let ~u be a fixed member  of the unique invariant  measure class in S = {~/~ and let 

P and W be as in section 5. Let  h define the canonical act ion of (~ on (~ /~ .  Let  B be any  
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Borel funct ion from (~ to the un i ta ry  operators  in ~k such tha t  B ( ~ x ) =  a(~ ,x)L~B(x)  

for all ~, x E ~ • (~ where L is some a representat ion of ~. Clearly L i s uniquely determined 

by  B. Accordingly we shall write L B for L. Funct ions  B having  the above described prop- 

erties so tha t  L B is defined we shall call a - ~ functions. Let  B any  a - ~ function and 

form RB as indicated in Lemma 6.1. Let  R~ be the funct ion on {~ • S such tha t  R~ (y, c (x)) = 

Rs(y , x )  for all y and x in ~ • (~. R~ then  satisfies (a), (b) and (c) of Theorem 5.6 so t h a t  

the funct ion y--->(R'B.~) ~ satisfies (a), (b) and (c) of Theorem 5.4 and hence defines a rep- 

resentation of (~ having P as a system of imprimitivi ty.  This representat ion of (~ depends 

only upon B and will be denoted by  V s. Now let B 1 and B~ be any  two ~ - ~ functions 

and let T be any  member  of the vector  space R(LB ' ,L  s') of all intertwining operators 

for L B' and L s'. Then for each xE(~ and each ~E ~ we have 

B21 (~x) T B 1 (~x) = B~ l(~x) T L ~  ~ B 1 (x)a (~, x) 

= a(~,x) B~ 1 (~x)L~ ~ T B 1 (X) 

= B~ 1 (x) T B I ( X  ). 

Thus setting CT (c (x)) = B~ 1 (X) T 1 B 1 (x) defines C T unambiguously  as an operator  valued 

function on (~ /~ .  We let T-  be the bounded linear t ransformat ion of ~ (P) into itself such 

tha t  T-  (/) (t) = Cv(t) f (t) for all t E S. We m a y  now state: 

THEOREM 6.4. Every a representation of ~ having P,  h as a system o/ imprimi t iv i ty  is 

of the form VB for some a -- ~ function B. Moreover if B 1 and B~ are two a - ~ functions then 

T---> T-  is an isomorphism o/the vector space R (LB',L s~) onto the vector space of all members of 

I t  ( V sl, V s~) which commute with all PE. I] B 1 = B~ then T ---> T ~ is a ring isomorphism as well. 

Proof. The first s ta tement  is an immediate  consequence of Theorems 5.4 and 5.6 and 

Lemmas  6.1 and 6.2. Tha t  T--->T ~ is a vector  space isomorphism in general and a ring 

isomorphism when B 1 = B 2 is evident. Thus to complete the proof of the theorem we have 

only to  establish t h a t  the range of T--~ T is as asserted. Now it follows from the discussion 

on page 320 of [9] tha t  the bounded linear t ransformations S of ~ (P) into itself which com- 

mute  with a l lP  s are just  those such tha t  S (f) (t) = C (t) / (t) for all f e ~ (P) where C is a bounded 

Borel funct ion from S to the bounded linear t ransformations of ~k onto ~k. Thus what  

remains to be shown is t ha t  C defines a member  of It  ( V s', V s') if and only if C is of the 

form Cr for some T e R  (LS',LB'). Now an obvious calculation shows tha t  S is in R (V s', V s') 

if and only if for each yE(~ we have C(t)RB, (y,t) = R'B,(y,t)C([t]y) for almost  all t in S. 

Now let Co(x ) = C(c(x)) where c is the canonical mapping  of (~ on (~ /~ .  Our condit ion 

then becomes: C o (x) RB, (y, x) = Rs,  (y, x) C 0 (x y) for almost  all x in ~ or C o (x) B~I (x) B 1 (xy) = 

B~ l(x) B 2 (x y) C o (x y) for almost  all x in {~ or B 2 (x) C 0 (x) B~ 1 (x) = B2 (x y) C 0 (x y) B~ 1 (x y) for 
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almost all x in ~ .  Applying the Fubini theorem we say tha t  the last form of our condition is 

equivalent to the assertion tha t  B 2 (x) C O (x) B~ 1 (x) is almost everywhere equal to some 

constant operator T; in other words tha t  there exists a bounded operator T such tha t  

C 0 (x) = B21 (x)" T B 1 (x) for almost all x. Since C o is constant on the right ~ cosets it follows 

from the condition tha t  for almost all x we have B~ 1 (~x) T B  1 (~x) = Bg 1 (x) T B  1 (x); tha t  is 

B ~ i ( x ) ( L ~ ) - ~ T L ~ ' B ~ ( x ) = B ~ ( x ) T B I ( X )  and hence tha t  T L ~ ' = L ~ ' T  for all ~E~.  

The t ruth  of the theorem now follows at  once. 

COROLLARY ]. There exists a unitary operator which sets up an equivalence between 

the pair P, V B2 and the pair P, V s' i /and  only i / L  s' and L B. are equivalent. 

COROLLARY 2. L B' is irreducible i / a n d  only i / n o  proper closed subspace o i l ( P )  is 

invariant under all V B~ and all Ps. 

In  the course of the proof of Lemma 6.2 it was shown tha t  every a representation L of 

is of the form L s for some a- ~ function B. I t  follows moreover from Corollary 1 to Theorem 

6.4 that  the equivalence class of the pair P,  V B does not depend upon the particular B 

chosen and in addition does not change when L is replaced by an equivalent a represent- 

ation of ~. Thus the problem of finding the most general a representation of (~ having 

P,  h as a system of imprimit ivi ty is equivalent (equivalent a representations being identi- 

fied) to the problem of finding the most general a representation of the subgroup ~. In  

particular we have a natural  correspondence which assigns to each equivalence class of 

representations of ~ a well defined equivalence class of a representations of (~. I t  is natural  

to compare this correspondence with the correspondence L--> U L set up in section 4 and 

not surprising to find them identical. 

THEOREM 6.5. Let (~, P etc. be as in Theorem 6.4 and the immediately preceding discus- 

sion. Let B be any (~-~ /unction. Then the pair P, V B is equivalent to the pair P, U Ls where 

U Ls denotes as usual the representation o / (~  induced by the a representation L s o/ ~. 

Proo/. Let / be any Borel function from S to ~k and let ]0 be the Borel func t ion /oc  

where c is the canonical map of {~ on S = ~ / ~ .  Let  /OB be the function x--->B(x)(/~ 

Then/0~ is a Borel function and 

t~ = B(~x)f  ~ ($x) = a(~,x) L~ (B(x) (l ~ ( x ) ) )  = a(~,x) L~ (/0 B (x)) 

for all ~, x E ~ • (~. Conversely it follows at  once on multiplication by B- l (x )  tha t  

every Borel function g from (~ to ~ such tha t  g (~x) = a (~,x)L~ (g (x)) for all ~, x E ~ • (~ 

is uniquely of the form ]0B. Now 

(]0B (X),/~ (X)) = (B (x) (/o (x)), B (x) (/o (x)) = (/o (x), f0 (x)) 
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since each B(x)  is unitary. I t  follows at once that  / is in L~(S ,# ,~)  if and only if /0s is in 

,~L and that/__>/0B sets up a unitary map V 0 of the first Hilbert space on the second. An 

obvious calculation which we leave to the reader shows that  VoP E = PE Vo for all E and 
that  V 1 U LB B 0 x V0 = Vx for all x E (~. This completes the proof of the theorem. 

I t  is easy to see directly that  an induced representation U L always has associated with 

it a canonical system of imprimitivity based on (~/~. I t  is P, h where PE is the operation 

of multiplying by the characteristic function of E and h is the canonical action of (~ on 

(~/~. Clearly the canonical unitary transformation setting up an equivalence between 

" U  L and ~*U L where ~u 1 and/~2 are different quasi invariant measures in (~/~ also sets up 

an equivalence between the corresponding P's.  Thus the pair P, U L is defined to within 

equivalence by L. We may now formulate the main theorem of this section. Its proof is an 

immediate consequence of the foregoing considerations and will be left to the reader. 

THEOREM 6.6. Let ~ be a separable locally compact group, let ~ be a closed subgroup 

o/(~ and let a be a multiplier/or (~. Let V be any a representation o/(~ and let P'  be any pro- 

jection valued measure based on ~ /  ~ such that P',  h is a system o/ imprimit iv i ty /or  V. Then 

there exists a a representation L o/ ~ such that the pair P '  V is equivalent to the pair P, U L 

where P, h is the canonical system o] imprimitivity /or U L based on (~/ ~. I / L  1 and L~ are two 

(l representations o/ ~ and P~, h and P~, h are the corresponding canonical systems o/ imprimi .  

tivity then the pairs P1, UL' and P2, uL' are equivalent i /and  only i / L  1 and L 2 are equivalent 

a representations o/ 6" Finally the commuting algebra o / L  is isomorphic to the intersection o/ 

the commuting algebras of P and U L. 

7. The restriction of  a ~ representation to a normal  subgroup 

Let (~ be a separable locally compact group and let :K be a closed normal subgroup of 

(~. Let a be a multiplier for (~. For each s El~ the mapping L-->L ~ defined in the corollary 

to Lemma 4.2 takes a representations of :~ into ~ representations of :K. We shall call a 

representation L of :~ such that  L and L 8 are equivalent an invariant (~ representation 

(with respect to the given imbedding of ~ in (~). If  L is an irreducible a representation of 

:~ we shall denote the set of all L 8 (or rather the set of their equivalence classes) by 0L and 

call it the orbit of L. Of course every member of 0L is irreducible and given irreducible 

representations L and M we have either 0L = 0M or 0L N 0M = 0. When :K is compact every 

a representation of ~ is a direct sum of irreducible a representations and is determined to 

within equivalence by the multiplicities with which the irreducible a representations occur. 

I t  is easy to see in this case that the invariant representations of ~ are just those for which 

these multiplicities are constant on the orbits. I t  is natural to call an invariant a represent- 
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at ion transitive (we are still assuming :K compact)  if all multiplicities are zero outside of 

a single orbit. E v e r y  invariant  a representat ion is then uniquely a direct sum of t ransi t ive 

a representations no two of which have any  irreducible sub a representat ion in common.  

Guided by  these considerations in the compact  case we make the following definition in the 

general case. The invariant  ~ representat ion L of the normal  subgroup ~ is ergodic if it 

cannot  be wri t ten as the direct sum of two invar iant  a representations which are disjoint 

in the sense of section 1 of [12]. As explained in section 3 of the present paper  the discussion 

of section 1 of [12] applies wi thout  change to a representations. Following a suggestion of 

M. Krasner  however  we shall make one change in terminology and refer to factor  represent- 

ations as p r imary  representations. 

T~[EOREM 7.1. Let M be a a representation o/ the separable locally compact group (~ 

and let M (x) denote the restriction o / M  to the closed normal subgroup ~K o / ~ .  Then M (~) is 

invariant. I / i n  addition M is primary then M (x) is ergodic. 

Proo/. For  all ~,s E:~ • (~ we have 

(M<X))~ = (a (s -1, s ) /a  (s ~, s -1) a (s, ~)) M~)s-1 
= (a ( s - l , s ) / (a ( s~ , s -1 )a ( s ,~ ) ) i~v  , 

= (a ( s -a , s ) /a ( s ,~ ) )M~Ms , 

= a(s-a,s)M~M~M~_, 

= MsM~M~ 1 _ 7tr 7ur(X) ~Ar-1 

Thus Ms sets up an equivalence between M (x) and (M(X)) *. Now let E be any  projection in 

R ( M  (x), M (x)) such tha t  EM(X) and 1-E/(x) are disjoint and invariant.  I f  we can show 

tha t  E E R (M, M) then any  intertwining operator  for EM and 1-EM will be such, a fortiori, 

for EM (x~ and 1-EM(~~ and hence will be zero. Thus it will follow tha t  SM and X-EM are 

disjoint and this contradict ion to the primariness of M will prove the second s ta tement  of 

the theorem. Thus it will suffice to '  show tha t  Ms E = E M s  for all s E(~. But  since EM(X) 

and a-EM(X) are invariant  there exists for each s a un i t a ry  operator  U s in ~ (M) = ~( M (x)) 

which commutes  with E and is such tha t  Us(M(X))~ U - i - s  - M(, x) for all SE:K. Thus 

U M M(X)M -a U - 1  [ r  i ~r(x)~s rT 1 = M(X) S S ~ S S ~ tJ  s ~ r ~  ]~ ~ S  

for all $,sE:K • (~. Thus UsMsER(M(X) ,M (x)) for all s E ~ .  Thus for all s UsMs commutes  

with E and since Us does so does M s. This completes the proof. 

T H E O R E M 7.2. Let 7K be as in the preceding theorem and let L be an invariant a represent- 

ation o/ ~ .  Then the type I, type I I  and type I l I  components o[ L are all invariant and i / L  

is o/ type I then/or  all j = co, 1, 2 . . . .  the uni/ormly o/ multiplicity ~ component o / L  is in- 

variant. 
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Proo/. First  let L be invar iant  and of type  X where X = I, I I  or I I I .  Then L~ = 

(a(s-l ,s)/a(s~,s-1)a(s,~))Ls~s_,.  Thus R(LS, L s) = R ( L , L ) .  Hence L s is also of type  X. 

Let  L = L~e L ~  L m where L x is of type  X and not  every term need be present. Then 

L s = L~S~ LH~e L m~. But  since L and L ~ are equivalent  and the decomposit ion is unique 

it follows tha t  (LX) ~ and L x are equivalent  as was to be proved. The proof of the second 

s ta tement  is analogous. 

COROLLARY 1. I /  L is ergodic and invariant then L is either o / type  ], type I I  or type I I I  

and i / L  is o / t ype  I it is uni/ormly o/ multiplicity k / o r  some k = ~ ,  1, 2 . . . .  

COROLLARY 2. I /  M is a pr imary representation o / (~  then M (~) is o / t ype  I, type I I  

or type I I I  and i / i t  is o / t ype  I it is uni/ormly o /mul t ip l ic i ty  k / o r  some k = ~ ,  1, 2 . . . .  

At this point  we need to consider the decomposibili ty of the representations of the 

normal  subgroup :K into irreducible parts. To this end we apply the theory  developed in 

section 10 of [13] and adapted  to a representations in section 3 of the present paper. We 

recall t ha t  the set ~ ~  of all equivalence classes of irreducible a representations of ~ equipped 

with a certain natural  Borel s t ructure is called the a dual of :~. I t  turns out  tha t  if :K" is 

as much as metrically countably  separated as a Borel space then it is actual ly metrically 

standard.  We say then tha t  ~ "  is metrically smooth. I f  every a representat ion of :K is 
A 

of type  I we say tha t  :K ~ is of type  I. We have mappings L - ~  C (L) and C--> ~~ (C) where L 

is an equivalence class of multiplicity free a representations of :~, C (L) is a measure class in 

~ ,  c is a s tandard  measure class in :~~ and 1: ~ (C) is an equivalence class of a representations 

of :K. When  :~ is metrically smooth and of type  I then the mappings C and l: ~ invert  one 

another  and set up a one-to-one correspondence between the measure classes in ~ "  

and the equivalence classes of multiplici ty free a representations of :K. 

THEOREM 7.3. Let :K be a closed normal subgroup o/ the separable locally compact 

group (~. Then /o r  each multiplier (~ the mapping L, s-->L ~ is a Borel /unction /rom ~ ~  • (~ 

to ~(~. 

Pro@ Let  R denote the set of all irreducible a representations of :~ in some fixed 

Hilbert  space ~0 where we do not  identify equivalent a representations. I n  view of the 

definition of the Borel s tructure in ~ it will suffice to show tha t  L, s--> (L~ (r ~) is a Borel 

funct ion on R • (~ for each fixed x in (~ and each r and y~ in ,~0. But  

(L~ (r - ( a ( s - l , s ) / a ( s x ,  s - ' )a ( s , x ) ) (L~r , ) r  

Moreover for each x, s x s  -~ is a continuous function of s. Thus we need only show tha t  

(L~ (r yJ) is a Borel function on R • (~. But  (Ls (r = (1/,~)(L~ (r where L ~ is the ordi- 

na ry  representat ion of the group extension (~0 defined in section 2. Moreover since (L~,~ (r 
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is cont inuous as a function of G ~ for each fixed L, r and ~p it follows from the proof of Lemma 

9.2 of [11] t ha t  for each fixed ~b and ~ (L~162 is a Borel function on R • ~ .  Hence (L~. 

(~b),~v) is a Borel function on :~" • q6 and the t ru th  of the theorem follows at  once. 

I t  follows in part icular  f rom Theorem 7.3 tha t  L---~L S is a Borel au tomorphism of :~" 

for each sE(~. Let  us denote this au tomorphism of :K by  h(s). Then s--->h(s) is an ant i  

homomorphism of $ into the group of Borel automorphisms of ~" .  We shall refer to it as 

defining the canonical action o/(~ on ~ .  According to Theorem 7.3 it satisfies condition 

(a) in the discussion preccding Theorem 5.1 and thus is capable of being the  second term 

in a system of imprimi t iv i ty  based on ~ "  whenever the latter is a metrically s tandard  

Borel space. The definition of ergodicity for a system of imprimit iv i ty  given in t ha t  same 

discussion actual ly  involved only the measure class of the projection valued measure and 

not  the representation. Hence we m a y  speak unambiguously  of ergodie invar iant  measure 

classes in ~ "  (with respect to the canonical act ion of (~ on ~").  

T ~ E O R E ~  7.4. Let ~ be a closed normal subgroup o/the separable locally compact group 

(~ and let a be a multiplier/or ~ .  Suppose that ~ is metrically smooth and o/ type I. Let C 

be a measure class in ~~ Then ~ (C) is an invariant (~ representation o/ ~ i / and  only i / C  

is an invariant measure class under the canonical action o/ ~ on ~ .  Moreover i / C  andF~ ~ (C) 

are invariant then I~"(C) is ergodic i / a n d  only i[ C is ergodic. 

Proo]. I t  is easy to see tha t  (s s is equivalent  to s where C ~ is the t ransform 

of C by  s. Hence i:"(C) is invariant  if and only if I:"(C) and JC'(C s) are equivalent  for all s: 

t h a t  is if and only if C = C ~ for all s. Now let C and s be invariant .  I f  s is not  

ergodie then I:~(C) = L I r  L2 where L 1 and L 2 are disjoint and invariant .  H e n c e L  1 = I:"(C1) 

and L 2 = s where C 1 and C2 are disjoint invariant  measure classes. Since C 1 and C2 

have properly more null sets than  C, C cannot  be ergodic. Conversely if C is invar iant  

and not  ergodie there exists an invariant  measure class C 1 with properly more null sets 

than  C. Let  E 0 be the set on which a Borel Radon  Nikodym derivative of some member  

of C 1 with respect to  some member  of C is different f rom zero. Then  A is a C I null set if 

and only if A N E o is a C null set. Since C 1 is invariant  every (Eo) s differs f rom E 0 by  a C 

null set. Let  # be a member  of C and let C2 be the measure class of E--># ((:~ - E0) n E). 

Then C 2 is invariant  and I:"(C) is equivalent  to the direct sum of I:"(C1) and I:a(C~). Hence 

I:"(C) is not  ergodic. 

When  : ~  is countable, as for instance when :~ is compact ,  then every ergodie invariant  

measure class in :1( is "concen t ra ted"  in an orbit  of :~a under  (~; t ha t  is there exists such 

an orbit  whose complement  is a null set with respect to the measure class. This orbit  deter- 

mines the measure class uniquely and the correspondence thus set up  between ergodie 
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invariant  measure classes and orbits is one-to-one and onto. When :~" is less special there 

m a y  be ergodic invariant  measure classes which are not  concentrated in orbits. These 

considerations lead us to call an ergodic invariant  measure class a quasi orbit. A quasi orbit  

which is concentrated in an orbit  we call a transitive quasi orbit. 

THEOREM 7.5. Let :~ and a be as in Theorem 7.4. Then there exists one and only one 

quasi orbit concentrated in each orbit o / ~  under (~. Moreover/or each L o 6fC ~ the set ~L, o/ 

all s 6 ~ such that Lo s = L o is a closed subgroup o] (~ containing :~. 

Proo/. With  evident t iny  modifications the first par t  of the proof of Theorem 6.1 m a y  

be read as a proof of the closure of ~L,. I f  s 6:~ then L~ = LsLxL; 1 for all a representations 

L of ~ .  Hence L~ and L are equivalent.  Hence ~ c ~L,. The one-to-one map 0 of the coset 

space (~/~L~ on the orbit  0L~ defined by  s-->L~ carries the unique invariant  measure class 

in (~/~L~ into an invariant  measure class in ~ which is concentrated in 0L~ I t  follows 

from the a rgument  of Theorem 6.2 tha t  this measure class is ergodic. Now let C be any  

invar iant  measure class in 0L~ 0 -1 carries the Borel s t ructure in 0L, into a Borel s t ructure 

in ('t//~L~ which is perhaps weaker than  the given one and carries C into a measure class 

C' defined on these special Borel sets. Since ~ is metrically s tandard  there exists a Borel 

subset N of :~" of measure zero with respect to C such tha t  :~~ - N is s tandard  and hence 

countably  separated. Thus by Theorem 5.1 of [13] 0 is a Borel isomorphism when restricted 

to  0 -1 (~"  - N) Hence every Borel subset of (~/~L. differs by  a null set f rom a Borel set on 

which the members of C' are defined. Hence  C' m a y  be canonically extended so tha t  its 

members  are defined on all Borel subsets of ~ / ~ L ,  and this extended C' is still invariant.  

Since there is one and only one invariant  measure class in (~/~L, the measure class C' is 

uniquely determined and hence so is C. 

If  ~ is as above and M is any  a representat ion of :K then M is quasi equivalent  ([12] 

section 1) to a multiplici ty free representat ion L of :~ whose equivalence class L ~ is uniquely 

determined. Let  C = C (L a) so tha t  L = 1~ ~ (C). For  each Borel set E in :~" let CE denote the 

measure class whose members are the measures F--->#(F N E) where /t varies over the 

members  of C. s is then the equivalence class of a sub a representat ion L E of L. 

Let  PE be the unique projection in the center of R (M, M) such tha t  the sub a representa- 

t ion defined by  PE is quasi equivalent  to the members of s E-->PF is evidently a 

projection valued measure. We call it the projection valued measure belonging to M.  

THEOREM 7.6. Let M be a a representation o/ the separable locally compact group (~ 

and let ~ be a closed normal subgroup o/(~ such that ~ is smooth and o/type I. Let P be the 

projection valued measure belonging to the restriction M (~) o / M  to :~. Let h denote the canonical 
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action o/(~ on ~ .  Then P, h is a system o / impr imi t i v i t y /or  M based on ~ .  This sy~'tem is 

ergodic whenever M is primary. 

Proo/. In view of Theorem 7.3 we have only to show that MuPEM~ 1 - PtEju , for all 

Borel sets E _  C ~"  and all yE(gl. Now 

MyM~X'My 1 = (M~X')Y((~(y-~,y)//(a(y~,y-~)(~(y,~)))M,~u , for all ~,yE3f :< r 

Hence for each fixed y the set of all MuM(~X)Mu I on the one hand and the set of all M(~ J 

on the other have the same commuting algebra R. Hence M u R M u  1 -- R. Since the PE are 

just exactly the projections in the center of R it follows that each M uPEM  u 1 is of the form 

PF for some Borel set F_c :~o. Now PE and P r  define subrepresentations of M (x) and M~. 

M(:~)Mu x restricted to the range of P~ is evidently equivalent to M (x) restricted to the range 

of PE. Thus (M(X)) u restricted to the range of PF is equivalent to M (x) restricted to the range 

of PE. Let C be the measure class of P. Then I:o(C~) is the equivalence class of the multipli- 

city free representations quasi equivalent to the restriction of M (x) to the range of PE and 

1: ~ (([CJ y)v) is the equivalence class of the multiplicity free representations quasi equivalent 

to the restriction of (M(X)) u to the range of Pr.  Hence C E - ([C]y)~. Hence E and [F ly  differ 

by a C null set. Hence MuPEM  u 1 PF = PCEj,j , as was to be proved. When M is primary 

then M (x) is ergodic by Theorem 7.1 and is of the form n L  for some multiplicity free (r 

representation L by Corollary 2 to Theorem 7.2. Since n L  is invariant and ergodic so is L. 

Now it follows from the definition of P that the measure class of P is C(L~). Since C(L 6) 

is ergodic by Theorem 7.4 it follows that P, h is ergodic. 

Let M be any primary a representation of (~. As we have already remarked the measure 

class C of th e projection valued measure belonging to M (x) is the unique measure class such 

that M (x) is a multiple of the members of ~0 (C). This measure class, as we have just seen, 

is ergodic and invariant and hence is what we have called a quasi orbit. We shall call it 

the quasi orbit associated with M. 

8. The 6 representations associated with transitive quasi orbits 

We are now in a position to discuss problems (a) and (b) of the introduction in the 

special case in which the closed normal subgroup ~ is such that ~a  is metrically smooth 

and of type I. I t  follows from the results of the last section that a a representation of 

can be the restriction to ~K of a primary representation of ~t only if it is of the form n L  

where L is multiplicity free ergodic and invariant. C ~ I : ~  sets up a one-to-one corre- 

spondence between the equivalence classes of such L's and the quasi orbits in ~a. To say 

that  for every multiplicity free ergodic invariant L there exists n - ~ ,  1, 2 . . . .  such that  
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nL  is the restriction to :~ of some primary a representation of (~ is to say tha t  every quasi 

orbit is associated with some pr imary a representation of ~ .  To find all pr imary a represent- 

ations of (~ having a given restriction to ~ (different multiples of the same representation 

being identified) is to find all pr imary a representations of (~ associated with a fixed quasi 

orbit. In  this section we shall discuss these questions in the particular case in which the 

quasi orbit is transitive. The more difficult intransitive case we hope to t reat  (less com- 

pletely) in a subsequent article. 

THEOREM 8.1. Let a be a multiplier/or the separable locally compact group ~ and let 

be a closed normal subgroup o / ~  such that ~ is metrically smooth and o/type I. Let L o be 

any member o / ~ ~  let ~ denote the closed subgroup o/all  s E ~ such that (Lo) 8 = L o and let 

0 denote the orbit o/ L 6 in ~ .  Then /or each primary (~ representation L o/ ~ such that 

L (~) is equivalent to a multiple o/ L o the induced a representation U L o/(~ is a primary a 

representation whose quasi orbit is concentrated in O. Every such primary representation o/ 

(~ may be so obtained and L and U L determine one another to within equivalence. For each 

X = I, I I ,  or I I I  U L is o/type X if and only i / L  is of type X and U L is irreducible i / and  

only if L is irreducible. 

Proof. Let L be a pr imary a representation of ~ whose restriction L (X) to :~ is a multiple 

n of L ~ and apply Theorem 4.5 to (uL) (~). The correspondence ~x~K--->~x is clearly 

one-to-one and Borel set preserving between the space of ~ ::K double cosets and  the 

space of right ~ cosets. Thus ~ and :K are regularly related. Moreover the correspondence 

clearly takes the projection valued measure associated with the direct integral decomposi- 

tion of Theorem 4.5 into the projection valued measure P defined on (~ /~  which is the 

first term in the canonical system of imprimitivity associated with U L. By Theorem 4.5 the 

a representation associated with the right coset containing x is just the restriction of 

L z to :~. But  (LX) (x) = (L(~)) x. Moreover L (~) is a multiple of L0 and L~ and L~ are inequivalent 

whenever x and y are in distinct ~ cosets. Thus (UL) (~) is a multiple of the multiplicity 

free a representation whose measure class is the image in :~ of the measure class of P 

under the one-to-one mapping c of (~ /~  on :~" defined by x-~L~o. I t  follows in particular 

tha t  the quasi orbit of U L is concentrated in 0 and that  c composed with P is the projection 

valued measure belonging to (u(L)) (x). Since the Pc (s) all lie in the center of the commuting 

algebra of (UL) (x) we conclude tha t  every member  of the commuting algebra of U L com- 

mutes with all PE and hence by  Theorem 6.6 tha t  U L and L have isomorphic commuting 

algebras. In  particular U L is pr imary and the statements about  the type and reducibility 

of L and U L all follow. Suppose now tha t  U L' and U L' are equivalent where L 1 and L 2 

satisfy the conditions laid upon L above. Let V set up the equivalence. Then V also sets 

19 - 665064  Acta  mathemativa.  99. Impr im~ le 25 j u i n  1958 
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up an equivalence between (U L')(zr~ and (Ur") (~) and hence sets up an equivalence between 

the projection valued measures belonging to these two  a representations. Because of the 

above described connection between these projection valued measures and the first terms 

p1 and p2 of the canonical systems of imprimit ivi ty associated with U L  ̀and U z" respect- 

ively we conclude tha t  1/ sets up an equivalence between the pair p1, U L. and the pair 

P~, U L'. Thus L I and L2 are equivalent by Theorem 6.6. Finally let M b e  any pr imary 

a representation of ~ whose quasi orbit is O. By Theorem 6.1 the mapping c defined above 

sets up a strong equivalence between a partial completion of the system of imprimit ivi ty 

for M r described in Theorem 7.6 and a system of imprimitivity P ' ,  h' for M (~) based 

on ~ / Q .  By Theorem 6.6 there exists a a representation L of ~ such tha t  the pa i rP ' ,  M 

is equivalent to the pair P,  U L where P, h' is the canonical system of imprimitivity for U L. 

Thus 31/is of the form U L. We complete the proof by showing that  L Cx) is a multiple of L 0. 

By  Theorem 4.5 and the connection already described between ~ cosets and ~ : ~  double 

cosets (UL) (~) is a direct integral over (~//~ of the (L(X)) ~ and the corresponding projection 

valued measure is P.  Because of the relationship already described between P and  the 

projection valued measure belonging to M (x) it follows tha t  (L(X)) ~ must  be a multiple 

of L~ for a lmost  all x. But  this relationship for a single x implies tha t  L (x) is a multiple 

of L 0 as was to be proved. 

THEOR~.M 8.1 reduces the study of the pr imary a representations of (~ associated 

with a fixed orbit  to the s tudy of certain pr imary ~ representat ions of a certain closed 

subgroup ~ of (~ which includes ~ .  We show now tha t  this lat ter  s tudy may  be reduced 

to the s tudy of the pr imary eo representations of ~ / :~  where eo is a certain multiplier for 

~ / ~  which m a y  be non trivial even when a is trivial. As a first step we show tha t  an irred- 

ucible a representation of ~7C may  always be extended to an irreducible v representation 

of the corresponding ~ where v is a multiplier for ~ which agrees with a on :K but  not 

necessarily elsewhere. 

T~EOREM 8.2. Let ~ be a closed normal subgroup o/ the separable locally compact 

group ~.  Let a be a mult ipl ier /or  ~.  Let L be an irreducible a representation o/ ~]~ such that L x 

is equivalent to L / o r  all x E ~. Then there exists a multiplier ~ /o'~' ~ and a ~ representation M 

o/ ~ such that L~ = M~ /or all ~ E :K. v may be chosen so as to be the product with a o/ a mul .  

tiplier o/ the ]orm 1/(o~ o / )  where / is the canonical homomorphism o/ ~ • ~ on ~ / ~  • O/:K 

and o~ is a multiplier /or ~/:K. When v is so chosen co is uniquely determined by (~ and L 

up to multiplication by a trivial multipier. 

Proo/. Since L ~ is equivalent to L for all x there exists for each x a unitary operator 

M~ such tha t  for all ~ E~,  M x L ~ M x  1 = LX~. Since L is irreducible each M~ is uniquely deter- 
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mined up to  a multiplicative constant .  We shall show t h a t  these constants  m a y  be chosen 

so tha t  x--->M x has the properties s ta ted in the theorem. I t  will be convenient  to  do this 

in stages. Let  ~/(~ (L)) denote the un i ta ry  group of the Hi lber t  space ~ (L). As shown in the 

proof of Theorem 8.5 of [13] this group is a s tandard  Borel group in the Borel s t ructure  it 

inherits f rom the  weak operator  topology. Moreover as shown in the proof of Theorem 10.8 

of [13] there exists a Borel subset S of ~/(~ (L)) which intersects each one parameter  family 

0 -+  (exp (iO)) V once and only once. Let  us choose such an  S and then define A x as the unique 

member  of S such tha t  A::L~A; 1 =L~ for all ~EJ~. We show first t ha t  x--+(Ax(r is a 

Borel function of x for all ~b and yJ in ~ (L): t ha t  is t ha t  x-->A x is a Borel function from 

to ~/(~(L)).  Let  E denote the set of all pairs x, V E ~  • I / (~ (L) )  such tha t  V L t V  -a =L~ 

for all ~ E ~ .  Then for each Borel subset E of .~/(~(L))  the set E '  of all x E ~  with A~:EE 

is the projection on ~ of E f3 (~  • S). I f  we can show tha t  E is a Borel set it will follow t h a t  

E '  is the image of a s tandard  Borel space by  a one-to-one Borel funct ion and hence is a 

Borel set by  Theorem 3.2 of [13]. Hence it will suffice to  prove tha t  E is a Borel subset of 

• ~/(~ (L)). Let  ~ "  be the auxiliary group introduced in section 2 of this paper  and let 

L ~ be the ordinary representat ion of ~ ~  defined by  L. Now it is trivial t ha t  VL~ V -1 = L~ 

if and only if V ~ L ~ V  -1  = 2L~ for all complex ~ with [2] = 1; t h a t  is if and only if VL~,~V -1 = 

(VX)~~ ~ for all such ~. Let  ~1, ~1; 2~, ~2; .-- be dense in : ~  and let 41, r . . . .  be dense in ~(L) .  

Then x, V E E  if and only if (VL~ V-l(r162 = L ~ 0 (( )~j.~j(r162 for all j, k, m = 1, 2 , . . . ;  

t h a t  is if and only if (VL~j V-l(r = (L~j (r for all i, k, m = 1, 2 . . . . .  But  for each 

fixed triple ?', k, m the left hand  member  of the last equat ion is clearly a Borel funct ion on 

(~ (L)) and the r ight  hand  side, which is equal to (L~j~ , (r162 by  ((~(x-l,x)/ 

(cr(x~,x-1)a(x,~)), is clearly a Borel funct ion of x. The fact  t h a t  E is a Borel set follows at  

once. 

As the second stage in our definition of M~ we define B~ for each x as follows. If  x E ~  

we set B x = L~. I f  x ~ we set B~ = A~. Since ~ is a Borel set it follows from the fact  t h a t  

x--->A~ is a Borel function and tha t  ~-->L~ is a Borel function tha t  x--> B z is a Borel function. 

Moreover since L~ = i~L~Lz I for all x and ~ E ~ we see tha t  B x L~ B~ a = i~  for all ~, x E ~ • 6-  

Now for all ~,x, yE ~ • ~ • ~ we have B~uL~ B ~  = L~ u = (L~)~ =(B::L B~= ~)~u = B~L~ B ~  = 

B:~B~L~B;~B; ~. Thus for each x and y in ~ the operator  B::B~B; 1 commutes  with L~ 

for all ~ E:K. Since L is irreducible it follows tha t  there exists a complex number  of modulus  

one, ~' (x, y) such tha t  B~  = ~' (x,y)B~ B~. Thus x--> B~ is a ~' representat ion of ~ for the 

multiplier ~'. Let  v(x,y) =(r(x,y)/~'(x,y). Then v is a multiplier for ~ which reduces to 

the ident i ty  on ~/~. However  v need not  be of the form o) o / .  As the third and final s tage 

in the construct ion of M we show tha t  we m a y  change B so tha t  the corresponding v is 

of t h e  desired form. Let  I denote the one dimensional ident i ty  representat ion of ~ .  Since 
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is the ident i ty  on :~ it follows tha t  I is a ~ representation. Hence we m a y  form the induced 

representat ion U * of ~. Call this v representat ion W. Now for all ~,xE:K • ~ we have 

W ~  = W~W~.~,(~,x). Moreover (I*)~ is multiplication by  ~,(x-l ,x)/(v(x~,x-~)v(x,~)).  But  

L~x-~ = Bx~x , = ~' (x ~, x -~ ) B~ ~ B~ , = ~' (x~, x -~) ~' (x, ~)/~' (x- 1, x) B~L~ B ;  1 

and B,  L~ B ;  1 = L~ = a (x -1, x ) / ( a  (x ~, x -1) (7 (x, ~)Lx~x - , .  

Combining these two equations we deduce at once tha t  v(x 1,x)/(v(x~,x-1)v(x,~) = 1 for 

all ~, xE:K • ~. Thus I x is the one dimensional ident i ty  for all xE ~. Hence by  Theorem 4.5 

W~ is the ident i ty  for all ~ E :K. Hence W~x = ~ (~, x) W, for all $, x E ~ • ~. Let  C be a regular 

Borel section ( [ l l ]  page 103) of ~ with respect to :~ which meets  :K in the identity.  For  

each x E ~ let c (x) denote the unique member  of C such tha t  c (x) x -1 E ~ .  Now ~, y--> ~:-1 y is 

a one-to-one Borel mapping of :K • C on ~ and hence, since ~ • C and ~ are s tandard,  

has  a Borel inverse. Since (c(x)x-1)-lc(x)  = x we see tha t  x-->c(x) is the projection on C 

of the inverse of this mapping and hence is a Borel function. Let  W'x = Wc(~) for all xE ~. 

Then W~ = Wc(~),-,x = v(c(x)x- l ,x )  Wx = g(x) Wx where x-->g(x) = ~(c(x)x- l ,x)  is a Borel 

funct ion from ~ to the complex numbers  of unit  modulus and x--~ W'~ is constant  on the 

cosets in ~. Since W is a ~ representat ion of ~ it follows tha t  W~ is a v' representat ion of 

where ~' (x, y) = v (x, y) g (x, y) /g  (x) g (y). We now define M~ for all x E ~ as (1/g (x)) B x. Since 

B is a a/~, representat ion of ~ it follows tha t  M is a a/~,' representat ion of ~. But  since W' 

is constant  on the ~( cosets of ~ and W' is a ~' representat ion of ~ it follows at  once t h a t  

v' is of the form coo/. Tha t  co is a Borel funct ion follows from Lemma 1.2 of [11]. Tha t  

Ms - L ~  for all ~ E:K follows from the fact  t ha t  W~ is the identity.  To complete the proof 

of the theorem we have now only to establish the essential uniqueness of co. Let  N be a a/co'o/ 

representat ion of ~ which agrees on :K with L. We compute  at  once tha t  N , L ~ N ]  1 = M:~L~. 

M z  1 - L ~  for all ~, xE:K • ~ and hence tha t  N ,  = Q(x)Mx for all x where ~(x) is a complex 

number  of uni t  modulus. Hence N~, = ~(~x)M~x for all ~, xE:K • ~. Since (co'o/)(~,x) = 

(coo/)(~,x) = 1  we conclude tha t  a(~,x)L~N~:=~(~x)a(~,x)L~M,.  Hence ~(~x)=~(x ) .  

Hence ~) is constant  on the :~ cosets. Since (coo/) (x,y) = (co'o/) (x,y) (Q (xy)/Q (x)Q (y)) the 

desired result follows at  once. Tha t  r defines a Borel funct ion on ~ / : ~  follows from Lemma 

1.2 of I l l ] .  

THEOREM 8.3. Let ~ ,  ~, a, L, M,  T, /, and m be as in the statement o/ Theorem 8.2. 

For each co representation N o / ~ / ~  let N '  denote the coo/representation o/ ~ de/ined by com- 

posing N with the canonical homomorphism o/ ~ on ~ / ~ .  Then the mapping N---> M | N '  

sets up a one-to-one correspondence (equivalent representations being identi/ied) between the set 

.o/ all primary co representations o/ ~ / ~  and the set o/ all primary a representations o/ 
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which reduce on ~ to a multiple o /L .  For each X = I, I I ,  or I I I ,  M | N '  is o / type X i/ 

and only i / N  is o / type  X and M | N '  is irreducible i] and only i/ N is irreducible. 

Proo/. Let  W be a p r i m a r y  a r ep resen ta t ion  of ~ which reduces on :~ to  a mul t ip le  of 

L. Replac ing  W b y  an  equiva len t  r ep resen ta t ion  if necessary we m a y  suppose t h a t  9 (W) = 

9 (M) | 90 where 90 is a su i tab le  H i lbe r t  space and  t h a t  W~ = L~ x I 0 = M s x I 0 for all  

E:~. Now for all  ~, x E:~ x ~ we have  

W~z-,  = Mx~: , x I o = (M~M~Mx 1 • Io)(V(x~,x-1)'r(x,~)/'v(x-l,x)) 

and  we have  Wz~z , = W~W~W;l((~(x$,x-1)c~(x,~)//a(x-l,x)). 

W e  have  seen however  t h a t  I x regarded  as an  ~ o o / r e p r e s e n t a t i o n  is equ iva len t  to I for 

al l  x. Thus  the  expressions involving a and  v mus t  be equal  and  we m a y  conclude t h a t  

W~: W~ W;  I =  M ~ M ~ M ;  1 x I o. Thus  (Mz x I0)(L~ x I0)(Mx x 10)-1= Wx (L~ x I0)WX -1. Thus  

for each x E 6, W;  1 (Mx x I0) commutes  With L~ x I 0 for al l  ~ E ~ .  Since L is i r reducible ,  

W;I(M~: x I0) mus t  be of the  form I x V~ where V~ is a un ique ly  de t e rmined  u n i t a r y  

opera to r  in 90. (If T E g I  |  and  hence is an  opera to r  f rom 90 to 91 then  (A x B ) ( T )  = 

A T B * .  (See [11] sect ion 5 for fur ther  details .)  Thus IYz = (Mz x Vx). Now for al l  x and  y 

in ~ W~y = a(x,y) W~ Wy. Hence  

Mxy x V~y = a(x ,y)(Mz x Vx)(M r x Vy)= a(x ,y) (M~My x Vx Vy) 

=a(x,y)((1/ 'r(x,y)Mxy x V~ Vy)= (M~y x (a(x,y)/~(x,y))  Vx Vy). 

Therefore  M~y x V~ = Mxy x (a(x,y)/v(x,y))V~ Vy 

so V~y = (a(x,y)/v(x,y))  V~ Vy = (o~o/) (x,y) V~ Vy. 

The fact  t h a t  (Vx(r is a Borel  funct ion  of x for all  ~ and  ~v in 9 follows a t  once from 

the  corresponding facts  abou t  W and  M.  Thus  V is an  c o o / r e p r e s e n t a t i o n  of ~ and  W = 

M | V. Bu t  V~ is the  i den t i t y  for all  ~ E ~ .  Hence  (apply ing  L e m m a  1.2 of [11] to  es tabl ish  

the  Borelness of 5:  we see a t  once t h a t  V is of the  form N'  where /V is an  eo r ep resen ta t ion  

of ~ / ~ .  We have  thus  p roved  t h a t  W is of the  form M | N ' .  We  shal l  see below t h a t  N 

mus t  be p r imary .  ]Now let  N 1 and  N 2 be a n y  two w represen ta t ions  of ~ / ~ .  Le t  T be any  

in te r twin ing  opera to r  for M | N1 and  M | 2. Then T also in te r twines  the  res t r ic t ion  of 

these  a represe , l ta t ions  to  ~ ;  t h a t  is L | I and  L | I .  Since L is i r reducible  T mus t  be of 
~ ,  the  form I x S. Since I x S in ter twines  M | N~ and  M | 2, S mus t  in te r twine  N1 and  

N~ and  hence mus t  in te r twine  ~ 1  and  _IV 2. Conversely if S in te r twines  ~ 1  and  N 2 then  i t  
t ~ t  p 

is obvious  t h a t  I x S in ter twines  M | N1 and  M | 2. I t  now follows a t  once t h a t  M | N1 

and  M | N~ are  equ iva len t  ff and  only  if N 1 and  N 2 are  equ iva len t  and  t h a t  the  commut ing  

r ings R ( N , N )  and  R ( M  |  M |  are  isomorphic.  F r o m  these  commut ing  r ing 
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isomorphisms it follows at once that /V is primary if and only if M | N'  is primary that  if 

both are primary they have the same type and that  one is irreducible if and only if the 

other is also. This completes the proof of the theorem. 

Combining Theorems 8.1, 8.2 and 8.3 we may state as our final result. 

THEOREM 8.4. Let ~ ,  ~K and a satis/y the hypotheses o/ Theorem 8.1 and let Lo, 0 and 

be defined as in that theorem. Then there exists a multiplier co/or ~ / ~  (unique up to multi- 

plication by trivial multipliers) a multiplier T /or ~ and a T representation M o/ ~ such that 

M restricted to }( coincides with L o and such that N---> U M | ~" sets up a one-to-one correspondence 

(equivalent representations being identi/ied) between the primary eo representations o/ ~ / ~  

and the primary a representations o / ~  having 0 as orbit. N and U M| have the same yon 

Neumann-Murray type and N is irreducible i/ and only i/ U M| is irreducible. 

9. Applications and examples 

Suppose that  (~, :~ and a are as described in the first sentence of Theorem 8.1 and 

suppose that  the only quasi orbits of :~~ under {~ are transitive ones. Then the primary a 

representations of (~ described in Theorem 8.4 include all primary a representations of (~ 

and we reduce the problem of finding the primary representations of (~ to that  of finding the 

orbits of :~" under (~ and for each such orbit to finding the primary co representations of 

a certain subgroup of (~/:K. Moreover it is easy to find useful sufficient conditions for the 

absence of non transitive quasi orbits and hence for the possibility of the indicated complete 

analysis. Let  us say that  :~ is a regularly imbedded in (~ whenever for each finite Borel 

measure # in }(" the measure ~ in the orbit space (:~")" is eountably separated. This says 
slightly less than that  (:~")- is metrically countably separated since we do not know that  

every finite Borel measure in (~(~)~ is of the form ~. Now the hypothesis of metric countable 

separatedness for S made in the statement of Theorem 6.3 is not used in the proof in its 

full force. All that  is actually used is that  measures in S of the form ~are countably separ- 

ated. Thus we may apply Theorems 6.3 and 7.6 and conclude the t ru th  of 

THEOREM 9.1. I /  (~, ~ and a are as described in the/irst sentence o/Theorem 8.1 and :~ 

is ~ regularly imbedded in (~ then every quasi orbit o / ~  under ~ is transitive. Hence, in partic- 

ular, every primary a representation o] (~ is one o/those described in Theorem 8.4. 

We have also 

THEOREM 9.2. Let (~, ~ and a be as described in the/irst sentence o/Theorem 8.1 and 

in addition let ~ be not only metrically sta~lard but actually standard. Let there exist a Borel 
set S in ~(awhich meets each orbit o / ~  under ~ exactly once. Then ~ is a regularly imbedded 

in ~). 
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Proo/. Apply  Theorems 5.2 and 7.3. 

I t  would be interesting to  know whether  or not  it is possible to  s t rengthen Theorem 

9.2 along the lines suggested by Theorem 8.6 of [13]. 

THEOREM 9.3. Let (~, ~ and a be as described in the/irst sentence o/ Theorem 8.1 and 

let ~ be a regularly imbedded in ~ .  Suppose that/or each L E ~  ~ the subgroup ~L consisting of 

all x with L x ~_ L is such that ( ~ L / ~ )  ~ is o/ type I where eo is the essentially unique multiplier 

in ~L/~K de/ined by Theorem 8.2. Then ~ is o / type I. 

Proo/. Apply  Theorems 8.4 and 9.1. 

THEOREM 9.3 provides an inductive mechanism for establishing the type-I-ness  of 

complicated groups (cf. Dixmier in [4] and [5]). Less directly Theorem 8.4 provides such a 

mechanism for establishing smoothness and metric smoothness.  We are no t  prepared to 

formulate  a precise theorem but  content  ourselves with the remark that ,  generally speaking, 

when one has an  "expl ic i t"  enumerat ion of the irreducible a representations of a group 

one can make use of it to  show tha t  the group has a smooth  a dual. 

For  the special case in which ~ is commutat ive ,  a----- 1 and ~ is a semi direct p roduc t  of 

with ( ~ / ~  applications of Theorems 8.4, 9.1, 9.2, and  9.3 to  concrete groups have been 

described in [10] and [11]. I n  this section we shall discuss some examples to which the 

results of [10] and [11] do not  apply.  We begin with a few e lementary  facts about  the exist- 

ence of non tr ivial  multipliers. 

T H E O R E M 9.4. Let :K and ~ be closed subgroups of the separable locally compact group 

(~ such that ~ is normal, :~ N ~ = e and : ~  = (~. Then every multiplier ~,' /or (~ is similar 

to a multiplier ~ /or ~ which may be uniquely represented in the /orm: 

(a) v (x lyl,  x~y2) = a (x 1, Yl (x~))~o (Yl, Y~) g (xz, Yl) where x 1 and x 2 are in ~ ,  Yl and y~ are 

in ~ ,  Yl (x2) = Ylx2Yl 1, (r is a multiplier/or ~ ,  o~ is a multiplier/or ~ ,  g is a Borel /unction 

from ~ • 74 to the complex numbers of unit modulus, g is one on 7K • e and a and g satis/y 

the two/ollowing identities: 

(b) a (y (Xl), y (x~)) = a (xl, x~)g (x 1 x~, y))/(g (Xl, y)g (xz, y)), 

(e) g (x, yl Y~) = g (Y~ (x), Yi) g(x, Y2)- 

Moreover/or every choice o/ a, ~o and g satis/ying (b) and (c) the/unction ~ defined by (a) 

is a multiplier/or (~. 

Proo/. Let  v' be a multiplier for ~ and let V' be any  v' representation. ThenV~ ~ = 

v ' (x ,y)  V'~ Vu for all x in :~ and  all y in ~ .  Let  V ~ = ( 1 / u  ( x , y ) ) V ~ .  Then F is a 

representat ion for a multiplier v which is similar to  v'. Since v' (x, e) = u' (e, y) = 1 for all 

x, y~  :~ • ~4 it follows tha t  V~ ~ = V~ V'~ = V~ V~ = A~ B~ where A and B denote the  restrie- 
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t ions of V to  :K and ~H respectively.  Moreover  A is a a representa t ion  of ~ and  B is an  

(o representa t ion  of :H where a and  to denote  the restr ict ions of v to ~ and :H respecti-  

vely. Now 

Thus  v (xly ~, x~y,) Az, By, A~, By, = a (x 1, Yl (Xu) )~ (Yl, Y*) A, ,  Ay,(,,) By, By, 

and hence Ay,(**)ByllA,,By, is identically v(xlyi,x2y~)/(a(xl,Yl(X2))w(yl,y2) ) t imes the  

ident i ty.  Hence  this last  expression depends only on x 2 and  Yl. Denot ing it b y  g(x, ,yl)  

we obta in  (a) and g (x2, e ) ~  1. Now let a and  eo be a rb i t r a ry  mult ipl iers  for :~ and  74 respect-  

ively and  let g be a Borel funct ion f rom ~( • ~ to the complex numbers  of modulus  one such 

t h a t  g (x, e ) ~  1. Define v by  (a). A s t ra ight forward calculation shows t h a t  v is a mult ipl ier  

for (~ if and  only if g and a sat isfy the following identi ty:  

(d) g (x3, Yl Y2) g (x2, Yl) a (x I Yl (x,), Yl Y2 (x3)) a (x 1, Yl (X2)) 

= g (x~ Y2 (x3), Yl) g (xa, Y2) a (x 1, Yl (x2) Yl Y2 (x3)) a (x 2, Y2 (xa)). 

Set t ing y~ = e and using the  fact  t h a t  a is a mult ipl ier  (d) reduces to (b). Moreover  using 

(b) to simplify (d) we get (c). Thus (d) is equivalent  to (b) and (c) together  and the  proof  

is complete.  

We note  t h a t  when a ~  1 (b) reduces to the s t a t emen t  t h a t  for all y in ~ ,  x->g (x, y) is  

a homomorph i sm of :K into the  complex numbers  of modulus  one; t h a t  is a m e m b e r  of the 

group :~ of all one dimensional  un i t a ry  representat ions  of :K. Thus  we have  the  

COROLLARY. The multipliers r / o r  (~ which reduce to one on ~)( and on ~ are ~ust the 

/unctions on (~ • ~ such that u (x 1Yl, x2y2) = ~yl (X2) where y--> Zy is a /unc t ion /rom ~ to ~ such 

that Xy(x) is a Borel /unction o/ x and y and Zy,y, = [Zy,]Y2Xy,/or all Yl and Y2 in ~4. (Here 

IX/Y (x) = X (Y (x)).) 

T ~ E O a E ~  9.5. Let Y-->X.y be as described in the preceding corollary. Then the correspond- 
0 / 0 ing multiplier is trivial i / a n d  only i/ there exists a member Z ~ o / ~  such that Zy [X ]Y/ Z 

/or all y e :H. 

Proo/. Let  Z ~ be any  m e m b e r  of ~ .  Le t  g(xy)  = Z~ for all x ,y  in :~ • :H. Le t  v be the 

t r iv ia l  mult ipl ier  on q6 defined by  g. We ver i fy  a t  once t h a t  

V (XlYl, xeY2) = g (x~ylx2y~)/g (x~y~) g (x2y,) = go (Yl (Xu))/~ 0 (X2)" 

Conversely let Y-->Z~ define a tr ivial  multiplier.  Then  there  exists a Borel  funct ion g f rom 

(~ to the complex  numbers  of modulus  one such t h a t  

g (xly~ (x2)yiy~) = g (x~y~)g (x2y,)z~ ' (x~) 

for all x~ and x~ in ~ and all y~ and Y2 in ~ .  I f  we set Yl = e this becomes g(x lx ,  y,) = 
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g(xl)g(x2y~). Thus g restricted to ~( defines a member  Z ~ of ~( and 'our  original identi ty 

becomes 
Z ~ (xl)Z ~ (Yl (x~)) g (Yl Y~) = Z ~ (Xi)~ 0 (X2) ~ (Yl) g (Y~)X~, (x~). 

But  since v reduces to one on ~ it follows tha t  g(YlY2)= g(Yl)g(Y2) and we obtain 

)C~, (x~) = )~o (Yl (x~) ) / g  ~ (x~) 
as was to be proved. 

We shall be chiefly interested in the case in which y (x) ~ x; tha t  is in the case in which 

(~ is the ordinary direct product of ~ and ~ .  Our results yield 

THEOREM 9.6. Let ~ be the direct product o/ the separable locally ~mpac t  groups ~)~ 

and ~ .  Then (up to similarity) the multipliers v / o r  (~ are just the/unctions on (~ • (~ such 

that v (xlyl ,  x2y~)= a (xl, x~)w (Yl, Ye)Zy, (x~) where (~ is an arbitrary mult ipl ier/or ~(, m is an 

arbitrary multiplier/or ~ and y-->Zy is a homomorphism o~ ~ into ~]( such that Zy (x) is a Borel 

/unction on ~ x ~ .  The multiplier de/ined by a, oJ and Y-~Z~ is trivial i/ and only i / a  and 

o~ are trivial and Z y ( x ) ~  1. 

Example 1. Let ~ = ~ x ~ where ~( is a separable locally compact abelian group and 

is its dual. Let  v(xl,yl;x~,y~) = yl(x~) for all x 1 and x~ in ~( and all Yl and y~ in ~(. By 

Theorem 9.6 v is a non trivial multiplier for the abelian group (~. Let  us determine the 

v representations of (~ by  applying Theorem 8.4. Since v reduces to one on J(, ~ coincides 

with ~ and is certainly smooth and of type I.  Let  ~'L denote the irreducible v representa- 

tion of ~( defined by  Y0 E~.  Since the inner automorphisms of (~ are all trivial (~~ x'~' is 

simply ~'L~ mul t ip l i ed  by  r(x i -~ ,y i i ;x~,y~) /v(x~xy~;x~,y~)v(x~,y~;x ,e)y~(x~) /ys(x i~)  �9 

yl(x) = y ~ ( x ) ;  tha t  is ~'~'-~L~. Thus there is just one orb i t - - the  whole of ~ .  Moreover 

the subgroup leaving any one of its elements fixed is just ~(. Since ~(/~( is the identity there 

is just one irreducible v representation of (~ associated with this orbit. In  other words (~ 

has to within equivalence just one irreducible v representation. I t  is infinite dimensional 

and is the v representation induced by  the identity representation of ~(. 

I t  is interesting to compare example 1 with Theorem 1 of [9] which presents exactly 

the same result from a rather different point of view. 

Example 1 points up three ways in which the theory of projective representations 

differs sharply from the theory of ordinary representations. An abelian group can have 

infinite dimensional irreducible projective representations and for a given multiplier v 

can have a unique irreducible v representation. The v representations of a direct product 

need not be related in a simple way to the v representations of the factors even when the 

factors have type I ~ duals. Of course if v is a direct product of multipliers for the factor 

groups; tha t  is if the Y-~Z~ of TheOrem 9.6 is identically one then it is not difficult to prove 

an analogue of the corollary to Theorem 1.8 of [12]. 
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Example 2. Le t  ~ be as in example  1 bu t  let  ~ be rep laced  by  ~ where ~ is a countable ,  

d iscre te ly  topologized,  dense subgroup of ~ .  Le t  v now denote  the  res t r ic t ion  to ~ • 

of the  r of example  1. J u s t  as before we have  (~~ ' 'y '  = ~*~'-'L x bu t  now yl can no longer  be 

an  a r b i t r a r y  e lement  of ~ bu t  is res t r ic ted  to lie in :~. Thus there  are  m a n y  o r b i t s - - o n e  

for each ~/ coset in ~ .  J u s t  as before there  is exac t ly  one i r reducible  v represen ta t ion  of 

for each of these orbits;  namely ,  the  one induced  b y  a n y  m e m b e r  of the  orbi t .  However  

in this  case the  i r reducible  v represen ta t ions  descr ibed in Theorem 8.4 do not exhaus t  the  

i r reducible  v represen ta t ions  of ~ .  I n  add i t i on  to  the  orbi ts  in :~ there  is a t  leas t  one p roper  

quasi  orbi t .  H a a r  measure  in :~ is ergodic under  the  group of t r ans la t ions  b y  member s  

of ~ / a n d  hence defines an  ergodic inva r i an t  measure  class no t  concen t ra ted  in a n y  orbi t .  

The existence of th is  quasi  o rb i t  can be used to  show t h a t  ~ has  p r i m a r y  v represen ta t ions  

which are  not  of t y p e  I in add i t i on  to  m a n y  i r reducible  v represen ta t ions  o ther  t h a n  those  

descr ibed in Theorem 8.4. Thus  a c o m m u t a t i v e  ~ can have  non t y p e  I p ro jec t ive  represent -  

at ions.  We shall  defer  deta i l s  to  our  p ro jec ted  pape r  on the  in t rans i t ive  case. 

W h e n  :~ is a vec tor  group,  Theorem 1 of [9] reduces  to  the  theorem of Stone and  yon  

N e u m a n n  on the  uniqueness  of sets of opera to rs  sa t is fying the  Heisenberg  c o m m u t a t i o n  

relat ions.  Hence  E x a m p l e  1 above  contains  th is  theorem.  W e  shall  now ind ica te  a s imi lar  

connect ion be tween E x a m p l e  2 and  the  p rob lem of f inding al l  sets of opera tors  sa t i s fy ing 

the  "an t i  c o m m u t a t i o n  re la t ions"  of q u a n t u m  field theory .  Tl~e p rob lem is t h a t  of f inding 

al l  sequences A1, A2, . . .  of bounded  opera tors  on a H i lbe r t  space ~ such t h a t  A t A  k + 

A k A  l = 0 and  A j A ~  + A ~ A  t =6t~ for all  ?', k = 1, 2 . . . . .  Fol lowing H.  W e y l  ([16], page  

252)  we le t  A i = �89 (P2r + iP21) where i 2 = - 1 and  the  P i  are  self ad jo in t .  W e  no te  t h a t  the  

an t i  c o m m u t a t i o n  re la t ions  expressed in t e rms  of the  P j ' s  are  P l  2 = 1 a n d  PjPk  + P~Pj  = 0 

for all  ] :~ k. F o r  opera tors  T wi th  T 2 = 1, uni tar iness  is equ iva len t  to  self adjoin tness .  

Thus  our  p rob lem is t h a t  of f inding al l  sequences P1, P~ . . . .  of u n i t a r y  opera to rs  such t h a t  

P~ = 1 and  PiPe  + PkP~ = 0 for ~ ~: k. Given such a sequence le t  S 1 = P1 and  le t  S j  = 

i P t - l P i  for j = 2, 3 . . . . .  Then the  S t form a sequence of u n i t a r y  opera to rs  such t h a t  SjSt+ 1 = 

- S~+IS j and  SiSj+ k = Sj+eS~ for all  ~ = l ,  2 . . . .  and  al l  k = 2, 3 . . . . .  Moreover  P i = ( - i) j-1- 

(S 1S~ . . .  Sj) for  ~ = 2, 3 . . . . .  Conversely  ff S1, S~ . . . .  is a sequence of u n i t a r y  opera to rs  

sa t i s fy ing the  condi t ions  jus t  enunc ia t ed  and  we let  Ps  = ( - i f - 1  (S IS~ . . .  Sj) for ] = 2, 3 . . . .  

and  P1 = S~ then  P~ = 1 and  PiPe  + PkPi  = 0 for j ~: k. I n  o ther  words  our  p rob lem is also 

equiva len t  to  t h a t  of f inding all  sequences S 1, $2, . . .  of u n i t a r y  opera to rs  such t h a t  S~ = 1, 

Sj+IS j = - SiSi+ ~ and  S~Si+ ~ = S~+~S~ for al l  ~ = l ,  2 . . . .  and  k = 2, 3, . . . .  Le t  ~ be the  

d i rec t  p roduc t  of coun tab ly  m a n y  groups of order  two and  le t  x2~+~ denote  the  genera to r  

of the  j t h  group.  F o r  each j = 1, 2 . . . .  le t  y ~  denote  the  unique  e lement  of :~ such t h a t  

y2~(x~+~) = 1 whenever  12i - 2k + 1] * 1 and  ya,(x~,+~) = - 1 whenever  12~ - 2k + 11 = 1. 
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Let  74 denote the subgroup of :K generated by the y~j. Let  v be the multiplier on :~ • 

described above. A v representation L of ~ x ~ is uniquely determined by  its values on the 

xaj+l and the YaJ. Let $1, $2, ... be a sequence of unitary operators. I t  is easy to see tha t  

there exists a v representation L of :~ • ~ such tha t  Lxai+ 1 = Saj+l and L~2 j = Sat for all 

= 1, 2 . . . .  if and only f f the  Sj form a solution of the second reformulation of our problem. 

Thus the problem of finding all sets of operators satisfying the "anti  commutat ion relations" 

is equivalent to the problem of finding all v representations of the discrete group ~( x ~ .  

Since this representation problem is a special case of tha t  considered in example 2 

it involves the consideration of non transitive quasi orbits and hence is only par t ly  solved 

by the theory of the preceding sections. A partial  solution going beyond tha t  provided by 

our theory has been sketched in a recent note of Ghrding and Wightman [6]. We hope 

tha t  our projected investigation of the non transitive case will yield general results whose 

application to the case at hand will include the results of [6]. We remark that  example 2 

was suggested to us by  our study of [6]. 

Example 3. Let  (~ be the group of all 3 x 3 unimodular real matrices which are zero 

above the main diagonal. Let :~ be the normal subgroup of (~ consisting of all members 

which are one on the main diagonal. Let  ~ be the subgroup of (~ consisting of all 

members which are zero off the main diagonal. We shall determine the (ordinary) irreducible 

representations of ~ and then those of (~. (~ is clearly a semi direct product of :~ and ~ .  Let  

(a,  b, c) denote the matr ix  1 and let (2,/~, v) denote the matr ix  # 0 . Then 

e 0 v  

every member  of (~ is uniquely of the form (a, b, c~ (2,/u, v) where a, b, c, 2,/~, and 

are real numbers such tha t  2#v = 1. We compute that  

(al,  bl,Cl) (aa, ba, ca) = (a 1 + a 2 + clb a, bl + b a, el + ca~, 

tha t  (21,Jul ~1) (22,/f~2,~'2) = (~l/~2,/A1/Aa,~:lY2) 

and tha t  (2,/~,v)(a,b,c) (2,/u,v)-l=(~a,~b,V-c~/�9 
\ /~ A /A / 

To determine the irreducible representations of ~ we note tha t  the center E of :~ is the set 

of all ( a ,0 ,0 )  and take this normal subgroup of :~ as the :K of Theorem 8.4. The quotient 

group ~ / ~  acts trivially on E and hence on 5. Thus the orbits in ~ are the points of 

and the groups holding the points of ~ fixed all coincide with (~. Now the points of ~ are 

in one-to-one correspondence with the real numbers in such a fashion tha t  the real number  

r corresponds to the representation (a ,0 ,0)-->exp (Jar). Le t  ]~(a,b,c)=exp(ir(a-bc)) .  

We compute tha t  /, ((al, bl, cl) (a~, ba, ca)) = exp ( - irb 1 ca) h ((al, b~, c~))/, ((a a, b a, c~) ). Thus 
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[r defines a one dimensional projective representation of Y~, with multiplier exp( - i rb lc2)  , 

which reduces on ~ to the representation defined by r. Hence the most general irreducible 

representation of 3( is obtained by choosing an r and an irreducible projective representation 

V of :~ /Z  whose multiplier is exp (irblc2) and then forming ]r V. When r = 0 we get simply 

the one dimensional representations of :K defined by the one dimensional representations 

of the two dimensional vector group :K/E; that  is the representations W s'* where W~'~,b,c> 

is multiplication by exp(isb + itc). When r ~= 0 the multiplier exp (irblc2) of ~ / ' Z  is of the 

form discussed under Example 1. Thus there is a unique irreducible projective representa- 

tion V r of ~ / Z  with the multiplier in question and hence a unique irreducible representa- 

tion W r = ]r V r of :7( associated with the orbit of (a, 0, 0)--> exp (far). In  all then, we have one 

two parameter family s,t---> W s't of one dimensional representations of ~ and one discon- 

nected one parameter family r--> W ~ (r :~ 0) of infinite dimensional irreducible representa- 

tions of ~ .  I t  follows easily that  :K has a smooth type I dual. 

To determine the irreducible representations of (~ we shall first determine the orbits 

in ~ under the action of ~.  W ~'t ( ( S ;  t v c i t  ~,~,~)<~,b,c,>~,.~,~ , is multiplication by exp i b + ~ - / !  

and hence is equal to ,, <~,b,o> �9 Thus the one dimensional representations fall into four 

orbits as follows. 0~ contains all W ~'t with s ~= 0 and t ~= 0. 02 contains all W ~'~ with s =~ 0, 03 

contains all W ~ with t=~0, 04 contains W ~176 only. Now W~,,.~><~,0,0>(~,,,~)-,= W~a/~,o,0> 

which is multiplication by exp (i (r/2) ar). Hence W ~ uz~ r/z (~,~,~)<a,b,~,>(~.,.,~)-, = ,, <~ ~ ~> t h u s  all in- 

finite dimensional irreducible representations of ~ lie in a single orbit 0~. The subgroup 

of ~ leaving W L1 invariant is the set of all (2,/~,v) with ~ =/ t  = v and ~3 = 1; that  is it con- 

sists of the identity alone. There is then a single irreducible representation associated with 

01. I t  is infinite dimensional and is the representation of (~ induced by any one dimensional 

representation W s't of :K with s ~ 0 and t ~- 0. The subgroup O2 of ]D leaving W 1'~ invariant 

is the set of all (z,/~,0 with/~ = 2  and 2 /~  = 1; that  is, the set of all (2,2,1/22) and is iso- 

morphic to the multiplicative group of all non zero real numbers. The possible extensions 

of W ~' t to ~ 2  are in an obvious one-to-one correspondence with the one dimensional 

representations of ~ and hence with the non zero real numbers. The irreducible representa- 

tions of (~ associated with 0,  are the irreducible representations induced by these exten- 

sions. They form a family of infinite dimensional representations parameterized by the non 

zero real numbers. The ::'reducible representations of (~ associated with 03 are constructed 

analogously; the only difference being that ~ is replaced by the group ~3 of all (1/22,2,2). 

_Again we get a family of infinite dimensional representations parameterized by the non zero 

real numbers. The irreducible representations of (~ associated with 0~ are in an obvious one- 

to-one correspondence with the irreducible representations of the abelian group ~.  They are 
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all one dimensional and may be parameterized by the pairs of non zero real numbers. The 

subgroup ~ r  of ~ leaving W 1 invariant is the set of all (2, 1/22, 2). I t  is not hard to show 

that this group has no non trivial multipliers and hence that  W 1 may be extended to be a rep- 

resentation of :KO~r The possible extensions correspond to the irreducible representations of 

~ .  As with 02 and 03 we get a family of infinite dimensional irreducible representations 

parameterized by the non zero real numbers. This time however the inducing representa- 

tions are themselves infinite dimensional. In all we have one isolated infinite dimensional 

representation, three families of infinite dimensional representations, each parameterized 

by the non zero real numbers and one family of one dimensional representations para- 

meterized by the pairs of non zero real numbers. 

E x a m p l e  4. Let 74 be a finite group and let • be group of automorphisms of ~4. Let 

be the group of all functions / from the integers to 74. Equipped with the direct product 

topology :~ becomes a compact group. For each integer n o and each a E.~ let ~, n o denote 

the automorphism/-->/ '  where / '  (n) = a (/(n + no) ). The set of all of these automorphisms 

is a group a isomorphic to the direct product of A with the additive group of all integers. 

Let ~ denote that  semi direct product of the compact group :K with the discrete group a 

in which the homomorphism from a into the group of automorphisms of :K is the natural 

one. If n 1 and n 2 are integers with n I < n 2 then the set of all / in J( with / (n) = e for n 1 ~ n ~< n~ 

is a normal subgroup whose quotient is naturally isomorphic to the direct product of a 

finite number of replicas of 74. The representations of this quotient group define representa- 

tions of ~ and it follows easily from the theory of compact groups that every irreducible 

representation of :~ may be so obtained (with varying n 1 and n 2 of course). Thus the irredu- 

cible representations of :~ may be put in a natural one-to-one correspondence with those 

functions M ,  n - ->M n from the integers to the irreducible representations of :H such that  

M n is the one dimensional identity for all but finitely many values of n. I t  is clear that  the 

orbits of ~ under a are all infinite except for the one containing the one dimensional iden- 

tity representation. Thus all irreducible representations of (~, except those trivially derived 

from representations of (~/:K - a ,  are infinite dimensional. The subgroup of a taking the 

representation defined by n---~M '~ into one equivalent to itself is the set of all ~, 0 such 

that  a takes M n into a representation equivalent to itself for all n. Hence to determine 

the irreducible representations of (~ it suffices to determine the irreducible representations 

of the finite group :H, study the way in which the automorphisms in A act on subsets of 

these representations and determine the a representations of certain subgroups of the 

finite group ~4 for certain values of a. If we take ~ to be A6, the alternating group on six 

elements, and ~4 to be the group of all automorphisms of ~4 it is easy to see that all of these 

things may be done quite explicitly and that  non trivial a's arise. We shall content ourselves 
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here with an indication of the proof that  non trivial a ' s  arise. Let $6 denote the symmetric 

group on six elements so tha t  As is a normal subgroup of index two of ts .  As shown on 

page 209 of [2] the automorphisms of Ms induced by the inner automorphisms of ts  form a 

normal subgroup Ms of index two in the group M of all automorphisms. Now it follows 

from the character table on page 266 of [8] tha t  amongst the irreducible representations 

of $6 there are (to within equivalence) just two of dimension ten and it is easy to see tha t  

these remain irreducible and become equivalent when restricted to As. Let  W denote 

the representation of :K defined by the function n--+M '~ where M ~ is the ten dimensional 

irreducible representation just described and for j ~: 0, M j is the one dimensional identi ty 

representation. The subgroup of a taking W into a representation equivalent to itself is 

the group of all ~, 0 and ~ is restricted to the subgroup of M taking M ~ into something equi- 

valent to itself. Moreover inspection of the character table of M s (easily derived from tha t  

of Se) shows that  this later subgroup is the whole of M. The representations of (~ associated 

with the orbit of W are thus in a natural  one-to-one correspondence with the a representa- 

tions of M for some a. I f  this a were trivial there would exist an ordinary representation 

of J(M extending W. Hence there would exist an ordinary representation of MsM extending 

M ~ Let L be any such representation of MsM. By the character table for t s  and the defini- 

tion of M ~ we know tha t  L has exactly two inequivalent extensions to the normal subgroup 

of M defined by the inner automorphism of ts .  Moreover from the proof given in [2] tha t  

there exist automorphisms of Ms other than those in Ms it is easy to see tha t  these auto- 

morphisms interchange the two extensions of L to Ms. I t  follows a t  once from the general 

theory tha t  there can be no extension of L to M and hence no extension of W to ~M.  

Thus a cannot be trivial. Thus when ~ is non commutat ive non trivial multipliers can occur 

even if (~ is a semi direct product of ~ and (~//~. 
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