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1. Le t  h denote  the  space of complex-va lued  square  in tegrab le  funct ions  u (x) def ined 

for x rea l  which are  zero for x negat ive .  Le t  H denote  the  space of funct ions  U (z) which 

are  Four i e r  t rans forms  of funct ions  in h. The space H is charac te r ized  b y  the  one-sided 

P A L V . Y - W I ~ . ~  TH~.OR~M.(2) Every /unction U in H can be extended as regular 

analytic to the upper hal/-plane, so that 

~ U* (i • + a) U (i T + a) d a <~ const,  
- - o 0  

/or all ~ positive. Conversely, the restriction to the real axis o /any  such/unction belongs to H. 

F o r  f ixed % U(iv  +a) is t he  Four i e r  t r ans fo rm of e-~u(x);  since u(x) vanishes  for 

nega t ive  x, t he  Lg. no rm of e -x~ u (x) decreases wi th  increasing T. So b y  Pa r seva l ' s  fo rmula  

we have  this  

COROLLARY. I /  U lies in H, its L~ norm along the line I m  z = v, v >1 O, decreases with 

increasing T. 

The or thogona l  complement  of h wi th  respect  to  the  space of square  in tegrab le  func- 

t ions  on the  ent i re  rea l  axis  is the  space of square  in tegrab le  funct ions  which vanish  

for x posi t ive.  The  Four i e r  t r ans fo rms  of these  funct ions  form the  o r thogona l  comple-  

m e n t  H ~ of H.  F u n c t i o n s  in  H ~ can  be con t inued  a n a l y t i c a l l y  in to  the  lower hal fp lane .  

Also, i t  is easy  to  show t h a t  H • is t he  con juga te  of H:  

H • = H* 

(1) Work performed at the Atomic Energy Commission Computing and Applied Mathematics 
Center, Institute of Mathematical Sciences, New York University, under Contract Number AT (30. 
1)-1480. Reproduction in whole or in part permitted for any purpose of the U.S. Government. 

(~) We denote the conjugate of a complex number by *; in section 4 where we deal with matrix 
valued functions the * denotes the adjoint. 
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We denote by  r any  subspace of h which is invariant  under right translation. I.e., 

whenever g (x) belongs to r, we require tha t  g (x - s )  should belong to r for all positive s. 

A subspace will be called left translation invariant  and denoted by  I if, whenever g(x) 

belongs to it, the projection of g(x +s) into h (i.e., its restriction to the positive axis) 

also belongs to l for all positive values of s. 

The closure of translation invariant  spaces is translation invariant. 

The orthogonal complement with respect to h of an r-space is an / -space ,  and vice 

versa. 

The Fourier transform of an r-space will be denoted by  R. Such an R-space can be 

characterized intrinsically as a subspace of H such tha t  etSZR is contained in R for all 

positive s. 

In  this paper  we s tudy R-spaces of vector.valued functions, i.e., functions whose values 

lie in a finite-dimensional Hilbert  space S over the complex numbers. When we wish to 

make a distinction, we shall denote the H-space of functions with values lying in S by  H s. 

Our main result is a unique representation for such spaces: 

REPRESE~TATIOH THEOREM. Every closed R-space is of the form FHr,  where F(z) 

is an operator-valued function of z mapping a Hilbert space T of possibly lower dimension 

than S into S. F(z) is regular in the upper half.plane, HF(z)ll ~ 1 there, and/or z real F is an 

isometry. This representation of R is unique, save/or a multiplication of F on the right by a 

constant unitary matrix. 

In  the scalar case, such a representation of the Fourier transform of an r-space spanned 

by  the translates of a single function has been given by  Karhunen in [5]. A similar repre- 

sentation theorem for the Fourier transform of an r-space spanned by  the translates of a 

finite number  of functions defined on the positive integers has been given by  Beurling in 

[1]. So in the scalar ease m y  representation theorem is a slight extension of their results. 

Beurling and Karhunen use a function-theoretic method, relying on the factorization 

due to Riesz, Herglotz and Nevanlinna of functions, analytic in the upper half-plane 

and bounded in a certain integral sense, into an inner and outer factor. The outer factor 

is the exponential of a Poisson integral of an absolutely continuous measure, the inner 

factor is the exponential of a Poisson integral with respect to a singular measure times 

a Blaschke product. My proof employs only Hilbert  space methods, specifically the 

projection of the exponential function into r. The significance of this projection has already 

been pointed out by  Beurling in [1]. 

In  Section 3 we use the representation theorem to reduce problems of division in the 

ring of bounded analytic functions to problems in the Boolean algebra of r-spaces. In  
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particular we are able to factor functions into inner and outer factors. This decomposition 

is used to give a new proof of the Titchmarsh convolution theorem. 

The proof of the representation theorem in the scalar case is given in Section 2, for the 

vector-valued case in Section 4. 

Many problems of analysis are about  translation invariant  spaces, such as occur in 

the theory of approximation by  exponentials, in Wiener's theory of Tauberian theorems, 

and in many  others. A representation theorem such as the one given here is often useful 

in such problems, see e.g. [9]. My own interest in the subject came from the s tudy of 

solutions of partial  differential equations in a half-cylinder which, as explained in [8], 

can be regarded as an /-space of functions whose values lie in an infinite-dimensional 

space. Whether  the theory given in the following pages applies to tha t  situation and just  

how useful it might  be is still to be seen. 

2 .1 .  In  this section we t reat  the scalar case for which the representation theorem 

a s s e r t s :  

SCALAR REPRESENTATION THEOREM. Every nonempty closed R-space i8 o/the 

/orm FH, where F(z) is a regular analytic /unction in the upper hal]-plane, IF(z)]  4 1 

there. For z real, IF(x)  l = 1. F is uniquely determined by R, save/or multiplication by a 

complex constant o/modulus 1. 

Let  l and r be a pair of closed translation invariant  subspaces of h which ar  e orthogonal 

complements of each other with respect to h. Let  ~ be any  complex number  in the upper  

half-plane; the function defined as e i~x for x positive, zero for x negative, belongs then 

to h. Decompose this function into components by  orthogonal projection into l and r: 

ei~=a~(x)d-b~(x), 0 < x ,  (2.1) 

a~ in l, ba in r. Take the complex conjugate of (2.1), multiply both sides by  b,(x - s), where 

/~ is any  complex number  in the upper half-plane and s is non-negative, and integrate with 

respect to x from 0 to c~: 

f b # ( x - s )  e-'~*Xdx = f b ,  (x-s)a~ (x) d s+ fb~(x - s )b~ (x )  dx. (2.2) 
0 0 0 

Denote by  B~(z) the Fourier transform of b~(x). The left side of (2.2) is equal t(~ 

e-~*~Bl,(--2*). On the right, the first term vanishes since a~(x) belongs to 1 while b~(x - s) 

belongs to r. We transform the second term by  Parseval 's  theorem, (1) using the  fact that. 

the Fourier transform of b~(x - s )  is B~(z)e i~. So we get from (2.2) 

(1) dz denotes dz/2r~. 
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e -'a*8 B~, ( - 2*) = f B~ (z) Bt, (z) e '~" dz, 0 < s. (2.3) 

Take the complex conjugate of both sides, interchange the role of 2 and # and replace a 

by - s .  We get 

e - U ' ~ B ~ ( - # * ) = f  B~(z)B~,(z)e~dz,  s<.O. (2.3') 

Putt ing s = 0 in (2.3), (2.3') shows that  B . ( - 2 * )  and B ~ ( - # * )  are equal; we denote their 

common value by Ba~: 

f B~ (z) B~, (z) d z =  Ba~,= B~ ( -  ~u*)= B~ ( - 2 " ) .  (2.4) 

Equations (2.3) and (2.3') give the Fourier transform of B~ (z) B .  (z) in the ranges s/> 0 

and s ~ 0 respectively. Therefore, the value of B~ (z) B .  (z) for z real can be found by Fourier 

inversion: 

B~ (z) B~, (z) = B~, f e -'~'s-~zs d s + Ba. f e -'a*s-'zs d s 
- r  0 

i i } i Ba. (2* - ~ )  (2.5) 
= Ba. ~u +---z - 2* + z = (/~ + z) (2* + z)" 

Set /~--2 in (2.4); we get 

= r 

which, by Parseval 's formula, is equal to 

/ jb ix)j ax. 
0 

In  particular if Bn  = 0 it follows that  ba(x)~ 0 and therefore, in view of (2.1), tha t  e ~x is 

orthogonal to r. We have assumed that  r contains non-zero elements; the Fourier transform 

of one of these cannot vanish for all z in the upper half-plane; say it does not vanish at 

z = 2. Then B a  ~= 0. Set/~ equal to this 2 in (2.5); we get, for real z, 

2 Im 2 Bn 
B~ (z)Ba(z)= 12+zl2 

from which we deduce that  

Ba (z) = ~'(z) G, (2.6) 
A+z  

where G = (2 Im 2 B~a) �89 and F(z) has modulus 1. 
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Equation (2.6) provides an extension of $'(z) into the upper half-plane, as a regular 

analytic function. We claim that F(z) ,  thus extended, is a bounded/unct ion.  For let w be 

any point in the upper half plane. Then we have (omitting the subscript ~) a Poisson for- 

mula for w B ( w ) :  

- o o  - o o  

oo 

=s b' 
w j  

= w  z B ( z ) P ( z - R e w ) d z .  

The first equality is obtained by integrating by parts, the second by noting that  the suppor~ 

of b' is contained in (O, cr the third by  Parseval's formula, noting that  the Fourier trans- 

form of b' is - i z  B(z), and denoting the Fourier transform of e -IzlImw by P(z) .  Now 

P(z) = 2 I m w / ( z  2 + (Imw) ~) is positive and its integral is equal to 1. On the other hand, 

according to (2.6), z B ( z )  is bounded on the real axis. Therefore, from the last integral 

formula it follows that  w B ( w ) - - a n d  thereby F(w)-- is  bounded in the upper halfplane. 

Hence by a standard extension of the maximum principle, IF(z)] assumes its maximum 

on the real axis where it has modulus 1. 

Multiply both sides of (2.5) by Ba(z); using formula (2.6) for Ba, the above formula 

for Bag and the relation Fa(z)F~ (z) = 1, we obtain the following expression for B,: 

F* B,  (z) = i F (z) ( - #*) (2.7) 

for z real. Since both sides are regular analytic in the upper halp-plane, (2.7) holds for all z 

in the upper half-plane as well. 

This completes the construction of the function F. Formula (2.7) shows as well tha t  

F (z) is uniquely determined up to a constant factor of modulus 1. We turn now to showing 

that  the space R is equal to F H .  

Denote the space F H  by R'.  Since [ F (z) ] ~< 1 in the upper half-plane, we conclude 

by the Paley-Wiener theorem that  R'  is a subspace of H. R '  is the Fourier transform 

of a right translation invariant subspace of h, since ef=R ' = em F H  = .FetCH c F H  = R '  

for s positive. Finally, since ] F (z) ] = 1 on the real axis, R' is closed. 

As before, we project e ~"x into r'. 
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r r 

e ~z = a~, (x) + b t, (x). 

Take the Fourier transform of both sides: 

i t r = A .  (z) + B;  (z), (2.8) 
/~+z 

t 

where B .  lies in R', A'  in L ,  the orthogonal complement of R' with respect to H. 

The spaces H and H* are orthogonal complements of each other in L 2. Multiplication 

by F is a unitary mapping of L~ into itseff and therefore complements are preserved. 

Hence the orthogonal complement in L2 of R' = F H  is F I t * .  So A,  and B '  ' /~ are of the form 

At, = F B '  , -- .F E,  D r i l l * ,  E E H.  (2.9) 

Substitute (2.9) into (2.8) and multiply it by F* (z). Using the facts that,  for z real, 

.F*(z )F(z )  = 1 and z =z* we get 

i F* (z*) 
D (z) + z (z). (2.10) 

ke+z 

We are now in a position to determine D and E explicitly: 

.F* (z*) - F* ( - ~ * )  
D = ~  

/~+z (2.11) 
.F* ( - ~ * )  

To verify these expressions for D and E, we have to show that  they belong to H* and H 

respectively. Clearly, D (z) is regular in the lower half-plane and its square integral along 

any  line parallel to the real axis is uniformly bounded. Therefore, by the Paley-Wiener 

theorem, D belongs to H*. E, on the other hand, clearly belongs to H. 

From (2.10) we get 
, F *  B ,  (z) = F E  = i F (z) ( - #*) 

t t + z  

Comparing this with (2.7) we conclude that  B'~(z) and B~(z) are identical, i.e., tha t  the 

projections of e t"x into r and r '  are identical. Since projections are linear and bounded, 

it follows that  also all linear combinations of exponential functions and their closures 

have identical projections. Since the set of all functions e ~u~ spans h, it follows that  r and 

r' coincide. 

Observe the curious skew symmetry in the dependence of B on # and z displayed by  

formula (2.7). 
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2.2. Denote by  d~ the distance of the normalized exponential function (2Im2)�89 ~z 

from the space l. From (2.4) and (2.7) we have 

d~=2Im2flb~(x)l~dx=2Im2flB~(z)l~dz=lF(-2*)l 2. (2.12) 
0 - - r  

This formula is already contained in Beurling, 1.c.; a special case of it goes back to Mfintz 

[10]. Take namely l as the space spanned by  the set of exponentials {e~Jx}. R, the Fourier 

transform of its orthogonal complement, has the form FH, where F is the Blasehi~e product 

F ( z ) = V r  z+2 *  
"~z+ 2j" 

To show this we note: an element of h is orthogonal to l if and only if it is orthogonal to 

every exponential function e% x, which means tha t  its Fourier transform vanishes a t  

z = - 27. So R consists of those elements of H which vanish a t  z = - 2", ] = 1, 2 . . . . .  

Clearly, any function of the form FH1, H 1 in H and F the above Blaschke product, does 

vanish a t  z = - 2 * .  Conversely, it is well known tha t  any  function in H which vanishes 

a t  z = - 2 "  can be factorized as FH1, H 1 in H. Therefore, according to formula (2.12) 

the distance d of the normalized exponential function eiaX(2Im2) �89 to l is 

2s - 2* 

For a finite set of exponentials, this formula was derived by  Miintz by  representing the 

distance as the ratio of two Gram determinants and evaluating the determinants explicitly. 

For an infinite set of exponentials the formula was derived by  Miintz through a passage 

to the limit, leading to his celebrated criterion for completeness: 

A set o/ exponentials is complete i/ and only i/ the Blaschke product /ormed o/ them 

diverges. 

Miintz considered real exponentials only; the analogous t rea tment  of complex expo- 

nentials is due to Szs [15]. 

3.1. In  this section F,  subscripted possibly by  some index, will denote a regular analytic 

function in the upper half-plane, I F(z) l ~< 1 there, and I F(z) l = 1 for z real. I f  two such 

functions differ by  a constant multiple, they shall be regarded as equivalent. The functions 

F form a semigroup; we shall now discuss, with the aid of the representation theorem, 

division in this semigroup and subsequently in the ring of all bounded analytic functions. 

F 1 is divisible by  F~ if F 1 = F~ Fa. 
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THEORV.M 3.1, F 1 is divisible by F~ i / and  only i / F 1 H  is contained in F2H. 

Proo/. Since Fal l  c H, F I H  = F2FsH ~ F2H. Conversely, assume tha t  F1H c F2H , 

i.e., tha t  to any  H1 in H there exists an H~ in H such tha t  F I H  1 = F2H 2. This relation is 

valid for z real and therefore for z complex and can be expressed as follows: Multiplication 

by  F~ 1 F 1 maps H into itself. I t  follows then tha t  multiplication by  any  power of F ~ I F i  

maps H into H. Since the L 2 norm on the real axis is preserved in this multiplication, it 

follows from the corollary of the Paley-Wiener theorem tha t  it cannot be increased on 

any  line parallel to the real axis. Clearly, this is the case if and only if F ~ I F  has modulus 

~< 1, i.e., belongs to the semigroup. 

The intersection, linear combination and closure of translation invariant  spaces is 

likewise translation invariant. Given F~ and F 2 it follows from the representation theorem 

tha t  the spaces F I H  N F2H and F 1 H O F ~ H  are of the form Fal l  and F4H. We shall 

denote F 3 by  (F1, $2} and F 4 by  (F1, F2). An immediate consequence of the divisibility 

criterion in Theorem 3.1 is 

TH~ORI~M 3.2. (F1, F2} is the least common multiple, (F1, F2) the greatest common 

divisor o/ F 1 and F 2. 

I f  (F1, F2) = l, F 1 and /~2 a r e  called relatively prime. We shall show now tha t  the 

relation between the greatest common divisor and the least common multiple is the usual 

o n e :  

THEOREM 3.3. (F 1, F2){F1, F2} = -~1 F2" 

I t  is easy to show tha t  the above proposition is equivalent with the following one: 

I /  F 1 and F 2 are relatively prime and i / F  1 divides F F2, then F 1 divides F. This may  

be proved as follows: 

I f  F 1 divides F 2 F, then according to Theorem 3.1 

F F2H c F1H. 

Since F I F H  c F1H , we have also 

F F 2 H O F I F H C  F1H. (3.1) 

The left side is equal to F ( F 2 H O F 1 H ) ;  since we have assumed tha t  F 1 and F2 are rela- 

t ively prime it follows tha t  F 2 H O F 1 H  is a dense subset of H. Therefore the closure of 

the space on the left in (3.1) is F H .  Since the space on the right is closed, we have F H  c 

F1H , i.e., F 1 divides F. 
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An immediate corollary of Theorem 3.3 is tha t  if 

F3F4=F,F~, 

then F 4 = .~1.~2, 

where /~1 divides F1, /~2 divides z#' 2. 

I f  F 1 and F~ are relatively prime, then the linear combination of R 1 = F I H  and 

R 2 = F~H is dense in H. This is equivalent with the assertion tha t  L 1 and L 2, the orthogonal 

complemen t  of R 1 and R e respectively have only zero in common. The orthogonal 

complement of L I O L  2 is R 1 N R1 which, according to Theorem 3.3, is F1F2H. Using 

formula (2.12) for the distance of normalized exponentials from l-spaces we have 

THEO REM 3.4. Let 11 and l~ denote two left translation invariant spaces whose intersection 

is the zero/unction. Then the distance o/(2ImA)�89 t~x/tom 11 @)4 is the Troduct o/its distances 

/rom l I and/rom 4. 

There seems to be no obvious geometric interpretation of this result. 

We turn now to the ring of analytic functions bounded in the upper half-plane. We 

shall denote elements of this ring by  C, possibly subscribed by  some index. 

I t  follows from the Paley-Wiener theorem tha t  for any  function C, CH c H. Further- 

more since e~SHc H, also e ~ ' C H c  CH for s > 0, i.e., CH is the Fourier transform of a 

right invariant  subspace of h. Therefore the closure of CH is an R-space, and so can be 

represented as FH.  So by  construction C H =  FH, i.e., multiplication by  F-1C maps H 

into H; from this it follows, just as in the proof of Theorem 3.1, tha t  F-1C = G is regular 

and bounded in the upper half-plane. So we have shown tha t  every bounded analytic 

function has a unique factorization 

C = F G .  

In  the terminology of Beurling, F is the inner factor, G the outer factor of C. I t  follows 

from our construction tha t  if G is an outer factor, then GH is a dense subspace of H. 

THEOI~EM 3.5. The inner/actor o/CIC 2 i8 the product o/the inner/actors o/C1 and o/ C2. 

Proo/. We have to show tha t  C1C2H = FIF2H. Clearly, C1C~H = F1F2G, G~H is a 

subspace of F1F2H. Since G 1 and G2H are outer factors, multiplication by  t h e m - - a n d  

therefore by  their product---maps H into a dense subset of H. 

I t  follows from Theorem 3.5 tha t  divisibility of two bounded analytic functions is 

equivalent to the divisibility of their inner and outer factors. Concerning divisibility 

by  a n outer factor we have 

THEOREm 3.6. C is divisible by G i /and only i/ CG -1 is bounded on the real axis. 
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Proo/. We have to  show t h a t  if CG -1 is bounded on the real axis, it is bounded in the 

upper  half-plane. First  we note  t h a t  multiplication by  C G  -1 maps G H  into H.  Secondly, 

since CG -1 is bounded  on the real axis, this operat ion is bounded and so can be extended 

to the closure of GH. Third, since G is an  outer  factor, the  closure of G H  is H.  Therefore 

we have the result: Multiplication by CG -4 maps H into H.  From this the boundedness of 

C G  -1 in the upper  half-plane can be deduced as in the proof of Theorem 3.1. 

3.2. T h e  C o n v o l u t i o n  T h e o r e m .  Let  c 1 (x) and c~ (x) be a pair  of functions which 

are zero for x negative, in L 1 over the positive reals. Denote  their convolut ion by  c (x): 

C = C 1 * C2 = f C 1 (y) c 2 ( x "  y) d y. (3.2) 

Let  dl, d 2 and d be largest numbers  such tha t  the supports  of c 1 (x), c2 (x), c (x) are contained 

in x ~ di, d2, d respectively. Clearly, d ~> d 1 + d2. W h a t  is much  less obvious is the  

C O N V O L U T I O N  T H E O R E M  OF T I T C H M A R S H :  

d = d~ + d2. 

Proo]. Denote  the Fourier  t ransforms of c 1, c~, c by  C1, C2, C. Taking the  Fourier  

t ransform of (3.2) we conclude 
C = C1C 2. (3.3) 

Since c 1 and  c 2 are in L 1 over the positive reals, C1, C2, and C are bounded analyt ic  functions 

in the upper  half-plane. Denote  their inner factors by  F1, F 2 and F.  According to Theorem 

(3.5) it follows from (3.3) t ha t  
F = F 1F  2. (3.4) 

Since the support  of c is contained in x 7> d, it follows tha t  e ~d~ divides C. Since e ~d~ is an  

inner factor,  according to  Theorem 3.5, it divides the inner fac tor  of C: 

F = e t d z F 3  . 

Combining this with (3.4) we get  
e~dzFa = F 1 F  2. 

According to the corollary of Theorem 3.3, F 4 being taken  as e ~d~, i t  follows tha t  

where -Pl divides F1,/~2 divides F 2. We use now the 

THEOREM: The only ]actorization o] e ~z in  the ring o/bounded analytic ]unctions is the 

trivial one 
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Zl+Z =a, 

) 'or the sake of completeness we include a proof of this well-known result. Denote by 

h(x,y) the function - log [P~(z ) ] .  Since both I~1] and [P~] are ~< 1, it follows from the 

above factorization tha t  
O < h(x,y) <~ dy, O < y. 

I.e., h is a positive harmonic function in the upper half-plane which vanishes at  the 

boundary.  We shall show now tha t  the only such functions are constant multiples of y. We 

continue h into the lower half by  reflection, and represent h (x,y)by the Poisson integral 

along a circle of radius R around the origin: 

h (x, y) = f  P(x, y, R, O) hdO; 
0 

P here is the difference between the values of the Poisson kernel a t  R, 0 and R, - 0 .  For 

y positive, P is positive and for large R it  is asymptotical ly equal to (2y sin O)/R. Since 

the integrand in the above representation is positive, it follows tha t  h(x,y)/h(x',y') is 

asymptot ica l ly- -and  thus actual ly--equal  to y/y'. 

We conclude tha t  ~1 = e~'~, 2~ = e ~ .  Since P l  and P~ divide F 1 and F2, they also 

divide C 1 and C 2. But  then according to the Paley-Wiener theorem (the L 1 variety) it 

follows tha t  the supports of c 1 and c 2 are contained in x >t ~1 and x ~> ~ .  This shows tha t  

dl >~ a~l, d~ > /~ ,  and so d 1 § d~/> ~1 § ~2 = d. Combined with the trivial inequality 

d ~> d I + d~, this yields the desired result d = d I + d~. 

Previous proofs of the convolution theorem such as the one by  Dufresnoy [3] or Koosis 

[6], also make use of theorems on positive harmonic functions. For this reason the present 

proof cannot be called new. I t s  virtue lies in reducing the convolution theorem to the one 

about  the factorization of e ~ swiftly and painlessly. 

4. In  this section we derive the representation theorem of p. 164 for translation invariant  

spaces of functions whose values lie in a finite-dimensional Hflbert space S. 

The L~ scalar product of two such functions / and g is defined as 

c o  

f (/(x), g (x)) d x, 
0 

where (/, 9) denotes the scalar product in S. 

The spaces h, l and r and their Fourier transforms are defined analogous to their old 

definitions. 
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As before the proof proceeds by projecting e~Xu, where u is an arbitrary element of 

S, into r: 
e ~  u = a~(x) + b~(x), (4.1) 

a~ in l, b~ in r. The value of b~ (x) depends on u, and this dependence is linear; therefore we 

can write 
ba (x) = b~ (x) u, 

where now b~ (x) denotes an operator mapping S into itself. I t  is easy to show, on account 

of the finite-dimensionality of S, that  ]]ba(x)[], the operator norm of b~(x), is square inte- 

grable. 

Making this change also in the meaning of a~, (4.1) can be rewritten as 

eUX u = a~(x)u + b~(x)u. (4.1') 

Let  v denote any element of S. Take the scalar product of (4.1') with b , ( x -  s)v, s non- 

negative, and integrate with respect to x. The resulting expression is an analogue of (2.2) 

and can be transformed, by  Parseval's theorem, into 

e -'a*8 (B~ ( - 2") v, u) = f (B~ (z) v, B~ (z) u) e ~8 d z. (4.3) 

Take the complex conjugate of (4.3), interchange the role of 2 and # and of u and v and 

write - s  for s. We get the analogue of (2.3); from this and from (4.3) we can determine 

(B, (z) v, B~ (z) u) for real z by Fourier inversion: 

i (2* -/~) (B~, v, u), (4.4) (B~ (z) v, B~ (z) u) = (# + z) (A* + z) 

where Bat abbreviates B~ ( - #*). The left side of (4.4) can be written as (B~ (z) By (z) v, u); 

since (4.4) holds for all vectors u and v in S, we conclude that  

i (4* - ~) (4.5) 
B~ (z) B~ (z) = (~ + ~) (A* + z) B~ .  

Similarly, by setting s = 0 in (4.3) and transforming the right side by shifting the operator 

B~ (z) we obtain 
@o 

Ba, = f B~ (z) B,  (z) d z. (4.6) 

Setting 2 =/~ we obtain Baa = 7 B~ (z) Ba (z) d z, (4.6') 

which shows that  B~a is a symmetric, non-negative operator. 
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The rank of Bn  has some maximum p as ~t varies in the upper half-plane. For any value 

of )t, the nullspace of Bn  is then at  least (n -p) .dimensional ,  n denoting the dimension 

of S. Let  u be a vector annihilated by Bhh. According to formula (4.6'), 

o--(Bh~ u, ~)= f II Bh (~)u II ~ d ~; 

by Parseval's relation, we have then 

oo 

fllbh(x)ull~dx =0. 
0 

i.e., bh(x)u-- O. Since b~u is the projection of e~hXu into r, we have 

4.1 

Lv, M~'A 4.1. 1 / u  is annihilated by Bhh, e~hX u is orthogonal to r. 

Let g(x) be an arbitrary element of r, G(z) its Fourier transform. According to Lemma 

O = f  (g(x), e*h* u ) d x - - ( G ( - ~ * ) , u ) .  
0 

In  other words, the value of any function G in R at  - 2 "  is orthogonal to the nullspaee 

of Baa. Since the dimension of this nullspaee is at  least n - p ,  we have 

L~MMA 4.2. At every point o/the upper half.plane, the values o/the/unctions in R lie 

in a p.dimensional linear subspace of S. 

By a passage to the limit we can deduce the following 

COROLLARY. Let Gl(z ) . . . . .  Gk(z) be a finite set o/fu~w~tions in R; then/or almost all 

z on the real axis their values lie in a p.dimensional substgtce o/S.  

Denote by ~ a value where the rank of Bhh is maximal. Putting/~ = 2 in (4.5) we get 

for real z 

B~ (z) Bh (z) 2 Im {2 Baa} 
I~+~l ~ 

Denote the non-negative square root of 2Im{2Bah} by G. Since the nullspaee of Ba(z) 

includes that  of G, there exists an operator F (z) such that  

F (z) G 
Ba(z)-- 2 + z  " (4 .7)  

F(z)  is defined on the range T of G only, and is an isometry there (see e.g. [14], p. 283). 
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Formula (4.7) serves to extend F(z) as a regular analytic function to the upper  h a •  

plane. As in Section 2, it follows tha t  F(z) is bounded there. (1) 

Since, for z real, F (z) is an isometry on T, we have 

F* (z) F(z)  = I. (4.8) 

Substitute (4.7) into (4.5) and into the expression B~, = B ~ ( - # * ) .  We obtain the rela- 

t ion 
F* 

G* F* (z) B~ (z) = i G* ( - #*) , (4.9) 
# + z  

where G is regarded as mapping S into T. Since G is a non-negative hermitean operator 

G* = G does not annihilate any element of T and so can be cancelled from both sides of 

(4.9): 

. F* ( - ~*) (4.10) F* (z) B ,  (z) = 

Using (4.8), (4.10) can be written as 

F* (5) {B~(z) - i F  (~) F* ( -  ~*)/=0.  (4.1~) 
# + z  J 

Let  ul, u S . . . .  , u ,  be a set of n elements spanning S. The functions Ba (z) uj, j = 1 . . . . .  n belong 

to R and, as formula (4.7) shows, they span the range of F(z).  By our choice of 2 the range 

of F(z) has the maximal  dimension p. According to the corollary of Lemma 4.2 the range 

of B~ (z) belongs to the range of F (z). But  F* does not annihilate any element on the range 

of F; therefore the factor F* (z) can be dropped on the left in (4.11), leaving 

B~, (z) = i  F (z) F* ( - # * )  (4.12) 
# + z  

There remains to be shown tha t  the space R'  = F H  is R itself. We shall show this as 

before by  verifying tha t  the orthogonal projection of e~'~:u into r '  is b~,(x)u, or what  is the 

same, tha t  the projection of iu/(l~ + z) into R' is Bt,(z)u, with B~ given by  formula (4.12). 

This means tha t  
I -  F (z) F* ( - ~ * )  

/~+z  

is orthogonal to F H  for all u, i.e., tha t  

F* (z) I -  F (z) F*  ( - ~*) u 
i~ +z  

belongs to H~. Using (4.8), this last expression can be rewritten, for ~ real, as 

(1) One can show the boundedness of (_~ (z) v, u) for all vectors u, v in T. 
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F *  (z *) - F*  ( - ~*) 

This function can be continued as a regular analytic function into the lower half-plane and 

its square integral along any  line parallel to the real axis is uniformly bounded. Therefore, 

by the Paley-Wiener theorem, it belongs to H*. This completes the proof of the representa- 

tion theorem. 

Those parts of the division theory developed in Section 3 which do not use com- 

muta t iv i ty  remain valid in the vector-valued case. In  particular, every matrix-valued 

analytic function can be written as the product of an inner and an outer factor, in this 

order. Even further splitting of inner factors F is possible. Take the Fourier inverse r of 

R = F H  and form its orthogonal complement l. Take the set of all exponential polynomials 

contained in l and form their orthogonal complement r'. r' is a closed invariant  space, and 

it contains r. I t s  Fourier transform R'  then contains R; according to the representation 

theorem, R'  is of the form B H .  According to Theorem 3.1, F is divisible by B on the left: 

F = B E .  

In  the scalar case, B is a Blaschke product and E the exponential of the Poisson integral 

with respect to a singular measure. Jus t  how useful this factorization is in the matrix case 

remains to be seen. 

I t  is already known through the researches of Wiener [17], Wiener and Masani [18], 

and Helson and Lowdenslager [19], tha t  square matr ix  valued analytic functions whose 

determinant  does not vanish identically can be written as products of an inner and outer 

factor. 

In  [20], Potapov shows tha t  bounded analytic matrix functions with determinant  

~= 0 can be factored as a Blaschke product times a multiplicative integral of the exponen- 

tial of the Poisson kernel. 
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