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1. Introduction 

This paper introduces a theory which can be regarded as a natural completion of the 

classical theories of harmonic analysis and of almost periodic functions. This  theory is 

primarily concerned with the harmonic analysis of almost periodic sequences,(1) and it 

brings to light the phenomenon that  such almost periodic sequences necessarily have 

almost periodic frequencies. I have called this phenomenon "concordance". 

The theory is also connected with theories of summation formulae and of meromorphie 

almost periodic functions, and it explains the nature of the connexion between the prime 

numbers and the zeros of the Riemann Zeta-function. 

In  the second section various known types of Fourier reciprocities connecting fnnetions 

and sequences are presented in order to show how a theory of almost periodic sequences 

would complete the classical schemes of harmonic analysis, and analogies are used to suggest 

the form such a theory should take. 

In  the third section the choices of suitable definitions for almost periodic sequences 

are discussed. The choices of definitions made here are certainly not the only ones possible; 

they are the choices most expedient in first introducing the idea of almost periodicity 

for sequences. Detailed reasons for these choices are given in section 11 (2). 

In  the fourth to eighth sections the basic results of the theory are proved, and the 

connexions with summation formulae and meromorphic almost periodic functions are 

established. 

In the ninth section it is shown how use of the Dirac O-function gives a formal unifica- 

tion of the different types of harmonic analysis of the second section. 

In the tenth section examples are given, and in the eleventh section the results are 

discussed, together with their relationship to previous work and possible future results. 

(1) Defined in Section 8. 
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2. Fourier reciprocities and  types o f  h a r m o n i c  analysis  

The classical methods  of harmonic analysis can be associated with three types  of 

Fourier  reciprocity. Formally,  these types  are as follows. 

(A) THE FOURIER SERIES. 

I /  ~ (X) is a periodic/unction o / x  o/ period 1, then 

q~ (x) = ~ kn e ~'~n~, 
n ~ - o o  

where 
t 

-�89 

These two/ormulae can be regarded as a reciprocity between the periodic/unction q~ (x) 

and the sequence (kn). 

(B) FOURIE R INTEGRALS. 

By considering the Fourier series o/ periodic /unctions with increasing periods ([27], 1-2) 
we can derive the/ormulae 

Oo 

/(x)= f g(t)eS"'~dt 
- -  Oo 

and 
O0 

g(~)= f/(t)e-~"'~gt.  
- - o 0  

These/ormulae are a ]orm o/the Fourier integral/ormulae, and can be regarded as a 

reciprocity between the/unctions ] (x) and g (x). 

(C) THE ~INITE FOURIER SERIES. 

I /  (An) (n = 0, _+l, •  . . . .  ) is a periodic sequence o/ period N,(1) then there is a/inite 

Fourier series/or A n which can be written(s) 

N 

An= N - i  ~ Brae 2~mnl~, 
r n ~ l  

N 

where Bn = N -�89 ~ Am e -s~lmnIN. 

These two/ormulae can be regarded as a reciprocity between the two periodic sequences 

{A,) and {Bn). 

(1) That is An+N = An for all n. 
(3) Alternatively, the sums may be taken over any complete set of residues modulo 2V. 
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Thus we have three types of Fourier reciprocity: 

(A) between a function and a sequence, 

(B) between two functions, 

(C) between two sequences. 

Now the reciprocity (A) was extended by  Bohr [7] and others to give the theory of 

a lmost  periodic functions. The basic formulae of this theory give the following extension 

of the reciprocity (A). 

(A') I ] / (x )  is an almost periodic ]unction o/x ,  then it is associa2ed with a Fourier series 

] (x) ,,, ~ ca e '~nx, 
n ~ - - O 0  

T 

r - ~  2 T [( t)e-Utdt--  elsewhere. 
- T  

These two ]ormulae can be regarded as a reciprocity between the almost periodic ]unction 

] (x) and the weighted sequence(1) {en, In}. 

Thus the reciprocity (A') is tha t  extension of the reciprocity (A) which is obtained by  

allowing arbi t rary real frequencies In instead of restricting the frequencies to integral 

multiples of a fundamental  frequency, as in (A). 

We can now ask if there exist analogous extensions of the reciprocities (B) and (C). 

In  the ease of the reciprocity (]3) the frequencies involved already range over all real values, 

so there is no analogous extension. However, for later convenience, let us note the form 

of reciprocity below in which the factor 2 ~ does not occur in the exponent. 

(B') I/  F ( x ) = ( 2 ~ ) - ~  f G( t ) e~d t ,  
- ~ o  

G (x) = (2 ~)-~ ~ F (t) e - ~  dr. 

In  the case of the reciprocity (C), no extension analogous to (A') has yet  been discussed. 

The form which such an extension might be expected to take is: 

(C') I ]  {aa, a~} is, in some sense, an almost periodic weighted sequence, then there exists a 

weighted sequence {ba,/~n} such that 

then 

(1) We use the term "weighted sequence" and the notation {c n, 2n} to denote a sequence of values 
.... 1-2, t_1, 1o, 11, le . . . .  in which each 2 n is associated with a corresponding weight c n. The sequence 
{Aa} will be called the "basis" of the weighted sequence {%, An}. 
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(2~) t lim ~ _ r < ~ n <  bnd #n~ = n r-,~r r elsewhere, 

1 _,~ ~ ~bn (x=fln), 
and (2 g)�89 limor ~-~_ r<~n<Tan e n =I  0 elsewhere. 

These/ormulae could be regarded as a reciprocity between the weighted sequences (a,, o~n} 

and {b n, fin}, and it is to be expected that the weighted sequence {bn, fin} should also be almost 

periodic in some sense. 

This reciprocity includes the reciprocity (C) as the special case in which the sequences 

of weights (a n} and (bn} are periodic with period N, and the bases (~n} and ~6~} are 

equally spaced sequences given by(1) 

Further trivial examples of weighted sequences satisfying reciprocities of the form 

(C') are easily constructed from finite combinations of periodic weighted sequences.(~) For 

instance if an = 1 and {an} consists of the sequence of integers and of integral multiples of 

V-2, then the reciprocity (C') holds with {fin} the sequence of integral multiples of 2 ~ and 

of ~V-2, where bn = (2g)�89 in the former case, bn =~�89 in the latter. 

Now the 'Tarseval equations" play an important part in developing the theories of 

Fourier series and Fourier integrals. Let us therefore consider their possible forms for the 

present reciprocities. For the reciprocity (B'), if F 1 (x), G l(x) and F 2 (x), G~ (x) are two pairs 

of functions, each connected by the reciprocity, then various forms of the Parseval equations 

are 

p~ -oo 

f F I (x)~2(x)d~= f G I(x) G 2 ( - ~ )  dx, 

f P1 (x) G 2 (x) d x = ~ lv~ (x) G 1 (x) d x, 

and other obvious variations of these. 

Similarly if /1 (X) and /~(x) are two almost periodic functions as in the reciprocity 

(A'), and if their Fourier series are 

(1) Such weighimd sequences will be said to be periodic. 
(~) In the same way finite combinations of periodic functions, such as sin x + sinxV2, are used to 

introduce almost periodic functions. Cf. [2], ix. 
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r et'~nX, ~ dn elt~nX 

respectively, then the usual Parseval equations ([6], 60-67) are 

T 

- T  

and 

T 

lim 1 f ] l ( t )  f~ ( t )d t=  ~ c~dn. 
r- -~  2 T ,~mf-,Un 

Another result which could also be described as a Parseval equation in this case is(1) 

cn/3 (2~) = ~ dn/1 (~un). 

For the conjectured reciprocity (C') we have, formally, 

lim 1 [2 
-- T<~cn <: T 

1 1 
= ( 2  ~7"~) ~ T...~o~ 2 - - T l i m  _ T<ccn<~ T dn U....~.~]Jm ~ -u <~#m <u bme ~#m~n 

1 1 
= (2 ~) ~ lim ~ ~ bm lim 2--~ ~ dn e '#'~n 

U....~r U -U<flm<U T. .~ ,Q -T<~n<T 

=l im _11 ~ i bml2. 
v-~ 2 U-v<#m<v 

That is, we would expect a Parseval equation of the form 

1 
lira 1 ~ l a~ 13 = lim ~-~ _ r<~  < r I b~ 12" 
T..-~.~ 2 T - T<an<T T--.~.r 

Further, if {Cn, ~n}, {dn, ~n} is another pair of weighted sequences which are Fourier trans- 

forms(3) of the type (C'), then a similar formal argument leads to the Parseval equation 

s u m  

(1) I do not know of any discussion of such an equation. Formally, each side is equal to the double 

(2) By analogy with the term "Fourier transforms" as applied to functions, we also describe a 
pair of weighted sequences connected by the reciprocity (C') as Fourier transforms of each other. 
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1 1 
lira ~ am dn = lira ~ bm Cn. 
T-'->O0 ~ T-T<O~mffiOn<T T..->oo 2 T -  T<gm =~,n<T 

Now the existence of all these Parsoval equations suggests that  there may also be 

"mixed Parseval equations" involving pairs of transforms of different types. For example, 

if ~(x), {kn} are connected by the reciprocity (A), and ](x), g(x) by the reciprocity (B), 

then, formally(X), 

For a function and sequences connected by the reciprocities (A) and (C) a similar formal 

argument gives 

N -  �89 Z Bn cp (n/N) = An IOn. 
n~l n ~ - ~  

For functions and sequences connected by the reciprocities (B) and (C) it does not seem 

tha t  a direct formal argument can give a Parseval equation. Nevertheless the formula 

(el. [n],  [25]) 
Bn/(nN-�89 = ~ Ang(nN -�89 

is an extension of Poisson's summation formula, and is of the form to be expected for a 

"mired Parseval equation" for transforms of types (B) and (C). It can be deduced formally 

from Poisson's summation formula as follows. 

n ~ - - ~  m ~ - - 0 0  f ~ l  

= ~ B, ] ( N ~ + N - � 8 9  e -~"imtdt 
r m l  r n  E - o o  

- o o  

= N - *  g (mN "'mr'N 
m ~  - c o  r ~ l  

= ~. Amg(mN-�89 (2.1) 
m E - - e 0  

For functions and sequences connected by the reciprocities (B') and (C') we might 

expect a "mixed Parseval equation" or "summation formula" of the form 

bnF(/~n) = ~ anG(o~.). (2.2) 

(1) Such results have been discussed, but they were not regarded as Parseval equations. Cf. [1], 
[19]. 
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I n  this case we can no longer deduce the result from Poisson's summation formula. How- 

ever, the formula (2.2) plays an essential par t  in the present development of the theory of 

almost periodic weighted sequences, and we establish conditions for the formula i n  the 

sixth section. 

3. The definition o f  an  a lmost  periodic weighted sequence 

In  order to prove any  form of the reciprocity (C') we must  decide on a suitable defini- 

tion for almost periodicity of a weighted sequence. We begin by  using the definition of 

a uniformly almost periodic function as a guide, and then we make successive modifications 

of the definition until we arrive a t  a form of definition more suitable for discussing the 

reciprocity (C'). 

A funct ion/(x)  is said to be a uniformly almost periodic (u.a.p.) function ([6], p. 32) 

of x if 

(i) for any  given e > 0 there exists a relatively dense sot of translation numbers v = ~(e) 

for which 

I/( - / ( ' * ) l  
for all x, and 

(ii) /(x) is continuous. 

I f  we regard the weighted sequence {an, ~n} as equivalent to a function H (x) which 

takes the value an when x = an and vanishes when x is not equal to any  value of ~ ,  then 

par t  (i) of the definition of a u.a.p, function can only apply to H(x) if the ~n are equally 

spaced, and the weights a~ are the values of some u.a.p, function of x a t  the points x = ~n. 

Sequences which are almost periodic in this sense have been considered by  Walther, but  

such a definition is too restricted for our purposes.(1) 

Instead of associating the weighted sequence {an, ~,} with the function H(x), we 

associate it  with a function K (x) obtained by  choosing some suitable function k(x), 

preferably vanishing outside a finite range of values of x, and then making each ~r 

contribute a term an k (x - a.) to K (x). That  is, we put  

K ( x ) =  ~ a~k(x-an),  (3.1) 

and we use the following preliminary definition. 

DEFINITION 1. A weighted sequence {an, an} in which the o:~ are real and arranged in 

increasing order o/ magnitude is said to be uni/ormly almost periodic (u.a.p.) /or k(x) i/ the 

/unction K (x) defined by (3.1) exists/or all real x and is uni/ormly almost periodic. 

(x) [28], [29]. Wal the r ' s  def ini t ion does no t  cover  m o s t  of t he  examples  of sect ion 10. 
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I f  K (x) is to be u.a.p, then we must  chose k (x) continuous to get continuity of K (x). 

k (x)  = 

Let us take 
p + q + x  ( - p - q < . x <  - q ) ,  

p (-q<~x<~q), 

p + q - x  ( q < x < p + q ) ,  

0 elsewhere. 

(3 .2)  

That  is, the graph of k (x) is a trapezoid with the sloping sides at  • 45 ~ to the x axis, the 

height p, and the  length of the top 2 q. We then take the following special case of Defini- 

tion 1. 

DEFINITION 2. A weighted sequence {an, an} in which the an are real and arranged in 

increasing order o/ magnitude is said to be uni/ormly almost periodic/or trapezoidal/unctions 

i / the/unct ions  K (x) de/ined by (3.1) with k(x) defined by (3.2) are continuous uni/ormly 

/or all positive p and q, are uni/ormly almost periodic and have relatively dense common transla. 

tion numbers ~ = T (e) /or any e > 0 and all p, q >10. That is 

] K (x + ~) - K (x) I < e 

/or all x and all p, q >10. 

I t  is more convenient in the sequel to use an equivalent definition which is less 

direct, but  which does not depend on the somewhat arbi t rary choice of the function k(x) 

made in Definition 2. This definition is: 

DEFINITION 3. A weighted sequence {an, an} in which the an are real and arranged in 

increasing order o/magnitude and ~o = 0 is said to be uni/ormly almost periodic with respect 

to A (x) i/ the /unction defined by 

x 

�89 Z a n ( X - a n ) - f  A ( t ) d t  (x>~O), 
0<acn<x 0 

o (3.3)  

- � 8 9  Z a n ( a n - x ) +  f A ( t ) d t  (x<.O), 
X<~n<O X 

is uni/ormly almost periodic.(1) 

We now need the following lemmas in order to prove a theorem connecting Defini- 

tions 2 and 3. 

LEMI~IA a. I /  y~(X) is defined/or all real x, and the/unctions ~(x) - ~ ( x  - p )  are con" 

tinuous uni/ormly /or all p, and are uni/ormly almost periodic and have relatively dense 

Q) P u t t i n g  ~o = 0 is o n l y  a m a t t e r  o f  a r r a n g i n g  t h e  n o t a t i o n  f o r  t h e  b a s i s  c o n v e n i e n t l y .  I f  z e r o  

d o e s  n o t  o c c u r  i n  t h e  b a s i s  t h e n  w e  c a n  s t i l l  w r i t e  a~0 = 0 w i t h  a 0 = 0.  
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common translation numbers/or all p, then there exists a/unction c (x), satis/ying the/unctional 
equation 

c (x) + c (y) = c (x + y), 

such that ~p (x) - c(x) is uni/ormly almost periodic. Further, any common translation number 

belonging to �89 /or the/unctions yJ(x) - y J ( x -  p) is a translation number belonging to e/or 
(x) - c (x). 

Proo/. P u t  
T 

c(p)= T-~lim 2 ~  f (~p(t)-y)(t-p)}dt .  
- T  

The limit  exists for all p since ~ 0 ( x ) - ~ ( x - p )  is u.a.p. I t  follows b y  addit ion t h a t  

c(p)  + c(q) = c ( p  + q) (3.4) 
for all p and  q. 

Le t  ~ = T(�89 be a common t ransla t ion number  belonging to  �89 for  the  funct ions 

(x) - ~  (x - p ) .  Then  for all x and  p 

I {~  (x + 3) - ~ (x + ~ - p)}  - {~  (x)  - ~ (x - p)}  I < �89 ~. 

Put t ing  p = x we have  

{~(~ + 3) - ~ (x)}  - { ~ ( 3 )  - ~ (0)} I < �89 ~ (3 .5)  

for all x. Now the funct ion within the modulus  sign is itself a u.a.p,  funct ion of x, so its 

mean  value exists, and  is 

c (3 )  - {~(3) - ~(0)} .  

I c (3) - {~  (3) --  y~ (0)} I < �89 s,  (3 .6)  Hence by  (3.5) 

and  therefore 

Iv, (x  + 3 )  - ~ , (x)  - ~(~)1 < I {v,(x + 3 )  - v , (~)}  - { v , ( ~ ) -  v , (o)}  I + Iv,(*) - v,(o)  - * ( ~ ' ) l  < *  

by  (3.5) and  (3.6). Now by  (3.4) 

c(x  + 3) - c (~) = c (3). 

H e n c o  I {~ (x + T) - e (x  + 3)} - {~ (~) - c (~)}  I < e 

for all x and  rela t ively dense 3. T h a t  is, the funct ion ~ (x) - c  (x) satisfies the  t rans la t ion  

propert ies  in the definit ion of a u.a.p,  function. 

Since y ~ ( x ) - y ~ ( x -  p) is continuous uniformly in p, we can find an  ~ = ~  (�89 e) such 

t h a t  for all [(~ [ < 

16 - 593802. Acta mathematica. 101. I m p r i m 6  lo 18 ju in  1959. 
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[ {~  (x + 0) - ~ (x + 0 - p)}  - {~  (x) - ~ ( x -  p)}  I < �89 

for all x and p. A similar argument  then proves tha t  ~(x) -c (x)  is continuous. 

Hence ~(x) - c  (x) is u.a.p., as required. 

LEM~IA ~ (ref. [18], [20]). I/c(x) satisfies the/unctional equation c(x + y) = c(x) + c(y) 

/or all real x and y, and is continuous at some point, then there exists a constan t C/or which 

c ( x )  = O x .  

We can now deduce the following result: 

Tttv.ORV.M 1. I/the weighted sequence {an, ~}  is uni/ormly almost periodic/or trapezoidal 

/unctions then there exist constants A, B/or which it is uni/ormly almost periodic with respect 

to the/unction A x + B. 

Proo/. Consider the function defined by 

In  the function 

�89 ~ an(x-an) (x>0) ,  
O<~n<X" 

(x) = 0 (x = 0) ,  

--�89 ~ an(an--x) (x<0) .  
X<~n<O 

v/ (x+p+q)  -~p(x+q) - y~ (x -q )  + y ~ ( x - p - q )  

(3.7) 

(3 .8)  

the te rm in a n contributes a term a ,  k (x - an) to (3.8), where ]r (x) is the trapezoidal function 

of (3.2). Hence by  Definition 2 the function (3.8) is u.a.p, for all p, q > 0. Writing (3.8) as 

{~ (x + p + q) - ~ (x - q)} - {~  (x + q) - ~ (x - p - q)} 

i t  follows from Lemma a tha t  there exists a function c1 (x) satisfying (3.4) for which 

(x + P + q) - ~ (x - q) - c 1 (x) (3.9) 

is u.a.p. Now ~o(x) is continuous from its definition (3.7), and (3.9) is continuous since i~ 

is u.a.p. Hence c z (x) is continuous, and must  be of the form A x, say, by  Lemma 9. That  is, 

for constants A depending on p and q only 

~ ( x +  p + q ) - ~ ( x - q ) - A x  

is u.a.p, and has common translation numbers for all p, q >/0. Alternatively, if we put  

r = p + 2q, then for appropriate constants A (r) depending on r only 

y~(x+r) -~p(x) - x A ( r )  (3.10) 

.is u.a.p, and has common translation numbers for all r i> 0. Hence both 
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~p(x+r+8)  - - ~ ( x + r )  - x A ( s )  

~ ( x + r + s ) - ~ ( x ) - x A ( r + s )  
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(3.11) 

(3.12) 

are also u.a.p, for r, 8/> 0. Subtract ing (3.12) f rom the sum of (3.10) and (3.11), i t  follows 

t h a t  
x {A (r + 8) - A (r) - A (8)} 

is u.a.p. This can only be t rue  if it is zero, hence A (r) is a solution of (3.4). 

Let  3 > 1 be a common translat ion number  belonging to �88 e for the  functions (3.10). 

Then  for a n y  r, s 

[~ (x + 3 + r) - ~ (x + 3) - ~ (z + r) + ~p (x) - 3A (r) ] < �88 e, 

and I~v(x + z  +8)  - y J ( x  + 3 )  -~p(x + s )  + ~ ( x )  - 3A(8)[ < {e.  

Since ~p(x) is continuous we can choose x and then find an  ~? = ~ (e) such t h a t  for  [r  - 8[ < 

we have 
[~(x + 3  + r) - ~ ( x  + 3  +8)[  < �88 

and  

Then  

I (x +8)1 < � 88  

]3 {A (r) - A (s)} ] 

= [ {~ (x + 3 + s) - ~ (x + 3) - ~ (x + s) + ~ (x) - 3A (s)} - 

- { ~ ( z  + 3 + r) - ~ ( z  + 3)  - ~ ( x  + r) + ~ (x)  - 3 A  (r)}  + 

+ {~(z + 3  + r )  - ~ ( x  + 3  +s)} - {~(x + r) - ~ ( z  +s)} ] 

< � 8 8 1 8 8  

Since 3 > 1 this gives 
I A ( r ) - A ( 8 ) l  <~.  

Hence A (r) is continuous, and by  L e m m a  ~ A (r) = A r for some cons tant  A.  T h a t  is, 

the  functions 
~p (x + r) - v 2 (x) - x A  r (3.13) 

are u.a.p, for all r, with common translat ion numbers,  and  are cont inuous uniformly in r. 

Hence the  functions 
{~p(x + r) - �89 (x + r) ~} - {~(x) - �89 

which differ f rom (3.13) only by  �89 ~, satisfy the  conditions of L e m m a  ~. Hence 

~(x) - � 8 9  
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is u.a.p, for some solution B (x) of (3.4). Since yJ (x) - ~ A x 2 is continuous it follows tha t  

B(x) is continuous, and, by  L e m m a  ~, t ha t  B(x) = B x  for some constant  B. Tha t  is 

~p(x) - l A x 2  - B x  

is u.a.p., and by  Definition 3 the weighted sequence {an, ~.} is u.a.p, with respect to the 

funct ion A x + B, and Theorem 1 is proved. 

Now the  funct ion (3.3) of Definition 3 is equal to 

x 

(/ . - A  ' a (t)l dr, 
I 

0 

where the dash indicates t ha t  the terms a~ corresponding to  ~r = 0 or ~r = t are to be halved 

if they  occur, and if t is negative the sum is to  be interpreted as 

__ ~ t an . 
t<<. ~n <~O 

The function 
~'  a n - A ( x )  (3.14) 

O<<.an<<.x 

cannot  be ma  T.  since it is discontinuous, bu t  the result  of Theorem 1 suggests t ha t  we could 

make  a more  direct  definition of a lmost  periodicity for weighted sequences if we use a 

more general class of a lmost  periodic functions, thus:  

D ~ F I ~ I T I O ~  4. A weighted sequence (a,, ~n} in which the o~n are real and arranged in 

increasing order ol magnitude is said to be B 2 almost periodic (B 2 a.p.) with respect to A (x) i/ 

the/unction (3.14) is B ~ almost periodic. The/unction A (x) is then said to be the distribution 

/unction o/the weighted sequence {an, ~n}. 

I t  should be noted  tha t  we cannot  prove strict analogues of Lemma ~ and Theorem 1 

for B ~ a lmost  per iodici ty  since y~(x) - ~  ( x -  k) can be a B 2 null-function(1) for all real k 

even when ~p (x) is no t  itself a B 2 null-function. A simple example is ~0 (x) = x~. 

4. A pair of  complex Hankel transforms 

I have shown elsewhere how the Parseval  theorem for Hankel  t ransforms can be 

used to prove Poisson's  summat ion  formula (see [11]). We can also use this method  in the  

present case with the following complex form of the Hankel  inversion formula. 

T 

l fl (1) I f  l i m  - -  R ( x )  1 2 d x = O  
T ~ o o  2 T 

- T  

t h e n  R (x) is  s a i d  t o  b e  a B 2 n u l l - f u n c t i o n .  
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L]~MM_A y. I f / ( x )  belongs to L2( - ~ , o o )  then 

T 
~1 - e - ~  t _ e _ , ~ t } d t  (4.1) g(,) f/(,) 

- T  

converges in  mean  square, g (x) be low8 to L2 ( - ~ , ~ ), and  

T 

f,(,) T---..oo - - ~ - - /  e ~ }  d t  (4.2) 
- T  

almost  everywhere. Further ,  i / / 1  (x), gl (x) and  ]~ (x), g~ (x) are two pairs  o / s u c h  trane/orms then 

f f i(X*),~(x)dx:ff~(X)gl(X)d~l~, ( 4 . 3 )  

Proo/.  The kernel  funct ion in (4.2) is 

smx)} 

The funct ions  xt  J, l , (x)  and  x i J _ , / , ( x )  + - are  bo th  H a n k e l  kernels  (see [27], 214-  
X 

215). The  f irst  is an  even funct ion  of x and  the  second an  odd funct ion of x. T h a t  is 

j (x)  = �89 + �89 

say.  L e m m a  y can be deduced  f rom the  invers ion formulae  for the  separa te  kernels  je (x) 

and  jo(x) b y  s p l i t t i n g / ( x )  in to  even and  odd  p a n s  �89 ( / (x)  + / (  - x)} and  �89 if(x)  - / (  - x)) ,  

j u s t  a s  the  complex Four ie r  invers ion formulae  (B') can be deduced  f rom the  Four i e r  

cosine and  sine inversions.(1) 

LEMMA ~.(9.) 1/ F(X) i8 an  integral, tends to zero as x tends to • co, and  x F ( x }  be/ongs 

to L 2 ( - oo, oo ), then F (x) belongs to L "~ ( - oo, co) and x t F (x) tends to zero as x tends to zero 

o t t o  + c~. 

(1) By the argument of [27], 1-3, for instance. 
(z) Result~ corresponding to Lemmas 8 and r for functions over the range (0, oo) are given in [11], 

Lemmas 2 and 4. The present lemmas are proved in the same way if we split F(x) inf,) even and odd 
parts. See also [24] for more extended results of this kind. 
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LEMMA r  Jr] F(x) satis/ies the conditions o/Lemma (~ then it has a complex Fourier 
translorm G(x) /or which 

T 

O (x) = limr_.~ (2 ~)-�89 fF( t )e - 'X td t  
- T  

and 

T 

F (x) =r-*lim~ (2 ~)-�89 f (7 (t) e ~x~ d t. 
- - T  

Further, O ( x) sa$isjies the same conditions as F (x), and x F' (x), xG' (x) is a pair o/trans/orms 
with r e s ~  to the trans/ormation o/Lemma T" 

Now suppose that  the weighted sequence {an, an} is B z a.p. with respect to A x, and 

that  the Fourier series of (3.14) is given by 

5'  a , - A x ~ c o - i ( 2 r e ) - ~  ~. b ' e ' ~ ,  (4.4) 

where the ft. are arranged in increasing order of magnitude, with fl0 = 0. Consider 

T T 

--T --T 

(4.5) 

T 

[{ } le''-lllT fe"t--I { } =(2g)-�89 ~' b n - B t  - ( 2 ~ ) - � 8 9  d ~ b n - B t  . (4.6) 
o<#.<, (~jj_r ~ o<p.<, 

I T  

If  we assume that  
~' b n - B t = O ( t  ~ (4.7) 

O < P n ~ t  

for some B and some ~ in 0 < 8  < �89 as t--> ___c~, then the integrated terms in (4.6) are 

0(~/r so (4.5) is equal to 
r 
/" e ~x~ - 1 i B  j__7__ at" (4.8) i ~ ,  ~ (e ~"x -  1) + (2 ~ ) - � 8 9  0 (T ~-1) - (2 ~ ) - t  ~ - ~.~,,~ T p .  x 

O n . 0  - T  

Now 

T T 

f e~Xt - 1  f sin x t d t - - - ~ - d t = i  t = ~ i  sgn x+O(T-1). 
- T  - T  

Also b~ 
lim ~ ~ = L  

T--+ ~ -- T <<. ~O n ~ T 

# n + O  

(4.9) 
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exists since 
T T 

1 1 

T 

[,-'[ r b. 
k (o<r x J (o<on~ 

1 

oo 

1 

say. Similarly 

= L l + 0 (T ~-a) + B log T, 

~,  b__~ = L2 + 0 (T 6-t) - B log T, 
- T ~ f l n ~ - I  [~n 

and (4.9) follows by addition, with L = L I + L 2. Hence (4.8) becomes 

- ( 2 ~ ) - t  / ~,  ~ e , ~ . z + ( 2 ~ ) - t  i L  (2)  t B  

/~n*o 

(4.10) 

Now by (4.7) the function 

belongs to L~( - ~ ,c~) .  Hence (4.5) converges in mean square as T - - ~  by Lemma Y, 

and (4.10) gives 

T 

1.i.m.r_~oo f B (t) j (x t) d t 
- T  

=x-l{ ~' a.-Ax-c o+R(x)}+(2g, -'iL (~-~tB 0<-n<~ --X---- \2 ]  X sgn x, (4.12) 

where R (x) is a B 2 null-function. If we put 

a o = (2 g) i B, 

then (4.12) can be written 

A 1 = c o - (2 zr)-tiL, 

say. Thus we have: 

"4(x)=x-l/io<~<.~" a.-Ax-A1+ R(x)} , (4.13) 
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THEOREM 2. I /  {an, a,} iS a JB ~ a.p. weighted sequence with respect to Ax,  and (bn, ~n} 

is the weighted sequence derived/tom the Fourier series (4.4), and  (4.7) is satisfied, and the 

sequence (fin} is discrete(x) and arranged in increasing order o/magnitude, then there exists a 

constant A 1 and a B ~ null-/unction R(x) such that the/unctions j4(x), B(x) o/(4.13) and (4.1]) 

are trans/orme o/the type o/Lemma y. 

This resul t ,  t hough  i t  corresponds to  some of the  examples  given la te r  in sect ion 10, 

is unsa t i s fac to ry  in t h a t  i t  involves  the  unspecif ied B ~ nul l - funct ion R (x). I f  we assume 

fur ther  t h a t  the  series (4.4) converges in mean  square  over  any  f ini te  range of x to  

~' a n - A x  (4.14) 
O<~otn<~X 

t h e n  our  a r g u m e n t  gives 

~ 4 ( x ) = x - l l  ~ /  a n - A x - A 1 }  
[0<~n<x 

as the  complex  Hanke l  t r ans fo rm of B (x). Since B (x) belongs to  L 2 ( -  oo, oo) so does A (x), 

b y  L e m m a  -f. Bu t  in the  ne ighbourhood of x = 0 the  funct ion ~4(x) behaves  l ike A1/x, 

and  thus  A(x)  can only  belong to L~( - o o , ~ )  if A 1 = 0. Thus  we have:  

THEOREM 3. I /  {an, •n} is a B 9 a.p. weighted sequence, and the conditions of Theorem 2 

are saris/led, and the Fourier series (4.4) converges in mean square to (4.14) over any finite 

range o/x ,  then the/unctions 

x-l[ : '  a n - A x } ,  x-i t  ~.' b a - B x }  
(O<otn<~X (O<an<~X 

are complex Hankel trans/orme o~ the type o/Lemma "~. 

5. Concordance 

W e  can use a me thod  of Titchmarsh(2) to  deduce the  convergence of the  in tegra ls  in 

Theorem 3. 

LEMMtt ~. I /  /(X), g(x) is a pair o/ trans/orms as in Lemma "~, and 9(Y) is o/bounded 

variation in some neighbourhood o / y  = x, then 
T 

� 8 9  ~ l ( t ) j ( x t )  dr. 
- T  

I / / ( x )  is o/ bounded variation a similar inverse result holds urith j (x) replaced by ] (x). 

(x) The last two examples of the tenth section show that  cases where {fin} is not discrete can arise, 
but they will not be considered in this paper. 

(s) [27], 83 and 266, or [15], 111. Lemma ~ is the extension to complex Hankel transforms, and is 
proved in the same way. 
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Applying this lemma to the t ransforms of Theorem 3, and  ovaluating the integrals 

concerned as in section 4, we have: 

T ~ E O ~ E M  4. With the conditions o/ Theorem 3 

~ ,  a n _ A x _ _ _ ( 2 7 e ) _ � 8 9  m ~. bn (5.1) 
0<~n<x r-~= -r~<~n<r ~ (e~nx-  1). 

#nm0 

I / ,  in addition ~.' an - A x = o (x) 
O<.=n<.Z 

as x--> • oo, and the sequence {fin} has no / in i t e  points o/accumulation,(x) then 

I f  the series 

~ '  b n -  B x =  (27e)-~ i lira ~ a-~n ( e - ~ n Z - 1 ) .  
O<~fln <~X T--->oo - T~'~n ~ T O~n 

~cn4 0 

a__nn2 

=n~ 01 COn I 

(5.2) 

is convergent ,  then the formula (5.2) shows tha t  the function 

~ '  b n - B x  
O<<.fln<~X 

is B 2 a.p. Tha t  is, the weighted sequence (bn, fin} is B ~ a.p. with respect to B x, and we have 

the  following result, which m a y  be regarded as a " theorem of concordance" for B ~ a.p. 

weighted sequences. 

THEOREM 5. I /  (an, O:n} is B ~ a.p. with respect to A x ,  and the conditions o/Theorems 2, 

3, 4 are satis/ied, and 

i s  convergent, then the weighted sequence {b,, fin} is B 2 a.p. with respect to B x .  

Theorem 5 shows tha t  the  frequencies fin associated with an  almost  periodic weighted 

sequence (an, ~n} automat ica l ly  form an almost  periodic weighted sequence when they  are 

associated with appropria te  weights b n. We use the term "concordance"  to  describe this 

phenomenon,  and  in the sequel we will describe as "concordan t"  any  almost  periodic 

weighted sequence or almost  periodic funct ion whose frequencies can be the basis of an  

almost  periodic weighted sequence. The name "concordance"  is chosen as indicating t h a t  

(1) This condition is needed to ensure that the function ~ '  
O<~n<~X 

(9) of section 10 shows that some such condition is needed. 

b n is of bounded variation. Example 



252 A.P. OUINAND 

the frequencies concerned are, in a sense, in some concord with one another (cf. [17]). 

Concordant functions thus constitute a class of functions intermediate between the class 

of periodic functions, whose frequencies are necessarily periodic, and the class of almost 

periodic functions, whose frequencies are quite unrelated to each other. 

Theorem 5 can be regarded as asserting that,  under certain conditions, all almost 

periodic weighted sequences are concordant. 

6 .  T h e  s . m m a t i o n  f o . . u l a  

If  F (x) and G (x) are complex Fourier transforms satisfying the conditions of Lemma r 

then we can apply the Parseval equation (4.2) for complex Hankel transforms to the pairs 

of functions xF'(x) ,  xG'(x) and A(x), B(x) of Theorem 3. That  is 

_ _ [O<~n<X 
(6.1) 

The left-hand side is equal to 

[[0<~n<x[/~' a , - A x }  J - ~ -  f G ' a {o<~n< x A a(x)l~ (z)d 2~ , ~ - x l .  (6.2) 

Now G(x) = o(x-i) as x-->__+c~ by Lemmas ~ and r Hence the integrated term in (6.2) 

vanishes ff 
~' a n - A x = O ( x ' )  (6.3) 

O<~n~X 

and either ~ ~< �89 or x 'G(x) -*0  as x--> ___ co. The integral term in (6.2) is then equal to 

T 

- lim ~ ~ a n G ( a n ) - A  f G(x)dx} .  
T, U--~oo [ - U<gn <T -U 

Treating the right-hand side of (6.1) in the same way we have: 

T H E O R E M  6. I/ 
(i) F (x) 8atis/ies the conditions o/Lemma r and G (x) is its complex Fourier trans/orm, 

(ii) the weighted sequence (an, a~} is B ~ a.?. with respect to A x and satis/ies the conditions o/ 

Theorem 3, 

(iii) with (~ and ~1 as in (4.7) and (6.3) and either (a) 5 ~  �89 and ~1<~ �89 or (b) x~F(x) and 

x" G (x) both tend to zero as x tends to +_ c~, 
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then 
T T 

lira [ ~.. a n G ( a n ) - A  f G ( x ) d x } =  lim 
T, U...~oo ~ - U < ~ n < T  - U  -U<fln< --T 

~n:~ 0 /~n# 0 

(6.4) 
If F (x) belongs to L ( -  ~ ,  oo), then the integral 

o o  

G (x) = (2 z t ) - i  ~ F (t) e -~t d t  
- - 0 0  

converges absolutely for all x, including x = O, and 

(7 (o) = (2 ~ ) -~  f F (t) tit. 
- - 0 0  

Since we have taken a o =rio =0,  if we put  A = (2~)tb o, B = (2g~)a o, then we have: 

THEOREM 7. I / the  conditions o/Theorem 6 are saris/led and both F(x)  and G(x) belong 

to L ( - c~ , c~ ) then 

an G (an) = ~ bnF (fin). (6.5) 

If  we apply Theorem 7 to the sum 

K(x)= ~ ank(x-an) 

of (3.1) then we obtain, formally, 

K (x) = ~ bn 1 (fin) e t~n~, 

(6.6) 

(6.7) 

where 
o o  

1 (x) = (2 ~) -~  f k (t) e ~'t dt  
- o o  

is the complex Fourier transform of k (x). Hence if / (x) decreases rapidly enough as x--> _ c~ 

then K(x) is an almost periodic function of x by (6.7). 

That  is to say the series (6.6), used in the preliminary definition of almost periodicity 

for weighted sequences, defines an almost periodic function of x for a wide class functions 

k(x) of which the trapezoidal functions (3.2) are special cases. 

Further, the functions K (x) defined by (6.6) have frequencies/~n which form the basis 

of the almost periodic weighted sequence {bn, fin}. That  is K(x) is a concordant function 

of x if k (x), 1 (x) decrease rapidly enough to ensure the absolute convergence of (6.6) and 

(6.7). 
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7. Inversion formulae 

We can now deduce the inversion formulae of (C') from the summation formula. If 

we apply Theorem 7 to the function(1) 

with z ~= 0, then 

when x :4:0 or z, and 

F ( x ) =  ~ - c o s z T - - ~ s i n z T  ( - T < x < T )  

elsewhere, 

( 2 ) ~ {  sin (z - x) T 
q (x) = z x ( z -  x) 

sin z T sin x T~ 

J x2T 

G (z) = T z' T ~' 

T cos z T}. 

Theorem 7 then gives 

_ r <~n < r bn { e tpnz - cos z T - ~ sin z T} 

= ~n.o,~ ~ an ( z -  an) a~ T + 

Now 

+(2)�89 o Tcos I0 n 

T 

~' bn~n= f tdl ~' bn-Bt I 

T 

=[ t /  ~' bn-B - ~' - . t }  ,o~.o~ '}]:~ f~{o~.~ ~' ~ 
= 0 (T e+x) 

(~=a-) I (7.1) 
elsewhereJ " 

(7.2) 

by (4.7). If the series 
an[ ~ ~ (7.3) 

aCn*O 

is convergent, then (7.1) gives, with % =  (2~)�89 B, 

(1) T h e  r e s u l t  w o u l d  f o l l o w  m o r e  d i r e c t l y  if  w e  c o u l d  p u t  F ( x )  = e l z z  ( - T < x < T) ,  F ( w )  = 0 

e l s e w h e r e ,  b u t  t h e  c o n d i t i o n s  of  T h e o r e m  7 d o  n o t  c o v e r  s u c h  a f u n c t i o n .  
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~: B T} + ~' bn  e if lnz - c os  z T |l _ T<~fln<Tbn - -  2 0 ( T  ~) 

elsewhere~ 
as T-->~. By (4.7) this gives 

(2~)�89 : ,  bne,~n~=O(T~_l) + {~, (z=~,) t 
2 T _ T<~<T elsewhere! 

for z ~ 0. For z = 0 the result follows immediately from (4.7). 

If all the weights a n are real and have the same sign, then the convergence of (7.3) 

follows from {6.3) by  the method of {7.2). Making T-+ co, and reversing the roles of F (x) 

and G(x) to prove the inverse result, we have: 

THEOREM 8. I/ 
(i) {an, an} is a B 2 a.p. weighted sequence with respect to A x, 

(if) the conditions o~ Theorem 6 are satis/ied, 

(iii) either (a) sequences o/weights {an} and {bn} are both real and each is o/constant sign, 

or (b) the series 
y an 

fln * O 

c o n v e r g e ,  

then/or all real z 

and 

(2 ~r) �89 lim ~ ~ '  bn e '~n~ = t a~ (z = ~n), 
T--->or Z "1' _ T <<-fln <~ T ( 0 elsewhere, 

(2 ~)�89 lim ~ ~/ an e - ' ~  = 
T--->oo ~ . l  _ T<~g n <~ T elsewhere. 

As explained in the second section, Theorem 8 or (C') is the analogue for almost periodic 

weighted sequences of the Fourier integral inversion (B'). In the theory of Fourier integrals 

it is often more convenient to consider the formulae in an integrated form, such as 

~F (t) 
f (e -~xt- 1) dr, O(t )dt=(2~)- �89 J t 
0 - - o O  

f ~r t F (t) dt  = - (2 ~ ) -*  i i" G ftl (~,x~_ 1) dr. a n d  
j t 

0 - - O o  

The formulae (5.1) and (5.2) of Theorem 4 can be regarded as analogues of this integrated 

form of the Fourier integral inversion. 
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Another  form in which the  inversion formulae can be expressed is 

(2~)�89 l im T ~bnr189 (Z = aen), 
r ~  n=-  ~ elsewhere, 

a n d  (2 ~)�89 l im T a~ e = 
T--,~r .ffi- o, elsewhere. 

This form is readi ly  deduced f rom the s u m m a t i o n  formula  (6.5), and  is analogous to  

a summabi l i ty  theorem for Fourier  integrals  ([27], 26-40). 

The  funct ion 

8. M e r o m o r p h i c  - I m o s t  periodic func t ions  

1 
G (x) = - -  Z - - X  

with z complex, I m  (z) # 0, satisfies the  conditions of Theorem 6, and  we then  have  

F (x) = (2 = ) -  ~ d t 

--00 

(2g)tie t= { I m ( z ) < 0 ,  x < 0 } ,  

= 0 { Im (z) < 0, x > 0}, 

- (2 ~ ) t  i e '= { Im (z) > 0, x > 0},  

0 { Im (z) > 0, x < 0}. 

Theorem 6 then  gives, for I m  (z) > 0, t ak ing  T = U 

lira ~ a. 
T---> Oo -- T < o:n < T Z - -  O~ n 

For  I m  (z) < 0 we get  

T--~oo -T<~n<T Z--(X~ 

a n  Now the series ~. - -  
~n~O ~2n 

converges, as indicated in Theorem 8, and  hence the  funct ion ~ (z) defined b y  

1 + 1 )  
cp (z) -- a~ + ~ an + C, 

- 7  , , .o  -g.. 

(8.1) 

(8.2) 
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where C = - lim ~ a_~n, 
T- -~  -T<~n<T O~n 

~n40 

defines a function of z meromorphic in the whole z plane with simple poles of residues a n 

a t  the points z = ~n- Further,  the series (8.1) is uniformly convergent in any  half-plane 

I m  (z) > a > 0, and hence ~ (z) is analytic almost periodic in this half-plane. Similarly, from 

(8.2), ~ (z) is analytic almost periodic in I m  (z) < - a  < 0. 

This example suggests tha t  i t  should be possible to develop a theory of meromorphie 

almost periodic functions in which sequences of poles and residues form almost  periodic 

weighted sequences. Let  us introduce the definition: 

DEFINITION 5.(1) A/unction ~(z), meromorphic in a strip a < Ira(z) < ~1, is said to be 

meromorphic almost periodic in that strip i/ 

(z) = p (z)  q (z)' (8.3) 

where p (z) and q (z) are both analytic almost periodic in that strip, and q (z) is not identically 

zero. 

Suppose tha t  ~0(z) of (8.3) is meromorphie almost periodic in a strip - a  < Ira(z) < a, 

(a > 0), and tha t  all its poles in this strip are simple poles within the strip - ~ < I m  (z) < Q, 

0 < ~ < a. Let  Re (z) = Z be a line crossing these strips which does not pass through any 

zero of q(z). Then p(z)/q(z) is analytic a t  all points of this line within the strips, and is 

therefore bounded on this par t  of the line. Let  

[q(z)[ > Q > O  

and IT(z)l < P  

on z = Z + i v ,  - - (7<v<a.  

Now p(z) and q(z) have relatively dense common translation numbers T = ~(e) belonging 

to ~ within the strip. Choose 0 < e < �89 Q, so we have 

o n  

Hence on any  such line 

]p(z)I<P+�89 ]q(z)l>�89 

z = Z + T  +iv,  - a < v < a .  

P+�89  M [~(z) [<  �89 

(z) This defini t ion is suggested by  a r emark  of Bohr ,  [6], 103-104. 
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say.  Consequent ly  there exists  a relat ively dense set of  lines crossing the strip on  which  

I~ (z)[ < M.  Let  the lines be 

R e ( z ) = T ~  ( n = _ _ _ l , _ 2  . . . .  ) 

wi th  . . .  < T_ 2 < T '  1 < 0  < T 1 < T 2 . . .  

and T~-->_+oo as n->___oo.  

Let  F(z) be a funct ion  regular in - a < Ira(z) < a for which  F(z)-->O as R e ( z ) - >  + oo 

uni formly  in the  strip. Consider 
fqD (z) F (z) dz, (8.4) 

R 

where R is the  rectangle Tm + i K ,  T_m + i K ,  T_m - iK ,  Tm - iK ,  where 0 < Q < K < a. 

If  the  poles of V(z) are at  the  points  z =fl,, with residues b~, the  integral  (8.4) is equal  to  

T _ m < f l n < T  m 

As Tin--> oo and T_m--->- oo 

T m + t ~  T m + i K  

f q~(z)F(z)dz < M  f I F ( ~ ) l d ~ - ~ 0 ,  
T i n - i l l  T m - i K  

T m - t K  

and similarly f ~ (z) F (z) d z - >  0. 
T _ m + I K  

B y  a theorem of Bohr  ([6], 103), ~(z)  is analyt ic  a lmost  periodic in the strip Q < 

I m  (z) < a. Hence  it has a Fourier series in this strip, say  

(z)~ ~ cne ~z. 
n ~ - o o  

If  we  assume that  this series is uni formly  convergent  on  I m  ( z ) =  K and that  

o o  

flf(x+iK)ldx 
converges,  then 

T-m+'$K o o + i K  

/ 1 l im f g ~ ( z ) F ( z ) d z = -  f F ( z ) ~  Cue '~n~ dz 
m-->oo Tm+i K - o o  + t K  n oo 

oo+~K 

= -  f F(z) e"n~ 

oo 

= _  ~ ~ f F(z) e'~nZdz 
n ~  -oo --oo 

=-(2z)~  ~ c,,G(-2n). 
n ~  - o o  
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Similar ly ,  if ~ dn e ~un~ 
n f f i - o o  

is the  Four i e r  series of ~0 (z) in - a < I m  (z) < - Q, and  assumpt ions  s imi lar  to  those  a b o v e  

are  made ,  t h e n  
: T m - ~ K  

lim f c p ( z ) F ( z ) d z = ( 2 ~ )  t ~ dnO(- f~n) .  
m---~oo T _ m _ t K  nff i-oo 

Hence,  as  m-->cx~, (8.4) gives 

} 
Changing the  no t a t i on  this' can be wr i t t en  

bnF(fln) ~ ~ anG(czn), 

where the  weighted  sequence (an, gn) is ob ta ined  as the  difference of the  weighted  sequences 

Thus  we have:  

( - ( 2 ~ z ) - � 8 9  ( - ( 2 ~ z ) ' � 8 9  (8.5) 

THEOREM 9. I /  

(i) q0 (Z) iS meromorphic almost periodic in a strip - a < I m  (z) < a, 

(ii) the only singularities o/q~ (z) in this strip are simple poles at z = fin with residues bn and 

all fl~ lie within the strip - a < - ~ < I m  (z) < Q < a, 

(iii) the Fourier series/or r (z) in the strip e < I m  (z) < a is uni/ormly convergent on some 

line I m  (z) = K,  e < K < a, and similarly/or the Fourier series/or qo (z) in - a < I m  (z) 

< -Q,  

(iv) F (z )  is regular in - a < Im(z)  < a, tends to zero uni/ormly in this strip as Re(z)--> _+ c~, 

and the integrals 

I F ( x + - - i K ) l d x  
- - 0 0  

converge, 

then ~ bn F (fin) = ~ an O (gn), 

where {an, ~n} is the di//erenee o/the weighted sequences (8.5) and 

O0 

O (x) = (2 ~ ) -~  f F (t) e ~ dr .  
--aO 

17 - 593802.  A c t a  ma themat i ca .  101. I m p r i m 6  le 18 j u l n  1959. 
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Theorem 9 shows tha t  certain meromorphic almost periodic functions give rise to 

summation formulae of the same form as those associated with almost periodic weighted 

sequences. However, in Theorem 9 the fin need not be real. Consequently we can only expect 

the weighted sequences (an, ~n}, {bn, ~n} to be almost periodic in the case when all the ~n 

lie on a single line along the strip. In  order to show tha t  the weighted sequences are then 

almost periodic in the sense of Definition 4 we need to prove the summation formula for a 

wider class of functions than is covered by Theorem 9. 

I f  G (x) = e-�89 Re (8) > 0 

in Theorem 9, then F (x) = s -�89 e -�89 

and these functions satisfy the conditions of the theorem. Further  

x F '  (x) = -8 -~  xe -�89 

xG' (x)= - s x e  -�89 

are transforms of the type of Lemma y, and the summation formula can be written 

oO 

o<en <<x an 

O0 

= j . = - '  =} {-=-' I8.61 { 0 < ~ n < = b =  - B } dx  

as in section 6. I f  we assume (4.7), so tha t  B(x) of (4.11) belongs toL2(  - ~ , ~ ) ,  then it has 

a transform A1 (x) say, with respect to the kernel j (x), for which the right-hand side of 

(8.6) is equal to 

~ A1 (x) { - s x e  -�89 dx 
- - 0 o  

by (4.3). Hence, by  subtraction, with 

A(x)=x-Ilio<~n -<<=~' a ~ - A x }  

and D (x) = A (x) - A1 (x) 

OO 

we have f ~ (x) xe-�89 0 (8.7) 
- -OO 

for all Re (s) > 0. I f  we divide ~ (x) into even and odd par~s 

O~(x) = =1 {O(x)  + Z ) ( -  x)} ,  

O0(x) = ~ {O(x)  - O(  - x) ) ,  
then (8.7) gives 
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~Oo (x) x e-*Sx' d x = 0, 
o 

or, putting s = t�89 

f Z)o (:)  dt  = o. 
o 

Hence, by the uniqueness theorem for Laplace transforms, [8], O0 (x) = 0 almost everywhere. 

A similar argument with 

G(x)=s�89189 ~', F(x)=is-axe- �89 

shows that  Oe (x) = 0 almost everywhere, so ~ (x) = ~0 (x) + ~Oe (x) = 0 almost everywhere. 

That is ~4 (x) and B (x) are transforms of the type of Lemma V, and we can again show as 

in Theorems 4 and 5 that  {b=, fl~} is B 2 a.p. We have: 

T:HEOREM 10. I /  

(i) ~(z) is meromorphic almost periodic in the strip - a  < Im(z )<  a and satis/ies the 

conditions (if) and (iii) o! Theorem 9, 

(if) all the fin are real, 

(iii) ~ '  bn - B x = 0 (x ~)/or some 0 < ~ < 1 as x --~ + ~ ,  
O<flrt<~z 

(iv) ~ an ~ an.o -~n converges, 

then the weighted sequence {bn, fin} is B 2 a.p. with respect to Bx.  

. Formal unification of  the three types of  reciprocity by use of  the Dirac ~-functiomr 

The three types of reciprocity (A'), (B'), and (C') of the second section can all be re- 

garded as cases of the Fourier integral reciprocity (B') if we use the Dirac h-function. 

The reciprocity (A') corresponds to the pair of Fourier complex transforms 

/ (x), ~ cn ~ ( x -  2n), 

and the reciprocity (C') corresponds to the pair of Fourier complex transforms(1) 

~. anO(X-an) ,  ~ b ,O(x- f ln ) .  (9.1~ 

If  F(x), G(x) is a pair of Fourier complex transforms, as in (B'), then the Parseval equation 

with the pair (9.1) gives 

(1) Applications of this me~hod in the  periodic case are given in [22]. 
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T I . ~ "  (bn~(x-~n)}F(x)dx= ~ l.=~_ an(~(x-~n)}G(x)dx, 
- o o  

and this is formally equivalent to the summation formula 

b.-F(/~.)= ~ a.O(o:.). 
n = - o o  n = - o o  

That  is, the summation formula (9.2) can be regarded directly as a Parseval equation for 

Fourier complex transforms if we use the Dirac ~-function. 

10. Examples 

Many examples of summation formulae are known in which the kernels involved 

axe Bessel functions or combinations of Bessel functions ([9], [10], [14]). In order to find 

examples of almost periodic weighted sequences we can use summation formulae which 

involve either the Fourier cosine or the Fourier sine kernel. 

Thus, if we have a summation formula involving the Fourier cosine kernel 

pog(o)+  ]~ p . g ( ~ ) = q o ! ( o ) +  ~ qn!(~.),  
n = l  n = l  

where 

then i f  we put  

oo (=)'f g (x) = ~ / (t) cos ~ t d t, 
0 

(10.1) 

~ fl-n=-fin, =o=flo=O, a o=2po, b o=2qo, 
a n = a_n = !an, 

we have 

unG(o~.)= ~ bn.F(•.), 
n = - o o  n = - o o  

b. = b .  = q. 

with F (x), G (x) a pair of Fourier complex transforms as in (B'). 

Similarly for the Fourier sine kernel, if 

Prig(=.)= ~ q=/(f=), 
n = l  n = l  

where 

then putting 

oo 

0 

(10.2) 
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a _ n = - - a n ,  f l _ n = - f l n ,  go= /~o=O=ao=bo ,  an=-a_n=pn,  bn=-b_n=- iqn  

we again have ~ an G (con) = ~ bn F (fin). 
n~--O0 n~--O0 

Various examples of summation formulae axe given below. For  brevity no a t tempt  

is made to give conditions on F (x )  and G (x) for each summation formula, but  each example 

is associated with a pair of almost periodic weighted sequences of some kind. 

t .  Poisson's formula and its extensions. 

F(. o( .  (10.3) 
n ~ - o o  n D - o o  

(10.4) 

where An, Bn are periodic sequences of period N as in (C) of section 2.(1) 

2. The prime number summation formula ([15]). 

If  the Riemann hypothesis is true and !(x), g(x) are Fourier cosine transforms as in 

(10.1), then 

l im{  ~ - -  e-'t-~ 
r~oo o<~lo~v<r sinh t / d t  

T 

T oo 

~-~/(mlogp)  fe  ~! -�89 (t) 
0 0 

1 
=- (2~ t ) � 89  / ~. g(y)--~fa(t)log~dt}, 

T-->oo ( 0 < ~ < T  
0 

(10.5) 

where pm runs through the positive powers of primes p and y through the non-trivial zeros of 

(�89 + it). 

3. Further summation formulae of the type (10.5) are associated with Dirichlet L-func- 

tions, and can be proved in the same way ff we assume that  the Riemann hypothesis is 

true for Dirichlet L-functions. 

If  L (s, g) = ~ g (n) n - ' ,  

and g(n) is a real even primitive character modulo k (k > 1), and  ~ runs through the non- 

trivial zeros of L (�89 + i t, g), then with the notation of example (2) 

(x) These are the formulae (2.1) modifiod for transforms of the form (B'). 
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logp - �89 e - ~  ~f Z (pro) ~ ] (m log p) sinh t /d  t 
Vjfft 

0 
T if kt} =-(2zt ) �89  g((~)-~-~ g(t) l og~d t  . 

T--~-ov 0 T 
0 

(10.6) 

4. If %l(n) and g~(n) are two different, real, even, primitive characters modulo k 1 

and k 2 respectively, then examples of summation formulae without the integral terms in 

it(t) of (10.6) can be constructed by subtraction, thus: 

~ .  g l  ( p r o )  __ g 2  ( p r o )  log p / (m log p )  
v,m p�89 

T 

1 klf } = -(2~)�89 lira g (~ l ) -  ~ g(~2)-2-~log g ( t )d t  
T---~ ~o O< < T  O < ~ 2 < T  "~2 

0 

where 61 and ~ run through the non-trivial zeros of L(�89 + it, gl) and L(�89 + it, Z~) respec- 

tively, / (x) and 9 (x) are Fourier cosine transforms, and the Riemann hypothesis is assumed 

for L(s, gl) and L(s, g~). 

5. Various writers have shown how summation formulae can be deduced from modular 

equations ([5], [14]). For example 

e -2~n~$ ~ e - y t n x  n ~ =0r~ (n) 

oo 

= x-~V ~ o r  v (n) e-==% 

where p is a positive integer and rv (n) is the number of ways of expressing n as the sum of 

p squares. From this we can deduce the summation formula 

o o  

~�89 f r~(n)n�89189 t�89189 
0 

= ~ r, (n) n�89 - ~  gl (n) 
r ~ = l  

~�89 (t�89189 dt, 
r (�89 

0 

(10.7) 

gl (x) = 7t f /1  (t) J�89 (2 ~ x�89 t�89 d t. 
0 

where (10.8) 
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I f  p = 1 o r  p =  3 t h e n  (10.8) is e q u i v a l e n t  to  a F o u r i e r  cosine or  sine t r a n s f o r m a t i o n .  

T h e  case  p = 1 r educes  to  Po i s son ' s  s u m m a t i o n  fo rmu la .  F o r  p = 3, if  we  p u t  

/(X)=X�89 ~ ,  g(X)=X�89 

o~ 

t h e n  (1t).8) g ives  g (x) = / if) sin x t d t, 

a n d  (10.7)  b e c o m e s  

f f n ~ l  n = l  
0 0 

This  s u m m a t i o n  f o r m u l a  cor responds  to  a w e i g h t e d  sequence  {an, an~ w i t h  a o = a o = 0 ,  

an = - a_n = (2 ~n)�89 an = - a_n = ra(n)n-�89 for  n >~ 1, a n d  a d i s t r i b u t i o n  f u n c t i o n  A (x) 

= 2 - ~ g - t x  e. T h e  f u n c t i o n  (3.14) is t h e n  O(x  14/29+~) as  x t e n d s  to  _ c~ ([27], 267). 

6. I f  z (n)  is t h e  odd  c h a r a c t e r  m o d u l o  3, Z(1)  = 1, Z(2) = - 1, g (3)  = 0 ,  then(1) 

ng(n)e- �89 ~ n g ( n ) e  -~n'm'  (10.9)  
n = l  n ~ l  

I f  t h e  coeff ic ients  in (n = 0, 1, 2 . . . .  ) a re  de f ined  as  t h e  rea l  so lu t ions  of 

x ~ i ~ x  3~ = n -  n Z ( n )  x , 

t h e n  t h e  cube  r o o t  of (10.9) g ives  

n = 0  n = 0  

T h i s  l e ads  to  a s u m m a t i o n  f o r m u l a  

(n+i)*}, 
n = 0  n ~ 0  

w h e r e / ( x ) ,  g(x) are  F o u r i e r  cosine t r a n s f o r m s  as  in  (10.1). 

B y  c o m p u t a t i o n  we  f ind  

i 0 = l ,  i 1 = - -  2, i 2  = __ 4, i 8  = __ 4~, i 4  = __ 16~, i 5  __ 268 i 6  __ 1808 - -  729~ - -  6561~ . . . .  

This  s u m m a t i o n  f o r m u l a  co r re sponds  to  t h e  w e i g h t e d  s equence  (an, an} w i t h  a o = a 0 = 0, 

an = - a_n = (2 ~)�89 (n - 8/9)�89 an = a_n = i~_1 for  n ~> 1, a n d  ze ro  for  d i s t r i b u t i o n  func t ion .  

(1) [21], 486-494, or (10.4) above with N = 3, A n = B n =g(n).  
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7. More direct examples of almost periodic weighted sequences can also be constructed. 

If  an = e ~ n o ,  an = n, v ~ irrational, then {an} is an almost periodic sequence in Walther's 

sense ([28], [29]). Poisson's summation formula then gives the summation formula (6.5) 

with b. = (2 z)*, p. =2  ~(n +~). 

Alternatively we can produce an almost periodic sequence by varying the spacings 

between successive terms of the basis {~}.  For example, put  an = 1, a .  = n + ~ sin 2 g n v~, 

irrational. Then it  can be shown that  {an, ~n} is uniformly almost periodic in the sense 

of Definition 3, but  there does not appear to be any simple method of finding the transform 

{bn, fin} explicitly. 

8. Examples of summation formulae in which one or both of the bases {en}, ~n} is 

everywhere dense can also be constructed. Such summation formulae are not associated 

with almost periodic weighted sequences in the sense of our definitions. For instance, by 

Poisson's summation formula 

Summing over all prime numbers p we get 

an G (n) = (2 7e) �89 ~. ~ p-a F (2 ~ m/p), 
n ~ - o o  p>~2 m f f i - o o  

where ao = ~. T-2, a n = a _ n  = ~.. p-2.  
p>~2 ~ ln  

In  this case the sequence {~n} with ~n = n is discrete but  the other basis {fin} consists of 

all numbers of the form 2 zrm/p ,  and is everywhere dense on the real axis. 

9. An example of a summation formula in which both bases {a,} and {/~n} are every- 

where dense is obtained by multiplying together the modular equations 

} 

and ~ e x p { - l ~ r ( z - n v ~ V 2 ) 2 } = 9 0  ~ e x p { - g n ~ ' + g i n z q )  V2} ,  

where v~  = 1. This gives 
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This corresponds to a summation formula 

exp { - �89 ~ ( m -  n ~)'} a {~t (m + n a)} 

=~ ~ ~ exv{-�89 

If v~ is irrational then r is also irrational, and the bases {gt (m + n~)}, {~�89 (m + n~)} are 

both everywhere dense on the real axis. 

11. Remarks 

t. Other types o/almost periodic weighted sequences. 

Several of the examples of section 10 correspond to summation formulae of the form 

a,O(~,)- f G(t) dA(t}= ~ b,~F(fl,,)- f.F(~)dB(t}, (11.1) 
- ~  -r 

where the functions A (t) and B (t) are elementary functions of t. For simplicity the present 

paper only deals in detail with the case A(O =At, B(t)= Bt, but the methods can be 

extended to cover more general distribution functions A (t) and B (t). 

For  example, consider the prime number summation formula (10.5). I t  can be written 

~,~ log p ~ ~ G G ( - m log p) + (m log p) - 
p , m  

- 2  f G ( t )  c o s h � 8 9  f o ( t )  s e c h � 8 9  
- o o  - o o  

= - ( 2 ~ ) t  Y .F(~ , )+ (2~ ) -~  f F (0 log  dr. 
'IP _ ~  

If  we put  G (x) = k (z - x) with 

(11.2) 

1 

k ( x ) =  - 2 c o s h  

0 

( - - 3 ~ < x < - ~ o r O < x < 3 ~ ) ,  

( -~<x<~) ,  
elsewhere, 

(11.3) 

then the term 2 f G ( t )  e o s h � 8 9  
- - O 0  

in (11.2} vanishes for all z and all positive (~, and all the other integrals tend to zero as z 

tends to _ c~. Also 
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/ 2 \ � 8 9  e ~zx . F(x)=t,;) T sm3Ox-o +2 eoshO)smOx}. 

Consequently the series 

F (y) = {sin 3 (~ y - (1 + 2 eosh ~) sin ~ y} 

in (11.2) is the Fourier series of a B 2 a.p. function of z, since the series 

1 

is convergent. 

That  is, if the Riemann hypothesis is true, then the weighted sequence 

p�89 , + m l o g p  

is B 2 a. p. for the functions k (x) of (11.3). 

2. Conditions/or the reciprocity (C') and reasons/or the choice o[ definitions. 

The theories of Fourier series, Fourier integrals, and almost periodic functions are, 

in a sense, completed by "mean square" theories, that  is by the L 2 and B 2 a.p. theories. 

For the reciprocity (C') it is probable tha t  a corresponding theory could be developed for 

weighted sequences almost periodic in some sense and for which 

lira 1 y.. l a n ]= 
T-.~ 2 T - T<c~n <T 

is finite. This has not been a t tempted  in the present introductory paper, but it has neverthe- 

less been necessary to use the B ~ theory of almost periodic functions in order to have 

enough symmetry  to prove a form of the theorem of concordance (Theorem 5). This theorem 

asserts that ,  with certain additional conditions, any  weighted sequence {an, an} which is 

almost periodic in a certain sense has a transform {bn, fin} which is almost periodic in the 

same sense. Consequently the use of a type of almost periodicity with some symmet ry  is 

essential. 

The results of the paper could have been proved more briefly if we had started with 

Definition 4 for an almost periodic weighted sequence, but it would have been somewhat 

unsatisfactory to have introduced Definition 4 without indicating the connexions with 

simpler definitions and with the idea of almost periodic functions. Definitions 1, 2, and 3 

were discussed in order to show these connexions. 

3. Relationship to the Riemann hypothesis, and the connexion between the prime numbers 

and the zeros o/the Riemann zeta-/unction. 
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The present investigation arose from earlier work on the connexion between the 

prime numbers and the non-trivial zeros of the Riemann zeta-function ([12], [13], [15,] 

[16], [17]). In the present theory the Riemann hypothesis is equivalent to the hypothesis 

that  the weighted sequence 
l o g ,  } 
~h-,-_b_m log p (11.4) 

is B ~ a.p. with respect to 4 sinh �89 x. Now for each p the sub-sequence ( • m log p) of the 

basis is periodic with period log p. Thus the basis of the weighted sequence (11.4) is a 

combination of periodic sequences; this is far from showing that  (11.4)is almost periodic, 

but it  does help to make such a conjecture plausible. 

The problem of the nature of the connexion between the prime numbers and the 

zeros of the Riemann zeta-function was first raised by Landau ([21], 367-368), who con- 

jectured that  some arithmetical relationship exists. The present theory shows that,  if the 

Riemann hypothesis is true, then the connexion consists in that  the weighted sequence 

{- (~ ~)~, ~} (11.5) 

is almost periodic with respect to the distribution function 

- ( 2 ~ ) - � 8 9  ~ +(2~) - �89  

and (11.5) is the Fourier transform of the weighted sequence (11.4). 

4. Related work and almost elliptic /unctions. 

In addition to the work of Walther on a more restricted type of almost periodic se- 

quence, as mentioned in section 3, both Bessonof and M~tral [3], [4], [23] have written 

papers on doubly almost periodic functions of a complex variable (or almost elliptic func- 

tions) in which they at tempt to define such functions by their translation properties. 

Norgil [26] has shown that  such an approach leads to difficulties. Hence it has seemed better 

to use the indirect Definition 5 for meromorphic almost periodic functions, as suggested 

by Bohr's remark ([6], 103-104). 

Almost elliptic functions have not been considered above, but if {an, ~n}, {cn, 7n} are 

two uniformly almost periodic weighted sequences with respect to A x and Cx respectively, 

then we can define an analogue of the Weierstrass ~-function by the double series 

ao Co 

where a0 = 70 =0, the double sum is taken over all m, n not both zero, and the ratio o'/eo 
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is no t  real. I t  can then be shown t h a t  ~o, (z) is meromorphic  a lmost  periodic in any  strip of 

finite width parallel either to  the line joining 0 and  oJ or to  the  line joining 0 and m'. Con- 

versely we could define an  a lmost  elliptic funct ion as a funct ion which is doubly  mero- 

morphic almost  periodic in this way, and  make  this definition the s tar t ing point  of a 

theory  of almost  elliptic functions. 
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