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1. Introduction 

Suppose tha t  I o is a closed rectangle in Euclidean n-space and tha t  B is the field of Borel 

subsets of I 0. We confine our at tention to those completely additive set functions F,  

having a finite value F(E) for each E of B, and left undefined for sets E not in B; we 

reserve the name "set function" for such special set functions. Each set function corre- 

sponds to a point function (I)(x), and an additive interval function (I)(I) such tha t  F (E) = 

(I)* (E) for each E E B, where (I)* denotes the Lebesgue-Stieltjes measure generated by  (I). 

Thus corresponding to each of our decomposition theorems about  set functions, there is 

a decomposition theorem for point functions of bounded variation, and for additive interval 

functions of bounded variation. (See Saks [5], Chap. 3, for the exact correspondence.) 

Using the classical Lebesgue theory, set functions have been classified as follows. 

(i) A set function F is absolutely continuous, if F(E) = 0 for every E E B with zero Lebesgue 

measure; i t  is singular, if there is a set E 0 E B of zero Lebesgue measure such tha t  F(E) = 

F (E  N Eo) for each E G B. (ii) A set function F is said to be di//use, if F((x}) = 0 for each 

point x E/0; it is said to be atomic, if there is a finite or enumerable set E 0 = xl, x2, .. .  

such tha t  F ( E ) =  F(E  ~ Eo) for each E E B .  Now it is well known that ,  given any  set 

function F,  there are 3 component set functions F1, F2, Fa, such tha t  

F(E) ~- ~ i (E )  + F2(E) "~- F3(E) 

for all E of B, and 

F 1 i8 absolutely continuous, 

F~ is singular and diffuse, 

F a is atomic. 
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Further, this decomposition is unique. In  the present paper our object is to analyse the 

singular diffuse set functions, endeavouring to break them down into components which 

are uniform in some respect. 

Recently Dr. H. Kober proved that  any singular diffuse set function can be uniquely 

expressed as the sum of a continuous set function and a step function. A set function F 

is continuous at a point xEIo, if F(R)--->O as the Lebesgue measure of R tends to zero, 

R denoting any rectangle with x e R c I 0 whose sides are parallel to the sides of I 0. The set 

function is continuous if it is continuous at all x E I 0. The set function F is called a step 

function, if there is a set E 0 c I o consisting of a finite or enumerable number of hyper- 

planes each parallel to a face of Io, such that  F(E) = F(E [3 Eo) for all E of B. Although 

Dr. Kober's decomposition is very interesting, it seems t o  us to suffer from the following 

disadvantages. (1) Only "concentrations" on hyperplanes parallel to a face of the rectangle 

I o are picked out; thus a set function concentrated on a straight line not parallel to an 

edge of I o would be said to be continuous, provided it was diffuse. (2) Even if the definition 

of continuous were altered to allow "skew" rectangles, one still would not pick out con- 

centrations on hypersurfaces which are "curved" at every point. (3) The step function is 

not sub-divided into a part "spread over" the (n - 1)-dimensional hyperplanes and a part 

concentrated on sets of lower dimension. Our work is a natural development of Dr. Kober's 

and uses similar methods, it is largely motivated by the desire to overcome these difficul- 

ties. We are most grateful to Dr. Kober for telling us of his work before its publication and 

for interesting us i n  the problem. 

Before we describe our results it is convenient to consider set functions "concentrated" 

on certain sets. Suppose, for example, that  S is an r-dimensional surface (1 ~< r ~< n -  1) 

with an r-dimensional volume element dS, and / (x )  is a function defined on S, but not 

taking the value zero there; then provided the integral is defined and completely additive, 

there will be a corresponding set function F defined by 

F ( E ) =  f l (x)dS.  
E l l s  

This set function is concentrated on S in the sense that  F(E) = F(E f] S) for each E 6  B; 

it is spread over S in the sense that,  if T is any measurable subset of S with 

f dS>O, 
T 

there will be a set T'  c T such that  

F(T')= f / (x)dS#O; 
T "  
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and it is continuous relative to S in the sense that,  if T is a subset of S with 

f dS=O,  
T 

then F(T') = O. I f  we use the concept of an integral with respect to a general Hausdorff 

measure (for the appropriate definitions see w 2), it is easy to give a more general example 

of a set function which is in appropriate senses concentrated on, spread over and continuous 

relative to a sub-set of I 0. Let h(t) be a Hausdorff measure function. Let  S be a Borel 

sub-set of I 0 with positive a-finite h-measure. Write i f ( E ) = h - m ( E  fIS) for all E E B .  

Let  ] (x) be a point function, which does not take the value zero for any  point of S, and 

which is (absolutely)/~-integrable. Then, in the obvious sense, the set function defined by  

F(E)= [ ld,u, (1) 
Ef~S 

for all E E ]B, is concentrated, on S. Further,  using the h-measure to measure the size of 

Borel sub-sets of S, the set function is spread over and continuous relative to S. We shall 

show later (w 3) tha t  in a certain sense this example is the most general possible. 

Natural ly more complicated set functions F can be formed by adding a countable 

number of set functions of the type (1) corresponding to different sets S (not necessarily 

disjoint) associated with different Hausdorff measure functions h (t). This suggests tha t  we 

should aim at  a general decomposition theorem for arbi trary set functions, which when 

applied to such a sum would separate out the different component set functions used to 

construct it. We obtain a general decomposition theorem (Theorem 6) for arbi trary set 

functions, which will effect this re-decomposition of a sum of such components, provided 

the corresponding h-measures are all mutually comparable and provided the maximal 

system of h-measure functions, used to effect the decomposition, contains the particular 

h-measures corresponding to the original terms of the sum. 

Before we discuss the general decomposition theorem we consider a much simpler 

decomposition involving only a single h-measure. In  w 3 we show (Theorem 1) that ,  if 

F is a set function and h (t) is a Hausdorff measure function, then there is a unique decom- 

position 

F = F  1+  F~ + Fs, 

where F 1 is strongly continuous with respect to the h-measure in the sense tha t  F 1 (E) = 0 

for every E with a a-finite h-measure, where F~ is both absolutely continuous with respect 

to the h-measure and concentrated on a set of a-finite h-measure, and where F s is concen- 

t ra ted on a set of zero h-measure. By  using the Radon-Nikodym theorem, we show that ,  

1 8 -  593802 A c t a  mathemat ica .  101. I m p r i m 6  le 25 ju in  1959. 
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provided it does not vanish, the set function F 2 will in fact have a representation in the 

form (1) and tha t  it will thus be concentrated on, spread over and continuous relative to a 

set S of positive g-finite h-measure. 

Decomposition theorems of this type  are the main tools for obtaining more complete 

decompositions. In  w 4 we confine our at tention to the Hausdorff measure functions h (t) 

of the form $~, with 0 < ~ ~< n, corresponding to the fractional dimension measures. We 

prove (Theorem 3) tha t  given any finite singular diffuse set function F,  there is a finite 

or enumerable sequence {~}, with 0 ~< a~ ~< n, of distinct dimensions and a unique decom- 

position 

F = F {d} -P F {1} + F {~} -t- . . . .  

such tha t  F ~~ is concentrated on a set of dimension ~ ,  but  F ~) (E) = 0 for each E of B 

with dimension less than ~ ,  and F (d~ has no component concentrated on a set of definite 

dimension. The component F (0 corresponding to the dimension ~t can be decomposed by  

using the corresponding h-function t ~ into three components 

Fi  ~), F(2 ~), F(3~), 

which will in general be all non-trivial. But, if the component F cd~ with a "diffuse real 

dimension spectrum" is decomposed, using any Hansdorff measure function h which is 

comparable with the class of functions t ~, the middle component F(2 d~ will automatically 

be zero. We describe the structure of this component with a diffuse real dimension spectrum 

in w 4; in w 5 we give an example of such a set function. 

In  w 6 we introduce the concept of a maximal system of mutual ly  comparable Hans- 

dorff measure functions. This enables us to prove (Theorem 6) tha t  a set function F can 

be decomposed in the form 

F = F {d} -t- F {1} -P F {2) ~u . . . ,  

where now each component F c~), i = 1, 2, ..., corresponds to a definite section of the 

maximal completely ordered system of measure functions used, but the component F (d~ 

has no component corresponding to a definite section. In  terms of the prescribed maximal  

system of measure functions, this decomposition is also unique. Again the component with 

a diffuse dimension spectrum has a definite structure, and the discrete components F (0 

which correspond to sections defined by  Hausdorff measure functions of the system can 

be decomposed as before into components F(10, r,c) F(~) ~ ' 2 ,  3 .  

The exact relationships between the different components obtained by  using the two 

decomposition theorems is in general rather compllcat~l. We discuss these relationships in 

detail in w 6 and we show that ,  if a maximal  system of mutual ly comparable Hausdorff 
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measure functions is used, and if this system includes all the functions t ~ (with 0 < a ~< n), 

the decomposition obtained is a refinement of the decomposition using only the special 

a-dimensional measures. 

Our analysis raises a number of problems tha t  we have not been able to solve (see w 6). 

Until  some of these problems have been solved it is difficult to judge whether our decomposi- 

tion theorem is really satisfactory or whether some other approach to the subject would be 

preferable. 

While all our results are expressed in terms of finite set functions def ined for Borel 

subsets of I0, they extend immediately (i) to set functions which arc a-finite, and (ii) to 

set functions defined for all Borel sets in Euclidean n-space. 

2. Definitions and prelimluary results 

A function h (t) defined for t > 0 will be called a Hausdorff measure function, if h (t) is 

continuous, monotonic increasing and lira h (t) = 0. For any set E in Euclidean n-space, 
t..--). 0 + 

the outer h-measure of E, denoted by h-m. (E), is defined by  

h.m. (E) = lira inf {d (C~) d (C~) < ~ 
6- ->0  oo ~= 

ECUC~ 
i=l 

where (C~} is a sequence of convex sets covering E, and d(Ct) denotes the diameter of the 

set C~ (the value + ~ is allowed for the function h-m. (E)). Then h.m. is an outer Cara- 

theodory measure and defines a class of h-measurable sets which, for any  h(t), includes 

all Borel sots. When E is h-measurable we write h-m(E) = h-m, (E) and call the set func- 

tion h-re(E) the h-measure of E. 

A special notation is used for the measure functions h(t)= t ~, ~ > 0. In  this caso 

h-m (E) is written A ~ (E). The following properties follow easily from the definition: 

if A ~ ( E ) > 0 ,  then A ~ ( E ) = + ~  for f l< :~ ,  

if A ~ (E)<  + r162  then A ~ ( E ) = 0  f o r f l > a .  

For any  set E we can therefore define dims (E) as the infinum of numbers ~ for which 

AS (E) = 0: it is known as the (Besicovitch) dimension of E. We also put  A~ = + r if E 

contains an infinite number  of points, and A ~ (E) = q, if E contains q points (q = 0, 1, 2 . . . .  ). 

The class :~ of our set functions forms a linear space over the field of reals, if we define 

a set function ~1 F1 + 22 F2 by 

(21 F1 + 22 F2) (E) = 21 F1 (E) + 22 F2 (E) 
1 8 "  - -  5 9 3 8 0 2  
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:[or all sets E E ~. I f  F1,  F 2 ~ :~ are such t h a t  FI(E ) >1 F2(E  ) for every E ~ B, we say tha t  

2 '  1 ~> F 2. This clearly defines a partial  ordering in the class :~. We say tha t  F 1 > ~'2 if 

2"1 >~ F2 and in addit ion F 1 (I0) > F~ (I0). 

A lattice s tructure (we use the nota t ion of Birkoff [1]) exists in the  space :~ if we 

define 2" = F 1 0 2"3 as the  smallest set funct ion in :~ which satisfies F >~ F1 and  F >~ F2; 

and F 1 fl F 2 as the largest element in :~ satisfying both  2" ~< F 1 and  2" ~< F 2. Thus 

F l l j F  2>7F I ~ > F  1N F2, 

F 1U F 2/> 2"2~> F1 A F2; 

bu t  if F ( E )  < ( F  1 t9 F~) (E) for some E e B, then there will be some set E '  E B for which 

F ( E ' )  < max  [F I (E ' ) ,  F2 (E')]; 

and if F(G) > ( F  1 N F2)(G) for some GeB, then there will be some set G'eB for which 

F (G ' )  > min[F~(G'), 2"2(G')]. 

The  proof of the existence of the set functions F I  U F~ and  F 1 N 2'3 is essentially due to 

Riesz [4]. I t  can be shown t h a t  F 1 + F 2 = F 1 U F2 + F~ fi F~. The s tructure of :~, which 

we have already discussed, shows tha t  :~ is a Riesz space. 

Now the Jo rdan  decomposit ion theorem shows tha t  any  F E :~ can be decomposed uni- 

quely into 2" = F + - 2"- where 2"+ and  F -  are non-negat ive set functions of :~, and the 

interval  I 0 can be decomposed (though not  uniquely) into Borel sets P and  ~V such t h a t  

I 0 = P 0 N and F+ (N) = 0, F -  (P) = 0. We denote the sum of the positive and negative 

components  b y  ] r I = F + + F - .  I t  is clear t ha t  12"] = F U ( - F).  

A subset $ c :~ is said to  be bounded  above, if there is an  element 2"0 E :~ such t h a t  

F 0 >~ F for every 2" E $. The space :~ considered as a lattice is conditionally complete in 

the  terminology of Birkoff [1] (for a proof see Riesz [4]). Tha t  is, every  subset S c ~, 

which is bounded  above, has a least upper  bound F 0, such t h a t  F 0/> F for every F E $, 

but,  if F I ( E  ) < Fo(E ) for a t  least one set E e  B, then F I ~  F for at  least one F e S. 

Following Bourbaki ,  [2], we call a s u b s e t s  of :~, a band, if: 

(i) it is a vector  subspace of :~; 

(if) if G G S, then f e S for every F e :~ such tha t  ] f ]  ~< [ G I; 

(iii) $ is a sublattice of :~ which is conditionally complete; i.e. every subset ff ~ $ 

which is bounded above has its least upper  bound in ~: lying in $. 

Two set functions F~, F 2 e :~ are said to be complementary, if 15'1 ] fi I F  2 I=  0 ,  the null 

function.  For  example, the positive and negative components  F + and  F -  of a set funct ion 

2" e :~ are complementary.  We need 
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THEOREM A. I /  f f c  ~ and S is the class o/set/unctions F E ~  which are comple- 

mentary to every element o/ ~, then S/orms a band in :~. I / f f  is also a band, then ff consists 

o/all the set/unctions F E :~ which are complementary to every element o/ $. 

This theorem follows almost immediate]y from the definitions; for a proof see N. 

Bourbaki [2]. I f  S and ff are bands in :~ such tha t  ff consists of all the set functions com- 

plementary to every element of $ we say tha t  $ and ff are complementary bands in ~. 

THEOREM B. Given two complementary bands $1, $3 in :~ each F E ~ can be expressed 

uniquely as 

F = F I + F ~ ,  

where F1E$1, F~E$~, and I F / = ] F l l  + ]F~]. 

This is essentially due to Riesz [4]. 

THEOI~]~M C. Suppose # is a measure de/ined /or some Borel /ield QD B o/ subsets o/ 

I o and I o has a-finite g-measure, then F E :~ is absolutely continuous with respect to ~, if, 

and only if, there is a #-measurable point/unction / (x) such that 

F (E) = f 1 (x) d~ 
E 

/or every E E B. 

This is the theorem of Radon-Nikodym expressed in our terminology. 

3. Decomposi t ion  with respect to a Hausdorff  measure  

Suppose tha t  h (t) is a fixed Hausdorff measure function. We call a set function F of 

:~ h-eontinuons, or absolutely continuous with respect to the corresponding h-measure, 

if F(E)  = 0 for every E of B with h-re(E) = 0; and we use C(h) to denote the set of all such 

set functions. Similarly we call a set function F of :~ strongly h-continuous, if F(E)  = 0 

for every set E of B with a a-finite h-measure(I); and we use C*(h) to denote the set of all 

such set functions. Note tha t  clearly C*(h) c C(h). 

We say tha t  a set function F of :~ is h-singular, or singular with respect to the h-meas- 

ure, if there is a set E 0 of B with h-m (E0) = 0 such tha t  

F ( E )  = F ( E  a E 0) (2) 

for all E of B; we use S(h) to denote the set of all h-singular set functions. The equation 

(1) Note ,  however ,  t h a t  t h i s  condi t ion  is a u t o m a t i c a l l y  sa t i s f ied ,  if F (E) = 0, for eve ry  se t  E 

of ~ w i t h  a f in i te  h -measure .  
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(2) shows tha t  the h-singular set function F is concentrated on the set E 0 of zero h-measure. 

Further  we say tha t  a set function F of 3: is almost h-singular, if there is a set E 0 in B of 

a-finite h-measure, such tha t  

F ( E )  - -  F ( E  n E0), 

for each E in B; and we use $* (h) to denote this set of almost singular set functions. Such 

almost singular set functions are concentrated on sets of a-finite h-measure. Note tha t  

clearly $* (h )~  $(h). 

Our aim now is to prove that  C (h), $ (h) and C* (h), S* (h) form pairs of complementary 

bands in 3:. We find it convenient to prove a more general result about bands generated in 

this sort of way and obtain the particular bands as a special case. 

LEMMA 1. Let A be a system of sets of B with the following properties: 

(i) if E 1 E ,,4 and E~ E B then E 1 n E 2 E 14; 

(ii) i / E i E A ,  i = 1, 2, 3 . . . .  then 5 EiEA.  
iffil 

Then the set t A o/all/unctions F o/3:, such that for some E o E A we have 

F(E) = ~'(E n ~o) 
/or all E in B, is a band. 

Proof. (i) I f  the set functions F 1 and F~ are concentrated on sets E 1 and E2 of A, in 

the  sense tha t  

F~(E)=F~(ENE~), i = l ,  2, 

for all E in B, it is clear tha t  for all real numbers Jll, ~ ,  the set function hi F1 + ~2 F2 is 

concentrated on the set E 1 U E~ of ~4. Hence $4 is a vector subspace of 3:. 

(ii) Let  F be a set function of $~ concentrated on a set E 0 of A, and let G be a set 

~unction of 3: satisfying I GI<IFI .  Then, using the decomposition 

F =  F + -  F-, Io =PU N, 

where F+ and F -  are non-negative set functions of 3: and P,  N are Borel sets such tha t  

F+ (N) ~ 0, F -  (P) = 0, we see that ,  for each E in B, 

IFI(E) = F+(E) + F-(E)  

= F(E  tiP) - F ( E  fi N )  

= F ( E  n P n Eo) - F ( E  n N n Eo) 

=IFI(En E0). 
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So I F  I is concentrated on E 0. ~urther,  as ]G] ~ ] F ] ,  for each E in ~ we have 

IG(E) - G(E  N Eo) I = IG(E  N ( I  o -  E0)) I < I F ( E  N ( I  o -  E0)) I = 0 .  

Thus G is also concentrated on E 0 and so lies in $A. This shows tha t  S4 satisfies the second 

condition for a band. 

(iii) Let  7 be a subset of $4 which has an upper  bound in :~. Then there is set func- 

tion, G say, of :~ such tha t  for each F in 7 we have F ~< G. Then, if T1, T 2 . . . . .  T k is any 

finite set of elements of 7 we have 

T1U T2U . . .UTk<~G.  

So we can define a real number h 0 by  the formula 

ho = sup(T1U T2 U ... U Tk)(Io), (3) 

the supremum being taken over all finite sets of elements of 7. We can now choose a strictly 

increasing sequence of positive integers n 1, n 2 . . . . .  and a sequence of set functions T1, 

T~ . . . .  of 7 such tha t  the set function 

Hk = TI U T2 U ... U T~, (4) 

satisfies Hk(Io) > h o - 2 -~, ]c = 1, 2 . . . . .  (5) 

Now, as IH l < l T l l  +lT l + ... + I Thai, 

i t  follows from (i) and (if) above tha t  Hk e $4. But,  also, as T < G for each T in 7, we have 

Hk = T1 U T~ U ... U Tn~ <~ G. 

So, for each E of B, we have 

H~ (E) <~ H2(E)  <<. H a ( E  ) <~ . . .  <~ G(E).  

Hence we can define a set function H by the formula 

H (E) = lim Hk (E). (6) 
k-->o0 

Since, for each ]c, the function H k is less than or equal to the least upper bound of 7, this 

ensures tha t  H is also less than or equal to this least upper bound. I t  follows without diffi- 

culty from the theory of dominated monotonic convergence tha t  H is a completely additive 

set function having a finite value for each set E of B. Thus H 6:~. Further, there will be sets 

El, E2 . . . .  of A such tha t  Hk is concentrated on Ek, for k = 1, 2 . . . . .  Then the set 

Eo = 5 E~ 
k = l  
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also belongs to .,4. But, for each E of B we have, by  (6), 

H (E) = lim Hk (E) 
k-->o0 

= lim Hk (E N E~) 
k---~o 

= (E n E,, n Eo) 
k,--~.oO 

= lira Hk (E N E o) = H (E N Eo). 
k--~oo 

Hence H E SA. Since we have already noted tha t  H is less than or equal to the least upper 

bound of the subset if, in order to prove tha t  H is the least upper bound of if, it remains 

to show tha t  H />  T for every T E ft. 

Now, for each E in B, we have 

H (E) - Hk (E) = lim {Hh (E) - Hk (E)) 
h--~oo 

= lim (Ha (Io) - -Hk (Io)} -- lim {Hh (CE) --Hk (CE)}  
h--~oo h-->oo 

< H ( I o ) - H k  (Io), 

since, by  (4), H k ~< Hh when h > b. Using (5), it follows tha t  

H ( E ) - H k ( E ) < ~ 2  -k (k = 1, 2 . . . .  ). (7) 

Suppose tha t  there is a set function T O of if, which does not satisfy T O ~< H. Then there is 

a set R 0 of B and a positive integer k such tha t  

Hence 

But, by  (7), 

so tha t  

T0(R0) - H (Ro) > 2 -~. 

(To 0 Ilk)(Ro) >1 To(R o) > t t  (Ro) + 2 -k. 

Hk(CRo) - H (CRo) >1 - 2-~, 

(To U Hk) (CRo) >~ Hk (CRo) >~ H (CRo) - 2- ~. 

Adding (8) and (9) we obtain 

o r  

(To U Hk) (Io) > H(Io) = ho, 

(To U T~ U ... U T,~) (Io) > h o. 

(8) 

(9) 

This contradicts (3). Consequently there can be no such function T o in ff and so H is the 

least upper bound for ff and lies in $~. Hence tA is a band. 



ADDITIVE SET FUNCTIONS IN EUCLIDEAN SPACE 2 8 3  

LEMMA 2. Let .-4 be a system o/ sets o /B  with the properties: 

(i) i/E1E A and E~ E B then E 1 N E~ E A; 

(ii) i/ El, E 2 E A then E 1 U E2 E A. 

The set C.4 o/all F o/ ~ satis/ying F(E) =0/or  each E o/ A, is a band. 

LEMMA(1) 3. I/  A is a system o/sets o/ B satis/ying the conditions o/ Lemma 1 (and, a 

fortiori, o/Lemma 2) then CA and SA are complementary bands in 5. 

Lemma 2 can be proved directly by a simpler version of the proof of Lemma 1 (condi- 

tional completeness is easier to prove). However, it is easier to deduce Lemma 2 from 

Lemma 3. 

Proo/o/Lemma 3. First suppose that  F E CA and T E SA- Then for some E 0 E A we have 

i T I(E) = I T I(E N Eo), 

for all E in B. Hence for each E in B, 

( IF I n I TI ) (E)  = ( l ~ l  n ] T I ) ( E  n Be) + ( ]FI  n I T I ) ( E  n (so - E0)) 

< I~]  (E n E0) + IT I (E n (Io - E0)) = 0. 

Thus F E CA is complementary to every element T in the band SA. 

Suppose now that  there is some F in :~, not in C~, which is nevertheless complement- 

ary to every element of SA. Then there is EoEA such that  I FI (Eo) > 0. Define a set func- 

tion T by the condition 

T(E) = IFI(E n Eo) 

for all E in B. Clearly T E S~ as E 0 E A. But, as 

IFI>~T, 

we h a v e  I F I n I T I = I F I n T = T 

and s o  I~1 n I Tl(So) = T(So) ---IFI(Eo) > 0 .  

This is contrary to the supposition that  F is complementary to each element of Sj. 

Hence each element complementary to each element of SA belongs to C~. By  theorem 

A it follows that  CA is the band complementary to SA. 

(1) Note added in Proo]. R e s u l t s  w h i c h  are  essent ia l ly  equ iva l en t  to our  L e m m a  3 h a v e  been  

recen t ly  ob ta ined  b y  s o m e w h a t  d i f fe ren t  m e t h o d s  b y  E.  T.  Mickle a n d  T. R a d o  (Rendiconti del 
Circolo Mat.  di Palermo, Serie 2, 7 (1958), 5- -33) .  T h e y  use  the i r  r e su l t s  for a d i f ferent  purpose .  
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COROLLARY 1. The sets C (h) and $ (h) are complementary bands o[ :~. 

Proo/. The result follows from the lemma on taking A to be the system of all sets E of 

B with h-re(E) = O. 

COROLLARY 2. The sets C*(h) and $*(h) are complementary bands o/ :~. 

Proo/. The result follows from the lemma on taking A to be the system of all sets E of 

B with a-finite h-measure. 

Proo/o/Lemma 2. Let  A be a system of sets of B with the properties (i) and (if). Let  

A* be the system of all sets which can be expressed as countable unions of sets of the system 

A. Then it  is easy to verify tha t  the system A* satisfies the conditions (i) and (if) of 

Lemma 1. So, by Lemma 3, the set functions of CA* form a band. But a set function F of 

:~ satisfies the condition F(E)  = 0 for each E of A, if, and only if, it satisfies the condition 

F ( E )  = 0  for each E of A*. Hence CA coincides with CA* and so is a band. 

We can now decompose any F of ~ with respect to a given Hausdorff measure. 

THEOREM 1. Given any set/unction F 6 ~ and a Hausdor// measure /unction h(t), there 

is a unique decomposition 

F=F,+F,+F 8, 

where F 1 is strongly h-continuous, where F~ is h-continuous and almost h-singular, and where 

F 3 is h-singular. 

I / t he  component F~ does not vanish, it has a representation in the/orm 

F~(E)= f l (x)dh.m(x) ,  
E f ~ S  

where S is a Borel set el positive a-/inite h-measure, and / is a h-measurable point/unction 

not taking the value zero on S. 

Proo/. By Theorem B, and Corollary 2 to Lemma 3, the set function F has a unique 

decomposition of the form F = F o + F1, where Fo6 $*(h) and F16 C*(h). 

Applying Theorem B and corollary 1 of Lemma 3, the set function F o has a unique 

decomposition of the form F 0 = F 2 + $'3, where F 2 6 C (h), F a 6 $ (h). Since I F~ I ~< ] Fo], F2 

must belong to $* (h) N C (h). Consequently F has a unique decomposition of the required 

form. 

Since F~ 6 S* (h) there is a set T of a-finite h-measure such that  

F2(E) = F2(E N T) 

for all E of B. We define a measure ~ by the equation 

~(E) =h-m(E N T) 
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for all E of B. Then v is a measure over I 0 which is a-finite, since T has a-finite h-measure. 

Fur the r  the class of v-measurable sets contains B. Now, if E is any  set of B with v(E) = 0, 

then 

F2(E) = F~(E N T) =0, 

since h-m(EN T)=v(E)=O,  while F~EC(h). Thus F 2 is absolutely continuous with 

respect to v. Hence by  the R a d o n - N i k o d y m  theorem (Theorem C) there is a function 

/ =/(x) defined for x in I 0, which is v-measurable and v-integrable over I0, and which satis- 

fies 

F~ (E) = f / (x) d ~, 
E 

for all E of ~. Since F~(E) = F2(E ~ T) for all E of B, and v corresponds to  h-measure for 

Borel subsets of T, we can write this in the  form 

F~ tE) = f 1 (x) ~ h-~ (~). 
E ~ T  

Let  R be the set of points of T for which [(x) = 0, and  let Q D R be such t h a t  h-re(Q) = 

h-re(R) and  Q E B. Now put  S = T - Q. T h e n / ( x )  ~ 0 for x in S, S E B, and S has a-finite 

h-meaure. Fur ther  f /(x)dh-m(x)=0 and so 
Efl Q 

F~ (E) = f / (x) d h-m (x) 
E N S  

as required. 

I t  is interesting to note tha t  in the case when h (t) = t n, every set E contained in I 0 

has finite h-measure, so tha t  the decomposition reduces to  the Lebesgue decomposit ion 

into the absolutely continuous set function F 2 and the singular funct ion F a. Further ,  in 

the  limiting case when the h-measure of a set is t aken  to  be the  number  of points it con- 

tains, the set funct ion Fa, being concentrated on a set with no point, is zero and the de- 

composition reduces to  the decomposition into the diffuse set function F 1 and the a tomic 

set funct ion F~. 

Theorem 1 is s tated as a decomposition of a set funct ion F with respect to a Hausdorff  

measure. This is wha t  is relevant  in the  context  of the  present paper  for we want  to  analyse 

the  set funct ion into "uni form" components;  and Hausdorff  measures are invariant  under  

translat ions and  rotat ions in Euclidean space. However,  the theorem is t rue for a decom- 

position with respect to  a ny  measure in Euclidean space which is regular. Thus it forms a 

generalisation of (i) the Lebesgue decomposit ion theorem, and (ii) the Radon-Nikodym 

theorem to  the  case of measures which are non a-finite. 
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THEOREM 1A. Let/U be any measure defined/or Borel sex in Euclidean n-space, and 

suppose F is a completely additive set/unction also defined/or Borel sets. Then there i8 a 

unique decomposition 

-~ = F 1 -b F 2 + F3,  

where 2'i vanishes/or any set o] a-finite ~u-measure, F~ is absolutely continuous with respect 

to/u.measure and concentrated on a Borel set o/ a-finite ~u-measure, and F a is singular with 

respect to/~-measure. I /  the component F2 does not vanish, it has a representation in the/orm 

F~ (E) = f / (x) d/u, 

where S is a Borel set o/ positive a-finite ~u-measure and / is a ~u-measurable point/unction not 

taking the value zero on S. 

This theorem can be proved by the same method as was used in the proof of Theorem 1. 

4. The decomposition spectrum with respect to measures of fractional dimension 

In  this section we work only with the fractional dimension measure A ~, where 

0 ~ a ~ n; but instead of confining our attention to a single h-measure at  a time we work 

with the whole system of these fractional dimension measures, and we need to introduce 

some further concepts. 

We call a set function/7 a-dimension-continuous, if F(E)  = 0 for every E of B which 

has dimension less than a; and we use C~ to denote the set of all such set functions. Simi- 

larly we call a set function F of :~ strongly a-dimension-continuous, if F(E)  = 0 for every 

set E of B of dimension less than or equal to a; and we use C* to denote the set of all such 

functions. Note that  C* ~ C~. 

We say that  a set function F of :~ is a-dimension-singular, if there is a set E 0 of B, 

which can be expressed as the union of a countable number of sets E~ of B, each of dimen- 

sion less than a, and which is such that  

F (E)  = F ( E  n Eo), (10) 

for all E of B. We use S~ to denote the set of all a-dimension-singular set functions. Further, 

we say that  a set function F of ~ is almost a-dimension-singular, if there is a set E 0 in B of 

dimension less than or equal to a, such that  (10) holds for each E in B; and we use $* to 

denote the set of almost a-dimension-singular set functions. Note that  we have $* D S~. 

These concepts are clearly closely related to the corresponding concepts introduced 

in the last section. The situation is conveniently summarized by the inclusion relationships: 
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r ~ C* (t ") c C (t ~) c C~; 

S~*= S*(t~)= S(t*)= S~. 

LEMMA 4. I/0 < a <<- n the pairs C~, S~ and C*, $* are pairs o/complementary bands 

in :~. 

Proo/. Firs t  t ake  A to  be the  sys tem of all sets E of ]g which can be expressed as a 

countable  union of sets E~ of B of dimension less t han  a. I t  follows wi thout  difficulty f rom 

L e m m a  3 t h a t  C~ and S~ are complementa ry  bands  in :~. 

Secondly take  A to be the  sys tem of all sets E of B which are of dimension less t han  

C~ and $~ are or equal  to a. I t  follows wi thout  difficulty f rom L e m m a  3 t h a t  * * complemen- 

t a r y  bands  in :~. 

Remark. When a = 0 we have  Co = 9: and  So = E, where E is the sys tem of set func- 

t ions containing only the  null function. When  a = n we have  C* = Z and S* = :~. 

We also need to introduce the  idea of a set  funct ion having an  exact  dimension. We 

say t h a t  a funct ion F of :~ has the  exact  dimension a, if F is a-dimension continuous and  

a lmost  a-dimension singular. Such a funct ion F is c6ncentra ted on a set of dimension 

a and  F(E)  = 0 for each set E of B of dimension less t han  a. 

Not ice  t h a t  if we app ly  Theorem 1 to  F E :~ wi th  h (t) = t ~, (0 < a < n) the  componen t  

F~ obta ined  will have  the  exact  dimension a. However ,  the  class of set functions of exact  

dimension a is wider t han  the class of components  F 2 arising in this way,  because C* is 

a proper  subset  of C*( t  ~) and  C(t ~) is a proper  subset  of C~. 

THEOREM 2. Given any set/unction F E :~, /or each a with 0 ~ a <. n, there is a unique 

decomposition 

- - •  T •  ~ - - t ' 3  

where F~ ~) is strongly a-dimension-continuous, where F(~ ~) is o/ exact dimension a, and 

where F~ ) is a-dimension-singular. 

Further /or each set E o/ B the /unction [F(~ ~) ] (E), is monotonic decreasing /or 

O~a<~n, while the /unction I F~)[ (E), is monotonic increasing lot O<~ a<-~n. 

Proo/. The first  pa r t  of the  theorem follows f rom Theorem B and L e m m a  4, just  as 

the first pa r t  of Theorem 1 follows f rom Theorem B and the  corollaries to L e m m a  3. Note  

t h a t  the  corresponding decomposi t ion for the  set  funct ion I F I  is given by  the  identi ty:  

! F ] = [F i  ~, ] + ] F~)I + ] F ~  ~) [. 

Now suppose t ha t  0 ~< a < fl ~< n. Then [ F(I~)[ is s t rongly a-dimension-continuous.  

19 -593802 A c t a  mathemati ,  ca. 101. Imprim4 le 18 juln 1959. 
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Further I lv~l + I F~#)I has a decomposition 

2 t~3 

where G~ ) is non-negative and strongly a-dimension-continuous, where G~ ) is non- 

negative, a-dimension-continuous and almost a-dimension-singular, and where G~ ) is 

non-negative and a-dimension-singular. Hence by the uniqueness of the decomposi- 

tion we have 

I F:I = I Fi#' I + a r  ), 

IF(:I = a ~ ) ,  

- - ,or  8 . 

Since G~ ) is a non-negative set function, this shows that  

IFi~)l (E)>~ lFiml (E), 

for each I E of B. Hence [F(~I (E) is a monotonic decreasing function of a for 0 ~< a ~< n. 

A similar proof shows that  I F(a~)I(E) is monotonic increasing. 

The following lemma gives some further information about the decomposition of 

this theorem. 

LEMMX 5. (i) 11 F 6 ~  is decomposed by Theorem 2, then [F(I~) I (/0)is continuous 

on the right as] a /unction o/ a /or 0<~ a< n, and I F~)l(I0) /s continuous on the le~t 

as a /unction o/ a /or O<a<~n. 

(fi) Discominuaies o/ the two /unctions I FV)I(Io), [F(a~)[ (I0) occur /or the. same 

values o/ a in the range 0 <  a< n and [F~v)[ (Io) is the size o/ the discontinuity o/ 

either/unction at a = ~. 

Proo/. ( i ) I F a  (~) ] is a-dimension-singular. Hence, if a > 0 ,  there is a set E o 6 ~  
oo 

such that  E o = U 1E,, dims (E,) < a (i = 1, 2, 3 . . . .  ), and I F~)l (E) = I n  ~, ] (E n E0) for 

every E 6B. We may assume that  the sets E~ 6B are disjoint, so that  

o~ 
- F(s I-v': [ (Io)=__211 (E,). (11) 

Given s > 0, we can choose 6 > 0  such that  

Z I F~'I (E,) < s. (12) 
a - ~ < d i m  B (Ei)< 

Then, if a > f l > a - - ( ~ ,  

I ~<:>1 (~o) >i I ~<~3-~) I (Xo) >i Y I-F: I (E,) 
dlmB (Ei) < ~t -~ 
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and therefore, by i l l )  and (12), 

I P~(~ I (z01>~ I ~ l  (z01>~ I ~ ) I  ( i0) -  ~. 

This proves that  I F~)l(Io) is continuous on the left for 0 < ~ <~ ~. A similar proof 

shows that  I P~ l ( Io )  is continuous on the right for 0 ~< ~ < n. 

(li) Now suppose 0<?~< n and write 

d (?) = n m  { IF? -h '  I (I0) - ] Fi~)l (I0)}. (13) 
h--~O+ 

Now {I-v"~> I (Io) + Ivy' I (zo)} + I p~' I (Io) = I v l  (Io) 

is independent of ~ for 0 < ~ < n, so that  I~i~,l (io) + I F~)I (Io) is monotonic decreas- 

ing and continuous on the left as a function of a .  Hence 

1~7)1 (Io)>~d(?). 

But I ~ ' - "  I (/o)i> I ~:"1 (Zo)§ I-v7' I (Io) 

so that I FT)I (Zo) ~< d (?). 

This proves that  [F(~)[ ( / o ) - d ( ? )  for 0 <?~<n .  (14) 

Similary it  can be proved that,  for 0 ~ ? < n, 

I p~')I (Zo)= ~+{I  ~7+")I (Xo)- I FT) I (Xo)}. (15) 

(13), (14) and (15) together show tha% for 0 < ~ < n ,  the discontinuities of IF(1 ~) ] (I0), 

[~r)[(I.)  coincide m position a .d  si~e. 

COROLLARY. For any EE79, the real ]unction F?)(E) is continuous on the right, 

and F~ ) (E) is continuous on the le/t. The discontinuities o~ these two/unctions coincid~ 

and have the same magnitude. 

Proo/. The corollary follows from the Lemma applied to the positive and negative 

parts of the function GE ~ given by G(Q) = F ( E  fl Q) for any QE B. 

By means of Theorem 2 it  is possible to pick out some components of a set function 

F E ~ with an exact real dimension. These are the set functions [F~)[ which do not 

vanish. To describe what is left when these discrete components have been removed we 

need the following. 

DEFINITION. A set/unction F G ~ is said to have a di//use real dimension spectrum, 

i / the componen~ F~ ~) o/ Theorem 2 vanishes identicaZly ]or each o~ with 0 <~ o: <~ n. 

The following lemma gives insight into the structure of these set functions. 
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LEM~A 6. For a /unc t ion  F E :~ to have a diffuse real dimension spectrum, either o / the  

]ollowing conditions is both necessary and sufficient. 

1. I f  F(1 ~), F(a ~) are the components defined by Theorem 2, then [ F(~) [ (I0), [ F(a~)[ (I0), are 

each continuous functions of ~ /or 0 <~ ~ <<. n. 

2. There is no /unc t ion  G E :~ with an exact real dimension such that 0 < G <<. [ F[ .  

Proof. 1. The necessity and sufficiency of the continuity of ]F(~)[(Io), [F~)[(I0) 

for 0 <  ~ <  n follows from Lemma 5 (ii). The special case of the end points follows 

from (13) and (15). 

2. If this condition is satisfied then [F~)[ must be null for every ~, 0 <  ~ < n .  

Conversely suppose there is a non-null function G E:~ with exact real dimension ~ and 

0 < G ~< [F[. Then 0 < G ~< [F(~v)[ and the function F E :~ has not got a diffuse real di- 

mension spectrum. 

We can now state the main theorem of this section which gives a decomposition of 

F E :~ into a "discrete" spectrum and a diffuse spectrum. 

THEOREM 3. Given any set function F of ~ there is a finite or enumerable sequence 

a~, ~ . . . .  with 0 <~ ~ <- n and ~ # ~j when i ~ j and a decomposition 

= F(d) § .F (~1) § F (~.) + ...,  

where F (d) has a diffuse real dimension spectrum, and F (~p is a set function of exact 

dimension ~ for i =  1, 2 . . . . .  The set of numbers ~ ,  and the decomposition (apart from 

the order of its terms) are uniquely determined by F.  

Proof. Let  S be the set of real numbers ~ such that  in the decomposition of 

Theorem 2, [F~)[ (I0)=~0. Then S is finite or enumerable, for 

E [ F(~)[ (I0)< [F[ (I0)< § c~. 
gES 

:Let g~, gz . . . .  be any enumeration of the elements of S such that  gi ~= ~ when i:~].  

Then  for each E E B, 

G (E) = Z F(2 ~~ (E) (16) 

is defined, and GE:~, since the series in (16) is absolutely and uniformly convergent. 

Le t  F (d)= F - G .  Then F (a) E:~. Now, if G is decomposed by Theorem 2, 

G~ ) = F(2 ~p, when ~ = ~,, 

G~ )=0 ,  when ~4as ,  any i. 

Since the decomposition of Theorem 2 is unique, it follows that: 
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(i) if zc=zct, i = 1 , 2  . . . .  

(ii) if :c~= a,, any  i, 

F(~ ~) (~) = ~(P) - F~ ~) = 0; 

- . , s  - G ~ ) =  0 -  0 =  0. 

Thus  the  set  funct ion F (a) has a diffuse real  dimension spect rum.  This proves  t h a t  

the  decomposi t ion of Theorem 3 is possible. 

To  prove  t h a t  the  decomposi t ion is unique, let  F = G (d) + G (A) + G (~ + ...,  where 

G(~)s and  has  a diffuse real dimension spectrum,  and  G r 6:~ and  has the  exac t  

real dimension fi~ (i = 1, 2 . . . .  ). L e t  ~0 (F, ~) = I F~)I (I0), where 0 ~< ~ < n, F 6 :~ and  ~'a=(~) 

is defined by  Theorem 2. Then  

q~ (F, o~) = q9 (F (a), o~) + ~ q~ (F  (~p, ~) (17) 

= cf (a (a), o~) + ~ q~ (G (&), ~). (18) 
i 

The funct ions r (F (~p, a) are monotonic  funct ions which are cons tant  except  for a 

single s tep a t  a~, so t h a t  (17) represents  a decomposi t ion of the  monotonic  funct ion 

~0 (F, a) into a cont inuous monotonic  funct ion ~ (F (a), a) and  a s tep funct ion ~ ~ (F r ~). 

(18) is ano ther  such decomposi t ion.  Hence  

( F  (~), ~) = ~ (G (d), ~) + k, 

where k is a constant .  B u t  when ~ = 0, r (F  (d), ~) = 0 = ~0 (G (d), ~) so t h a t  k = 0. I t  fol- 

lows t h a t  the functions ~ (F (~), a), are the  same as ~ (F@), ~), though  the  order m a y  

be different.  R e n a m e  the  G@) funct ions  G (~p. 

Thus  it  is sufficient to  prove  t h a t  for each i, 

~(~i) B u t  F~ ~i) can be obta ined  by  apply ing  Theorem 2 to  Then  we know t h a t  F (~p=~,2 �9 

each of the functions G (a), G(~P (~= 1, 2 . . . .  ) and  adding. The  only one to  m a k e  a non-  

null contr ibut ion is G (~p. Hence  F(s ~p= G (~p, and  the  theorem is proved.  

Remark. Each  of the  components  F (~0 of exac t  d imension ~i of Theorem 3 m a y  

be decomposed by  Theorem 1 with respect  to the  measure  funct ion P~; and  in some 

cases the  three  components  will be non-null .  

I f  F E :~ has an  absolutely continuous component ,  then  F (n) will be not  null and  

when F (n~ is decomposed by  Theorem 1 using h (t) = t n the  first  componen t  will be absolute ly  

cont inuous in the  Lebesgue sen~ .  Similarly if F E :~ has an  a tomic  component ,  F (~ will 
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be not null and, when decomposed by  Theorem 1 A with respect to AO-measure, will give 

a middle component which is the atomic component of F.  

5 .  A set  f u n c t i o n  w h i c h  h a s  a d i f f u s e  rea l  d i m e n s i o n  s p e c t r u m .  

In  Theorem 3 we hawe obtained a decomposition of any  set function F EY into 

a function F (d) with a diffuse real dimension spectrum and a discrete spectrum of a t  

most  enumerably many  set functions of exact real dimension. I t  is easy to see tha t  

the discrete spectrum can exist. For example, given different real numbers ~1, ~2 . . . . .  

. . . . . .  0 < ~ < n, let Et be a subset of I o such tha t  A ~j (E~) = 2 -~ (i = 1, 2 . . . .  ), and 

define F(~ 'P(E)=A~' i (ENEt)  for each E G B .  Then if F =  ~ P(~P, we have P ( I 0 ) = l ,  
t ~ 1  

and Theorem 3 must  decompose F into the components F (~p. 

I t  is not trivial to show tha t  the component F ~d) need not be void. The object of the 

present section is to exhibit an example of a non zero set function F (d). Our example is in 

Euclidean 1-space, but  obvious modifications would give an example in n-space. The 

method is to carry out suitable modifications to the Cantor ternary function, and define 

a Stieltjes measure • with respect to this function, defined for Borel subsets of [0, 1]. 

Clearly F E :~. 

To obtain a Cantor type  set of dimension ~, 0 < ~ <  1, one proceeds as follows. 

Let  P0 be the closed interval [0, 1]. Obtain P1 from P0 by  removing an open inter- 

val of length ~ from the middle of [0, 1] where 2~ satisfies 

[�89 (1 - 2~)]~ - �89 

tha t  is, ~ = 1 -21-~-1 .  (19) 

I f  Pn has been defined and contains 2 n intervals of length In--(~)n/~, Pn+l is obtained 

by  removing from the middle of each interval of P .  an open interval of length 2~ln. 

Finally put  P =  N P~. Then P is a perfect set and A ~ ( P ) =  1. (This was first proved 
r = 0  

b y  Hausdorff  [3].) 

A function ~0~ (x) is defined for x in [0, 1] = I o as follows. First  pu t  ~0~ (x) = �89 on 

( I 0 -  P1). Now (P1 - P~) consists of 2 open intervals; define ~0~ (x) -- �88 ~0~ (x) = ~ re- 

spectively on the left and right of these. Similarly ( P n - 1 - P ~ )  consist of 2 n-1 equal 

open intervals; order these from left to right and put  q )~ (x )=2-n (2r  - 1) in the rth 

one. This process will define 90~ (x) for all x in ( I  0 -  P). Define it a t  points of P so 

tha t  it is continuous for 0 ~< x~< 1. For any  set A E B, let CA (x) be the characteristic 

~unction of A and define 
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1 

H~(A)  = S CA(x)dq~(x) ,  
o 

where the integral on the right is a Lebesgue Stieltjes integral with respect to the 

monotonic function ~ (x). I t  can be shown tha t  H~ is a positive set function in :~ 

of exact real dimension ~ and tha t  

H~(A)  = A ~ ( P  N A). 

We do not  need quite as much but  we prove: 

LEMI~A 7. For 0 < ~ < 1, the function q~ (x) satisfies 0 < q~ (x2) - qJ~ (xl) <~ Ks  @2 - xl) ~, 

for all Xl, x s such that 0 <. x 1 <~ x~ < 1, where K~ is a suitable finite constant. 

Proof. Since ~ ( x )  is constant on each interval of ( I  0 - P ) i t  is sufficient to prove 

the lemma when x~, x s are two distinct points of P. Let  n be the unique integer 

such tha t  Xl, x s are in the same interval  of P ,  but  in different intervals of P~+I. 

Now if [a, b] is one of the intervals of Pn we have q ~ ( b ) - q ~ ( a ) = ( � 8 9  ~ and it follows 

that 

Also 

Thus 

~ (x~) - (p~ (xi) < (�89 

x ~ - ~ , > ~ s 4 = ~ ( � 8 9  

(p~ (x~) - (p~ (x~) -<< ( i F  < , t ;~ (x~ - x~) ~, 

and the lemma is proved with K ~ = t ~  ~. 

Remark.  By taking considerably more care, the above lemma can be proved with 

K ,  = 1, and this result is clearly best possible. 

LEM~IA 8. I f  A is a Bovel subset of I o such that AS(A)=0 ,  then 

1 

H~ (A) = f CA (x) dq~ (x) = O. 
0 

Note. This proves tha t  H~ E C~. Since P is a set of finite A~-measure for which 

H~(E)  = H ~ ( E  n P)  it follows tha t  H~ is a set function of exact real dimension g. In  

fact more is true: if we apply Theorem 1 to the set function H~ we will obtain] 

H~(E)= f 1.dA *, 
Efl  P 

so tha t  Hs  is in a certain sense "spread very uniformly" over the set P. 
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Proo] of~ lemma. Let A be any set c I  0 such tha t  A ~ ( A ) = 0 .  Then there exists 

an open set G D A  consisting of intervals (a~, b~) i = l ,  2 . . . .  such tha t  ~ ( b ~ - a i ) ~ < ~ .  
i 

Now 

H~ (A) ~< H~ (G) = ~ { ~  (b,) - ~ (a,)} ~< g~  ~ (b~ - a~) ~ < g~  e. 

Since e is arbitrary,  H~(A)=O, and the lemma is proved. 

Given any  set E in Euclidean n-space, we can define the dimension of E a t  the 

point x, denoted by  dim (x, E), by the relation 

dim (x, E) = lim dimB (E A S(x, r)), (20) 
r--~O+ 

where S(x, r) is the open sphere centre x and radius r. 

The Cantor set P defined above has the same dimension ~ a t  each of its points. 

Our object now is to modify the definition of P so tha t  it has a different dimension 

a t  each of its points. Note that ,  by  (19), 2~ is a monotonic decreasing function of 

for 0 <  ~ <  1 and lira ,t~ =0 ,  lim 2~ = 1. The value 2~ = ~ corresponds to the Cantor 
~--~I-- ~-~0+ 

te rnary  set which has dimension a = log 2/log 3. 

Let  Qo= [0, 1]. Remove from the middle of Q0 an open interval of length 2�89 

For x in this open interva] put  ~ (x)= �89 The remaining set Q1 consists of closed in- 

tervals I(: 1), I(~ 1) of lengths l(11), l~ ') ordered from left to right. Remove from the middle 

of the interval ~(~) -(1) an open interval of length 2~/(1), and from the middle of i(1) an open 

interval of length ~t l(~ ). These open intervals of x correspond to ~ (x) = 1, ~ (x) = 

respectively. 

Suppose now tha t  Q, has been defined and consists of the closed intervals 

I(1 n), I~ n), T(n) where the lower suffices agree with the order of the intervals from 

left to right; and ~(x) is already defined on" Q o - Q - -  From the middle of L ("( 

(r= 1, 2 . . . . .  2 n) of length l(~ ~) remove an open interval of length 2rl~ ~), where 

r 1 

Y = 2 "  2 ~+:'  

and, for x in this open interval, pu t  

r 1 
~(x)=y 2" 2 "+1" 

The 2 T M  closed intervals formed in this way are the components of the set Q.+I. 

Finally put  Q = N On, and complete the definition of the function ~ (x) a t  points of 
n = l  
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Q so t h a t  i t  is continuous for 0~< x~< 1. This  definit ion ensures t h a t  ~0(x) is mono-  

tonic and  non-decreasing.  

I f  A is any  Borel  subset  of I0, define 

1 

H (A) = ~ CA (x) d9~ (x). 
0 

Then H(A)  is a posi t ive  set funct ion E :~ wi th  H(Q) = H(Io) = 1. Thus H is a singular set  

funct ion in the Lebesgue sense, and  it  is also diffuse since cp (x) is continuous. We now 

prove  t h a t  Q E B and H E :~ sat isfy the  conditions of 

THEOREM 4. (i) There exists a per/ect set Q c I o = [0, 1] such that the dimension o /Q  

at any two o/ i ts  points is di//erent unless the two points are end-points of the same interval o/ 

I o - Q .  

(fi) There is a positive set /unction H E ~ concentrated on the set Q such that H has a 

di//use real dimension spectrum. 

Proo/. Let  Q be the  modified Cantor  set  defined above  and ~ (x) = y  the  associated 

monotonic  continuous function. The inverse funct ion x = ~0 - l (y)  is uniquely  defined for  

0 ~< y ~< 1 except  for the  enumerable  set  of points  y = p .  2 -r (p, r integers). Define it uni- 

quely for all y wi th  0 ~< y ~< 1 by  making  it  continuous on the  left. Thus  for  any  y, 0 <~ y <~ 1, 

~-1 (y) will be a point  of the  set  Q. 

For  0 < a < 1, let x~ =~0-1(~). I f  1(~ n) is a closed interval  of Q~ such t h a t  I(~ ~) ~ (0,x~) 

and  m is the r ight  hand  end point  of I(r n), then  we m a y  write ~ (m) = y < fl < ~. Now in 

defining 1(, ~) N Q~+~ for k = 1, 2 . . . . .  we removed  from L (n) successively open intervals  of 

length 2 t imes the  closed interval  where a lways we have  ;t ~> 2v. Thus  1~ ~) N Q ~  will consist 

of 2 k closed intervals  each of length less t h a n  

[ 1  (1  - ; ~ ) ] ~  = (�89 

Hence  A~ ~r(n) ~ , ~ . r  fi Q)<~ l im 2~(~)k~/~-~O. 
k -~- oo 

Now Q f~ (0, x~)= U Q n I~ n), 
l(n) C (0, xor 

and we can write Q N (0, x~)= 5 E,, (21) 

where each E, is a Borel set of dimension less t h a n  a. 

Similarly, if I(, ~) is an in terval  of Q, such t h a t  I(~ ~) c (x~, 1), and I is the  left  hand  

end-point  of I ,  (~), we have  q~(1)=y~a.  I n  defining I(,~)NQ~+, we remove  f rom I~ (~) 
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successively open intervals of length ~ times the closed interval where always we have 

~t ~< ~tr. Thus I(~ n) N Qn+~ will consist of 2 k closed intervals each of length a t  least (�89 

where l(r n) is the length of Ir (n). 

Then if xl, x 2 are in I(r n) and 

x~ <<. xl < x2 <~ 1, 

the method used in the proof of Lemma 7 shows tha t  

0 < ~ (x~) - ~ (xl) ~< K~ (x~ - xl) ~. 

I t  follows, as in the proof of Lemma 8 tha t  if A is any set of zero A~-measure, then 

H (A fi (x~, 1))= 0. (22) 

Now, since H is diffuse, for any E EB 

H ( E ) = H  (E n (0, x~))§ H (E N (x~, 1)). (23) 

But  the set function 

H (E n (o, H (E n Q n (0, 

clearly belongs to :~, and so by  (21) belongs to $~. Further,  using (22), we see tha t  

the set function H ( E  N (x~,, 1)) belongs to C~. Since the decomposition 

H = H  1 § §  a 

of H provided by  Theorem 2 is unique, we can make the identification 

H I ( E ) = H ( E  N (x~,, 1)), H ~ ( E ) = 0 ,  H a ( E ) = H ( E  N (O,x~)). 

Thus H has a diffuse real dimension spectrum as required. This proves (ii). 

:Now for any  x E Q we want  to find the limit of the dimension of (1,m) N Q for 1 < x < m 

as l-->x from below and m--->x from above. Let  

d(1,m) = dim,  ((l,m) n Q}. 

Then (i) d (l,m) ~ ~ (m) 

by  (21) and also, since the set function 

T(E)  = H ( E  A (/, 1)) 

is in C~a), while 

it follows tha t  

T(Q N (1,m)) = H ((l,m)) =9~(m) -q~(1) > O, 

(ii) d(1,m) >>-r 
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Since ~ (x) is continuous,  (i) and  (ii) show t h a t  

~ m s u p  d (l, m) < l im (x) = lim 9 (1) = l im inf d (l, m), m~x+o(p (m) = ~ ~ x - o  ~-.,.r 
ra . .~  x +O m-.-:*x +O 

and therefore,  b y  (20), d im (x,Q) =ep (x). This completes  the proof  of (i) since ~0 (Xl) < ~0 (X2) 

if Xl, x~ are points  of Q, not  end-points  of the  same interval  of I 0 - Q and xx < x 2. 

6. Decompositions relative to a maximal system of comparable Hausdorff measures 

Given two Hausdor f f  measure  functions h 1 (t), h 2 (t) we say  

, .  h I ( t )  n hl(t)>-h2(t ) if n m - - = u ,  
t-,0+ hn (t) 

hi ( t)~h~ (t) if lim ~ = + ~ .  
. , 0 +  ~() 

I n  ei ther case two such measure  functions are said to  be comparable. I t  is clear t h a t  not  all 

pairs  of measure  functions are comparable ,  bu t  the  class ~ / o f  all Hansdorf f  measure  func- 

t ions is given a par t ia l  ordering b y  the  relat ion -~. 

I f  h 1 (t) >- h n (t) then  hx-m (E) = 0 for any  set  E of finite h~ outer  measure;  and  h~-m, (E) = 

+ c~ for a n y  set E of posit ive h 1 outer  measure.  

The  class ~ of measure  funct ions t ~, for real posi t ive a, forms a complete ly  ordered 

subset  of ~ .  Using the  ax iom of choice (or Zorn 's  lemma)  we can find a max ima l  complete ly  

ordered set  s such t h a t  ~ c s c ~/, and  l: has the  following properties:  

(i) a n y  two elements  hi, h n E s  are comparable;  

(ii) there  is no e lement  h E ~ / - E  which is comparable  wi th  every  e lement  in E. 

The  class ~ / o f  all Hansdof f f  measure  funct ions and  the  set ~ ~ ~ / a r e  of power  con- 

t i nuum so the  max ima l  sys tem 1: mus t  also have  power  cont inuum.  

Two subsets L, R c s will be said to form a section in I~ if L N R = 4, L U R = s and  

hxE L, h2 E R implies t h a t  h l ~  hn, h I E L implies t h a t  hE L for every  h E E satisfying h-< hi,  

while h2 E R implies t h a t  h E R for every  h E s satisfying h )- h 2. The  sections can be ordered 

using the  inclusion relationship, so we can form a complete ly  ordered set  f i e f  elements  s, 

where each 8 is a section Ls, R8 of 1:, and  we say s 1 < 83, if and  only if ])8, is a proper  subset  

of Ls,. For  any  e lement  99 E 1: one can form sections L, R b y  pu t t ing  in L all those h E s for 

which h"<~,  pu t t ing  in R all those h E E  for which h>-~ ,  and  finally adding r ei ther  to  

Z or to  R. Not  all sections of E are necessarily fo rmed in this way,  however.  Tha t  is, there  

m a y  be a section s such t ha t  Ls has no greatest  member  in s and  R8 has no least  m e m b e r  in 
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s The set ff of sections is a well-ordered set and clearly has power at  least tha t  of the 

continuum.(1) 

We now develop decomposition theorems for the class /: similar to those developed in 

w 4 for the class ~.  The only changes in method will be those necessitated by  the existence 

of sections s which do not correspond to any  element ~ E C. From now on all definitions and 

results ~ l l  be in terms of the particular class s 

Given se r f ,  let Ls, R, denote the corresponding decomposition of s and let L~, R~ 

denote the sets obtained by  removing from Ls the greatest element (if it exists) and from 

Rs the least element (if it exists). Thus the section s corresponding to ~ E I~ leads to the 

subsets L~ consisting of h E s with h ~ q and R~ eonsisting of h E s with h N q. Now for any  

s E ff define the following classes. 

1. C8 is the class of set functions F of :~ which are s-continuous, tha t  is those set func- 

tions such tha t  F (E) = 0 for any E E B for which there is at  least one h E L~ with h-m (E) = O. 

2. C* is the class of set functions F of ~ which are strongly s-continuous, tha t  is 

those set functions such tha t  h-m (E) = 0 for every h E R~ implies tha t  F (E) = 0. 

3. $, is the class of set functions F of :~ which are s-singular; tha t  is those set functions 

for which there is some E 0 E B such tha t  

F(E) = F ( E  N Eo) (24) 

and Eo= 5 E~, where for each E~ there is some hi E L~ for which h~-m(E~)=0. 
~=1 

4. S* is the class of set functions F of :~ which are almost s-singular; tha t  is those 

set functions for which there is some E 0 E B such tha t  (24) is satisfied and h-m(Eo) = 0 for 
! 

every h E R.. 

Clearly, for any  s, we have 

Cs*cC8 and $ * ~ $ , .  

The measure function t ~ is in the set s and defines a section s (~). I t  is interesting to notice 

the relationships between the classes defined by  this section, and the classes previously 

obtained in w167 3, 4. These can be summarized by the relationships 

* ~  * C * ~ ~ C C / C~ C~(~) C ( t ) c C ( t )  C~(~) C~, (25) 

t * * * ~ cr 

L~M~a 9. I / s e r f  is a section o/the maximal system !: o] measure/unctions, then the 

pairs Cs, Ss and C*, S* are pairs o/ complementary bands in :~. 

(1) Dr. R. O. Davies has proved that ~ has in fact power greater than that of the continuum. 
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Proo/. (i) Let  +4 be the system of sets E E B which can be expressed as a countable 

union of sets E~ of B such tha t  for each E l there exists an hi E L;  with h~-m(E~) = O. Then +4 

satisfies the  conditions of Lemmas  l ,  2, 3. I t  is immediate t ha t  SA = $~. To see tha t  CA --- C8 

it  is sufficient to notice tha t  if E = 0 E~ is in +4, and F E C:, then  

Hence, by  Lemma 3, Cs, $~ are complementary  bands. 

(ii) Now let +4' be the  system of sets E E B such tha t  h-m ( E ) =  0 for every h E R;. 

This system also satisfies the conditions of Lemma 3, so CA., SA, are complementary  

bands in :~. Since * * Cs = CA,, and t s =  tA', this completes the proof of the lemma. 

D E f I N I T I O n .  A set ]unction F E :~ will be said to have the exact dimension s relative 

to F~, i / F  is in Cs and S*s. 

Such a funct ion is concentrated on a set E which has zero measure with respect to 

every h E R's, and  F(E)  = 0 for every E for which there is some h E L; with h-m (E) = O. 

Remark. Since 1: is by  definition comparable with h (t) -- t ~ for 0 ~< ~ ~< n, any  section 

s E ff corresponds to a unique real dimension ~. Thus any  set funct ion of exact  dimension s 

relative to  I:  will also be of exact  real dimension g for the relevant ~. However ,  there will 

in general be a large number  of sections s corresponding to  the  same real dimension g. 

THEOREM 5. Given any set /unction Fe :~ ,  /or each s e T ,  the class o/sections o / the  

maximal system s o] measure ]unctions, there is a unique decomposition 

F = F<I:) + + 

where F <~) is strongly s-continuous, F~ s) has the exact dimension s relative to F~, and F(8 ~) is 

s-singular. 

Further i] sl, s~ are two sections ol ~ with s 1 < s~, then/or every E E B 

I ] (E) >/I I (E), 

and I F h:') ] (E) ~< [ F<~:) [ (E). 

This theorem follows from L e m m a  9 in exact ly  the same way  t h a t  Theorem 2 followed 

from Lemma 4. 

DEFINITION.  A set/unction F E  ~ is said to have a di//use s spectrum i/ 

the component F <s) o/Theorem 5 vanishes identically ]or every section s E ft. 

I f  for every s E ff there is defined a set funct ion F (s) E :~, then we say tha t  F <s) is a 
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continuous function of s at  s e if, given e > 0 there exist sections sl, s~ E ff such that  s 1 < 

s o < s~, and for any E E B, Sl < s < s z we have] 

[ F(s)-~(~.) I <~.  

Continuity on the left and right can clearly be defined and the development of w 4 leads to 

LEMMA 10. For a set /unction ~' E ~ to have a di//use E-dimension spectrum, either o/ the 

[ollowing conditions is both necessary and su//icient. 

1. I /  $'(18), F?  ) are the components de/incd by Theorem 5, then [lv(18)], I F(sS)], are 

each continuous /unctions o/ s. 

2. _For no s E ~ is there a /unction G E ~ with exact dimension s relative to I=, and 

0<IGI<IFI. 
Remark.  If  a set function iv E :~ has a diffuse real dimension spectrum, then clearly it 

has a diffuse s spectrum for any maximal system s 

This immediately gives the decomposition of any set function F E :~ relative to E 

into a set function with a diffuse E-dimension spectrum and a discrete sum of set functions 

each having an exact dimension relative to s 

THEOREM 6. Given a maximal  system l: o/ measure /unctions and any se t /unc t ion  

F E ~, there is a / i n i t e  or enumerable sequence sl, s 2 . . . .  o~ distinct sections o/ s and a de. 

composition 

F = F (~) + F (81) + F (s') + .. . ,  

where F (d~ has a di//nse I:-dimension spectrum, and F (sp is a set /unction o/exact  dimension 

s t /o r  i = 1, 2 . . . . .  The set o / the  sections st, and the decomposition (apart /rom the order o/ its 

terms) are uniquely determined by F .  

The proof is omitted since only changes of wording are needed in the proof of Theorem 3. 

Remark 1. I t  is natural to compare the decomposition of F E :~ given by Theorem 6 

with that  given by Theorem 3. Suppose then, that  

F = G (d' + G (~) + G (~) + ..., 

where G (~) has a continuous real dimension spectrum, and G (~p is of exact real di- 

mension at, i =  1, 2 . . . . .  G (~) also has a diffuse s spectrum, so the compo- 

nent G (~) will form part of the component F (d) of Theorem 6. Now consider the func- 

tion G ~t), and suppose it is decomposed by Theorem 1, using h ( t ) = t  ~, into 

G(~O = G(l~l) + G(~t ) + ~(~) 
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The set function G (~t) will reappear in one of the functions ~sj) of Theorem 6 where 

sj is the section of l: defined by the measure function t% On the other hand, the 

components G(1 ~), G(a ~T) will each be decomposed by l: and may contribute to the 

component F (~) and also give a finite or enumerable number of components F (sk) of 

exact dimension sk where each of the sections s~ will correspond to the real dimen- 

sion ~t. Thus two different components G (~p, G(~P will not contribute to the same 

F (Sk) of Theorem 6. 

On the other hand, if we regard the decomposition of Theorem 6 as given, it  

is easy to reconstruct that  of Theorem 3. Each of the components p(st) will form a 

contribution to the component G (~), where ~k is the real dimension corresponding to 

the section st. The total component G (~k) will be made up as a countable sum of such 

contributions F (~0 together, perhaps, with a contribution from the component $'(~). 

The contribution to G (~) from F (a) will be of the form I 

F ( d ) ( t )  ~'~(d)(s) 
I - - ' L ' I  

where F(1 ~)('), F(1 ~)a) denote the components in the decomposition of F (~) using the sec- 

tions s and t of ff defined as follows. The left class L~ denotes all the functions ~ E 1: 

satisfying r  ~ for some fl < g, and R~ consist of all the other ~ E E. The left class 

L, denotes all the functions ~ e s satisfying ~- ( t  ~ for each fl with fl > ~. 

Remark 2. I t  is slightly unsatisfactory that  the decomposition spectrum obtained in 

Theorem 6 may depend on the particular maximal class 1: c ~.  However, there are set 

functions with an exact dimension corresponding to a measure function ~, which will not 

be decomposed further by any maximal class s For example the middle component in 

Theorem 1 is of this kind. If 

F (E) = f 1 (x) d~-m (x) 
Ef l  T 

where T E B has positive a-finite e-measure, then for any l: which contains r the decom- 

position of Theorem 6 will yield the single function F of exact dimension s defined by 

~. H~ defined in detail in w 5 is an example of such a set function. Whatever maximal class 

is used, the single component H~ will remain. 

Remark 3. If  a set function F E :~ is formed by adding together an enumerable number 

of components of type (1), we might hope that  the decomposition of Theorem 6 would 

resolve F into these distinct components. This will only be so if (i) the components F~ of 

type (1) correspond to Hausdorff measure functions r which are distinct and mutually 

comparable, and (ii) the maximal system 1: used in Theorem 6 includes sections correspond- 
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ing to each of the V~. I f  there are two components  F~, Fj  corresponding to ~ ,  ~j which are 

no t  comparable,  there is no hope of Theorem 6 separating them out.  

Remark 4. I n  the decomposit ion of Theorem 6 we have used sections of JC. We have not  

been able to  decide whether or not  this is necessary. I n  other  words we have not  been 

able to construct  an example of set funct ion F E :~ which has exact  l : -dimension's  where 

s E 7,  but  does not  correspond to  a measure funct ion ~ E s 

Remark 5. The decomposition of Theorem 6 is in a certain obvious sense (see Remark  

1 above) finer than  tha t  of Theorem 3. I t  would be desirable to produce for any  F E :~ an 

ul t imate  decomposit ion in the sense tha t  it described completely the detailed s tructure of F .  

We are quite a long way from deciding under  what  circumstances this is possible. The best  

one could hope for would be a decomposition theorem (like Theorems 3, 6) into a set func- 

t ion with a diffuse spectrum and an enumerable sum of set functions of exact  dimension in 

some sense each of which could not  be decomposed any  fur ther  into more uniform com- 

ponents. Thus one would like the components  of exact  dimension ~ E ~ / t o  be such tha t  

Theorem 1 would give an  integral representat ion of the whole component .  

By  using the cont inuum hypothesis  we have been able to  make some progress in this 

direction. We hope to publish the results in a later paper.  
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