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Consider the simplest kind of multiple integral variational problem, that  of minimizing 

an integral I [u] of the form 

I [u]= . IF(x,  y, u, p, q )dA,  (1) 

where the admissible functions u = u (x, y) are continuously differentiable in R and take 

on given continuous values on the boundary of R. Here R denotes an open bounded region 

of the plane and dA = dx dy. 

I t  has been known for more than one hundred and fifty years that  a twice di//erentiable 

minimizing function must satisfy the Euler-Lagrange equation 

a-~(F~) ~y(p~)= Fu. (2) 

A function u(x, y) which is continuous in some region A and satisfies (2) at  all interior 

points of A is called an extremal. Let us denote by ~ an extremal defined over the closure 

of R whieh continuously takes on the given boundary values. A major task of the calculus 

of variations is to give conditions under which E will minimize I[u]. This problem is not 

completely settled even today, in spite of the efforts of many investigators. We shall 

consider here one aspect of this problem, having its genesis in the classical field theory 

of Weierstrass and Hilbert. The latter, in his famous paper "Mathematische Probleme" 

and in a later paper "Zur Variationsreehnung", proved essentially the following theorem. 

I] the extremal ~ can be imbedded in a/ield ~q with slope/unctions p (x, y, z), q (x, y, z), 

such that 
1 -- 593804.  Acta mathematica. 102. I m p r i m 6  le 14 s e p t o m b r e  1959 
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E (x, y, z, p, q; P ,  Q) >i 0 

for each set o / v a l u e s  (x, y, z) in  the field, then E min imizes  the integral I [u] relative to all 

admiss ib le /unc t ions  whose values lie in  the jield.(1) 

The k ind  of imbedd ing  used in H i lbe r t ' s  t heorem requires  the  ent i re  ex t r ema l  surface 

corresponding to  ~ to  lie in the  field ~ ;  as  a consequence E mus t  be con t inuous ly  differen- 

t i ab le  in  the  closure of R. Thus  Hi lbe r t ' s  theorem,  in spi te  of i t s  elegance, is s igni f icant ly  

res t r i c t ed  in  i ts  usefulness and  range  of appl ica t ion .  Indeed ,  i t  is a commonplace  t o d a y  

t h a t  the  solut ion of a b o u n d a r y  value  p rob lem in pa r t i a l  d i f ferent ia l  equat ions  need  n o t  

be d i f ferent iable  up  to  the  bounda ry ,  even when the  b o u n d a r y  values  themselves  are  

different iable .  On the  o the r  hand,  if one considers ex t remals  ~ which are  no t  d i f ferent iable  

n the  closure of R, t hen  the  conclusion of H i lbe r t ' s  t heorem comes in doub t ,  since E in 

th is  case need no t  give I [u]  a f ini te  value.(2) There  the  m a t t e r  res ts  a t  present ,  for o the r  

au thor s  who have  s tud ied  the  p rob lem from a more or less re la ted  po in t  of view have  

a lways  p laced  some k ind  of res t r ic t ion  on the  behav ior  of E a t  the  b o u n d a r y  (see, for 

example ,  the  papers  of IAchtenstein,  Miranda ,  Karush ,  and  Hes tenes  l i s ted  in the  refer- 

ences). 

The ma in  purpose  of th is  pape r  is to  give a re formula t ion  of H i lbe r t ' s  t heorem which 

avoids  bo th  the  difficult ies men t ioned  above.  I n  the  new formula t ion  (Theorem 4) i t  is 

a ssumed  t h a t  there  is a t  leas t  one admiss ib le  func t ion  which gives ] a f ini te  value,  and  

the  f ield is requi red  to  be an  ex t r ema l  field. On the  o the r  hand,  b y  v i r tue  of an  extens ion  

of the  no t ion  of imbedding ,  i t  is no t  necessary  to  make  a n y  a s sumpt ion  concerning the  

behavior  of E a t  t he  bounda ry ,  beyond  s imply  requir ing  t h a t  i t  t ake  on the  given b o u n d a r y  

values.  The proof  is a modi f ica t ion  and  extens ion  of H i lbe r t ' s  classical  a rgument :  a t  no 

s tage  is i t  necessary  to  resor t  to  deep theorems  of in tegra t ion .  F ina l l y  t he  proof  appl ies  

(~) The first complete statement of this theorem seems to be due to Bolza ([2], 683); see also [1], w 11. 
For completeness, we add the definition 

E (x, y, u, p, q; P, Q) = F (P, Q) - F (p, q) - (P - p) F~(p, q) - (Q - q) Fq(p, q), 

in which the arguments (x, y, u) of $' have been uniformly suppressed. 
(z) This objection (usually attributed to Hadamard) was first pointed out in 1871 by F. Prym. Prym's 

example is so elegant that I cannot resist reprodueting it here: Let R be the circle [3z - 1[ < 1, mad 
consider the function 

uffilm {~/l~g z}, z = x + i y .  

By direct calculation one finds that the Dirichlet integral of u over R is divergent, while, on the other 
hand, u is continuous in the closure of R. In other words, u is an extremal for a regular variational prob- 
lem, and at the same time I [u] = co. 
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equally in n dimensions and to extremals satisfying only the Haa r  equations. Further  

results of the paper  are discussed in sections 1 and 2. 

The paper is divided into three parts.  The first par t  contains preparatory material  and 

a discussion of the special integrand F(x, y, p, q), the second par t  t reats  the full integrand 

F (x, y, u, p, q), and the final par t  is devoted to certain subsidiary matters .  

P A R T  I 

1. Preliminaries:  The purpose of this section is to define precisely the class of inte- 

grands F(x,  y, u, p, q) which we shall treat,  and the class of functions which will be admit ted  

to competit ion in minimizing the integral I .  

We assume tha t  F is defined and continuous for all values of u, p, q and for all (x, y) E R. 

Furthermore,  we suppose tha t  the partial derivatives F~, Fq, and F u exist and are contin- 

uous. Finally, in all el our results it is supposed that 

F(x,  y, u, p, q)/> 0, (3) 

and that the Weicrstrass /unction is non.negative, 

E(x ,y ,u ,p ,q ;P ,Q)>~O,  (p,q):~(P,Q). (4) 

I t  would be possible to lighten these assumptions somewhat in certain cases, but  we leave 

such refinements to the reader. By a simple change of integrand, condition (3) can be 

at tained for any integrand F which is bounded below by a fixed integrable function of 

x, y. Additional requirements will occasionally be placed on F, but  these will be stated 

in the hypotheses of the individual theorems. 

A real-valued function v = v (x, y) defined on the closure of R will be said to be in the 

class 9/ of admissible functions if and only if it satisfies the following three conditions: 

9~ 1. v continuously takes on assigned (continuous) values on the boundary of R. 

9~ 2. v is continuously differentiable in R. The integral l [v]  is understood to be the 

improper Riemann integral obtained by exhaustion of the region R. 

3. I [v] is finite. 

Various generalizations of ~ 2 can be treated, the simplest being piecewise continuously 

differentiable functions. The class of admissible functions secured from this particular 

extension of ~ 2 is not especially interesting, and accordingly we shall set it aside without 

further discussion. More important  is the class 9/* of admissible functions obtained by 

replacing 9~ 2 by the condition 

2*. v is continuous in R. The integral I[v] is to be understood in the following 
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generalized sense: Let  {Vn) be a sequence of continuously differentiable functions con- 

verging uniformly to v in any proper subregion of R. Then 

I[v] =g.l .b.  lim inf I[v~], (5) 
n-)oo 

where the g.l.b, is taken over all sequences (vn) converging to v as above. I t  is taci t ly 

assumed tha t  each function v, is defined in some subregion Rn of R, and I[vn] = 

I[vn, Rn]. 
The generalized integral defined by (5) is somewhat analogous to the generalized 

area in Lebesgue's theory of surface area, and indeed can be shown equivalent to the 

latter when F = V 1 + p~ + q~. In  order for (5) to be meaningful and logically consistent, 

i t  must  still be proved tha t  if v is continuously differentiable in R, then I[v],  as defined 

by  (5), has the natural  value. This we shall do in the following paper  in this journal. An 

important  subclass ~ of the admissible functions 2"  is obtained by  restricting v to be 

Lipschitz continuous in any  closed subregion of R. 

With the preceding definitions in mind, we can now state the problem which will concern 

us throughout the paper. 

Variational Problem I. Among all functions satisfying the boundary condition 9~ 1 and 

for which the integral I has a meaning, to determine a function u such tha t  I [u] = Minimum. 

Let  u = u (x, y) be a continuous function defined in some region A. w e  shall say tha t  

u is an extremal if and only if 

1. u is continuously differentiable in the interior of A. 

2. For every piecewise smooth function ~ which vanishes on and near the boundary of 

A, we have 

f (~xF,+ ~y Fq+ ~ Fu) d A  = 0. (6) 
A 

(A function is said to be piecewise smooth in a region A if it is continuous in A, and has 

bounded continuous first derivatives except on a finite number  of smooth arcs a n d  a t  a 

finite number  of isolated points.) 

This definition of an extremal, which is equivalent to the Haar  equations, will be used 

henceforth in the paper; i t  is obviously satisfied by  any  solution of the Euler-Lagrange 

equation (2). To simplify the wording of later theorems, we shall say tha t  a function u is 

an extremal/or the variational problem I if u is an extremal defined over the closure of .R 

which continuously takes on the given boundary values. 

Remark. The reader who prefers to deal with integrands and extremals which are of 

class C ~, and who is content to consider only the class 9~ of admissible functions, will find 
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the proofs immediately applicable to his case; moreover, he may  omit  reading sections 4 

and 5, the lemma in section 9, the last portion of section 10, and all of Pa r t  I I I .  

2. The special integrand F(x~y~p~ q) .  In  sections 2 through 5 we shall consider inte- 

grands which are independent of u. Recalling the definitions and terminology of the preced- 

ing sections, we can state our first result. 

THEOREM 1. Let F be i n ~ p e ~ n t  of u, and suppose u ~ u ( x ,  y) i8 an extremal for the 

variational problem I. Let there exist at least one function v in the dass 2 (or ~I*) of admissible 

functions. Then I [u] exists and 

I[u] < I[v] (7) 
for each v in 2 (or ~l*). 

I f  the equality sign in (4)/s  excluded, then I [u] < I [v]/or each v different from u. 

This result is a corollary of Theorem 4 below. I t  has an independent proof, however, 

which is enough different to justify being given separately (section 3). This proof applies 

equally well in any number  of dimensions. 

Two special cases of Theorem 1 deserve notice. First, if F~(u) and Fq(u) are bounded,(1) 

and if the boundary of R is rectifiable, t hen  (7) follows in a well-known way simply by 

integration by parts. The merit  of Theorem 1 lies precisely in eliminating these hypotheses. 

Secondly, for the integrand F = p2 + q~ (the Dirichlet integral) a result equivalent to 

Theorem 1 was given by Lebesgue in 1913. I t  is interesting to examine the connection 

between this result and what is usually known as Dirichlet's principle. The latter may  be 

interpreted as saying that,  under certain circumstances, the Dirichlet integral may  be 

minimized and the minimizing function solves the boundary value (Dirichlet) problem for 

the Laplace equation. Sufficient conditions for the existence of a minimum were first 

given by Hflbert, using direct methods of the calculus of variations, and the problem from 

this point of view has been extensively treated by Courant in a well-known monograph. 

On the other hand, if the result of Lebesgue is combined with the known fact tha t  a mini- 

mizing function must  necessarily be harmonic, then we obtain the following result: a 

minimizing/unction exists i /and  only i / ( i )  there exists at least one admissible function and 

(ii) the Dirichle:t problem is solvable/or the given boundary values. This elegant formulation 

of the Dirichlet principle seems to be due originally to Kamke  & Lorentz. 

The preceding example has been discussed in some detail because of its close bearing 

on the problems considered here. Indeed, Theorem 1 shows tha t  the "if" par t  of the italicized 

s ta tement  holds also for the variational problem I .  In  section 4 we shall prove the "only if" 

(1) Boundedness is assured if u has bounded derivatives in R (this is the case usually found in the 
literature), or it may be an inherent property of the integrand, as in the case F = ~/1 + pi + q~. 
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par t  for a large class of integrands. In  combination, these results can appropriately be 

called a generalized Diriehlet principle. 

The theorems of section 4 can also be interpreted as conditions for a minimizing function 

to be of class C ~. In  particular, Theorems 3.1 and 3.2 are special cases of known results of 

Morrey. They are included here because they apply to a fairly wide range of integrands and 

can be proved in a mat te r  of a few lines. 

Before proceeding to the proof, I wish to thank Professor Johannes Nitsehe for several 

stimulating and helpful conversations concerning various aspects of the paper. 

3. P roof  of  Theorem 1. We recall tha t  the classical "proof" by  integration by  parts  

fails because a certain boundary integral may  not have meaning. To overcome this dif- 

ficulty we propose to t runcate a given admissible function v by  means of surfaces z = 

u (x, y) ___ E, and to show tha t  this process actually reduces the integral I [v]. I t  will then 

follow tha t  I [u] ~< I Iv] by  letting e-->0. This process must  be handled in a somewhat round- 

about  fashion so as to make it perfectly rigorous, which accounts for the method finally 

adopted. (A somewhat similar idea occurs in the note of Lebesgue cited above.) 

Now let v (x, y) be any function in ~,  or in 9~*. Let  S be a fixed closed subregion of R 

with smooth boundary Z, and let e be an arbi trary positive number. Since u and v take 

the same boundary values, we can find a closed region B such tha t  S c B c R, and 

l u - v l < e / / 3  in R - B .  

Furthermore, by virtue of condition ~ 2 or ~ 2* it is clear tha t  there exists a polynomial w 

such tha t  

Iv-w[<~/3 in B, 

and I[w, B] <. I[v] + e. (8) 

Finally, there exists a sequence of polynomials un with the property 

lu- nl, Iv -wnl- 0 un o lyin B, 

where V denotes the vector gradient. Without  loss of generality one can assume tha t  

lu - u n ]  < e / 3  for all n.(1) 

We now define the function 

(1) By careful use of the theory of measure, one can omit this preliminary approximation. Our pre- 
ference, however, is for the course of proof actually adopted. 
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= 

un§ if w:>un§ 

u a - ~  if w < u n - e  

w otherwise. 

Obviously 4 is pieeewise differentiable in B, and can be substituted in the integral I. 

Then, in virtue of the definition of the Weierstrass E function and the fact that  F is in- 

dependent of u, we have 

I [w, B] - I [4, B] = f [~, Fv + ~ Fq]~ d A + K, 
B 

(9) 

where ~ = w -  4 ,  K = f E (x, y, 4 , ,  4u; w,,  wy) d A,  
B 

and the subscript 4 denotes evaluation of .F v and Fq for the arguments (x, y, 4,, 4y)- Now 

at all points of B at  which ~ 4 0 we have 4 = un • e, hence 

f [~, F v + ~y Fq]r d A = f [~, F v + ~ Fq] u,~ d A 
B B 

= f [~x F~ + ~ Fq]~ d A + el, 
B 

where ei->0 as n-->oo. In virtue of the preceding construction, ~ = 0  on and near the 

boundary of B, so that  by hypothesis the last integral vanishes. Combining this result with 

(9) yields the formula 

1[r B] = I[w, B] - K - e r (10) 

Turning next to an estimate for the integral I[u, S], we have in the same way as (9), 

I [r S] - I [u, S] = f [~x Pr  + ~y Fq]u d A + g l ,  (11) 
S 

where ~ = 4 - u and K 1 ~ 0. 

Using condition (6), the integral appearing on the right in (11) is easily shown to equal 

~ ~ (F~ ,dy -  Fqdx).  

.<4 But I ~ I ~ < I ~ - u . I + l u . - u l ~ ,  whence from (II), 
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Noting tha t  I [ r  S] ~ I[~b, B], and using (10) and (8) to estimate this last integral, we 

obtain 
I [u, S] ~< I [v] - K - el + Const. e. 

In  this inequality we may  let n--> ~ ;  s e t t i n g  A = l i m  K there results the main estimate 

I [u, S] ~< I [v] - A + C0nst. e. (12) 

Since A is certainly >/0, we conclude tha t  I[u, S] <~ I[v],  and (7) follows a t  once. 

In  order to prove the remainder of Theorem 1 one can proceed as in sections 9 and 10 

below. We shall omit  the details, however, and merely accept the final s ta tement  of 

Theorem 1 as a corollary of Theorem 4. 

Remark. The preceding theorem applies also to certain integrands in which the un- 

known function appears explicitly. Consider in particular the integrand 

2'(x, y, p, q) + G (x, y, u), 

in which G and its first partial  derivative Gu are continuous functions defined over the 

closure of R. We suppose that Gu is a non-decreasing [unction o/u .  Then by carrying out 

the steps in the preceding proof one finds in place of (10), 

I [~ ,  B ]  = I [w,  B ]  - K '  - e 1 - e2, (10)' 

where e~ tends to zero with e, and K '  has a slightly different meaning than K but  still 

remains/> 0. The main estimate (12) continues to hold, except tha t  the error term ConsL e 

must  be replaced by  a quant i ty  which merely tends to zero as e->0, S-->R. 

Similar remarks hold for the integrand 

F (x, y, p, q) + L(x, y, u)p + M (x, Y, u)q + N (x, y, u), 

in which L, M, hr, and their partial  derivatives Lx, M~, and Nu are continuous functions 

defined in the closure of R. The condition on Gu in the preceding example is here replaced 

by the condition tha t  N u - Lx - M~ should be a non-decreasing function of u. [The reason 

for this requirement may  be seen from the identi ty 

L p + M q = g L d u )  + f f  i d u ) u - f  (h~+My)du, 

from which it follows tha t  the function N - f ( L z  +Nu)du plays the same role as G did 

before.] Assuming finally tha t  the total  iutegrand F + Lp  + Mq + N is bounded from below, 

one can again carry out the necessary steps in the proof of Theorem 1. In  case the boundary 
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of R is rectifiable we can dispense with the boundedness condition, for in this case the diver- 

gence terms above contribute only a fixed boundary integral. 

4. Differentiability of  minimizing functions. By using Theorem 1 one can obtain 

several simple conditions guaranteeing the differentiability of a minimizing function (even 

should the minimum be known only in the general class ~[*). For simplicity we shall consider 

in this respect only integrands F(x, y, p, q) which are of class C 2. Corresponding results 

for more general integrands can, however, easily be formulated. 

Let ~ denote a covering of R by open circular disks. We shall say that  an integrand 

F(x, y, p, q) is tame if it satisfies conditions (3) and (4), the latter with equality excluded, 

and if the Dirichlet problem for the Euler-Lagrange equation 

Fr~r + 2F~qs + F~qt + F~z § F ~  = 0 (13) 

is solvable for all circles of some covering ~.(1) The functions pZ+ q~ and V1 + p2 + q2 

are simple examples of tame integrands; in Theorems 3.1 and 3.2 we shall note some others. 

THEOREM 2. Let the integrand F(x, y, p, q) be tame, and sutrpose u = u(x, y) minimizes 

the integral I among all ]unctions o/class ~, or ~, or ~*. Then u is O/class C 2 in R. 

Proo/. Let P be any point of R, and let K be a circle about P in which the Dirichlet 

problem is solvable. Suppose U is the solution of (13) which agrees with u on the boundary 

of K. We assert that  U - - u  in K. For if not, then we shall be able to define a new admissible 

function u* such that  I[u*] < I[u],  contradicting the fact that  u is a minimizing function. 

Granting this step for a moment, from the equality U = u it follows that  u is of class C ~ 

in the neighborhood of P, and the theorem is proved. 

I t  remains therefore to construct the function u*. This will take a slightly different 

form in each of the three cases of the theorem. Suppose first that  u minimizes in the class 

~Q. We define 

{ U + ~  if u > U + ( ~  

u*= U - ~  if u < U - ( ~  

u otherwise. 

Then u* is actually different from u, provided that  ~ is chosen small enough. Clearly 

u* E ~; moreover, by Theorem 1 

(1) There may be some ambiguity in this definition. To be precise, in saying that the Diriehlet problem 
is solvable for a region K we mean that, given any continuous data on the boundary of K, there exists 
a corresponding solution of (13), of class C 2 in the interior of K, and continuously taking on the given 
values on the boundary of K. 
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I [ u ] = I [ u , R ' ] + I [ u , R - R ' ] > I [ U + h , R ' ] + I [ u , R - R ' ] = I [ u * ] ,  (14) 

where R' denotes the (open) set where u* * u. In case u minimizes in the class 2 ,  the function 

u* defined above is only piecewise smooth, and therefore not admissible to competition. 

This difficulty is avoided by smoothing u* at  its ridges, taking care not to destroy the 

inequality (14). 

Finally, if u minimizes in the class 2*, the preceding argument fails since the two 

equalities in (14) may no longer hold. In this case we set 

u . =  I U in K 

~u in R - K .  

Using a modified version of the proof of Theorem 1, in which the function u is truncat~<l 

by means of the surfaces z = U +_ e, it is easily shown that  u* 62* and I[u*] < I[u]. This 

completes the proof of Theorem 2. 

While the above result is valid in n-dimensional space, the following is so far known 

to hold only in the plane. To extend it to higher dimensions will require a significant advance 

in the theory of partial differential equations (cf. [22], ]5] and [19]). 

THEOREM 3.1. Let the integrand F (x, y, p, q) satisfy the following conditions 

k(~  + ~ )  < F ~  + 2 F ~  + F.,V~ < K ( ~  + 7  3) 

F~x + F~q~ ~< K(1 + p" + q~), 

where k and K are positive continuous/unctions of x, y. Suppose also that the five partial 

derivatives of F which appear in the above conditions are HSlder continuous. Let u = u(x, y) 

minimize the integral I among all functions o/class 2*. Then u is o/class C 2 in R. 

Proof. I t  is clear that  F is bounded below by some fixed function of x, y, whence by 

a simple change of integrand we can suppose without loss of generality tha t  F >10. 

Also FmFqq - F~q > 0, so that  by Taylor's formula E > 0 for (P, Q) 4 (p, q). Theorem 3.1 

will therefore follow from Theorem 2 if the Dirichlet problem is solvable for equation (13). 

But the conditions of the theorem are sufficient for the solvability of the Dirichiet problem 

over circles in R (and in fact over much more general regions) for arbitrary continuous 

boundary data.(*) This completes the proof. 

THEOREM 3.2. i ~  the integrand F = F(p,  q) be o/class C a and satisfy the conditions 

F~>0, $'~F.~ - g ~  >0.  

(*) This has been proved by P. C. Rosenbloom and the author. 



ON A F U N D A M E N T A L  T H E O R E M  OF T H E  CALCULUS OF VARIATIONS 11 

Let u = u (x, y) minimize the integral I among all /unctions o/ class ~. Then u is o/class  

C 2 in R. 

Proo]. The conditions placed on F are not enough to conclude that  F is tame according 

to ' the  definition given at the opening of this section. On the other hand, from the proof 

of Theorem 2 it is apparent tha t  we actually need to solve the Dirichlet problem only for 

Lipschitzian boundary values. Now the Euler-Lagrange equation takes the form 

ar  + 2bs  + ct = 0, (15) 

where a c -  b ~ > 0 and a, b, c are H61der continuous functions of p and q. Under these 

conditions it  can be shown(t) tha t  (15) is solvable for convex regions with Lipschitzian 

boundary data, and the proof is complete. 

Theorem 3.1 and 3.2 are contained in known results of Morrey, but  the simplicity of 

their proofs (granted certain existence theorems for quasi-linear partial differential equa- 

tions) justifies their inclusion here. 

area integral. Let  us set W = f l  + pa + qz, and consider the 5. Example: the 

(generalized) integral 

A = f W d A .  
R 

I t  is clear tha t  A [u] is exactly the Lebesgue area of the surface z = u (x, y) over R. More- 

over, since W >1 O, W ~  Wqq - W~q > 0, the conclusions of Theorems 1 and 2 apply unaltered 

in the present case. 

Consider, then, the problem of spanning a curve with a surface of least area, area 

being understood in the sense of Lebesgue. From Theorem 1, a minimal  sur]ace o[ the 

[orm z = u(x ,  y) which spans a given curve F has smaller area than any other sur[ace o[ the 

same form which spans F. From Theorem 2, since W is tame (see [21], 101), any sur/ace o/ 

least area which has the [orm z = u(x ,  y) is a minimal  sur[ace, and, more generally, any 

sur/ace of least area which locally can be represented in the [orm z = u (x, y), [or some orienta- 

tion o[ coordinates, is a minimal  sur[ace. I t  happens tha t  these results are not  new, but  

have already been proved by E. J. McShane (except tha t  in his work F was required to 

have a convex projection). On the other hand, it  seems that  the present proof is both 

simpler and more general in application than that  of McShane. 

PART I I  

6. Fields and imbedding. Before stating our main theorem, it is first necessary to 

define precisely the nature of the fields which we shall consider. 

Consider a family of surfaces, each of which can be represented in the form z = / (x, y). 
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A region ~O in (x, y, z) space is said to be smoothly covered by such a family if (i) through 

each point of ~ there passes exactly one surface of the family, (if) each surface is conti- 

nuously differentiable, and (iii) the slope functions p (x, y, z ) an d  q (x, y, z) of the family 

are continuous in ~ and have continuous first partial derivatives Pz and qz. We shall 

say that  ~O is z-simple if its intersection with any straight line x = x 0, y = Y0 is a connected 

set. The principal definitions of field and imbedding can now be stated. 

De/inition 1. A field of extremals is a z-simple region ~ of (x, y, z) space together with 

a family $ of extremal surfaces which smoothly covers ~. 

De/inition 2. Suppose that  u = u(x, y) is an extremal, and let D denote the interior of 

its domain of definition. Also let E denote the extremal surface z = u (x, y) for (x, y) E D. 

We shall say that  u is weakly imbedded in a field of extremals (~, $) if and only if 

1. ~ is a member (or a portion of a member) of the family $, and 

2. If E1 is any other surface in $, then the vertical distance from ~ to ~1 is positive. 

I t  is important  to observe that  the concept of weak imbedding requires no differen- 

tiability of u at the boundary of its domain of definition. This  is in contrast with the usual 

situation (Bolza, Bliss) in which u must be continuously differentiable over its entire domain 

of definition. 

7. Some properties of  the Hilbert integral. Let  S be a closed region in the plane 

with piecewise smooth boundary Z. Let  U be a piecewise smooth function in S, whose 

values lie in the region ~ of a field of extremals.(1) Then the Hilbert invariant integral 

I*[  U, S] i s  defined by 

I* [u, s] = f { F +  ( P -  p) F~§  ( Q -  q) Fq} dA,  
S 

where the arguments of F,  Fp, and Fq are (x, y, U, p, q )and  

p =p(x, y, u), q =q(x, y, u). 

If V is another function satisfying the same conditions as U, then we have the familiar 

result 
I*[U, S] = I*[V, S] (16) 

whenever U =  V on ~. Formula (16) is n o t  difficult to prove when the surfaces of the 

extremal family $ and the integrand F are both of class C 2 (cf. [2] and [9]). The general 

case under consideration here requires a more sophisticated argument which we shall 

give in w 11. If the condition U = 17 on ~ is not satisfied, then (16) must be replaced by 

(1) By this we mean simply that the points (x, y, U) for (x, y) ES lie in ~. 
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I* [U, S ] = I *  [V, S ] +  ~ ( U -  V) (P ,  d y - F q d x ) ,  (17) 

where the tildes denote evaluation at  an intermediate value between U and V. Formula 

(17) is proved in exactly the same way as (16), except tha t  a certain boundary integral 

which vanishes in the derivation of the former result must  now be carried along. Finally, 

let us note the obvious equality 

I*[u, S] = I[u, S] (18) 

when u is an extremal of the field (]9, $). 

8. The  ma in  theorem.  With the terminology and results of the preceding two sec- 

tions understood, the main result of the paper  may  now be stated. 

THEOREM4. Let u = u(x, y) be an extremal for the variational problem I. Suppose that 

u can be weakly imbedded in an extremal field (]9, S), and that there exists at least one ]unction 

v e 9~* such that the values o /v  over R lie in ]9. Then l[u] ex/sts, and 

I[u] < I[v] (19) 

for each v E 2* whose values over R lie in "~. 

I / the  equality sign in (4) is excluded, then I[u] < I[v] /or each v different from u. 

Proof. For simplicity we shall assume tha t  the boundary of ]9 contains no points of 

the extremal surface 

z = u (x, y), (x, y) e R. 

I t  will be clear from the proof tha t  this is no essential restriction. 

Now let v be any function in 9~* whose values over R lie in ]9, let S be a fixed closed 

subregion of R with smooth boundary Z, and let e be an arbi trary positive number. In  

virtue of the assumption made in the preceding paragraph, we can find extremals u '  and 

u" in $ such tha t  
u - ~ < u "  < u < u '  < u + e  i n S .  

Moreover, by  condition 2 in the definition of weak imbedding there exists a number  6 > 0 

such tha t  

I -u'l, lu-u"l> . 
Next,  let B be a closed region such tha t  S c B c R and 

]u-v] <6/a in R-B.  

By hypothesis ~ 2* one can f ind 'a  polynomial w with the properties 
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[ v - w [ < 6 / 3  in B 

and I [w, B] < I [v] + e. (20) 

The following two paragraphs are devoted to proving the fundamental inequality (24). 

In order for the demonstration to be completely rigorous it is necessary to approximate both 

u' and u" by polynomials. Unfortunately, the idea of the proof is somewhat obscured by 

this procedure, so we prefer instead to work formally, leaving the details of the approxima- 

tion process to a later footnote. 

We turn now to the computational aspect of the proof. Let the function 4 be defined 

by 

4= 
u' if w > u' 

U H i f  W < U ~r 

w otherwise. 

Our first task is to find a formula for the quantity 

A = I [w, B] - I [4, B]. 

To this end, let C' denote the set of points in B where w > u' and C" the set where w < u". 

Setting C = C' + C" we have 

A = ICw, C] - l [u ' ,  C'] - l[u",  C"] 

= I [ w ,  C] - I* [u', C'] - I*[u", C']  

= I[w, C] - l*[w, C]. 

In the last two equalities we have used properties (18) and (16) of the invariant integral, 

and the fact that  w = u" on the boundary of C', w = u" on the boundary of C". Using the 

Weierstrass function to represent the last expression yields finally 

A = f E (w) dA ,  (21) 
C 

where E ( w ) - - E ( x ,  y, w, p, q; wx, wy). 

We may now obtain the main estimate for the integral I[u,  S]. By virtue of (18) and 

(17) we have 

[u, S ] = I *  [4, S ]+  ~ ( u - 4 ) ( k p d y - $ ' q d x ) .  (22) I [u ,  S]= I* 
y. 

Moreover, using respectively inequalities (4) and (3), 

I*[r S] < I[4,  S] <~ 114, B] = I[w,  B] - A  (23) 
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Thus, since [u - r  < e  on Z, it follows from (22), (23) and (20) tha t  

I[u, S] <~ I[v] - A  + Const-e, A = f E (w)dA .  (24) 
C 

This result is fundamental  for the further conclusions of the paper.(1) 

To establish the first par t  of Theorem 4 we let e-->0 in (24). Using the fact tha t  A ~> 0 

there results simply 
I [u ,  S] < I[v],  

and (19) follows at  once. The final s ta tement  of Theorem 4 requires a fairly elaborate treat- 

ment  of its own, which will occupy us in the following two sections. 

9. Some inequalities. We begin by  deriving a more explicit form of the fundamental  

inequality (24). Let  D denote an arbi trary closed subregion of R in  which v ~: u. Choosing 

S and e respectively so tha t  D c  S and [u - v[/> 2~ in D, it  is clear tha t  the set C defined 

in the preceding section contains D. Using the fact tha t  E/>  0 then allows us to write in 

place of (24), 

I [v] - I [u, S) >1 f E (w) dA  - Const. ~. (25) 
D 

Consider now a function v E 9A. The polynomial w can, under these circumstances, be 

chosen so tha t  [ V w - V v I < e in B. Then letting e--> 0 in (25), and afterwards S--> R, yields 

I [v] - I [u] >~ f E (v) dA,  (26) 
D 

where D is an arbi trary subregion of R in which v =~ u. 

(') To make the above argument rigorous, we approximate u" and  u" by sequences {un} and {u~'} 
of polynomials such tha t  

lu'-u;I, Ivu'-w:l 0 uniformly in B, 

, ,  , lu, ,  , ,  
with similar relations for Un. I t  m a y b e  supposed that  [ u ' - U n [  and - U n [  areless  thant~/3 for 
all n. 

In the definition of ~ one then replaces u '  and u ~ by their approximants;  letting A n stand for the 
resulting difference I [w ,  B] - I [ ~ ,  B], formula (21) becomes 

A n t i  f E ( w ) d A + e l ,  (21)' 
vn 

in which el-->0 as n-->c~. Finally, in place of (24) we have 

I [u, S] -<< I [v] - A n + Const. e. (24)' 

Letting n-->~ in this formula gives exactly the present estimate (24). 
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The following lemma, of a kind originally due to E. E. Levi, will be instrumental 

in the sequel. 

Suppose E > 0 /or  all (P, Q) :4: (p, q). Let l )  denote a bounded set in the/ire-dimensional 

space (x, y, u, p, q). Then there exists a convex /unction / (t) such that / (0) = O, /(t) > 0 if 

t > 0, and 

E (x, y, u, p, q; P, Q) >1 / (X), X = V ( P -  p)2 + ( Q -  q)~, (27) 

/or all (x, y, u, p, q) E O. 

Proo/. For fixed (x, y, u) consider the surface F = F (x, y, u, P,  Q) over the P,  Q plane. 

Let  this surface (the figuratrix) be denoted by S, and let T denote the tangent plane to S 

at  the fixed point p, q. Evidently the Weierstrass E-function expresses the vertical distance 

from T to S. Therefore, according to hypothesis, S lies everywhere above T, and since 

this holds for arbitrary (p, q), S is seen to be a strictly convex sur/ace. 

This being shown, it  is easy to conclude the existence of the required function /(t). 

For completeness we shall indicate an explicit construction. Set 

g (t) = g.l.b. Min E (x, y, u, p, q; P, Q). 
D X~ 

Obviously g (0) -- 0 and g (t) > 0 for t > 0; also, because the surface S is convex one sees that  

g(t)>~g(1)t for t>~l.  

We may now choose for /(t) the function defining the lower boundary of the convex hull 

of the graph of g(t), 0 ~ t < oo. Tha t / ( t )  has the required properties is easily verified, and 

the lemma is proved. 

10. Completion of  the proof. I t  must still be shown that  I [u] < I [v], provided that  

v is different from u. 

For simplicity, consider first the case of a function v E ~[, v ~ u. Supposing that  I [u] = 

I[v], then by virtue of (26) and the fact tha t  E >/0 we have 

E(v)--O for (x, y )eD.  (28) 

Since (4) is assumed to hold with the equality excluded, this implies 

vx --p(x, y, v), v~ =q(x,  y, v). 

I t  follows that  z = v (x, y) is an integral surface of the slope functions p and q. However, 

since p~ and q~ are continuous, there is but  one solution surface through each point. Conse- 

quently, the surface z = v (x, y) over D coincides with a member of the family $. Since D 
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was an  arb i t rary  set where v 4 u, it follows tha t  v is an extremal of S for all (x, y ) E R .  

Finally, by  condition 2 in the definition of weak imbedding, the surfaces z = v (x, y) and 

z = u (x, y) mus t  be a finite distance apar t  (recall t h a t  we have assumed v �9 u). Bu t  th is  is 

impossible, for then  v could not  satisfy the given boundary  condition. This contradict ion 

proves t h a t  I [u] < I [v]. 

Consider next  the  case when v is contained in ~*. I t  is no longer possible to  establish 

(26), of course, because v need no t  be differentiable. However,  if I[u] = I[V] we do have 

lim f E (w) d A  = 0, (29) 
e-+0 D 

as follows a t  once from (25). We shall suppose in the sequel t ha t  D is convex. 

Now for (x, y) ED the arguments  (x, y, w, p, q) in E(w)  are confined to  some bounded 

set ~0. Therefore, using (29) and (27), together  with Jensen 's  inequality,(1) we find 

lim f X d A  = 0; (30) 
D 

here X = ~/(wx - p ) 2  + (w~ _q)2, and the  limit is evaluated for e-~0. 

I t  is now an easy exercise to show tha t  for any  two points (xl, y) and (x0, y) in D, we 

have 
(xi, Y) 

v ( x v y ) - v ( x o , y ) =  f p ( x , y , v ) d x .  (31) 
(xo, Y) 

Consequently,  the derivative vx exists and satisfies the first of the following two equations, 

vx = p (x, y, v), % = q (x, y, v); (32) 

the  second is derived by  similar reasoning. Equat ions  (32) being verified, the remainder  

of the proof is exact ly  the same as in the case v Eg~. This completes the demonst ra t ion of 

Theorem 4. 

I t  remains for us to show t h a t  Theorem 1 can be obtained as a corollary of Theorem 4. 

To do this, i t  is sufficient to  show t h a t  the extremal  u (x, y) of Theorem 1 can be weakly 

imbedded in an  extremal  field for which ~ is the entire cylinder R •  {Z[ - c~ < z < + c~}. 

The required field can be obtaining by  taking S to be the family of vertical t ranslates of 

the given surface z = u (x, y). I t  is clear t h a t  S smoothly  covers the cylinder in question, 

and tha t  the  imbedding conditions are satisfied. Thus Theorem 1 is proved. 

(1) Cf. P01ya and Szeg6, Au/gaben und Lehrsdtze aus der Analysis, vol. 1, p. 53. We require only 
the case p = 1. 

2 - 593804. Acta mathematica. 102. Imprim6 le 14 septernbre 1959 
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P A R T  I I I  

11. A proof  of  Hilbert 's  formula.  I t  has already been remarked tha t  Hilbert 's  

formula (16) can be proved without difficulty if suitable differentiability conditions are 

available. In  the present circumstances these conditions do not hold, and an alternate 

proof must  be found. We shall follow an argument of Bliss ([1] w 18), except for a few 

essential changes. 

Let  the surfaces of $ be represented in the form 

z = u(x, y, a), (33) 

where a is a real parameter  (the surface corresponding to a given value of the parameter  

may  consist of several disjoint parts,  but  this causes no difficulty). Because of the continuity 

of Pz and qz it can be assumed tha t  u (x, y, a) is of class C 1 in all variables, with 

~ (34) 
8a 

An explicit construction of the family (33), so tha t  (34) holds, can be obtained by  choosing 

the parameter  a to satisfy 

u (x0, Y0, a) = a (35) 

for some convenient constants xo, Y0. Considering u (x, y, a) to be the solution of the system 

ux= p (x, y, u), u y = q ( x , y , u )  

with (35) as initial condition, i t  follows from a well-known theorem of ordinary differential 

equations tha t  u is of class C 1 in all variables. Moreover, au/~a > 0. For  otherwise, suppose 

~u/Sa = 0 for some values xl, Yl, al. Then we could reparametrize the surfaces so tha t  

U(Xl, Yl, b)=b, and it would follow tha t  ~u/Sb =oo for the values xo, Yo, b(al). This is 

impossible. Because of (34), the transformation (33) has a di//erentiable inverse a(x, y, z). 

There is dear ly  no loss of generality in supposing tha t  the surfaces z = U and z = V 

lie entirely interior to ~r This being the case, there then exists a proper subregion ~ '  of 

which contains both surfaces, as well as the volume enclosed between them. 

These preliminaries taken care of, let us define a function • = A(x, y, a) by  means 

of the integral average 

 fff A = ~  F~(~, 7, u, ux, uy)d~d~d:r 

in which the arguments of u, ux, % in the integrand are (~, 7, a), and the domain of inte- 

gration is a sphere of radius ~ about  the point (x, y, a). The constant ~ is chosen so (small) 
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that  the integral is well-defined whenever (x, y, a) corresponds to a point in ~ ' .  We define 

B, C by similar formulae, but  with Fq and F u respectively replacing F~. Since (6) holds 

identically in a, a well-known argument (el. [3], or [1], w 15) shows that  

/Ix + ~ = C. (36) 

This equation may be thought of as a kind of averaged version of the Euler-Lagrange 

equation. 

For convenience in carrying out the remaining steps in the proof we define the two 

functions 

,~=,~(x,y,z)=A(x,y,a(x,y,z)) ,  ~=~(x,y ,z)=B(x,y ,a(x ,y ,z)) .  (37) 

The functions A and ~ are obviously differentiable, and indeed we have the useful rela- 

tions 

A ~ + ~ = A ~ ,  i~+ i~q = ~ ,  (38) 

obtained by differentiating (37) while keeping a fixed. Now let us put  

~*[U, S]= f { $ ' + ( P - p ) A + ( Q - q ) ~ } d A ,  

where the arguments of F, p, and q are the same as in the integral I*[U,  S] of section 7, 

while the arguments of A and B are (x, y, U). Then by virtue of the limit properties of 

the integral average, it  can be seen that  Y* [U, S] tends to I* [U, S] as (~ tends to zero. 

Therefore, in order to prove (16) it  is enough to show that  

y =Y*[v, s]-Y*[u, s]-+0 

as ~ tends to zero. Let  W = U + t (I z - U), 0 ~< t ~< 1, and write Y* (t) in place of Y* [ W, S]. 

Then evidently 
1 

J dt " 
0 

The completion of the proof rests on a computation of d :~*/dt. For simplicity in making 

this computation we write the integrand of ~* (t) in the form 

W= A(x, y, W) + W~ ~ (x, y, W) + (I) (x, y, W), 

where qb = F - p A -  q ~. Then, setting ~ = V - U, we have 
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d Y *  (t)= f ($x . ,4+~+~(Cbw+ Wx.,4w+ Wy~w)}dA 
S 

S 

The divergence terms in this formula transform to a vanishing boundary integral. Also, 

by  a straightforward calculation, making use of (36) and (38), the quanti ty i n  brackets 

turns out to be 0 (5). Thus ~ itself is O (~), and the proof is completed. 

12. Concluding remarks. The main features of the paper, which I should like to men- 

t ion in summary,  are these. First, for an extremely wide class of integrands F (x, y, T, q) 

an extremal can be shown to be a minimizing function, while for a somewhat smaller (but 

still significant) class, every minimizing function is an extremal. These results can ap- 

propriately be called a generalized Dirichlet principle. For integrands F(x, y, u, p, q) 
the results are not so complete, yet  in conjunction with the differentiability theorems of 

Morrey and others, they give a fairly satisfactory analogue of the earlier case. Recent 

work in variational problems and quasi-linear partial  differential equations in more than 

two independent variables promises further applications. 

Second, the class ~* of admissible functions is of considerable interest in itself, both 

because it  includes all the usual classes of admissible functions(1) and because of its con- 

nections and analogies to the theory of surface area. An interesting class of admissible 

functions, not included in 9~*, is suggested by  work of Cesari and Goffman on the theory 

of surface area. We shall say tha t  a real-valued function v = v (x, y) defined in the closure 

of R is in the class (~ of admissible functions if and only if 

(~ 1. v continuously takes on assigned (continuous) values on the boundary of R. 

(~ 2. v is summable in R. The integral I[v] is to be understood in the following gen- 

eralized sense. Let  {vn} be a sequence of continuously differentiable functions such tha t  

f ly  - vn l d A-->O, 
B 

where B is an arbi trary closed subregion of R. Then 

I[v] = g.l.b, lim inf I[v,~], (40) 

(1) The class of admissible functions treated by Hestenes is not included in 9~*, nor does it include 
9.1". However, except in respect to boundary conditions, Hestenes' class is included in the class (~ defined 

�9 below. 
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the  g.l .b, being t a k e n  over  all  sequences {vn} converging to  v as above.  

(~ 3. I [v] is finite.  

F o r  t he  i n t eg rand  V1 + p~ + q2, def in i t ion  (40) reduces  to  t h a t  of Cesari  and  Goffman 

for the  a rea  of t he  surface z = v (x, y). I n  order  for (40) to  be logical ly  cons is ten t  i t  mus t ,  of 

course, s t i l l  be p roved  t h a t  if v is con t inuous ly  d i f ferent iable  in R, t hen  I [v], as def ined b y  

(40), has  t he  classical  value.  This  will  be done in t he  following paper .  

Theorems 1 a n d  4 r ema in  t rue  for the  class ~ of admiss ib le  funct ions,  t hough  the  

proofs  need some modif ica t ion.  I n  the  s t a t e m e n t  of these  theorems,  i t  is n a t u r a l l y  under-  

s tood  t h a t  a func t ion  v e(~ is d i f ferent  f rom u if and  only  if v =~ u a t  a set  of pos i t ive  measure .  

The  v a l i d i t y  of Theorem 2 is ano the r  quest ion,  and  p r o b a b l y  requires  a s t ronger  def in i t ion  

of tameness. W e  in t end  to  t r e a t  these  m a t t e r s  in  more  de ta i l  in  a l a t e r  paper ,  giving special  

a t t e n t i o n  to  t he  a rea  in tegrand .  

References 

[1]. G. A. BLISS, The Calculus o] Variations: Multi/pie Integrals, Lectur  e Notes. Universi ty of 
Chicago, 1939. 

[2]. O. BOLZA, Vorlcsungen iiber Variationsrechnung, B. G. Teubner, Leipzig, 1909. 
[3]. M. CORAL, On a necessary condition for the minimum of a double integral. Duke Math. 

J . ,  3 (1937), 585-592. 
[4]. R. Cov l~Ur ,  Dirichlet's Princi/ple. Interseience, New York, 1950. 
[5]. E. DE GIORGI, Sull 'anali t iei tk delle extremali  degli integrali  multipli .  Rend. Accad. Naz. 

Lincei, 20 (1956), 438-441. 
[6]. C. GOFF~n~'V, Lower semi-continuity and area funetionals. Rend. Circ. Mat. Palermo (2), 

2 (1953), 203-235. 
[7]. A. HAXR, Zur Variati0nsrechnung. Abh. Math. Sem. Univ. Hamburg, 8 (1931), 1-27. 
[8]. M. R. HESTEm~S, Sufficient conditions for multiple integral problems in the calculus of 

variations.  Amer. J. Math., 70 (1948), 239-276. 
[9]. D. HI~ERT,  Mathematische Probleme. Arch. Math. und Phys. (3), 1 (1901), 213-237. 

Abhandlungen, vol. 3, 323-328. 
[10]. - - ,  Zur Variationsrechnung. Math. Ann., 62 (1906), 351-370. Abhandlungen, vol. 3, 

38-55. 
[11]. E. ~ E  & G. G. LOREI~rZ, Uber  das Dir ichle~che Prinzip. Math. Z., 51 (1947-1949), 

217-232. 
[12]. W. KARUSH, A semi-strong minimum for a multiple integral problem in the calculus of 

variations.  Trans. Amer. Math. Soc., 63 (1948), 439-451. 
[13]. H. LEBESGUE, Sur l 'dquivalence du problbme du Dirichlet et du probl~me du ealcul des 

variat ions eonsiddrd par  Riemann. C. R. Societd Math. de France (1913), 48-50. 
[14]. E. E. LEVI, Sui criterii sufficienti per il massimo e per il minimo nel calcolo delle variazione. 

Ann. Mat. Pura Appl. (2), 21 (1913), 173-218. 
[15]. L. LICHTENSTEI~r, Untersuchungcn tiber zweidimensionale reguli~re Variationsprobleme. 

Monatsh. Math. und Phys., 28 (1917), 3-51. 
[16]. E. J .  McSHA~rE, On a certain inequal i ty  of Steiner. Ann. o/Math. ,  33 (1932), 125-138. 



22 JAMES SERRIN 

[ 17]. C. MIRANDA, Condizioni sufficienti per il minimo degli integrali doppi. Memorie della reale 
accademia d'ltalia, 5 (1934), 159-172. 

[18]. C. B. MORREY, JR., Multiple Integral Problems in the Calculus o] Variations and Related 
Topics. Universi ty of California Publications in Mathematics,  1943. Especially 
Chap. VII .  

[19]. J .  NASH, Parabolic equations. Proceedings Nat. Acad. Sci. U.S.A.,  43 (1957), 754-758. 
03u 03 u 

[20]. F.  PRYM, Zur Integrat ion der Differentialgleichung ~x~ + -  = O. J .  Reine Angew. Math., 
0 y2 

73 (1871), 340-364 (in part icular,  361-364). 
[21]. G. RAD6, On the Problem o] Plateau. Springer, Berlin, 1932. 
[22]. T. STA~XFACCHIA, Sistimi di equazioni di  t ipo ellittieo a derivate parziali  del primo ordine 

e propr ie ta  delle estremali  degli integrali  multipli .  Rieerehe Mat., 1 (1951), 200-226. 

SUPPLEMENTARY REFERENCES 

(Not quoted in  the paper) 

G. A. BLIss, The calculus of variations for mult iple integrals. Amer. Math. Monthly, 49 (1942), 
77-89. 

L. CESARI, Sur/ace area. Ann. of Math. Studies No. 35. Princeton Universi ty  Press, 1955. 
Especially Appendix B. 

R. F I ~ ,  On equations of minimal surface type.  Ann.  o /Math . ,  60 (1952), 397-416. 
E. J .  Mc SHA~E, On the minimizing proper ty  of the harmonic function. Bull. Amer. Math. Soe., 

60 (1934), 593-598. 
M. SHIFF~N,  Differentiabil i ty and analyt ic i ty  of solutions of double integral var iat ional  

problems. Ann.  o /Math . ,  48 (1947), 274-284. 
A. G. SmALOV, Two dimensional problems of the calculus of variations.  Uspehi Matem. Nauk  

(1951), 16-101. 
- - ,  Two dimensional problems of the calculus of variat ions in non-parametric  form. Trudy 

Moskov. Mat. Ob}5., 2 (1953), 201-233. 
, Two dimensional problems of the calculus of variat ions in non-parametr ic  form trans- 
formed into parametr ic  form. Mat. Sbornik, 34 (1954), 385-406. 

A. SILOVA, Existence of an absolute minimum of mult iple integrals in the calculus of variations.  
Doklady Akad. Nauk  S S S R ,  102 (1955), 699-702. 

L. TONELLI, Fondamenti di ealcolo delle variazione. Bologna, 1922. Especially vol. I ,  350-359. 


