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In  this paper we shall be concerned with certain multiple integrals which arise in the 

calculus of variations, namely those of the form 

I[u] = f R F(x ,y ,u ,p ,q)dA.  

Here R denotes an open bounded region of the plane, the integrand F is subject to certain 

conditions which will be stated later, and dA = dx dy. 

The calculus of variations is concerned with minimizing the integral I[u] in some 

class of functions for which I [u] is defined. I t  is natural  to want  this class to be as large as 

possible, since the existence of a minimizing function is usually more easily established 

in an extended class; there are also aesthetic reasons for considering a broad class of ad- 

missible functions, as m a y  be seen from the theory of surface area. For reasons such as 

these, we have introduced in the preceding paper  two rather  extensive classes of admissible 

functions, the members of which in one instance need not even be everywhere continuous. 

Now the introduction of these classes entailed in both cases a de/inition of the integral 

I [u]: the purpose of this paper is to show tha t  these definitions are logically consistent, tha t  

is, supply the correct (natural) value whenever u is continuously differentiablc. 

From another point of view, the paper  may  be considered as simply proposing a new 

definition of the integral I [u] ,  somewhat analogous to the generalized area in the theory 

of surface area. In  order to make the work more accessible to the general reader, we have 

included in section 1 a complete s ta tement  of results, so tha t  the paper  is entirely self- 

contained. Section 2 is devoted to a generalization of a lemma of Tonelli, which will be 

useful in the sequel, while the main proofs are carried out in sections 3 to 5. I t  is of related 

interest to know whether the class of functions considered here includes the usual functions 

of importance in the calculus of variations (i.e. Lipschitzian functions, absolutely continu- 

ous functions, etc.). We shall address some remarks to this subject at  the close of the paper.  
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The integral Ic [u] which we define below m a y  be considered in an al ternat ive way  if 

one so wishes, namely,  it can be though t  of as arising from the well=known Frechet  ex- 

tension of a lower semi-continuous operator.  Looked a t  this way, Theorem 2 then be- 

comes the necessary verification of the lower semi-cont inui ty p roper ty  of I [u]. Al though 

this point  of view does no t  seem to be as fundamenta l  as the one actual ly  adopted,  i t  does 

serve to connect  the  present paper  with other  investigations in the calculus of variations. 

I n  particular,  our Theorem 2 is closely related with certain work of Tonelli [8] and Cin- 

quini [3] on the lower semi-continui ty of integrals, though  it appears  t ha t  the proof 

methods  which we use are somewhat  simpler than  in those papers. 

1. Hypotheses  and definitions 

We assume tha t  the in tegrand F (x, y, u, p, q) is defined and continuous for all (x,y) E R 

and  all values of (u, p, q). Fur thermore,  we suppose tha t  the part ial  derivatives Fr  and Fq 

exist and are continuous, and t h a t  

F(x,y ,u ,p ,q)  >1 0 (1) 

and E(x,y ,u ,p ,q;P,Q) >1 O, (P ,Q)#  (p,q}. (2) 

The main  result  of the paper  (Theorem 2) requires a fur ther  condition on the integrand. 

We consider  two possibilities: 

1. The/unction F has continuous partial derivatives F~p, Fpq, Fqq, F~x , and Far. 

2. Condition (2) holds with the equality sign excluded. 

Though these hypotheses can be weakened somewhat  (see section 4), it is still no t  

known whether  the  conclusion of Theorem 2 holds merely  under  the  assumptions (1) and (2). 

We turn  now to the definition of I [u], which forms the hear t  of the paper.  Actually,  

we shall give several definitions, depending on the nature  of the funct ion u = u (x,y). 

1. u is continuously di//erentiable in R. The integral  I [u] is defined in the obvious way,  

as the improper Riemann integral obtained by  exhaust ion of the region R; t ha t  is, 

I [u] - hm I [u, S], 
S--~B 

S here denot ing a proper  subregion of R.(1) 

(1) I t  would also be possibly to define I [u] as the Lebesgue integral of F (x, y, u, uz, sty) over R, but 
we prefer the present method on account of its greater simplicity. 

Of course, if u has bounded derivatives in the whole of R it is obviously not necessary to use 
even the concept of improper integral. 
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2. u is continuous in R. Consider a sequence {un} of continuously differentiable func- 

tions, each function u ,  being defined in a closed subregion Rn of R. Suppose tha t  

R~--->R, Max]u - u , ] ~ 0  

as n tends to infinity. Then we set 

Ic[u] = g.hb. liminf I[u, ,  R,], 

where the g.l.b, is taken over all sequences of the type described above. Ic[u] is clearly 

well-defined, since the class of sequences in questio n is non-empty. 

3. u is measurable in R. The only change from the preceding definition is that  uniform 

convergence is replaced by almost everywhere convergence. The resulting integral will 

be denoted by I M [u]. 

The second and third definitions are generalizations of well-known definitions of surface 

area in the non-parametric case (cf. references [1, 2, 4, 5]). This fact suggests that  a theory 

of the integrals I c and IM be developed comparable to the theory of non-parametric surface 

area. The consistency theorem mentioned in the introduction is one step in such a program. 

Before stating this result, let us note the very agreeable semi-coDtinuity properties which 

I c and IM possess as immediate consequences of their definition. 

THEOREM 1. The integral Ic[u ] is lower semi-continuous in the class o/ continuous 

]unctions with the uni/orm open topology. More precisely, i / u , ,  n ~ 1, 2 . . . . .  is continuous 

in an open region R n and 

Rn-->R, Max]u - u,]--> 0 

as n tends to in/inity, then 

Ic[u] <<. liminf Ic[u ., R,]. 

A similar result holds ]or the integral IM[U]; thus, i] u n is measurable in an open region Rn and 

R n--> R, u~ ---> u almost everywhere, then IM[u] <~ liminf IM[U~, R~]. 

The main result of the paper is that  the integrals I c and IM represent successive 

extensions of I[u]. This may be stated in the form of two theorems: 

THEOREM 2. I f  either hypothesis ~ 1 or ~ 2 holds, then Ic[u ] = I[u] ]or each continuously 

di]]erentiable ]unction u in R. 

THEOREM 3. I] U is continuous in R, then IM[U ] = I t ] U ] .  

The proof of Theorem 2 will be given in sections 3 and 4 of the paper, while the proof 

of Theorem 3 will be given in section 5. We note that  throughout the paper the restriction 

to two independent variables is purely notational. 
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2. A l e m m a  o f  Tonel l i  

A one-dimensional form of the following lemma appears in Tonelli's Fondamenti di 

calcolo deUe variazioni, the two-dimensional form in his Acta Mathematica paper (but 

with a less explicit estimate). The interesting thing about the lemma, and the fact which 

makes it useful in the present application, is that  the estimate (3) is obtained without 

using any differentiability properties of Q with respect to u. 

LV.MMA 1 (Tonelli). Let u = u(x,y) be a continuously dif/erentiable function defined in a 

closed region S with smooth boundary Z. We define 

J[u]= f sa(x,y,u)pdA, 
where Q and it8 partial derivative DQ/Ox are continuous functions. Then 

IJtu]- J[ ' ] l  < M ~ l u - ~ l d ,  + M'f lu-vldA, (a) 

where M = Max I Q I, M'  = Max I~ Q/~x I" 

Proof. Suppose first that  u ~= v throughout S, say v > u. Let  S' denote the region in 

(x,y,z) space defined by the inequality 

u(x,y) <z <v(x,y), (x,y)ES. 

Applying the divergence theorem to this region we find 

f( f  Odx ydz: 
where Y.' denotes the lateral boundary of S', and nx is the x-component of the unit outer 

normal vector to Z'.  The required estimate follows at once. 

To prove (3) in the general case we simply approximate u and v by polynomials u n 

and v n. The preceding proof applies in each subregion S~ of S in which u~ ~: vn; by adding 

over these regions we get 

I J [u~] - J [~.] I < ~ IJ [u., s,] - J [~., ~,]1 

<-M~ lu~-v~lds+M' f slun-vnlaA. 
Letting n tend to infinity yields the inequality (3). 
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I t  should be observed tha t  the bounds M and M'  appearing in (3) can be given the 

more explicit form 

I (2 (x, y, z)1, m'  = Max I ~Q (x, y, z) l M Max 
~.* s* [ 0x I ' 

where S* denotes the set in (x, y, z)-spaee defined by the inequality 

Min[u(x,y),v(x,y)] < z <~ Max[u(x,y),v(x,y)], (x,y) fiS, 

and Z* denotes the lateral boundary of S*. This remark will be of importance in the sequel. 

3. Proof of  Theorem 2 

Consider a function u = u(x,y) which is continuously differentiable in R. Since u 

can be considered as the uniform limit of a sequence each of whose members is u itself, we 

obviously have Ic[u] < I[u]. We proceed now to prove the oppsite inequality. This proof 

will be carried through first under hypothesis ~ 1, namely tha t  the derivatives F~ ,  Fr~, 

Fqq, $'vx, and Fq,, exist and are continuous (the method is due to Tonelli). 

Let  e > 0 be arbitrary,  and let S denote a fixed closed subregion of R. We approximate  

u in S by a polynomial w such that  

[ u - w [ ,  ] V u -  Vw] <e. 

For the remainder of the proof we set p = %, q = %, p '  = wx, q' = w~. Evidently p '  and q' 

are bounded in S independent of e, say 

}P'], }(I < K  inS.  (4) 

Now let U be any continuously differentiable function in S. Using the definition of E, 

we have the identi ty 

F( U,P,Q) = F(U,p',q') + (P - p) F~,(U,p', q') + 

+ (Q-q)Fo(U,p',q') + E(U,p',q';P,Q), (5) 

in which the arguments x,y have been uniformly suppressed. From this equality follows 

E(u,p',q';p,q)~ 4eM, (x,y)eS, (6) 

where M is an upper bound for [F  v] and ]Fq] for the arguments (x,y,u,p',q'). In  virtue 

of (4) it is clear tha t  M can be chosen to depend only on 8 (and of course on the given func- 

tion u). Also from (5) and (6) follows 
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F ( U , P , Q )  - F (u ,p ,q )  

>~ F ( U , p ' , q ' )  + (P - p ' )F~(U,p ' ,  q') + (Q - q ' ) F q ( U , p ' , q ' )  - 

- F (u ,p ' ,  q') - (p - p ' ) F p  (u,p' ,q')  - (q - q ' ) F q ( u , p ' , q ' )  - 4 e M .  (7) 

Now because of the assumption made concerning the derivatives of F, it follows that the 

functions 

Q(x ,y , z )  = Fp(x ,y , z ,p ' ( x , y ) ,q ' ( x , y ) )  

~ (x,y,z) = Fq(x ,y , z ,p '  (x,y),q'  (x,y)) 

have continuous derivatives O Q / ~ x  and O~/Oy.  Hence if we integrate (7) over S, and use 

Tonelli's lemma (section 2) and the continuity of F, Fn, and Fq, the termwise differences 

in the second and third lines of (7) each contribute a term which tends to zero with Max 

I U - u I . Thus we have 

I [  U,S] - I [u ,S]  >1 - e 1 - 4 e M  Area S, 

where e I --> 0 as M a x  I U - u I -> 0. 

The proof can now be completed easily, subject of course to the differentiability 

conditions on F. Let {un} be a sequence of continuously dffferentiable functions tending 

to u, as in the definition of Ic[u]. We may assume by the diagonal process that  I[un, Rn] -~ 

Iv[u]. This being the case we can choose n so that, simultaneously, 

I[u~,S] - I [u ,S]  >1 - ~ - 4 e M  Area S 

and I [un, S] <~ I [un, R,,] <~ Ic [u] + e. 

Since e is arbitrary, these two inequalities together imply 

l [u ,#]  <. It[u],  

and the required inequality follows at once. 

4. Proof  of  Theorem 2 ( c o n c l u d e d )  

In  this section we shall prove the inequality I[u] <~ Ic[u] under the alternate hypo- 

thesis ~ 2. A simple lemma is needed first. 

L~m~A 2. S u p l ~ e  that E > 0 / o r  all (P,Q) ~ (p,q), and let ]0 denote a bounded set o/ 

values (x ,y ,u ,p,q) .  Then there exists a constant u > 0 such that 

E > ~ u X ,  X =  V ( P - p ) ~ +  (Q_q)2,  (8) 

/or all (x ,y ,u ,p ,q)E~)  and all X >~ 1. 



THE INTEGRAL FOR NON-PARAMETRIC PROBLEMS 29  

Proo/. Since the figurative surface is convex (see, for example the lemma in section 9 

of the preceding paper), it is clear tha t  (8) will hold with 

u = g.l.b. M i n E ( x , y , u , p , q ;  P ,Q) .  
O X = I  

The lemma being proved, now let S be a fixed closed subregion of R with smooth  

boundary ,  and let e be an arb i t rary  positive number.  We observe t h a t  

F ( U , P , Q )  - F ( U , p , q )  = (P - p )  F~,(U,p,q) + (Q - q ) F q ( U , p , q )  + E ( U , p , q ; P , Q ) ,  

whence for (x, y) E S, 

F ( U , P , Q )  - F (u ,p ,q )  

(P - p)F~(u ,p ,q)  + (Q - q)Fq(u,p ,q)  + E ( U , p , q ; P , Q )  - e~X - e a, 

where e~ and e a are positive numbers  which tend to zero with Max l U - u ] .  Now the 

arguments  (x,y,  U,p,q)  of E belong to some bounded set O, so tha t  by  Lemma 2 there 

exists a constant  u > 0 such tha t  

E > 7 ~ X  if X ~ > I ,  (x,y) ES. 

Moreover, the terms F~ (u,p, q) and Fq (u, p, q) can be approximated  by  polynomials 

A and B such t h a t  

I F , - A [ ,  ] F q - B [ < e ,  ( x , y ) e S .  

I t  follows that ,  for (x ,y )ES,  

F ( U ,  P , Q )  - F (u, p ,  q) >1 G - ( P  - p )  A - (Q - q) B - e a, 

where G = / - 2 e - s2 if X < 1,  

[ ( ~ -  2 e - e z ) X  if X~> 1. 

Let  us assume from here on tha t  e < x /4  and  tha t  Max [ U - u [ is so small t ha t  e 2 < u /2 .  

Then G > 0 for X >/ l ,  and we find after an  integrat ion by  par ts  t ha t  

I [ U , S ]  - I [ u , S ]  >>- - (2 e + ~)  Area S - e 4, 

where Q tends to zero with Max I U - u ]. The remainder  of the a rgument  is exact ly  as in 

section 3, and  Theorem 2 is completely proved. 

Remark.  I t  will be seen tha t  hypothesis  ~ 2 was used simply to establish Lemma 2. 

Thus  Theorem 2 remains true if instead of ~ 2 we require only the following condition. 

2". For each bounded set ~) in the ]ive-dimensional ( x , y ,u ,p ,q )  space there exists a 

positive number X o such that E > 0 / o r  all (x, y, u, p, q) ~ 0 and V (P - p)~ § (Q - q)9. > Xo" 
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The differentiability condition ~ 1 may  also be lightened in certain cases, specifically 

whenever the integrand can be approximated by  a twice differentiable function which 

satisfies the convexity condition (2). At first glance this may  appear  possible in all cases, 

but  upon considerable reflection I have come to the conclusion tha t  only certain integrands 

are amenable to this t reatment ,  and tha t  a general approximation procedure is not a 

simple mat ter  after all. 

5. Proof of  Theorem 3 

Let u = u(x,y) be continuous in R. Since any sequence {u~} allowable in the definition 

of I t [u ]  is also allowable in the definition of IM[U ], we obviously have IM[U ] <~ Ic[u]. 

We proceed now to prove the opposite inequality 

Ic[u] ~< IM[U]. (9) 

Let  (u~} be a sequence of continuously differentiable functions (each function u~ 

being defined in a closed subregion R ,  of R) with the properties 

R,--> R, u~--> u almost everywhere in R, 

and I [u~, Rn] -~ IM [u]. (10) 

The existence of such a sequence is guaranteed by  the diagonal process and the definition 

of IM[U ]. Our method of proving (9) is to construct from the sequence (Un} another sequence 

{%} of piecewise continuously differentiable functions such tha t  

Maxlu - v.I--> 0 ( l l )  

and 11%, R,~] <~ IM[U ] -b e, (12) 

where e is an arbi t rary positive number. Once this is done, we can conclude tha t  

Ic  [u] ~< liminf I [v., R~] ~< IM [U] + e, 

and (9) follows at  once. 

In  order to construct the individual function vn we first choose in R~ two polynomials 

w' and w" satisfying 

u - -  < - ,  --u-t---  < �9 
n n n 

n I t tl tt Let  M be an upper bound for the functions F(x ,y ,w ,wx,w~) and F(x, w" y, , wx, w~ ), 
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for (x ,y )ERn.  Now according to  a theorem of Egoroff  u n - ~ u  a lmos t  uniformly,(1) hence 

the re  exis ts  a se t  C in  R n with  the  p roper t i e s  

Measure C <~ e / 2 M  (13) 

a n d  lira (Maxlu,,-ul)=O, R ~ - - R n - C .  
m - ~  n n (14) 

F r o m  (1), (10), and  (14) follows the  exis tence  of an  in teger  k such t h a t  

I[~,R~]<<.I,~[u]+�89 M a x l ~ - ~ l <  1/n. R~ (15) 

W e  m a y  assume wi thou t  loss of genera l i ty  t h a t  u k is a po lynomia l .  The  func t ion  % is now 

def ined b y  
w ~ if  Uk>W' , 

v~= w" i f u k < w " ,  

uk otherwise.  

Clear ly  v~ is piecewise cont inuous ly  di f ferent iable ,  a n d  can be subs t i t u t ed  into  the  in tegra l  I .  

Le t  C' and  C" denote ,  respect ive ly ,  the  po in t  sets where uk >w '  a n d  u k < w " .  Then  

since w" < u - 1In  and  u + 1In  < w' one sees f rom (15)3 t h a t  

C' + C" c C. (16) 

Moreover,  since I w'  - u ] and  ]w" - u ] are  each less t h a n  3In ,  we have  ]v n - u [ < 3In ,  

so t h a t  (11) is sat isf ied.  F ina l l y  

I [%, Rn] = I [w', C"] + I [w", C"] + I [uk, Rn - C' - C"] 

< M - A r e a  ( C ' +  C") + I[uk,  Rn] 

< I~[u]  + ~, 

using (16), (13), and  {15)r This  completes  t he  proof.  

6. Final remarks 

Le t  u = u (x, y) be a L ipsch i tz ian  funct ion  in R, t h a t  is, suppose  t h a t  for each p rope r  

subregion B of R there  exis ts  a cons t an t  M = M ( B )  such t h a t  t he  i nequa l i t y  

I~(~,y) -U(Xo, yo) l < M ( I ~  - ~ol + lY - Yol) 

(2) A sequence of functions Va is said to converge almost uniformly to a function V in case for 
every positive ~ there exists a set C such that Measure C ~ ~ and lim ~#n = ~  uniformly in the com- 
plement of C. 
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holds for (x,y), (Xo, yo)fi B. Then the derivatives ux and % exist almost everywhere and one 

may  define the (Lebesgue) integral 

/ L [ u ]  = f RF(x,y, u ,ux ,%)dA.  

The question now arises, is I c [u] = I L [u] ? 

I t  is known tha t  u can be approximated in any  dosed subregion R,  by  continuously 

differentiable functions w such tha t  

Ivwl + l, lu-wl- O, 
and V w ~ V u almost everywhere. Consequently there exists a function wn such tha t  

[ I [w, ,R , ]  - IL[u,R,][ < I /n ,  

and therefore Ic  [u] ~< liminf I [wn, R,] = I r  [u]. 

The opposite inequality can be proved by  the methods of sections 3 and 4. Thus it is 

proved tha t  Ic  [u] = IL [u]; in other words, Ic  [u] supplies the "na tura l"  value of the integral 

even in the class of Lipschitzian functions. 

I f  u is absolutely continuous in the sense of Tonelli (el. [8]), then IL[u] is still well- 

defined, and again it can be shown tha t  It[u] = I ,  [u]. The argument  is similar to tha t  

above, though we shall omit  the details (cf. in particular, [8], w167 12, 13). In  summary,  

any class o/ admissible /unctions in the calculus o/ variations based on the integral Ic [u] 

constitutes an extension o] the corresponding class bused on Lipschitzian /unctions or even 

absolutely continuous/unctions. 

References 

[1]. L. CESAI~I, Sur]ace Area. Ann. of Math. Studies No. 35, Princeton University Press, 1955. 
Especially pp. 21-24 and Appendix B. 

[2]. - - - - ,  Su]le flmzioni a variazione limitata. Ann. Scuola Norm. Sup. Pisa (2), 5 (1936), 
299-313. 

[3]. S. C~QurNI, Condizioni suffieienti per la semicontinuit~ nel calcolo delle variazioni. Ann. 
Scuola Norm. Sup. Pisa (2), 2 (1933), 41-58. 

[4]. C. GOFF~r ,  Lower semi-continuity and area funetionals. Rend. Circ. Mat. Palermo (2), 2 
(1953), 203-235. 

[5]. T. Rap6, Length and Area. Amer. Math. Soc. Coll. Publ., 30, 1946. Especially chapter V.2. 
[6]. J.  SERRIN, On a fundamental theorem of the calculus of variations. Preceding in this Journal, 

1-22. 
[7]. L. TO~CELLI, Fondamenti di ealcolo delle va~azione. Bologna, 1922. Especially vol. I ,  385-392. 
[8]. - -  Sur la semi-eontinuitd des int~gra]es doubles du calcul des variations. Acta Math., 

53 (1929), 325-346. 


