LEBESGUE AREA OF MAPS FROM HAUSDORFF SPACES

BY
R. F. WILLIAMS
Purdue University, Lafayette, U.S.A. (1)

By a surface is meant a pair (f, X) where X is a compact m-dimensional Hausdorff space and f is a map of X into a Euclidean space of dimension n. The purpose of this paper is to define a Lebesgue type area, $L_{m}^{*}(f)$, for such surfaces and to show that it has two desirable properties, (2.6) and (3.3). In this setting, "approximately elementary" surfaces, defined in terms of the nerves of open covers of X, form natural substitutes for elementary ones. Indeed, with this simple substitution, the usual definition of Lebesgue area--in which limits are taken only oncebecomes a reasonable definition of area (called L_{m}^{p} below). However, this functional is not well understood at present and the alternative, L_{m}^{*}, is defined using two limiting stages.

In section $1, L_{m}^{p}$ and L_{m}^{*} are defined; the inequalities $L_{m}^{p} \leqslant L_{m}^{*}, L_{m}^{*} \leqslant L_{m},\left(L_{m}\right.$ is the usual Lebesgue m-dimensional area, see, e.g. [2]) follow easily from the definitions. In section 2 the case in which X is a compact 2 -dimensional manifold (with or without boundary) is considered and it is shown that $L_{m}^{*}=L_{m}$ for such surfaces. This result depends essentially on a countability lemma (Cesari-Radó) and when it fails-as it does for $m \geqslant 3$, even for cells- L_{m}^{*} and L_{m} are different. In section 3 an inequality, essentially $L_{n}^{*}(f) \leqslant \int_{E_{n}} M_{f}(p) d p$, is proved for X a compact Hausdorff space and f a light map. This is the so-called "flat case", i.e., $m=n ; M_{f}$ is the "crude" multiplicity function. An example is given (2.9) in which the inequalities $L_{2}^{*}(f)<L_{2}(f)$ and $L_{2}(f)>\int_{E_{2}} M_{f}(p) d p$ occur though X is finitely triangulable and $f: X \rightarrow E_{2}$ is light.

[^0]
1. Definitions

1.0. If n and m are positive integers, Y is an m-dimensional (geometric) complex, and $f: Y \rightarrow E_{n}$ is simplicial, relative to Y, then the elementary m-area, e_{m}, of f is defined by: $e_{m}(f)=\sum_{\sigma \in Y} a_{m}(f(\sigma))$, i.e., the sum extends over all m-dimensional simplexes σ of Y, and a_{m} denotes (Lebesgue) m-dimensional measure. If X is a Hausdorff space, X is said to be: (i) compact, if and only if each open cover of X has a finite refinement which covers X and (ii) of dimension $\leqslant m$, if and only if each open cover of X has a refinement ϑ which covers X, such that no point of X lies in more than $m+1$ elements of ϑ. Such a cover ϑ will be said to be an m-dimensional cover of X. If α is an open coper of X, then X_{α} will denote a realized nerve of α, (called $P(\alpha)$ in [6]). Barycentric α-maps are as in [6]; canonical maps are as in [3]; simplexes are always "open-simplexes".

If K is a complex and v is a vertex of K, then $\operatorname{St}(v)$ will denote the open star about v, relative to K, i.e., the union of all simplexes σ of K such that v is a vertex of σ. St (K) will denote $\{\operatorname{St}(v): v$ is a vertex of $K\}$. Note that if K is n-dimensional, then $\operatorname{St}(K)$ is an n-dimensional open cover of $|K|$ and that K and $|K|_{\mathrm{st}(K)}$ are isomorphic complexes.
1.1. If X is a Hausdorff space and Y is a triangulated space, a triple (α, g, h) will be said to be an m-canonical map triple of X into Y, if and only if:
a) α is a finite, m-dimensional open cover of X;
b) $g: X \rightarrow\left|X_{\alpha}\right|$ is a canonical map;
and c) $h: X_{\alpha} \rightarrow Y$ is simplicial (relative to a subdivision of Y).
1.2. Suppose X is a compact, m-dimensional Hausdorff space and (α, g, h) is an m-canonical map triple of X into E^{n}. Then $\left|X_{\alpha}\right|$ is metrizable; let ϱ be a metric for $\left|X_{\alpha}\right|$. Define the ${ }^{*}$-elementary m-area, $e_{m}^{*}(\alpha, g, h)$ to be the least number k such that for each positive number ε and each open cover U of X, there exists an m canonical map triple $\left(\beta, g^{\prime}, h^{\prime}\right)$ of X into X_{α} such that $\varrho\left(h^{\prime} g^{\prime}, g\right)<\varepsilon, \beta$ refines \mathcal{U} and $e_{m}\left(h h^{\prime}\right)<k+\varepsilon$.
1.3. Suppose X is a compact Hausdorff space and $f: X \rightarrow E^{n}$. Define the (Lebesgue) m-dimensional area $L_{m}^{*}(f)$ [respectively, $L_{m}^{p}(f)$], to be the least number k such that for each positive number ε and each finite open cover \mathcal{U} of X, there exists an m-canonical map triple (α, g, h) of X into E^{n} such that $\varrho(h g, f)<\varepsilon, \alpha$ refines \mathcal{U} and $e_{m}^{*}(\alpha, g, h)<k+\varepsilon$, [respectively, $e_{m}(h)<k+\varepsilon$]. If X is a metric space, the notion of "refinement" for open covers of X can be replaced by familiar considerations of the mesh and Lebesgue number of open covers of X, defined as usual.
1.4. If X is a compact Hausdorff space of dimension $\leqslant m$ and $f: X \rightarrow E_{n}$, then $L_{m}^{p}(f) \leqslant L_{m}^{*}$.

Proof. Suppose L_{m}^{*} is finite, $\varepsilon>0$, and U is an open cover of X. Then there exists an m-canonical map triple $(\alpha, g, h): X \rightarrow E_{n}$ such that α refines $\mathcal{U}, \varrho(f, h g)<\frac{1}{2} \varepsilon$, and $e_{m}^{*}(\alpha, g, h)<L_{m}^{*}(f)+\frac{1}{2} \varepsilon$. Let $\delta>0$ be such that if $x, x^{\prime} \varepsilon\left|X_{\alpha}\right|$ and $\varrho\left(x, x^{\prime}\right)<\delta$, then $\varrho\left[h(x), h\left(x^{\prime}\right)\right]<\frac{1}{2} \varepsilon$. By the definition of e_{m}^{*}, there exists an m-canonical map triple $\left(\beta, g^{\prime}, h^{\prime}\right): X \rightarrow\left|X_{\alpha}\right|$ such that β refines $\mathcal{U}, \varrho\left(g, h^{\prime} g^{\prime}\right)<\delta$, and $e_{m}\left(\hbar h^{\prime}\right)<e_{m}^{*}(\alpha, g, h)+$ $+\frac{1}{2} \varepsilon<L_{m}^{*}(f)+\varepsilon$. Therefore, $\varrho\left(f, h h^{\prime} g^{\prime}\right)<\varepsilon$ so that $L_{m}^{p}(f) \leqslant L_{m}^{*}(f)$.
1.5. If $T=(t, K)$ is a finite m-dimensional triangulation of a compact space X and $f^{\prime}: X \rightarrow E_{n}$ is simplicial relative to T, then there exists an m-canonical map triple (α, g, h) of X into E_{n} such that:

1) $e_{m}^{*}(\alpha, g, h) \leqslant e_{m}\left(f^{\prime}\right)$;
2) $f^{\prime}=h g$;
3) mesh $\alpha \leqslant 2$ mesh T.

Proof. Let α be the collection of all open stars about vertices of T. Then K is a realization of the nerve of α and hence we may set $X_{\alpha}=K$. Furthermore, $g=t^{-1}: X \rightarrow\left|X_{\alpha}\right|$ is canonical. Let $h=f^{\prime} t$ and suppose $\varepsilon>0$. Then there is a subdivision $T^{\prime}=\left(t^{\prime}, K^{\prime}\right)$ of K such that $T^{\prime \prime}=\left(t t^{\prime}, K^{\prime}\right)$ has mesh less than $\frac{1}{2} \varepsilon$. Let β be the collection of all open stars about vertices of $T^{\prime \prime}$; again we may set $X_{\beta}=K^{\prime}$. Then $\left(\beta, t^{\prime-1} t^{-1}, t^{\prime}\right):\left|X_{\beta}\right| \rightarrow\left|X_{\alpha}\right|$ is m-canonical and $e_{m}\left(h t^{\prime}\right)=e_{m}\left(f^{\prime}\right)$, so that $e_{m}^{*}(\alpha, g, h) \leqslant$ $\leqslant e_{m}\left(f^{\prime}\right)$. Parts (2) and (3) follow from the definition of α, g, and h.

If X is a triangulable space and $f^{\prime}: X \rightarrow E_{n}$ in semi-linear, then there are triangulations of X of arbitrarily small mesh, relative to which f^{\prime} is simplicial. Therefore we have the following corollary to (1.5):
1.6. If X is finitely triangulable, $\operatorname{dim} X \leqslant m$, and $f: X \rightarrow E_{n}$, then $L_{m}^{*}(f) \leqslant L_{m}(f)$.

2. The Case: $\boldsymbol{X}=\mathbf{A}$ Compact Manifold

Definitions. 2.0. If m is a positive integer, an m-dimensional space will be said to be Euclidean if and only if it is homeomorphic to a subset of E_{n}; planar, if it is Euclidean and of dimension 2. If Y is a subset of X, Y^{0} will denote the interior of Y.
2.1. Suppose X is a compact m-manifold, with or without boundary,

$$
(\alpha, g, h): X \rightarrow E_{n}
$$

is m-canonical, and that $g^{-1}(\sigma)$ is Euclidean, for all m-simplexes σ of X_{α}. Define:

$$
e_{m}^{D}(\alpha, g, h)=\sum_{\sigma \in X_{\alpha}} D(g, \sigma) \cdot a_{m}[h(\sigma)],
$$

where $D(g, \sigma)$ is as defined by Federer [4].
2.3. Let X, Y, f and σ be as in (2.5), below. Then a point $p \in \sigma$ is said to be a branch point of f, (relative to σ) if and only if the number $S(f, p)$ of essential components of $f^{-1}(p)$ is less than $D(f, \sigma)$. (See Cesari [1] and Federer [4]). Similarly, let K, T, and f be as in (2.5.0), below. A point $p \in T^{0}$ is said to be on O-branch point of f (relative to K) if and only if $S(f, p)$ is less than $\left|O\left(f, K, T^{0}\right)\right|$, where $O\left(f, k, T^{0}\right)$ is the topological index (ordinarily defined, [7], relative to a point, e.g., $O(f, K, p)$ for $p \in T$. However, the notation $O\left(K, f, T^{0}\right)$ is not ambiguous, as $O(f, K, p)$, considered as a function of p, is constant throughout T^{10}).
2.4 (Federer). If X is a compact, triangulated, m-dimensional manifold, with or without boundary, $(\alpha, g, h): X \rightarrow E_{n}$ is canonical, and each element of α is Euclidean, then there exist subdivisions X_{1} of X and $X_{\alpha 1}$ of X_{α}, and a simplicial map $g^{\prime}: X_{1} \rightarrow X_{\alpha}$ which approximates g relative to X_{α} [3; II 7.1], such that $e_{m}\left(h g^{\prime}\right)=e_{m}^{D}(\alpha, g, h)$.

Proof. There exist subdivisions, X_{1} of X and $X_{\alpha 1}$ of X_{α} and a simplificial map $g^{\prime}: X_{1} \rightarrow X_{\alpha 1}$ such that for each m-simplex $\Delta \in X_{\alpha}, g^{\prime-1}(y)$ has $D(g, \Delta)$ elements, for almost all (Lebesgue m-dimensional measure) points y of Δ, and such that g^{\prime} approximates g relative to X_{α}. (See Federer, [4], p. 6.13. Federer is concerned only with the case $\left|X_{\alpha}\right|=E_{m}$, though his proof applies here.) Then $h g^{\prime}$ is simplificial. Suppose σ is an m-simplex in E_{n} such that for some simplex Δ in $X_{\alpha}, \sigma=h(\Delta)$. Then for almost all $y \in \sigma, y$ is the image of $\sum D(g, \Delta)$ points of X, where the sum extends over all m-simplexes Δ of X such that $h(\Delta)=\sigma$. Therefore

$$
e_{m}\left(h g^{\prime}\right)=\sum_{\Delta \in X_{\alpha}} D(g, \Delta) \cdot a_{m}[h(\Delta)],
$$

and by definition, this is $e_{m}^{D}(\alpha, g, h)$.
(2.5.0) (Cesari). Suppose K is a finitely connected closed Jordan region with mutually exclusive boundary curves $J_{1}, \ldots, J_{m}, J=\bigcup_{i=1}^{m} J_{i}$, that T is a solid triangle with boundary $B, f: K \rightarrow T$, and $f(J) \subset B$. Then the subset A of T^{0} of all O-branch points of f is finite.

Proof. We first show that A is locally finite, by induction on m. For $m=1$, this is proved by Cesari [1; Theorem B]. Suppose that for all positive integers less
than m, A is locally finite. Let Q_{0} be a point of T^{0} and assume as case 1 that $f^{-1}\left(Q_{0}\right)$ does not separate any two of the sets J_{1}, \ldots, J_{m}. Then there exist closed non-overlapping discs, K_{1}, \ldots, K_{n}, such that $f^{-1}\left(Q_{0}\right) \subset \bigcup_{i=1}^{n} K_{i}^{0}$. Then $\sum_{i=1}^{n} O\left(f, K_{i}, Q_{0}\right)=$ $=O\left(f, K, Q_{0}\right)$ and, by Cesari's theorem, there exists a neighborhood N_{i} of Q_{0} such that if $p \in N_{i}-Q_{0}$, then $f^{-1}(p)$ has at least $\left|O\left(f, K_{i}, Q_{0}\right)\right|$ essential components in $K_{i}^{0}, i=1, \ldots, n$. Therefore $A \cap\left(\bigcap_{i=1}^{n} N_{i}\right)$ contains at most the point Q_{0} so that A is locally finite.

Case 2: $f^{-1}\left(Q_{0}\right)$ separates some two of the sets, J_{1}, \ldots, J_{m}. Let K_{1}, \ldots, K_{n} denote those components of $K-f^{-1}\left(Q_{0}\right)$ which contain one of the sets J_{1}, \ldots, J_{m}. For $i=1, \ldots, n$, let \hat{K}_{i} denote the decomposition space of \bar{K}_{i}, in which all points of $\bar{K}_{i} \cap f^{-1}\left(Q_{0}\right)$ are identified, let $g_{i}: \bar{K}_{1} \rightarrow \widehat{K}_{i}$ be the decomposition map and $h_{i}=f g_{i}^{-1}$. Then \hat{K}_{i} is a finitely connected closed Jordan region, whose boundary curves consist of certain of the sets J_{1}, \ldots, J_{m}, say $\left\{J_{m_{i j}}\right\}_{j=1}^{m_{i}}, i=1, \ldots, n$. Note that $n_{i j} \neq n_{i^{\prime} j^{\prime}}$, unless $(i, j)=\left(i^{\prime}, j^{\prime}\right)$, and that $g_{i} \mid J_{n_{i j}}$ is a homeomorphism, $i=1, \ldots, n, j=1, \ldots, m_{i}$, so that $\sum_{i=1}^{n}\left(h_{i}, K_{i}, T^{0}\right)=O\left(f, K, T^{00}\right)$. Furthermore, $m_{i}<m, i=1, \ldots, n$, so that by the induction hypothesis, there exists a neighborhood N_{i} of Q_{0}, such that the set A_{i} of all branch points of h_{i}, intersects N_{i} in at most the point Q_{0}. As before, $A \cap\left(\bigcap_{i=1}^{n} N_{i}\right)$ contains at most the point Q_{0}, so that A is locally finite.

We complete the proof by showing that this weaker conclusion implies the stronger. Enlarge K by adding annular regions, one for each boundary curve, J_{i} $i=1, \ldots, m$, obtaining K^{\prime} with boundary J^{\prime}; similarly, add an annular region to T obtaining T^{\prime} with boundary B^{\prime}. Extend f to $f^{\prime}: K^{\prime} \rightarrow T^{\prime}$, so that $J^{\prime} \rightarrow B^{\prime}$, and $K^{\prime}-K \rightarrow T^{\prime}-T$, by homotopies. Then $O\left(f^{\prime}, K^{\prime}, T^{\prime 0}\right)=O\left(f, K, T^{0}\right)$ so that $A^{\prime} \supset A$. The fact that A^{\prime} is locally finite implies $A=A^{\prime} \cap T^{0} \subset A^{\prime} \cap T$ is finite.
2.5. Lemma. (Cesari-Radó). Suppose X is a compact 2-manifold, with or without boundary, Y is a 2-complex, $f: X \rightarrow|Y|, \sigma$ is a 2-simplex of Y, U is an open subset of X, U is planar, and that $f^{-1}(\sigma) \subset U$. Then the subset A of σ of all branch points of f has no limit point in σ.

Proof. Assume, on the contrary, that A has a limit point $y \in \sigma$. Let \mathcal{V} denote the collection of all components of $f^{-1}(\sigma)$. Then $D(f, \sigma)=\sum_{V \in \mathscr{\vartheta}} D(f, \sigma, V)$, and for only finitely many elements of \mathfrak{O}, say V_{1}, \ldots, V_{k}, is this index different from zero. Let
A_{i} denote the set of all branch points of $f \mid \bar{V}_{i}, i=1, \ldots, k$. Then $\bigcup_{i=1}^{k} A_{i} \supset A$, so that there is an integer n such that y is a limit point of A_{n}; let $g=f \mid \bar{V}_{n}$.

Let r be a 2 -simplex such that $y \in r \subset \bar{r} \subset \sigma$. There exists a continuum M such that $g^{-1}(r) \subset M \subset V_{n}$. Let r^{\prime} be a simplex such that $g(M) \subset r^{\prime} \subset \bar{r}^{\prime} \subset \sigma$. From the hypothesis concerning U it follows that there exists a finitely connected Jordan region R, with boundary J, such that $g\left(\bar{V}_{n}-R^{0}\right) \cap \bar{r}^{\prime}=0$. Let B denote the boundary of σ, let $s: \bar{\sigma} \rightarrow \bar{\sigma}$ be a map such that $s \mid \bar{r}^{\prime} \cup B$ is the identity and $s\left(g\left(\bar{V}_{n}-R^{0}\right)\right) \subset B$, and let $h=s g$. It follows, (see [8; VI.1.4]), that $|O(h, R, \sigma)|=D(h, \sigma)$. As

$$
g^{-1}(r) \subset M \subset g^{-1}\left(r^{\prime}\right)=h^{-1}\left(r^{\prime}\right) \subset h^{-1}(\sigma)
$$

some component, say V^{\prime}, of $h^{-1}(\sigma)$ contains $g^{-1}(r)=h^{-1}(r)$. From this last it follows that $h\left(\bar{V}_{n}-V^{\prime}\right) \cap r=0$, so that $D(h, \sigma)=D\left(h, \sigma, V^{\prime}\right)$.

In the diagram

g_{j}^{*} is induced by $g, j=1,2 ; h_{j}^{*}$ by $h, j=1, \ldots, 6 ; i_{j}^{*}$ by inclusions, $j=1, \ldots, 5$; and s^{*} by s. Then s^{*} is the identity and i_{j}^{*} is an isomorphism onto, $j=1, \ldots, 5$ (see [3; X, 5]).

These groups are all infinite cyclic, [3; XI, 6.8], and commutativity holds throughout. As the homomorphisms g_{1}^{*} and h_{6}^{*} are "connected" by isomorphisms, the indices they define are equal, i.e., $D\left(g, \sigma, V_{n}\right)=D\left(h, \sigma, V^{\prime}\right)$. Therefore $D\left(f, \sigma, V_{n}\right)=$ $=|O(h, R, \sigma)|$. Thus, as f and h agree on $R \cap h^{-1}(\bar{r})$, it follows that the set A_{n}^{\prime} of all O-branch points of $h \mid R$ satisfies $A_{n}^{\prime} \cap r=A_{n} \cap r$. But (2.5.0) applies so that A_{n}^{\prime} has no limit point in σ, contradicting the fact that y is a limit point of A_{n}.
2.6. Lemma. Let X, Y, f, σ, A, and B be as in (2.5). Suppose, in addition that U and V are open subsets of $\bar{\sigma}$ such that $A \cup B \subset V \subset \bar{V} \subset U$ and let $X_{0}=f^{-1}(\bar{\sigma}-U)$. Then there exist positive numbers ε, δ, such that if $g: X_{0} \rightarrow \bar{\sigma}$ is a map with $\varrho\left(g, f \mid X_{0}\right)<\varepsilon$,
then for each $y \in \bar{\sigma}-U, g^{-1}(y)$ has at least $D(f, \sigma)$ essential components, no two of which are within δ of each other.

Proof. Let $m=D(f, \sigma), f_{0}=f \mid X_{0}$, and let C denote the space of all maps $g: X_{0} \rightarrow \bar{\sigma}$, metrized as usual. For each $(g, y) \in C \times \bar{\sigma}$, let $S(g, y)$ denote the number of essential components of $g^{-1}(y)$. Then, as S is lower-semi-continuous and $\geqslant m$ on $\left\{f_{0}\right\} \times(\bar{\sigma}-U)$, it follows from the compactness of $\bar{\sigma}-U$ that there is a neighborhood N of f_{0} in C such that if $(g, y) \in N \times(\bar{\sigma}-U)$, then $S(g, y) \geqslant m$.

For each $(g, y) \in N \times(\bar{\sigma}-U)$, let $d_{m}(g, y)$ be the greatest lower bound of the set of all numbers δ such that: (a) $g^{-1}(y)$ does not have m essential components, no two of which are within δ of each other. Then $d_{m}>0$ on $N \times(\bar{\sigma}-U)$. Furthermore, d_{m} is lower-semi-continuous, for assume the contrary. Then there exist a sequence $\left\{g_{i}\right\}_{i=0}^{\infty}$ of maps of X_{0} into $\bar{\sigma}$, a sequence $\left\{y_{i}\right\}_{i=0}^{\infty}$ of points of $\bar{\sigma}-U$, and a positive number δ, such that (i) $g_{i} \rightarrow g_{0}$ and $y_{i} \rightarrow y_{0}$ as $i \rightarrow \infty$, (ii) $\left(g_{i}, y_{i}\right)$ satisfies (a) for $\delta, i=1,2, \ldots$, and (iii) (g_{0}, y_{0}) does not satisfy (a) for δ. Let L_{1}, \ldots, L_{m} be essential components of $g_{0}^{-1}\left(y_{0}\right)$ such that $\varrho\left(L_{i}, L_{j}\right)>\delta$, for $i \neq j, i, j=1, \ldots, m$, and let N_{i} be a neighborhood of L_{i} such that $\varrho\left(N_{i}, N_{j}\right)>\delta$, for $i \neq j, i, j=1, \ldots, m$. It follows from the definition of "essential component", that for sufficiently large $i, g_{i}^{-1}\left(y_{i}\right)$ has an essential component $L_{i j} \subset N_{i j}$, for each $j=1, \ldots, m$, contradicting (ii).

As above, there exist a neighborhood N^{\prime} of f_{0} and a positive number δ, such that for all $(g, y) \in N^{\prime} \times(\bar{\sigma}-U), d_{m}(g, y)>\delta$, so that $g^{-1}(y)$ contains m essential components, no two of which are within δ of each other.
2.7. Lemma. If X is a 2-manifold, with or without boundary, and $(\alpha, g, h): X \rightarrow E_{n}$ is 2-canonical, then $e_{2}^{D}(\alpha, g, h) \leqslant e_{2}^{*}(\alpha, g, h)$.

Proof. Suppose $\varepsilon>0$ and that $e_{2}^{*}(\alpha, g, h)$ is finite. For each 2 -simplex σ of X_{α}, let $M_{\sigma}=D(g, \sigma), R_{\sigma}=g^{-1}(\sigma), B_{\sigma}=$ the boundary of σ, and A_{σ} be the subset of σ of all branch points of the map g, relative to σ. Let N be the number of 2 -simplexes in X. By (2.5) there exist neighborhoods U_{σ}, V_{σ} of $A_{\sigma} \cup B_{\sigma}$ such that $\bar{V}_{\sigma} \subset U_{\sigma}$ and $a_{2}\left[h\left(\bar{U}_{\sigma}\right)\right]<\varepsilon / 3\left(M_{\sigma}+1\right)(N+1)$. Let $\varepsilon_{\sigma}, \delta_{\sigma}$ be as guaranteed by (2.6).

By the definition of e_{2}^{*} there exists a 2 -canonical triple $\left(\beta, g^{\prime}, h^{\prime}\right): X \rightarrow X_{\alpha}$ such that:
a) $\varrho\left(h^{\prime} g^{\prime}, g\right)<\varepsilon_{\sigma}$, for all 2 -simplexes $\sigma \in X_{\alpha}$;
b) mesh $\beta<\delta_{\sigma}$, for all two simplexes $\sigma \in X_{\alpha}$;
and c) $e_{2}\left(h h^{\prime}\right)<e_{2}^{*}(\alpha, g, h)+\varepsilon / 4$.
Then $h^{\prime}: X_{\beta} \rightarrow X_{\alpha}$ is simplicial relative to a subdivision $X_{\alpha 1}$ of X_{α}. For each 2 -simplex σ of X_{α}, let σ_{1} be the subdivision of σ induced by $X_{\alpha 1}$. Then

$$
e_{2}\left(h h^{\prime}\right)=\sum_{\Delta \in x_{\beta}} a_{2}\left[h h^{\prime}(\Delta)\right]=\sum_{\Delta \in X_{\alpha 1}} M_{\Delta} \cdot a_{2}[h(\Delta)]=\sum_{\sigma \in X_{\alpha}} \sum_{\Delta \in \sigma_{1}} M_{\Delta} \cdot a_{2}[h(\Delta)],
$$

where M_{Δ} is the number of 2 -simplexes of X_{β} which map onto Δ under h^{\prime}.
Suppose σ is a 2 -simplex of X_{α}. Let $\sigma_{1}^{\prime}=\left\{\Delta \epsilon_{\sigma_{1}}: \Delta-U \neq 0\right\}$. Then

$$
\sum_{\Delta \in \sigma_{1}-\sigma_{1^{\prime}}} a_{2}[h(\Delta)] \leqslant a_{2}\left[h\left(U_{\sigma}\right)\right] \leqslant \varepsilon /\left(M_{\sigma}+1\right)(N+1) .
$$

Furthermore, for each 2 -simplex $\Delta \epsilon_{\sigma_{1}^{\prime}}^{\prime}, M_{\Delta} \geqslant M_{\sigma}$, for suppose on the contrary that $M_{\Delta}<M_{\sigma}$, for some 2 -simplex $\Delta \in \sigma_{1}^{\prime}$. Let $y \in \Delta-U_{\sigma}, z=M_{\sigma}$, and let s_{1}, \ldots, s_{z} be those 2 -simplexes of X_{β} which map onto Δ under h^{\prime}. As no 1 -simplex of X_{β} maps onto y under h^{\prime}, it follows that $\left\{s_{i}\right\}_{i=1}^{z}$ covers $h^{\prime-1}(y)$; therefore $\left\{g^{-1}\left(s_{i}\right)\right\}_{i=1}^{z}$ covers $g^{\prime-1} h^{\prime-1}(y)$. But for each $i=1, \ldots, z, g^{\prime-1}\left(s_{i}\right)$ lies in some element of β and hence has diameter $<\delta_{\sigma}$. This contradicts the fact that $g^{\prime-1} h^{-1}(y)$ has M_{σ} essential components, no two of which are within δ_{σ} of each other.

Therefore

$$
\begin{aligned}
& e_{2}\left(h h^{\prime}\right) \geqslant \sum_{\sigma \in X_{\alpha}} \sum_{\Delta \in \sigma_{1}^{\prime}} M_{\Delta} a_{2}[h(\Delta)] \geqslant \sum_{\sigma \in X_{\alpha}} M_{\sigma} \sum_{\Delta \in \sigma_{1}^{\prime}} a_{2}[h(\Delta)] \\
& \geqslant \sum_{\sigma \in X_{\alpha}} M_{\sigma}\left(a_{2}[h(\sigma)]-a_{2}\left[h\left(U_{\sigma}\right)\right]\right) \geqslant \sum_{\sigma \in X_{\alpha}} M_{\sigma} \cdot a_{2}[h(\sigma)]-\varepsilon=e_{2}^{D}(\alpha, g, h)-\varepsilon,
\end{aligned}
$$

and the proof is complete.
2.8. Theorem. If X is a compact 2-manifold, with or without boundary and $f: X \rightarrow E_{n}$, then $L_{2}^{*}(f)=L_{2}(f)$.

Proof. Let a triangulation of X be specified. By (1.6), $L_{2}^{*}(f) \leqslant L_{2}(f)$. To show the other inequality, for $i=1,2, \ldots$, let $\left(\alpha_{i}, g_{i}, h_{i}\right): X \rightarrow E_{n}$ be a 2-canonical map triple such that $h_{i} g_{i}$ converges uniformly to f, mesh $\alpha_{i} \rightarrow 0$, and $e_{2}^{*}\left(\alpha_{i}, g_{i}, h_{i}\right) \rightarrow L_{2}^{*}(f)$, as $i \rightarrow \infty$. For each positive integer i, lemma (2.4) implies the existence of a semi-linear map $g_{i}^{\prime}: X \rightarrow X_{\alpha_{i}}$ which approximates g_{i} relative to $X_{\alpha_{i}}$, such that $e_{2}\left(h g_{i}^{\prime}\right)=e_{2}^{D}\left(\alpha_{i}, g_{i}, h_{i}\right)$. But for sufficiently large $i, e_{2}^{D}\left(\alpha_{i}, g_{i}, h_{i}\right) \leqslant e_{2}^{*}\left(\alpha_{i}, g_{i}, h_{i}\right)$, by lemma 2.7. As $h g_{i}^{\prime}$ converges uniformly to f, we have

$$
L_{2}(f) \leqslant \lim \inf _{i} e_{2}\left(h g_{i}^{\prime}\right)=\lim \inf _{i} e_{2}^{D}\left(\alpha_{i}, g_{i}, h_{i}\right) \leqslant \lim \inf _{i} e_{2}^{*}\left(\alpha_{i}, g_{i}, h_{i}\right)=L_{2}^{*}(f)
$$

2.9. Example. There exists a triangulable space X and a map f of X onto the unit square Q such that $L_{2}^{*}(f)<L_{2}(f)$.

Proof. Let X be the union of two (solid) squares, Q_{1} and Q_{2} whose intersection is a diagonal of each. There exists an isometry $h: Q_{2} \rightarrow Q_{1}$ such that $h(x)=x$ for all
$x \in Q_{1} \cap Q_{2}$. There exists a homeomorphism $f_{1}: Q_{1} \rightarrow Q$ such that $f_{1}\left(Q_{1} \cap Q_{2}\right)$ is a "heavy arc", i.e., an are having positive 2 -dimensional Lebesgue measure, say d. Define $f: X \rightarrow Q$ by $f(x)=f_{1}(x)$, for $x \in Q_{1}$ and $f(x)=f_{1} h(x)$, for $x \in Q_{2}$.

By over-additivity and symmetry, we have $L_{2}(f) \geqslant L_{2}\left(f \mid Q_{1}\right)+L_{2}\left(f \mid Q_{2}\right)=2 \cdot L_{2}(f)=2$; the last equality follows from the fact that f_{1} is a homeomorphism. That $L_{2}^{*}(f) \leqslant 2-d$ follows from theorem 3.3, below.

3. An inequality for flat mappings

3.0. In this section we are interested in a compact Hausdorff space X and a light map $f: X \rightarrow E_{n}$. (It follows that X is of dimension $\leqslant n$.) For each point $p \in E_{n}$, let $M_{f}(p)$ be the number (possibly infinite) of points of $f^{-1}(p)$. Then M_{f} is the socalled "crude multiplicity" function; it need not be measurable, indeed.
(3.0.1). Suppose Y is a topological space and $M: Y \rightarrow\{0,1, \ldots, \infty\}$ is a function. Then, in order that there exist a compact Hausdorff space X and a light map $f: X \rightarrow Y$ such that $M=M_{f}$, it is necessary and sufficient that the support of M be a compact Hausdorff space.

The necessity is just the fact that the continuous image of a compact Hausdorff space is again a compact Hausdorff space. To prove the other half, assume the support of M is Y^{\prime}, a compact Hausdorff space. Let $X=\{(y, j): j$ is a positive integer $\leqslant M(y)\}$, and define $f: X \rightarrow Y$, by $f(y, j)=y$, all $(y, j) \in X$. A basis n of neighborhoods for X is defined as follows: a subset N of X is in n if and only if either (1) N is a single point (y, j), where $y \in Y$ and $1<j \leqslant M(y)$ or (2) $N=f^{-1}(U)-F$, where U is an open set in Y and F is a finite set of points $(y, j) \in X$ such that $1<j \leqslant M(y)$. The axioms of Hausdorff can easily be verified.

Let $X^{\prime}=\left\{(y, 1): y \in Y^{\prime}\right\}$. Then $\left|\mid X^{\prime}\right.$ is open and one-to-one and therefore a homeomorphism. Hence X^{\prime} is compact. Therefore if \mathcal{U} is a sub-collection of $\boldsymbol{\eta}$ which covers X, some finite subcollection \mathcal{V}, of \mathcal{U}, covers X^{\prime}, and hence all but finitely many points of X, so that X is compact. The projection f is clearly continuous and $M_{f}=M$.

Thus, in the main result of this section we are forced to use the lower Riemann integral of $M_{f}, \int M_{f}(p) d p$. However, if X satisfies the second axiom of count-ability-i.e. is metric-then M_{f} is measurable, as may be seen as follows: there exists a countable collection $\left\{\mathcal{U}_{i}\right\}_{i=1}^{\infty}$ of finite open covers of X such that if \mathcal{U} is an open cover of X, then some \mathcal{U}_{i} refines \mathcal{U}. For $p \in E_{n}$, let $M_{i}(p)$ be the least integer $j \geqslant 0$ such that some subcollection of j elements of \boldsymbol{u}_{i} covers $f^{-1}(p)$. Then
M_{i} is upper-semi-continuous, finite valued, and $M_{i}(p) \leqslant M_{f}(p)$ for all $p \in E_{n}$. Finally, $\sup _{i} M_{i}=M_{f}$, so that M_{f} is measurable.
(3.1). Lemma. Suppose X is a Hausdorff space, Y is a finite n-complex $f: X \rightarrow|Y|$, and that for each vertex v of Y, there exist non-empty open sets $\alpha_{v 1}, \ldots, \alpha_{v, m(v)}$ such that:

1. $\bigcup_{i=1}^{m(v)} \alpha_{v i}=f^{-1}$ (St (v)); and
2. $\bar{\alpha}_{v i} \cap \bar{\alpha}_{v j}=0$, unless $i=j$.

Let $\alpha=\left\{\alpha_{v i}: v\right.$ is a vertex of Y and $\left.i=1, \ldots, m(v)\right\}$, and let v_{i} be the vertex of X_{α} corresponding to $\alpha_{v i}$. Then the correspondence $v_{i} \rightarrow v$ determines a simplicial map $h: X_{\alpha} \rightarrow Y$ and there exists a (unique) barycentric α-map g completing the following commutative diagram:

Proof. First, if v and w are vertices of Y such that w_{j} and w_{k} are adjacent in X_{α} then $\alpha_{v j} \cap \alpha_{w k} \neq 0$ so that $\operatorname{St}(v) \cap \operatorname{St}(w) \supset f\left(\alpha_{v j} \cap \alpha_{w k}\right) \neq 0$, and hence v and w are adjacent. Note also that $v \neq w$ so that h collapses no simplex of X_{α}.

To define g, suppose $x \in X$ and let $\alpha_{v_{0} j_{0}}, \ldots, \alpha_{v_{r} j_{r}}$ be the only elements of α which contain x. Let σ_{x} be the simplex of X_{α} with vertices $v_{0 j_{0}}, \ldots, v_{r j_{r}}$. (Here, and below, $v_{i j_{i}}$ is used instead of $\left(v_{i}\right)_{i \cdot}$.) Let $g(x)=\sigma_{x} \cap h^{-1} f(x)$; this is a single point as $h \mid \sigma_{x}$ is a homeomorphism.

To show that g is continuous suppose $x \in X$ and that $\alpha_{v_{0} j_{0}}, \ldots, \alpha_{v_{r i r}}$ are the only elements of α which contain x. Let $\alpha_{v_{r}+1 j_{r+1}}, \ldots, \alpha_{v_{s} j_{s}}$ be the only other elements of α which intersect $\bigcap_{i=0}^{r} \alpha_{v_{i j} j_{i}}$. Let σ_{0} be the simplex with vertices $v_{0 j_{0}}, \ldots, v_{r j_{r}}$ and let $\sigma_{0}, \ldots, \sigma_{k}$ be the only simplices of X_{α} which have σ_{0} as a face. Note that $\sigma_{0}, \ldots, \sigma_{k}$ are characterized as having each of $v_{0^{j}}, \ldots, v_{r j r}$ as a vertex and all remaining vertices among $v_{r+1 i_{r+1}}, \ldots, v_{s j_{.}}$. Let $\sigma_{i}^{\prime}=h\left(\sigma_{i}\right), i=0, \ldots, k$.

Suppose N is a neighborhood of $g(x)$ in X_{α}. Then N contains an open subset of $\bar{\sigma}_{i}$ and hence $h(N)$ contains an open subset of $\bar{\sigma}_{i}^{\prime}, i=0, \ldots, k$. Hence there exists
a neighborhood R of $h(g(x))$ such that $R \cap \bar{\sigma}_{i}^{\prime} \subset h(N) \cap \overline{\sigma_{i}^{\prime}}$. Let N^{\prime} be a neighborhood of x such that $N^{\prime} \subset \bigcap_{i=0}^{r} \alpha_{\nu_{i} i i}$ and $f\left(N^{\prime}\right) \subset R$. Then $g\left(N^{\prime}\right) \subset \bigcup_{i=0}^{s} \sigma_{i}$ and $g\left(N^{\prime}\right) \subset h^{-1} f\left(N^{\prime}\right)$ $\subset h^{-1}(R)$, so that $g\left(N^{\prime}\right) \subset\left(\bigcup_{i=1}^{s} \sigma_{i}\right) \cap h^{-1} h(N) \subset N$.

Then if $x \in \alpha_{v j}, g(x)$ lies in a simplex having v_{j} as a vertex and conversely, for all vertices v of Y and $j=1, \ldots, m(v)$, so that g is a barycentric α-map.

Furthermore, if g^{\prime} is such a barycentric α-map, $g^{\prime}(x) \in \sigma_{x} \cap h^{-1} f(x)$ (notation as above) so that $g^{\prime}=g$.
(3.2). Lemma. Suppose both the diagrams

are as in the previous lemma and that
a) Y^{\prime} is a subdivision of Y; and
b) if v is a vertex of Y and v^{\prime} is a vertex of Y^{\prime}, then no one of the sets $\beta_{v^{\prime} 1}, \ldots, \beta_{v^{\prime} m^{\prime}\left(v^{\prime}\right)}$ intersects two of the sets $\alpha_{v 1}, \ldots, \alpha_{v m(v)}$. Then there exists a map $\Phi: X_{\beta} \rightarrow X_{\alpha}$, simplicial relative to a subdivision of X_{α}, such that commutativity holds throughout the diagram:

Proof. Suppose v_{t}^{\prime} is a vertex of X_{β}, that is v^{\prime} is a vertex of Y^{\prime} and t one of the integers $1, \ldots, m^{\prime}\left(v^{\prime}\right)$; let $x \in \beta_{v^{\prime} t}$. Let v_{0}, \ldots, v_{r} be the only vertices v of Y
such that $v^{\prime} \in \operatorname{St}(v)$. Then there exist unique integers j_{0}, \ldots, j_{r} such that $x \in \alpha_{v_{i} j}$, for $i=0, \ldots, r$. As $\beta_{v^{\prime} t} \subset f^{-1} \mathrm{St}^{\prime}\left(v^{\prime}\right)$ (here and below, $\mathrm{St}^{\prime}\left(v^{\prime}\right)$ denotes the open star about v^{\prime}, relative to Y^{\prime}), and $\operatorname{St}^{\prime}\left(v^{\prime}\right) \subset \operatorname{St}\left(v_{i}\right)$, it follows that $\beta_{v^{\prime} t} \subset \bigcup_{j=1}^{m\left(v_{i}\right)} \alpha_{v_{i} i}, i=0, \ldots, r$. Then from part (b), it follows that $\beta_{v^{\prime} t} \subset \alpha_{v_{i} i t}, i=0, \ldots, r$. Let $\sigma_{v_{i}}$ be the simplex of X_{α} with vertices $v_{i j_{i}}, i=0, \ldots, r$. As $h \mid \sigma_{v^{\prime}, ~}$ is a homeomorphism, $h^{-1} h^{\prime}\left(v_{t}^{\prime}\right) \cap \sigma_{v_{l}}$ is a single point, $v_{t}^{\prime \prime}$, so that the correspondence $v_{t}^{\prime} \rightarrow v_{t}^{\prime \prime}$ is single valued.

We must show that if v_{t}^{\prime} and w_{u}^{\prime} are adjacent vertices of X_{β}, then $v_{t}^{\prime \prime}$ and $v_{u}^{\prime \prime}$ lie together in a single closed simplex of X_{α}. To this end, let the notation of the previous paragraph hold for v_{t}^{\prime} and let $w_{0}, \ldots, w_{s}, k_{0}, \ldots, k_{s}$ and $\sigma_{w_{u}}$ be the corresponding elements for w_{u}^{\prime}. Then $\beta_{w^{\prime} u} \subset \alpha_{w_{i} k_{i}}, i=0, \ldots, s$. As above the non-empty set $\beta_{v^{\prime} t} \cap \beta_{w^{\prime} u} \subset\left(\bigcap_{i=0}^{r} \alpha_{v_{i} \xi_{i}}\right) \cap\left(\bigcap_{i=0}^{s} \alpha_{w_{i} k_{i}}\right)$ and thus it follows that there is a simplex σ in X_{α} which has both $\sigma_{v_{t}^{\prime}}$ and $\sigma_{w_{u}{ }^{\prime}}$ as faces. Then $v_{t}^{\prime \prime}$ and $w_{u}^{\prime \prime}$ lie together in $\bar{\sigma}$. Therefore the map $\Phi: X_{\beta} \rightarrow X_{\alpha}$ is determined and is simplicial relative to a subdivision of X_{α}.

We conclude by proving the commutativity of the diagram. As $h \Phi$ and h^{\prime} are simplicial and agree on the vertices of X_{β}, it follows that $h \Phi=h^{\prime}$. To show that $\Phi g^{\prime}=g$, suppose $x \in X$. As $h \Phi g^{\prime}(x)=h^{\prime} g^{\prime}(x)=f(x)=h g(x)$ and as $h \mid \bar{\sigma}$ is a homeomorphism for each simplex σ of X_{α}, it will suffice to show that $\Phi g^{\prime}(x)$ and $g(x)$ lie together in a closed simplex of X_{α}.

Let ω be the simplex of X_{β} containing $g^{\prime}(x), v_{0 j_{0}}^{\prime}, \ldots, v_{k j k}^{\prime}$ its vertices. Let σ_{i} be the simplex of X_{α} used above in defining $v_{i j}^{\prime}$, let $v_{i 0}, \ldots, v_{i r_{i}}$ be its vertices, and $\alpha_{i e}$ be the element of α corresponding to $v_{i e}, e=0, \ldots, r_{i}, i=0, \ldots, k$. (Note that the symbols " $v_{i e}$ " and " $\alpha_{i e}$ " constitute a change from the notation of the previous paragraphs.) As $x \in \beta_{v_{i j i}^{\prime}}$, and $\beta_{v_{i j i}^{\prime}} \subset \alpha_{i e}, e=0, \ldots, r_{i}, i=0, \ldots, k$, it follows that $x \in \bigcap_{\substack{i=0, \ldots, k \\ e=0, \ldots, r_{i}}} \alpha_{i e}$ so that there is a simplex σ of X_{α} with vertices $\left\{\begin{array}{c}\left.v_{i e}\right\}_{i=0}, \ldots, k \text {. } \\ e=0, \ldots, r_{i}\end{array}\right.$ Then $\Phi\left(v_{i_{i}}^{\prime}\right) \in \sigma, i=0, \ldots, k$, so that $\Phi g^{\prime}(x) € \Phi(\omega) \subset \bar{\sigma}$. But as g is a barycentric α-map, $g(x)$ is in a simplex σ^{\prime} which has σ as a face so that both $g(x)$ and $\Phi g^{\prime}(x)$ lie in $\bar{\sigma}^{\prime}$.
(3.3). Theorem. If X is a compact Hausdorff space and $f: X \rightarrow E_{n}$ is light, then $L_{n}^{*}(f) \leqslant \int M_{f}(p) d p$.

Proof. Suppose U is an open cover of X. If $p \in f(X)$, there exists a neighborhood N_{p} of p, such that $f^{-1}(p)$ is the union of mutually exclusive sets, $A_{p 1}, \ldots, A_{p k}$, such that $A_{p i}$ lies in some element of $\mathcal{U}, i=1, \ldots, k$. Then by the covering theorem,
there exists a $\delta>0$, such that if B is a subset of E_{n} of diameter less than δ, then $f^{-1}(B)$ is the union of mutually exclusive sets A_{1}, \ldots, A_{l}, such that A_{i} lies in an element of $\mathcal{U}, i=1, \ldots, l$. Let T be a triangulation of E_{n} such that $\mathrm{St}(T)$ has mesh $<\delta$. For each vertex v of T, let $\alpha_{v, 1}, \ldots, \alpha_{v, m(v)}$ be open sets such that

1. $\bigcup_{i=1}^{m(v)} \alpha_{v i}=f^{-1}$ (St $\left.(v)\right)$;
2. $\bar{\alpha}_{v i} \cap \bar{\alpha}_{v j}=0$, for $i \neq j, i, j=1, \ldots, m(v)$; and
3. $\alpha_{v i}$ lies in some element of $\mathcal{U}, i=1, \ldots, m(v)$.

Let $\alpha=\left\{\alpha_{v i}: v\right.$ is a vertex of T and $\left.i=1, \ldots, m(v)\right\}$. Lemma (3.1) applies, yielding the commutative diagram:

Then $(\alpha, g, h): X \rightarrow E_{n}$ is n-canonical, α refines \mathcal{U}, and $\varrho(h g, f)=0$; it will therefore suffice to show that $e_{n}^{*}(\alpha, g, h) \leqslant \int M_{f}(p) d p$.

To this end, suppose $\varepsilon>0$ and ϑ is an open cover of X. As X is normal, there exists an open cover \mathcal{V}^{\prime} of X such that if v is a vertex of T, then no element of \mathcal{V}^{\prime} intersects two of the elements $\bar{\alpha}_{v 1}, \ldots, \bar{\alpha}_{v, m(v)}$. Let \mathcal{W} be a finite open cover of X which refines both ϑ and ϑ^{\prime}. As before, there exist arbitrarily fine subdivisions T^{\prime} of T, such that for each vertex v^{\prime} of T^{\prime}, there are open sets $\beta_{v^{\prime}, 1}, \ldots, \beta_{v^{\prime}, m^{\prime}\left(v^{\prime}\right)}$ such that:

1. $f^{-1}\left(\mathrm{St}^{\prime}\left(v^{\prime}\right)\right)=\bigcup_{i=1}^{m^{\prime}\left(v^{\prime}\right)} \beta_{v^{\prime}, i} ;$
2. $\beta_{v^{\prime}, i} \cap \beta_{v^{\prime}, j}=0$, unless $i=j$; and
3. $\left\{\beta_{v^{\prime}, i}\right\}_{i=1}^{m^{\prime}\left(v^{\prime}\right)}$ refines \mathcal{W}.

By (3) and the definition of ϑ^{\prime} we obtain
3^{\prime}. If v is a vertex of T, then no one of the sets $\beta_{v^{\prime}, 1}, \ldots, \beta_{v^{\prime}, m^{\prime}\left(v^{\prime}\right)}$ intersects two of the sets $\bar{\alpha}_{v, 1}, \ldots, \bar{\alpha}_{v, m(v)}$.

Let $\beta=\left\{\beta_{v^{\prime}, i}: v^{\prime}\right.$ is a vertex of T^{\prime} and $\left.i=1, \ldots, m^{\prime}\left(v^{\prime}\right)\right\}$. Then Lemma 3.2 applies, yielding the commutative diagram

in which g^{\prime} is a barycentric β-map, h^{\prime} is simplicial relative to T^{\prime}, and Φ is simplicial relative to a subdivision $X_{\alpha 1}$ of X_{α}. Now as $h \mid \bar{\sigma}$ is a homeomorphism for each simplex σ of X_{α}, the mesh of $X_{\alpha 1}$ is directly related to that of T^{\prime}; we suppose that T^{\prime} was chosen to be so fine that the mesh of $X_{\alpha 1}$ is less than ε.

For each n-simplex σ^{\prime} of T^{\prime}, let $p_{\sigma^{\prime}}$ be a point of σ^{\prime} at which the minimum of $M_{f} \mid \sigma^{\prime}$ is attained. Let L denote the collection of all n-simplexes Δ of X_{β} such that $h^{\prime}(\Delta) \cap\left\{p_{\sigma^{\prime}}: \sigma^{\prime}\right.$ is an n-simplex of $\left.T^{\prime}\right\}=0$, and let X_{γ} denote the complex $X_{\beta}-L$. Then for any n-simplex σ^{\prime} of T^{\prime}, it follows from the fact that $f=h^{\prime} g^{\prime}$ that there are at most $M_{f}\left(p_{\sigma^{\prime}}\right)$ simplexes of X_{γ} which map onto σ^{\prime}.

The notation X_{γ} anticipates the following definition of an open cover γ having X_{v} as its realized nerve: as $g^{\prime}(X)$ covers no simplex of L, there exists a retraction s of $g^{\prime}(X)$ into $\left|X_{\gamma}\right|$. Let $g^{\prime \prime}=s g^{\prime}$ and $v=\left\{g^{\prime \prime-1}(\operatorname{St}(v)): v\right.$ is a vertex of $\left.X_{v}\right\}$. This suffices; furthermore, $g^{\prime \prime}: X \rightarrow\left|X_{\gamma}\right|$ is a barycentric γ-map and γ refines β and hence ७. The triple $\left(\gamma, g^{\prime \prime}, \Phi\left|X_{\gamma}\right|\right)$ is n-canonical and, as the mesh of $X_{\alpha 1}$ is less than ε, $\varrho\left(\Phi g^{\prime \prime}, g\right)=\varrho\left(\Phi g^{\prime \prime}, \Phi g^{\prime}\right)=\varrho\left(\Phi s, \Phi \mid g^{\prime}(X)\right)<\varepsilon . \quad$ Lastly, $\quad e_{n}\left(h \Phi \| X_{\gamma} \mid\right)=e_{n}\left(h^{\prime}| | X_{\gamma} \mid\right)=$ $=\sum_{\sigma^{\prime} \in T^{\prime}} M_{f}\left(p_{\sigma^{\prime}}\right) \cdot a_{n}\left(\sigma^{\prime}\right)$, a lower Riemann sum of M_{f}. Thus, as ε and ϑ are arbitrary, $e_{n}^{*}(\alpha, g, h) \leqslant \int_{-} M_{f}(p) d p$ and the proof is complete.

References

[1]. L. Cesari, Su di un teorrema di T. Radó sulla transformazioni continue, Atti del Reale Instituto Veneto di Scienze, Lettere ed Arti, Tom CI, Parte II (1942), 337-403.
[2]. ——, Surface Area, Annals of Mathematics Studies, no. 35, Princeton Univ. Press. 1956.
[3]. S. Eilenberg \& N. Steenrod, Foundations of Algebraic Topology. Princeton Math. Series no. 15, Princeton, 1952.
[4]. H. Federer, Essential Multiplicity and Lebesgue area. Proc. Nat. Acad. Sci., 34 (1948), 611-616.
[5]. -_, On Lebesgue area. Ann. of Math., 61, no. 2 (1955), 289-353.
[6]. W. Hurewicz \& H. Wallman, Dimension Theory. Princeton Math. Series no. 4, Princeton, 1948.
[7]. T. Radó, Length and Area. Amer. Math. Soc. Coll. Publications, vol. XXX, 1948.
[8]. T. Radó \& P. Reichelderfer, Continuous transformations in Analysis. Grundlehren der Mathematischen Wissenschaften, vol. 75. Berlin, Springer 1955.

[^0]: (1) This research was begun while the author was a member of the Seminar on Surface Area. led by L. Cesari at Purdue University, and completed while he held an XL fellowship from the Purdue Research Foundation.

 3-593804. Acta mathematica. 102. Imprimé le 25 septembre 1959

