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By a surface is meant a pair (/, X) where X is a compact m-dimensional Haus- 

dorff space and f is a map of X into a Euclidean space of dimension n. The pur- 

pose of this paper is to define a Lebesgue type area, L* (/), for such surfaces and 

to show that  it has two desirable properties, (2.6) and (3.3). In this setting, "ap- 

proximately elementary" surfaces, defined in terms of the nerves of open covers of 

X, form natural substitutes for elementary ones. Indeed, with this simple substitu- 

tion, the usual definition of Lebesgue area-- in  which limits are taken only once--  

becomes a reasonable definition of area (called L~ below). However, this functional 

is not well understood at present and the alternative, L*, is defined using two lim- 

iting stages. 

In section 1, L~ and L* are defined; the inequalities L~ <~L*~, L* <~Lm, (Lm is 

the usual Lebesgue m-dimensional area, see, e.g. [2]) follow easily from the defini- 

tions. In section 2 the case in which X is a compact 2-dimensional manifold (with 

or without boundary) is considered and it is shown that  L* = Lm for such surfaces. 

This result depends essentially on a countability lemma (Cesari-Rad6) and when it 

fails--as it does for m~>3, even for cells--L* and Lz are different. In section 

3 an inequality, essentially L* (1)~< f MI(P)dp, is proved for X a compact Hausdorff 
En 

space and / a light map. This is the so-called "flat  case", i.e., re=n; M I is the 

"crude" multiplicity function. An example is given (2.9) in which the inequalities 

L~ (/) < L~ (/) and L~ (/) > f M~ (p) dp occur though X is finitely triangulable and 
E2 

/ : X->E 2 is light. 

(1) This research was begun while the au thor  was  a m e m b e r  of the Seminar on Surface Area. 

led by  L. Cesari at  Purdue  Universi ty,  and  completed while he held an  X L  fellowship f rom the  

Purdue  Research Foundat ion .  
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1. Definitions 

t . 0 .  I f  n and  m are posi t ive integers, Y is an m-dimensional  (geometric) com- 

plex, and  f :  Y-+E~ is simplicial, re lat ive to  Y, then  the  elementary m-area, e,~, of [ 

is defined by: em (1)= ~ am (f (a)), i.e., the  sum extends  over  all m-dimensional  sim- 
a e Y  

plexes a of Y, and  am denotes (Lebesgue) m-dimensional  measure.  I f  X is a Haus-  

dorff  space, X is said to  be: (i) compact, if and  only if each open cover  of X has 

a finite re f inement  which covers X and  (ii) o/ dimension <~ m, if and  only if each 

open cover of X has a ref inement  ~ which covers X,  such t h a t  no point  of X lies 

in more  t h a n  m + 1 elements  of 19. Such a cover  ~ will be said to  be an m-dimen- 

sional cover of X.  I f  a is an open coper of X,  then  X~ will denote  a realized nerve  

of a, (called P (a) in [6]). Barycent r ic  a -maps  are as in [6]; canonical maps  are as 

in [3]; simplexes are a lways "open-s implexes" .  

I f  K is a complex and  v is a ver tex  of K,  then  St (v)  will denote  the open 

s tar  abou t  v, relat ive to K,  i.e., the  union of all simplexes a of K such t h a t  v is 

a ve r t ex  of a. St (K) will denote  { S t ( v ) : v  is a ver tex  of K}. Note  t h a t  if K is 

n-dimensional,  then  St (K) is an n-dimensional  open cover of I K I  and  t h a t  K and 

I K Ist (K) are isomorphic complexes.  

t .1 .  I f  X is a Hausdor f f  space and  Y is a t r iangula ted  space, a tr iple (a, g, h) 

will be said to be an re.canonical map triple o/ X into Y, if and  only if: 

a) a is a finite, m-dimensional  open cover  of X; 

b) g : X-+[  X~ I is a canonical  map;  

and  c) h :X~-+Y is simplicial (relative to  a subdivision of Y). 

1.2. Suppose X is a compact ,  m-dimensional  Hausdor f f  space and  (a, g, h) is 

an m-canonical  m a p  tr iple of X into E n. Then  ]X~ I is metr izable;  let ~ be a metr ic  

for I X~ I. Define the  *-elementary m-area,  e* (a, g, h) to be the  least  number  k such 

t h a t  for each posi t ive n u m b e r  e and  each open cover ~ of X, there  exists an m- 

canonical m a p  tr iple (fl, g', h') of X into X~ such t h a t  ~ (h' g', 9) < e, fl refines ~/ 

and  em (h h') < k + e. 

t .3 .  Suppose X is a compac t  I t ausdor f f  space and  f:X--->E ~. Define the  (Le- 

besgue) m-dimensional  area  L*  (f) [respectively, LV~ (f)], to be the  least  number  k such 

t h a t  for each posi t ive n u m b e r  e and  each finite open cover ~/ of X, there  exists an 

m-canonical  m a p  tr iple (a, g, h) of X into E n such t h a t  Q (hg, ])<e, a refines l / a n d  

* (a, g, h ) <  k + e ,  [respectively, em (h )<  k+e]. I f  X is a metr ic  space, the  notion of em 

" re f inemen t "  for open covers of X can be replaced by  famil iar  considerations of the  

mesh and Lebesgue number of open covers of X, defined as usual.  
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i .t , .  I f  X is a compact Hausdor// space o/ dimension <~ m and /:X-->En, then 
.<C * L~ (/) ..~ Lm. 

Proo]. Suppose L*  is finite, s > 0, and  ~ is an  open cover  of X.  Then there  

exists an m-canonical  m a p  tr iple (~, g, h) : X--+E~ such t h a t  ~ refines ~ ,  ~ (/, h g) < �89 s, 

and  e * ( ~ , g , h ) < L * ( / ) + l e .  Le t  ~ > 0  be such t h a t  if x , x ' e l X ~ l  and ~ ( x , x ' ) < ~ ,  

then  e [ h ( x ) , h ( x ' ) ] < � 8 9  B y  the  definit ion of * era, there  exists an m-canonical  m a p  

tr iple (fl, g', h') : X-->[X d such t h a t  fl refines ~ ,  e (g, h' g') < ~, and  e m (hh') < e* (~, g, h) + 

+ �89 e < L*  (1) + e. Therefore,  e (], h h' g') < e so t h a t  L~ (f) ~< L* (/). 

1.5. I] T =  (t, K) is a finite m-dimensional triangulation o] a compact space X 

and f ':  X-->E~ is simplicial relative to T, then there exists an m-canonical map triple 

(a, g, h) of X into En such that: 

1) e*~ (~, g, h) < e~ (f'); 

2) /'=hg; 
3) mesh ~ <~ 2 mesh T. 

Proo/. Let  ~ be the collection of all open stars  abou t  vert ices of T. Then K 

is a real izat ion of the  nerve  of ~ and hence we m a y  set  X ~ = K .  Fur thermore ,  

g=t- l :X- ->lX~l  is canonical. Le t  h = / ' t  and suppose s > 0 .  Then  there  is a sub- 

division T ' =  (t', K') of K such t h a t  T"-~ (tt', K')  has mesh less t han  ~s. Le t  fl be  

the  collection of all open s tars  abou t  vert ices of T " ;  again  we m a y  set  X ~ =  K'. Then  

(fl, t ' -~t -~, t'): IX~t-->IX~I is m-canonical  and  em(ht')=e,,(/ ') ,  so t h a t  e*(~ ,  g, h)~< 

4 e~ (/'). Pa r t s  (2) and  (3) follow f rom the definit ion of ~, g, and  h. 

I f  X is a t r iangulable  space and  f ':X--+E~ in semi-linear, t hen  there  are tri- 

angulat ions  of X of arbi t rar i ly  small  mesh,  re lat ive to  which ] '  is simplicial. There-  

fore we have  the  following corollary to (1.5): 

1.6. I /  X is finitely triangulable, dim X < m, and /:X-->En, then L* (f)<L,~ (/). 

2. The Case: X=  A Compact Manifold 

D E F I N I T I O N S .  2.0. I f  m is a posit ive integer,  an  m-dimensional  space will be  

said to be Euclidean if and  only if i t  is homeomorphic  to  a subset  of En; planar, 

if i t  is Eucl idean and  of dimension 2. I f  Y is a subset  of X, yo will denote  t he  

interior of Y. 

2.1. Suppose X is a compac t  m-manifold,  with or wi thout  boundary ,  

(~, g, h) : X---> En 
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is m-canonical, and that  g-1 (a) is Euclidean, for all m-simplexes a of X~. Define: 

e~ (~, g, h) = ~ D (g, ~) "am [h (~)], 
aeX~ 

where D (g, a) is as defined by Federer [4]. 

2.3. Let X, Y, ] and a be as in (2.5), below. Then a point p e a is said to be 

a branch point of ], (relative to a) if and only if the number S (/, p) of essential 

components of ]-1 (p) is less than D(f, a). (See Cesari [1] and Federer [4]). Similarly, 

let K, T, and ] be as in (2.5.0), below. A point p E T  o is said to be on O-branch 

point of / (relative to K) if and only if S ( / , p )  is less than ] O ( ] , K , T  o )1, where 

0 (/, k, T ~ is the topological index (ordinarily defined, [7], relative to a point, e.g., 

0 (/, K, p) for p e T. However, the notation 0 (K, / ,  T ~ is not ambiguous, as 0 (/, K, p), 

considered as a function of p, is constant throughout TO). 

2.4 (Federer). I/  X is a compact, triangulated, m-dimensional mani]old, with or 

without boundary, (~, g, h) : X-->En is canonical, and each element o] ~ is Euclidean, 

then there exist subdivisions X 1 o/ X and X~I o/ X~, and a simplicial map g' :X1-->X~ 

which approximates g relative to X~ [3; I I  7.1], such that e,n(hg')=eD (a, g, h). 

Proo/. There exist subdivisions, X 1 of X and X~I of X~ and a simplificial map 

g':Xv-->X~I such that  for each m-simplex A E X~, g,-1 (y) has D (g, A) elements, for 

almost all (Lebesgue m-dimensional measure) points y of A, and such that  g' ap- 

proximates g relative to X~. (See Federer, [4], p. 6.13. Federer is concerned only 

with the case IX~I=Em, though his proof applies here.) Then hg' is simplificial. 

Suppose a is an m-simplex in E~ such that  for some simplex A in X~, a=h(A) .  

Then for almost all yea ,  y is the image of ~D(g ,  A) points of X, where the sum 

extends over all m-simplexes A of X such that  h (A)= a. Therefore 

em(hg')= ~ D(g ,A) 'am[h(A)] ,  
Aex~ 

(~, g, h). and by definition, this is em 

(2.5.0) (Cesari). Suppose K is a ]initely connected closed Jordan region with 

mutually exclusive boundary curves J1 . . . . .  Jm, J = 5 J~, that T is a solid triangle with 
i=1 

boundary B, ]:K-->T, and / ( J ) c  B. Then the subset A o/ T o o/ all O-branch points 

o/ ] is /inite. 

Proo/. We first show that  A is locally finite, by induction on m. For m =  1, 

this is proved by Cesari [1; Theorem B]. Suppose tha t  for all positive integers less 
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than m, A is locally finite. Let  Qo be a point of T O and assume as case 1 that  

/-1 (Qo) does not separate any two of the sets J1 . . . . .  J~. Then there exist closed 

non-overlapping discs, g 1 . . . . .  gn, such that  /-1 (Q0) c 5 gO. Then ~ O (/, K~, Qo) = 
i=1  t =1 

= 0 (/, K, Qo) and, by Cesari's theorem, there exists a neighborhood Ni of Q0 such 

that  if p E N ~ - Q o ,  then / - l (p )  has at least IO(f, Ki, Qo)] essential components in 

K ~ i =  1, ... , n. Therefore A N ( f l  N~) contains at most the point Q0 so that  A is 
4=1 

locally finite. 

Case 2: / 1 ( Q 0 )  separates some two of the sets, J1 . . . . .  Jm. Let  K 1 . . . .  , K~ de- 

note those components of K - / - 1  (Q0) which contain one of the sets J1 . . . . .  J~. For 

i =  1 . . . . .  n, let /~  denote the decomposition space of _K~, in which all points of 

K~A/-S(Qo) are identified, let g~ :_K1-->/~ be the decomposition map and h~=/g~-l. 

Then /~ is a finitely connected closed Jordan region, whose boundary curves consist 
g "~ ... of certain of the sets J1 . . . . .  J~, say ( ~J}J=l, i = l ,  , n. Note that  n~j=4=n~.j., un- 

less (i, ~)= (i', ~'), and that  g~lJn~j 

that  Z (h~, K~, T ~ = 0 (], K,  TO). 
l = l  

induction hypothesis , there exists 

is a homeomorphism, i =  1 . . . . .  n, ~= 1 . . . . .  mi, so 

Furthermore, m~<m, i = l ,  . . . ,  n, so that  by the 

a neighborhood N~ of Qo, such that  the set A~ of 
n 

all branch points of hi, intersects hr, in at  most the point Q0. As before, A N (iN1N~) 

contains at most the point Q0, so that  A is locally finite. 

We complete the proof by showing that  this weaker conclusion implies the 

stronger. Enlarge K by adding annular regions, one for each boundary curve, J ,  

i=  1 . . . . .  m, obtaining K'  with boundary J ' ;  similarly, add an annular region to T 

obtaining T' with boundary B'. Extend / to ]' :K'---->T', so that  J'--~B', and 

K ' - K - - > T ' - T ,  by homotopies. Then O ( / ' , K ' , T ' ~  T o ) so that  A ' D A .  

The fact that  A' is locally finite implies A = A ' N  T ~  A ' N  T is finite. 

2.5. LEMMA. (Cesari-Radh). Suppose X is a compact 2-mani/old, with or without 

boundary, Y is a 2-complex, l :X-->] YI, (~ is a 2-simplex of Y, U is an open subset 

o/ X ,  U is planar, and that /-1 ( a ) c  U. Then the subset A o/ (~ o/ all branch points 

o/ / has no limit point in a. 

Proo/. Assume, on the contrary, tha t  A has a limit point y E a. Let  ~ denote 

the collection of all components of /-1 (a). Then D (/, a) = ~ D (/, a, V), and for only 
V e ~  

finitely many elements of 79, say V l . . . . .  l/k, is this index different from zero. Let  
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k 

A, denote the  set  of all b ranch  points  of / [ V , , i = l  . . . . .  k. Then  O A , ~ A ,  so t h a t  
i = l  

there is an integer  n such t ha t  y is a l imit  poin t  of An; let g = / [ V n .  

Let  r be a 2-simplex such t h a t  y E r c ~ c a .  There  exists a con t inuum M such 

t h a t  g - l ( r ) ~ M c V n .  Le t  r '  be a s implex such t h a t  g ( M ) c r ' c ~ ' c a .  F r o m  the  

hypothesis  concerning U it follows t h a t  there  exists a f initely connected J o r d a n  region 

R, with bounda ry  J ,  such t h a t  g ( V , - R  ~ N 6 ' =  0. Le t  B denote  the  boundary  of 

a, let  s : a-->a be a m a p  such tha t  s ] ~' U B is the ident i ty  and  s (g (V~ - R~ ~ B, and 

let  h =  s t .  I t  follows, (see [8; VI.1.4]), t h a t  [0  (h, R,  a)[ = D  (h, a). As 

g-  1 (r) ~ M c g-1 (r') = h - i  (r') c h -1 (a), 

some component ,  say V', of h - i  (a) contains g-1 ( r ) = h  -1 (r). F r o m  this last  i t  follows 

t h a t  h (V~ - V') N r = 0, so t h a t  D (h, a) = D (h, a, V'). 

I n  the d iagram 

H"(V., V . -  V,,) ~ - ' - - - -  

H ~ (5, B) ( 

is 
H 2 (V,, V , -  R ~ ) H ~ (R, J) V.. 

h h* h~ 

�9 h~ H" (R, R V') H 2 (5, B) ( "~ H ~ (6, 5 - r) ( 

H 2(g', V ' -  V') 

g* is induced b y  g, j = l ,  2; h* b y  h, ? '=1 . . . . .  6; i* b y  inclusions, j = l  . . . . .  5; and  

s* b y  s. Then s* is the ident i ty  and  i f  is an isomorphism onto, ~ = 1 . . . . .  5 (see 

[3; x ,  5]). 
These groups are all infinite cyclic, [3; X I ,  6.8], and  c o m m u t a t i v i t y  holds 

throughout .  As the  homomorph isms  g~ and hl  are "connec ted"  by  isomorphisms,  

the  indices they  define are equal, i.e., D (g, a, Vn) = D (h, a, V'). Therefore  D (], a, Vn) = 

= I  0 ( h , R , a ) ] .  Thus,  as ] and  h agree on R N h  -1(~), i t  follows t h a t  the  set A~ of 

all 0 -b ranch  points  of h i R  satisfies A~ N r = A n  N r. But  (2.5.0) applies so t h a t  A~ 

has no l imit  po in t  in a, contradict ing the  fact  t h a t  y is a l imit  point  of A~. 

2.6. LEMMA. Let X ,  Y, ], a, A,  and B be as in (2.5). Suppose, in addition that 

U and V are open subsets o[ 5 such that A U B c V c V c U  and let X o = ]  - 1 ( 5 - U ) .  

Then there exist positive numbers e, (5, such that i/ g : Xo-->5 is a map with ~ (g, / I X0) < e, 
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then /or each y E S -  U, g-1 (y) has at least D (/, a)essential components, no two of which 

are within ~ of each other. 

Proof. Let m = D ( f ,  a), / o= / IXo ,  and let C denote the space of all maps 

g:Xo-->5 , metrized as usual. For each (g, y)EC• let S(g, y) denote the number 

of essential components of g-1 (y). Then, as S is lower-semi-continuous and ~ m  on 

{/0}• ( 5 - U ) ,  it follows from the compactness of 5 - U  that  there is a neighborhood 

N of fo in C such that  if (g, y ) E N •  then S(g, y)>~m. 

For each (g, y ) E N •  let d~(g, y) be the greatest lower bound of the set 

of all numbers 5 such that: (a) g-1 (y) does not have m essential components, no two 

of which are within ~ of each other. Then dm> 0 on N •  ( 5 -  U). Furthermore, d~ 

is lower-semi-continuous, for assume the contrary. Then there exist a sequence {gi}~%o 

of maps of X o into 5, a sequence {Yi}~0 of points of 5 - U ,  and a positive number 

(~, such that  (i) g~-->go and Y~-->Yo as i -->~,  (ii) (gt, Y~) satisfies (a) for ~, i=  1, 2 . . . . .  

and (iii) (go, Y0) does not satisfy (a) for e$. Let  L 1 . . . . .  Lm be essential components 

of g0-1(yo) such that  Q(L~, Lj)>O, for i 4 ] ,  i, j = l  . . . . .  m, and let N~ be a neigh- 

borhood of L~ such that  ~ (Ni, Nj )>  ~, for i=k]', i, ] =  1 . . . .  , m. I t  follows from the 

definition of "essential component", that  for sufficiently large i, g~-~ (y~) has an es- 

sential component L~j~/V~j, for each ] =  1 . . . . .  m, contradicting (ii). 

As above, there exist a neighborhood N'  of f0 and a positive number ~, such 

that  for all (g, y ) E N ' •  d,n(g, y)>~ ,  so that  g-l (y)  contains m essential com- 

ponents, no two of which are within ~ of each other. 

2.7. LEM~IA. I f  X is a 2-mctni[old, with or without boundary, and (~, g, h) :X-->E~ 

is 2-canonical, then e D (~, g, h) <~ e~ (~, g, h). 

Proof. Suppose s > 0  and that  e~ (~, g, h) is finite. For each 2-simplex a of X~, 

let M , = D ( g ,  a), R~=g -1 (a), B , = t h e  boundary of a, and Ao be the subset of a of 

all branch points of the map g, relative to a. Let  N be the number of 2-simplexes 

in X. By {2.5) there exist neighborhoods U,, V, of A, U B,  such that  V , ~  U, and 

a~ [h (U~)] < e/3 (M~ + 1) (N + 1). Let  e~, ~ be as guaranteed by (2.6). 

By the definition of e~ there exists a 2-canonical triple (fl, g', h') : X-->X, such that:  

a) ~ (h' g', g) < e,, for all 2-simplexes a E X,; 

b) mesh /3 < ~,, for all two simplexes a E X,; 

and c) e~(hh')<e'~(a, g, h )+e /4 .  

Then h':X~-+X~ is simplicial relative to a subdivision X~I of X~. For each 2-simplex 

of X~, let al be the subdivision of a induced by X~x. Then 
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e 2 ( h h ' ) =  ~ a 2 [ h h ' ( A ) ] =  ~ M A . a 2 [ h ( A ) ] =  ~ ~ Ma.a~[h(A)],  
AeXfl AEXal aeXcz Aea~ 

where M ~  is the  number  of 2-simplexes of X~ which m a p  onto A under  h'. 

Suppose ~ is a 2-simplex of X~. Le t  a~ = {A 6 a l : A - U + 0 } .  Then  

a2[h (A)] <-.a2[h (U.)] <'--e/(M,, + l) (N + l). 

Fur thermore ,  for each 2-simplex A 6a~, M~ >~M,, for suppose on the  con t ra ry  t h a t  

M a < M , ,  for some 2-simplex As  L e t  y 6 A - U , ,  z = M , ,  and let  s 1 . . . .  , s~ be 

those 2-simplexes of X~ which m a p  onto A under  h'. As no 1-simplex of X~ maps  
8 z h ' - I  -1  8 z onto y under  h' ,  i t  follows tha t  { t) /=1 c o v e r s  (y); therefore {g (~)},=a covers 

g" 1 h , - 1  (y) .  But  for each i =  1 . . . . .  z, g.-1 (si) lies in some element  of fl and hence 

has d iameter  < 5o. This contradicts  the fact  t h a t  g.-1 h' 1 (y) has M ,  essential com- 

ponents ,  no two of which are within ~o of each other.  

Therefore  

ez (h h') >/ 
aeXo~ Ae(q" (~EX~ Aea, '  

>1 5 M,(a2[h(a)]-a2[h(U,)])>~ ~ M o ' a 2 [ h ( a ) ] - e = e D (  a , g , h ) - e ,  

and the  proof  is complete.  

2.8. THEOREM. I /  X is a compact 2-mani/old, with or without boundary and 

/ : X-->En, then L~ (/) = L 2 (/). 

Proo[. Let  a t r iangulat ion of X be specified. B y  (1.6), L~ ( ] )~  L 2 (f). To  show 

the other  inequali ty,  for i = 1, 2 . . . . .  let (~,  gi, hi) : X-->E~ be a 2-canonical m a p  tr iple 

such t h a t  h~ g~ converges uniformly t o / ,  mesh at-->O, and e~ (o~i, g~, h~)--->L~ (/), as i--> c~. 

For  each posi t ive integer i, l emma (2.4) implies the  existence of a semi-linear m a p  

�9 h ' g~:X-->X~ i which approx ima tes  g~ relat ive to X~,  such t h a t  e2( g~)=e D (~i, g~, hi). 

But  for sufficiently large i, e D (o~i, g~, h~)~e~ (o~i, gi, hi), by l emma 2.7. As hg~ con- 

verges uni formly  to /, we have  

L 2 (/) ~< lim inf e 2 (hy~) = l im inf e D ' z (~i, qi, hi) ~ lira inf e* (o~t, gt, hi) -- L*e (j). 

2.9. EXAMPLE. There exists a triangulable space X and a map / o/ X onto the 

unit square Q such that L~ (/)< L 2 (/). 

Proo/. Le t  X be the union of two (solid) squares, Q1 and Q2 whose intersection 

is a diagonal  of each. There  exists an i somet ry  h:Q2--->Q 1 such t h a t  h (x )=  x for all 
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x E Qa N Q~. There exists a homeomorphism 11 : Q1-->Q such tha t  ]a (Q1 N Q~) is a "heavy  

arc", i.e., an are having positive 2-dimensional Lebesgue measure, say d. Define 

/ : X->Q by / (x) =/1 (x), for x E QI and / (x) =/1 h (x), for x E Q2. 

By over-additivity and symmetry,  we have L~ (/) ~> L 2 (/I Q1) + L2 (/] Q~) = 2. L~ (/) = 2; 

the last equality follows from the fact tha t /1  is a homeomorphism. That  L* 2 ( / ) < 2 - d  

follows from theorem 3.3, below. 

3. An inequality for fiat mappings 

3.0. In  this section we are interested in a compact Hausdorff space X and a 

light map /:X-->En. (I t  follows tha t  X is of dimension 4n . )  For each point pEEn, 

let Mr(p) be the number (possibly infinite) of points of /-1 (p). Then M r is the so- 

called "crude multiplicity" function; it need not be measurable, indeed. 

(3.0.t) .  Suppose Y is a topological space and M :  Y-->(O, 1 . . . . .  ~ }  is a /unc- 

tion. Then, in order that there exist a compact Hausdor// space X and a light map 

/ : X--> Y such that M = M f ,  it is necessary and su//icient that the support o/ M be a 

compact Hausdor// space. 

The necessity is just the fact tha t  the continuous image of a compact Hansdorff  

space is again a compact Hausdorff space. To prove the other half, assume the 

support of M is Y', a compact Hausdorff space. Let  X =  {(y, ] ) : j  is a positive in- 

teger ~< M (y)}, and define / : X->  Y, by ] (y, ]) = y, all (y, ]) E X. A basis T/of  neigh- 

borhoods for X is defined as follows: a subset N of X is in ~ if and only if either 

(1) N is a single point (y,]), where y E Y  and l < ] < ~ M ( y ) o r  ( 2 ) N = / - 1 ( U ) - F ,  

where U is an open set in Y and F is a finite set of points (y ,~ )EX such tha t  

1 < j~<M (y). The axioms of Hausdorff can easily be verified. 

Let  X ' = { ( y ,  1 ) : y E Y ' } .  Then / I X '  is open and one-to-one and therefore a 

homeomorphism. Hence X '  is compact. Therefore if ~ is a sub-collection of ~ which 

covers X, some finite subcollection ~, of ~ ,  covers X' ,  and hence all but  finitely 

many  points of X,  so tha t  X is compact. The projection / is clearly continuous 

and M I = M .  

Thus, in the main result of this section we are forced to use the lower Rie- 

mann integral of Mr, f Ms (p)dp.  However, if X satisfies the second axiom of count- 

abil i ty--i .e,  is met r ic - - then  M I is measurable, as may  be seen as follows: there 

exists a countable collection {~/i}~1 of finite open covers of X such tha t  if ~ is an 

open cover of X, then some ~/~ ref ines  ~/. For p E E , ,  let Mi(p)  be the least 

integer ]'>/0 such tha t  some subeollection of j elements of ~l~ covers / - l (p ) .  Then 
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M~ is upper-semi-cont inuous ,  f ini te  valued,  and  Ms (p)<~Mr(p) for all pEE~.  

sup Ms = M e ,  so t h a t  M r is measurable .  
i 

Fina l ly ,  

(3.1).  L E M ~ i .  Suppose X is a Hausdor/f  space, Y is a finite n - c o m p l e x / : X - +  I Y I, 

and that for each vertex v of Y,  there exist non-empty open sets O~Vl . . . . .  o~v. m(,) such that: 
m ( v )  

1. U ~vs=f  - 1 ( S t  (v)); and 
t = l  

2. otu N ~r = O, unless i = ~. 

Let ~ = ( ~ v ~ : v  is a vertex o/ 

corresponding to a,~. 

and there exists a 

diagram: 

Y and i =  1 . . . . .  m (v)}, and let v, be the vertex o/ X~ 

Then the correspondence v,-->v determines a simplicial map  h : X~-+ Y 

(unique) barycentric o~-map g completing the ]ollowing commutative 

/ 

Ix~l '  

Proo/. First,  if v and  w are  ver t ices  of Y such t h a t  wj and  wk are  a d j a c e n t  in 

X~ then  ~vj N ~wk~=0 so t h a t  S t  (v)fl S t  (w)~/ (av~  N ~wk)4=0, a n d  hence v a n d  w are  

ad j acen t .  No te  also t h a t  v 4 : w  so t h a t  h collapses no s implex of X~. 

To define g, suppose  x E X and  le t  a ,~  . . . . . .  ~v,j, be the  only  e lements  of ~ which 

conta in  x. L e t  a~ be the  s implex  of X~ wi th  ver t ices  v0j . . . . . .  vrj,. (Here,  and  below, 

v,j, is used ins t ead  of (vs)j,.) Le t  g ( x ) = a x  N h-i/(x); th is  is a single po in t  as h lax 
is a homeomorphism.  

To show t h a t  g is cont inuous  suppose  x E X and  t h a t  avoj . . . . . .  av, j, a re  the  only  

e lements  of a which conta in  x. Le t  a, ,+ls,+l . . . .  , av, s, be the  only o ther  e lements  of 

which in te rsec t  N av, J,. Le t  a0 be the  s implex  wi th  ver t ices  v0j . . . . . .  vrj~ and  le t  
~=O 

ao . . . . .  ak be the  on ly  s implices  of X~ which have  a 0 as  a face. No te  t h a t  ao . . . . .  au 

a r e  charac te r ized  as hav ing  each of voj . . . . . .  v,j, as  a ve r t ex  a n d  al l  r emain ing  ver-  

, ' h rices among  v~+li,+l . . . .  v~i,. Le t  a, = (as), i = O  . . . . .  k. 

Suppose  N is a ne ighborhood  of g (x) in X , .  Then  2V conta ins  an  open subse t  

of 5~ and  hence h (N) conta ins  an  open subse t  of 6~, i = 0 . . . . .  k. Hence  there  exists  
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a neighborhood R of h (g (x)) such t h a t  R N ~ c h (N) N 8~. Let  N '  be a neighborhood 

of x such tha t  2V'c  (1 ~,j~ and f (N')  c R. Then g (N') c U at and g (N')  c h -1 f (N')  
t=O i~O 

c h - l ( R ) ,  so tha t  g ( N ' ) ~ ( U  ~)  N h - l h ( N ) c N .  
i=l  

Then if x E~j ,  g (x) lies in a simplex having vj as a vertex and conversely, for 

all vertices v of Y and  j =  1 . . . .  , m (v), so tha t  g is a barycentrie a-map.  

Furthermore,  if g' is such a baryeentrie ~-map, g' (x)ea~ N h-~/(x)  (notation as 

above) so tha t  g'=g.  

(3.2). LEMMA. Suppose both the diagrams 

[ 
X > J r ]  

Ix,  I 

! 
x ~. > l r ' l  

are as in the previous lemma and that 

a) Y' is a subdivision o/ Y; and 

b) if v is a vertex of Y and v" is a vertex of Y',  then no one of the sets 

/0,,1 . . . . .  flv,m,(v,) intersects two of the sets avl . . . . .  ~vm(,). Then there exists a map 

: X~--->X~, simplicial relative to a subdivision of X~, such that commutativity holds 

throughout the diagram: 

X ) ] Y I  

Ixol 

IX~l 

Proo]. Suppose v~ is a ver tex of X~, t ha t  is v' is a vertex of Y' and t one of 

the integers 1 . . . . .  m ' (v ' ) ;  let xEflv,t, Le t  v 0 . . . .  , vr be the only vertices v of Y 
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such t h a t  v' E St (v). Then there exist unique integers ?'0 . . . . .  j, such tha t  x E a ~ ,  for 

i = 0  . . . . .  r. As f lv . tC/-1St ' (v  ') (here and below, S t ' ( v ' )  denotes the open star 
m(v.O 

about  v', relative to  Y'), and St '  ( v ' ) c S t  (v~), it follows t h a t  fl , ' t~ LJ av~j, i=O . . . . .  r. 

Then from par t  (b), it follows tha t  flttca,a~, i=O . . . . .  r. L e t  a,r be the simplex of 

X~ with vertices viii, i = 0 ,  . . . ,  r. As h la~,, is a homeomorphism, h- lh  ' (v~)f3 avr is a 

single point,  v~', so t h a t  the correspondence v~--+v~" is single valued. 

We must  show t h a t  if v; and Wu are adjacent  vertices of X~, then v; '  and Vu' 

lie together  in a single closed simplex of X~. To this end, let the notat ion of the 

previous paragraph  hold for v't and let w 0 . . . . .  ws, /Co, . . . ,  ks and aw~" be the corre- 

sponding elements for Wu. Then f l~ ,~a~k~ ,  i = 0  . . . . .  s. As above the non-empty  

set fl,'t f3 flw.u~ ( N a~,~j~) N ( ~ aw, k,) and thus it follows tha t  there is a simplex a in X~ 
i = O  l = O  

which has bo th  a~, and ~ ,  as faces. Then  v't" and  Wu' lie together  in ~. Therefore 

the map r is determined and is simplicial relative to a subdivision of X~. 

We conclude by  proving the commuta t iv i ty  of the  diagram. As h r and h' are 

simplicial and agree on the vertices of X~, it follows t h a t  h qP = h'. To show t h a t  

g' = g, suppose x fi X. As h ~ g' (x) = h'  g' (x) = f (x) = h g (x) and as h [ # is a homeo- 

morphism for each simplex a of X~, i t  will suffice to show tha t  ~P g' (x) and g (x) 

lie together  in a closed simplex of X~. 

Let  co be the simplex of X~ containing g' (x), v~j- . . . . . .  v~j-~ its vertices. Le t  a~ 

be the simplex of X~ used above in defining v~j~, let v~0 . . . . .  vt~ be its vertices, and 

aie be the element of a corresponding to Vie, e = 0  . . . . .  r~, i = 0  . . . . .  k. (Note tha t  

the symbols "v~" and "a~/' const i tute a change from the nota t ion of the previous 

paragraphs.)  As xEfi,;s~, and  fi,lj~ai~, e=O . . . . .  r~, i=O . . . . .  k, it follows tha t  

x E N a~e so tha t  there is a simplex a of X~ with vertices {v~}~=0, ...,k. Then 
i = O , . . . ,  k e = O , . . . ,  r i  
e = O , .  �9 ~ rt  

(1)(v~j~)E(y, i=O . . . . .  k, so tha t  r  But  as g is a harycentr ic  a-map,  

g(x) is in a simplex a '  which has a as a face so tha t  both  g(x) and (I) g ' (x)  lie 

in 5'. 

(3.3). THEOREM. I /  X is a compact Hausdor// space and / : X--->En is light, 

then L* (/) < f MI  (p) d p. 

Proo/. Suppose ~/ is an open cover of X. I f  p E/{X), there exists a neigh- 

borhood Np of p, such t h a t / - 1  (p) is the union of mutua l ly  exclusive sets, A~I . . . . .  A~k, 

such tha t  Ap~ lies in some element of ~/, i = 1 . . . . .  k. Then by  the covering theorem, 
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there  exis ts  a ~ > 0 ,  such t h a t  if B is a subse t  of E~ of d i ame te r  less t h a n  (~, t hen  

j-1 (B) is the  union of m u t u a l l y  exclusive sets  A 1 . . . . .  Az, such t h a t  A~ lies in an  

e lement  of ~/, i = 1 . . . . .  I. L e t  T be a t r i angu la t ion  of E, such t h a t  S t  (T) has  mesh 

< ($. F o r  each ve r t ex  v of T,  le t  ~v. 1 . . . . .  av. z (v) be open sets such t h a t  

z (v) 
1. U ~,, = / -1 (St  (v)); 

i = 1  

2. $ , ~ i 3 ~ v = 0 ,  for i # ] , i , j = l  . . . . .  m(v);  and  

3. ~vt lies in some e lement  of ~/, i =  1 . . . . .  m (v). 

Le t  : r  is a ve r t ex  of T a n d  i = l  . . . . .  re(v)}. 

the  c o m m u t a t i v e  d iagram:  

l 
X "~ E .  

Ix ,  I 

L e m m a  (3.1) applies ,  y ie ld ing  

Then  (~, g, h):X-->En is n-canonical ,  ~ refines ~/, and  ~(hg,/)=0; i t  will therefore  

suffice to  show t h a t  e* (~, g, h)< f Mr(p) dp. 

To this  end,  suppose  e > 0 a n d  ~9 is an  open cover of X.  As X is normal ,  the re  

exists  an  open cover ~9' of X such t h a t  if v is a ve r t ex  of T, t hen  no e lement  of 

~9' in tersec ts  two of the  e lements  ~vl . . . . .  ~v. z(v). Le t  • be a f ini te  open cover of 

X which refines bo th  ~9 and  ~9'. As before,  there  exis t  a rb i t r a r i l y  fine subdivis ions  

T '  os T,  such t h a t  for each ve r t ex  v' of T ' ,  the re  a re  open sets flv'.l . . . . .  /~v,.m,(v,) 

such tha t :  
z "  (v ' )  

1. /-1 (St' (v'))= tJ /~,..~; 
t = 1  

2. fly'. ~ f3 fly'. j = 0, unless i = ~; and  

3.  f o  ~z,(v,)  ~pv,. ~y~=l refines ~9. 

B y  (3) and  the  def ini t ion of ~9' we ob ta in  

3'.  I f  v is a ve r t ex  of T, then  no one of the  sets  //v,. 1 . . . . .  //v,.z,(v,) in tersec ts  

two of the  sets a, .1 . . . . .  ~,.m(,)- 

Le t  f l = { f l v . . i : v '  is a ve r t ex  of T '  and  i =  1 . . . . .  m '  (v')}. Then  L e m m a  3.2 appl ies ,  

y ie ld ing  the  c o m m u t a t i v e  d iag ram 
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f 
X >E ,  

in which g' is a barycentric /?-map, h' is simplicial relative to T ' ,  and (I) is simpli- 

cial relative to a subdivision X~I of X~. Now as hi5 is a homeomorphism for each 

simplex a of X~, the mesh of X~I is directly related to that  of T ' ;  we suppose tha t  

T '  was chosen to be so fine tha t  the mesh of X~I is less than ~. 

For each n-simplex a' of T' ,  let Pa, be a point of a' at  which the minimum of 

MI] a '  is attained. Let  L denote the collection of all n-simplexes A of X~ such that  

h' (A)A {Pa,:~' is an n-simplex of T'} =0, and let X r denote the complex X ~ - L .  

Then for any n-simplex a' of T', it follows from the fact tha t  /=h' g' tha t  there 

are at  most MI (pa.) simplexes of X~ which map onto a ' .  

The notation X ,  anticipates the following definition of an open cover y having 

X,  as its realized nerve: as g' (X) covers no simplex of L, there exists a retraction 

s of g'(X) into [X~I. Let  g"=sg' and v={g"-l(St(v)):v is a vertex of X~}. This 

suffices; furthermore, g " :  Z - >  [X~] is a barycentrie y-map and y refines fl and hence 

~q. The triple (y ,g" ,  (I) lXr]) is n-canonical and, as the mesh of X~I is less than e, 

e ( (Pg" ,  g) = e ((I) g", t g ' ) = e ( d P s ,  ( I ) lg ' (X) )<~ .  Lastly, en(h~p][X~])=e~(h'[[Xr[)= 
= ~ MI(po.). an (a'), a lower Riemarm sum of M r. Thus, as e and %0 are arbitrary, 

O'E T' 

e* (~, g, h)<<. f M1 (p)dp and the proof is complete. 
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