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1. Introduction 

This paper deals with subsets of a finite-dimensional euclidean space E, a set being 

called polyhedral or a polyhedron provided it is the intersection of a finite number of closed 

halfspaces. Thus as the term is used here, a polyhedron is closed and convex but need not 

be bounded. A set will be called boundedly polyhedral provided its intersection with each 

bounded polyhedron is polyhedral. Our principal goal is to characterize polyhedra as 

convex sets, certain of whose projections or sections are polyhedral. In connection with 

this task, we are led to develop various properties of polyhedra and of boundedly poly- 

hedral sets which seem to be available in the literature only for bounded polyhedra or 

polyhedral cones. Some of our proofs could be simplified a bit by working in projective 

space. I~owever, since many of the results on unbounded convex subsets of the atfine space 

seem to be not so simply obtainable in this way, we have chosen to work entirely in the 

affine space E. 

Section 2 begins with a simple but useful theorem on the facial structure of an arbitrary 

convex set, generalizing from the fact that  a bounded closed convex set is the convex hull 

of its set of extreme points. This theorem supplies one step in proving equivalence of the 

following five conditions on a subset K of E: K is the intersection of a finite system of closed 

halfspaces; K is a closed convex set with only finitely many faces; K is closed and is the 

convex hull of a finite system of points and rays; K is the closed convex hull of the union 

of a bounded polyhedron and a polyhedral cone; K is the linear sum of a bounded poly- 

hedron and a polyhedral cone. Surely the equivalence is generally "known", but it 

seems not to be available elsewhere in precisely this form. In  the present paper, we 
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have need of the equivalence and have included the proof in an effort to smooth the 

reader 's  path.  

In  w 3 we exploit some connections between polyhedra and convex cones, in prepara- 

tion for the main results in w 4. These are as follows (rendering "if and only if" by  "iff"). 

Suppose K is a convex subset of E n and 2 ~<i < n - 1. Then (1) K is polyhedral iff all its 

i-sections are polyhedral; (2) if K is bounded, K is polyhedral iff all its i-projections are 

polyhedral; (3) if ?. >/3, K has polyhedral closure iff all its i-projections have polyhedral 

closure; (4) if K is a cone, K is polyhedral iff all its i-projections are closed. These theorems 

are believed to be new, except tha t  for ?. = 2 and K closed; the result (4) was recently 

given by  Mirkil [7]. Our general procedure has much in common with his, and some of 

our propositions amount  to formalizations of steps in his proof. The results (1) and (2) 

reduce trivially to the case i = 2, but  this does not appear to be true of (4). 

Section 5 is devoted to some types of "nearly polyhedral" sets, characterizing them 

in various ways, identifying their polars, etc. The results are applied in discussion of two 

interesting examples in E a, one a nonpolyhedral closed convex set all of whose 2-dimensional 

projections are polyhedral, and the other a set which is nonpolyhedral even though it  and 

its polar are both  boundedly polyhedral. In  w 6 it  is proved tha t  every convex F ,  set is a 

projection of some closed convex set, and the projections of boundedly polyhedral sets 

are also characterized. Some approximation theorems are given which are valid for un- 

bounded convex sets and reduce in the bounded case to the classical result on approxima- 

tion by  po]yhedra. 

In  the concluding w 7, the term polyhedral is employed in its more customary sense to 

describe a set which is the union of a finite number  of geometric simplexes. There is con- 

structed in E a a nonpolyhedral 3-cell all of whose 2-sections and 2-projections are poly- 

hedral. Thus convexity seems essential for the results of w 4. 

For  basic material  on convex sets, including proofs of results used here without specific 

reference, the reader is referred to [1, 2, 3, 4], especially [4]. I am indebted to Professor 

Fenehel for some helpful suggestions, especially in connection with w 2. 

Notation and terminology. A i-//at is a ?'-dimensional affine subspace of E, and the term 

subsTace will be reserved hereafter for linear subspaces. A i-section of a set X c E is the 

intersection of X with a i-flat, and a i-projection of X is the image of X under an affine 

projection of E onto a i-flat. (Since such an affine projection can always be obtained as 

the composition of a translation with a linear projection onto a i-subspace of E,  conditions 

on the i-projections of a set may  be regarded equivalently in terms of linear projections.) 

We denote the empty  set by  A, and the origin in E by  ~b. Set-theoretic union, inter- 

section, and difference will be denoted by  U, N, and ~ ,  the closure, interior, and convex 
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hull of a set X by cl X, int X, and cony X. The smallest flat containing X will be denoted 

by fl X and the interior of X relative to fl X by relint X (called the relative interior o] X) .  

The relative boundary of X is the set X ~ relint X. For x and y in E, [x, y] = {rx + (1 - r)y: 

0~<r~<l}, ] x , y [ = { r x + ( 1 - r ) y : O < r < l } ,  etc. For X c E ,  Y c E ,  s > 0  and A c R  

(the real number field), Z +_ Y = { x ++ y:  x e X ,  y e Y }, A X = {a x : a e A,  x e X }, and S ( X ,  s) 

is the union of the open s-neighborhoods of the points of X. 

2. Facial structure, polarity, and polyhedra 

We prove here a useful result on the facial structure of convex sets, review the notion 

of polarity, and establish some basic properties of polyhedra which will be used later in the 

paper. Fenchel's book [4] may be mentioned as a basic reference for the methods employed 

and for Proposition 2.2, Goldman's paper [5] for the result 2.12 (v), and my paper [6] for 

2.3. The remarks on polarity and at least special cases of the results on polyhedra have 

appeared in print many times (see, for example, [2, 4, 5, 9]). 

A convex set will be called reducible provided it is the convex hull of its relative boundary; 

otherwise it is irreducible. By a/ace of a convex set K we shall mean a convex subset F of 

K such that whenever x and y axe points of K for which F is intersected by the open seg- 

ment Ix, y[, then x E F and y E F. The convex set K is said to be generated by a family :~ 

of sets provided K is the convex hull of the union of the members of ~. (In using this term, 

we shall not always distinguish carefully between a point p E E and the corresponding set 

{p} c E.) 

2.1. T~EO~EM. Every convex set is generated by its irreducible ]aces. 

Proo]. As always in this paper, we are concerned only with finite-dimensional sets; 

2.1 is trivial for those of dimension zero. Suppose it is known for all convex sets of dimension 

< n ,  and consider an n-dimensional convex set K. Let D denote the relative boundary of 

K. If  K ~ cony D, then K itself is an irreducible face of K. If  K = cony D, then by the 

support theorem K must be generated by the sets H N D, where H is a hyperplane which 

meets D but not relint K. But each face of a set H N D is easily seen to be a face of K, 

and by the inductive hypothesis each set H N D is generated by its irreducible faces. This 

completes the proof. 

Theorem 2.1 is especially useful for closed convex sets, in view of the following. 

2.2. P R o P o s I T I 0 N. The only irreducible closed convex sets are the fiats and the hall-liars. 

Proo]. Obviously all flats and half-flats are irreducible. Now consider an irreducible 

closed convex set K and let D denote its relative boundary. Since conv D =4= K, we have 

cony D =~ relint K, and by the separation theorem there must be an open halfspace Q in 

6- -  593804. Acta  mathematica. 102. Imprim4 le 26 septembre 1959 
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fl K which misses cony D but  meets relint K. Since K is closed, it can be seen t h a t  

Q c relint K, and is then easy to verify tha t  K = fl K or K is a closed halfspace in fl K. 

2.3. COROLnARY. A closed convex set which contains no line is generated by its extreme 

points and extreme rays. 

Let  us include a few more remarks on facial structure,  even though  they  are not  

needed for the  sequel. A face of a convex set K will be called essential provided it lies in 

some member  of each generating family of faces of K,  and strictly essential provided,  in 

addition, it is no t  contained in another  essential face. We shall prove together  the follow- 

ing two results. 

2.4. PROP O S IT ION. Every irreducible/ace is essential, and every strictly essential/ace 

is irreducible. Thus the strictly essential/aces are exactly the maximal irreducible/aces. 

2.5. PROPOSITION. Every convex set is generated by its/amily o/ strictly essential/aces, 

but not by any proper sub/amily o/ that. 

Proofs. We note: 1 ~ a convex set is irreducible iff it is an essential face of itself; 2 ~ if 

X c K and F is a face of K,  then conv (X N F)  = (convX)  N F ;  3 ~ if G is an  essential face of 

F and  F is a face of K,  then  G is an essential face of K. The assertion 1 ~ is trivial. As for 

2 ~ it is obvious tha t  conv (X N F )  ~ (cony X) N F.  Now consider points x~ of X and positive 

numbers  t~ whose sum is 1, such tha t  ~ t~x~ = p E F .  Then for each j we have p = tjxj + 

(1 - t j )y~,  where y~ = ~ . j ( 1  - t j )  -1 t~x~EK. Since F is a face, it follows tha t  xjEF.  Thus 

p E conv (X N F) and 2 ~ has been proved. Finally,  suppose G and F are as in 3 ~ and ~ is 

a generating family of faces of K. F rom 2 ~ it follows tha t  F is generated by  its family of 

faces, ( J  N F : J E ~},  and  thus G, being an essential face of F ,  mus t  be in some set J N F.  

This establishes 3 ~ , and we are ready  to prove 2.4 and 2.5. 

Tha t  every irreducible face is essential follows from 1 ~ and 3 ~ Now let $ be the family 

of all str ict ly essential faces of K. F rom finite-dimensionality it follows tha t  every essential 

face (and hence every irreducible face) lies in some strictly essential face, so from 2.1 it 

follows tha t  $ generates K. Consider an  arbi t rary  S E $ and let :~ be the family of all 

proper faces of S. I f  K is generated by  ($ ~ (S}) U ~, then S, being essential, mus t  lie in 

some member  of $ ~ (S} or in some member  of ~. Since this is impossible, K is not  generated 

by  $ ~ (S} (completing the proof of 2.5) and  S is no t  generated by  ~, whence S is irreducible 

and  the proof of 2.4 is complete. 

I n  the case of closed convex sets, a more complete picture of the facial s tructure can 

be obtained from the following two remarks,  whose proof will be left for the reader. 

2.6. PROPOSITION. Suppose L and M are supplementary linear subspaces o/ E, J 

is a convex subset o / M ,  and xe is the projection o / E  onto M whose kernel is L. Then i / G  is 
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a /ace o / the  set J § L, ~ G is a /ace  o / J ,  and i / F  is a /ace  o / J ,  xe -1 F is a /ace  o / J  + L. 

The same assertion is val id/or essential/aces and /or  strictly essential/aces. 

2.7. PROPOSITION. Suppose K is a closed convex subset o/ E with r  and L = 

(x : R x c  K) ,  so that L is a linear subspace o/ E. Let M be a subspace supplementary to L. 

Then K = L + (M N K)  and the closed convex set M N K contains no lines. 

I t  follows tha t  the essential faces of K are exact ly the sets ~ § L where r is an extreme 

ray  of M N K and the sets p + L where p is an extreme point  of M N K. These are all strictly 

essential except for the sets p + L where p is an endpoint  of an extreme ray. 

For  a subset X of E, the polar X ~ of X is defined as the set of all linear functionals / 

on E such t h a t / x  ~< 1 for all x E X .  Thus X ~ is a subset of the space E'  conjugate to E, 

and the b/polar X ~176 is a subset of E under  the usual identification of E with the conjugate 

space of E'. 

The propositions 2.8-2.10 below summarize some well-known facts which will be used 

freely in the sequel. 

2.8. PROPOSITION. For X c E, the polar X o is a closed convex set which includes 

the origin ~' o/ E ' ,  X ~ = [cl cony (X U (~)]o and X 00 = el cony (X U (~b)). Thus always 

X ~176176 = X ~ while X ~176 = X i / / X  is closed and convex and ~ E X .  

2.9. PROPOSITION.  Suppose X is closed and convex with ~ E X .  Then X is a ]-subspace 

i// X ~ is a (dim E - ])-subspace, X is a cone with vertex ~ i// X ~ is a cone with vertex ~', and 

X is bounded i / / ~ '  E int X ~ 

2.10. PROPOSITION. For a / a m i l y  ( X  a : a E A )  o/subsets o/ E, ( U Xa) ~ = n x ~ and 
aeA a~A 

( fl X~) ~ = el cony U X ~ 
a~A a e A  

We shall prove together  2.11 and 2.12 below, supplying five useful characterizations 

of polyhedra.  Essential tools in the proof are 2.1, 2.2, and parts  of 2.8 and 2.10. 

2.11. T H E 0 R E M. I /  K is a closed convex set with ~ E K,  then K is polyhedral i// K ~ is 

polyhedral. 

2.12. THEOREM. For a subset K o / E ,  the following five assertions are equivalent: 

(i) K is the intersection o / a / i n i t e  system o/ closed hal/spaces; 

(ii) K is closed, convex, and has only/ ini te ly  many/aces;  

(iii) K is closed and is the convex hull o / a / i n i t e  system o/points  and rays; 

(iv) K is the closed convex hull o/the union o /a  bounded polyhedron and a polyhedral cone; 

(v) K is the linear sum o / a  bounded polyhedron and a polyhedral cone. 

Proo/s. We show first t ha t  (i) implies (ii). Let  ~ be a finite family of closed halfspaces 

whose intersection is K,  and for each ~ c ~ let V ~  be the intersection of the bounding 
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hyperplanes of the members of 6 .  There are only finitely many  sets of the form K N V 6 ,  

and we shall show tha t  each face of K has tha t  form. Consider an arbi trary face F of K, 

and let ~ be the set of all members of ~ whose bounding hyperplanes contain F; obviously 

F ~ K N V ~ .  Now for each G E ~ ~ ~  we may  choose a point pG of F N  intG.  With 

p denoting the eentroid of the chosen points Pa, it is evident tha t  p E U = f l i n t  G. 
Geq~~ 

Consider an arbi trary point q E K  N V ~ .  Clearly V|  contains the entire line of points 

Yr = P + r(p - q) (for rER) ,  and since U is open we have y~E U for some t >0. Then y tEK;  

since F is a face and pEJq, Yt[, it follows tha t  q E F .  Thus K N V| c F and we know that  

(i) implies (if). 

That  (if) implies (iii) is a consequence of 2.1 and 2.2, for obviously condition (iii) is 

satisfied by  every flat and every half-flat. 

We next establish 

(1) Suppose C e K  and K is the closed convex hull of a finite system of points and 

rays. Then K is the closed convex hull of a finite system of points and of rays emanating 

from r further, the polar K ~ is polyhedral. 

Let  ~1 . . . .  , Qm and Xm+l . . . . .  xn be the given rays and points. For each ~ ,  let x~ be the 

endpoint of ~i and let ~ be the ray ~ - x t ,  emanating from q~. Since always ~i ~ cl conv 

({x,} U e 1) and e~ ~ cl cony ({r U e~), it is evident tha t  g is the closed convex hull of the 

system of points x~(1 ~<i ~<n) and rays el(1 < i  <m) .  With y, eeI ~ {r it follows from 

2.10 tha t  K ~ is the intersection of n halfspaces of the form {/ : /x~ ~< 1} and m of the form 

{[ : [y~ <. 0}, so K ~ is polyhedral. 

Now consider a closed convex set K9r  From (1), in conjunction with the fact tha t  

2.12 (i) implies 2.12 (iii), it follows tha t  if K is polyhedral, so is K ~ But  this implies tha t  if 

K ~ is polyhedral, so is K ~176 = K, and thus 2.11 has been proved. Now if K satisfies 2.12 

(iii), then K ~ is polyhedral by  (1) and K is polyhedral by  2.11; thus 2.12 (iii) implies 2.12 (i). 

We are now in a position to prove 

2.13. COROLLARY. A set is a bounded polyhedron i//  it is the convex hull o] a / in i t e  set. 

2.14. COROLLARY. A set is a polyhedral cone with vertex z i / /  it is the convex hull o/ 

a ]inite system o / rays  emanat ing/rom z. 

For closed sets, these characterizations come immediately from equivalence of condi- 

tions (i) and (iii) in 2.12. From compactness of [0, 1] it follows readily tha t  the convex hull 

-of a finite set is compact, hence closed, and this completes the proof of 2.13. For 2.14, it 

;suffices to show tha t  if x 1 . . . . .  x~ are points of E and C is the set of all linear combinations 

.of the x/s  with non-negative coefficients, then C is closed. For/c = 1, this is obvious. Sup- 
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n - - 1  

pose i t  is known  for k = n - 1 and  consider t he  case k = n. Le t  J = {~ t ix  ~ : t~ ~> 0}. Then 
1 

C = J + [O,~[x~, and  J is closed b y  the  induc t ive  hypothes is .  I f  x~EJ,  t hen  C = J ,  so we 

m a y  assume x ~ J .  Now consider an  a r b i t r a r y  po in t  p E c l  C. There  are  sequences t~ in 

[ 0 , ~ [  and  y~ in J such t h a t  t~-->tE[0 ,~]  and  y~ + t~xn--~p. I f  t =  ~ ,  t hen  t~ly~ + x~-->r 

and  thus  Xn E J ,  a contradic t ion .  I f  t E [0, ~ [, t hen  ya-->p - tx~, whence p - txn = y EJ  and  

pEC.  The proof  of 2.14 is complete ,  and  we m a y  cont inue wi th  the  proof  of 2.12. 

No te  t h a t  in the  proof  of (1) above  we have  

m 

(*) K = cl cony (conv{x~ : 1 ~<i ~<n} U cony U 1 ) ,  
i=1 

so b y  using the  charac te r iza t ions  2.13 and  2.14 we see t h a t  (iii) impl ies  (iv) in 2.12. On the  

o ther  hand ,  if K is t he  closed convex hul l  of the  union of a bounded  po lyhed ron  a n d  a 

po lyhedra l  cone wi th  ve r t ex  r  i t  follows b y  2.13 and  2.14 t h a t  K has  the  form (*), b y  (1) 

t h a t  K ~ is po lyhedra l ,  and  then  b y  2.11 t h a t  K is po lyhedra l .  Thus  ( i v ) i m p l i e s  ( i ) i n  

2.12, and  i t  remains  only to  p rove  t h a t  (iv) and  (v) are  equiva lent .  To this  end,  we es tabl ish  

(2) Suppose  X is a compac t  convex set wi th  C E X  and  Y is a closed convex cone wi th  

ve r t ex  r  Then X + Y = cl cony (X U Y). 

W i t h  C E X  N Y, i t  is clear t h a t  X + Y ~  X U Y, and  then  since X + Y is closed a n d  

convex i t  follows t h a t  X § Y ~ cl cony (X U Y). The reverse  inclusion s tems from the  

fact  t h a t  if x E E  and  e is a r a y  emana t ing  f rom r then  x + ~ c cl conv ({x} U ~). 

Now suppose  B is a bounded  po lyhedron  a n d  C is a po lyhedra l  cone w i t h  ve r t ex  ~b. 

Le t  B '  = cony (B U {~)) and  B" = B - b for some b E B. F r o m  (2) we see t h a t  if K = B + C, 

then  K - b = B" + C = el cony (B" U C). Thus (iv) is equ iva len t  to  (v) and  the  proof  of 2.12 

is complete .  

2.15. COROLLARY. I] K is a polyhedron (a bounded polyhedron, a polyhedral cone), 

then so is every a/fine image o / K .  

Proo]. F o r  bounded  p o l y h e d r a  and  po lyhedra l  cones, th is  is ev ident  b y  2.13 and  2.14. 

Then  use 2.12 (v) for the  genera l  case. 

2.16. COROLLARY. I /  K~ and K 2 are polyhedra (bounded polyhedra, polyhedral cones 

with vertex r then so are the sets K 1 + K 2 and cl conv (K 1 U K~). 

Proo]. F r o m  2.13 i t  follows t h a t  if B 1 and  B 2 arc  bounded  po lyhedra ,  t hen  so are  

B~ + B 2 and  conv (B~ U B~). F r o m  2.14 i t  follows t h a t  if C 1 and  C 2 are  po lyhedra l  cones, 

t hen  C 1 + C~ is a po lyhedra l  cone, as is cony (C 1 U C~) under  t he  add i t iona l  a s sumpt ion  

t h a t  C 1 a n d  C s have  the  same ver tex .  Thus  if K 1 and  K 2 are  po lyhed ra l  (say K~ = B~ + C~, 

so t h a t  K 1 + K 2 = (B~ + Bz) + (C 1 + C~)), we deduce  f rom 2.12 (v) t h a t  K 1 + K~ is poly-  
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hedral. Observe, finally, that  when K 1 and K2 are polyhedral i t  is evident from 2.12 (iii) 

tha t  the set K = cl conv (K 1 U K2) is the closed convex hull of a finite system of points and 

rays; tha t  K is polyhedral is then a consequence of (1) above in conjunction with 2.11. 

The proof of 2.16 is complete. 

In  concluding this section, we mention two more notions which play an important  role 

in the sequel. A subset K of E is said to be boundedly polyhedral provided its intersection 

with each bounded polyhedron in E is polyhedral, and to be polyhedral at a point p EK 

provided some neighborhood of p relative to K is polyhedral. 

2.17. PROPOSITIOn. A set is boundedly polyhedral i// it is closed, and convex, poly- 

hedral at all its points. 

Proo/. Suppose K is closed, convex, and polyhedral a t  all its points, and consider a 

bounded polyhedron B. Each point x EK admits a bounded polyhedral neighborhood/V~ 

relative to K, and by compactness of B N K there must be a finite set X ~ K with B N K c 

IJ N,.  Let  Z = cony IJ N,. Then Z is polyhedral, whence so is B (1 Z, and we have B N K 
x~X x~X  

Z ~ K. I t  follows tha t  B N K = B N Z and K must  be boundedly polyhedral. 

3. Cones and polyhedra 

For a point p E E  and a set X c  E, cone (p, X) will denote the s e t p  +]0 ,oo[(X - p ) ,  

the smallest cone which contains X and has vertex p. (Note tha t  p Econe (p, X ) i f f  

pEX. )  The present section consists largely of exploiting the connection be tweenth is  

notion and polyhedra. We begin with a collection of elementary but useful facts about  

convex cones, supplying some of the machinery to be employed in proving the main theo- 

rems. 

3.1. PROrOSITIO~.  Suppose C is a convex cone in E with vertex r and let L denote 

the lineality space o/ cl C (L = cl C N - c l  C). Then C is linear i//  C ~ Z. Suppose now 

that C is not linear, so C dg L. Then there is a linear/unctional / on E such that / = 0 on L 

and / > 0 on cl C ,,~ L. With t > 0, let H o =/ -10  and Ht =/-1 t. Then the/ollowing statements 

are true: 

(i) C = (H 0 N C) U ]0, oo[(Ht N C); 

(ii) H t N C D ( H  0 N C ) + ( H t N C )  and C ~ ( H  0 N C ) + [ 0 , ~ [ ( H t N C ) ,  with equality 

when r E C (and also under certain other conditions); 

(iii) i/ pEHt  N C, then cone (p, Ht N C)=7eC + p ,  where ~ is the projection o] E onto 

H o which is the identity on H o and maps p onto r 

(iv) i / S  is a subspace supplementary to L in H o and St is a translate o / S  to H, then 

St N C is bounded; 
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(v) i / L c  C, then Ht N C = L  + (St fl C) and C = L + [0, ~ [ ( S t  N C); 

(vi) C is closed i]/ Ht N C is closed and L c  C; 

(vii) C is polyhedral i/[ Ht N C is boundedly polyhedral and L ~ C. 

Proo[. The existence of / as described is well-known. Since / > 0 on C ~ L, it is clear 

t ha t  each point  of C ~ L has a positive multiple in Ht N C, whence condition (i) holds. I f  

H 0 N C = A, the inclusions of (ii) hold trivially, for always A + X = A. Suppose on the other  

hand  tha t  x E H0 N C and y E Ht N C. Then x + y E C (since C + C c C) and / (x + y) = 0 + t, 

so x + y E H t  N C. This justifies the  first inclusion in (ii). For  the second, we see from (i) 

t ha t  C ~  ]0, oo[(Ht N C), whence C D  ]0, c~ [{(H 0 N C) + (Ht N C)} = (H  0 N C) + ]0,c~[. 

(Ht N C). And,  by  (i), C ~ H 0 N C = (H 0 N C) + {0} (Ht N C), so the second inclusion of 

(ii) is established. The assertions about  equal i ty  in (ii) are easily verified. 

Now to establish (iii), let K = (Ht N C) - p, so tha t  K c H 0 and Ht N C = K + p. Then 

and  
cone (p, Ht N C) ~ cone (p, K + p) = p + ]0, ~ [K 

C = z ( H  o N C) U ~ ]  0, ~ [ (K  + p) = (H  o N C) c ]0 ,  r162 [K.  

From (ii) we see tha t  K ~ (H o N C) + K, whence K D H o n C (since r E K) and ] 0, ~ [ K ~ ] 0, 

~ [ ( H  o N C) = H o N C. I t  follows tha t  z C  = ]0, ~ [ K  and  (iii) has been proved. 

For  (iv), observe tha i  if St N C is unbounded  it mus t  contain a r ay  and then the parallel 

r ay  emanat ing from r must  lie in S N cl C, contradict ing the fact  t ha t  H o N cl C = L. 

Now if L c C, then L + C c C and hence L + (St N C) c Ht N C. The reverse inclusion 

follows from the fact  t ha t  Ht = L + St, and  then using (ii) we obtain 

C = L  + [0, ~ [ ( L  + (St N C)} = L  + [0, ~ [ ( S t  N C), 

so (v) is proved. 

I t  is easy to verify tha t  if Ht N C is closed, so is Is, ~ [(Ht N C) for each s > 0. And 

since H 0 N cl C = L, it follows tha t  C is closed when Ht N C is closed and L ~ C. This 

establishes (vi). 

Now suppose Ht N C is boundedly  polyhedral  and L c C. Since St N C is bounded,  it 

is the intersection with Ht N C of a bounded  polyhedron in St, and thus St N C is polyhedral .  

Wi th  V denoting the  set of all extreme points of St N C and B a basis for L, it is clear t ha t  

C consists of all non-negative combinations of elements of B U - B  U V, for C = L + [0, 

~[(S t  N C) by  (v). Thus C is polyhedral  and  the proof of 3.1 is complete. 

3.2. PROrOSITION.  Suppose X and Y are convex subsets o /E ,  p E X  n Y, and y c cone 

(p, X). Then i/ Y is polyhedral, the set X N Y is a neighborhood o / p  relative to Y. 
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Proo/. Let  L and S~ be as in 3.1, so tha t  C = L  + [0, c~[(St N C). We assume without  

loss of generali ty t ha t  p = r Now Y can be expressed as the intersection of closed half- 
k 

spaces Q1 . . . . .  Qk, Qk+l . . . . .  Qm such tha t  ~bE int Q~ iff k + 1 ~<i ~< m. Let  C = f i  Qi. Then 
1 

y c C c cone (p, X) and C is a polyhedral  cone with vertex r To prove 3.2 it suffices 

to prove tha t  X N C is a neighborhood of r relative to C. Since St N C is a bounded 

polyhedron,  there is a finite set V such tha t  cony V = St N C, and then for each v E V there 

exists rv > 0 such tha t  [r rvv] ~ X .  The number  r = inf (rv : v E V} is positive and [0, r] V ~ X, 

whence [0, r] (St N C) ~ X. Observe also tha t  r is an inner point  of T N X for each line T '  

th rough  r in L, and hence X N L is a neighborhood of r relative to L. (We are using here 

the well-known fact  tha t  3.2 is valid when Y = L . )  Now each point  u of C has a unique 

expression in the form u = w~ + a~z~ with wu EL, au E [0, c~ [, and z~ E St N C. Clearly there 

is a neighborhood N of r such tha t  w u E l ( X  N L) and auE[0, i r] for all u E N  N Y; we then 

h a v e  

N n Y ~  �89 n L) + �89 r](St N C)~  cony X = X, 

and the proof of 3.2 is complete. 

3.3. COROLLARY. A convex set K is polyhedral at a point p E K  i// cone (p, K) is 

polyhedral. 

Proo/. I f  cone (p, K) is polyhedral,  it follows from 3.2 tha t  K is a neighborhood of 

p relative to cone (p, K). Bu t  then p has a polyhedral  neighborhood N in E such tha t  

N N cone (p, K) = P c K, and P is a polyhedral  neighborhood of p relative to K. 

Conversely, if K is polyhedral  at  p there is a bounded polyhedral  neighborhood J of 

p relative to K. F rom convexi ty  of K it is clear t ha t  cone (p, K) = cone (p, J) ,  which is 

obviously polyhedral .  

3.4. COROLLARY. The result 3.2 is valid under the assumption that X is polyhedral 

rather than Y. 

Proo]. I f  X is polyhedral,  then cone (p, X) is polyhedral  by  3.3, and  it follows from 

3.2 t h a t  X is a neighborhood of p relative to cone (p, X). Wi th  Y c cone (p, X), this is 

sufficient. 

3.5. COROLLARY. 1/ p is a point o / a  convex set K,  then cone (p, K) is closed i// J N K 

is polyhedral at p / o r  each 2-/lat J through p. 

Proo/. Use 3.3 in conjunction with the  following two facts: a two-dimensional convex 

cone is polyhedral  iff it is closed; a convex set is closed iff all its 2-sections th rough  a given 

point  are closed. 
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We conclude this  sect ion wi th  two basic l emmas  which will be subsumed  b y  the  

theorems  of w 4. 

3.6. LEMMA. Suppose 2 <~ ~ <<. n and K is a convex subset o / E  n all o/whose ~-projections 

are closed. Then i /a l l  2-sections o /c l  K are boundedly polyhedral, X must be closed. 

Proo/. W e  m a y  assume t h a t  • E K,  j < n, and  le t  L denote  the  union of al l  lines th rough  

r which lie in c] K,  M a subspace  supp l emen ta ry  to  L in E. Then (by 2.7) cl K = L + 

M N (el K) ,  where the  set A = M N el K contains  no lines and  thus  b y  2.3 A = cony (ex 

A U rex  A),  where ex A is the  set of a l l  ex t reme  poin ts  of A and  rex  A the  union of i ts  

ex t reme  rays .  Clear ly  A inher i ts  f rom cl K the  p r o p e r t y  t h a t  a l l  i ts  2-sections are  bounded ly  

po lyhedra l ,  and  we can show t h a t  K is closed b y  showing t h a t  L + ex A c K and  L + rex  

A c K .  

W e  use the  following two facts:  (a) L + re l in t  A c K;  (b) if J = {p} for p E ex A or 

J = cl ~ for some ex t reme r a y  ~ of A,  then  A is suppor t ed  b y  a hype rp l ane  H in M such 

t h a t  H N A = J .  The  asser t ion (a) follows f rom the  read i ly  ver if ied facts  t h a t  each finite-  

d imens iona l  convex set conta ins  t he  in ter ior  of i ts  closure, and  L + re l in t  A c re l in t  cl K .  

The  asser t ion (b) is an  easy  consequence of 2.17, 3.5, and  the  exis tence of [ as  descr ibed  in 

3.1. 

Consider f irst  an  ex t reme  po in t  p of A.  The asser t ion  (b) guaran tees  the  exis tence of a 

suppor t ing  hype rp lane  U of K such t h a t  U N cl K = p + L. A n d  if p + L ~= K,  there  mus t  be 

a hype rp l ane  V in U bounding  an  open ha l f space  W in U such t h a t  W misses (p + L) N K 

b u t  includes  a po in t  w of p + L. Le t  X be a (j - 2)-dimensional  f la t  in V, x a po in t  of X,  

q Erel int  A and  Y the  j -d imens iona l  f la t  conta in ing X U {q, w}. Le t  ~ be an  affine pro jec t ion  

of V onto X.  Each  po in t  z E E has  a un ique  expression in t he  form 

z = x + (z 1 - x) 4- z 2 (w - x) + z a (q - x) wi th  z 16 V, z~ E R, za E R,  

and  for each z we define 

~z = x + (~z l - x )  + z~(w - x )  + z3(q - x ) ,  

so t h a t  v/is an  affine pro jec t ion  of E onto Y. B y  hypothes is ,  ~ K  is closed. Now if z 6 K  ~ U, 

t hen  za > 0 and  ~ z #  w; if zE U N K,  then  z2 ~< 0 and  ~z4= w. Thus  w ~ ? K .  B u t  ~/]w, q] = 

]w, q] c K,  so i t  follows t h a t  w Ecl ~/K -~ 2/K, an  impossibi l i ty .  W e  conclude t h a t  p + L c K 

for each p E e x A .  

Now consider an  ex t r ema l  r a y  ~ of A - - s a y  e = P  + ]0, c o [ ( u -  p) where u 6 ~  and  p 

is the  endpoin t  of ~. B y  (b), the re  is a suppor t ing  hype rp l ane  U of K such t h a t  U N e l K  = 

cl ~ + L .  Since p E e x  A,  the  resul t  of the  las t  p a r a g r a p h  shows t h a t  p + L c  K,  and  i t  fol- 
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lows easily t h a t  (q + L) N K = a + L for some "ini t ial  segment"  a of ~. We wish to show 

t h a t  a =~ .  Suppose not,  and  let  wE~ ~ cl~. I t  can be verified t h a t  U mus t  contain a 

hyperp lane  V bounding an open halfspace W in U such t h a t  w E W but  W misses (Q + L) N K. 

A contradict ion is reached as in the  preceding paragraph ,  and  the  proof of 3.6 is complete.  

3.7. LEMMA. Suppose 2 < ?, ~ n, and C is a convex cone in E n all o/whose ?,-pro?,ections 

are closed. Then all (n - j + 1)-sections o / C  are polyhedral. 

Proo/. Applicat ion of 3.1 (vii) shows t h a t  all r-sections of a convex cone C are polyhedral  

iff M N C is polyhedral  for every  (r + 1)-flat M th rough  the  ver tex  of C. This equivalence 

will be used in the  present  proof, and  we refer to it  as (**). 

Now consider a fixed j ~> 2, and  let hrj denote  the  set of all integers n />  ?, such t h a t  

each convex cone in E n which has all its ?.-projections closed mus t  also have  al l i ts  (n - ?, + 1)- 

sections polyhedral .  Clearly ?, ENj. Now suppose k - 1 ENs, and  consider a convex cone C 

wi th  ve r t ex  r in E k, all  j -projections of C assumed to  be  closed. We  wish to  show t h a t  

all (k - ?, + 1)-sections of C are polyhedral ,  and  observe t h a t  it suffices to do this for cl C, 

for then  it follows b y  3.6 t h a t  C is closed. 

Le t  L, H0, and  Ht be as in 3.1. Consider an  a rb i t r a ry  point  p E H t  N cl C, and  let zr 

be as in 3.1 (iii). Then 7r e 1C is a convex cone in the  (/c - 1)-dimensional space H 0 and  all its 

j -project ions are closed (being j-project ions of C), so f rom the  induct ive  hypothes is  i t  

follows t h a t  all (k -?.)-sections of ~relC are polyhedral .  Now 3.1 (iii) shows t h a t  ~rclC is 

mere ly  a t rans la te  of cone (p, Ht N cl C), so all (k - ])-sections of the  la t ter  are polyhedral .  

Using (**) above we see t h a t  cone (p, J N cl C) is polyhedral  for each (k - ?" + 1)-flat J 

th rough  p in Hr. An applicat ion of 3.3 shows t h a t  for each (k - ?, + 1)-flat Gt in Ht, the  

set  Gt N cl C is polyhedra l  a t  each of its points,  and  hence b y  2.17 mus t  be  bounded ly  

polyhedral .  F r o m  3.1 (vii) we conclude t h a t  the  cone cl [0, ~o [(Gt N C) is polyhedral  and  

hence t ha t  Gt N cl C is polyhedral .  Since Gt is an  a rb i t r a ry  (k - ?, + 1)-flat in Ht, it fol- 

lows f rom 3.1 (vii) and  (**) t h a t  all (k - ?, + 1)-sections of el C are polyhedral .  Thus C is 

closed b y  3.6 and  all (k - ])-sections of C are polyhedral .  

I n  the  preceding two pa ragraphs  we showed t h a t  if k - 1 ENj, then  kEN].  I t  follows b y  

ma thema t i ca l  induct ion t h a t  N j  includes all integers ~> ?,, and  3.7 has been proved.  

4. Projections and sections 

We s ta r t  wi th  the  fundamen ta l  

4.1. THEOREM. Suppose K is a convex subset o/ E n, p E K ,  and 2 <~?, <~n. Then K is 

polyhedral at p i / /  xrK is polyhedral at p whenever ~r is an a/line projection o / K  onto a ?,-/lat 

through p. 
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Proo/. For  each re as described, it is evident t ha t  cone (p, reK) = re cone (p, K). Then if 

K is polyhedral  at  p, cone (p, K) is polyhedral  by  3.3, whence of course re cone (p, K) is 

polyhedral  and  a second application of 3.3 shows tha t  reK is polyhedral  at  p. On the  other  

hand, if reK is polyhedral  at  p for each re as described, then all j-projections of cone (p, K) 

are polyhedral,  whence all 2-projections are polyhedral.  I t  follows by  3.7 tha t  all (n - 1)- 

sections of cone (p, K) are polyhedral,  whence cone (p, K) is itself polyhedral  by  3.1 (vii). 

We conclude f rom 3.3 tha t  K is polyhedral  at  p, and  the proof of 4.1 is complete. 

4.2. COROLLARY. With 2 <~ j <~ n, a convex subset o / E  n is polyhedral at all its points 

i / /  all its ].projections have this property. 

4.3. COROLLARY. With 2 <~ j <--. n, a closed convex subset o/ E n is boundedly polyhedral 

i / /  all its j-projections are polyhedral at each point. 

4.4. COROLLARY. W i t h 2  <~ j <~ n, i /  all j-projections o/ a convex subset o/ E ~ are 

boundedly polyhedral, the set itsel/ must  be boundedly polyhedral. Conversely, each closed j- 

projection o/ a boundedly polyhedral set in E n is boundedly polyhedral (but o /course  there 

may be j-projections which are not closed). 

4.5. COROLLARY. With 2 <~ j <. n, a bounded convex subset o/ E ~ is polyhedral i//  all 

its j-projections are polyhedral. 

I n  w 5 we construct  a nonpolyhedral  convex set in E 3 all of whose 2-projections are 

polyhedral.  (The set is necessarily unbounded  and boundedly  polyhedral.) Thus for j = 2, 

the restriction to bounded sets is essential in 4.5, bu t  we shall see below tha t  for j >~ 3 the 

restriction can be removed. 

Since we know already tha t  all j-projections and j-sections of a polyhedron are poly- 

hedral, and all j-sections of a boundedly  polyhedral  set are boundedly  polyhedral,  the 

remaining results of this section are most  s imply s tated no t  in terms of a range of values 

for j, bu t  instead in terms of the "bes t"  value for j. 

We need the  following 

4.6. REMARK. Suppose K is a closed convex set in E with r  L is a subspace o / E ,  

and re is a linear projection o/ E '  whose kernel is L ~ Then (L O K)  ~ = L ~ + cl reK ~ = re-1 

(cl reK~ 

Proo[. Since L ~ is a subspace of E'  and reK ~ lies in the supplementary  subspace reE', 

i t  is easy to check tha t  

(L N K) ~ = cl cony (L ~ U K ~ = el (L ~ + K ~ 

= el (L ~ + reK ~ = L ~ + el reK ~ = re-1 (el reK~ 
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4.7. THEOREM. I /  K is convex and pEintK,  then K is polyhedral [reap. boundedly 

polyhedral] i l l  all its 2-sections through p are polyhedral [reap. boundedly polyhedral]. 

Proo/. Obviously K is closed and we may assume that  p = r whence K = K ~176 and 

K ~ is bounded. Now consider a linear projection g of E'  onto one of its 2-subspaees and 

let M be the kernel of ~, L = M 0. Then L ~ = M and we see from 4.6 that  (L N K) ~ = M + 

cl HK ~ But K ~ is compact, so HK ~ is closed, and thus if L n K is polyhedral it follows that  

M + H K  ~ is polyhedral, whence HK ~ is itself polyhedral. Thus if all of K 's  2-sections 

through r Eint K are polyhedral, all 2-projections of K ~ are polyhedral. From 4.5 it follows 

that  K ~ is a polyhedron, and then by 2.11 that  K is one. Thus 4.7 has been proved for 

polyhedra, and it remains only to consider the case of boundedly polyhedral sets. 

Suppose all 2-sections of K through p eint  K are boundedly polyhedral, and consider 

an arbitrary bounded polyhedron B. There is a bounded polyhedron Q ~ B such that  

p e i n t  Q; of course all 2-sections of Q N K through p are polyhedral and hence Q N K is 

polyhedral by the result just established. But then B N K must be polyhedral, so K is 

boundedly polyhedral and the proof of 4.7 is complete. 

4.8. COROLLARY. I]  K is convex and geE, then K is polyhedral [reap. boundedly 

polyhedral] i//  all its sections by 3-/fats through q are polyhedral [resp. boundedly polyhedral]. 

4.9. THEOREM. A convex set K c E n {with n >~ 3) has polyhedral closure i]] all its 3- 

proiections have polyhedral closure. 

Proo[. Assume r e K. Then if all 3-projections of K have polyhedral closure, it follows 

by 4.6 that all 3-sections of K ~ through r  are polyhedral, whence K ~ is polyhedral by 

4.8 and the set cl K = K ~176 is polyhedral by 2.11. 

4.10. COROLLARY. A convex set K c E n {with n >~ 3) is polyhedral ill  all its 3-projec- 

tions are polyhedral. 

Proo/. Use 4.9 and 3.6. 

4.11. TttV, OR]~M. With 2 ~<]~<n-  l, a convex cone in E n is polyhedral i]] all its l- 

projections are closed. 

Proo[. Let C be the cone in question, q a vertex of C. If  all ]-projections of C are closed, 

then all ( n - ]  + 1)-sections of U are polyhedral by 3.7, whence all 2-sections of C are 

polyhedral. Each 3-section of U through g must then be polyhedral by 3.1 (vii), and from 

4.8 we conclude that  C is polyhedral. 

We wish to deduce from 4.11 a result on the extension of positive linear functionals. The 

connection between projections and extensions may be stated as follows: 
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4.12. REMARK. Suppose C is a closed convex cone in E with vertex 4, L is a subspace 

o / E ,  and ~ is a linear projection o / E '  whose kernel is L ~ Then ~ C o is closed i// every linear 

/unctional on L which is >~ 0 on L N C can be extended to a l inear/unctional on E which 

is >~ 0 on C. 

Proo/. For each [EE ' ,  let ~ / b e  the restriction of [ to L, so that  ~ is a linear map of 

E '  onto L'.  The extendability condition above is equivalent to the condition that  ~C ~ = 

(L N C) ~ or, since L ~ is the kernel of ~, t ha tL  ~ + C O = L ~ + (L N C) ~ But L ~ + C O = L ~ § ~ C ~ 

and (L N C) ~ = L  ~ + cl z C  ~ by 4.6. Thus the desired conclusion follows. 

The following consequence of 4.11 and 4.12 was proved by Mirkil [7] for ] = 2: 

4.13. T~IEOREM. Suppose C is a closed convex cone with vertex r in E n, and let us say 

tha~ C has the property Pk (/or 0 <- k <~ n) i// every l inear/unctional on a k-subspace L o] 

E n which is >1 0 on L N C can be extended to a l inear/unctional on E n which is >1 0 on C. 

Then C must have the properties Po, 1)1, and Pn; but /or  2 <~ ~ <~ n - l, C has property P j  i// 

C is polyhedral. 

5. Some examples and further results 

This section contains a rather discursive treatment of material which was suggested 

by the results and methods of earlier sections, but was not essential in dealing with the 

principal theorems in w 4. We discuss primarily the sets which are boundedly polyhedral 

and those which are polyhedral away from • (a notion defined below), characterizing these 

in various ways and describing their polar sets. We construct in E 3 a nonpolyhedral set 

K ~  such that both K and K ~ are boundedly polyhedral, and also a nonpolyhedral 

convex set all of whose 2-projections are polyhedral. 

In  analogy with earlier definitions, a convex set K is said to be polyhedral at ~ iff 

each polyhedron (or, equivalently, each closed halfspace) in E has a translate whose 

intersection with K is polyhedral, and K is said to be polyhedral a w a y / r o m  the point 

p Ecl K iff K has polyhedral intersection with each polyhedron in E ~ (p}. The following 

two results should be compared with 2.17. 

5.1. PROPOSITIOn. A convex set K is polyhedral i/ /  it is closed and is polyhedral at 

each point o / K  U (c~ ~. 

Proo/. Let F be a basis for the conjugate space E'.  Then if K is polyhedral at  ~ ,  

there exists t > 0 such that  each of the sets P~ =/-1]  _ ~ ,  _ t] N K and Qr =/ -1  It, ~ [ N K 

is polyhedral. And if K is closed and is polyhedral at each point of K, then K is boundedly 
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polyhedral  by  2.17 and hence its intersection with the set f l / - 1 [ _  t, t] is a polyhedron B. 
fEF 

But  of course K = cl cony (B 0 (UP1) U (UQI)), and it follows by  2.16 tha t  K is polyhedral.  
fcF IEF 

5.2. COROLLARY. I /  K is convex and p e e l  K, then K is polyhedral a w a y / r o m  p i//  

el g c K 0 (p )  and K is polyhedral at each point o / ( K  0 ( ~  )) ,,~ (p) .  

Proo/. The "only  if" par t  follows at  once from t h e  fact  t ha t  each point  of E ~ (p)  

has a polyhedral  neighborhood in E which misses p. For  the  "if" part ,  consider a poly- 

hedron J in E N (p). The hypotheses imply  tha t  J N K is closed and is polyhedral  at  each 

point  of (J  N K) U (oo) ,  whence application of 5.1 completes the proof. 

We see from 2.16 tha t  the convex hull of the union of two polyhedra  is polyhedral  if 

it is closed. I n  addit ion to the obvious result  for bounded polyhedra,  we note 

5.3. PROPOSITION. I] X and Y are polyhedral cones each o /wh ich  contains a vertex 

o / the  other, then conv (X  0 Y)  is polyhedral. 

Proo/. Let  p be a vertex of X in Y, q a vertex of Y in X, and let the origin in E be so 

chosen tha t  q = - p. Then there are finite subsets U and V of E such tha t  - p E U, p E V, 

X - p consists of all non-negative combinations of U, and Y - q consists of all non-negat ive 

combinations of V. But  then it is easy to verify tha t  cony (X U Y) consists of all non- 

negative combinations of U (J V. 

The following result has some useful corollaries. 

5.4. P~OPOSITION.  I /  X and z are points o/ a convex set K and ye]x , z [ ,  then 

cone (y, K) = c o n v  [cone (x, K) U cone (z, K)]. 

Proo/. We m a y  assume t h a t  x =~ z and let J = e o n v  [cone (x, K) U cone (z, K)]. Consider 

a point  u e cone (y, K), not  collinear with [x, z]. There exists v e ] u, y [ N K. I t  is easy to 

verify tha t  u lies on a segment joining the r a y  from x through v to  the  r ay  from z th rough  

v, and we conclude tha t  cone (y, K) c J .  

Now consider a point  we]x ,  y[, and observe tha t  [x, v ] c  K and In, w[ intersects 

[x, v], so u e cone (w, K). Thus cone (y, K) c cone (w, K). A similar a rgument  establishes 

the  reverse inclusion, and we conclude tha t  cone (s, K) is constant  for se]x,  z[. Thus to 

prove t h a t  J c cone (y, K) it suffices to show tha t  if p e cone (x, K), q e cone (z, K), and 

c = r p  § (1 - r ) q  for re ]0 ,  1[, then ee  cone (s, K) for some s e  ]x, z[. Under  these condi- 

tions there are positive numbers  ~ and fl such tha t  x + [0, ~] (p - x) ~ K and z + [0, fl] (q - 

z) ~ K.  Wi th  m = min (~, fl), p' = x + m ( p  - x), q' = z + m(q  - z), and s = rx  + (1 - r)y, it 

can be verified tha t  c = s + m -1 [rp' + (1 - r ) q '  - s ] ,  whence c e cone (s, K) and the  proof 

of 5.4 is complete. 
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5.5. COROLLARY. If K is convex and Y is the set o/all  points o / K  at which K is locally 

polyhedral, then Y is convex. 

Proo/. Use 3.3, 5.4, and 5.3. 

5.6. COROLLARY. I /  a nonpolyhedral closed convex set K is polyhedral away /tom 

p E K ,  then p is an extreme point of K.  

Proo/. Use 5.2 and 5.5. 

5.7. COROLLARY. I t K is a closed convex set and K = conv S, then K is boundedly 

polyhedral i]/ K is polyhedral at each point o i S. 

Proo]. Use 2.17 and  5.5. 

I n  connection with 5.7, we note  

5.8. PROPOSITION. A closed convex set K is boundedly polyhedral i H cone (p, K) is 

closed/or each p e K .  

Proo/. I f  cone (p, K) is closed for each p e K ,  it follows from 3.5 and  5.7 t h a t  each 

2-section of K is boundedly  polyhedral,  whence K must  be boundedly  polyhedral  by  4.7. 

Comparing 5.8 with 5.7, i t  is na tura l  to ask whether  a closed convex set K must  be 

boundedly  polyhedral  if cone (p, K) is closed for each point  p of a set S such tha t  conv 

S = K. The answer is negative, as the following example shows. I n  E z, let J be a non- 

polyhedral  two-dimensional compact  convex set which is polyhedral  away  f rom $ and let 

S be a segment which has r as an inner point  and is not  coplanar  with J .  Let  K -- conv 

(S t) J) .  Then cone (p, K) is closed except when p is an inner point  of S. 

The following is an  analogue of 5.5. 

5.9. PROPOSITION. Suppose K is a closed convex subset o] E and 14" is the set o /a l l  

] e E' such that ]-1 [t, c~ [ N K is polyhedral/or some t < c~. Then F is a convex cone with 

vertex r 

Proo/. Clearly [0, c~ I F  c F ,  and  it remains to prove tha t  F + F c F .  Consider [, 

g e F ,  with h = i + ff and r, s e R such t h a t  the sets P = / - 1  [r, c~ [ N K and Q = / - 1  [s, oo [ n K 

are bo th  polyhedral.  Then h-l[r + s, ~ [ c / - l [ r ,  c~[ O g-l[s, oo[, and it follows tha t  

h -1 [r + s, co [ n K = h -1 [r + s, oo [ n cl cony (P U Q). 

Bu t  cl cony (P t3 Q) is polyhedral  by  2.16 and  the  desired conclusion follows. 

We wish next  to  describe the  polars of boundedly  polyhedral  sets. I n  doing this we 

employ the following proposition, which goes a bit beyond our immediate  use for it. 

5.10. PROPOSlTIOI~. Suppose K is a closed convex set in E, p E K ,  K contains no line, 

C = (x : [0, oa Ix ~ K - p}, and F is the set o /a l l  linear/unctionals / on E such that / > 0 
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on C ,,, {~}. Then F is a nonempty open convex cone in E '  with vertex ~'. A closed hal/space 

in E has the form f--if --OO, r] for some f E E  and r E R i f / each  o / i t s  translates has bounded 

intersection with K.  I f  C 4  K - p there e x i s t s / E F  such that/-1] _ ~ , /p] N K has nonempty 

interior relative to the smallest flat containing K.  

Proof. Clearly C o is a closed convex cone with vertex ~' ,  and since C contains no line C o 

is not  contained in any  hypel~plane in E. Bu t  then C o must  have interior points, and  it 

is not  hard  to verify tha t  F = - int C ~ proving the  first assertion of 5.10. Now if a half- 

space in E has the f o r m / - 1 ]  _ c~, r], then each of its translates has the form ]-1] _ oo, s], 

and for f E F it is evident tha t  the convex set ]-1] _ ~ ,  s] N K contains no r ay  and hence is 

bounded. On the other hand, if f E E '  ~ F t h e n / - 1 ]  _ o~ , /p ]  N K is easily seen to be un- 

bounded. I t  remains to prove the last assertion of 5.10. 

I f  C 4  K - p  there mus t  be a point  yErel int  K~-  (p} such tha t  K does not  contain 

the entire r ay  from p th rough  y. We m a y  assume wi thout  loss of generali ty t ha t  y = ~, 

whence C =  {x: [0, ~ [ x c  K}. The choice of y assures t ha t  p ~ - C ,  so either p E C  or 

R p N C = {r By  a separation theorem for convex cones there exists ] E F such tha t  p E C 

or ]p = 0 ,  and then from the fact  tha t  yE relint K it follows readily tha t  the interior 

o f / -1 ]  _ o o , / p ]  N K relative to fl K is nonempty .  

5.11. PI~OPOSlTION. For a closed convex set K c E with r EK,  the/ollowing assertions 

are equivalent: 

(i) K is boundedly polyhedral; 

(if) if / is a linear functional on E such t h a t / x  > 0 whenever [0, oo[x ~ K but ] -  oo, 

0]x~= K then/-1] _ oo, s] N K is polyhedral/or each sE R; 

(iii) there exists a linear/unctio~ml / on E such that ]-1] _ or s]N K is polyhedral for 

each s E R; 

(iv) el cony (K ~ U N)  is polyhedral/or each polyhedral neighbortwod iV o / r  in E'  ; 

(v) cl cony (K ~ U [r - g ] )  is polyhedral/or each ge  relint K~ 

(vi) there exists f e E '  such that cl cony (K ~ U [r t/f) is polyhedral/or each t > O. 

Proof. I t  is evident t ha t  conditions (i) and (iv) are dual under  polarity, and hence 

equivalent  by 2.8 and 2.11, as are (iii) and (vi). Now let L and M be as in 2.7, so tha t  K = 

L + (M N K) and M N K contains no line, and let C = {x: [0, oo [x c M N K}. I t  can be veri- 

fied tha t  / is as described in condition (if) above iff / > 0 on C ~- {r so it follows from 5.10 

tha t  (i) implies (if). By  fur ther  use of 5.10 we see tha t  (if) implies (iii) and tha t  (if) and (v) 

are dual  under  polarity. Since obviously (iii) implies (i), the proof cf 5.11 is complete. 

The condition (vi) of 5.11 is much  less restrictive than  might  at  first be imagined. 

Indeed,  f rom 4.6 and our later result 6.2 on the projections of boundedly  polyhedral  sets, 
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it follows tha t  ff k < n and X is an  arbi t rary  k-dimensional closed convex subset of E n 

with CEX,  then ' the re  exists in E n a closed convex set K 3 r  such tha t  K ~ is boundedly  

polyhedral  and X is a k-section of K. The following example is also of interest in this con- 

nection. 

5.12. EXAMPLE. There is  in  E a a nonpolyhedral  set K 9 ~  such that both K and K ~ 

are boundedly polyhedral .  

Proo/ .  We shall construct  a nonpolyhedral  set W ~ ( - 1, 0, 0) such tha t  W is boundedly  

polyhedral  and cl cony ( { ( - 1 ,  0, - t ) }  tJ W) is polyhedral  for each t > 0 .  F rom 5.11 it 

follows tha t  the set K = W + (1, 0, 0) has the s ta ted properties. 

L e t / ,  g and h be sectionally linear positive convex functions on [ -  1, 0[, ]0, 1], and  

]0, 1] respectively such t h a t / (  - 1) = 0 = g 1, l i m / s  = oo = lim g t, and l im h t = 0 = l i m h  ~ t, 
s-.~O t--~O t--~O t--~O 

where h + is the r ight -hand derivative of h. (Thus / ,  g, and h are all nonpolygonal  but  are 

polygonal  away  from 0.) Let  S '  = {(s, ]s,  O) : s E [ -  I, 0[} and T '  = {(t, gt, ht )  : t~]0, 1]}. 

Let  Q be the plane quadrant  consisting of all x = (x 1, x z, x z) E/~ 3 for which x I = 0 and  

x 2~>0~<x z, and let S = S ' + Q , T = T ' + Q .  I t  can be verified tha t  both S and T are 

boundedly  polyhedral.  For  example, if m < ~ ,  then the intersection of T with the half- 

space {x : x ~ ~< m) is the closed convex hull of the union of the (finitely many)  sets of the  

form {x : x 2 ~< m} fl ((t, gt, hv)  + Q )  for t such tha t  gt <. m and t = 1, gt  = m ,  or g or h has 

a corner at  t. 

Now let W = c o n v ( S U T ) = S U  c o n v ( S ' U T ) .  Then W N ( x : x  3 = 0 }  is the non- 

polyhedral  set of all points (s, a, 0) for which s E [ - 1, 0[ and a >~/s, so it follows tha t  W is 

nonpolyhedral .  To show tha t  W is closed, we consider an arb i t rary  point  wEcl W. There 

exist sequences 2~ in [0, 1], s~ in [ - 1, 0[, t~ in ]0, 1], and p~ and q~ in Q such tha t  (1 - 2~) 

((s~,/s~, 0) + p~) + 2~ ((t~, gt~, ht~) + q~)--->w, ~t~-->2 E [0, 1], s~-->s E [0, 1], and t~-->t E [0, 1]. 

Let  z~ = (1 - 21)pt + 2~qf EQ. Now if s < 0 < t, then ]s~-->/s, 9t~-->gt, ht~--->ht, and it follows 

tha t  z~--->w - (1 - 2)(s , /s ,  0) - 2(t, gt, ht) .  Denoting this limit by  z, we have z E Q  and 

w = (1 - 2 ) ( ( s ,  ls,  o) + z) + 2 ((,t, g t ,  h t )  + z) e W.  

I f  t = 0, then gt~--~ oo; since a lways / s~  > 0, and/s~---> ~o if s = O, we conclude tha t  2 = 0 

and s < 0. Now with q~ = (0, gtf, ht~) EQ, the distance from q~ to the point  (t~, gti, ht i)  tends 

to 0 as i--> oo, and it is easily verified tha t  z~ + 2~q~--->w - (s , /s ,  0), whence w e ( s , / s ,  O) + 

Q c S ~ W. A similar a rgument  applies when s = 0, and we conclude tha t  W is closed. 

Now to complete the proof we must  show W is boundedly  polyhedral  and cl conv 

({( - 1, 0, - t)} U W) is polyhedral  for each t > 0. I n  view of 2.17, 5.5, and the fact  t h a t  

W is closed, it suffices for the former to show tha t  W is polyhedral  at  each point  of S U T, 

7 - 593804. Acta  mathemat/ca .  102. I rnpr im6 le 28 sep tombre  1959 
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or equivalent ly t h a t  cone (p, W) is polyhedral  for each p E S  U T.  Consider an  arbi t rary  

p E S .  I t  can be verified t h a t  sup {x ~ : xE T ~ cone (p, S)} < c~, whence follows the existence 

of a bounded polyhedron B such t h a t  T N cone (p, S) c B + [0, ~ [z c T, with z = (0, 0, 

1). Let  U = cone (p, S) and V = {p} U cone (p, B). We have 

cone (p, W) = cone (p, cony (S U T)) = cony [cone (p, S) U cone (p, T)] 

= cony [U U cone (p, B + [0, ~o [z)] = cony [U U (V + [0, o~ [z)]. 

I t  can be verified t h a t  for a n y  convex sets X and Y, and convex cone Z with vertex r  

conv [(X + Z) U Y] U ( Y + Z) = cony [X U ( Y + Z)] U (X + Z). 

Applying this with X = U, Y = V, and Z = [0, o~ [z, we conclude tha t  

cone (p, W) U (U + [0, c~ [z) = conv[ (U + [0, ~ [z) U V] U ( V  + [0, oo [z). 

Since evidently U + [0, co [z = U ~ cone (p, W), 

this reduces to  
cone (p, W) = cony (U U V) U (V + [0, oo [z). 

Now V and V + [0, oo [z are polyhedral  by  2.13, 2.14, and  2.16, and U is polyhedral  because 

p E S  and S is boundedly  polyhedral.  Bu t  then cony (U U l z) is polyhedral ,  for U and V 

are polyhedral  cones with common ver tex p. Thus cone (p, W) is the union of two poly- 

hedra and, being convex, mus t  be polyhedral.  I t  follows tha t  W is polyhedral  a t  each 

point  of S. The same a rgument  with S and T interchanged shows tha t  W is polyhedral  

a t  each point  of T, and we conclude tha t  W is boundedly  polyhedral.  

Now consider an  arb i t rary  t > 0 and  let ut = ( - 1, 0, - t). I t  can be verified tha t  if 

r is a sufficiently small positive number  (depending on t) and Jr  = cl cony ({ut} U {x : 

x E T, x 1 = r}), then inf {Ix1] : x E (S U T) ~ Jr} > 0, whence there are polyhedra  M and  N 

such tha t  S ~ J r  ~ M and T ~ Jr  c N.  We then have 

cl cony ({ut) U W) = cl cony ({u~} U S U T) = cl conv ({ut} U Jr  U A U B), 

which is of course polyhedral  and the proof of 5.12 is complete. 

5.13. PROPOSITION. For a closed convex set K c E with t E K ,  the assertions (ii)-(iv) 

below are equivalent, are implied by (i), and imply  (i) when K is bounded. 

(i) K is polyhedral a w a y / r o m  r 

(ii) cl cony (K U [r - x]) is polyhedral/or each x E g  ~ {r 
(iii) /or each y E E  ~ {r sup y K  ~ = oo or y-l[t ,  ~o [ fl K o is polyhedral/or all tE R;  

(iv) i / A  and B are "opposite" closed hal/spaces in E having the same bounding hyper- 

plane and K ~ lies in some translate o / A ,  then B fl K ~ is polyhedral. 
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Proo[. I t  is evident tha t  (iii) and (iv) are equivalent and (ii) is dual to (iii). Now if 

K is bounded and (ii) holds, then for each x e K ~  {4} we have cony (KU [4, - x ] ) =  

el cony (K U [4, - x]), which is polyhedral by  hypothesis, and 

cone (x, K) = cone (x, cony (K U [4, - x]), 

whence cone (x, K) is polyhedral. But  then g is polyhedral at  each point of g ~ {4}, and 

with K bounded it follows by  5.2 tha t  K is polyhedral away from 4" 

Now suppose (i) holds and x E K N  {4}. We wish to show tha t  el cony (K U [4, - x ] )  

is polyhedral, and for this it suffices in view of 2.16 to show tha t  el cony (K U [4, - Y]) 

is polyhedral with y = �89 Let  h r be a bounded polyhedral neighborhood of y relative to 

K and let M = c o n y  { ( - y }  (J N). Then of course M is polyhedral and ~EM.  Consider an 

arbi t rary  point pEK.  Since [y, p] c K and h r is a neighborhood of y relative to K, there 

exists q E]y, p[ such tha t  [y, q] c N. But  then M must  contain the segment [4, z] for 

some zE]r p[. Since M is polyhedral we conclude from 3.2 tha t  M N K is a neighborhood 

of q~ relative to K. 

Now let W = c l c o n v ( K ~ M ) .  Then if C e W  we have C e e x W  (for C e e x K  b y  

5.6) and hence r e el (K ~ M) by the result {3.5) of [6]. Since this is impossible, it follows 

tha t  ~b ~ W and there must  be a closed halfspaee J with W c J ~ E ~ {r The set J f / K  

is polyhedral since K is polyhedral away from 4, and we have 

el cony (K [J [4, - Y]) = el conv ((J fl K) U M U [4, - Y]), 

which is polyhedral by  2.16. Thus (i) implies (ii). 

I do not know whether conditions 5.13 (i) and 5.13 (ii) are equivalent even when K is 

unbounded. 

5.14. COROLLAR~r. I /  K is polyhedral away/tom 4, K~ is boundedly polyhedral. 

Proo/. Compare conditions 5.11 (v) and 5.13 (ii). 

5.15. COROLLARY. The set K 9 r  is polyhedral i// K and K ~ are both polyhedral away 

/tom 4. 
We turn now to another example, promised earlier in connection with 4.5 and 5.10. 

5.16. EXAMPLE. There is in E 8 a nonpolyhedral convex set all o/ whose 2-projections 

are polyhedral. (Such a set must be unbounded and boundedly polyhedral.) 

Proo/. Let E ~ = (x E E 3 : x 8 = 0}, and let P be a nonpolyhedral convex subset of E z 

such tha t  r is interior to P in the relative topology of E z and P satisfies the condition 

5.13 (iv) relative to E ~. (For example, P may  be taken as a boundedly polyhedral set in- 

scribed in a parabola.) By 5.13, the polar Q of P in E ~' is a bounded nonpolyhedral set 
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which is polyhedral  away  from r  Let  z = (0, 0, 1 ) E E  a. For  notat ional  convenience we 

shall employ the  usual  identification of E a with its conjugate space E a', implying E ~' = E ~, 

(E~) ~ = Rz, po =Q + Rz, etc., where the  symbol  0 will denote the polar i ty  between E a 

and  E s'. 

Now let K = cone (z, P)  N {x : x a ~< O}, or equivalently,  K = {(~tp 1, ~tp 2, 1 - 4) : 

>1 1, pEP}. Then of course K is convex and it is easy to  check t h a t  K is closed and  non- 

polyhedral.  A funct ion ] = (/1, ]2,/a) EES is a member  of K ~ iff )~(/lpl +/~p~) ~< 1 + (4 - 1)/a 
for all ~ ~> 1, pEP, or equivalent ly iff /lpl +]Zp~. <~inf (1,/a) for all pEP. I t  follows tha t  

K ~ = [0, 1] (Q + z) U (Q +z) u (Q + [1, co[z). (Compare this with the  example immediately  

following 5.8.) But  then from the  fact  t ha t  Q is polyhedral  away  from r  we conclude by  

an  easy a rgument  t ha t  all 2-sections of K ~ th rough  ~ '  are polyhedral,  whence from 4.6 it 

follows tha t  all 2-projections of K have polyhedral  closure. To complete the proof we 

shall  show tha t  all 2-projections of K are closed, or equivalent ly tha t  K + L is closed for 

each line L in E.  

If  L is a line in E * th rough  ~, then K + L  = (J 2 (P  + L )  + (1 - ~)z. Tha t  P + L  is 

closed follows f rom the fact  t h a t  P satisfies condit ion 5.13 (iv), and  thus  K + L  must  be 

closed also. This handles the case of all lines in E ~ or parallel to  E 2. To deal with the 

remaining lines, it suffices to prove the following: I] X is a boundedly polyhedral subset 

o /a  hyperplane H in E ~ {~} and u f H ,  then [1, co[X + Ru is closed. To prove this, let 

/ f i E '  be such tha t  H = / - 1 1  and consider a sequence t~x~ +r~u converging to a point  

q f E ,  where t~ is a sequence in [1, oo[ with t~-+tf[1, col, x~ is a sequence in X, andr~  is 

a sequence in R with r~-->r f [ - co, co ]. Note  tha t  t = / q  - r. Now if t < co, then r f R and 

x ~ - + t - l ( q - r u ) = x f X ,  whence q = t x + r u .  I f  t = c o ,  then x~+r~t;lu--+r and since 

/(x,+riti-lu) = 1  +rit71 it follows tha t  r~t'~l-->-I whence x~-+u and  u f X .  But  X is 

boundedly  polyhedral,  hence polyhedral  a t  u, so u admits  a bounded polyhedral  neigh- 

borhood  2V relative to  X. For  all sufficiently large i we have 

t,x, + r , u f [ 1 ,  oo[N + R u ~  [1, co[X + Ru; 

since [1, co [N + Ru is polyhedral  by  2.16, and hence closed, the desired conclusion follows 

and  the proof of 5.16 is complete. 

6. Projections and approximations 

Before characterizing the  projections of boundedly  polyhedral  sets, we perform the 

same task  for closed convex sets. 

6.1. THEOREM. For a subset X o /a  proper subspace o /E ,  the ]ollowiny assertions are 

equivalent: 
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(i) X is a convex F~ set; 

(fi) X is a projection o/some closed convex set; 

(iii) X is a projection o/some convex F ,  set. 

Proo]. Obviously  (ii) implies (iii). Now suppose (iii) holds, so there  are an  increasing 

sequence U~ of closed subsets  of E and  a l inear project ion re of E into E such t h a t  U U~ is 
1 

convex and  re(U U~) = X. For  each i, let  W~ = cony (x: xE U~, I]xlI ~< i}. I t  can be verified 
1 

t h a t  each Wt is compac t  (being the  convex hull of a compac t  set) and  X = re U W~ = U re We 
1 1 

But  re is l inear and  continuous, so re W~ is an  increasing sequence of compac t  convex sets 

and  it  follows t h a t  X is a convex F~ set. Thus (iii) implies (i). 

Now suppose (i) holds and  let Y~ be an  increasing sequence of compac t  convex sets 

such t h a t  X = U Y~ and IlY[I ~<i for all yEY~. Let  L be a hyperp lane  th rough  r which 
1 

contains X and z a uni t  vector  or thogonal  to L, so each point  w E E has  a unique expression 

in the  fo rm w =w' +w"z with w'EL and w"ER. Let  K = e o n v  U(Y~ +i~z), so X is the  
1 

image of K under  the  project ion of E onto L whose kernel  is Rz (i.e., which sends w to  

w'). Note  t h a t  since Y~ is an increasing sequence, Yi + [ is, ~ [ z  ~ K for each i, whence 

K + [0, ~ [ z  ~ K.  To complete  the  proof  of 6.1, we shall show t h a t  K is closed. 

Consider a sequence p~ in K converging to  a point  p E E,  and  let d be the  dimension 

of E.  For  each j E I  (the set  of posi t ive integers) there  are (d + 1)-tuples 
~f+l 

1 ] t = 1 ,  ~. t ] i = 1 ,  and (yj]~=~ such t h a t  the t~'s are in ]0, 1] wi th  ~ ts = 1, the  ns s are in 
i = l  

d + l  

= tj(xj + (n~)2z). We m a y  assume t h a t  each sequence (nj)j0, 1, a lways  y~EY,~ and pj ~ i t 

(for 1 ~< i < d + 1) is ei ther constant  or str ict ly increasing. (If necessary, select the  appro-  

pr ia te  subsequences and  change the  no ta t ion  to  achieve this condition.) Note  t h a t  (P~')i,r 
,, ~ i  ~ ( ~ t - l d + l  (nj)j~1 mus t  be is bounded and  a lways pj >~ ~ "~'~Js~=~, so  a t  least  one of the sequences 

rn 

constant .  Le t  m be the  largest  cons tant  value a t ta ined  and  J = cony U (Y~ § i~z). We 

shall p rove  t h a t  p E J  + [0, ~ [ z ,  whence p E K  and K mus t  be closed. 

Wi th  the  s i tuat ion as described, it is easy to  obta in  a subsequence q~ of p~, a convergent  

sequence u~ of points  of J ( s a y  u~-->u), a sequence 2~ in [0, 1] with/~-->0,  and  a sequence 

v~ such t h a t  vjEK s =eonv U (Y~ + i~z) and qj = (1 - 2j)uj + 2jvj for each ] E I .  Then  of 
i 

course ~ v - > p - u .  Now ( i [ I w ' l ] - w " ) i w E B  is a convex funct ion  on E which is < 0  on 

Y~ + i~z for all ~ >i j, and hence < 0 on K~. Thus  for all wEK~ we have  
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w"lliwll = [(llw'lllw") 2 + U -~ >1 (i" + 1)-~ 
and  hence 

I I ( v / l l v / )  - z l l  ~ = 2 - 2v;'l l lvj l l  < 2 1 1  - ( i  2 + 1 ) - ~ ] .  

I t  follows tha t  v~/I]v~I]-->z and hence tha t  p - u E [ 0 ,  c~[z, completing the proof of 6.1. 

6.2. THEOREM. For a subset X o /a  proper subspace o] E, the/ollowing assertions are 

equivalent: 

(i) X is a convex set which is polyhedral at each o/i ts  points; 

(ii) X is a projection o/some boundedly polyhedral set; 

(iii) X is a projection o/some convex set which is polyhedral at each o/i ts  points; 

Proo/. Obviously (ii) implies (iii), and tha t  (iii) implies (i) follows from 4.2. N o w  

suppose (i) holds, so for each p E X there is a bounded polyhedron/V~ which is a neighbor- 

hood of p relative to X. Since X has the LindelSf property,  there is a sequence q~ in X with 

X = U Nq~. We wish to produce a sequence Y~ of bounded polyhedra in X such tha t  
1 

for each jE1, Y j ~  _,Vqj and Yj is interior to Yj+I in the relative topology of X. Start  with 

Y~ = Nq. And having obtained Y~ as required for all i < k, observe tha t  by  compactness 

of Yk-1 there must  be a finite set G ~ Yg-1 such tha t  Yk-1 is interior to U ~V~ relative to 
p e g  

X; then let Yk = cony (Nqk U U Np). Proceeding by  mathematical  induction, we obtain 
pe(~ 

a sequence Y~ of polyhedra in X such tha t  X = ~ Y~; there exist sequences B~ and e~ in 
1 

]0, ~ [  such tha t  for all j e I ,  Y j ~  S({r Bj) andS(Yj ,  ej) N X c  YJ+I. I t  is easy to  produce 

an increasing sequence r~ in ]0, ~ [  such tha t  r~-->c~ and (Bk+Bi) (r  j -r~)<e~(rk-r~)  

whenever i < j < k. Let  L and z be as in the proof of 6.1 and K = cony U V~ with Vi = 
1 

Y~ + r~z. I t  is evident tha t  X is a projection of K and to complete the proof of 6.2 it suffices 

to show tha t  K is boundedly polyhedral. 

Suppose i < j < k, p E V i, and q E Ve. Then of course p 'E  Y~ and l i p ' - q '  I I < Bk + B~. 

With 
=rk--rj p + r j - r ~  

u rk--rt r k-r~ q' 
we have u '  EX, u" = rj, and 

[]u' --P'II = (r j --ri)(r ~ -r t ) - lHp ' --q'H < e~. 

Since S (Yi, e~) N X c Yi+l c yj ,  it follows tha t  u'  E Yj and u E Vj. Thus each segment from 

Vi to Irk intersects Vj. Now cony (F~ U Vj U Fk) is the union of all segments [p, q] such 

tha t  q E Vk and p E Iv, w] for some v E Vt and w E Vj. For such p, q, v, and w, the segment 
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[q, v] must  intersect Vj at  some point s and it is evident tha t  [/9, q] = cony {w, s, q} U c0nv 

{w, s, v}. Thus : 

cony ( V, U gj  t) Vk) = cony (g~ t) V j) tJ cony ( Vj U V~). 

A straightforward application of this fact shows tha t  K = U cony (Vi U V~+I), whence it 
1 

is clear tha t  K is boundedly polyhedral and the proof of 6.2 is  complete. 

Note tha t  if hr~ is a polyhedral neighborhood of i0 6X relative to the convex set X, 

then cone (/9, X) = cone (/9, N~) = cone (/9, cl X), where the last equality follows from 

the fact tha t  cone (/9, N~) is polyhedral and hence closed. I t  then follows from 3.2 tha t  

hr~ is a neighborhood of I0 relative to cl X. Thus if a convex set is polyhedral at  all its 

points, it must  be relatively open in its closure. 

6.3. THEOREM. Su??/gose K is a closed convex subset o[ E, K contains no line, and l u 

is a continuous ]unction on K to ]0, co[. Then there is a boundedly polyhedral set P such 

that P c K c IJ S (x, gx).  
XEP 

Proo[. We know by  5.10 tha t  E admits a linear functional ] such tha t  [-1] _ co, r] f3 K 

is bounded for each rER.  Let m = i n f [ K  > 0  and for each r >~m let Kr =[- l r  A K and 

dr = inf/z Kr > 0. From the fact tha t  each set ]-1 Ira, r] f~ K is compact it is easy to establish 
oo 

the existence of an increasing sequence r~  in [m, oo[ such tha t  K = IJ S(K~, �89 drt). Let 
1 

F 1 be a finite set in relint Krl such tha t  K~I= S ( F  1, �89 and let B 1 = c o n y  F 1, so B 1 

is a polyhedron, B I =  relint K~I, and K~ 1 = S ( B  1, �89 t). With J l a  = cony (B 1U Kr3), 

observe tha t  J13 is compact and J la  ~ Kra ~ relint K, whence Jr3 A K,~ c relint Kr~. I t  

is thus possible to produce a polyhedron B~ such tha t  

J13 A Kr 2 c B~ = relint K~ ~ = K~ 2 c S (B~, �89 dr 3)- 

Proceeding in this manner, we obtain a sequence B~ of polyhedra such tha t  for each n ~> 2, 

(*) cony (Bn_l U KrCn+t)) f~ Krn= B n c  relint K ~ c  S (B,,  �89 dr=). 

Let  P = cony U Bi. Then certainly P c K, and for each n it is true tha t  
1 

S (Kn, �89 dry) = S (Bn, drn) ~ tJ S (x, # x), 
XEB~ 

whence K ~  I.J S(x, #x). Now for k >7 i + 2 it is evident from convexity of K tha t  each 
x e E  

segment from B~ to B~ intersects Ki+2, and hence by  (*) above intersects B~+I. From 
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this it follows tha t  whenever i < j < k, every segment from B k to B~ intersects Bj, and we 

conclude P is boundedly polyhedral. This completes the proof of 6.3. 

6.4. COROLLARY. I/ K is a closed convex subset o/ E and ~ > O, there are boundedly 

polyhedral sets P and Q such that P c  K c S(P,  e) and K c Q c  S(K,  e). 

Proo/. In  view of 2.7, it suffices to consider the case in which K contains no line, and 

here the existence of P as stated in 6.4 is an immediate consequence of 6.3. Application of 

this result to cl S(K,  ~) produces a boundedly polyhedral set Q such tha t  Q c el S(K,  e) c 

S (Q, �89 e), and it is easy to verify that  K c Q,, so 6.4 is proved. 

I f  ~ > 0 and K is a bounded convex set in E with boundary J ,  then K can be e-ap- 

proximated in the sense of 6.4 by  polyhedra of the form cony Y for :Y c J ,  and by  poly- 

hedra which are intersections of supporting halfspaces of J .  But  if K is unbounded, 

boundedly polyhedral approximations of these special types may  not exist, even when K 

contains no line. For example, neither type of boundedly polyhedral approximation is 

available for a circular cone. Though we have not done so, it might be of interest to s tudy 

this situation, seeking to characterize those convex sets which admit  boundedly polyhedral 

approximations of these special types, and searching for a weaker type of "uniform" approxi- 

mation (for example, in terms of uniform structures for E other than  the usual metric 

uniformity) under which all convex sets admit  such approximations. 

The result 6.4 extends the classical theorem on approximation of compact convex 

sets by means of polyhedra. In  preparation for another such extension, we state the follow- 

ing 

6.5. PROPOSITIOn. Suppose X and Y are closed convex subsets o /E ,  and Y is bounded. 

Then /or each extreme point z o / X  + Y there are unique points x z o/ X and yz o/ Y such 

that z=x~+y~;  /urther, (x~:zE ex ( X +  Y)} = e x  X and {y~:zE ex ( X +  Y ) } c e x  Y. A 

similar relationship holds among the extreme rays o / X  + Y, the extreme rays o / X ,  and the 

extreme points o/ Y. 

Proo/. We consider only the case of extreme points, for the other is similar. The 

only assertions which may  not be quite obvious are the uniqueness of xz and Yz, and the 

fact tha t  each point of ex X appears as xz for some z E ex (X + Y). For the uniqueness, 

suppose we have x + y = u + v = z with x, u EX and y, v E Y. Then z = �89 (x + v) + �89 (u + y), 

so i f z E e x ( X + Y )  w e h a v e x + v = u + y ,  w h e n c e x = u a n d y = v .  

The assertion about ex X will be proved by induction on the dimension d of E, being 

obvious whend  = 1. Suppose it is known for d = k - 1, and consider the case of a k-dimen- 

sional E. For x E ex X, let Q be a closed halfspace with bounding hyperplane H such tha t  
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EH and X c Q + x. Since Y is compact ,  there exists yE Y for which Y c Q + y. I t  can be  

verified t h a t  
( H + x + y )  N ( X + Y ) = ( H + x ) N X + ( H + y ) N  Y; 

in conjunction with the inductive hypothesis  and  the  fact  t ha t  x is an  extreme point  of 

the  set (H + x) N X ,  this yields the desired conclusion. 

6.6. COROT.LA~u Suppose X is a closed convex subset o / E  and Y is a bounded poly- 

hedron in E. Then i / X  + Y is polyhedral, so is X.  

Proo/. I f  X contains no line, then  neither does X + Y, and each set is the convex 

hull of its extreme points together  with its extreme rays. I f  X + Y is polyhedral,  it has 

only finitely m a n y  of these and from 6.5 it follows tha t  the same is t rue of X, whence X 

is polyhedral.  I f  X contains a line, then  use 2.7 in conjunction with the case just  discussed. 

Now the Hausdor//distance h (X, Y) between two sets X and Y in E is defined as the  

greatest  lower bound of numbers  d such tha t  X ~ S ( Y, d) and Y ~ S (X, d). This m a y  of 

course be infinite when the sets are unbounded.  Our  approximat ion theorem is as follows: 

6.7. THEOREM. I /  a closed convex subset Q o / E  is a finite Hausdor]/ distance d/rom 

some polyhedron P, then it is uni/ormly approximable by means o/ polyhedra. (I.e.,/or each 

> 0 there is a polyhedron Pc with h(P~, Q) < e.) 

Proo/. We assume wi thout  loss of generali ty t ha t  d < 1, and deal at  first with the 

case in which P contains the uni t  cell U of E. For  each / E E ' ,  l e t / u / =  s u p / P  and  v / =  sup/Q.  

Since U c p ,  #/>~ II/l[. F rom the fact  t ha t  h(P, Q) = d it follows by  an  easy application:of 

the separation theorem tha t  whenever I[/H = l, then I v / - / u / I  ~< d and  thus  (~): v /E/1  - d, 

1 + d]~/whenever I]/11 = 1. Let  F be the set of all lEE '  such t h a t  II/H = 1 a n d / ~ / <  oo (or, 

equivalently,  v / <  c~), and  for each convex K c  E '  with r  let f lK denote  the set of 

all lEE '  such tha t  [0, 1 [ / ~  K and ]1, ~ [ / c  E',,~ g .  Then we have t iP  ~ = { ( 1 / # / ) ] : / E F } ,  

p0 = [0, l / t i P  ~ flQO = { ( l / v / ) / : / E F } ,  Q0 = [0, 1]flQ ~ Since po is a compact  polyhedron,  

flpo must  be compact,  and with the  aid of (t) we see tha t  flQO is also compact .  I t  follows 

t h a t  sup v F  = s < c~. Note  fur ther  t ha t  [0, oo[flQO = [0, ~ [ p o ,  and hence is a polyhedral  

cone. Let  Y = flQO n rex [0, ~ [po. 

Now let e be an  arb i t rary  positive number.  Since flQO is compact ,  it mus t  have a finite 

subset Z ~ Y such tha t  with M = cony (Z U {r then M is a polyhedron in E '  with 

f l M ~  [1 - e / s ,  1]flQ ~ Now let P = M ~  E, and for e a c h / E E '  let ~ ]  = s u p / P , e [ 1  - e / s ,  

1]~/. Since s = s u p ~ F ,  we see t h a t  1 ~ / - ~ / I  < e  whenever / I / I /=1,  and  it follows t h a t  

h (P~, Q) ~< e. Thus the  theorem is proved for the special case U ~ P.  

I n  t reat ing the  general case, we employ the following result  due to Rs  [8]: 

if A and B are closed convex subsets of E and X is a bounded subset of E,  then 
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h (A, B) = h (A + X, B + X). Now consider a closed convex set Q and a polyhedron P with 

h (P, Q) = d < 1. Let X be a bounded polyhedron in E such that  P + X ~ U. Then h (P + X, 

Q + X) = d, and the result above implies the existence of a polyhedron Y with h ( Y , Q  + X)  

< e. Let Z = {yE Y: y ~- X ~ Y). Then Z is closed and convex and Z + X = Y, so it follows 

by RhdstrSm's theorem that  h(Z, Q ) < e  and by 6.5 that  Z is polyhedral. The proof of 

6.7 is complete. 

(Before I found the above proof, John Isbell supplied me with one which used the 

projective space in an interesting way.) 

7. Failure of  the main theorems for nonconvex sets 

In  this section only, we employ the term polyhedral in its more general and customary 

sense to describe a set in E which is the union of a finite number of geometric simplexes. 

To show that  the theorems of w 4 do not apply to nonconvex sets, we construct in E3a  

nonpolyhedral 3-cell of which all 2-sections and all 2-projections are polyhedral. 

Let / be a continuous convex function on [0, r [ and a~ and b~ sequences in ]0, ~ [ 

such that  the following conditions are satisfied:/0 = 0 and ]t > 0 for all t > 0; for each n, 

b~ =/an; a~-->O, b~/a~->O, a~/ a~+ l--> l,  and b~/b~+ ~-~ l .  (For example, take I t  = t 2, a,~ = 1/n,  

b= = 1/n2.) Let c~ and d~ be sequences in ] 0 , ~ [  such that  b~/c~-~O and always dnE]0, cn[. 

For each n, let un denote the point (an, bn, c~)E E a and v n the point (an, bn, dn). Let Pn 
oo 

denote the "pyramid" cony {~b, un, vn, un+1, vn+l) and T = tJ P~. Clearly T is not poly- 
1 

hedral, for its projection onto the xy-plane is not. I t  can be verified that  T is a 3-cell 

(i.e., T is homeomorphic with the unit cell in E3). We shall prove that  all 2-sections of T 

are polyhedral, and to do this it suffices to show that  each plane intersects Pn N {~) for 

only finitely many values of n. This is evident for planes which miss 4, for u~-->r and 

v~-->r And it is evident for planes containing the z-axis, for the xy-projection of such a 

plane intersects the xy-projection of at most one set Pn ~ (~). I t  remains to consider a 

plane II whose equation has the form z = rx  + sy. 

If  the plane II (z = rx  + sy )  intersects Pn ~ {~}, then it intersects at least two of the 

segments [Un, vn], [u~, Un+l] , [Vn, Vn+l] , a n d  [un+l, vn+l]. If II  intersects [un, vn], there 

exists 2.e[0, 1] such that 

~tnc~ + (1 - 2,)dn = ran + sbn. 

Since c~, d~, and b~ are all o(a,), this cannot occur for infinitely many values of n unless 

r = 0. But  if r = 0, note tha t  c, and d, are both o (b,), so the equality cannot hold for in- 

finitely many values of n unless s = 0. Since the xy-plane misses T-~ {r entirely, we 
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conclude t h a t  H (I [un, %] is e m p t y  for all bu t  f initely m a n y  values of n. The cases of 

I I  N [un, un+l] and  H N (v~, %+1] can be handled b y  a similar a rgument ,  using the  facts  abou t  

orders of convergence employed above  and  also the  informat ion  t h a t  a~+1 is O(a~) and 

and  b~+l is 0 (b~). I t  follows t h a t  all 2-sections of T are polyhedral .  

Now in E 3, let  Q be a cube such t h a t  the  " face"  cony {4, ul, vl} of T lies (relatively) 

interior to  some face of Q and  the  rest  of T lies proper ly  interior to Q. Then  the  set Q ~ int  T 

is a nonpolyhedra l  3-cell of which all 2-sections and  all 2-projections are polyhedral .  

Though  we have  not  done so, i t  might  be of interest  to  invest igate  in detai l  the  inter- 

relat ions of the  following three  conditions, as applied to  a 3-cell J in E3: (i) J is polyhedral ;  

(ii) each 2-section of J is polyhedral ;  (iii) each max ima l  convex subset  of J is polyhedral .  

We know merely  t h a t  (i) implies bo th  (ii) and  (iii) bu t  is not  implied by  either of them.  
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