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Introduction 

A classical theorem of Wiener [12] and L~vy [7] states tha t  if lEA, where A denotes 

the class of all functions on the unit circle which are sums of absolutely convergent trigono- 

metric series, and if F is defined and analytic on the range of t, then F ( t  ) EA. This theorem 

was extended by Gelfand [2], [8; p. 78] who showed that  it holds if A is replaced by any 

normed ring. 

We are interested in the converse: which functions F have fhe property that  F(t ) EA 
whenever tEA? We have recently announced solutions of this and of some analogous 

problems [6], [3], [4]; in the present paper we publish complete proofs, and we extend our 

results to  group algebras of infinite, locally compact, abelian groups in general. Roughly 

speaking, we prove (Theorems l, 2, 3 below), that  the analytic functions are the only ones 

with the desired property. 

If F is the dual group (or character group) of the locally compact abelian group G 

(with addition as group operation), we denote by A (F) and B(F) the algebras of all Fourier 

transforms and Fourier-Stieltjes transforms on F, respectively. That  is to say, t e A ( F )  if 

there exists some g eLl(G) (the space of all complex functions which are integrable with 

respect to the Haar  measure of G), such that  

/ ( y )=~(y )=f ( -x , y )g (x )dx  (y e r ) .  
G 

The symbol (x, y) denotes the value of the character y at  the point x. A (F) is normed 

by the Ll-norm on G: 

(1) The first and last named authors are Research Fellows of the Alfred P. Sloan Fundation. 
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II/ll=ll ll=llglll=f Ig( ll ( / e A I r l l  
G 

Similarly, / G B (F) if there is a bounded complex Bore] measure/~ on G such tha t  

/ ( y ) = ~ ( y ) = f  ( - x , y ) d l ~ ( x )  ( y e t ) ,  
G 

and we norm B(F)  by  defining 

li/ll = II = il il = te ta l  v a c a t i o n  of 

With these norms, A (r )  and B (P) are Banach algebras under pointwise addition and 

multiplication, and A (P) is a closed ideal in B(F). I f  F is the circle, then A (F) is the alge- 

bra A mentioned in the first paragraph. 

For the sake of conciseness, we make the following definition: 

A /unction F, de/ined on a set E in the complex plane, is said to operate in a/unction 

algebra R i/ F (/) E R /or  all / E R whose range lies in E. 

Unless the contrary is explicitly stated, we shall always assume tha t  F is defined on 

the closed interval I = [ -  1,1] of the real axis, and tha t  

~ ( 0 )  = O, 

and we shall always assume that G and F are in/inite, locally compact, abelian groupe. 

We state our main results: 

TtIEOREM 1. I / F  is discrete and i/ F operates in A (P), then F is analytic in some neigh- 

borhood o/ the origin. 

Tn~.OREM 2. I /  F is not discrete and i/ F operates in A(F),  then F is analytic on I. 

THEOREM 3. I / P  is not compact and i/ F operates in B(F), then F can be extended to 

an entire/unction in the complex plane. 

Note that  if F is compact, then B(F) = A (F), so tha t  this case of F operating in B(F) 

is covered by Theorem 2. 

The conclusions of these theorems may  be restated in terms of power series: in Theorem 1, 

there is a series ~ an t" which converges to F(t) in some interval around the origin; in 
0 

Theorem 2, we have such a representation in some neighborhood of each point of I ;  and 

in Theorem 3, P(t)  is the sum of a power series with infinite radius of convergence. 

In  the final section of this paper we shall indicate how these theorems have to be modified 

if F is defined in a plane region. Some consequences of Theorem 3 are discussed in Section 

VI. 
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The notation AR(F), BR(F) will be used to denote the subsets of A (F) and B(F) which 

consist of real-valued functions; similarly, Al(F) and BI(F) will denote the sets of functions 

in A(F), B(F), whose range lies in I.  

I. The continuity of F '  

1.1. Before we can prove analytieity of F,  we have to prove that  F is continuous. If  

F satisfies the hypotheses of Theorem 2, this causes no difficulty: suppose tn E I and tn--~t; 

there exists an lEA (F) such that/(Yn) = tn for some sequence {Yn} which has a limit point 

yEF, and the fact tha t  both [ and F(/)  are continuous implies tha t  

lim F (tn) = lira F (/(Yn)) = F (/(y)) = F (t), 
7t..-~oO n --,I, o0 

so that  F is continuous at  t. 

If F is discrete (and Theorem 3 will be reduced to this case), the above argument 

fails~ and we shall appeal to Lemma 1.3 below. First, however, we construct certain ap- 

proximate identities which will be used frequently. 

1.2. LEMMA. To every /ini~e subset E o~ the discrete group F one can associate a 

finite set S in F suvh that 

m(S+ E)<.2m(S). 

I/  T = S+ E and i/ the polynomial K is de/ined by 

1 
K(X)=m(S)  ~ ( - x , y ' )  ~ (x,y") (xeG), (1.2.1) 

y'GS y " e T  

then HK][I<2, / ~ ( y ) = l  /or all y e E ,  and ]~(y)[~<l  /or all y e r .  

Here m denotes the Haar  measure on F; since F is discrete, re(S) is just the number of 

points in S. Note also that  G is now compact. 

Proo/: Let F1 be the smallest subgroup of F which contains E. Being finitely generated, 

F1 is a direct sum of a finite group F~ and a group A of lattice points in a euclidean space. 

If S is taken to be the cartesian product of F~ and a large enough "cube" in A, it is clear that  

m(S § E) <<. 2re(S). 

I f /1  and/3  are de/hind by 

/ l (x )=  ~ ( - x , y ) ,  / 2 ( x ) = ~  (x ,y)  (xeG),  
y e s  y e t  

the Schwarz inequality shows that  

II KI]I <~ m I(S) ]]/1]]u H[z[[2 = m--~) {m(S) m(T)}�89 <'' 2t < 2" 
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To complete the lemma, we rewrite K (x) in the form 

1 
K ( x ) = ~ ) ~ _ ( x , y " - y ' )  (y 'eS ,  y"ET) .  (1.2.2) 

For any fixed y E E and any y'  E S, we have y + y 'E  T, so tha t  y = y" - y ' ,  for some y"E T. 

I t  follows tha t  the term (x,y) occurs precisely re(S) times in the sum (1.2.2) if yEE, and it  

occurs no more than  re(S) times for any yEF. 

Note. I f  F is the group of all integers, the familiar trapezoidal function for ~ is obtained 

by the above construction: if 

K(eto)=2N+l  ~ e -Ire ~ e tq~ 
p - - N  q - - 2 N  

then 

1 if I /<lv, 

g ( n ) =  2 -  if N<InI<<.2N, 

o if 2 N < l n l  . 

(1,2.3) 

Formula (1.2.3) also applies if F is a finite cyclic group, provided its order exceeds 

4 N; this remark will be used in 5.5. 

1.3. LEMMA. Suppose ~ is discrete and e > O. Suppose that F(/)EB(F) /or all JEBI(F) 

such th~  l l / l l  < e  If  e < 1, F is continuous in the segment ( - e, e); i / e  > 1, F is continuous on I. 

Proo/. Fix tEI  such tha t  Itl < e, and assume tha t  F is discontinuous a t  t. Then there 

exist real numbers an such tha t  t + a n E I ,  

a2< { -Itl} = (1.3.1) 
n-1  

and 

[F( t+a~)-F( t ) [>~ 1 ( n = l ,  2, 3 . . . .  ) (1.3.2) 

for some r />0 .  

Since F is infinite (our standing assumption), there is a sequence {Yn} (n = 1, 2, 3 . . . .  ) 

in 1", with the following properties: 

(a) gn*Yt ,+y~-Yi ,  if ii, i2, i 3 are all less than n; 

(b) if Ej consists of Yl . . . . .  yj and if Sj and Tj are associated with Ej as in Lemma 1.2, 

then y n ~ T j - S j  if ~<n .  

Define 

/(Y)= {i +an  if y = y n  (n=  1, 2 , 3  . . . .  ), (1.3.3) 
for all other y E F. 
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Then [EBz(P), since / is the Fourier-Stieltjes transform of the measure 

too+ ~ an (x, Yn) (1.3.4) 

on G, where ~0 is the unit mass concentrated at  the identity element of G; the series in 

(1.3.4) belongs to L2(G), and (1.3.1) shows furthermore that  I!]11 < e. 

The hypotheses of the lemma thus imply that  the function g defined by 

{ F (t + a~) if y= y~ 
g (Y) = F (t) for all other y E F 

belongs to B(P), and we conclude that  there is a measure ~u on G such tha t  

Put  

/~(Y)= / { F(t + a , ) -  F(t) if y=y=, (1.3.5) 
( 0 for all other y fi F. 

i 
P,(x)=~=~(y,) (x,y,) ( i = l ,  2, 3, ...; xEG). (1.3.6) 

Property (a) of {y.} implies, by an argument familiar from the study of lacunary 

trigonometric series [15; p. 217], that  ]lPj][4~<2t ]]PJ]I~, and H6lder's inequality then 

shows that  
IIP, II~<2 liP, Ill. (1.3.7) 

But if Kj is the polynomial associated with Ej as in Lemma 1.2, property (b) of 

{y,} implies that  Pj=/~i/h,  so that  [[P,[[l<2ii~l I. I t  follows that  

which is impossible, since [ /~(yn) l>~>0,  by (1.3.2). 

This contradiction proves that  F is continuous at t. 

II. The principal lemmas 

2.1. LP, M~A. If  l" is any infinite locally compact abelian group, then 

sup II e"ll = e r, (2.1.1) 

where f ranges over all functions in Bn(P ) with Iltll<r. 
c o  

P~oo/: Since e's= Z ( i ] lV,~! ,  it is clear that Ile"ll <e"a~, and the left member of 
0 

(2.1.1) does not exceed e r. 
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a n d  

Given  ~ > 0, we choose a pos i t ive  in teger  n > 2 r, so large t h a t  

(, 
W e  choose po in t s  x I . . . . .  X n in G (not 0), such t h a t  

x k + i #  + _ x i + _ x 2 + _ ' " •  ( k = l  . . . . .  n - l ) ,  

no m a t t e r  how the  signs are  chosen. 

(2.1.2) 

(2.1.3) 

(2.1.4) 

L e t  (~ deno te  the  measure  of t o t a l  mass  1, concen t r a t ed  a t  t he  po in t  x E G, p u t  

a~ = ~ (b.k + 8-~k) (k = 1 . . . . .  n) (2.1.5) 

(2.1.9) 

,(r)P .' 
I1  11< _ < (k--  1, n) .  

p -2  ~'~2 ""~ 

W e  also no te  t h a t  

r + i r ( r  k = r 
o n 1 +n- ( k =  1 . . . . .  n). 

Hence  (2.1.8) m a y  be rewr i t t en  in the  form 

i r  i r  

a n d  

r 
t~ = n  (al + "'" + a , ) .  (2.1.6) 

I t  is clear  t h a t  [ [~ t l l=r  and  t h a t  /~ is real ,  since ~g(y) is the  real  p a r t  of (xk, y).  W e  

shall  p rove  t h a t  

Using ~- to denote  convolut ion,  and  ~ i t i n g  a v for the  convolu t ion  of the  measure  

a wi th  itself, p t imes ,  we have  

where 

~k-- a~ (k = 1, n). 
p-2  ~"  " ' '~ 

To es t ima te  the  no rm of vk, we use the  a s sumpt ion  n > 2 r :  
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where the norm of remainder ~ satisfies the inequality 

[[~t]]~ k~ 1 ( k ) ( l + r )  n-k (r)2~ ~<e'~_ 1 ( k ) ( r ) 2 k = e ' { ( l + ~ ) " - l }  <el2 '  (2.1.10, 

by (2.1.2). Finally, (2.1.3) and (2.1.4) imply that  

and (2.1.7) follows from this, together with (2.1.9) and (2.1.10). 

2.2. THE SCHOE~BERO CRITERION. This theorem, for whose rather simple proof 

we refer to [9] or [1], asserts that  each of the following two statements about a function/,  

defined on F, implies the other: 

(a) /f iB(F) and II/II<M. 
(b) ] is continuous, and /or every g f iL 1 (F) 

We shall use the following corollary: I /  /n f iB(r ) ,  II/=II<M, 

/ (y) = l im/ .  (y) (y fi F),  

and / is continuous, then/ f iB(F)  and ll/ll < M. 

2.3. LEMMA. Suppose r > O, M < oo, and (P is a periodic/unction on the real line, ugth 

period 2zt. Suppose r  and [[(I)(/+e)H <~M /or every real number c, p r ~  

that/fiBR(F) and ]]1]] < r. 

Then ~P can be extended to a/unction which is analytic in the strip [y[ < r (z = x + iy). 

Proo/: By 1.1 and Lemma 1.3, (1) is continuous in some segment; since the hypothesis 

involves arbitrary c, (I) is continuous on the whole line, and we can therefore expand it in 

a Fourier series: 

Fix n, choose / fi BR (F) 

Since (I) is 
9 t - -  593804 

(I) (t) ~ ~ an e 'nt. 

with II/11 -< r, and define 

continuous, we obtain 

(2.3.1) 

(y fi F, p = 1, 2, 3, ...). (2.3.2) 
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2 ~  

if l im 1, (Y) = ~-~ r  emI(~) 
0 

(y E F). (2.3.3) 

On the other  hand,  the  hypotheses  of the l emma  imply  t h a t  {~ E B ( F )  and  t h a t  

Ilf~[I ~< M. The  corollary to  Schoenberg 's  criterion therefore shows t h a t  

I nl-II e'nql < M (2.3.4) 

for every  t e B ~ ( F )  with II/ll<r, and we can conclude f rom L e m m a  2.1 t h a t  

]anl<~M.e -Inl" (n=O, +_1, +_2 . . . .  ). 

These bounds on the  coefficients of the  series (23.1) show t h a t  the  series 

r162 

~ an e tn(~ +~) (x, y real) 

(2.3.5) 

(2.3.6) 

converges uni formly  in every  compac t  subset  of the  s t r ip  [y[ < r, and  the  sum of (2.3.6) 

is the desired analyt ic  extension of (I). 

2.4. LEMMA. Suppose F ( / ) E B ( F )  and IIF(/)[[ <.M /or every /EB~(F) with [I/1[ < e ,  

/or some e > O. Then F is analytic in some neighborhood o t the origin. 

Proo/: Put 
(~(x) = F ( R  sin x), 

where 0 < R < 1 and  eR < e. Observe t h a t  if I[/I] ~ l ,  then  ]lsin(f + c)][ = I[sin c .cos / + 

cos c.sin/[I ~<[]cos/I [ + ][ sin {H ~<elir II ~< e, for every  real constant  c, so t h a t  

[I R s i n ( / +  c)II ~< Re < e. 

Thus (I) satisfies the hypotheses  of L e m m a  2.3, with r = 1. The formula  

F (x) = ~P (arc sin R)  , 

valid for - R < x < R, then  shows t h a t  F is analyt ic  in a neighborhood of the origin. 

I n  order not  to  in te r rup t  the  a rgumen t  later ,  we include one more  l emma  in this 

section. 

2.5. LV+MMA. I /  G is a compact abelian group which is not o/bounded order, then G con- 

taine an element o/ in/inite order. 



T H E  F UNCTIONS  W H I C H  OP ERATE ON F O U R I E R  TRANSFOR~IS 143 

(We recall tha t  a group G is said to be of bounded order if there is a positive integer 

q such tha t  qx = 0 for every xEG.) 

Proo/: For n = 1, 2, 3, ..., let E ,  be the set of all xEG such tha t  nx  = O, and assume 

tha t  Ek contains a non-empty open set V, for some k. i f  W = V - V, then W is a neigh- 

borhood of 0 and kx  = 0 for every xE W. The group H generated by W is compact and 

open, and G/H is finite (being compact and discrete). I f  G/H has p elements, it follows 

tha t  p x E H  and k p x  = 0 for every xEG; thus G is of bounded order. 

This contradiction shows that  none of the compact sets E ,  contains a non-empty open 

subset of G. I t  follows tha t  the set of all elements of infinite order, which is the complement 

of 6 E. ,  is actually a dense subset of G. 
1 

III. Proof of Theorem 1 

3.1. If  F is discrete, so tha t  G is compact, and if P is a polynomial on G, of the form 

P ( x ) = ~ a ~ ( x , y )  (xEG, y E F ) ,  (3.1.1) 
y 

with only finitely many  a~=0,  we write F o P  for the polynomial 

( F o P ) ( x ) = ~ F ( % ) ( x , y )  (xEG, y E F ) .  (3.1.2) 
y 

3.2. LEMMA. Suppose [~ is countable and discrete, F is de/ined on I,  and there e.vist con- 

stants e > O, M < ~ ,  with the/ollowing property: 

I] F oP[[1 ~< M (3.2.1) 

1or a / / P  0 t the torm (3.1.1), with auEI, whose norm satisfies 

[IP[]l -<< 2e. (3.2.2) 

Then i t tEBz(F) and i t I[[[I <~e, we also have F ( h E B ( F  ), and [IF(t)l[ <~M. 

Proof: Choose/EBz(F),  with [l/Jl ~< e, let {E,} be an expanding sequence of finite sets 

whose union is F, and associate with each set En a polynomial K, ,  as in Lemma 1.2. 

Since [[ t [[ ~< e, we have [[ /~j  [[ ~< 2 e; also , / ~ j  is the transform of a polynomial and the 

range of /~nt  lies in I ;  thus (3.2.1) applies: 

[[F(~.t)Ii<M ( n = l ,  2, 3 . . . .  ). (3.2.3) 

But  for every y E E~ we have 

F (/~, (y) t (Y)) = F (] (y)), 

1 0 -  593804. Acta mathematica. 102. Impr im~  lo 28 sep tembre  1959 
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so tha t  

F (/(y)) = lim F (/~, (y) / (y)) (y E F). 
n--~OO 

If we apply the corollary to Schoenberg's criterion to the functions F ( / ~ j ) ,  (3.2.3) shows 

that  F( / )  EB(P) and [] F(/)[l < M. 

Note: The assumption that  F is countable may be removed from this lemma, but  we 

only require the countable case. 

3.3. We now assume that  $', defined on I ,  operates in A (F), for some discrete F.  If 

F1 is any countable subgroup of F, it is clear tha t  F also operates in A (F1); we may ac- 

cordingly assume, without loss of generality, tha t  F is countable, and we shall prove that  

the hypotheses of Lemma 3.2 are satisfied. Once this is done, Lemmas 3.2 and 2.4 give the 

conclusion of Theorem 1. 

If the hypotheses of Lemma 3.2 are not satisfied, then there exist polynomials Pn on G, 

with coefficients in I ,  such that  

Ilp, l h < n  -~ (3.3.1) 
but  

I I F o P = l l i - ~  ( n - ~ ) .  (3.3.2) 

Let E~ be the set of all yEF such that  Pn(Y)# O, associate sets S=, T~, and polynomials 

K n with En, as in Lemma 1.2, and let {y~} be a sequence in F such that  the sets Yn + Tn - Sn 

are mutually disjoint. The series 

(x, y=) Pn (x) (3.3.3) 
n= l  

converges, in the Ll-norm, to a function gELI(G), by (3.3.1); since ~EAI(F), and since F 

operates in A(F), F(~)EA(F).  Let  h be the function in LI(G) such that  ~ =F(~ ) .  Our 

choice of y ,  implies 

(y) = F (/~n (Y - Yn)) (y E E ,  + Yn). (3.3.4) 
and hence 

(~. Qn) (y) = ~ (P,  ( y -  y~)) (y e r),  (3.3.a) 
where 

Q~ (x) = (x, yn) K~ (x) (x ~ a, n = 1, 2, 3 . . . .  ). (3.3.6) 

By (3.3.5), we have 

I I~oP .  Ih < II Q,[h" II hll~ < 2 Ilhlh, 

which contradicts (3.3.2). Theorem 1 is thus proved. 

(3.3.7) 
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IV. Proof of Theorem 2 

4.1. To begin with, we shall assume that  F is compact, and our first aim will be the 

proof tha t  F is analytic in a neighborhood of the origin if F operates in A (F). 

If / E Ax(F), then F (/) E A (F), and 

where 

F(/(y))= ~ a=(/)(x, y) (yEF) ,  (4.1.1) 
XEG 

a=(/)=f F ( / ( y ) ) ( - x , y ) d y  (xEG). (4.1.2) 
r 

Since F is continuous on I (see 1.1), (4.1.2) shows that  the mapping 

/-->a=(/) (4.1.3) 

is, for each xEG, a real valued function on At(F), which is continuous in the norm topology 

of A (r). 
Let J be the set of a l l /EAI(F)  which vanish in some neighborhood of 0 (the identity 

element of F), and let C be the closure of J ,  in the norm topology; C is a complete metric 

space, and the mapping 

l II F (/)II =x~ala= (/)[ (4.1.4) 

is a real-valued (finite) lower semi-continuous function on C. The Baire category theorem 

implies tha t  ]]F(/)H is bounded in some open set of C. Since J is dense in C, there is an 

/oeJ with the following property: i f / E C  and if H/-/01] ~< 6, then HF(/)H ~< M, where e, M 

are suitable positive numbers. 

Let  U be a neighborhood of 0 on which/0 vanishes, and choose a non-empty open set 

V, whose closure lies in U and does not contain 0. 

We now consider any gEAI(F) which vanishes outside V, such that  Hg H ~< E. Putt ing 

I =]o +g,  the above remarks imply that  HF(/o +g)lJ ~< M for some M < ~ .  Bu t / 0  and g 

have disjoint supports, so that  

I t  follows that  

F (/o + g) = F fro) + F (g). 

[I F (g)O ~< O F (/0 + g)O + H P (/0)II ~< 2 M. 

(4.1.4) 

Let us summarize what we have proved so far: There exists an open set V c F and there 

exists e >0 ,  M < cr such that HF(g)]] <~M whenever gEAI(F), g = 0  ou2s/de V, and Hg][ ~<e. 

By translation, we may assume that  V is a neighborhood of 0. 

(4.1.5) 
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4.2. We now consider three  cases. 

Case A .  Suppose F is totally disconnected. Then  the  open set  V which we have  jus t  

described contains an  open-closed subgroup F 1 of F [11; p. 19], and  the result  of 4.1 implies 

t h a t  I[ F(g)II <~ M for every  g eAdF1) ,  provided llgl[ < e- 

Since F 1 is compact ,  A (F1) = B ( F 0 ,  so t h a t  L e m m a  2.4 applies, and  we conclude t ha t  

F is analyt ic  near  the  origin. 

Case B. Suppose F is the unit  circle (this is the case to  which the  original theorem of 

Wiener  and  I ~ v y  applied). Our set  V is now a segment  ( - 0, (~), where 0 < (~ < :~. I f 0  < 2b < ~, 

define 

Qb(e'O)= -- ff b<lOl<<.2b, 

ff 2 b < ] 0 ] < n .  

I t  is then  easy to see, as in L e m m a  1.2, t h a t  Qo E A (D), and  

1 < II II < 2. (4.2.1) 

We now consider a n y  / E A ~ ( F )  for which [[/[[-<<e/2. Set a = z t / 6 N ,  where N is 

a posit ive integer  and  3 N(~ > 2: t .  Then  

[[ Q2~" f l[ < 2 II/ll < ~, (4.2.2) 

and Q2a "/ vanishes outside V. Hence  

[[ F (Q2a"/) [[ ~< M, (4.2.3) 
and the ident i ty  

Qa " F (j) = Qa . F (Qza " J), (4.2.4) 

together  with (4.2.1) and  (4.2.3), implies t h a t  

[I Q~" F (f)[[ ~< 2 M.  (4.2.5) 

I t  is now clear t h a t  (4.2.5) also holds if Q~ is replaced by  a n y  of its t ranslates .  

Since there are N of these t ranslates ,  say Qa.1 . . . . .  Qa.N, whose sum is 1, we have  
N 

F (t) = 5 Qa.k" F (/), and  we conclude t h a t  H F (/)I[ =< 2 M N .  
1 

Since A(F)  = B(F) ,  L e m m a  2.4 applies, so t h a t  F is again  analyt ic  near  the  origin. 

Case C. Suppose F is not totally disconnected. 

- Since F is not  zero-dimensional,  G contains an e lement  of infinite order [ l l ;  p. l l l ] ,  

~o t h a t  G contains an infinite cyclic group Z. Le t  F1 be the  group of all y E F  such t h a t  
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(x, y) = 1 whenever x EZ. Then F/F1 is isomorphic to the circle group, and if F operates in 

,4 (F), then $' also operates on those functions in A (F) which are constant on the cosets of 

F 1. This takes us hack to Case B. 

4.3. We can now prove Theorem 2 under the assumption tha t  F is compact. 

We have already proved tha t  F is analytic at  the origin. Suppose - 1 < a < 1, and put  

F a ( t ) = F ( a + ( 1 - 1 a [ ) t ) - F ( a  ) ( - 1  ~<t~< 1). (4.3.1) 

Since F~ evidently operates in A (F), Fa is analytic a t  the origin, which implies tha t  

F is analytic a t  a. To prove analyticity of F at  the end-points of I ,  put  

F l ( t ) = F ( 1 - t  z) ( - l < t < U .  (4.3.2) 

Again, F 1 operates in A (F); since F~ is an even function, we have 

F~ (t) = ~ c, t ~" ( - 5 < t < (5) (4.3.3) 
0 

for some 5 >0 .  Hence 

F ( l - x ) = ~ c , x  n (0 ~< x <  (~2), (4.3.4) 
0 

and this proves tha t  F is analytic a t  the right end-point of I .  The other end-point can be 

treated similarly, and the proof is complete for compact F. 

4.4. We shall prove Theorem 2 for non-compact groups with the aid of the following 

structure theorem [11; p. 110]. 

Every locally compact abelian group F contains an open subgroup F o which is the direct 

sum o /a  compact group H and a p.dimensional euclidean space R v. 

(Note tha t  open subgroups are also closed [11; p. 13].) 

4.5. Suppose now tha t  F is not discrete. If  F operates in A (F), then $' also operates in 

A (F0), and we consider two cases (in the notation of 4.4): p = 0 or p > 0. 

I f  p = 0 then F 0 is compact, and since Fo is not discrete, F 0 is infinite. The conclusion 

Of Theorem 2 then follows from 4.3. 

I f  p > 0, we observe tha t  F also operates in the subalgebra of A (F0) consisting of those 

/EA (F0) which are constant on the cosets of H; tha t  is to say, F operates in A (RV). We 

shall prove tha t  this implies tha t  F operates in A (Tr), where T ~ is the p-dimensional toms; 

the analyticity of F on I will then again follow from 4.3. 

With e v e r y / E A I ( T  p) we associate a funct ion/*,  defined on R ~ by 

/* (xl, . . . ,  x~) = / ( e %  .. . .  e~'~), 
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which has period 2 g in each of the variables xl, ..., x~. Choose a function g EA (R p) whose 

range lies in I ,  such tha t  

g(X 1 . . . . .  x ~ ) = l  ( 0 < x j < 2 u ,  1 ~ < p ) ,  

and such tha t  g vanishes outside some compact set. Then/* g E Az (Rn), so tha t  F (/* g) E A (R ~). 

Since (/*g)(x) = ]*(x) over a full period of I*, we conclude tha t  F operates in A (T~). 

This completes the proof of Theorem 2. 

V. Proof  o f  Theorem 3 

5.1. In  our proof of Theorem 3, the fact tha t  F is defined only on the interval I ,  and 

not  on the whole real axis, causes some inconvenience. To avoid this, let us consider the 

functions 

(I) 1 (x) = F (sin x), (I) 2 (x) = F (b sin x) ( - co < x < co ), (5.1.1) 

where 0 < b < 1. Since every entire function operates in B(F),  so do (I) 1 and (I) 2 if F does. 

Suppose we can prove tha t  (I) 1 and (b 2 can be extended to entire functions in the 

complex plane, and let us solve for F: we obtain 

(I) (are sin x) ( -- 1 ~< x < i), 

F (x) ( (I)~ are sin b ] ( - b ~ x ~ b ) . 

The first of these formulas shows that  F can be expanded in a power series about  the origin, 

and tha t  this power series can be analytically continued to a (possibly multi-valued) func- 

t ion in the whole plane, except for possible branch points at  x = _ 1. The second formula 

shows, in the same way, tha t  x = _ b are the only possible singular points of F in the finite 

plane. Since b =~ 1, we conclude tha t  the analytic extension of F is an entire function. 

These remarks show: I t  suHices to prove Theorem 3 under the stronger assumption that 

F ks de/ined on the whole real axis, and has period 2 ~. 

5.2. We next  show tha t  it su//ices to prove Theorem 3 / o r  countable discrete groups F. 

Let F 0 be the open subgroup of F which is mentioned in the structure theorem 4.4. 

If  F 0 has infinitely many  eosets in F, and if F operates in B(F), then F operates in the al- 

gebra of a l l / E B ( F )  which are constant on these eosets, which means tha t  F operates in 

B(F1), where F 1 is the discrete quotient group F/Fo. I t  is clear tha t  F then also operates 

in B(F~), where F 2 is any countable subgroup of F1- 

I f  F 0 has only finitely many  cosets in F, then p > 0 (in the notation of 4.4), since F is 

not compact, and we observe tha t  F operates in the subalgebra of all fEB(F)  which are 



T H E  F U N C T I O N S  w ~ t t C H  O P E R A T E  ON F O U R I E R  T R A N S F O R M S  149 

constant on the cosets of H in F 0 and which vanish outside F 0. This means that  F operates 

in B(RP). Let A p be the p-dimensional lattice group in R p, i.e., the set of all points x = 

(x 1 . . . .  , xu) in R ~ all of whose coordinates are integers. I t  is quite easy to see that  the 

restriction of e v e r y / E B ( R  ~) to A p belongs to B(AP), and conversely that  every/EBR(A p) 

can be extended to R ~ so as to belong to Bn(R~). Hence F operates in B(AP). 

Hence Theorem 3 will follow if we can show that  the entire functions are the only ones 

which operate in B(F), for any countable discrete group F. 

5.3. Consider now the following two conditions on a function F, defined on the real 

axis, with period 2 ~: 

(~) F operates in B(F) /o r  some countable discrete group F. 

(fl) For some countable discrete group F, there is associated with every r > 0 a number M (r) < oo, 

such that 

IlFo Pll I ~</( r ) ,  

whenever P is a polynomial on G, with real coe]]icients, whose norm satis]ies 

IiPIIx < r. 

(We refer to 3.1 for the notation F o P; the norms here are the Ll-norms over the com- 

pact group G.) 

Suppose (/~) holds. Choose ~/> 0, and suppose [ E Bn (F), with II] [] ~< 7- Then II/+ c I] ~< ~/+ 

+ ~  if c is a constant and - ~  ~< c ~<~. We apply (/~) with r = 2(7 +~),  and we apply a 

slight modification of Lemma 3.2 (R in place of I)  with e =~ /+  ~, M = M(2 r /+  2 ~); the 

periodicity of F then implies that  

I IF(]+c) I I<~M(2 , )+2g)  ( -  ~o < c  < cr 

By Lemma 2.3, F can therefore be extended to a function which is analytic in the strip 

lyl 
Since this is true for every 7, we see that  the entire functions are the only ones which 

satisfy (/~). On the other hand, our discussion in 5.1 and 5.2 shows that  Theorem 3 will 

be proved if we can show that  the entire functions are the only ones which satisfy (~). 

Hence the proof will be complete if we can show that  (~) implies (/~). We shall do this 

in two steps: 

Step 1: I f  (~) holds/or some F o/ bounded order, then (~) holds/or the ,ame F. 

Step 2: I / ( ~ )  holds/or some F which is not o/ bounded order, then (fl) holds/or the group o/ 

all integers. 

(We refer to the definition which follows Lemma 2.5.) 
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5.4. Proo/ o/ Step 1. We may  assume, without loss of generality, tha t  P is the direct 

sum of infinitely many  cyclic groups, all of which have the same order. To justify this 

simplification, we remark (1) tha t  if 5.3 (a) holds for some I ~, then it holds for every infinite 

subgroup of F, (2) tha t  every group of bounded order is a direct sum of cyclic groups [5; 

p. 17] and (3) tha t  among these direct summands infinitely many  have the same order. 

I f  5.3 (~) is false, then for some r > 0 there are polynomials Pn on G, with real coeffi- 

cients, such tha t  ItPn lit ~ r, hut  

JI F o P~I]v-> c~ (n--> ~ ) .  (5.4.1) 

Let E~ be the smallest subgroup of F which contains the support  of P~. I t  is clear 

tha t  each E n is a finite group; hence we can choose y~ in the complement of E, ,  and we 

let Fn be the group generated by  E~ and y~. The simplifying assumption made in the first 

paragraph of 5.4 shows tha t  we can transform the polynomials Pn by automorphisms t~ 

of F, replacing Z Pn (y)(x, y) by Z P~ (y)(x, tny), so tha t  no two of the groups F ,  have a non- 

zero element in common; these transformations do not change any of the norms with which 

we are concerned, and we assume tha t  they are carried out. 

We shall show tha t  the assumption HP.I]I ~< r for n = ], 2, 3, ... implies tha t  there is 

a measure # on G, with/~ real, such tha t  

(y +y~) =Pn(y)  (yEE~; n = l ,  2, 3 . . . .  ). (5.4.2) 

Once this is done, we let - ~  be the characteristic function of the set En + y~; obviously 

~ E B ( F ) ,  and since E~ is a group, ]iRni] = 1. Also, F (~ )EB(F) ,  by 5.3(a), and 

F(P,(y)) = F(~(y + y,))l~' (y + y~) 

for all y EF. Hence H F oP~ II1 ~< [I F (~)][, contradicting (5.4.I). 

The problem is thus reduced to exhibiting a measure on G which satisfies (5.4.2). 

Let S be the linear space of all finite sums / of the form 

[(x) = Z(x,y~)Qn(x) (xEG), (5.4.a) 

where the Q~ are polynomials, such tha t  Q, is real and has its support in E n. Our assump- 

tions about  the groups F~ show that  each [ES has a unique representation of the form 

(5.4.3). Since y~ ~ En, (x, yn) takes each of its values on each of the subsets of G on which Q~ 

is constant; hence 

max Re [(x, y~) Q~ (x)] >/-~ ]] Q~ ]I~, (5.4.4) 
XE 

where II Iloo denotes the supremum n o r m .  
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Moreover, our assumptions about  Fn imply tha t  if n ~: m, then each of the sets on 

which (x, y~) Q. (x) is constant intersects each of the sets on which (x, Ym) Qm (x) is constant, 

and we conclude from (5.4.4) tha t  

Ilfll  II Q, I1~ (5.4.5) 

if / is given by (5.4.3). 

We consider S as a subspace of C(G), the space of all continuous functions on G; 

by (5.4.5), the mapping 

/---> T / = Y ] Q, ( - x )  P ,  (x) d x (5.4.6) 
a 

is a linear functional on S, of norm at  most 2r, which can be extended, by  the Hahn- 

Banaeh Theorem, to a bounded linear functional on C (G). Thus there is a measure # on G, 

such tha t  

f / ( - x) dtz (x) = • f Q~ ( - x) Pn (x) dx (5.4.7) 
G G 

for all / of the form (5.4.3). 

In  particular, if we fix y E E n and take /(x) = (x, y + y~), then (5.4.7)applies, and gives 

precisely (5.4.2). Finally, if ~ (y) is not real for all yEF, we replace ~ by its real part;  since 

P,(y)  is real, this change does not affect (5.4.2), and since Re[/~] EB(F), the proof is com- 

plete. 

Remark: If  F had been defined only on I ,  a n d / a  n (y) had been in I ,  it is not clear 

tha t  we can find # such tha t  (5.4.2) holds, with ~ (y) E1 for all yEF, and hence F(~)  might 

not be defined. This is one of our reasons for making the simplifying assumptions 5.1 at  

the very beginning of t he  proof of Theorem 3. 

5.5. Proo/ o/ Step 2. This is similar in outline to the proof of Step 1, but  the details are 

a little more complicated. 

We assume tha t  F, defined on the real axis, operates in B(F), where F is a discrete 

group which is not of bounded order, and, to obtain a contradiction, we assume tha t  

5.3 (fl) does not hold for the group of all integers. That  is to say, we assume tha t  there 

are polynomials with real coefficients, 

~j 
P, (et~ ~ an.,e 'n~ (5.5.1) 

-Nj 
such tha t  

but  

]l Pill1 < r ( i =  1, 2, 3 . . . .  ) (5.5.2) 
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l i fo  p~ll,-~oo (j-~ oo). (5.5.3) 

The norms here are the LZ-norms with respect to the Haar  measure of the unit 

circle. 

Consider polynomials of the form 

Since 

2 ~  
Q, (e,0) ~ - i . o  = o..j e . (5.5.4) 

- 2 N  t 

2N~ 2N i 

[[O;ll  < I I <5NYlIQ,[I| 
- 2Nj -- 2Ni 

there exists an integer mj and a Sj > 0, depending only on Nj, such that  

Re [d~J ~ Qj (e'~ ~> ~ ]] Qj ]]~ (5.5.5) 

on some arc of length Sj. 

By Lemma 2.5, G contains an element xo of infinite order; hence there are real 

numbers at and elements y jEF 0"=l ,  2, 3, ...) such that  

(a) (x o, yj)=e u'j, 0 < 4 7 1 : G r  

(b) the order of yj exceeds 2mj + 6/V j, and the sets 

Ej= (ky, lmj- 2Nj<k<~m,+ 2Nj} 

are disjoint. 

Having done this, we associate polynomials P*, Q~' on G with Ps and Qf 

Pj* (x) = (x, m 1 yj) Pj ((x, yr = ~ an.j (x, yj),v+n, 
-Nj 

O~ (x) = (x, m~yj) Oj ((x, yj)) = ~ b,~.~ (x, yr "v+n, 
-2,vi 

and we let S be the linear subspaee of C (G) which consists of all finite sums of 

the form 
/ (x) = ~ Q? (x) (x 6 G); (5.5.6) 

S depends on (Nj), (m~), (Sj}, and {yj), and property (b) of (yj) implies tha t  each 

/ 6 S  has a unique representation of the form (5.5.6). Since 

Q~(nXo)~:e"~n~JQs(d'~ 0 (n=0 ,  +1,  ___2 . . . .  ), (5.5.7) 

(5.5.5) shows that  

Re > II Q, II*o 
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for repeated stretches of [dj/a~] consecutive integers n. If  n were a continuous vari- 

able, 2g/g~ would be a period of Q~(nxo), by (5.5.7), and property (a) of {~j} im- 

plies that  this period is less than one half of [(~j+l/~j+l]- From this it  follows that  

sup Re [/(nXo) ]/> ~ ~ II Q, II~ 

for every [ of the form (5.5.6), and hence 

II/11~ ~ ~ ~ II Q, I1.., (5.~ 8> 

note that  IIf[[~ is the supremum of [/I over G, whereas I[QJlI~ refers to the unit 

circle. 

We insert here a remark concerning the relation between liQJ[[1 and ][Q~[ll, the 

Ll-norms over the unit circle and over G, respectively. If y~ is of infinite order, 

then IIQ, lh= IIQTIh. But ~ y, has order q, say, then 

6~ 

and this differs from 

by not more than 

(2n + 1) n l q  

i f  [I Qt I11 = ~ 
(2n -~1) nl q 

I Q, (e '~ I d o 

7~ r 5 7C ~-2 

by property (b) of {y,}. Hence, in any case, we have 

II Q~ [l~ > ~l[ Q, Ill- (5.5.9) 

Returning to our proof, we note that  (5.5.2) and (5.5.8) imply that  the mapping 

/--~T/= • ~ Oj (e -'~ Pj (e '~ d 0 

is a bounded linear functional on S; hence there is a measure /z on G (with real fi; 

see 5.4), such that  

G - ~  

for every / of the form (5.5.6). 
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In particular, if y EEj and ](x)=(x, y), then (5.5.10) applies, since y=(mj+t)yj, 
with I t[ ~< 2 Nj, and we obtain 

/~ ( y ) = ~  e-lt~176 

If we now define 

then 

at. ,  = P *  (m~ u~ + t uJ) = P *  (u). 

g~ (y) = 

1 

0 

if y - - ( . . s + t ) y j  and [tl<Nj, 

if y=(mj+t)ys and Nr 

for all other y EF, 

Rj (y) F (/~ (y)) = F (P~ (y)) (yEF), 

so that  IIFoP?II~<211F(fi)II. Since (5.5.9) applies to FoPj in place of Q,, we have 

[[FopjIII<2IIFop?III<<.4IIF([~)II ( j = 1 ,  2, 3 . . . .  ), (6.1.1)  

contradicting (5.5.3). 

This completes the proof of Theorem 3. 

VI. Eonsetluenees of Theorem 3 

6.1. Let  M(G) be the bonvolution algebra of all bounded complex Borel measures on 

G; M(G) is isomorphic to B(F), it is a commutative Banaeh algebra with unit, and it there- 

fore has a compact maximal ideal space A. We may think of A as the set of all homomor- 

phisms h of M(G) onto the complex field, and we define the Gel/and transform ~, as a 

function on A, by 
/~ (h) = h (#) (# EM (O)). (6.1.1) 

With every y fiF these is associated a homomorphism 

#-+hu (#)=  f (-x,  y)d#(x) (#EM (G)) (6.1.2) 
G 

and we may thus consider F as a subset of A. Comparison with our earlier definition of/~ 

shows that  every fEB(F)  may be extended to a Gelfand transform on A (the uniqueness 

theorem for Fourier-Steltjes transforms shows that  there is only one such extension) and, 

conversely, tha t  the restrictions of the Gel/and transforms to 1" belong to B(F). We also 

note that  our embedding of F into A is a homeomorphism. 
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We now show tha t  the range of a Gel/and transform can extend into the imaginary 

part  of the complex plane, although the corresponding Fourier-Stieltjes transform is real: 

6.2. LEMMA. Suppose F is not compact, and let z o be a complex number. Then there 

exists a measure [~ on G whose Fourisr-Stielt]es trans/orm has its range in the interval [ - 1,1] 

on the real axis, such that h(/~) =z  o for some hE A. 

Proo/: If  this were not so, then the function 

$ ' ( x ) = ( x - z o )  -1 ( - 1 < x < 1 )  

would operate in B(F), by one of the basic theorems of the Gel/and theory of normed rings, 

and this would contradict Theorem 3." 

6.3. TH~ORV.M. Suppose F is delined in the whole complex z-plane, and supTose F 

operates in the algebra o/all Gel~and trans/orms o/measures on G, where G is not discrete (i.e., 

F is not comt~ t  ). Then F is an entire/unction o/z.  

(The hypothesis may  be restated by saying tha t  $' associates with each I~EM(G) a 

measure aEM(G) such tha t  h(a) = F(h(la)) for every hEA.) 

Proo I. The restriction of F to the real axis operates in B(F), and by  Theorem 3 there 

is an entire function F 1 such tha t  F 1 (x) = F (x) for all real x. Being entire, F 1 operates in 

the algebra of all Gelfand transforms, and so does F - F 1. But  (F  - $'1) (/) = 0 for every 

/EB~(F).  Hence F - F  1 associates the null-measure to each IuEM(G) whose Fourier- 

Stieltjes transform is real, and Lemma 6.2 implies tha t  F (z0) - F 1 (z0) = 0 for every complex 

z 0. The theorem follows. 

Remark A. The proof shows tha t  the hypothesis of the Theorem can be weakened: 

it  suffices to assume tha t  F operates on the Gel/and transforms of those IaEM(G) whose 

Fourier-Stieltjes transform has its range in I .  

Remark B. The algebra M(G) is said to be asymmetr/c if the set of all Gelfand trans- 

forms is not closed under conjugation, i.e., if the function F(z) =2 does not operate in the 

algebra of all Gelfand transforms. 

Theorem 6.3 shows immediately tha t  M(G) is asymmetric for every non-discrete G; 

for the real l ine this was proved by ~reider [10]; Williamson [14[ recently obtained this 

result for the general case. (For discrete G, F is compact, A = I ' ,  and M(G)=LI (G)  is 

symmetric.) 

Also, Lemma 6.2 implies tha t  the closure of F in A is not the ~ilov boundary of M(G), 

and tha t  there are functions ]E B(F) such t h a t / - 1 ~  B(F), a l though/ -1  is bounded on F; 

on the real line, this phenomenon was noted by  Wiener and P i t t  [13]. 

Each of these facts leads to the conclusion tha t  F is not dense in A, if F is not compact. 



156 H .  HiELSON, J . - P .  KAHAN~E, Y. KATZNELSON,  A N D  W.  R U D I N  

VIII. Operating functions defined in plane regions 

7.1. A function F, defined on a set E in the plane, is said to be real-analytic if to 

every point (xo, Yo) E E there is an expansion with complex coefficients 

F(x,y)= ~ an.m(x-xo) n(y-yo) ~ 
n. m--O 

absolutely for all (x, y) e E such that  I x -  x 01 < ~, l Y -  Yol < ~, for which converges 

some ~ > 0. 

If F is defined in the whole plane by a series 

F ( x , y ) =  ~ an. reX nym 
n. ra =0 

which converges absolutely for every (x, y), we call F real-entire. 

Note that  a function may be real-analytic at every point of the plane without being 

real-entire: consider 

$' (x, y) = ((1 + x z) (1 + y~))-i 

7.2. Suppose now that  F is defined in a plane open set E which contains the origin. 

The analogues of Theorems 1, 2, 3 are as follows: 

I[ F operates in A (F), and F is discrete, then F is real-analytic in some neighborhood o/ 

the origin; i /F  is not discrete, then F is real-analytic in E. I / F  is not compact and i[ 1~ operates 

in B(Y), then F can be extended to a real-entire/unction in the plane. 

The proofs are almost identical with those of Theorems 1, 2, 3; the only significant 

difference is tha t  in place of the functions 

~)(x) = F ( r  sin x) 

we now introduce doubly periodic functions 

�9 (x,y) = F ( r  sin x, r sin y) 

e~(nx+~); the coefficients an.m can which we expand in double Fourier series an. m 

be estimated as in 2.3. 

7.3. If E is a closed convex set in the plane, if F,  defined in E, operates in A (Y), where 

Y is not discrete, then one can prove the full analogue of Theorem 2: E is real-analytic on 

E (not just in the interior). One uses the result stated in 7.2, and an argument similar to 

the one which was used in 4.3 to establish the analyticity of F at  the end-points of I.  

For closed sets in general, the problem seems to be open. 



THE FUNCTIONS WHICH OPERATE ON FOURIER TRANSFORMS 157 

7.4. As a f inal  r emark ,  we point out  t h a t  t he  converses of Theorems  1, 2, 3 are  of course 

t rue;  hence we have  ob t a ined  comple te  charac te r iza t ions  of t he  funct ions  which ope ra te  

in An(F)  and  BR(F). 

Since A (F) and  B (F) are  closed under  conjugat ion ,  i t  is no t  ha rd  to  see t h a t  the  con- 

verses of the  resul ts  s t a t e d  in  7.2 are  also val id .  
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