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1. Introduction 

This paper is the first of series concerned with certain aspects of the theory 

of harmonic functions of several variables. Our particular interest will be to extend 

to n variables some of the deeper properties known to hold in the case of two 

variables. 

The study of the more fundamental  properties of harmonic functions of two real 

variables i s ' l inked,  by  the notion of the conjugate harmonic function, to the s tudy 

of analytic functions of one complex variable. Therefore, the investigation of the 

deeper properties of harmonic functions of several variables appears, at  first sight, 

to be connected with either the theory of analytic functions of several complex vari- 

ables or with an appropriate  extension of the notion of conjugate harmonic function. 

The theory of analytic functions of several complex variables, though widely studied, 

does not seem to have direct applications to the theory of harmonic functions of 

several real variables. On the other hand, there are known notions of "conjugacy" 
of harmonic functions which seem to us to be both more natural  and more fruitful 

for the development of the latter theory. I t  is these notions tha t  form the starting 

point for our investigation. We begin by sketching their background. 

Let  us first consider a function u=u(re i~ which is harmonic in the interior of 

the unit circle 0 ~ r < l .  Suppose that ,  for 0 ~ < r < l  and ~0>~1, 

2rt 

f lu(r~o) l~ d O < A  < ~ .  (i.I) 
0 
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This condition is sufficient to guarantee the existence of boundary values u (e ~~ such 

tha t  u(rer176176 as r-->l, in an appropriate sense. In  fact, as is well known, 

when p >  1, (1.1) implies tha t  u is the Poisson integral of a function in L v (0, 2 ~), 

and u (re is) converges to this function almost everywhere and in the LV-norm. On 

the other hand, when p = 1, (1.1) implies tha t  u is a Poisson integral of a finite 

Lebcsgue-Stieltjes measure, in which case the boundary values of u exist almost 

everywhere. 

However, if we weaken the assumption p>~ 1 to, say, tD > 0, we no longer have 

these conclusions on the existence of boundary values. Under this weaker restriction, 

progress has been made only by considering together with u its harmonic conjugate, 

v, and, thus the (unique, up to an additive constant) ana]ytic function F (z) whose 

real par t  is u. More precisely, the s tudy of the existence of boundary values has 

been shifted to the case of analytic functions, F (z), of the " H a r d y  class" H v, p >  0, 

for which 
2~  

f I F ( r e ~ ~  0 < r < l ;  (1.2) 
0 

or, even more generally, to the "Nevanlinna class" defined by  the condition 

2 ~  

f l o g  + ] F ( r e ~ o ) l d 0 < < . A < ~ ,  0 ~ < r < l .  (1.2') 
0 

I t  is well known that ,  under condition (1.2), F(e ~~ exists such tha t  

2~t 

f J F (re ~~ - F (e ~~ [ v d 0-+0 and F (re~~ (e ~~ 
0 

almost everywhere as r-->l. If  only (1.2') holds then the pointwisc convergence al- 

most  everywhere is the best tha t  can be concluded. 

These results on the existence of boundary values can be obtained by  either of 

two methods. Both of them reduce the problem from the ease of analytic functions 

satisfying (1.2) for p > 0 ,  or (1.2'), to the case of harmonic functions satisfying (1.1) 

with p>~l. The basic tool of the first method is the construction of the "Blaschke 

product",  B (z), which carries the zeroes of F (z) (see [18], Chapter VII I ) .  The second 

method is based on the important  fact, which has been of use in the s tudy of func- 

tions of several complex variables (see [9] and [19]), tha t  log IF(z)]  and, hence, 

I F  (z)[ v, p >  0, is subharmonic whenever F (z) is analytic. I t  is our intention to ex- 

tend this last method to higher dimensions. Before describing this extension, how- 

ever, we must  introduce the suitable notion of conjugacy. 
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I t  is well known tha t  (at least locally) two harmonic functions, u(x ,  y ) a n d  

v (x, y), satisfy the Cauchy-Riemann equations in a region 

ux=vy,  u y = - v z ,  (1.3) 

if and only if there exists a harmonic  function, h (x, y), such tha t  the  pair  (v, u) is 

the gradient  of the funct ion h; i.e. v = hx and u =  h u. Thus, analyt ic  functions of one 

complex variable are in a natural  one-to-one correspondence with gradients of harmonic 

functions of two variables. We m a y  take this correspondence as a mot iva t ion  for 

the not ion of conjugacy we now introduce. We say tha t  an n-tuple, F = (u 1, u 2 . . . . .  un), 

of (real valued) harmonic  functions of n variables, X = (Xl, x~ . . . .  , xn), forms a system 

of conjugate harmonic /unctions (in the sense of M. l~iesz), in a heighborhood of a 

point,  if, in this neighborhood, it is the gradient  of a harmonic funct ion h (X); i.e. 

u ~ ( X ) = # h / a x ~  (see, for example, [6].)(1) Thus, such an n-tuple, F,  m a y  be though t  

of as an extension of the not ion of an analyt ic  funct ion of one complex va r i ab le - -  

t ha t  is, two real variables. This extension is by  no means completely sat isfactory 

(for example, the fact t ha t  an analyt ic  funct ion of an analyt ic  funct ion is analyt ic  

is no longer true for n~>3) bu t  does have, as will be seen, Several interesting pro- 

perties. 

As in the case of two variables, we m a y  characterize, at  least locally, a system 

of conjugate harmonic functions in terms of a system of differential equations. More 

precisely, the n-tuple F =  (ul, u 2 . . . . .  u,) of harmonic functions forms a system of 

conjugate harmonic functions if and only if it satisfies the analogue of the Cauchy- 

Ricmann  equations 

~Ou~ ~u~ Ouj ~=o, i:~]. (~.~) 
~1 ~xj ~ x /  

This can be wri t ten in the more compact  form 

div F = 0 ,  curl F = 0 .  (1.4') 

Le t  us now re turn  to the boundary  value problem discussed above. We first 

mus t  find a result t ha t  will replace the two-dimensional result tha t  l o g l F ( z )  l, and, 

hence, I F (z ) l  p, p > 0, is subharmonic  when F(z)  is analytic.  Let  F =  (ul, u 2 . . . . .  u~) 

be a system of conjugate harmonic  functions and denote by  I F I  the norm (u~+ 

u ~ + . . - §  ~. We thus  begin by  asking the question: I s  the /unction I F p  a sub- 

harmonic /unction o/ the variables xl, x2, . . . ,  x~? 

(1) We shall adhere to this convention of using capital letters for vectors and small latters for 
scalars throughout the paper. 

3 - 603807 Acta mathematica. 103. Imprim~ le 17 mars 1960 
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I t  is an  easy th ing to check t h a t  if ~0>~1, the answer is yes  (and holds for arbi- 

t r a ry  harmonic  funct ions  ul,  u S . . . . .  un, no t  necessarily related by  the Cauchy-Riemann  

equat ions (1.4)). I t  t u rns  out  t ha t  for certain values of p < 1, the answer is still yes  

(but  the result  now depends on the generalized Cauchy-R iemann  equations).  More 

precisely, we will show (in the second section): 

n - 2  
THEOREM A. IF[  p i s  s u b h a r m o n i c  i /  p > ~ - - .  

n - 1  

Very simple examples show tha t  this result  is best  possible. 

This proper ty  of a general  system of conjugate funct ions is, t hen  the basic tool 

we will use in  construct ing a theory of H p spaces of funct ions  of several variables.  

Ins tead  of ex tending  the more familiar  case of H p spaces of funct ions defined 

in  the inter ior  of the u n i t  disc we will generalize the somewhat  more diffecult case 

of funct ions defined in  the upper  half-plane. Tha t  is, we will ex tend to n dimen- 

sions the boundary-va lue  results known  for funct ions  F (z), z =  x +  i y ,  ana ly t ic  for 

y > 0 and  satisfying 

f IF(x§ ~dx<A< 

for all y > 0  (see [5] and  [7]). As in  the case of the circle, bounda ry  values 

F (x) = l im F (x + i y) exist, bo th  in  the norm and  almost  everywhere. (1) I n  this  situa- 
y-->0 

t ion  the roles played by  the variables x and  y are obviously different. This difference 

persists in  higher dimensions and  we now change our no ta t ion  slightly in  order to reflect 

bet ter  these dis t inct-roles .  We shall consider n + 1 variables,  ( X ,  y ) =  (x l ,  x~ . . . . .  xn, y), 

and,  if the system of conjugate  harmonic  funct ions F (X, y) arises as the gradient  of 

the harmonic  funct ion  h (X, y), we shall denote by u (X, y ) t h e  part ial  der ivat ive of h 

with respect to the dis t inguished variable  y and  by  V the vector (~ h/~ xl, ~ h /~  x 2 . . . . .  

h /~  x~). This nota t ion,  then,  reflects the fact t ha t  we consider the funct ion F (X, y) 

as defined in  the  region y > 0 and  the  bounda ry  values F (X, 0 ) =  F (X) will be as- 

sumed in  the hyperplane y = 0. We also write v~ instead of ~ b/~ xk, k = 1, 2 . . . . .  n, and  

refer to v 1, v 2 . . . . .  v~ as the n con juga te s  of u. (2) Thus,  we see tha t  the no ta t ion  F (X, y) 

= (u (X, y) V (X, y)) is a na tu ra l  extension of t ha t  used in the two-dimensional  case. 

(1) If p < l ,  ,, ,, . r ,  , . [ [ / [[v=( j[ / ]p) l l  v is no longer a norm since Minkowski's inequality fails. Never- 

theless, we will still refer to it as a norm as is usually done in the theory of HP-spaees. We remind 
the reader that, in this case, d (/, g/=tl/-gll  is a me,rio. 

(2) Suppose p (X) is a harmonic function of the n variables X = (x x . . . . .  xn), then ~ (X, y) = 
r  

v~ (X, y) + ~  (X), i=  1, 2, ... , n, is, clearly, another set of n conjugates of u (X, y). Conversely, 
vx~ 
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W i t h  this  no ta t ion ,  the  general ized Cauchy-R iemann  equat ions  become 

u ~ ~v~ ~u  ~v~ 
5 By ~=t ~ ~x~ ~y '  

v~ ~ vj 

i = 1, 2 . . . . .  n, (1.5) 

These equat ions  are  assumed to hold  in the  region y >  0. 

We now define the  H"  spaces, p >  0, to  be the  classes of sys tems  of conjugate  

harmonic  functions,  F (X, y), sa t is fying 

f[F(i, y)iPdi<A< 
En 

for 0 < y <  ~ ,  where E~ denotes  Euc l idean  n-d imens iona l  space. 

Using the  subharmonie  charac te r  of [F [  p we ob ta in  the  extens ion of the  basic  

theorem of the  classical H ~ spaces to  the  n-d imens iona l  spaces ju s t  defined,  whenever  

p>~ (n - 1)In = (In + 1] - 2 ) / ( In  + 1] - 1). T h a t  is, we will show t h a t  there  exis t  bound-  

a r y  values  F (X)= F (X, O) such t h a t  F ( X , y ) - ~ F ( X )  as y -~0 ,  in the  norm,  for 

p> ( n -  1)In, and  a lmos t  everywhere  for p ~  ( n -  1)/n. This will be done in Sect ion 4. 

There  we will use p roper t ies  of " l eas t  ha rmonic  m a j o r a n t s "  of powers  of IF I, which 

will reduce the  p rob lem to known  facts  a b o u t  Poisson in tegra ls  of funct ions in L p, 

p >  1, or of f ini te  Lebesgue-St ie l t jes  measures .  These proper t ies  will be developed in 

the  t h i rd  section. Whi le  the  ideas  of this  reduc t ion  are s imple (and have  been used 

before) there  are  some novel  technical  complicat ions .  This is due  to the  fact  t h a t  

our under ly ing  space, an  Euc l idean  half-space,  is unbounded .  A n  ex tens ion  of t he  

t heo ry  of H"  spaces to,  say,  spheres would have  avo ided  this  technica l  complicat ion.  

Sect ions 5 and  6 are devo ted  to  app l ica t ions  of the  theo ry  of H p spaces.  The  

backg round  of the  f i rs t  app l i ca t ion  is the  following. 

Le t  ] ( X )  be a funct ion in L p(En), p > l ,  and  le t  u ( X , y ) ,  y > 0 ,  be the  Poisson 

in tegra l  of / (X) .  Then,  n conjugates  v 1 (X, y), v~ (X, y) . . . . .  v, (X, y) of u (X, y) can 

be ob ta ined  as "con juga te  Poisson in tegra l s" :  

1 f z~ v (X, Y)=c  
E,, 

i = 1 , 2  . . . .  ,n .  

any two sets of n conjugates of u differ by the gradient of a harmonic function of X alone. This 
is easily deduced from (1.5), which shows that this difference must satisfy (1.4) and the partial de- 
rivatives with respect to y must all vanish. In case 2' belongs to the HP-space defined below, how- 
ever, the set of n conjugates of u is unique. 
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I t  is known  t h a t  l im v, (X, y ) =  T* (X) exists  a lmos t  everywhere  and  is a funct ion  
Y-~0 

in  L "(En),  and  the  v , (X,  y) 's  are,  in turn ,  Poisson in tegra ls  of the  Ti(X)'s. The 

t r ans fo rma t ions  R , : ]  (X)->f ,  (X), i = l ,  2 . . . . .  n, are  called the  n M. Riesz t rans forms  

of ] and  reduce to  the  classical t t i l b e r t  t r ans fo rm when n = 1. These t rans forms  are 

b o u n d e d  t r ans fo rmat ions  on L p (E~), 1 < p; fur thermore ,  t h e y  sa t i s fy  the  i d e n t i t y  

R~ § R~ § ... + R ~ =  - I ,  

where I is the  i d e n t i t y  t r ans fo rma t ion  (see [6]). 

B y  the  use of these  and  o ther  k n o w n  facts  i t  is no t  diff icul t  to es tabl i sh  an  

" ' i somorphism" be tween  the  t h e o r y  of H ~ spaces for p >  1 and  t h a t  of L p spaces of 

~unctions def ined on En. Thus,  in considering H ~ spaces for p > l ,  we have  no t  rea l ly  

ga ined  much  over  the  s t u d y  of L ~ spaces.  On the  o ther  hand,  for p~< l  there  are 

essent ia l  differences be tween  H p and  L ' .  F o r  example ,  the  M. Riesz t rans forms  of 

func t ions  in  L ' ,  p~< 1, even  when  defined,  need  n o t  belong to  L ~. A posi t ive  resul t  

in th is  direct ion,  when p = 1 and  n = 1, is the  ce lebra ted  theo rem of F .  and  M. Riesz.  

Our  f irst  app l i ca t ion  is the  n-d imens iona l  genera l iza t ion  of th is  theorem which we 

s t a t e  ( somewhat  unprec ise ly  for the  moment )  as follows: 

Let # be a finite Lebesgue-Stielt]es measure on E~. Suppose that its n M.  Riesz 

trans/orms are also finite Lebesgue-Stielt]es measures. Then  each of the n + 1 measures 

i n  question is absolutely continuous. 

Fina l ly ,  in Sect ion 6 we ex tend  the  classical theorem on f rac t ional  in tegra ls  of 

funct ions  in  H ~ to  be n -d imens iona l  case in t roduced  in this  paper .  W e  now sketch 

wha t  is, perhaps ,  t he  mos t  in teres t ing  special  case of th is  resul t .  

I f  / ( X )  is in L ~ (E~), we define the  opera to r  of fractional integration (or M. Riesz 

potential, [10]), I~, b y  le t t ing  

f / (x-  y) I~(/)=r~ ]~-~ dr, O<~<n,  

En 

,(?) 
~vhere y~ = ~�89 2 ~ 

I f  1 ~< p < n / a  the  above  in tegra l  converges for a lmos t  every  X.  

(1) W i t h  y~ so defined, the  fractional in tegrat ion  operators satisfy the semigroup property 
I~ I~ = I~+/~. 
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When 1 < p Soboleff, [13], proved the following generalization of a classical theo- 

rem of Hardy  and Littlewood: 

The  operator I~ is  a bounded operator / rom L ~ to L ~ when l / q =  1 / p -  :r 

This theorem is best possible in the sense tha t  it is not extensible to the case 

p = 1. That  is, even though I~ (/) is finite almost everywhere if / is in L 1 (En), it is 

not a bounded operator from L 1 to L q, where l / q =  1 - g / n .  In  fact, it is easy to 

construct functions, /, in L 1 such tha t  I~ (/) is no longer in Lq. The theory of H ' -  

spaces developed here, however, allows us to obtain a substitute result for this case. 

Recalling the n M. Riesz transforms discussed earlier we can state part  of this 

result as follows: 

Suppose  that / is in  L 1 (E~) and that its Riesz  trans/orms Rk (]), k = 1, 2 . . . . .  n ,  

are also in L 1 (E~). (1) T h e n  

I~ (/), I~ (R~ (/)), . . . ,  I~ (Rn (/)) 

are all in  L q (E~), where 1 / q  = 1 - :c/n, 0 < :r < n. (2) 

The authors are grateful to professor A. Zygmund for several valuable sug- 

gestions concerning the subject mat te r  of this paper. 

2. Proof of  Theorem A 

If  F ( X ) = ( u l ( X  ) . . . . .  u n ( X ) )  is a system of conjugate harmonic functions in 

n - - 2  
some region ~ c E ~  we must  show tha t  IF] T is subharmonic if p~>~-Kl_l. Thus, if 

~2 ~2 
A = ~ x 2 +  ... + ~  is the Laplace operator, i t  suffices to show tha t  A (]FIP)>~0 (see 

[8], Chapter I I I ) .  Toward this end, we begin by  calculating A (IFI ~) and expressing 

our result in vector notation. In  the following, if G = (vl, v 2 . . . . .  vn) is another func- 

tion mapping ~ into another region of E~, we let 

F .  G =  ul v~ + u~ v2 + ... + u~ v~ 

be the inner  product of F and G. We note that  F . G = G . F .  For k =  1, 2, . . . ,  n 

we let 

(1) T h e  e x a c t  s e n s e  in  w h i c h  " R  k (/) is  i n  L 1 ( E n ) "  i s  u s e d  w i l l  b e  d e f i n e d  l a t e r .  

(2) H a r d y  a n d  L i t t l e w o o d  o b t a i n e d  t h i s  r e su l t ,  as  wel l  as  t h e  m o r e  g e n e r a l  ones  d i s c u s s e d  in  

t h e  s i x t h  s e c t i o n ,  i n  t h e  s p e c i a l  case  n = 1 (see [18], C h a p t e r  X I I ) .  
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_i Vl  v.t. 
xk-  ~axk . . . . .  axk] 

I t  is then easy to check that  

- -  (G. F) = Gxk" F + G. F~:k. 
xk 

a I" Z =vIFI"  ~(F~k F); Thus, aXk'k [F = (F'F) �89 �9 

hence, ~ l F  = P ( P - - 2 )  I F I " ' ( F x ~ ' F ) 2  +p[FI" -2  (IFxkI~ +(F'Fx~xk)} 

for k = 1, 2 . . . . .  n. 

Summing over k and taking into account tha t  the components of F are har- 

monic, we obtain 

A ( I F l ' ) = p ( p - 2 ) l F I  "-~ ~: (F~.F)~+PlFI ~-~ ~ IF~[ ~. 
k = l  k = l  

(2.1) 

We see, therefore, tha t  A (IFI ") fails to be defined only when F ( X ) = 0  (for 

p < 4 ) .  But, if F ( X ) = 0  at  some point X, since [F]P>~0, the mean value property 

of subharmonic functions (see [8], Chapter I I )  must  hold at  X. Thus, in order to 

establish the subharmonicity of IF]" it suffices to show A(]F]P)>~0 whenever the 

lat ter  is defined (that is, whenever F (X) 4 = 0). Thus, we may assume tha t  F is never 

the zero vector. 

The assertion, made in the last section, that  IF] p is subharmonic for p~> 1 is, 

then, an easy consequence of (2.1). Forl if l~<p~<2 (note tha t  A(]FIP)~>0 is ob- 

vious for p/> 2), using Schwarz's inequality, (Fxk" -F) 2 <~ ]Fxk ]2 [F [3, we have 

A(IFP)>~p(p--2)IFI "~ ~ IF~I~IFI~§ I ~ 1  ~" 
k = l  k = l  

(2.2) 

~p(p-1)lFI ~-~ ~ IF~l~>O. 
k ~ l  

Since the derivation of (2.1) does not depend on the Cauchy-Riemann equations 

(1.4) (only the fact tha t  each uk is harmonic is used), we see tha t  this result holds 

for any set of n harmonic functions. The deeper result, that  I F p  is subharmonic 

for values of p less than l ,  depends on the following lemma. 



ON THE THEORY OF HARMONIC FUNCTIONS OF SEVERAL VARIABLES 33 

LEMMA (2.2). Suppose that 

a l l  a12 . . .  aln~ 

- - [  a21 a22 . . .  a2n I 

-- \ : n l a n :  .:. "ani/ 

is a symmetric matrix with trace = a~ zero. Let II ~ N  be the norm o] ~ and 

I[]~[[I = ~ l a ~ j I  2 the Hilbert-Schmidt norm o/ ~ .  (1) Then 

n - 1  
II ~ II ~ < ~ - I I I  ~n III ~. (2) (2.3) 

Pro@ Since II ~ll and III ~lll are unitary invariants and ~ is symmetric, we 

may assume that ~ is a diagonal matrix. Thus, we have 

41 0 0 ... 0 \  

:[~/= ~0 ~ 0 ... 0 ) ,  

,o oo': L 
117nile= max {2~, 2~ . . . . .  2~} and Illmlll~= ~ x~. 

Since the trace of a matrix is invariant under a change of coordinates, we also have 

~2~=0. (2.4) 
i=l  

We now show, that  if (2.4) is satisfied, then, for k =  1, 2, . . . ,  n 

2 ~ < n n  1 2 2 
r 

which is equivalent to (2.3). 

By Schwarz's inequality: 

I ~ 2~ I = I ~ 1.2~ [ < ( n -  1)'2 ( ~ 2~)21~2 i4-k i ~k i=~k 

(2.5) 

(2.6) 

Thus, by (2.4) and (2.6), 

(1) By  the  n o r m  of ~ we m e a n  the  number  ~ [= sup ~ A  , where  t he  sup remum is 
t aken  over all vectors  A=(al, as, ..., an) such t h a t  A = (  a 1 2 + . . .  + an 2).~ 4 1 .  

(~) The inequal i ty  II~II~.<lll~lll 2 is t rue  fox" any  ma t r ix  ~ .  
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~ t ~ = ( Z 1 , ) 2 4 ( n - 1 ) Z i ?  = ( n -  ~t~ - ( n - 1 ) ~ t ~ .  
i~. k i=Vk 

Adding ( n - 1 ) ~  to both sides of this inequality and then dividing both sides by n 

we obtain (2.5), and the lemma is proved. 

We now return to the proof of Theorem A. I t  remains to be shown that  

A ( ] fp )>~0  for l>p>~(n-2)/(n-1). This last fact is derived from the lemma in 

the following way: Letting 

[~  u 1 ~ % ~ u~\ 

equation (2.1) becomes 

A ([FIP)=p(p-2)IF]~-41mFI2+p[FI~-2111m]II2. (2.7) 

Thus, the inequality A (IFI')~>0 is equivalent to IF[ "-~ 1[l~lll2>~ ( 2 - p ) I F [  p-4 I m F l " ;  

which, in turn, reduces to 

I m F <  -pl p Ill mill I 12. 

This last inequality, on the other hand, is certainly true if 

2 - p  
(2.8) 

Clearly, if (2.8) holds for some value of p < 2, it will hold for all higher values of 

p < 2 .  Thus, it suffices to show (2.8) for p = ( n - 2 ) / ( n - 1 ) .  That  is, we must prove 

But, by lemma (2.2), this is the case if ~ is symmetric and has trace zero. On the 

other hand, these two conditions on ~ are exactly the generalized Cauchy-Riemann 

equations (1.4). This proves the theorem. 

The following simple example shows that  this result is best possible: Let  

' ? ,n '  ' ~ 

where r = (x~ + x~ + ... + x~)�89 and n ~> 3. Then F is the gradient of the harmonic func- 

tion r2-~/(2-n), and, thus, (1.4) is satisfied by F. A simple computation yields 



ON THE THEORY OF ItARMO~IC FUNCTIONS OF SEVERAL VARIABLES 35  

A ([ F [~) = (1 - n)  p [ ( n - -  2) + (1 -- n ) p ]  r ~(1- ~)-~. 

Thus, the condition A(IFIP)>~O, for p > 0 ,  becomes ( 2 - n ) + p ( n - 1 ) > ~ O  which re- 

duces to 
n - 2  

P ~ > n - - l "  

3. Harmonic Majorization of Certain Subharmonic Functions and Some 
Maximal Functions 

As was ment ioned in the introduction, we shall reduce most  of the results on 

H p spaces either to theorems about  the Poisson integral of a funct ion in Lq(E~), 

q >  l, or to properties of the Poisson-Stieltjes integral of a finite measure on E~. 

Thus, we begin this section by  defining these integrals and stat ing the known facts 

about  them tha t  we shall use. We refer the reader to [1], [6] and [15] (1) for the 

proofs of (ii)-(vi). 

The Poisson kernel for the half-space 

E++I = {(Z, y) : X in En, y > 0} 

is the funct ion P (X, y ) =  Y 
~ (I x 13 + y~),(~ +i), 

2~�89 

This function has the following three basic properties: 

(i) P (X, y)>~0; 

(ii) f P ( X , y )  d X = l  /or all y > 0 ;  
En 

(iii) i/ r > 0 ,  then f P ( X , y )  dX-->O as y-->O. 
IzE>~r 

I t  is easy to see tha t  if [ is a funct ion in L q(E~), q~>l, then, for each ( X , y )  

in E~+I, / (Z) P ( X -  Z, y) and / (X - Z) P (Z, y) are integrable functions of Z in E~. (2) 

Thus, the funct ion 

(1) This last reference deals only with the one-dimensional case but (i)- (vi) are immediate 
generalizations of this case. 

(3) We consider E n as embedded in En+l by identifying it with {(X, y) in En+l:y = 0~. 
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m ( X ,  y)= / / ( Z ) P ( X - Z ,  y ) d Z =  / / ( X -  Z ) P ( Z ,  y ) g Z  

is defined in E++I. This function is called the Poisson integral of /. 

I f  # is a finite (signed) Lebesgue-Stieltjes measure on E~, then P ( X - Z ,  y) is 

also easily seen to be integrable with respect to ~u. The function 

re(X,  y ) =  f P ( X - Z ,  y ) d # ( Z )  
En 

is called the Poisson-Stieltjes integral of ~. 

(iv) 11 m (X, y) is the Poisson integral o/ a /unction in L q, q >~ l, or a Poisson-Stieltjes 

integral, then m (X, y) is harmonic in E~*+I. 

(v) I /  m (X, y) is the Poisson integral o/ the /unction / ( X )  in JL q (En), q~> l, then 

sup lira(X, y)l~ fl/(X)l~ 
Y > 0  En E~ 

and lim m ( X ,  y ) = / ( X ) ,  both in the L q norm and almost everywhere. 
y---~O 

(vi) I /  m (X, y) is the Poisson-Stieltjes integral o/ the measure/~, lim m (X, y) exists 
y--~O 

/or almost every X in E~. Furthermore, 

sup flm(X,y)ldX= fld#l. 
Y > 0  En E*~ 

We recall that ,  for each p > 0, we defined the class H p to consist of all those 

systems of conjugate harmonic functions (1) 

F (X, y) = (u (X, y), V 1 (X, y), . . . ,  v,~ (X, y)), 

+ 
defined on E~+I, satisfying 

f IF (X ,  y) IPdX<~A< ~ ,  (3.1) 
En 

for 0 < y <  ~ .  Since F satisfies the system of equations (1.5), Theorem A guarantees 

tha t  I FI  r, for r~> ( n - 1 ) / n ,  is subharmonic. We shall exploit (3.1) and this property,  

for appropriate values of r, to obtain harmonic majorants  of I FI  r. I t  will be shown 

tha t  these harmonic majorants  are Poisson integrals or Poisson-Stieltjes integrals. 

Then, an application of two basic theorems, one due to N. Wiener, the other to 

A. P. Calder6n, will yield the main result on H p spaces-- theorem B of Section 4. 

(1) T h a t  is, t h e  s y s t e m  sat isf ies  t he  C a u c h y - R i e m a n n  equa t ions  (1.5). 
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We begin with a chain of lemmas leading up to the existence of these harmonic 

majorants .  

L E M ~ A  (3.2). 
+ 

En+l satisfying 
Let s (X, y ) ~ O  be a subharmonic function defined in the region 

f [0 (X, y)]qdX<~ Cq< ~ ,  (3.3) 
En 

where l <~q < ~  and C is independent o/ y >O. Then 

s (X, y) <~ Cy (n/q). (3.4) 

Furthermore, i/ O<s<y<~l/s,  s(X, y)-->O uniformly in y as IXI---~.  

Proof. We first observe tha t  s q, being a convex function of a subharmonic  function, 

is subharmonic.  Thus, letting eo be the volume of the uni t  sphere in En+l, we have, 

for (X, y) in + En+l, 

[o (X, y)]q ~< - -  
1 / 

oJ y~+l 
Ix- zl*+(y- t)~ < y~ 

[3 (Z, t)] q d Z d t 

~ L  1 f o~yn+ 1 [s(Z, t)]qdZdt 
O < t < 2 y  

2y 

1 dZ} - Cq2y 2Cqy-n<~Cqy-n, f ( f [s(z,t)]~ dt~e~yn+l=O 
0 En 

and (3.4) is established. 

I n  order to prove the last pa r t  of the lemma we observe that ,  if 

I~={(X, y ) : k -  l <~lX[<lc , 0 ~ y ~ < ~ + s } ,  

k = l ,  2, 3 . . . .  , t h e n  

~s k-~O. 

This is clear since 

f [s (Z, t)]qdZdt-~O 
Ik 

s + l / e  

lk  0 En 

dt<~ Cq(1 + e  2)< co. 

(3.5) 



38 E L I A S  M.  S T E I N  A N D  G U I D O  W E I S S  

I f  (X, y) satisfies e~<y< 1/e then it belongs to I~ for some k. I t  follows tha t  

the sphere about  (X, y) of radius e is contained in I~_l U I~ U Ik+l (where I 0 is the 

null set). Thus 

1 f [ s (X+Z,  y+t ) ]qdZd t  [s(X, y)]q~eoe~+l 
]Z]~-l-tz < ez 

1 k+l f <~ en+l ~ [s(Z, t)]qdZdt. 
gO j = k - 1  

ij 

But, by  (3.5), the last term tends to 0 as/c-+o<~, and the last conclusion of the lemma 

follows. 

LEMMA (3.6). Let m (X, y) be a harmonic /unction de/ined in E++I satis/ying 

f [m (X, y)[qdX<~ C ~ (3.7) 
En 

/or all y >O, where q>~l. Then 

a) i/ q >  1, re(X, y) is the Poisson integral o/ a junction ] in L q(En) such that 

Illlo<o; 
b) I/  q = ], m (X, y) is the Poisson.Stielt]es integral o/ a finite (signed) Lebesgue. 

Stieltjes measure /z such that f [ d # [ ~ C. 
En 

Proo/. Let us first assume tha t  q>  1. Condition (3.7) asserts tha t  the family 

of functions m (X, y), parametrized by y >  0, is uniformly bounded in the norm of 

L q (En). Thus, we may  select a sequence {y~}, with yk-->0, such that  m (X, Yk) con- 

verges weakly to a function / (X)  in L q(En). That  is, if 1/q§  1/q,'= 1, we have 

f m (Z, Yk) g (Z) dZ--+ f / (Z) g (Z) dZ  
En En 

as k--+~, for each g in L q' (E,). In  particular, if we put  g ( Z ) = P ( X - Z ,  y) we have 

wk(X, y)= fro(Z,  y k ) P ( X - Z ,  y)dZ---> f /(z)P(X-Z, y)dZ.  
En En 

By (iv), wk(X, y) is harmonic in E++I. We shall now show tha t  wk(X, y) 

= m (X, y + Yk)- Toward this end, we first show tha t  wk (X, y)-+m (X, Yk) uniformly in 

X as y-+0. We have, using (ii), 
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wk (X, y) - m (X, Yk) = f [m (Z, Yk) - m (X, Yk)] P (X - Z, y) d Z 
En 

=( f + f )[m(Z, ye)-m(X, ye)]P(X-Z,y)dZ 
lx zl<r IX-zl>~r 

=/1  + I~. 

On the other hand, since m (X, y) is harmonic, [m (X, y)[ is subharmonic and, 

by (3.7), it satisfies the assumptions in lemma (3.2). A particular consequence of the 

last part  of this lemma is, then, that  m (X, Ye) is uniformly continuous in En, for 

each Ye > 0. From this it follows that,  if r is small enough, 11 is uniformly small. 

On the other hand, using (3.4) and (3.7) we also have 

lI [< : ye)l+lm(/,ye)l)P(i-z,y)dZ 
]x-zl~>r 

<~2Cy~ (n/q) f P ( X - Z ,  y) dZ. 
Ix- zl>~r 

But, by (iii), the last integral tends to zero as y-->0. This shows that  w e (X, y)-> 

m (X, Ye) uniformly in X as y-->0. Consequently, for e > 0 small enough I we (X, e ) -  

m (X, Ye) l is small. 

We see by (v) and (vi) that  I we(X, Y)I satisfies condition (3.3). Furthermore, by 

(iv), w e (X, y) is harmonic and, hence, I we (X, y) lis subharmonie. Thus, both I we (X, Y) I 

and Im (X, Ye) l satisfy the assumptions of lemma (3.2). Hence, by (3.4), for y large enough, 

say Yo, ] we (X, Yo) - m (X, Yo + Ye) I is small. Finally, the last part  of lemma (3.2) implies 

that, if e~<y<~y0, I we(X, y ) - m ( X ,  y+ye )  l is small for I x I  large, say I X l = r "  

Summing up, we see that  on the boundary of a region ~ = { ( X ,  y):lxl-<r, 
e ~< y ~< Y0}, the harmonic function w e (X, y) - m (X, y + Ye) is small in absolute value. 

By the maximum principle for harmonic functions, therefore, it  must be as small 

throughout ~ .  By expanding ~ we then obtain m (X, y +  Ye)= we (X, y). 

Thus, since ye-->0 as /c-->o~, we obtain 

m ( X , y ) =  f / ( Z ) P t X - Z , y ) d Z  
En 

and part  a) of the lemma is established if we show that  [[/llq<~ C. But  this last fact 

is a consequence of (3.7) and iv). 

Let  us now pass to the case q=  1. We consider the family of (signed) measures, 

{}ty}, where, for any measurable S c E~, 

/~y (S) = f m (X, y) d X. 
s 
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Inequal i ty  (3.7) then asserts that  the total  measures of the members of this family 

are uniformly bounded. Thus, as in the previous case, there exists a sequence (Yk}, 

with yk-->0, such tha t  /~Yk converge weakly to a finite measure /t. That  is, if g is 

any continuous function vanishing at  infinity, then 

f g (Z) d # ~  (Z)-~ f g (Z) d #  (Z) 
E,~ En 

Letting g be the Poisson kernel and repeating the above argument  we as k--> ~ .  

obtain 

m ( X , y ) =  f P ( X - Z , y ) d / z ( Z )  
Ea 

and, with the aid of (vi), the lemma is proved. 

LEMMA (3.8). I /  S (Z, y)>~O is continuous and satis/ies the conditions o/ lemma 

(3.2) it has a harmonic ma]orant, m (X, y), in E+~+I. Furthermore, 

a) i/ q> 1, m ( X ,  y) is a Poisson integral o/ a /unction / in L q(E~) such that 

/ ( X ) =  lim m (X, y) both in the norm and almost everywhere and H/llq<--. c;  
Y-->O 

b) i/ q= 1, m (X, y) is a Poisson-Stieltjes integral o/ a /inite Lebesgue-Stieltjes 

measure on En. 

Proo/. For each ~ > 0 we define 

m ~ ( X , y ) =  / s ( X - Z , e )  P ( Z , y ) d Z =  f s ( Z , e )  P ( X - Z , y ) d Z .  
En En 

By (v) we have 
f [mr (X, y)]q d X • C q. (3.9) 

En 

By an almost  verbat im repetition of the argument  in the last proof, that  showed 

wk (X, y)-->m (X, Yk) uniformly in X as y->0, we obtain the similar result: 

[m~(X, y ) - s ( X ,  ~) I-~o (3.10) 

uniformly in X as y-~0. 

We can now show that  mr (X, y) is a majorant  of s (X, y + e )  in E++I (the argu- 

ment  being very similar to the one in the previous proof showing tha t  wk(X, y) 

= m ( X ,  Y+Yk)). We first note tha t  s (X,  y + t )  is uniformly continuous since it is 

continuous by  assumption and, as seen from ]emma (3.2), it vanishes at  infinity. 

From this and (3.10) we see that  for y small enough, say Yo, the difference s (X, Y0 + t) - 

m~ (X, Yo) is small. On the other hand, by  (3.4), for y large enough, say Yl, s (X, Yl + e) 
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is small. Finally, by  the last par t  of lemma (3.2), s (X, y + s), in the region Y0 ~< Y ~< Yl, 

is small for I XI large enough, say I x  l~>r. Thus, since m~ (X, y) is non-negative, on 

the boundary of a region ~ =  {(X, y):y0~<y~<yl, I xl <d the function w(X,  y) 

= s  (X, y +  s ) - m ~  (X, y) is bounded above by  a small positive number. On the other 

hand, w, being the sum of two subharmonic functions, is subharmonic. Thus, by the 

maximum principle for subharmonic functions, w is bounded above by  this small 

positive number throughout ~ .  By  expanding ~ we obtain w (X, y ) < 0  for y >  0. 

That  is 
s (X, y§  (X, y) (3.11) 

for y > 0 .  

Now suppose q >  1. From (3.3) we see tha t  {s(X, s)} is a uniformly bounded 

family of functions in the norm of L q (En). From this we can deduce, as we did in 

the proof of lemma (3.6), tha t  there exists a function / (X)  in L q(En) and a null 

sequence {~k} such tha t  {s (Z, s~)} converges weakly to / (X) .  Thus, in particular, 

letting m (X, y) be the Poisson integral of [ we have, for each (X, y) in E++I, 

m~k (X, y)= f s(Z, s k ) P ( X - Z ,  y)dZ--~ f / ( z ) P ( X - Z ,  y ) d Z = m ( X ,  y) 
En E n  

a S  ]C---->" 0<) . 

On the other hand, by  (3.11), 

s (X, y + sk) <~ m~ (X, y). 

Thus, letting k-->o~, since the 

side to m (X, y), we obtain 

left hand side tends to s (X, y) and the right hand 

8 (X, y) ~< m (X, y). 

This shows tha t  m is a majorant  of s. 

The fact that  [ (X)=  lira m (X, y) both in the norm and almost everywhere then 
y-~0 

follows from (v). 

Furthermore, since m~ (X, y)-->m (X, y) as /c- ->~,  an application of Fatou 's  lemma 

and (3.9) show tha t  

f [m (X, y)]q d X <~ C q. 
E a  

Thus, we must  have II/llq~ C. This completes the proof of par t  a). 

Par t  b) follows from a similar argument. The only change tha t  is needed, as 

in the proof of lemma (3.6), is to replace the weak convergence of a sequence of 

elements of the family {s (X, s)} to a function with the weak convergence of such 
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a sequence to a measure. Consequently, we obtain a Poisson-Stieltjes integral ma- 

jorizing s (X, y). Thus, the lemma is proved. 

We remark tha t  the function re(X,  y) is not  only a majoran t  of s (X ,  y) but  

is the least harmonic majorant of s (X, y). Tha t  is, if ~ (X, y)~> s (X, y) in E++I and 

is harmonic, then m (X, y) < ~ (X, y) in E++I. This follows easily f rom the max imum 

principle for subharmonic functions and our construct ion of m. This fact, however, 

will no t  be needed in this paper.  

Before stat ing the result of N. Wiener tha t  was ment ioned earlier we have to 

introduce the n-dimensional generalization of the Hardy-Li t t lewood maximal  function: 

If  / (X)  is in Lq(E~), q~> 1, we define 

/*(X)=sup 1 f r>0 ;~ I] (X+Z)  IdZ. 
IZ~<r 

The function [* is then called the maximal function of [. 

The basic properties of f* tha t  we shall need are s tated in the following lemma 

(see [9], [12] and [17]): 

LEMMA (3.12). The function ]* is finite almost everywhere if [ is in Lq(E~), 

Furthermore, i/ q> 1, there exists Aq, independent o/ / in L q (E~), such th'at 

II/*lno<Aollfllo. 

We will need lemma (3.12) and a substi tute result for the maximal  funct ion of 

a measure. More precisely, if # is any  finite measure on E~ we define 

tu* ( X ) =  sup 1 ( ,>o 7" _ [d~(X+ Z)l 
IZl<r 

and we say tha t  /z* is the maximal function o/ the measure l ~. We then have 

LEMMA (3.13). The function #* is finite almost everywhere. 

This fact  is an immediate  consequence of the well-known theorem on the dif- 

ferentiability of a measure (see [11]). 

These two lemmas will be needed to obtain similar properties for another  type  

of maximal  function. More precisely, we shall prove the following generalization of 

an  estimate of H a r d y  and Lit t lewood (see [18], Chapter  IV) :  

LEMMA (3.14). Let F ~ ( X ) c E + + I  be the conical region, with vertex X,  of all points 

(Z, y) satisfying [ X - Z [  < a y. Suppose that m (X, y) is harmonic in E++I and,/or q >~ ], 
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/or all y > O. 

Let 

f lm(Z, y)l~dX <C~< 
En 

m* (X) = sup ]m (Z, Y) I, 

the supremum being taken over all (Z, y) in F~ (X). 

Then, 

* .Lq a) i/ q> 1, m~ (X) is in (E=) and 

IIm~*llq<A U, 

where A depends only on cr q and the dimension n; 

b) i/ q = 1, m* (X) < ~ almost everywhere. 

Pro@ The proof makes use of the idea tha t  for Poisson integrals the approach 

to a boundary point along a cone (i.e. the, so-called, non-tangential app roach ) i s  

essentially dominated by  the approach along the direction normal to the boundary 

surface. 

Let  us first assume tha t  q >  1. :By lemma (3.6), m (X, y) is the Poisson integral 

of a function [(X) in Lq(En) with I1/llq<C. Par t  a) of the present lemma will then 

be a consequence of the first par t  of Lemma (3.12) if we show 

m* (X) <~ B[* (X), (3.15) 

where B depends only on cr and the dimension n. 

Toward this end, we first observe that,  for I Z - X ] < ~ y ,  

Y Y 
(I W -  Z I s + y2)�89 <~ D ([ W -  X] ~ + y2)i(n+l~, (3.16) 

where D 2/(n+1) == max {1 + 2 ~2, 2}. 

By considering the positive and negative parts  of ] separately we may  assume 

that  [(X)>~0. Then, an immediate consequence of (3.16) is the inequality 

for (Z, y) in F~ (X). Thus, 

m (Z, y) ~< D m (X, y) 

m* (X):~< D {sup m (X, y)}. 
y>0  

4 - -  603807 Acta mathematica. 103. I m p r i m 6  le 18 m a r s  1960 
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Hence, inequality (3.15) will be established if we show that,  for each y >  0, 

m (X, y) < K 1" (X), (3.17) 

where K depends only on the dimension n. This inequality is known (see, for ex- 

ample, [9]), but  for completeness we include its proof: 

=y_ f ~(x-z) m(X, y) cn (IZl2+yZ) �89 
En 

dZ 

~. (I z I ~ + u~)~ ' " + ' -  
Izl<u Izl>u 

<--cn y'~ I (X -Z )  dz+ Y~c, ]zln+i dZ. 
Izl>u Izl>y 

The first term is clearly majorized by a constant multiple of [* (X). 

of (3.17) is completed by  the following chain of inequalities: 

I Z] > y 2k +1 y )  IZI > 2ky 

< ~=o ~ y2-(n+l) y-(n+1) f ] (X-Z)  dZ 
2k+ly~>lz I 

=2ne=o5 2-k(2k+lY) -n f [ (X-Z)  dZ 
2 k + l y ~ l Z  I 

< 2 "  ~ 2 - k l  * ( x ) = 2 " + ' l  * (X). 
k = 0  

Thus, the proof 

The proof of the second par t  of this lemma follows similar lines. From lemma 

(3.6) we see tha t  m (X, y) is the Poisson-Stieltjes integral of a finite measure #. As 

before, we obtain par t  b) from lemma (3.13) if we show 

m* (X) < B /u* (X), (3.18) 

where B depends only on ~ and n. But  we see tha t  (3.15) and (3.18) are established 

in exactly the same way if we note tha t  the proof of the former depends only on 

estimates on the Poisson kernel. Thus, lemma (3.14) in proved. 

We will need one more result. This is the following special ease of a basic 

theorem of A. P. Calder6n [2] tha t  we here state as a lemma: 
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L E M ~ X  (3.19) Let w ( X ,  y) be harmonic in E + n§ 

set S ~ E~ 

/or (Z, y) in F~(X)~ X in S. 
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Suppose that /or a measurable 

Then, /or almost every X in S, l im w (X, y) exists. (1) 
y~r 

4. HP-spaces 

Before we s ta te  and  prove  our resul ts  in the  theory  of H p spaces we in t roduce  

some nota t ion .  I f  

F (X, y) = (u (X, y), V (X, y)) = (u (X, y), vl (X, y), v 2 (X, y), . . . ,  v~ (X, y)) 

is in H ~ we le t  

~ ( y ) = ~ ,  (y; F ) = (  ] I F ( x ,  y ) ] ' d X )  11~, 
Zn 

for y > 0 .  

I n  case there  exis ts  a vec to r -va lued  funct ion  

(x )  = (Wo (x),  wl (x )  . . . .  , w~ (x)) ,  

defined on En, such t h a t  

[[F(X,  y ) - G ( X ) [ [ p = (  f [ F ( X ,  y ) - -G(X) l~dX) l l ' - - ->O 
En 

as y ->0 ,  we say  t h a t  G (X) is the limit in the norm o/ F (X, y), as y-->0. Similar ly ,  

we say  

Jim F (X, y) = G (X) 
y-->0 

/or almost every X in E~ if u (X, y)--->w o (X) and  v~ (X, y)--~w~ (X),  ]c = 1, 2 . . . . .  n, for 

ahnos t  every  X in En. I n  e i ther  case, we wr i te  

(X) = F (X, 0), w o (X) = u (X,  0), w~ (X) = v~ (X, 0), 

for k = l ,  2 . . . .  , n .  

The  ma in  ~heorem in the  t heo ry  of H p spaces can then  be s t a t ed  as  follows: 

(1) Calderdn ac tua l ly  proves  t h a t  for  a l m o s t  eve ry  X in S l i m  w (Z, y) exis ts  w h e n  t h e  po in t  
+ 

(Z, y) t ends  to X a long a n y  p a t h  in E n + l  t h a t  is n o t  t a n g e n t  to E n. These  n o n - t a n g e n t i a l  l imi t s  

will also ex is t  for t he  m e m b e r s  of  H p. W e  res t r ic t  ourselves,  however ,  to  m a k i n g  t he  above  s impler  

s t a t e m e n t .  
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T H E O R E M  B.  

exists /or almost every 

in the norm o/ F (X, y). 

Suppose F(X ,  y) is in H p, p>~(n-1)/n,  then 

lim F (X, y) = F (X, 0) 
y-~0 

X in E~.(1) In case p > ( n - 1 ) / n ,  F(X,O) is also the limit 

Proo/. Suppose F is in H p, then, by  assumption, there exists a constant K 

such that  
~rj~p (y; F) ~<K< ~ (4.1) 

for all y > 0. Furthermore, by  theorem A, since F satisfies the generalized Cauchy- 
n 

Riemann equations (1.5), I FI (n-1)/n is subharmonic. Thus, if we let q=-~_1 p (then 

q>~ 1) and s (X, y)= IF(X,  y)l (n-1)/~, the function s (X, y) satisfies the hypotheses of 

lemma (3.8). Thus, by this lemma, there exists a harmonic function m (X, y) >~ s (X, y) 

such that,  if q= 1 (or, equivalently, p - - ( n - 1 ) / n ) ,  it is a Poisson-Stieltjes integral of 

a finite measure #, and, if q > l  (that is, l o > ( n - 1 ) / n ) ,  it is a Poisson integral of a 

function / in L p (E~). 

Let  w (X, y) be one of the components u (X, y), v 1 (X, y) . . . . .  v~ (X, y) of F (X, y). 

Then, for (Z, y) in F~(X) ( = t h e  conical region defined in lemma (3.14)) we have 

]w (Z, y)I (~-1)/~ ~< m (Z, y) ~< m* (X). 

, But, by  lemma (3.14), m~(X) is finite almost everywhere. Hence, if we let 

SkcEn, k =  1, 2 . . . . .  be the set of all X in E~ such tha t  m* (X)~</c, E ~ -  5 S~ has 
k = l  

measure zero. 

On the other hand, for each k, the harmonic function w(X, y)satisfies the 

conditions of lemma (3.19) with S=S~ and i = ] c  hI(n-l). Thus, by  this lemma, 

lim w (X, y) = w (X, 0) exists for almost every X in S k. Since E~ - (~ Sk has measure 
y--~0 k = l  

zero it then follows tha t  lim w (X, y ) =  w (X, 0) exists for almost every X in En. 
y-->0 

This proves tha t  
lim F (X, y) = F (X, 0) (4.2) 
y-~0 

exists for almost every X in E~. 

The fact tha t  for p> ( n - 1 ) I n  

II f (X, y) - F (X, 0)H,->0 (4.3) 

(1) I n  fact, the non- tangent ia l  limit, described in the footnote on page 45, exists  for a lmost  every 

X in En. 
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as y-->0 now follows from a simple argument. We first note tha t  

IF (X ,  y ) - F ( X ,  0)I '~<2P(IF(X,  y ) ]~+lF(X ,  O)I p) 

< (Ira* (x)]q + Ira* 

= 2 p+I [m* (X)] q. 

Since, by (4.2), for almost every X 

IF  (X, y) - F (X, 0)I~-~0 

as y->0, and the function [m* (X)] q is integrable ober E~, (4.3) is a consequence of 

the Lebesgue dominated convergence theorem. This completes the proof of Theo- 

rem B. 

The following theorems are the n-dimensional generalization of other well-known 

results in the classical theory of H ~ spaces. 

THEORE~ C. I /  p>~(n--1)/n and F is in H p the /unction 

(y) = {~j~; (y; ~)}(n-1)/n 

is convex and decreasing. I /  p > ( n - 1 ) / n ,  ~o (y) decreases to zero as y-->oo. 

Proo/. Using the notation of the previous proof, s (Z, y) = IF  (X, y)](n-1)/~ and 

q = p n / ( n -  1), we have 

v (y): { f is (x, y)]o d x}% (4.4) 
En 

Since F is in H p the function ~J~p (y; F) is bounded and, thus, so is ~0 (y). Hence, 

if we show that  the latter is convex, it must  be decreasing. 

I t  is easily checked tha t  in order to establish the convexity of ~0 (y) it suffices 

to prove tha t  the function ~ (Z, y) = y~ (y) is subharmonie in E++I. This can be done 

in the following way: Let  us take for granted, momentarily,  tha t  ~0 (y) is continuous. 

Fix a point (Z0, Y0) in E~++I and let Sr be the sphere about  this point of radius 

r >  Yo. Suppose g (X) is the function satisfying 

{ f [s (Z o + X, y0)] q dX}  1/q = f g (X) s (Z o + X, Yo) d X. (1) 
En En 

Then, using the subharmonicity of s (X, y), 

(a) Note that g (X)~>O and [[g][q,= 1, where 1/q+ 1/q'= 1. 
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{f ,1,of r (Zo, Yo) = [s (Z o + X, yo)] q d Xj = g (X) s (Z o + X, Yo) d X 
E• En 

E~ Sr 

1 
o~p+l f { f g(X)s(X+Z, y)dX}dZdy  

Sr En 

.<< ~r ~ Is (x + z, 
Sr Ea 

, f  o~r~+l ~(Z, y) dZdy, 
Sr 

the last inequality being a consequence of H61der's inequality. Thus, 

r Yo)<~w-~ f r Y)dZdy. 
Sr 

But  this is the mean value property characterizing subharmonic functions. 

If  p>(n-1)/n or, equivalently, q > l ,  lemma (3.8) guarantees that  s(X, y) is 

majorized by  a Poisson integral of a function / (X)  in L q (En): 

1 ( x -  z )  . 

En 

We note that  re(X, y)--~O as y - + ~ ;  for, letting 1/q+l/q'=l and using H61der's 

inequality, we have 

dZ 1 I/q" 

En 

ez 1 ,~ =~{c. fy{"+')~ Illllo 
En '{F I ,o, 

c.~ , (ixl~+~).~o.,~,~-~/ Ilfllo 
En 

which clearly tends to zero as y increases. 
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On the other hand, as was shown in the proof of lemma (3.14), we have re(X, y) 

majorized by  a constant multiple of /* (X) (see (3.17)). But  the maximal  function 

]* (X) is in L q (E~) together with ] (X) (see lemma (3.12)). 

We have shown, therefore, tha t  the members of the family of functions {Is (X, y)]q}, 
parametrized by y, are dominated by  the integrable function [/* (X)] q and lim Is (X, y ) ] q  = O. 

y-->r 

Thus, by  the Lebesgue dominated convergence theorem, 

f Is (X, y)]q d X-~0 
En 

as y - > + .  But, by  (4.4), this implies y3(y)-->0 as y->oo.  We observe that  this argu- 

ment  also proves the continuity of F (y). Thus, the proof of the theorem is complete. 

As a consequence of Theorem C we have 

sup ~ ,  (y; F)=  lira ~ (y; F). 
Y>0 Y-->0 

As is usually done in the case of the classical H p spaces, we call this limit the norm 

of F and use the notation 

H F lIT = lira ~J~ (y; F). 
y-->0 

In  case 19> (n-1) In ,  an immediately corollary of Theorems B and C is the fact 

IIFll~= ( f IF(x, 0)l~dX) "~, (4.5) 
Ea 

THEOREM D. Suppose p1>(n--1)/n and p e ~ ( n - 1 ) / n ,  F(X ,  y) is in H ~' and 

IF(X,  0)] is in L ~(E~), then F(X ,  y) is in H p*. 

Proo]. By ]emma (3.8), the subharmonie function IF(X,  y)l (~-1)I" has a harmonic 

majorant,  re(X, y), in E + ,+1 such that  m (X, 0) = lira m (X, y) exists both in the L q' 
y-+G 

norm and almost everywhere, where q l = p l n / ( n - 1 ) .  Furthermore,  i t  also follows 

from this lemma tha t  

But,  by  (4.5) 

lira(X, 0)llq,:( f [m(X, O)]q~dX(lZQI<IIF <~-~)+~ Pl 
En 

II FIl~ - ~  ~ ( f i r  (X, 0)I q~+-l>z'~ d X) ~zq'. 
E~ 

(4.6) 
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On the other hand, letting y-+0 in the inequality IF  (X, y) I (~-l)/n ~< m (X, y), 

we obtain 

IF (x ,  o)](n-l,n < m (X, 0) (4.7) 

for almost every X. 

Consequently, by  (4.6) and (4.7), we must  have 

I f  (X, 0)I ("-l)'n = m (x ,  0) (4.8) 
for almost every X. 

The assumption [F  (X, 0)[ in L v' (En), however, is equivalent to the condition 

m (X, 0) = IF  (X, 0)[(~-1)/~ in L q' (E~), where q, =p~ n / ( n  - 1). Since m (X, y), by lemma 

(3.8), is the Poisson integral of m (X, 0) it then follows from (c) of section 3 tha t  

f [re(X, y)]q~dX<~ f [m(X,0 )]q 'dX 
En En 

for all y > 0. 

The proof of the theorem is now complete if we notice tha t  the left hand side 

of this inequality majorizes 

f IF (x, y)l~'dX. 
E.  

Remarks. 1) We note tha t  in the statements of the theorems of this section less 

was concluded in the case p = (n - 1 ) /n  than in the cases 19 > ( n -  1)/n.  :For example, 

in Theorem B, for p =  ( n - 1 ) / n  we proved only tha t  lim F ( X ,  y) exists for almost 
y-+0 

every X in En and stated nothing about convergence in the norm. Similarly, in 

Theorem C, we concluded tha t  V(Y) decreases to zero as y-->~o only if p >  ( n - 1 ) / n .  

Furthermore, nothing has been said about  the properties of functions in H ~ for 

p < (n - 1)/n.  

Whether or not these theorems are best possible is an open question. On the 

other hand, the known facts for the classical H" spaces (when n =  1) indicate tha t  

the above theorems cannot be extended to other values of p and tha t  the space 

H (~-1)/n is atypical. 

An explicit example illustrating this situation is the following. Let  us make the 

observation tha t  the analogue of the space H (~-~)/~, when n >  1, in the one dimen- 

sional case is the Nevanlinna class N of analytic functions F (z)= F (x+ i y) defined 

in the upper half plane y > 0 such tha t  

log + I F ( x + i y ) l d x < ~ A <  
- oo  
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for all y > 0. (This observat ion is mot iva ted  by  the fact  t ha t  the one dimensional 

analogue of the fact  tha t  I F I  (~-1)/~ is subharmonic is t ha t  log IF(z)  l is subharmonic.)  

As was ment ioned in the introduction,  it is known that ,  for functions in this space, 

lim F (x + i y) = F (x) exists almost  everywhere. On the other hand, even though  there 
y-->0 

exists a natura l  " n o r m "  on N (1), there are functions F in N for which lira F ( x §  i y) 
y-->0 

= F  (x) in the norm is false. 

2) The basic tool used in the proof of Theorem C is the fact  t ha t  s (X ,  y) is 

subharmonic.  As was observed in the second section, I F  (X, y)I p is subharmonic when 

p>~ 1 even if we only assume t h a t  the components  of F are harmonic ( that  is, we 

do no t  assume F to be a system of conjugate harmonic functions). Theorem C, there- 

fore, extends to ( n +  1)-tuplets, F ( X ,  y), of harmonic functions satisfying 

fIF(X, y) lPdy<~A< 
En 

for all y > 0 ,  for p>~l .  

3) I n  most  of the proofs of the results of the last two sections we have taci t ly  

assumed t h a t  n > 1. This assumption was clearly necessary when we operated with 

the funct ion I F p  -1)/~. On the other  hand, ve ry  simple alterations of the arguments  

used above will include this classical case. For  example, if /J' is in H ~, p > 0, when 

n = 1, instead of considering I F p  -~)/~ we can form the funct ion s (x, y)= [F(x, y)I T ~, 

for 0 < (~ < p .  Then s (x, y) satisfies the conditions of lemma (3.2) with q = p / ( p -  ~) > 1; 

having done this, the arguments  based on this lemma are unchanged.  Fur thermore,  

as was indicated by  the first remark,  in the s ta tements  of the theorems of this sec- 

t ion the space H (~-1)/~ should be replaced by  the Nevanl inna class N when n =  1. 

5. An n-dimensional  generalization of the theorem of F. and M. Riesz. 

I n  order to state the next  theorem we mus t  introduce the not ion of the M. Riesz 

t ransforms of functions (and measures) t ha t  was briefly discussed in the introduction.  

For  k = 1, 2 . . . . .  n, the kth M. Riesz trans/orm of the function / in L ~ (En) in usu- 

ally defined as the following Cauchy principal-value integral (see [6]) 

= lim 1 ( xk - Yk (R~ (/)) ( i )  -- J IX  y,n+l,(Y)dY,] (5.1) 
e--->O Cn 

(1) This norm in discussed, for the case of analytic functions defined in the unit disc, in re- 
mark (iii) on page 47 of [16]. 
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where c~ is the constant  occurring in the Poisson kernel  (see the beginning of the 

th i rd  section). I t  is known t h a t  this l imit  exists for a lmost  every  X in E~ provided 

[ is in L ~(E~), l < p <  ~ .  I n  fact, the limit exists a lmost  everywhere  even if we 

replace [ (Y)d  Y b y  d #  (Y), where tt is a finite Lebesgue-Stiel t jes measure  on E~. 

Fur thermore ,  as a t r ans format ion  on L p (En), 1 < p < oo, each Rk is bounded and maps  

into L p (En). T h a t  is, there exists A~, independent  of / in L p (E~) such t h a t  

II Rk (/) l],---< A, II / II~, 
/ c = 1 , 2 ,  . . . , n .  

We shall also need the following an t i - symmetr ic  p rope r ty  of Rk (see [3], where 

the s y m m e t r y  of the  opera tor  iRk is proved,  which is equivalent  to (5.2) below) 

f ( R k / ) g d X =  - f /(R~g)dX (5.2) 
En En 

for / in L v (En) and  g in L q (E~), where l / p +  1/q= 1. 

Although the l imit  in (5.1) exists a lmost  everywhere  when / is in L 1 (or, as was 

ment ioned  above,  when [ ( Y ) d  Y is replaced by  d #  (Y)), the result ing funct ion m a y  

fail to be locally integrable.  I t  is therefore convenient  to define Rk on L 1, or on the 

class of finite Lebesgue-Stiel t jes measures,  in a different sense (the so-called weak sense). 

Thus,  for [ in L 1, or for a measure  tt, we define Rk(/),  or Rk(d# ) ,  k = l ,  2 . . . . .  n, 

as a dis t r ibut ion in the following way: 

Le t  + be a test ing function; i.e. r is in the  class C ~ and  vanishes outside a 

compac t  subset  of E~. Thus,  Rk (r is well defined b y  (5.1). I n  fact,  i t  is no t  hard  

to see t ha t  Rk(r  is a bounded and  continuous funct ion (since, b y  integrat ing by  

parts ,  we see t h a t  Rk ( r  the convolut ion of the test ing funct ion (a r  with 

(1 - n ) / c ~  I X  p - l ) .  (1) I t  is then  justified to define Rk (/) and  Rk (d/z) as linear functionals 

on the  space of test ing functions b y  let t ing 

[Rk ([)] ( r  -- f IRk (r d X  

and IRk (d tt)] (r = - / Rk (r d # (X). 

We note  t ha t  if / is in L ~ (E~), 1 < p ,  then  the dis tr ibut ion Rk (/) is represented by  

the  funct ion which is given by  the usual  pointwise l imit  (5.1). 

I f  # is a measure  we then  say t h a t  the M. Riesz trans/orm Rk (d #) is a measure 

~k, if for each test ing funct ion 

(1) If n = 1 we replace this function by a constant multiple of log I X I' 
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] r  f R k ( r  (5.3) 
En En 

Having made these definitions, we can now state the following generalization of 

the theorem of F. and M. Riesz: 

T n E O R E •  E. Let  /J. be a / ini te  Lebesgue-Stielt]es measure  on E~ having the pro- 

per ty  that each o/ its M .  R iesz  t rans lorms  , r~=  Rk (d /~), k = 1, 2 . . . . .  n is  also a l in i te  

Lebesgue-Stielt]es measure  on E~. T h e n  a l l  o I these measures ,  [~, v 1, r e . . . .  , r~, are ab- 

solutely cont inuous  wi th  respect to Lebesgue measure.  (1) 

Proo/ .  Let  

u (X ,  y) = f P ( X  - Z ,  y) d tu (Z) 
En 

v~ (x,  y) = f P ( x -  z ,  y) d ~ (z), 
En 

= 1, 2 . . . . .  n. 

I f  we can show tha t  these n + l  Poisson-Stieltjes integrals form a system of 

conjugate harmonic functions, i t  is then immediate  t ha t  

F (X, y ) =  (u (X, y), v 1 (X, y) . . . . .  v~ (X, y)) 

is in H 1 (in fact, I /F  Ill is majorized by the sum of the total  measures of/~, ~1, "" ,~)" 

Thus, by  Theorem ]3, the boundary  values u (X ,  0), v 1 (Z, 0) . . . .  , v~ (X, 0) are in L 1 (En); 

furthermore,  

II ~ ( x ,  y) - u ( x ,  0 ) l l~ -~0  

and 

as y-~0.  

II v~ ( x ,  y) - v~ ( x ,  0 ) l l l ~ 0 ,  k - -  1, 2 . . . . .  n, 

On the other hand, the components  of F (X, y) mus t  be the Poisson integrals 

of their boundary  values. This is easily established in the following way: I f  we let 

G (X, y) be the system of harmonic functions obtained by  taking the Poisson integrals 

of u (X, 0), v 1 (X, O) . . . . .  vn (X ,  0), then, by  (v) of the third  section, 

li~ flu(x, y)-~(x,  o)ldx=o. 
Y OE n 

Thus, since y (y) = f ] G (X, y) - F (X, Y) I d X 
En 

is a decreasing funct ion of y (see Remark  2) in the four th  section), we mus t  have 

(1) For a different n-dimensional generalization of the theorem of F. and M. l%iesz, see [4]. 
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f [G(X ,  y ) - F ( X ,  y ) [dX=O 

for all y > 0. Hence, G (X, y) -~ F (X, y) on E~++I. 

Let  us restate this fact  in a slightly different way. Put t ing,  

dr O)dZ-dlu(g) ,  d$k(Z)=vk(Z, O)dZ-d~,k(Z), k = l ,  2 . . . . .  n, 

we have f P ( X -  Z, y) d ~j (Z) = 0 (5.4) 
En 

for ] =  0, 1 . . . . .  n. 

Bu t  (5.4) implies t h a t  each of the measures ~s is the zero measure (1), which is 

equivalent  to saying tha t  each of the measures /u, ~1 . . . . .  ~n is absolutely continuous 

with respect to  Lebesgue measure and  has the l%adon-Nikodym derivative u (Z, 0), 

v I (Z, 0) . . . . .  vn (Z, 0), respectively. 

Thus, all t ha t  remains to  be done in the proof of Theorem E is to verify tha t  

F (X, y ) =  (u (X, y), v 1 (X, y) . . . . .  vn (X, y)) is a system of conjugate harmonic func- 

tions. Toward this end we first observe tha t  by  a simple limiting a rgument  we can 

extend (5.3) to hold for ~ ( Z ) =  P ( X - Z ,  y), where (X, y) is any  point  of E n + + l  . I n  

doing this, we must  first compute  the kth M. Riesz t ransform of ~ ( Z ) = P  ( X - Z ,  y). 

This is easily done and, as is well known (see [6]), we obtain the conjugate Poisson 

kernel 

- 1  xk -- Zk 
Qn (X - Z, y) = 

c, ( IX-Z[~+y2) �89 

Thus, f rom this extension of (5.3) and the expression for vn (X, y), we have 

- v k ( X , y ) =  f Q z ( X - Z , y )  dl~(Z), k = l ,  2 . . . . .  n. 
En 

From these formulas for the vk (X, y)"s, together  with 

f = y f  1 u(X,  y)= P ( X - Z ,  y)d/u(Z) cn ([X-Z[2q-y~) �89 
En En 

(1) This is a consequence of the fact that (5.4) immediately implies that J h (X, y) d (j (X) = 0 
E. 

whenever h(X,y) is the Poisson integral of a function in C o (=class of all continuous functions 
vanishing at infinity) and that such 1)oisson integrals are uniformly dense in C 0. 
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we see by straight-forward differentiation that (u (X, y), v I (X, y) ..... vn (X, y) is the 

gradient 

0x~ . . . . .  0x . h ( X ,y ) ,  

where h is the harmonic function 

1 f 1 d ~ (Z). h ( X , y ) = ~ ( l _ ~  ( I x - z l ~ + F ) ~  (~-" 
En 

This shows that  F (X, y) is a system of conjugate harmonic functions and the theo- 

rem is proved. 

I t  is sometimes useful to rephrase this theorem in the language of Fourier 

transforms: 

T~FOREM E'. Let # be a Lebesgue-Stielt]es measure on E n and 

~ ( X ) =  fe~X'Y d t t ( Y )  
gn 

its Fourier transform. Assume that the n functions i (x:/I X I) ~ (X)  . . . . .  i (Xn/I X I) ~ (X) 

are also Fourier transforms of measures ~1, ~'2 . . . . .  rn. Then,  each of the measures 

#,  vl, ~'2 . . . .  , ~ is absolutely continuous with respect to Lebesgue measure. 

follows from the previous one if we verify that, for each Proof. This theorem 

testing function r 

f C d ~ = -  fR~( r  
En En 

Let r (X) = f e ~xY r (Y) d r .  
En 

Then, by the Fourier inversion formula, 

, /  r  O(X) e - ~ X ' r d X  

E~ 

(both integrals are absolutely convergent since ~ is a testing function). 

Thus, 

(5.5) 
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fr 
E~ 

Y) d vk (Y) = - -  
1 

En En 

En En 

1 f - (2=)n r  i ] ~ ( - X ) d X .  
En 

On the other hand, if r (X) = f e ~x Y [Rk (r (Y) d Y, then 

r (x )  = ~ ~ r (x )  

i f  (see [6]), and [Rk (r (X) = (2 7~) ~ e-~Z" Y (1)k (X) d X.  
En 

Thus, f Rk(r 
En 

1 dX} Y) dl~-(2a),~ f { f e-'X'r(I)k(X ) d # (  
En E~ 

- (21 )o fC (x)7,(-X)dX 
En 

1 f i xe - (2 =)~ r (x )  [ i l  ~ ( - x )  d X .  
En 

Hence, (5.5) holds and the theorem is proved�9 

6. Fractional integrals defined on HP-spaces 

We begin by recalling some facts about fractional integrals of functions in L p (En), 

1 ~<p < ~ .  For such a function, / (X),  its ]ractional integral o/ order ~ is the con- 

volution 

( / - ( X - - - r ) d  Y,  (6.~) [L, (/)] (X) = ~,~ j I Y I n-~' 
En 

~�89189 (6.2) 
where 7~ I" (�89 [n--~])" 

I t  is easy to check that  the integral in (6.1) converges for almost every X provided 

0 < ~ < nip.  
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If a linear transformation is defined on a class of functions containing L p (En) 

and, when restricted to this space, is a bounded transformation mapping into L q (En) 

(p, q>0) ,  we say that  it is of type (p, q). A fundamental result of Sobo]eff (see [13]) 

can then be stated in the following way: 

THEOREm (Soboleff). I~ is o/type (p, q) whenever 1 <p<n/o:  and 1/q= l / p - ~ / n .  

We assume the validity of this result which will be used for our extension of 

fractional integration to  H" spaces. In fact, this theorem and the following lemma 

are the basic facts in the theory of fractional integrals of functions in Z ~ spaces that  

we shall need. 

LEMMA (6.2). Let / (X)  be a /unction in L~(En), l < p < o o ,  and u(X,  y) its 

Poisson integral. Then, 
or 

1 f (6.3) [I~ (/)] (X) = F--7~ u(X,  y)y~-ldy,  
0 

where 0 < ~ < nip. 

Furthermore, 

-,-,1 f (6.4) u~(X, y )=v~  u(X, y+s)s~-l ds 
0 

is the Poisson integral o/ I~ (/). 

Proo/. The function In (X, y)I, being the absolute value of the Poisson integral 

of a function in L p, satisfies the hypotheses of lemma (3.2) with q = p  (see (v) of 

the third section of this paper). Thus, by (3.4), the integrand in (6.3) is absolutely 

integrable. 

By decomposing ] into its positive and negative parts we can reduce the proof 

of the lemma to the case //> 0. With this restriction on /, our various ~ applications 

of Fubini's theorem are justified. 

Since u(Z ,  y)= f F(Z,  y ) / ( X - Z ) d Z ,  
En 

0 En  0 

But  f P ( Z ,  a 1 nl f (I Z]2 4-Y2) �89 a-1 y)y dy-- c- dy 
0 0 

( ey, 
- Cn J (1 + y2)~(n+l) 

0 
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(the last equality following from the change of variables s = Y/I Z I and then replacing 

y for s). 

Hence, u(X,  y)y~-' d y = ~  (l +y2)�89 j i z ] n _  a d Z  

o 0 En 

= r (:r [I ,  (1)] (X). (') 

Equation (6.4) is, then, an immediate consequence of the "semigroup property" 

of the Poisson integral transform: 

u ( X , y + s ) =  f u ( Z , s ) P ( X - Z , y ) d Z ,  
E,, 

for all s, y > 0. (8) 

Lemma (6.2) motivates the following definition: If F (X, y) is a system of con- 

jugate harmonic functions in E + n+l we define its (vector-valued) /ractional integral o/ 

order cr ~ > 0 ,  to be 

~'~ ( x ,  y) = [I~ (F)]  ( x ,  y) = ~ ~' ( x ,  y + s) s ~-' d s (6.5) 

0 

whenever this integral exists. (a) 

Some of the formal properties of I~ (F) are contained in the following theorem: 

THEOREM F. (a) The integral in (6.5) converges absolutely /or each (X, y ) i n  

E+~+I provided F is in H ~ and (n-1) /n<~p<n/~  (thus, the /factional integral may 

exist even i/ n<~a); 

(b) Under the same hypotheses, F~ (X, y) is a system o/conjugate harmonic/unctions; 

(c) I /  R is in S p, ~ > 0 ,  f l > 0  and (n-1)/n<~p<n/(cr then I~(I~(F)) 

= I~+~ (F). 

Proo/. (a) Let  m (X, y) be the harmonic majorant of IF (X ,  y) l (~-1)1~ obtained 

in lemma (3.8). Using the notation q = p n / ( n - 1 ) ,  we then have 

[m(X, y)]qdX <.Cq< ~ .  
En 

(x) The  f ac t  t h a t  ~ -1  ~(o~)cn ( l+y2) �89 d y  follows f rom the  fo rmulas  on pages  56 a n d  

0 
57 of [14]. 

(3) This  semigroup  p rope r ty  is well k n o w n  w h e n  n =  1. I t s  proof  for genera l  n is e ssen t ia l ly  

con ta ined  in t he  proof  of l e m m a  (3.6) (see, in pa r t i cu la r ,  t he  proof  t h a t  wk (X, y) =m (X, Y+Yk)). 
(s) No  confus ion  shou ld  arise f rom t h e  fact  t h a t  I s  will be  u s e d  to  deno te  b o t h  t h e  ope ra to r  

ac t ing  on LP-spaces  as well as t h e  opera tor  ac t ing  oil HP-spaces .  
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Thus, by (3.4), re(X, y)<.Cy -nlq. This, however, implies 

[F  (X, yl] ~< C hI(n-l) y-~l,. 

Hence, [ I F  (X, y + s) ls ~-~ ~s  ~< C~'(~-'f (y + s) -~"  s ~-~ d~. 
0 o 

On the other hand, since p < n/~ and 0 < ~, the last integral is finite. 

En+l we can a (b) I t  is easy to see that  about each point of + find neighborhood, 

contained in E~+x,+ and a sequence of Riemann sums that  converges to the integral 

in (6.5), uniformly in (X, y) belonging to this neighborhood. But  any such Riemann 

sum is, clearly, a system of conjugate harmonic functions. Thus, each such Riemann 

sum satisfies the system of equations (1.5). On the other hand, the above uniform 

convergence implies that  (in a possibly smaller neighborhood) the derivatives of the 

members of the sequence converge uniformly (since the components are harmonic 

functions). Thus 

~ -~ (X, y + s) s~-l ds, 
o 

the limit of this sequence, satisfies (1.5). 

(c) We must show that  

F(~*fl) F(X'y§ F(X'y+r+t) t~-'dt 
o 0 0 

dr. 

On the other hand, the last (iterated) integral is equal to 

f r~-l( f F(X,y+t)(t-r)[J-ldt} 
0 r 

dr= 
t 

0 0 

dt. 

Thus, we need only verify that  

l+fl) s~+~-1- 1 / 
r (~ r (~) i  ~ (~) 

0 

(s - r) ~-1 r ~-1 dr. 

But this identity is well known (see [14], p. 56). 

The various applications of Fubini's theorem are justified because of the absolute 

convergence of the integrals in question (see the argument for part  (a)). 

The main result of this section is the following theorem (in which the notion 

of type (p, q) is extended, in the obvious way, to transformations acting on H ~ spaces). 

5 - -  603807 A c t a  m a t h e m a t i c a .  103. I m p r l m 6  le 18 m a r s  1960 
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THEOREM G. I I (n--1) /n<p<n/~ (in particular, cr may be greater than n)and 

1/q= I / p - a / n ,  then I~:F--->f~ is o/ type (p, q). 

Proo/. I f  p > l and F (X, y) = (u (X, y), v 1 (X, y) . . . . .  v~ (X, y)) is i n  H p, then, as 

was mentioned in the introduction, the components u (X, y) v 1 (X, y) . . . . .  v~ (X, y) are the 

Poisson integrals of their boundary values. On the other hand, v I (X, 0) . . . . .  v~ (X, 0) 

are the M. Riesz transforms of u (X, 0). Thus, putt ing together various results, men- 

tioned and derived in this paper (e.g. see, in particular, the beginning o f  the third 

anf fifth sections), we see tha t  there exists Ap such tha t  

IIFII,<A IIu(X, 0)11 . 

On the other hand, it is trivially true that  

Ilu(X, o)ll <liFll  

In  view of the inequalities, the theorem of Soboleff and lemma (6.2), we see tha t  

the case p > 1 reduces to the case of fractional integrals of functions in L p (E~). Thus, 

we assume (n-1)/n<p<-~l and tha t  F is in H p. 

Let  us first consider the case n = 2 and thus, restrict ourselves to �89 <p~< 1. In  

addition, let us assume that  0 <  ~ < 1. Applying lemma (3.8) we obtain a harmonic 

majorant,  m (X, y), of the subharmonic function IF  (X, y) l �89 Furthermore,  again by 

this lemma, m (X, y) can be chosen to be the Poisson integral of a function m (X) 

in L 2p, 1 < 2 p < 2 ,  where ]]m]l~p=]]FII p (see (4.8)). 

We thus have, using inequality (3.17), 

F (~)IF.(X, y)l< f[F(X, y+s)ls~-lds 
0 

<~ m*(X, y+s)s~-lds<~ sup re(X,  y)f  m(X,  y+s)8 ~ lds 
0 y>0  0 

~< X m* (X) [I~ (m)] (X,y). 

(6.6) 

Thus, a constant multiple of f[F~(X, y)[qdX is majorized by 

f {m* (X)- [I~ (m)] (X, y)}q dX. 

On the other hand, since 1/q=l /p- �89  2 p / q = 2 - ~ p .  But  p 4 1  and ~ < 1 ,  by 

assumption, thus 2 p/q > 1. Let r be the exponent conjugate to 2 p/q (that is, 1/r + 

+ g/2p= 1). Thus, by  HSlder's inequality 
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f IF (X, y)l dX <(const.) (f (m* ( f y)} r dX} (6.7) 

A simple calculation shows that  

Thus, by Soboleff's theorem, 

1 1 

qr 2p 2" 

{f {[I~ (m)] (X, y)}~r dX}l/r < (const.){ f {m (X)}2~ dX}~,2,. 

Substituting this in (6.7) and applying lemma (3.12) to the function m*, we obtain 

f IF~(X, y ) lqdX <~ (const.) { f {m (X)} 2p d X }  ~/p 

= (const.)lIE]IF. 

But, since IIF~llq= sup { f l F ~ ( X ,  y) lqdX} l/q, this proves that  I~ is  of type (p, q). 
y<0  

The restriction 0 < ~ < 1 can be dropped by making use of the "semigroup pro- 

per ty"  

I~ (In ( F ) ) = I ~ z  (F). 

For n > 2  the proof remains essentially the same, but  technically more com- 

plicated. The necessary changes are the following: The restriction 0 < ~ < 1 is replaced 

by 0 < ~ <  ( n - 1 ) ,  the harmonic majorant  m (X, y) is the Poisson integral of a func- 

tion m (X) in L ~nI(~-l), in (6.6) we have [m (X, y §  ~I(n-1) (instead of m ~ (X, y §  s)) 

and this function is majorized by [m* (X)]lI(~-l)m (X, y+s) .  Once these changes have 

been made the above proof goes through without change. 

The following theorem, mentioned in the introduction, is now an easy corollary 

of Theorem G. 

THEOREM H. Suppose ] is a ]unction in L 1 (E~) such that each o/ i ts  n M. Riesz 

trans/orms are also in L 1 (E~). (1) Then 

I~ (/), I~ (R~ (/)), I~ (R 2 (])) . . . . .  I~ (Rn (])) 

are all in L q (E~) whenever l / q  = l / p -  ~r 0 < o: < n. 

Proo]. Once we show the vector-valued function F (X, y), whose components are 

the Poisson integrals of the functions /, R 1 (/) . . . . .  Rn(]), is a member of H 1, this 

(I) In the weak sense discussed in the fifth section of this paper. 
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theorem is an  immed ia t e  consequence of theorem G. B u t  th is  was shown in the  proof  

of Theorem E (in fact ,  the re  we assumed only  t h a t  the  Riesz t rans forms  of f were 

measures) .  
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