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1. Introduction

One use of the axioms and definitions of this paper is found in the study of certain
subclasses of random variables, for example those defined on a probability space (R, B,
P), Breal, that are finite and continuous almost everywhere as contrasted with finite and
almost continuous (i.e. measurable). With this avenue open all expectations X of some

important subclasses of random variables can be evaluated as asymptotic averages:
1 N
EX =lim > X (a) 1)
N1

on a single fixed sequence S=/{a, a,, a,, ...), or obtained as simple extensions of such
evaluations. In order that these subclasses can be studied without considering their behavior
off the fixed sequence S—which behavior seems inconsequential from the probabilistic
point of view—it is necessary to include them in a setting more general than measure-
theoretic probability theory. This is the case because the class of functions for which (1)
converges on a sequence S may be more general than any class of random variables on a.
probability space of the form (S, B, P) for which (1) is their mathematical expectation.
The motivations for this approach are as follows.

Historically and intuitively the expectation EX of a random variable X is equated
with an asymptotic average of the form (1), the variable X being considered as a function
on a sequence S=(a,, dy, a3, ...) of elementary events or sample points. This equality is
recovered in the strong law of large numbers and the ergodic theorem of modern measure-

theoretic probability. In the modern version, of course, the points «; are obtained as images

(1) Acknowledgement: This paper has been made possible by a grant from the Case Research Fund
and by the added support of the Case Computing Center.
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of a point @, under a group of transformations on a probability space. The group must
have special properties to insure that the equality holds and the initial point ¢, must be
chosen outside a measurable set M of probability measure zero, where M in general depends
on X. .

The whole modern reformulation of the equality (1) is a natural one once a random
variable is defined as a finite measurable function on a probability space. There are limita-
tions, however. Primarily, it is intuitively unsatisfactory that the sequence S for which
(1) bholds should be different for different random variables (a consequence of the fact
that the exceptional set M depends on X). One quite naturally asks, “Is there a probability
space (S, B, P) in which S=(a,, a,, a5, ...) is a single abstract sequence and on which
(1) holds for all random variables X?” The answer to the question is in the affirmative. At
the same time any random variable on such a probability space must have at most a
countable number of values (because 8§ is countable) and thus a distribution function which
is at most a step function.

Another limitation is the absence of any computable structure in the space S of
elementary events, leaving only the expectation attainable by computable methods but
not the sample values of the random variables. Again, one quite naturally asks, “Is there
a probability space (S, B, P) in which § is composed of a subset of the real numbers com-
putable in the Turing sense?”’ The answer is once again in the affirmative. At the same
time, because there are at most countably many computable numbers, any random variable
on such a probability space must again be elementary.

Thus, while the answers are not trivial—and, in fact, will require a detailed explanation
—we are twice led to answers of limited generality after posing questions of basic interest.
It is our present purpose to find answers of greater generality by asking the same two
questions with more flexible phrasing. Inevitably this means formulating and accepting a

flexible probability theory that augments the measure-theoretic approach.

2. The elementary case

Let (8, B, P) be a probability space and let I, be an indicator function of the set 4 €B

(i.e., a function defined on S that takes the value 1 on 4 and 0 elsewhere).

DeriniTioN 1. (S, B, P) is called a sequence probability space if S=(a,, ay, a;, ...)

is an abstract sequence and
1X
N7

for all AEB.
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TuEOREM 1. There exists a sequence probability space (8, B, P) in which B ts uncountably
infinite.

The proof of this theorem is accomplished by construction and is inspired, as is much
of this paper, by H. Weyl’s work on uniformly dense sequences [9]. A sequence S = (a,, a,,
@3, ...) is uniformly dense in the closed unit interval [0, 1] if for all intervals ¢ contained
in [0, 1]

i) =lim X I ) 3)

u being the Lebesque measure. Weyl has proved, for example, that the sequence S==
(ay, @y, @y, ...) defined by a; = ok (mod 1), « irrational, has the property of being uniformly
dense in [0, 1].

To construct a sequence probability space, let S be a uniformly dense sequence in
[0, 1]. Let IT be a countable partition of [0, 1] composed of non-trivial intervals and let
B be constructed by intersecting with 8§ the smallest g-algebra, A, of sets in [0, 1] containing
II: B= ANS. Every member 4’ of A4 is at most a countable union of non-trivial, disjoint
intervals and 4 is in one-to-one correspondence with B. Because A’ is a countable union
of intervals there are for ¢ >0 two members A’, A’ of A4, each composed of finite disjoint

unions of intervals such that
iyd'cd'cd’

ii) Mfi' —ud’ <e.
Thus,

—1J .1 ,
hmﬁgl,y(ak)<llmﬁglé,(ak)+g=ﬂ,ﬁ1 +e

N

1 R y
hmj\};IA'(ak)>hmﬁ?1i(%)—e=,ufl —¢

and it follows that

N
[uA, =llmN‘;IA- (a;c).

Because of the one-to-one correspondence between 4 and B we can define PA=u A’ for
A=A'nS with the consequence that for all 4 €B

A
PA=hm.Z—V§IA (ax).

B is a o-algebra of sets in § and P is a measure. (S, B, P) is then a sequence probability
space. Q.E.D.
7— 603807 Acta mathematica. 103. Imprimé le 19 mars 1960
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The property of one-to-one-ness between 4 and B played an essential role in the
above proof and permitted the transfer of a measure u on sets in [0, 1], to a measure P
on sets in 8. If the o-algebra 4 had been generated not from Il but from the class of all
intervals in [0, 1] the argument would have broken down. This is a point which will have
bearing on the ways in which one can and cannot generalize the idea of a sequence pro-
bability space.

The theorem just proved tells in what sense a sequence probability space is non-

trivial. The next theorem tells in what sense the concept is limited.

THEOREM 2. Let X be a random variable defined on the sequence probability space
(8, B, P) and let Fy(x) be tts distribution function.

Fy(z) is a step function.

This theorem, which may be considered obvious, requires a little discussion. It is
recalled that in the proof of the last theorem the o-field, B, in a sequence probability space
could not be too rich, that is, could not include too many subsets of S. In particular, B
could not include all points a, of an infinite sequence S of distinet points, for in such a
case Pa, = 0 for each k, because of (2), and PS = 3 Pa, = 0— a contradiction.

This proves that there is no random variable on a sequence probability space which
has a different value at each point of S, unless S has finitely many points.

The present theorem says more, namely, that each random variable on a sequence
probability space is equivalent to one that induces a partition of 8 into sets of positive
measure, the elements of the partition being of the form 4 = {a; : X = const.}. The proof,
on the other hand, does not require the special form of measure given by (2), but is based
simply on the fact that the range of a random variable on a sequence probability space
is a countable set and no non-trivial continuous distribution function can have points of

increase only on such a set. The proof follows.

Proof. Because 8§ is countable, X can have at most a countable number of values. From

the decomposition of distribution functions
Fx(z)=Fx? () + Fx® (2)

where F,®(r) is a step function and F;® (x) is a singular function which is continuous
with points of increase belonging to a countable set. The measure u® on the real line that

corresponds to F . (z) assigns the measure zero to every countable set andthus F,®(z) =0.
Q.E.D.
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The two theorems to follow display the special advantages of sequence probability
spaces. For one of these advantages having to do with computability, it is convenient to

define some notions.

TuroreM 3. If X is a bounded random variable defined on the sequence probability
space (S, B, P), then

. 1Z
EX =hml~V§X(ak).

Proof. Let I1; be the partition of § induced by X. That is A4 €I1 if and only if for some
real 7,
A=ta,: X =r}.
We may assume without loss of generality that PA > 0 for all 4.
There exists for £ >0 a set 4. composed of a finite union of elements of IIx such
that P4, >1 —e¢, This can be demonstrated by letting 4, be the union of all 4 €Ty for

which
2 ® D> pg=2F,

(]
For each k, 4; is at most a finite union sets in | [x and U 4,=28. Because P is competely
1

M
additive, for some M depending on &, P[UA;]>1—e.
1

Now define for £ >0

— X{a for a, € A,
X ()= () %
B for ax ¢ A,
X f €4,
X (@) — (@) or
—-B for a, ¢ 4,
where B is any real number such that | X |< B< co. It follows that
i) X<X<X
ii) EX-EX<2Bs¢

and since X and X have at most a finite number of values

— N __
1ii) BEX = liml > X (a)
N1

N
iv) EX= lim—] > X ().
N1g

Therefore,
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— 1 N _
lim ﬁZX(ak)<EX<E)_I+2Be<EX+2Be
1
1% -
lim lVZX(ak)>E)_(>E'X—2BS>EX—2B£.
I 1

Q.E.D.

DEFINITION 2. A sequence S = (ay, @y, g, ...) s satd to be computable, tf it is real
and there is a Turing machine(t) which, for any pair of positive integers M, N, will print out

in order the first M digits of all a,,, k=1,2, ..., N in a finite number of steps.

DEFINITION 3. A sequence probability space (8, B, P) is called a computable probability
space, if S is computable.

Because any Turing machine can be simulated by a modern all-purpose computer
the notion of a computable probability space makes possible the investigation of whether
the sample values of a sequence of statistically independent random variables can be
computed. Such an investigation might yield results for actual statistical calculations,
where at present random numbers generated by physical processes or pseudo-random
numbers generated by computers must be used. Such an investigation might also yield
results for the type of processes studied in statistical mechanics. More will be said about

these implications later.

DeFiNITION 4. A random variable X defined on the computable probability space
(S, B, P) is called a computable random variable, if the sequence of sample values X (a,),
X (ay), X (as), ... is computable.

DEFINITION 5. A sequence of random variables X,, X,, X, ... defined on the com-
putable probability space (S, B, P) is called computable, if there is a Turing machine which,
for any triplet of positive integers M, N, Q, will print out in some specified order the : first M
digits of al X, (@), 1=1,2,3,..., N,1=1,2,3, ..., Q.in a finite number of steps.

THEOREM 4. There exists a computable probability space (S, B, P) in which B is un-
countably infinite. .
The proof is the same as for the existence of a sequence probability space with the

added remark that the sequence a, =ak (mod 1) k=1,2,3, ..., on which the space is

(*) For the definition of a Turing machine see [3, 8].
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built, is computable if the irrational « is computable. Such an o might be chosen to be

7T, € or V2.

THEOREM 5. There exists for each positive integer N a computable sequence of statistically
independent random variables X,, X,, ... X, defined on a computable probability space
(S, B, P).

For a proof, it is sufficient to let S=(ay, a,, a3, ...) be the uniformly dense sequence
in the unit interval defined by a;, = nk (mod 1). For given integer N, let B be the smallest
o-algebra containing all sets 4,, y of the form

j j+1] .
Aj,N: {a'k:2ll\7<ak<72—1v} ,7:0,1’... i 2N__1
and let P be defined by (2).
The N identically distributed random variables

1

9i~1_
Xi: z 1‘427'515 i= 132;"' B N
7=0

are statistically independent and computable. The independence follows from direct
computation and the computability follows from the fact that for each % and each ¢ a

finite number of digits of @, determines whether X,(a,) has value 0 or 1. Q.E.D.

As will be seen later it is only for simplicity and not out of necessity that for the proof
we have chosen to construct random variables which have only two values. In fact, the

proof of the following theorem will be obvious from later results.

THEOREM 6. For any distribution function F4(t) (of a random variable) with at most a
finite number of points of increase, and for any positive integer N, there exist N identically
distributed, statistically independent, compulable random variables X, X,, ..., X defined on
a computable probability space (S, B, P) such that F x (&) = Fx(t), k=0,1,...,N.

As a special sequence that leads to simple computations the following sequence of
rationals, §%=(q,%, a,°, a,%, ...) that is uniformly dense in the unit interval will be found

extremely useful. §° will also be found useful in the proofs of some later theorems.
=0

0 0
AN ;= @i + N +1»

i=1,2,-...2Y N=0,1,2,--
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The first few terms of SO are:

0,:3358888 % & H 161kl

The proof that 80 is uniformly dense in the unit interval is accomplished by showing
first, that (3) holds for all diadic intervals, that is intervals whose end points are of the
form k/2", where k and N are positive integers 0 <% < 2%, The second part of the proof
uses the fact that all intervals in the unit interval can be approximated arbitrarily closely
from above and below by diadic ones.

If in the proof of Theorem 5 we take as the computable sequence SO instead of S=
{m(mod 1}, 2m(mod 1), ...), the sample values of the statistically independent random
variables defined there can immediately be displayed for any N:

Table of ten sample values, X ,(a®,), of five statistically independent and computable
wndicator random variables

[ L U
bt fnd o
bl ok ol et D
e D e
— O D
=
— O e O
Pt e D D et
—_—o 0o
Pt S b et
=l =1

The use of such sample values in monte Carlo calculations will be discussed later.

3. Probability functional spaces

It was chiefly to obtain theorems of the type 3 and 6 that computable probability
spaces were introduced. Yet the random variables appearing in these theorems must be
clementary as we learned from Theorem 2. Now because of a desire to reformulate Theorems
3 and 6 in a more general context, we define what is meant by “probability functional
spaces’’. The specific use of probability functional spaces in extending the computability
notions will be left for a later section.

Before closing this section we will show that the present ideas are completely consistent
with measure-theoretic probability and, in fact, are more general by lacking only one
postulate. The missing postulate is the familiar complete additivity, or continuity, postulate
for an additive set function. One might look upon the definitions to follow as a system
for defining a class of random variables without calling upon the complete additivity

postulate, that is, without calling upon the whole mechanism of Lebesque theory. It is
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interesting to recall that the continuity axiom is the only axiom introduced by Kolmogorov
in his basic paper of 1933 [4] of which he said, “It is almost impossible to elucidate its
empirical meaning”. It is because of its extreme importance in facilitating the mathematics
that the axiom is kept throughout most of probability theory.

Let S={a} be an abstract collection of elements a, [0, 11V the closed N-dimensional
unit cube, RY the extended N-dimensional real space and H" a subset of RY. We write
C(H") for the class of all functions defined on H" to [0, 1] and continuous on HY. We
will also write R for R'.

Let fy, fo ..., fx be N functions, each defined on S to R. If HY is the range of the
vector function (fy, f,, ..., fy), a finite composition c(fy, f,, ..., fx) of the vector function
{f1» f2» ---» fx) with the continuous function ¢ is defined for each ¢€C(GY), HY < G¥, by
c(fys for -5 In) (@) = c{f1(@), fu(@), ..., fy(a)).

A class F of functions, each defined on S to [0, 1] is said to be closed under all finite
compositions with continuous functions, if c¢(fy, fa .., fy) €F for all finite collections f,, f,,
..., [y chosen from F and for all c€C ([0, 1]%).

Let us denote by “L(F)” the smallest linear space containing a class F, of functions
defined on 8§ to [0, 1], that’ is, the space of complex valued functions with domain § such
that: '

i) fEC(FH i fEF
i) kygy T kg, € L(F) if gy, 9, € L(F) and ky, k, are finite complex numbers
i) C(F)< L (F)if £ (F) is any other space satisfying i), ii).

DEeFiniTION 6. Let F be a class of functions defined on S to [0, 1] that contains Is.
A probability functional associated with the class F is a real-valued functional E defined on
L(F) and satisfying the following three properties for all f,, f,€ F and all finite complex ky, k,:
i) 0O<Ef <1
i) BFIg=1
i) E(kyfy +kofy) =k Efy +ky Ef,.

The following postulate will be essential for defining a probability functional space.

Posturare 1. F is a non-empty class of functions defined on S to [0, 1] and closed

under all finite compositions with continuous functions.

DEFINITION 7. A probability functional space is the triplet (S, F, E) in which S is an
abstract space, F is a class of functions defined on S to [0, 1] that satisfies Postulate 1 and E

s a probability functional associated with F.
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DeriNiTION 8. 4 random variable defined on the probability functional space
(8, F, E) is a real, finite function X whose domain is S and for which
Fx={c(X):c€EC(R)}< F.

Henceforth, we will always use the symbol “JFy, &,
tions {c(X;, X,, ..., Xy) : cEC(RY)}.

x,  for the class of composi-

.....

ExaMPLE 1. As an example of a probability functional space let S be
the unit interval [0, 1], F the class of continuous functions defined on and to [0, 1] and
Ef the Riemann integral of f€F. In this case the class of random variables X defined on

(8, F, E) coincides with the class of real continuous functions defined on [0, 1].

ExaAMPLE 2. As another example let S be the unit interval [0, 1], F the class of
Riemann integrable functions defined on and to [0, 1] and Ef the Riemann integral of
f€F. In this case the class of random variables X defined on (S, ¥, E) coincides with the
class of real finite functions defined on § which are continuous almost everywhere.

We know from Lusin’s Theorem that the class of real finite functions defined on
[0, 1] which are almost continuous coincide with a class of random variables (measurable
functions) defined on a real probability space ({0, 1], B, P). From this fact it is clear how
the random variables X of this example compare with random variables defined on ([0, 1]

B, P).

ExaMPLE 3. As another example let (S, B, P) be an abstract probability space, F
the class of measurable functions defined on S to [0, 1] and Ef the integral or mathematical
expectation of f on the abstract space (S, B, P). In this case the class of random variables
defined on (S, F, E) coincides with the class of random variables defined on (S, B, P) and
if A€B, then I,€F and EI,=PA.

ExaMPLE 4. As in the proof of Theorem 1, let 8 = (a,, @y, ag, ...) be a uniformly
dense sequence in the closed unit interval [0, 1]. Let F be the class of Riemann integrable
functions defined on and to [0, 1] and restricted to S. For f€F, let

1 N
Bf=limy > f(a).

A slight extension of the proof of Theorem 1 will show that &/, as defined here, equals the
Riemann integral of any Riemann integrable function on [0, 1] whose restriction to S is f.
E can immediately be extended to L(F) and (S, F, E) is a probability functional space.
The class of random variables defined on (8, F, E) can be obtained by restricting to S the

class of real finite functions on [0, 1] which are continuous almost everywhere.
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An important thing displayed in the first two examples is that the class of random
variables defined on a probability functional space may coincide with a subset of the
class of random variables defined on a probability space. The third example shows that
the concept of random variables on a probability functional space, though a generalization,
is not inconsistent with the measure-theoretic concept. The fourth example suggests in
what sense probability functional spaces permit a generalization of sequence and computable
probability spaces. More will be said about this later.

The following theorem shows in what sense there is closure of the class of random

variables defined on a probability functional space.

THEOREM 7. Let X, X,, ..., X be random variables defined on the probability func-
tional space (S, F, E). The composition

Y =c¢(Xy, Xy, ..., X)

18 @ random variable if ¢ is a function defined on RY to R for which
i) ¢ 18 finite on the finite part of BY
ii) lim ¢(Z) = c(Z,) for &, T, € R".

T—>Z,

Proof. Y can be written ¥ =¢(U,, U,, ..., Uy) where U, = ¢, (X,), ¢ is a continuous
one-to-one function mapping B onto [0, 1] and ¢ is the function defined on [0, 1]V to RY

that is given by
§(Uy, Uy, -+, Un)=clei (Uy), 2" (Uy), -+, e (U]

where ¢! is the inverse of ¢,. Thus ¢(Y), ¢€C(R), is a finite composition of the vector
function (U,, U,, ..., Uy) with the continuous function ¢(¢) and belongs to F because each
U, belongs to F and Postulate 1 is satisfied. Q.E.D.

Theorem 7 can be compared to the more general statement in measure-theoretic
probability theory that Baire functions of random variables are random variables. The
fact that limits of random variables as defined here may not be random variables prevents
the more general statement. In fact, in the setting of Examples 1, 2 or 4 random variables
can be displayed such that a composition with some function possessing a single disconti-

nuity fails to produce a random variable.

TauorEM 8. Let X\, X,,..., Xyand ¥ =c¢(X, X,, ..., Xy) be as in Theorem 7 with
¢ satisfying conditions 1) and ii).

i) gx. < Fx. p M. Xy
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The Theorem is an immediate consequence of the definitions. It displays how the classes
of functions F; behave relative to each other like the algebras of sets that are generated
by random variables defined on a probability space.

We now wish to extend the functional Z to random variables X defined on a probability
functional space (S, F, E) so that a mathematical expectation of random variables will

be defined. To do this we consider two cases.

X for X<n

Cas® 1: X is non-negative. Let X® = )
n otherwise.

Each composition in the sequence XV, X®, ... belongs to £{JFy) and, thus, ZX™ exists
and is finite for each integer n. EX®, EX®, ... is a non-decreasing sequence of finite

real numbers. We define the mathematical expectation of X by

EX=1lim EX™

CasE 2: X is an arbitrary random variable defined on (S, ¥, E).
In this case, X can be written X = X+ — X~ where

X for X=0 —-X for X <0
X+ = X

0 otherwise 0 otherwise

By Theorem 7, X+ and X~— are random variables, and they are non-negative. The ma-
thematical expectations E X+, EX— are defined by Case 1. If at least one of the numbers
E X+, E X~ is finite, we define the mathematical expectation of X by

EX=EX+—EX-.

If EX exists and is finite, X is said to be iniegrable. Because of Theorem 7 and the
above definitions all of the following expectations are defined in which X and Y are random

variables, defined and integrable on a probability functional space:

E(X +7Y), E|X|, B|X|", EX',r>0, B(XY).
X

) x X
Because emX_I ;], —oo<f <oo, belongs to £({Fy) for real r and e_‘ v l, 7 >0, is monotonic

X
in r, Og(f) =lim E Pl | 7' ,—o0 <0 < +o0, exists and is defined for all random variables X

o0
defined on a probability functional space. The formal similarity between @ (6) and charac-
teristic functions of random variables on a probability space leads us to call this the
characteristic function of X. The question of whether this function has the analytic pro-
perties of a characteristic function required in the measure theoretic case, that is, continuity
and non-negative definiteness, remains to be answered by proof, however. We will answer

this question later in special cases.
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The similarity between the way the above extensions were made and the way the
Lebesque integral or the Daniell integral is definetl is obvious. Though E X can be inter-
preted as an integral over a measure space for the proper choice of (S, F, E), some choices
of (S, F, E) prevent this. Some exceptional cases in which EX is not an integral over a
measure space and cannot be extended to be an integral arise because no postulate cor-
responding to complete additivity of a set function (such as continuity of the linear func-
tional ) has been assumed. It is precisely the exceptional case that is of greatest interest
to this paper. It arises when, in generalizing computable probability spaces, S is chosen

to be a sequence.

ExamPrLE 1. (continuation) In this case every random variable, X, is bounded and

E X is the Riemann integral of X. @y is a characteristic function.

ExAMPLE 2. (continuation) As stated earlier the class of random variables, X, in
this example do not comprise the class of finite measurable functions on the real probability
space ([0, 1], B, P) but are a subeclass of them. On the other hand, E extended to the
random variables of this example is such that EX is the Lebesque integral of X over
({0, 1], B, P) and is thus a mathematical expectation in the measure-theoretic sense. @,

is a characteristic function.

ExamrLE 3. (continuation) In this case, where the class of random variables defined
on (8, F, E) coincides with the class of random variables defined on (S, B, P), EX coin-
cides with the mathematical expectation or integral of X over (S, B, P), and ®y with

the characteristic function.

ExAMPLE 4. (continuation) Here S is a sequence. Unlike Examples 1 and 2 the

probability functional extended to X, FX, is not a Lebesque integral of a measurable

function on a probability space. Take for example the sequence X, X,, ... where
1 kE<n
X (@) = .
0 otherwise

Each X, is a random variable on (8, F, E) since it coincides with the restriction to S of a

Riemann integrable function whose domain is {0, 1]. £ X, = 0 for all finite ». Thus
lim X, =0.

However, at the same time, the sequence is monotone non-decreasing with lim X, = I.

Thus
Elim X, =1.

Monotone convergence does not hold and ¥ is not a Lebesque integral.

Many of the properties of expectation as defined in measure-theoretic probability
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theory are true of expectatation as defined in the present context. Some typical properties

are stated in the next theorem.

THEOREM 9. Let X and Y be random variables defined on the probability functional
space (S, F, E) and let r, s be real finite numbers.
i) X is integrable, if and only if | X| is integrable
i) If X and Y are integrable, rX +s7Y 1s integrable and E(rX +sY)=rEX +sEY
i) Jf X<Y,then EX<EY
iv) If | X| <Y and Y is integrable, then X ts integrable
v) |[EX|<E|X]
vi) If | X|" is integrable, | X |* is integrable for 0 <s <r
vii) (Holder Inequality) If 1/r +1/s=1,r>1,

E|XY|<E"|X|'E"|Y|°
vil) (Minkowsks Inequality) If r > 1,
ET|X+Y|"<E"|X|"+E"|Y|.

The proofs are similar to those of the corresponding theorems found in Loéve’s book [5]
or Kolmogorov’s monograph [4].

Because in the present context only the compositions ¢(X) of random variables defined
in Theorem 7 can be guaranteed to yield random variables, operations like E I x for
real ¢ are undefined unless, as in the discrete case, I x<:; happens to belong to F. It is
also the case that the weak closure of the class of random variables on a probability func-
tional space, as set forth in Theorem 7, restricts the type of limits that yield random
variables.

A few of the most important ideas and theorems for probability functional spaces

will now be developed.

DEerFiniTIiON 9. Let X, X, X,, ... be random variables defined on the probability
functional space (S, F, E). The sequence X, X,, ... converges in probability to X and we

write
P

X,—X
if and only if for arbitrary a >0, and for any function h€ C(R) such that h(x) = 0 for |z]| <a

lim Eh(X,— X)=0.

n—>00
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It is easy to show that if “probability space’ is substituted for ‘‘probability functional
space’’ in this definition that the criterion is equivalent to convergence in probability of
random variables defined on a probability space.

Uniform convergence and convergence in the r-th mean have the customary definitions
and for these we write

u

Xp——X

r

Xa

—X,

the latter being defined for random variables with finite rth absolute moments.

For sequences which are mutually convergent in any of the above senses we write
K
Xy —Xp—0
U
X, -X,——0

r

X=X -0

The basic inequalities of probability theory can be restated in the following form.
(Compare Kolmogorov [4] or Loéve [5].)

TaeEorEM 10. Let X be a random variable defined on the probability functional space
(8, F, E) and let g be an even, non-decreasing, on-negative function satisfying i) and ii) of
Theorem 1, N =1. Let h€ C(R) be such that h(X) =0 if | X| <a, a>0.

. Eg(X)
Y S BR(X
i) 7@ =z Eh(X)

i) If g is bounded by K and 1 —g(a)/g(X)<h(X), then

Hg(X)—g(a)
Eh(X)>=""

iti) Jf | X|is bounded by L and 1-=g(a)/g(X)<h(X), then

Eg(X)—g(a)

EFrh(X)=
X)==" 5

Proof. Under the respective assumptions of i), ii) and iii) of the Theorem:
) Eg(X)> Bg(X)h(X) >g(a) Bh(X).

i) Bg(X)=Eg(X)h(X)+ Eg(X)[1 ~MX)|<KEL(X)+g(a).

iii) Eg(X)=Eg(X)h(X)+ Eg(X)[1 —h(X)] <g(L) Eh(X) +g(a). QE.D.
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THEOREM 11. Let X, X, X,, ... be random variables defined on the probability func-
tional space (S, F, E).

r

P
i) If X,——X then X,———X

P T
i) If the X, are uniformly bounded and if X,———X then X;,——X
iii) Let g be an even bounded, non-negative function, monotonic increasing on [0,00],
satisfying 1), ii) of Theorem 7, N =1, such that g(0)=0.
P
X,——X if and only if E g(Xy— X)——0.

The proof follows directly from the previous theorem.

CoRrROLLARY. Let X, X, X,, ... be random variables on the probability functional space
S, F E).

- P . . l Xn - Xl
i) Xp——X if and only szm—w
P _
ii) Xn—Xy—0 tf and only if E | X = X 0

T4 X=X |

P

1
i) If Xp——X or if X,, X,,--- are untformly bounded and X,

—X, then

EX,—~EX
and

It is seen that if a sequence of X, converges in probability or in the rth mean to X
and also to ¥ then

| X— 7]

Erx—y”

0.
Thus, as in measure-theoretic probability theory (see Loéve [5]) where convergence is
convergence of equivalence classes to equivalence classes of random variables, we defined

equivalent random variables on a probability functional space in terms of the above metric.

DEerFiNiTIiON 10. Let X and Y be random variables defined on the probability functional
space (8, F, B). X and Y are called equivalent (X =7) if:

| X 7]

e x=7~

0

Of course, this criterion implies that X equals Y almost everywhere if they happen

also to be random variables defined on a probability space as in Example 3. The definition
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permits the equivalence classes of random variables on a probability functional space to
be viewed as elements of a metric space in which distance is defined by

_|X—Y|

R o 2

The question of completeness of these metric spaces arises. Though in some important
special cases the space is complete, one can discover counterexamples to completeness in
the general case. Any sequence of random variables in Example 1 that converges every-
where to a discontinuous function converges mutually in the sense of the above metric

but does not converge to a random variable defined on the space of Example 1.

THEOREM 12. Let X and Y be random variables defined on the probability functional
space (S, F, E).
i) X=Y,ifand only if E|X — Y| =0
il) X=Y implies EX=EY and E|X|=E|Y|.
Proof of (i). Using the notation following Theorem 8,
BIX-Y[®_  |X-¥|" X 7|

= < =
1+n 1+ X—-Y|® T1+|X-Y| 0

E|IX-Y|=ImE|X-Y|™=0
Proof of (ii).

|E|X| - E|Y||<EB||X| - |Y||<E|X-Y|,|EX- EY|<E|X - Y|. QE.D.

As will be seen in the following discussion, the concept of sets of probability measure
zero, though definable in probability functional spaces, does not in general lead to a stronger
form of convergence than convergence in probability or to a useful type of equivalence of

random variables as happens in the special case of probability spaces.

DeriniTioN 11. Let (S, F, E) be a probability functional space. 4 set A< 8 is said
to have probability functional measure zero, if

i) 1,€F

i) EI,=0

Convergence almost surely for a sequence of random variables on a probability func-
tional space can now be defined in the customary way, the only difference being that the
exceptional set where the sequence may not converge must have the above definition. The

notation for convergence to a random variable and mutual convergence in this sense is:
a.s.

—-X

a.s

B

Xn

Xn—Xn
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We will also say that a relation between random variables defined on a probability functional
space holds almost surely (a.s.) if it holds except on a set of probability functional measure
zero. These definitions coincide with the measure-theoretic definitions in the special case

displayed in Example 3.

TaroREM 13. Let (S, F, E) be a probability functional space and let A < 8 be a set of
probability functional measure zero. For all random variables X, Y defined on (S, F, E):
i) B\X|I,=0
i)y If X=Y a.s. then X=7Y.

Proof of (i). For an arbitrary random variable X on (8, F, E), and » > 1,

EHXHAW=nEHX5Am=nEHvaA<nEQ=O
Thus,
E|X|I,=1m E[|X]|I,]™ =0.
Proof of (ii). If X =Y a.s. then by (i):
E|X-Y|=E|X-Y|I,=0
and by Theorem 12, X =Y. Q.E.D.
It is seen how equivalent random variables are obtained from X by modifying X on
a set of measure zero. In measure-theoretic probability this method yields the entire class
of variables equivalent to X. In the present context it is easy to show, however, that two
random variables X and Y defined on a probability functional space may differ every-
where on S and still be equivalent. Let (S, F, E) be the space defined in Example 4,
where for the sake of the present argument, 8 is the special sequence defined in Section 2
and labeled “8°”. It is important that every point of S° is rational. Now take for X the
function identically zero on §? and for X’ the following:
X'(0)=1
X' (a% =1/n, a®ESY, a® # 0,
where a® =m/n, » >0, and m and n are integers without any common divisor. X' is the
restriction to S° of a well known positive function on [0, 1] which is continuous on all
irrationals, discontinuous on all rationals, and whose Riemann integral over {0, 1] vanishes.
It is, thus, a random variable with E | X ’| =0 and is therefore equivalent to X.
In a similar example that will come later it Wiil be seen fhat a sequence X, X,, ...

of random variables can be defined on a probabﬂity functional space for which
P .

X —q >0

and
a.s.

X0
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Therefore, convergence almost surely on a probability functional space does not imply
convergence in probability.

ExamPLE 1. (continued) In this example there are no sets of probability functional

measure zZero.

ExAMPLE 2. (continued) Here a set 4 < § has probability functional measure zero

if and only if it has Riemann content zero.

ExaMpPLE 3. (continued) Here the concept of probability functional measure zero

coincides with that of probability measure zero.

ExaMPLE 4. (continued) In this case a set 4 chosen from the sequence S=(a, a,, ...)

has probability functional measure zero if and only if it has density zero.

TarorEM 14. (Dominated Convergence) If ¥, X, X,, X,, ... are random variables

defined on the probability functional space (S, F, E) and if

| Xa|<Y as., |X|<Y as, EY < oo for somer>1,

P
then X,———X implies EX,———EX and E|X,|——E|X|.

1

Proof. We shall prove X,
a >0, let h€C(R) be such that

—X and use the Corollary to Theorem 11. For arbitrary

i) h(X)=0for |X|<a
ii) 1 —a/|X| <h(X).
Then,
E|X,-X|=E|X, - X|hX,-X)+ E|X, - X|[1-h(ZX, —X)]
<EV|X,-X|"- E"F(X,—X)+a
where 1/r +1/s =1 and r > 1. We have used the Holder inequality of Theorem 9. Because
| X, — X|"<(2Y) a.s., EY"| X, — X|" is a finite number, say K. Consequently,
E|X,-X|<KE"WX,—X)+a.
P —_
Now X,———X and »°€C(R) with 2°(X) =0 for |X| <a, and we have
PR (X, —X)=>0
a is arbitrary and the theorem is proved. Q.E.D.

DEeriNiTION 12. Let (S, F, E) be o probability functional space and X, Xy, ... @
sequence of random variables defined on it.

i) X, and X, are called statistically independent if Ef,f, = Ef,Ef, for all {,€Fx,
f2 e ;Xx‘

8 — 603807 Acta mathematica. 103. Imprimé le 21 mars 1960
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ii) X;, X,, ... are called statistically independent if for any finite subcollection X,’, X',
vois Xy Efsfo ... fy=Ef, Bfy ... Efy for all {(€F5,, k=1,2,..., N.

LEMMA. Let X be a non-negative random variable defined on the probability functional
space (S, F, E).
if X>e¢

X
ImEX,=EX WhereX(£)={ )
& otherwise.

>0
Proof. X=X —X® +¢
If X is integrable, 0 S EX,, — EX =¢ — EX® <e¢.
If X is not integrable, the Lemma is true by Theorem 9 (iii).
THEOREM 15. Let X and Y be statistically independent random variables defined on
the probability functional space (S, F, E),
i) Eg19,= Eg, Eg, for all g, €L(Fx), .€L(Fv)

ii) ¢, (X) and cy(Y) are statistically independent for any functions c; and c, satisfying
i) and ii) of Theorem 7, with N =1

iii) @x,y(0) =D (0)Dy(0), —co<l <oo,if XY =0

iv) If X and Y are iniegrable, EXY =EXEY

v) If X and Y are integrable, 6*x .y = 05> + oy where 65> = E[X — EX .

Proof of (iv).
Case I. X >0, Y > 0. First,
XUmyUm [ XY™, n>1.

Because X0 and Y™ belong to £ (Fx) and £ (Fy), respectively, and because of (i):
EXVWEYVD < BIX Y™

and
EXEY<EXY.

Next,

XY™ <XPYP, n>e>0.
Again

XH €L (Fx) and Y €L(Fy),
Therefore,

EXY""<EXPEYY

and

EXY<EXHEY.
From the Lemma, one obtains after letting ¢ approach zero,
EXY<EXEY

and with the above reverse inequality the theorem follows.
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Case I1. X and Y are integrable.
From (ii) it is clear that the pairs (X+, Y+), (X~, Y-), (X+, Y), (X—, Y*) (| X]|, |Y])
are statistically independent. It follows that X Y is integrable and we have:
EXY=E[XY+—-E[XY]
=EB[X+*Y++X-Y- |- E[X-Y++X+Y-]
=(EXt+—EX ) (EY+t—EY")
=HEXEY.
Q.E.D.

In this paper the special case introduced in Example 4 is of particular interest and
will provide the framework for the discussion remaining after the next section. There are
a large number of definitions and theorems with which one could continue the discussion
of probability functional spaces. As one might suspect, the majority of these are formulated
by recasting the measure-theoretic ideas in terms of the above notions. Proofs must be
carried out in the more general domain but often are suggested by the measure-theoretic

ones.

4. A logical algebra of functions

It is immediately noticed that probability functional spaces, and random variables
on them, have been introduced without any reference to logical operations on the class
of functions F analogous to the logical operations of complementation, union and inter-

section on a class of sets. This section introduces such operations.

Norarion. The operations f; +f,, f; —f. on real valued functions are the usual
pointwise sum and difference. The relations f, = f,, f; </, etc. between functions defined
on S are understood to hold pointwise for all points in S. The functions min [f,, f,], max
{f1, fa], where f,, f, are functions defined to [0, 1] are understood to be the compositions
elf, ol €2 [fy, f2], where ¢, ;€ C([0, 1]*) and ¢, [#, y] = min [z, y], ¢, [, y] = max [z, y],
0<z y<1l “="is a symbol for “if and only if”’. “= " is a symbol for “implies”.

DEeriNITION 13. A4 logical algebra of functions (F, U, ©) is a non-empty collection F
of functions defined on an abstract space S to [0, 11, a binary operation U defined for each
pair of functions in F, and a unary operation ° defined for each element in F, for which the

following eight postulates are satisfied for aoll fi, fs, [s€F. In the postulates the definitions
hnfy=H U
I b = I Sc

are used.
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i) [°€F
i) fUf,€F
i) U1 =1s
) hnff =1,
v) iVfa=fUAh
vi) LU(fUfs) = (HUf)Ufs
vil) finl,=1,
vil)) fiUfe=fh +fh=hnfa=1,.
The operations U, N, ¢ will be called union, intersection and complement, respectively.
If the distributive postulates

ix) LU (fa0 ) = (F V)N (/U fs)
x) i0(fUfs) = (HiNf)U (N ]5)

were added, (F, U, °) would be Boolean, with or without postulate (viii). Examples of
systems satisfying all postulates (i)-(x) can be displayed but do not include some important
systems, as the following discussion will show. The formal similarity between postulate
(viii) and the additivity property of additive set functions is worth noticing and, in fact,
the postulate is brought in to make probability functionals behave formally on a logical
algebra of functions like set functions on an algebra of sets.

A justification for the choice of the axioms will be seen in Theorem 19 and Theorem 21.
These axioms lead to many of the properties of Boolean algebra, though the following

theorems do not emphasis the Boolean characteristics.
DrFINITION 14. Let (F, U, °) be a logical algebra of functions. For all f, {,€F
hah=h'nf=1,
heh=fh>h
TrEOREM 16. Let (F, U, ©) be a logical algebra of functions. For all f, [,€3F

) f=1Is—h

i) (h+f) =h+f —Isit f+[,€F

1ii) (f1*f2)0=f1c_f20+Isﬁf1—f2€:;

iv) (min [f;, f])° = max([f,°, £,°] if min(f;, f]€F

Theorem 16 permits us to state the following principle for a logical algebra of functions.

PRINCIPLE OF DUALITY. Let (F, U,°) be a logical algebra of functions. Any =,
< or > relation that is universally true between elements of F and that is formed with the use

of the symbols
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U7 n, C’ +, =, Isy I¢, =, D, &, min, max

becomes another true relation when these symbols are replaced, respectively, by
n, v, —Is+, +I5—, 14, Is, =,<, D, max, min,
complement and equality remaining unchanged.
TurorREM 17. Let (F, U, ©) be a logical algebra of functions. For all f,, [,€F
) h=2hehnlf=h—f=fh=LU{NH)

) i=>fe>h=1s

ii) U =11 T (HUfIN]°

TureoreM 18. Let (F, U, ©) be a logical algebra of functions. For oll f,, [,€F

1) fiUfe <min [f; + {5, Is]

) fU=fh+tfh—h0f

The proof uses the statements of Theorem 17.

It should be remarked that Theorem 18 does not require min [f; + f,, Is] or f; + £, to

belong to F. Theorem 18, ii obviously implies
f=%(fuf+inf

for all {€F which is the replacement for idempotency in this algebra.

It will be of interest for us to investigate in the next theorem conditions under which
equality holds in Theorem 18, i. Not only will such conditions provide us with an algorithm
for computing f, Uf, but they will also bring into the algebra other useful properties.

At this point it may be helpful to warn the reader of certain desirable properties
familiar from Boolean algebra which are not in general true in a logical algebra of functions.
These include among others the distribution, absorption and idempotency laws involving

union and intersection.

TurorREM 19. There is one and only one function b on [0, 17* to [0, 1] such that for the
binary operation fLUf,=h(fy, ;) and every class F satisfying Postulate 1 (of Section 2) for
some S, (F, U, ) is a logical algebra of functions.

The unique binary operation may be written

f1Ufe =min [f, + f5, Is].
Proof. For any class F satisfying Postulate 1, min [f; + f,, [5] will belong to F when
f, and f, belong, and it can easily be verified by direct computation that (F, U, ©) will be

(1) This relation has appeared in a number of different studies generally concerned with multivalued
logies and valuated algebras.
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a logical algebra of functions. It will suffice to prove uniqueness for any particular choice
of the class F satisfying Postulate 1.

We choose for the sake of the proof the class F of all Riemann integrable functions
defined on [0, 1] to [0, 1]. (See Example 2, Section 3.) For this class, consider a logical
algebra of functions (F, U, ) that is arbitrary except for the restriction f;Uf, =h(f;, fo)
for all f,, {,€F and some function % on [0, 1]? to [0, 1]. Because of Postulate (ii) of Defini-
tion 13, % (z, y¥) must be continuous when considered as a function on [0, 1]7>. We wish
to show that A(f,, f;) has the unique form min [f, +f,, Is] for all f,, /€ F. This will be
proved if it can be shown that % has the stated unique form for all constant functions in F.

Choose now any two constant functions z, ¥ in F such that « +y = I's. For those func-
tions Postulate (iii) implies

zUy=aUa’ =TI,
Because yUIy=y and yUy° = Iy and because yUwv, as a function of constant arguments

v, i8 continuous, there is for each constant function z >y, z€ F, some constant function

w € F such that z == y Uw. Therefore,
zUz=xU(yUw)=(xUy)Vw =TI,
We conclude that for the constant functions x and z in F
xUz=Ig provided x +2z = Ij.
From Postulate (viii), Theorem 16 and the definition of intersection we have for

z,2€F

2°Uf =2 +2f=>axUz = Ig.
Adding the fact

2+ lyertzz1;
we have for constants z’, 2’ €F

x'Uz = +2 provided x’ +2' < I.
Thus, if f;, f, are constant functions in F
fiUfe =min [f; + 5, Is]

and this implies the result. Q.E.D.

It can be seen that the inclusion relation for a logical algebra of function implies the
> relation and provides a partial ordering of F. In the special case where the union opera-

tion is chosen to be U, the stronger results of the next theorem can be obtained.

THEOREM 20. For a logical algebra of functions of the type (F, U,°), in which F
satisfies Postulate 1, we have for oll f;, {,€F
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) hcheh<f

ii) (F, U, ©) is o lattice under the partial ordering relation <.

The following theorem displays in what sense a logical algebra of functions is consistent

with a Boolean algebra of sets in the space S on which the functions are defined.

TuEOREM 21. Let (F, U,°) be a logical algebra of functions in which union has the

special form U = U. If D is the class of all indicator functions in F
i) (D, U, °) is a subalgebra
ii) (D, U, °) is Boolean

iii) All functions in D are measurable with respect to an algebra (A4, U, ©) of subsets of

S and for all A, BE A:
ivy I, I,€D
v) LUl =1Iaus
vi) 14°=1Ic
vii) I, > Iy« A> B.

The proof of the theorem follows immediately from the postulates and the previous
results. The same will be true of Theorem 22.

The last theorem of this section unites the properties of a logical algebra of functions
with those of a probability functional. As mentioned earlier, the definition of probability
functional spaces required no logical structure within the collection of functions F. It is

now seen that such a logical structure can always be assumed, however, and used if desired.
TrrorREM 22. Let (S, F, E) be a probability functional space and (F, U, °) a logical
algebra of functions. For all {1, f,, ... fx€F
i) Eff=1—Ef
i) ficfo> BEf <Ef,
i) B(fUfy) =Ef, + Efy— E(f,nf,)
iv) E(LULV.Uf) <Ef, + EBfy+---+Efy
V) E(fUfU ... Ufy) =Ef, + Efy+--+ Efyif all of the following are satisfied:
hnfa=1Is
(hUfnfa=1,

(f10f2U c Ufp)Nfn =14



114 BAYARD RANKIN

5. Computable probability functional spaces

It is of interest to investigate the generalized sequence probability spaces that result
by letting 8 and E, in a probability functional space (S, F, E), be a sequence and asymptotic
average, respectively. (Compare Definition 1, Section 2.) Such spaces might be called
sequence probability functional spaces. Within this class of spaces there is the important
case where S is uniformly dense in [0, 1] and F is the collection of Riemann integrable
functions defined on and to [0, 1] and restricted to S. (See Example 4, Section 3.) It is
this case that we will be concerned with throughout the remainder of this paper. We will designate
a sequence probability functional space in this special case as Riemann. Furthermore, the
sequence S in [0, 1] may be computable and, if this is so, (8, F, E) will be called computable.
The adjective “computable” will also be applied to random variables and sequences of random
vartables on (S, F, E), as in Section 2, with the understanding that their definitions are
given by Definitions 4 and 5, modified to read ‘computable probability functional space’
in place of ‘computable probability space’.

The special implications that a Riemann space (S, F, E) has for number theory,
Monte Carlo methods and statistical mechanics will be left for some papers to follow. We
will now consider what further theorems are true in the Riemann case beside what has
already been proved true in the general context of Section 3.

In Example 4, Section 3, it was seen that all random variables on a Riemann space
are the restriction to S of finite functions that are continuous almost everywhere. Moreover,
this being the case, Theorem 7, Section 3, can be replaced by a stronger statement, namely,
that any composition ¢(X,, X,, ... X) of such random variables, X,, X,,... X with a
function ¢ that is continuous on the finite part of RY is again a random variable. The
implications of this statement for characteristic functions of random variables on a Riemann
space are given in the next theorem.

In the next theorem it is also seen that though random variables on a Riemann
space are limited in the degree to which they can be discontinuous, their characteristic

functions form as general a class as do those of random variables on any probability space.

TueorEM 23. i) For any random variable X defined on a Riemann space (S, F, E),

Dx(f) =B, —oo<f< oo,

exists and equals the characteristic function of some random variable on a probability space.

ii) Conversely, for any characteristic function, ® (), of a random variable on a probability
space, there 1s a random variable X defined on a Riemann space (S, F, E) such that ®x(0) =
D (6).
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Proof. (1) follows from the fact that X is the restriction to S of a finite function that
is continuous almost everywhere and thus ¢®* is the restriction to § of a Riemann integrable
function.

To prove (ii), it is sufficient to show that for any characteristic function, ®(6), of a
random variable on a probability space, there is a random variable X’ on the probability
space ([0, 1], B, ) which is continuous almost everywhere and possesses @ (f) as its charac-
teristic function. The demonstration is immediate: Let X’ be (except for two points) an
inverse of the distribution F' determined by @ (9).

X' (x) =2 Fa)<a< Fx+0),a#0,1
X' () =0, c=0,1

The special evaluations at the points 0 and 1 simply complete the definition of unbounded
functions, X’, otherwise undefined there. X’ restricted to S is the desired random variable X.
Q.E.D.

X oxists and defines a

Though for each random variable X on a Riemann space, Ee
unique characteristic function of a random variable on a probability space and, thus, a
unique distribution function F(x), we cannot in general conclude that E I x..= F(x).
Examples to the contrary have been given in Section 3. On the other hand, for any conti-

nuous function e,
Ec(X)=[c(@)d F (),

where F is determined by Ee’®*. Thus, all theorems of the Helly-Bray type leading to
convergence of moments and convergence of characteristic functions are meaningful and
true in the context of Riemann spaces.

In the case of random variables X on a Riemann space, we will speak of the distribution
function F determined by Fe'®* as the distribution function of X.

Before stating what theorems involving statistically independent random variables
are true in the Riemann case, we find it necessary to prove an existence theorem. This
theorem, that there exist an infinite number of statistically independent random variables
would be trivially true in the measure-theoretic context. It has content here, because we
define the random variables on a Riemann space and, thus, limit the degree of their dis-

continuity.

THEOREM 24. For any sequence of distribution functions F,, k=1,2,3,...., of random
variables on a probability space, there is a sequence of statistically independent random variables

X, Xy, X, ... on a Riemann space such that X, has distribution function Fi.
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Proof. 1t is well known that a product measure p; X gy X --- can be defined on
the product Borel field B; x By X -+ of sets in the infinite dimensional hypercube
[0, 1] to yield a measure space. For an arbitrary sequence of distribution functions F,
and corresponding to each dimension, £, a random variable Y, can be defined on this space
such that it is a function of the kth coordinate only Y, (%, %s, ..., %, ...) = Z (%), it has
at most a countable number of discontinuities when considered as a function of the kth
coordinate, and it has distribution function F,. The sequence Y, Y,, ¥, ... is made up
of statistically independent random variables, each with the prescribed distribution function.
It will be sufficient for the proof to show that these random variables can be transferred
to ([0, 1], B, 1) without destroying their independence or distributions and without in-
troducing discontinuities outside of a set of measure zero.

We now consider the mapping = of [0, 1]° onto [0, 1] defined by expressing each
coordinate x,, #,, ... of a point z in [0, 1] in some binary form and letting 7 (x) be that
point in [0, 1] whose binary representation is o f3; oty ..., as obtained by summing
diagonally over the digits of the array

Xy =0 0y .

Ty="P1fafs .-

T3 = V1VaVs .-
This mapping has been studied by Wiener [10] and has been shown to be one-to-one up
to a set of measure zero, measurable and measure preserving. The set of points in [0, 1]*
with one or more rational coordinates of the form k/2" with k£ and » integers, and a like
set of points in [0, 1], must be excluded before 7 is one-to-one.

Let us define 77! as the mapping from [0, 1] to [0, 1]* that is the inverse of 7 in the
region of [0, 1] where 7 is one-to-one, that is determined on any point with a unique binary
representation - o, f; a9 5% ... as that point in [0, 1]* whose coordinates have the binary
representation given in the above array, and that is determined in like manner on points
with non-unique binary representation by always selecting the representation that termi-
nates in zeros.

We now define the following sequence of random variables on ([0, 1], B, u).
X, () = Yy[v7 ()]
Xy(@) = Yafr ()]
X3(o) = Ya[r (0]
From the properties of Y and 7 it is clear that X;, X,, X, ... is a sequence of statistically

independent random variables and X, has distribution function F,. The fact that each

X, is continuous almost everywhere must now be demonstrated.
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For fixed k, the set of points « in [0, 1] for which 77! («) is a point of discontinuity o
Y, constitutes a set of measure zero (being contained in the union of the set where 7 fails
to be one-to-one and the image under v of the set where Y, is discontinuous). Let o be
any irrational chosen outside this set of measure zero.

For tixed %, and for ¢ > 0, there exists an n, such that if the first n, binary digits in

the kth coordinate of 77 («) coincide with those of 77! (&,) then

| Yoz o) — Yoo (o) <&

On the other hand, z™" is such that for any , there exists a & such that | — o[ <& implies
that the first n, binary digits in the kth coordinate of 77" (x) and & ' () coincide (This

following from the irrationality of e«,). Thus, X is continuous at the point o, Q.E.D.

The following theorem provides a link with measure-theoretic probability theory and
helps us to construct true theorems for Riemann spaces from our knowledge of theorems
in the measure-theoretic realm. In the statement of the theorem it is understood that
independence, convergence, expectation and distribution have either the probability
functional space or probability space definitions, the choice being consistent with the

domain of the random variables involved.

TaEOREM 25. Let (S, F, E) be a Riemann Space. Let Y, Y, Yy, Y, ... be random
variables defined on the probability space ([0, 1], B, P) — P being the Lebesque measure—
which are continuous almost everywhere and whose restrictions to S are X, X, X,, Xg, ...,
respectively. The following are true: ‘

1) X, X,, X, ... are statistically independent if and only iof Y, Yy, Y, ... are sta-

tistically independent.

P P
ii) X,——X if and only if ¥,— —Y
T T
iii) X,——X if and only if ¥,——Y
iv) EX-EY

v) X has distribution function F if and only if Y has distribution function F.

Proof of (i). It is clear that the independence of Y, ¥, Y, ... implies the independence
of X,, X,, X,, ... To prove the converse it is sufficient to show thatif ¥,’, ¥,’, ... Y is
any choice of random variables taken from Y, Y, Y, ...andif f,€Fy, , k=1,2,... N,
then
(4) Efhfs... fn=EHLEf ... Efy,

implies independence of Y';, ¥',, Y¥'5, ... ¥'y. This follows, however, by extending inde-
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pendence to the minimal ¢-fields in B induced by Y';, ¥’,, ..., Y’y from the corresponding

fields of sets in B whose characteristic functions, I, are of the form

I=lim £, ™ €Fy,, f® <[P

These latter fields are independent by virtue of (4) and
lim E{™ £, @ =EI,1,---Iy

im Ef® Ef™-Efy®=EI, EI,--Ely.
Q.E.D.

From the theorems of this section we can immediately conclude that all the theorems

traditionally associated with the central limit problem are meaningful and true for sums
N

Sy= 2 X of independent random variables defined on a Riemann space. We refer to
K=1

the various forms of the weak law of large numbers, the normal convergence criteria, the
Poisson convergence, theorems relating to the infinitely decomposable laws and the central
limit theorem, itself. See Loéve [5, Chapter VI] for a discussion of the central limit problem
in the measure theoretic setting.

In view of the fact that all of the theorems of this section remain meaningful and true
when S in the Riemann space (S, F, E) and any random variable X on the Riemann
space are assumed computable, we can consider the results of this section to be generaliza-

tions of the results obtained in Section 2 for computable probability spaces.

6. Implications for number theory

It is recalled that in Section 2 we constructed, for arbitrary integer N, a finite collec-
tion of N statistically independent random variables, the sample values of any one of
which formed a computable sequence. These random variables were defined on a computable
probability space. It is now clear from the generalizations developed since Section 2 that
we can construct an infinite sequence of statistically independant random variables, with
the property that each generates as its sample values a computable sequence. This can
be done if we define the random variables on a computable Riemann space. In either
the case of a finite collection or an infinite collection of random variables, the construction
may be made consistent with sample values that are either 0 or 1 and, as a result, the
computable sequences of sample values may be regarded as the binary representation of
computable numbers in the unit interval.

The converse of this construction, namely, to select an infinite collection of computable
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numbers from the unit interval in such a way that the digits in their binary representation
coincide with the sample values of an infinite collection of statistically independent random
variables (on a computable Riemann space), is of particular interest in one case. This is
the case where the numbers selected a,, a,, a, ... are all related to one another through a
translation of digits; specifically, a, = «2!(mod 1), a, = «22(mod 1), a; = «23(mod 1), ...,
for some computable «. In this case the binary digits in the fractional part of 2«, namely,
Gy, Uy, Olgy -« ("G Ky Oty ... = 20¢(mod 1)) have many of the properties required of random
numbers, for the relative frequency of occurrence among these digits of any specified

sequence, ;% o0, ..., an® of M digits O or 1 always converges to 2~ M.

1 N
lim — > I,=2"¥
1

N N
. @
I = 1 if (ka, (27700 PR o‘k+M~l) = (0510: “20," ) aMO)
o otherwise.

The question of characterizing a computable number « whose binary digits have the
property expressed by (I) is the basic one. In this section we will prove that almost all
numbers « in the unit interval have the property (I) and that the binary digits of any
such « provide all the sample values (via translation) of an infinite sequence of statistically
independent random variables on a Riemann space. We will also formulate a necessary
and sufficient condition that a given number o should satisfy (I).

It is proposed that if the necessary and sufficient condition can be verified for the
fractional parts of zz and e, that the interesting statistical behavior in the digital structure
of these numbers, as investigated on the high speed computing machines [1, 6, 7], will be
explained in terms of statistically independent random variables on a computable Riemann
space. Moreover, a positive result for # or e or any other computable number would show
the way to a general analytical technique for computing, without recourse to construc-
tion methods, a table of digits «,, &,, s, ... possessing property (I).

To show that almost all numbers « in the unit interval have the property (I), it will

be sufficient to show that almost all « in the unit interval generate a sequence
8. = (a; =a21(mod 1), a, = «22(mod 1), ...)

that is uniformly dense there. Having shown this, property (1) will follow from the pro-
perties of the statistically independent random variables X, X,, X, ... defined on the

Riemann space (S,, F, £) according to

1 lf Xj k-1 =0

X () :{

0 otherwise

j:l’2:3>"': k:l’2,3,"': Qp = K A1 X127
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(It should be noticed that a more elementary and direct proof would be possible if
we did not wish to relate the sample values of statistically independent random variables
on a Riemann space with the digits of numbers that possess property (I). It should also
be noticed that the reasoning of probability functional spaces permits us to define an in-
finite number of statistically independent random variables all of whose sample values
correspond to the digits of one number, whereas the reasoning of sequence probability
spaces limits us to a finite number of random variables. Disregarding the structure in the
domains of definition, however, the functions X,, X,, X, ... given here are identical with
those presented in the elementary case in the proof of Theorem 5.)

To show that for almost all « in the unit interval the above sequence S, is uniformly
dense, we appeal to previous results [2] which show that the kneading transformation T
of the unit square onto itself is metrically transitive. If (-ayotp0t5 ..., *B15585 ...) is the
binary representation of a point (e, b) in the unit square, the kneading transformation

is defined by
T(oogoy .. *f1fofs ) = (-t ..oy 2 1fs...)

This important result on metric transitivity implies that for any measurable set 4 in the

unit square

]_ N
limN;IA [T (a,b)]=pn X u(A)

for almost all (a,b) in the unit square, the exceptional set of measure zero for which
equality does not hold possibly depending on A. In particular, we can let 4 be any diadic
interval B in the unit square of the form:
. 1
Ji<a <72LM, 0<b<1, for some j, 0<j<2M !
and obtain,

lim %;13 (@) = (B),

with a, = «2* (mod 1), for almost all « in the unit interval. Though for each diadic set B
there corresponds an exceptional set of points o of measure zero, there is for the totality
of all such B (the totality being countable) one exceptional set of measure zero for which
equality might not hold. The last equality, therefore, holds for all diadic intervals, provided
a is outside a set of measure zero, and, thus, can be shown to hold also for all intervals,
provided « is outside the same set of measure zero. This proves that the sequence &, is

uniformly dense in the unit interval for almost all « and we have the following theorem.
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THEOREM 26. Almost all numbers o« in the unit interval possess property (I). If o =
g0 Oy ... 18 the binary representation of a particular number possessing property (1) then
for positive integer k the digits o, v, Gprgy --. COrrespond to the sample values of a random
variable X, defined on the Riemann space (S, F, E), S, = (x21(mod 1), «22(mod 1), ...)
and X, k=1,2,3, ... are statistically independent.

The method used in proving this theorem gives no indication of which specific numbers
« have property (L), nor, in fact, whether any computable numbers o (of which there are
at most countably many) possess the property. For this we must use the stronger results
of H. Weyl [9].

First, let us notice that the number x possesses property (I) if and only if sequence
S, is uniformly dense in the unit interval. The sufficiency of the latter condition was
proved in the last theorem and the necessity follows by similar reasoning. Thus any neces-
sary and sufficient condition for a sequence S, to be uniformly dense in the unit interval,
such as Weyl gives [9], will yield a condition for « to possess property (I). In this way

we obtain the following theorem.

THEOREM 27. The number o possesses property (1) if and only if
N
2, oxp (2mwija2")=o(N)
k=

for every positive integer j. (1 = V=1

As stated earlier, the interesting problem of characterizing the class of numbers «
for which the necessary and sufficient condition of this theorem holds (and, in particular,
of determining whether the class includes the numbers = and e) is left as an unsolved
problem in this paper.

We will not investigate in this paper the relationships between numbers o possessing
property (I) and the Kollektiv of von Mises, the normal numbers of Borel, the admissible
numbers of Copeland, the random sequences of Church, and other concepts occurring in

frequency theories of probability.

7. Acknowledgements

We wish to acknowledge helpful discussions that were carried on during the prepara-

tion of this paper with Drs. Ernest B. Leach and Louis J. Green.



122

[11.

[2].

(3].

[41.

[5).
[6].
[71.
[8].

[9].

[10].

BAYARD RANKIN

8. References

GEIRINGER, H., On the statistical investigation of transcendental numbers. Studies in
mathematics and mechanics presented to Richard von Mises. Academic Press Inc.
New York (1954), 310-322.

Hovr, E., Ergodentheorie. Erg. Math. 5, No. 2, Julius Springer, Berlin (1937). Also, Seidel,
W., Note on a metrically transitive system. Proc. Nat. Aead. U.S.A. 19 (1933), 453.

KLEENE, 8. C., Introduction to metamathematics. D. van Nostrand, New York (1952).

Kormocorov, A. N., Grundbegriffe der Wahrscheinlichkeitsrechnung. Erg. Math. 2, No. 3,
Julius Springer, Berlin (1933). Also trans. into English by Nathan Morrison, Chelsea
Publishing Co., New York (1950).

Lo®ve, M., Probability theory. Foundations. Random Sequences. D. van Nostrand Co., Ine.,
Toronto, New York, London (1955).

REITWIESNER, G. W., An Eniac determination of ;1 and e to more than 2000 decimal
places. MTAC 4 (1950), 11-15,

StoxnEHAM, R. G., A study of 60,000 digits of e. Notices, Amer. Math. Soc. 5, No. 1 (1958),
64.

Turing, A. M., On computable numbers, with an application to the entscheidungsproblem.
Proc. London Math. Soc. (2) 42 (1936), 230-265.

Wevr, H., Uber die Gleichverteilung von Zahlen mod. eins. Math. Ann. 77 (1916),
313-352

WiENER, N. & PaLey, R. E. A. C., Fourier transforms in the complex domain. Amer.
Math. Soc. Colloq. Pub. 19, New York (1934).

Received August 8, 1958
in revised form September 7, 1959.



