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Introduct ion  

Since  t h e  m o d e r n  t h e o r y  of p o t e n t i a l s  was  i n i t i a t e d  b y  t h e  w o r k s  of 0 .  F r o s t -  

m a n  [18], M. R i e s z  [26], a n d  D e  l a  V a l l S e - P o u s s i n  [29], t h e  f u r t h e r  d e v e l o p m e n t  h a s  

t o  a l a r g e  e x t e n t  c e n t e r e d  a r o u n d  t h e  fo l l owing  e s s e n t i a l  p o i n t s :  (1) 

A.  T h e  d i s c o v e r y  b y  t I .  C a r t a n  [10] of t h e  f a c t  t h a t  t h e  s p a c e  8 + of a l l  

p o s i t i v e  m e a s u r e s  ~ of finite energy 

lI ll ff ix-yF  
w i t h  r e s p e c t  t o  t h e  N e w t o n i a n  k e r n e l  i n  R n, n >  2, is  c o m p l e t e  in  t h e  strong topology, 

i.e. t h e  t o p o l o g y  d e f i n e d  b y  t h e  d i s t a n c e  H # - v ] l .  

B .  T h e  s y s t e m a t i c  u s e  b y  J .  D e n y  [15] of t h e  ,Fourier trans/orm i n  t h e  s ense  

of L .  S c h w a r t z  [27] for  t h e  s t u d y  of d i s t r i b u t i o n s  of f i n i t e  e n e r g y  w i t h  r e s p e c t  t o  a 

p o s i t i v e  d e f i n i t e  d i s t r i b u t i o n  k e r n e l  i n v a r i a n t  u n d e r  t r a n s l a t i o n s  in  R n. 

(1) As to these and fur ther  lines of research, see the expository article on modern potent ia l  
theory by M. Brelot [7]. 
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C. The study of potentials of measures on a locally compact space with respect 

to a regular kernel (i.e. a kernel satisfying the principle of continuity, cf. w 2.1). The 

main tool is here the vague topology, which is related to the classical notion of con- 

vergence for positive measures. See G. Choquet [12, 13], M. Kishi [19], N. Ninomiya 

[23], M. Ohtsuka [24, 25]. 

D. The theory of abstract  capacities developed by G. Choquet [14]. 

The present exposition is devoted to the theory of potentials of measures on a 

locally compact space, in particular on a group, the main emphasis being placed upon 

the study of capacity and capacitary distributions. In  the existing literature concerning 

this subject the more advanced par t  of the theory is based on the assumption tha t  

the kernel be regular (cf. the references under C above), and it is usually required 

tha t  the kernel fulfil Frostman 's  maximum principle. Instead of making assumptions 

of this nature we have chosen to base our s tudy on the strong topology as well as 

the vague topology. Two papers by  tI .  Cartan [9], [10] have served as a guide. We 

shall investigate the case of a positive de/iuite kernel possessing the following two prop- 

erties: (i) the space E + is strongly complete (cf. above under A), and (ii) the strong 

topology on ~+ ist stronger (=f iner)  than the vague topology on ~+. A positive de- 

finite kernel possessing these two properties will be called per/ect. (1) I t  turns out tha t  

the desired type of results concerning eapacitary distributions (associated with arbi trary 

sets) and capacitabflity of analytic sets can be obtained in a simple and natural  way 

in case of a perfect kernel (or just a consistent kernel). (1) These results are of a 

global nature, unlike the corresponding results based on the maximum principle and 

the vague topology. This fact reflects the global character of the concept of a perfect 

or a consistent kernel (cf. w 7.3). Apar t  from its global character, the concept of a con- 

sistent kernel is, however, more general than tha t  of a kernel fulfilling Frostman's  maxi- 

mum principle. This becomes clear if we consider the case of a compact space (whereby 

the global aspects disappear). Then any positive kernel/c satisfying the maximum prin- 

ciple is positive definite (Ninomiya [23]) and regular (Choquet [12]), and hence it 

follows from the proof of a theorem due to M. Ohtsuka [24] tha t  /c is consistent (cf. 

w 3.4 of the present paper). 

The fact that  the Newtonian kernel (and, more generally, the classical Green's 

function) is perfect, was proved by H. Cartan [10]. I t  is also known tha t  the kernels 

(1) A perfect kernel is, in particular, strictly definite, that is, the energy of a measure/t :~ 0 is 
> 0 if at all defined. This strict definiteness (the so-called principle of energy) is, however, of minor 
importance for the development of the theory, and we have therefore introduced the weaker concept 
of a consistent kernel (w 3.3). Such a kernel is definite, but not necessarily strictly definite. 
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I x - y ]  ~ ~ of order a in R n are perfect ( 0 < g < n ) ,  whereas the maximum principle is 

fulfilled for ~ <  2 only. This perfect character of the kernels of order ~ (among other 

kernels) was established first by  J .  Deny [15, 16]. (1) We present an alternative, more 

elementary and more direct proof based exclusively on M. Riesz' composition formula 

(cf. Theorem 7.4 and w 8.1). The first result in this direction is due to H. Cartan [9], 

who proved tha t  the kernels of order a are K-perfect, tha t  is, perfect when considered 

only on compact subsets of the space. Actually, any strictly positive definite con- 

volution kernel has this lat ter  property,  as we shall show in w 7. Altogether it tm~s  

out that  practically all the definite kernels usually met  with in analysis are consistent 

(and hence perfect if they are strictly positive definite). 

The contents of the present paper  may  be summarized as follows. 

Chapter I is of a preparatory character, and the methods and most  of the results 

are well known. After a brief survey over the relevant parts  of the theory of meas- 

ures and integration on a locally compact space X (w 1) follows an exposition of the 

theory of capacity and of the capacitary distributions(2) on compact sets (w 2). In  this 

section the potential and energy of measures are formed with respect to an arbi trary 

kernel on X. (A kernel on X is defined as a lower semi-continuous function k =  k (x, y) 

on X •  The proofs are based on the facts tha t  potential  and energy are lower 

semi-continuous functions on the space of all positive measures on X with the vague 

topology, and tha t  the class of all positive measures of total  mass 1 supported by" a 

compact set is compact  in the vague topology. 

In  Chapter I I  the kernel k is supposed to be positive de/inite. (We usually omit 

the qualification "positive".) The class E of all measures # (of variable s ign)of  finite 

energy 

(1) I n  D e n y ' s  theory ,  re fe r red  to above  u n d e r  B,  is con t a ined  t h a t  a wide class of pos i t ive  de- 
f in i te  convo lu t ion  kerne l s  on  R n h a v e  proper t ies  ve ry  s imi lar  to those  of a per fec t  kernel  in our  sense  
(cf. D e n y  [15], Chap.  I ,  3), t h e  sole modi f ica t ion  be ing  t h a t  t he  concep t  of ene rgy  h a d  to be  def ined 
in a m a n n e r  qu i te  d i f fe rent  f r om t h e  classical  def in i t ion  as a Lebesgue  in tegra l  adop t ed  in the  p r e sen t  
paper .  I n  a s u p p l e m e n t a r y  pape r  D e n y  [16] p roved  t h a t  th i s  d i f f icu l ty  can  be  overcome u n d e r  t h e  

add i t iona l  a s s u m p t i o n  t h a t  t he  kerne l  be regular .  Never the less ,  i t  s eems  fair  to s ay  t h a t  t he  m e t h o d s  
of  Four ie r  ana lys i s  are  no t  real ly  a d e q u a t e  in  t h e  f iner s t u d y  of capac i ty  a n d  capac i t a ry  d i s t r ibu t ions .  

(2) I f  t he  kernel  fulfills F r o s t m a n ' s  m a x i m u m  principle ,  t h e  c a p a c i t a r y  d i s t r i bu t ions  are  also 
cal led equil ibrium distributions because  the i r  po ten t i a l  is c o n s t a n t  in t h e  se t  in ques t ion  (except  in 

s o m e  s u b s e t  of zero capaci ty) .  I f  t he  kernel  is s t r ic t ly  def ini te ,  the re  is j u s t  one capac i t a ry  distri-  

b u t i o n  on a g i v e n  set.  
(3) The  m o s t  i m p o r t a n t  case is t h a t  of a posi t ive  kernel .  O<~k(x, y)<~ + c~. W e  also a d m i t  

kerne ls  of var iab le  s ign,  b u t  in t h a t  case we res t r ic t  t he  a t t e n t i o n  to po ten t i a l s  and  ene rgy  of meas -  

u res  of (uniformly)  c o m p a c t  suppor t s .  
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is a p r e -H i lbe r t  space wi th  the  energy no rm [[ # ]] = (k (/~, #))  }. The  subse t  E + formed 

b y  all positive measures  in E is a convex cone. Among  the  defini te  kernels  we single 

ou t  those  for which the  two topologies  (s t rong and  vague) on E + have  the  following 

p r o p e r t y  of consistency: I f  a s t rong Cauchy f i l ter  �9 converges vague ly  to  some meas-  

ure /~0, t hen  � 9  s t rongly.  A defini te  kerne l  wi th  this  p r o p e r t y  will be called 

consistent. I t  is easi ly shown t h a t  a kerne l  is perfect  if and  only  if i t  is consis tent  

and  s t r ic t ly  definite.  Cer ta in  sufficient condi t ions  of a general  na tu re  are  ob ta ined ,  

and  i t  is shown t h a t  a kernel  ob ta ined  b y  superpos i t ion  of consis tent  kernels  is con- 

s is tent .  Unde r  the  hypothes is  t h a t  the  kernel  be consis tent  we proceed to  in t roduce  

the  interior and exterior capacitary distributions associa ted  wi th  an  a r b i t r a r y  set of 

f inite inter ior ,  resp. exter ior ,  capac i ty .  (1) We follow the  m e t h o d  ind ica t ed  b y  H.  Car- 

t a n  [10], w 6, for the  Newton ian  kernel  (cf. also Aronsza jn  & Smi th  [1] for the  kernels  

of order  ~.), b u t  cer ta in  modif ica t ions  arc requi red  under  the  p resen t  general  circum- 

stances.  As a by -p roduc t  we ob ta in  the  following p r o p e r t y  of the  exter ior  capac i ty  

of a r b i t r a r y  se ts :  

cap* A = l im cap* A~ 
n 

for a n y  increasing sequence of subsets  A ~ X .  This resul t  is the  k e y  to  an  appl ica-  

t ion of Choquet ' s  t heo ry  referred to  above  under  D, a n d  we conclude t h a t  every  

K - a n a l y t i c  subse t  of X is capaci table ,  i.e. of equal  in ter ior  and  exter ior  capac i ty .  (2) 

The chap te r  ends wi th  a brief discussion of the  t h e o r y  of " b a l a y a g e " .  

Chap te r  I I I  is devo ted  to  the  pa r t i cu l a r ly  in teres t ing  case in which the  space 

X is a local ly  compac t  topological  group and  the  kernel  a convolut ion  kernel ,  i.e. 

k(x, y)=k(xy-1), 

(1) In the study of exterior capacitary distributions we must impose upon the locally compact 
space X a certain restriction, e.g. that X be metrizable. 

(-") For the Newtonian kernel, as well as for Green's function, this result was obtained by 
G. Chequer [14], Chap. II ,  by application particularly of Cartan's maximum principle (tt. Cartan [10], 
w VI), which leads to the fundamental inequality 

cap (A [JB)+cap (A NB)<cap  A + c a p  B 

for arbitrary compact sets A and B. The method described above in the text was used first by 
Aronszajn and Smith [1] in ease of the kernels of order a. Recently, 1~[. Kishi [19] has established 
the capaeitability of all relatively compact Borelian or K-analytic subsets of a locally compact space 
of which every compact subset is metrizable, the assumption on the kernel being closely related (in 
fact equivalent) to Frostman's maximum principle. 
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the  "ke rne l  func t ion"  k =  k(x)  being a given lower semi-cont inuous  func t ion  on the  

group X.  I t  is shown t h a t  any  defini te  convolu t ion  kernel  is K-cons i s ten t  (Theorem 

7.2). The proof  is based  on t h e  fact  t h a t  the  energy /unction 

is bounded  and  un i fo rmly  cont inuous  p rov ided  /~ E ~+ (Theorem 7.1). This resul t  fol- 

lows, in turn ,  f rom a l emma asser t ing t h a t  a pos i t ive  defini te ,  lower semi-cont inuous  

funct ion  / on a topologica l  group is bounded  and  un i formly  cont inuous  p rov ided  / i s  

f ini te  a t  the  iden t i ty .  The p r o p e r t y  of a defini te  convolu t ion  kernel  to  be ac tua l ly  

consis tent  (not only  K-cons is ten t )  depends,  therefore,  on the  behav iour  of the  kerne l  

funct ion k (x) as x tends  to  in f in i ty  in X,  cf. w 7.3. I n  case of an  Abel ian  group we 

prove,  in pa r t i cu la r ,  t h a t  if k = k (x) has  the  form 

where  h~>0 is lower semi-cont inuous  on X,  then  the  convolut ion  kernel  Ic(xy -1) is 

consistent ,  and  ~+ is comple te  (Theorem 7.4). Several  i m p o r t a n t  kernels,  inc luding 

those  of order  a,  are  of th is  form. Some t y p e s  of kernels  s tud ied  b y  K .  K u n u g u i  [20], 

N. N i n o m i y a  [22], and  T. Ugaher i  [28] are inves t iga ted  fu r the r  (w 8.2), and  the  pape r  

closes wi th  a number  of examples  serving to i l lus t ra te  var ious  poin ts  in the  theory .  

I .  B A S I C  CONCEPTS OF P O T E N T I A L  T H E O R Y  

1. Measures on locally compact spaces 

The d is t r ibu t ions  of mass  (or charge) to be considered in the  presen t  s t u d y  are  

those  which can be in t e rp re t ed  m a t h e m a t i c a l l y  as rea l -va lued  measures, in pa r t i cu l a r  

posi t ive  measures .  Refer r ing  to  N.  Bourbak i  [4], [5] for an  expos i t ion  of t he  t h e o r y  

of measures  and  in tegra t ion  on a local ly  compac t  Hausdor f f  space,  we l imi t  ourselves 

to  l is t ing (in w 1.1) those  concepts  which are  especia l ly  r e l evan t  in po ten t i a l  theory ,  

and  to  s t a t ing  (in w 1.2) some fur ther  necessary  results .  As to  the  t e rmino logy  a n d  

no ta t ions  we genera l ly  follow Bourbak i .  (1) 

(1) Certain exceptions from this convention will be listed here. Our locally compact (I-Iausdorff) 
space is denoted by X, and the class of all continuous functions on X by C = C (x). (When speaking 
of a continuous function, we generally understand that the values are ]inite real numbers. A lower 
semi-continuous function is allowed to take the value + c~, but not - c~.) The class of all continuouS 
functions of compact support is denoted by Co = Co (x). :For any class :~ of functions, 5 + denotes 
the class of all positive functions (/>~ 0) from 5. The support of a function, or a measure, is denote d 
by S (]), resp. S (/~). A set A c X is said to be of class K a if A may be represented as the union o f 
some sequence of compact subsets of X. 
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1.1. Principal notions. The class of all (Radon) measures on a locally compact  

(Hausdorff) space X is denoted by  ~ = ~ (X). On this linear space, the semi-norms 

~-- ,  f/d~, /eCo, define the so-called vague topology. A filter q5 on ~ (cf. Bour- 

baki [2], Chap. I, w 5) converges vaguely to ~0 E ~ if 

lira f ] d/~ = f / d it o along (I) for every / E Co. 

A subclass B of 7tl is called vaguely bounded if each of the above semi-norms re- 

mains bounded on B. Any  vaguely  bounded subclass of ~ is relatively compact in the 

vague topology (Bourbaki [4], Chap. I I I , w  2, N ~ 7). The converse is obvious since the 

semi-norms are continuous. Par t icular ly  useful is the induced vague topology on 

~ + =  ~ +  (X), the class of all positive measures. The space ~ +  is vaguely complete, 

and  hence closed in ~ .  YIore generally, the class ~ of all positive measures sup- 

ported by  a given closed set F is a closed convex cone in ~ .  

The integral (strictly speaking: upper  integral) of a lower semi-continuous function 

g>~ 0 with respect to a measure # >~ 0 is defined by 

f gd~= sup fide. 
f�9 c +,f< 

This integral is addit ive and positive homogeneous in g and /z. Clearly, the mapping  

-->fgd/~, # E ~  +, is lower semi-continuous in the vague topology on ~ +  for fixed 

lower semi-continuous g~>0. (1) Since the characteristic funct ion ~ associated with an 

open set G c X  is lower semi-continuous, we m a y  define the measure of G by  

~(G)= f ~od~. 
Subsequent ly  one introduces the class s (/z) of ~-integrable functions / with val- 

ues - ~ < / ( x )  ~ < + ~  (Bourbaki [4], Chap. IV, w167  The integral of / with re- 

(1) Under the additional assumption that /~ E ~ +  be of compact support, one obtains a de- 
finition of f gdl~ for any lower semi-continuous g (whether positive or not) by replacing the class C~ 
by the class Co in the above definition. I t  is easily verified that this integral is additive und positive 
homogeneous with respect to the two variables g and r Denoting by c~> 0 a constant such that 
g (x)/> - c  everywhere in S (/z), we get 

f gd~  f (g§ dt,. 

compact, the mapping # -* r J gd/z is lower semi-continuous on ~ +  for any given lower If X is 

semi-continuous function g on X. 
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spect to # is denoted by  f/d/u.(1) Taking [=~vA=the  characteristic funct ion asso- 

ciated with a set A c X,  we obtain the class of #-integrable sets. The measure of such 

a set is defined by  /U ( A ) =  f ~oAd/U. An3; compact  set is integrable. Next ,  one defines 

the local concepts of a ~a-measurable function and a /a-measurable set (Bourbaki  [4], 

Chap. IV, w 5). 

For  an arbi t rary  set A c X the exterior and the interior measure of A are deter- 

mined by  

/U (A) = inf/U (G) and /U. (A) = sup/U (K), (1) 
GDA K ~ A  

respectively. (The letter G refers to open sets and K to compact  sets.) The equat ion 

/U*(A)=/z,(A) subsists no tab ly  if A is open, or if A is /u-measurable and  contained 

in the union of some sequence of /u-integrable sets. A set N c  X is called ~u-negligible 

if /U* (N) = 0, and locally /u-negligible if N f3 K is /u-negligible for every compact  set K. 

These concepts lead to the notions ~u-almost everywhere (/u-a.e.) and locally ~u-almost 
everywhere, respectively. 

The trace /UA of a measure /U>~0 on a /u-measurable set A c X  is defined by  

/aA = ~0a �9 i.e., 

f /d/uA= f /.wd/u, /eC~. (2) 

(Observe tha t  /~vA is #-integrable.) The total  mass of/UA is/UA(X)=/U.(A) (cf. Lemma 

1.2.2 below). A measure /U ~> 0 is said to be concentrated on a set A if the comple- 

ment  C A is locally /u-negligible; or, equivalently,  if A is /a-measurable and/U =/UA. I t  

follows tha t  /U(X)=/U.(A).  (If A is closed, or if for instance # * ( X ) < + c ~ ,  then 

/U*(CA)=/a.(CA)=O, t ha t  is, C A  is /u-negligible. A measure # is, therefore, concen- 

t ra ted  on a closed set A if and only] if /U is supported by  A, which means tha t  

S(/U)cA.) For  any  measure /U>~0 and any  /u-measurable set A,  /UA is concentrated 

on A. We denote by  ~ the class of all positive measures concentrated on a given 

set A c X .  

Using the canonical decomposit ion / u = # + - / a - ,  one defines measurabi l i ty  and 

integrabil i ty with respect to  a measure /a of variable sign by  requiring measurabi l i ty  

and integrabil i ty with respect to /~+ and /U-, or, equivalently,  with respect to 

I/U]=/U + +/U-. For  a ny  /u-integrable funct ion [ one defines 

(1) In particular, a lower semi-continuous function g ( ~> 0 unless S (/x) is compact) is integrable 

respect to a measure /x~> 0 if and only if J gd/~, as defined above, is finite. :In the affirmative w i t h  

case the two notions of integral coincide. 
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The same formula serves to define the integral of a lower semi-continuous function 

/ provided f / d #  + and f / d # -  are not both infinite; moreover, it is assumed either 

tha t  f~>0 or tha t  S(/~) is compact (el. note 0), P. 145). 

The product ,a | v of two measures # and v on the locally compact spaces X 

and Y, respectively, is defined as the unique measure on the product space X •  Y 

such tha t  

for every qECo(X), ~ECo(Y). Here ~0| denotes the function ep(x).~(y) of class 

Co (X • Y). When integrating with respect to # | v one may  write f f  r (x, y) d/~ (x) dv (y) 

instead of f ]d(~Qv) .  The following two instances of Fubini 's  theorem 

f f / (x ,y)dt~(x)dv(y)= fd t~(x ) f / (x ,y )dv(y )= fdv (y ) f / ( x , y )d t t ( x )  (3) 

will be used repeatedly in the sequel: 

(i) I f  / is integrable with respect to # |  i.e. / Es  | then the interior 

integrals on the right represent functions Of class El(#) and s (v), respectively, de- 

fined and finite almost everywhere, and (3) subsists. 

(ii) If / is lower semi-continuous (and ~>0 unless tt and v have compact sup- 

ports), then (3) holds provided the integral with respect to # | v is defined. (Cf. above. 

See also Lemma 1.2.6 below.) This is always the case if /~>~ 0 and v~> 0, in which 

case the interior integrals on the right represent lower semi-continuous functions of 

x and y, respectively. 

As to the proofs, see Bourbaki [5], w 8, N ~ 1, for the case of positive measures; 

and apply Lemmas 1.2.3 and 1.2.6 below in the general case. 

1.2. Supplementary results. In  order to sav e space we omit the proofs of the 

following lemmas. 

LE~MA 1.2.1. I/ a locally compact space X is metrizable and o/ class Ko, then 
~ (X) satis/ies the /irst axiom o/ countability. 

In  view of this lemma the use of filters may  often be avoided in the sequel if 

one assumes that  the locally compact space X is metrizable and of class K~ (or, 

equivalently, that  X satisfies the 'second axiom of countability, cf. Bourbaki [3], w 2, 
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N ~ 9). I n  case of such a space X,  a positive measure i f  adheres to a subset 

S ~  ~ +  (X) if and only if S contains a sequence converging to  ft. I n  particular,  g is 

closed if and only if $ is sequentially closed. Similarly, any  bounded sequence in ~ +  

contains a convergent  subsequence. 

We return to the s tudy  of measures on an arbi t rary  locally compact  space X.  

LEMMA 1.2.2. For any lower semi-continuous function g>~O, any measure f f~O,  

and any if-measurable set A ~ X ,  

fgdif = f gdif  (K compact). 

This is a generalization of the second par t  of (1), w 1.1, which corresponds to 

the case g = 1. The following lemma deals with measures of a rb i t ra ry  sign. 

LEMMA 1.2.3. Suppose g is lower semi-continuous (and />0 unless # and v have 

compact  supports). The identity 

f gd (aif + b )=a f g @  + b f gdv 

subsists in the sense that the integral on the left is defined whenever the two integrals on 

the right are both defined and the linear combination is meaningful. 

The remaining~ three lemmas are concerned with the produc t  of two measures 

on two locally compact  spaces X and Y, respectively. 

LEMMA 1.2.4. The mapping (if, v ) - - > f |  o/ ~ + ( X ) x ~ + ( Y )  into ~ + ( X x Y )  

is continuous. 

(Cf. Bourbaki  [4], exerc. 5, p. 100). The corresponding assertion concerning meas- 

ures of a rb i t rary  sign would be false. 

LEMMA 1.2.5. I f  A c X  and t B ~  Y are measurable with respect to I fETR+(X) 

and v E ~ +  (Y), respectively, then the trace o/ if | v upon A x B equals ifA @ VB. 

In  particular,  f f |  is concentrated on A x B  if ff is concentrated on A and 

o n B .  

LEMMA 1.2.6. The following identities hold /or any two measures ff E ~ (X) and 

S (if | ~) = S (if) x S (~), 

lif |  | 
(,a | v) + = (,a + | v +) + ( i f -  | v - ) ,  

( f f |  |  - | 
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2. Kerne l ,  potent ial ,  energy ,  capaci ty  

2.1. De/initions. B y  a kernel on a locally compact  (Hausdorff) space X is mean t  

a lower semi-continuous function k=k(x ,y) ,  defined everywhere in X •  with values 

- oo < k ( x ,  y ) <  + ~ .  

A kernel is called positive if k (x, y)>~ 0 for every pair  (x, y), and strictly positive if, 

in addition, k ( x , x ) > 0  for every x E X .  A kernel k is called symmetric if k ( x , y ) =  

= k(y, x). For  any  kernel 2, the functions k(x, �9 ) and k ( . ,  y) are lower semi-contin- 

uous in X for fixed x and y, respectively. 

We proceed to define potent ial  and energy of measures with respect to a given 

kernel k. I n  order to uvoid certain difficulties we shall always assume that the meas- 

ures in question have compact supports, except in the case o/ a positive kernel, where 

arb i t rary  measures are admit ted.  The potential of a measure # on X at  a point  x E X 

is then defined by  

k(x, Et)= S k(x, y)d/~(y)=k(x, #+)-k(x ,  #-) 

provided k(x, #§ and k(x, #-) are no t  bo th  infinite. I n  particular,  the potential  of 

a positive measure is defined everywhere and represents a lower semi-continuous func- 

t ion on X. We shall sometimes use the nota t ion 

k (A, # ) =  sup k (x,//,) 
x e A  

( A c X ;  #>~0). 

The mutual energy of two measures ~u and v (of compact  supports  unless k~>0) 

is defined by  

k(#,  v ) =  f f k ( x ,  y)d/~(x)dv(y)=k(#+,v+)+k(# -, v - ) - k ( / ~  +, r - ) - k ( # - , v  +) (1) 

provided k ( / ~ + , v + ) + k ( # - , v  TM) or k (#+ ,v - )+k (# - , v  +) is finite (ef. Lemma 1.2.6); 

thus in part icular  if /~ >~ 0 and v>~ 0. F rom Fubini ' s  theorem follows t h a t  

k(#,  v ) =  f k (x ,  v ) d # ( x )  = fk(/~, y)d~(y) 

whenever k (~u, v) is defined. For  v = #  we obtain  the energy of /~: 

k(# ,  # ) =  f f  k(x, y)d/~(x)d/~(y)= S k(x, #)d/~(x). 

If  the kernel k is symmetric, we have the law of reciprocity 
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/ k (x,/ t)  du (x) = f k (x, v) d/ t  (x), 

valid a t  least when k (it, v) is defined. 

The following three functions defined for positive measures tt (of compact  sup- 

por t  unless /c~> 0) present a certain similarity, and each of them gives rise to a con- 

cept of capaci ty  (cf. w 2.3): 

U (~) = k ( x ,  ~)  = sup ~ (x, ~) 
x e X  

v (~) = k ( s  (~), ~) = sup k (x, ~) 
x e s ( t o  

Clearly, 

W ( ~ ) = k ( ~ ,  ~)  = . I k ( x , ~ ) d ~ .  

- ~ < w ( ~ ) <  v ( ~ ) . t , ( x ) ;  v ( ~ ) <  u ( ~ ) .  

A kernel is said to satisfy F ros tman ' s  maximum principle if U(/~)= V(/~) for every 

E ~ +  of compact  support .  (1) (If a positive kernel satisfies this max imum principle, 

then U (/~) = V (~u) for every /~ E ~+.)  

A kernel k will be called pseudo-positive if W (ju)/> 0 for every /~ E ~ +  of com- 

pac t  support;  and strictly pseudo.positive if W(/~)> 0 for every ju E ~ + ,  # ~ : 0 ,  of com- 

pac t  support.  Any  positive kernel is pseudo-positive, and it is strictly pseudo-positive 

if and only if it is str ict ly positive. (In fact, if k(/~,/~) = 0 ,  the open set of pairs 

(x, y) such tha t  k (x, y) > 0 does no t  meet  the  support  S (/~) • S (/~) of # | Hence 

k (x, x) = 0 for every x E S (/~). The converse s ta tement  is verified by  taking /~ = ex 

( = t h e  mass §  placed a t  the point  x.) 

A kernel /c is called regular if it satisfies the principle o] continuity, i.e. if one 

can conclude tha t  the potential  ]c (x,/~) of a measure /~>~ 0 of compact  support  is 

continuous th roughout  X when it is known tha t  the restriction of k(x, [~) to  S ( # ) i s  

continuous. (2) As to the  s tudy  of potentials with respect to  a regular kernel, or a 

kernel satisfying F ros tman ' s  max imum principle, see for instance the l i terature referred 

to  in the introduct ion (under C). I n  the present s tudy  we shall generally no t  make  

assumptions of this na ture  (cf., however, Theorems 3.4.1, 3.4.2, and 7.3). 

(1) The fact that the :Newtonian kernel satisfies this maximum principle was proved by M. A. J. 
Maria [21]. The kernels of orders ~< 2 have the same property, as shown by Frostman [18], p. 68. 

(2) The regularity of the Newtonian kernel was proved by G. C. Evans [17], p.  238, and by F. 
Vasilesco [31]. For the kernels of order a, 0<~<n ,  see Frostman [18], p. 26. More generally-, S. 
Kametani has established the regularity of any kernel on R n which is a continuous, decreasing, and 
positive function of ] x - y l  {cf. K. Kunugui [20], p. 78). A further sufficient condition for regularity 
is found in H. Cartan & g. Deny [lI], w167 6, 7. 
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In  the sequel we shall concentrate on either of the following two cases: 

I: The kernel k is positive: k(x, y)~>0. 

I I :  The space X is compact. 

The remaining case Of a kernel of variable sign on a locally compact, non compact space 

presents certain difficulties unless the at tent ion is limited (as described above) to meas- 

ures supported by some (fixed) compact subset K c X (cf. w 5.3). This limitation actually 

amounts to replacing X by  the compact space K,  and k by its restriction to K•  

so that  one is back in Case I I .  Throughout the rest of Chapter I and the whole of 

Chapter I I  (except for w 5.3) we shall therefore always assume tha t  one (or bo th )o f  

the above cases I or I I  occurs. This general hypothesis will usually not be repeated. 

Case I I  can mostly be reduced to Case I simply by  replacing the kernel k by  the 

positive kernel k' obtained by  adding to k a suitable constant c>~0: 

k' (x, y)=k(x,  y)+c>~O. 

This is always possible since a lower semi-continuous function is bounded from below 

on a compact space. 

A kernel ]c is called de/inite ( =  positive definite) if it is symmetric and if the 

energy k (#, #) is ~> 0 whenever defined; and strictly de]inite if, in addition, k (/~, #) = 0 

implies # = 0. Thus a symmetric kernel is definite if and only if 

k(~ +, ~ + ) +  k (~-,  ~-)~> 2 k (~ +, ~- )  

for every measure /~. Any definite kernel is pseudo-positive, and any strictly definite 

kernel is strictly pseudo-positive. Chapters I I  and I I I  are devoted to the s tudy of 

potentials with respect to a definite kernel. 

In  the remaining par t  of Chapter I,  only positive measures will be considered, 

and the space 71~ + of all such measures will be thought  of as a Hausdorff  space with 

the vague topology (w 1.1). 

(a) 

(b) 

(c) 

(d) 

(e) 

2.2. Potential and energy o/ positive measures. 

LEMMA 2.2.1. The /ollowing live /unctions are lower semi-continuous: 

k(#,  v )=  f f k ( x ,  y)d/~(x)gv(y) on ~ § 2 1 5  +. 

k(x ,#)= f k(x, y) d#(y) on X x ~  +. 

v ( ~ )  = ~ (x ,  ~) on ?~+. 

V (~) = k ( s  (~), ~) on ~ + .  

W(/~) =k(~, ~) on ~ + .  
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Proo/. Ad (a): consequence of Lemma 1.2.4 since the funct ion f k d2  of ~ E 

~ +  ( X •  is lower semi-continuous (w 1.1). Ad (b): consequence of (a) because the map- 

ping x--> ex of X into ~ +  is continuous and k (x, # ) =  k (ex,/t) when ex denotes the 

mass + 1 placed at  the point  x E X. Ad (c) and (d): consequences of (b). We show 

this in the case of the funct ion V(/t). Let  /t0 E ~ + ,  t <  V(/t0 ). Then k(x0,/t0) > t  for 

some x 0 ES(~o). I n  view of (b) there are neighbourhoods A of x o in X and B of/~0 

in ~ +  such tha t  

k ( x , / t ) > t  for x E A ,  /~EB. (I) 

Since x o E S (/to), there is a function / E C~ with S (]) c A such tha t  f / d/~0 4: 0, and 

hence f /d / t :4 :0  for every /t in some neighbourhood B' of /t 0. This implies t h a t  S(#)  

has some point  x in common with A when # E B'. Using this point  x in (1), we con- 

clude that  V (/t) >~ k (x, #) > t for every I ~ E B N B'. Ad (e) : consequence of (a). 

L E M ~ A  2.2.2. I /  a positive measure ~u is concentrated on some set A ~ X ,  then 

U (/~) = lim U (/tK); V (/t) = lim V (/tK); W (/t) = lim W (/tK), 
K t a  KtA ~ t A  

where #K denotes the trace o/ # upon K, and K ranges over the increasing /iltering 

/amily o/ all compact subsets o/ A.  (1) 

Proo/. According to L e m m a  1.2.2. with g E C~, #K ->/tA = # vaguely  as K t A.  

Hence it  follows from the preceding lemma tha t  

U (/~) ~< lim U (/~K) ~< U (#) 
K~A 

(in Case I), and similarly wi th  V or W in place of U. Case I I  (X compact ) fo l lows  

from Case I in the  usual way.  

Remark. If  # >~ 0 and v/> 0 are concentrated on A c X and  B c X,  respectively, 

i t  follows in the same wa y  tha t  

k (tt, v )=  lim k (/tH, V)= lim k (/~, vK)= lim k (/~H, V~), 
zl tA K~B ~ t ~ , K t B  

where H and K denote arb i t rary  compact  subsets of A and B, respectively. 

(1) As to the concept of a filtering family (generalizing that of a monotone sequence), we refer 
to Bourbaki [2], Chap. I, w 5, N ~ 4. In case I (k>~0) the sign "lira" may be replaced by supremum 
over all compact subsets K c A. 
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2.3. Capacities associated with a kernel. Given a kernel k = k ( x ,  y ) o n  X ,  we 

derive from each of the functions U(/~), V(~u), W(#)  a set function by  defining, for 

any  set A c X ,  

u ( A ) = i n f  U(#);  v ( A ) = i n f  V(#); w ( A ) = i n f  W(#),  (1) 

where F, ranges over the class of all positive measures concentrated on A and of tota l  

mass # ( X ) = / ~ ( A ) =  1. (We interpret  these infima as + ~ if A is void.) The result 

would be the same if S(/~) were required to be compact  and contained in A; this 

follows easily f rom Lemma 2.2.2 and the second relation (1), w 1.1. Hence 

u ( A ) = i n f  u (K) ;  v ( A ) = i n f  v(K);  w ( A ) = i n f  w(K),  (2) 

where K ranges over the class of all compact  subsets of A. Clearly, each of the three 

set functions is decreasing and at ta ins  its min imum at  A = X. Moreover, 

+ co >~u(A)>~v(A)>~w(A)> - oo. 

I f  the kernel satisfies Fros tman ' s  max imum principle, u ( A ) = v ( A )  for every set A.  

I t  is well known, and will be shown in w 2.4, t ha t  v ( A ) = w ( A )  for every set A if 

k is symmetric .  

To each of the functions u, v, w corresponds an "exter ior"  set funct ion defined 

as follows for a rb i t rary  A c X:  

u* (A) = sup u (G); v* (A) = sup v (G); w* (A) = sup w (G), (3) 

where G ~ ranges over the class of all open sets containing A. The relations u* ( A ) =  

= u( A) ,  etc., hold for any  open set A. I t  will be shown presently t h a t  they  hold 

likewise if A is compact  (Lemma 2.3.4). 

The sets N c X such tha t  w (N) = + co or w* (N) = + co play  an impor tan t  role 

as negligible sets. Observe tha t  each of these two classes of negligible sets remains 

unchanged if the kernel k is replaced by  k + c for some constant  c. I n  the s tudy  of 

the two types  of negligible sets i t  suffices, therefore, to  consider case I (k~>0). A 

proposit ion involving a variable point  x 6 A (where A denotes a given subset of X) 

is said to subsist nearly everywhere (n.e.) in A if w(~V)= + ~ ,  N being the set of 

points of A for which the proposit ion fails to  hold. Similarly, the proposit ion is said 

to hold quasi-everywhere (q.e.) in A if w* ( N ) =  + ~ .  The following lemma is easily 

verified, for instance in the succession (i) ~ (ii) ~ (iii) ~ (iv) ~ (v) ~ (i): 
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LEMMA 2.3.1. Let N c X .  The /ollowing /ive conditions are equivalent: 

(i) w ( N ) = + ~ .  

(ii) w ( K ) =  + oo for every  compac t  set  K e N .  

(iii) I t .  ( N ) =  0 for every  posit ive measure  /z of finite energy on X. 

(iv) /~ = 0 is the only posit ive measure  of finite energy concentra ted  on N.  

(v) It = 0 is the only posit ive measure  of finite energy suppor ted  by  some com- 

pac t  subset  of N.  

We denote in the  sequel by  9~ the class of all sets which are measurable  with 

respect  to every  measure  on X.  I t  follows f rom condition (iii) of the above  l emma 

t h a t  the union o/ any denumerable /amily o/ sets o/ class 9~ with w = + cr is a set with 

w = + oo. The following l emma  will be used later.  

LEMMA 2.3.2. Let tz E ~ + ,  A c X ,  and 0 <~ t <~ + ~ .  The/ollowing two propositions 

are equivalent: 

(a) /c (x, It) >~ t for near ly  every  x E A. 

(a') k(v, it)>1 t . v ( X )  for every posi t ive measure  v of finite energy and  suppor ted  b y  

some compac t  subset  of A. 

I n  proving  t h a t  (a) implies (a'), we m a y  suppose /c(v , /u)< ~ ,  i.e. k(x,  i t ) i s  

v-integrable.  Wri t ing  N =  ( x E S ( v ) : I c ( x , / u ) < t } ,  we have  w ( N ) =  + cr and  hence 

v.  ( N ) =  0. Since N is r -measurable  and  contained in the  compac t  suppor t  of v, we 

conclude t ha t  v* ( N ) -  0, and hence 

k(v, i t ) =  f k(x,  #)dv>~t .  f d v = t . v ( X ) .  
S 0') S (v) 

Next ,  suppose (a) is not  fulfilled, and  write B = (x E A : k (x, ~) < t). Then w (/3) 4 § ~ ,  

and  hence there  is, in view of L e m m a  2.3.1, a posi t ive measure  v ~ 0  of finite energy 

suppor ted  by  some compac t  set K c B .  Since k ( x , # ) < t  in K,  we obta in  k( r , /~)  

< t . v ( X )  in contradict ion with  (a'). 

THEOREM 2.3. For any non-empty compact set K c X ,  each o/the three in/ima (1), 

with A = K,  is an actual minimum. The minimizing measures constitute a compact sub- 

class o/ ~+. 

Proo/. Choose a funct ion ] EC~ which equals 1 in K .  Then j u ( X ) =  f / d #  de- 

pends] cont inuously on /t E 7~/~. The  subset  of ~ +  over  which /~ ranges in the ex- 

t remal  problems (1) is therefore closed (in the  vague topology).  Being vague ly  bounded,  

this set  is compac t  (and n o n - e m p t y  when K is non-empty) .  Hence  the theorem fol- 
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lows from L e m m a  2.2.1. We denote  the  three  classes of minimizing measures  b y  

~ ,  ~K, a n d  ~ x ,  respect ive ly .  

L E M ~ A  2.3.3. I /  A denotes the union o/ an increasing sequence o/ sets A~ o/ 

class 9X, then 

u ( A ) =  l im u ( A . ) ;  v (A)= lira v(A~); w ( A ) =  l im w(A~). 

Proo[. I t  suffices to  consider case I (k>~0), and  we m a y  assume t h a t  A is non- 

void.  Le t  /~ E ~ ,  # ( X ) =  1, and  denote  b y  /,~ the  t race  of # on the  /~-measurable 

set A~. Then  /,~ (X) = # (A,)  -+ ~u (A) = fl (X) = 1, and  hence we m a y  suppose all #~ 4: 0. 

Wr i t i ng  ~ = # , / / ,  (A~), we have  ~ E ~$~+ and  ~n (X) = 1. Hence  
An 

w (A,)  < W (~)  = W (/~.)/~ (A.) 2 <-< W (~)//~ (A.)  ~. 

Le t t i ng  n --> ~ ,  we conclude t h a t  l ira w (An) ~ W (#), which implies  the  non- t r iv ia l  

p a r t  of the  l imi t  re la t ion  for w. The  proof  is s imilar  for  t he  funct ions  u and  v. 

Remark. F o r  a decreasing sequence the  corresponding l imi t  re la t ion  would  be 

false in general .  (1) I t  does hold,  however,  in  the  case of compact sets; and  in t h a t  

case the  sequence m a y  even be rep laced  b y  an  a r b i t r a r y  decreasing filtering ]amily 

of compac t  sets K .  Wr i t i ng  K 0 =  N K ,  we propose  to  es tabl ish  the  following 
K e ~  

relat ions:  

u (Ko) = l i m u  (K); v (Ko) = l im v (K); w (Ko) = l im w (K) (4) 

as K - >  K 0 th rough  ~ .  (Of course, the  l imi t  sign m a y  be replaced  by sup remum over  

all  K E~ . )  Consider,  e.g., the  set funct ion  w, and  choose for every  K E ~  some mini-  

mizing measure  #K E WK (i.e. jUK E ~ : ,  # g  (X) = 1, W (/~K) = w (K). W e  d is regard  the  

t r iv ia l  case where some K is empty) .  Since the  measures  #K, K E ~ ,  belong to the  

bounded  (i.e. r e l a t ive ly  compact )  class of all  measures  # 6 ~ +  wi th  # ( X ) ~  1, there  

exists  a t  least  one c lus terpoin t  /~0 of /~K as K - >  K 0 th rough  ~ .  B y  v i r tue  of the  

lower semi -con t inu i ty  of W(/~) and  the  fac t  t h a t  w is decreasing,  we conclude tha t ,  

as K--> K 0 th rough  ~ ,  

W (~0) < l im w (K) < w (K0). (5) 

Clear ly  /~o is suppo r t ed  b y  each K E ~ a n d  hence b y  K o. I t  will be  shown p resen t ly  

(1) As an example pertaining to the Newtonian kernel I x - y ]  1 in R 3, let An denote the open 
region between two concentric spheres, say Au = (x e Ra: 1 - n -1 < Ix ] < 1}. Then fl An is void, but 

n w (An) = 1. 

11 - 603808 Acta mathematica. 103. Imprim6 le 22 juin 1960 
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t h a t  #0 ( X ) =  1. Then i t  follows f rom (5) t h a t  w (K0)=  W (#0)- This implies,  in  tu rn ,  

the  desired re la t ion  (4) and,  moreover ,  t h a t  /t o is a minimizing measure /or the set 

K0 .(1) To see t h a t  / t 0 ( X ) = l ,  we choose a funct ion / E C ~  so t h a t  / ( x ) = l  in  some 

open set G ~ K  o. Now, G contains  some set H E~.(2)  F o r  every  K E ~  such t h a t  

K ~ H we have  

f 

and  hence /to (X) = f / d / t  o = lim f [d/tK= l. 

L ~ M ~ A  2.3.4. For any compact set K, u * ( K ) = u ( K ) ,  v* (K)=v(K) ,  and w*(K) 

= w (K) .  

This follows from the  above  r e m a r k  appl ied  to  the  f i l ter ing fami ly  of all  com- 

p a c t  ne ighbourhoods  H of K .  I t  is well known t h a t  the  in tersec t ion  of th is  fami ly  

is K .  Hence  there  corresponds to  every  number  t < w ( K )  a compac t  ne ighbourhood  

H of K such t h a t  w ( H ) > t .  I f  G denotes  the  in ter ior  of H ,  we have  G ~ K ,  a n d  hence 

w* (K) >~ w (G) >i w (H) > t. 

Consequent ly ,  w* (K) >1 w (K), q.e.d. 

This l emma,  or the  r emark  on which i t  was based,  asser ts  t h a t  t he  decreasing 

set  funct ions u, v, and  w are  continuous from the outside when considered on compac t  

sets. :Now, let  0 = 0 (t) denote  a decreasing funct ion of the  real  var iab le  t, ma pp ing  

the  in te rva l  w (X)~< t ~ + co (in case of the  set funct ion w) in a cont inuous  w a y  into 

the  ex tended  real  line. The set funct ion  ~ ( K ) =  0 (w(K)), considered on the  class of 

(1) The part  of this remark which concerns the minimizing measures can be formulated in a 
slightly stronger way in which the arbitrary choice of a minimizing measure for each set K E ~ is 
avoided. We associate with every set H E ~ the "section" 

$ ( ~ ) =  U ~ K  ( H e ~ , K e ~ )  
K C H  

/onsisting of all minimizing measures for all subsets K c H, K E ~. These sections S (H) generate a 
ilter (0 on a relatively compact subset of ~ +  (because fl (X) = 1), and the proof above shows that  
the vague adherence of �9 is contained in ~ K , .  

(2) In  fact, the decreasing filtering family formed by the compact sets K fl C G, K E ~, has a 
n void intersection. According to the "finite intersection principle", there is a finite family (Kt ) i= l ,  

Ki E ~, such tha t  the intersection 
n n 

( N K0 N C a = n (K~ (~ [J G) 
i = l  ~ = 1  

is void. Since ~ is filtering, there is a set H E ~ such tha t  H c  N Ki, and hence H ~ G. 
1 = 1  
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all compact sets, is then a capacity in the  sense of Choquet [14], w 15, (i.e. an in- 

creasing set function which is continuous from the outside). According to (2), resp. (3), 

y , (A)=O(w(A))  and y*(A)=O(w*(A)) 

are the corresponding interior, resp. exterior, capacities. A set A is called capacitable 

if y .  (A) = y* (A). For such a set we write simply )~(A) instead of y . (A)  or y*(A). 

Similarly, one may  study the capacities c~ (K) = 0 (u (K)) and/3 (K) = 0 (v (K)). As shown 

above, open sets and compact sets are capacitable. Results concerning capaeitability 

of more general sets can be obtained by application of Choquet's theory, a t  least under 

suitable assumptions concerning the kernel k and the space X, el. M. Kishi [19] in 

the case of a kernel k~> 0 satisfying lq'rostman's maximum principle. In  w 4 of the 

present study we obtain somewhat stronger results in case of a consistent kernel. 

We shall now consider the following choice of the function 0: 

1 
O ( t ) = t - a '  

where a denotes a real constant <~w(X) (resp. u(X)  or v(X)). In  particular, any 

number a~< inf k (x, y) can be used. The most important  case is a = 0, which leads to 

the Wiener capacity, cf. w 2.5. 

LEMMA 2.3.5. I/  a denotes a constant such that k(x, y)>~a, then the interior ca- 

pacity ( w ( A ) - a )  -1 is countably subadditive on sets o] class 9~, and the exterior capacity 

(w*(A) -a )  -1 is countably subadditive on arbitrary sets. Similarly with w replaced by 

u o r v .  

Pro@ The kernel ] c ' = / c - a  is positive, and the corresponding function w' equals 

w - a .  Hence the capacity 1/w' equals the capacity in question. I t  suffices, therefore, 

to prove the lemma for a positive kernel k (with a =  0). Consider a sequence of sets 

An with the union A. Our task is to prove, first, tha t  

w(A) -1<~ Z w(An) -1 provided AnEg~. (6) 
n 

Without loss of generality we may  assume tha t  the sets An are mutual ly disjoint 

and that  A is not void. For any positive measure /z with compact support  contained 

in A and with # ( X ) = I ,  we denote the trace of # upon An by /z~ and write 2~ 

=#~//z(A~) for such values of n tha t  # ( A ~ ) 4 0 .  Neglecting the remaining values of 

n, if any, we have 
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w (A.) < k (~., ~.) = ~ (z.,  ~ ) / ~  (A~) ~, 

and hence, by application of Cauchy's inequality, 

w (A~) -~ >1 ~ ~ (A~)~/k (~ ,  ~n) >1 (~ ~ (A~)iV5 k (~ ,  m)" 
n n i t  

The resulting inequality holds a /ortiori if the summations are extended over all in- 

dices n. Note that  ~ / ~ ( A ~ ) = # ( A ) = / ~ ( X ) = I  because the sets A n are /~-measurable 

and mutually disjoint. Hence (6) will follow if we can show that  

~ ( ~ ,  ~ ) < ~ ( ~ ,  ~)- 
n 

This inequality is easily derived from the corresponding inequality in which the kernel 

]c is replaced by an arbitrary function /E C~ (X• with / <  k; and in that  case we 

may apply (2), w 1.1 (with /% replaced by # |  and A by A,~• 

n n A n X A  n 

the sets A~• being mutually disjoint. Having thus established (6), we infer from 

the definition (3) of w* that  l/w* is countably subadditive on arbitrary sets.--The 

corresponding assertions concerning the capacities 1/u and 1Iv may be verified simi- 

larly, but it is considerably simpler to make use of the following characterizations of 

1/u and l/v, valid if u(X)>~O, resp. v(X)>~O; thus in particular if the kernel ]c is 

positive (]c ~> 0) or pseudo-positive (w (X) >~ 0): 

1 /u  (A) = sup 4. (A) (4 e ~ ;  k (x, 4) ~ 1 everywhere) 

1 / v ( A ) = s u p  2.(A) ( 2 E ~ ;  k(x, 2)~<1 for xES(~)) .  (7) 

COROLLARY. Let  k denote an arbitrary kernel (~> 0 unless X is compact), and let 

N denote the union of a sequence of sets -h~ c X. If N n E ~ and w (N~) = + 0o, then 

w ( N ) = + ~ .  If  w*(N~)= + ~ ,  then w*(N)= + ~ .  Likewise w(AUN)=w(A)  if 

w ( N ) =  + ~ and A, NEg~; w*(A U N)=w*(A) if w*(N)= + ~ .  Similar statements 

apply to the set functions u and v. 

Remark. In Lemma 2.3.5 (and its corollary above) the assumption that  the sets 

An (resp. Nn) be of class i~ (in case of the functions u, v, w) may be replaced by 

the slightly weaker hypothesis that  A~ = A~ N B, where A~ E ~,  whereas B is arbitrary. 

Writing A ' =  U A~, we have then A =A' N B. Since S ( # ) c A ~ B ,  the set B is ,u-meas- 
n 
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urable ,  and  so are, therefore,  the  sets An. Note  t h a t  the  res t r i c t ion  to  pos i t ive  kerne ls  

is indispensable  in L e m m a  2.3.5 (cf. Ex.  2, w 8.3). 

2.4. The case o/ a symmetric kernel. W h e n  the  kerne l  k is symmet r i c ,  the  two 

set  funct ions  v and  w are  ident ica l ,  and  so are  v* and  w*. I t  suffices to  prove  t h a t  

v ( K ) = w ( K )  for every  compact set  K .  Since we know t h a t  v~>w, we m a y  assume 

t h a t  w ( K ) <  + oo. W e  propose to  ver i fy ,  moreover ,  t h a t  the  two m i n i m u m  prob lems  

defining v(K)  and  w(K)  (ef. Theorem 2.3): 

v (K) = min  V (/t); w (K) = min  W (/t), 

(where in bo th  cases /t E ~ :  and  / t ( K ) =  1) have  precise ly  the  same solutions, i .e. 

~ K =  ~ g .  I n  t he  theorem below we prove  t h a t  /t E 7~K' implies  V(/t)~<w (K) (p roper ty  

(b)). Since w (K) ~< v (K), we infer t h a t  /t E ~K and  tha t ,  ac tua l ly ,  w (K) = v (K). Con- 

versely,  /t E 10K implies  k ( / t , / t )  ~< V (/t) = v (K) = w (K), which shows t h a t  # E WK. Con- 

sequent ly ,  ~K = 7~qK. The solut ions /t E WK of the  second (and hence of the  first) mini-  

m u m  prob lem above  will be called capacitary distributions o/ unit mass on K.  

THEOREM 2.4. Let k denote a symmetric kernel, and K a compact set such that 

w (K) < § oo. The potential o/ any capacitary distribution # o/ unit mass on K has the 

/ollowing properties: 

(a) k (x, #) >~ w (K) nea r ly  everywhere  in  K .  

(b) k (x, #)~<w (K) everywhere  in the  suppo r t  of /t. 

(c) k (x, # ) = w ( K )  / t -a lmost  everywhere  in X.  

Proo/. We begin b y  es tabl ishing (a) in the  equ iva len t  i n t eg ra t ed  form (cf. 

L e m m a  2.3.2): 

(a') k (~ , / t )>~w(K) .~ (X)  for every  v E T ~  wi th  k(v, v ) <  § oo.(1) 

I t  suffices to  consider the  case where k(v, # ) <  + 0 0  and  v ( X ) = l .  Then  a # + b v  is a 

" compe t ing"  measure  for any  choice of cons tants  a ~ 0 ,  b>~0, wi th  a §  1. Hence  

i ts  energy 
a2k(/t, / t )+ 2 a b . k ( v ,  #)+b2k(~,  r) 

a t t a in s  i ts  m i n i m u m  a t  a = l ,  b = 0 .  This  implies  (a') when i t  is observed t h a t  

(1) The assumption k (v, v) < + c~ is essential, not only for the proof, but~ for the validity of the 
result. Otherwise one could take v = ~x ( = the mass § 1 placed at an arbitrary point x E K) and con- 
clude that k (x, tt) >i w (K) everywhere in K. This would be false even in case of the •ewtonian kernel 
(unless the unbounded component of C K is regular for Dirichlet's problem). 
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k( /z , /Z)=w(K) .  From (a) follows in view of Lemma 2.3.1 tha t  / Z , ( N ) = 0  when N 

denotes the set of points x E K such tha t  k (x,/Z) < w (K). Since N is measurable and 

/Z finite, we conclude that  /Z* (N) = 0. Moreover,/Z* (C K) = 0, and hence k (x,/Z) ~> w (K) 

/z-a.c. in X. Integrating with respect to /Z, we obtain 

w(K)=k(/z,  /Z)= S k(x, /z)d#(x)>~w(K) . /Z(X)=w(K), 

so that,  actually, k(x,/Z) = w ( K )  /z-a.e. Having thus obtained (c), we complete the 

proof by  observing tha t  (b) is equivalent to the following consequence of (c): 

(b') k (x,/Z) ~ w (K) /z-almost everywhere in X. 

In  fact, the set G= ( x E X :  k(x, #)>w(K)}  is open, and hence /Z(G)=0 if and only 

if G N S(#)  is void. 

Remark 1. I f  the symmetric kernel k satisfies Frostman 's  maximum principle, 

then U(/Z)= V(/Z), and hence we obtain the following stronger versions of (a) and (b): 

(al) k(x,/Z) =w(K) nearly everywhere in K. 

(b~) k (x,/Z) < w (K) everywhere in X. 

In  view of (as) the capacitary distributions /Z E ~ ( =  ~/K= ~qK) are then called equi- 

librium distributions (of unit mass) on K. Cf. Frostman [18], w167 17, 31, for the kernels 

of order a ~ 2 .  For  any value of ~, 0 < a < n ,  it was shown by Frostman tha t  the 

inequality k (x,/Z) >~ w(K) holds for every interior point x of K.  

Remark 2. I f  k is de/inite, the class WK ( =  ~qK) of all capacitary distributions 

of unit  mass on a compact set K with w ( K ) <  § ~ is convex (and compact) and 

consists of all competing measures /Z E ~ ,  /Z (X) = 1, such tha t  k (x,/Z) >~ W (/Z) nearly 

everywhere in K; or equivalently 

k (v,/Z) ~> k (/Z,/Z) for every v E 7 /~  with v (X) = 1 and k (v, v) < ~ .  

(In fact, this inequality implies, when applied to the capacitary distributions v E ~ K ,  

O<~k(v-/z, v - / z )=k(v ,  v) +k(/z, /z)-2k(v, /z)<-- .k(v~ v)-k( /z ,  /Z). 

Thus k (tt,/Z) ~< k (v, v) = w (K), 

and consequently /Z q ~K.)  Observe also tha t  k (v- /Z,  v - /Z)  = 0 for any  two measures 

/Z and v of class ~ .  This shows that ,  in case of a strictly definite kernel, there is 

just one capacitary distribution of unit  mass on K. 
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2.5. The case o/ a pseudo-positive kernel. A kernel k is pseudo-positive (w 2.1) if 

and only if w (X)>7 0, or equivalently if w (K)>~0 for every compact set K. A kernel 

is strictly pseudo-positive if and only if w ( K ) >  0 for every compact set K. 

LEMMA 2.5.1. I f  the kernel k is strictly pseudo-positive, the set o/ all positive meas- 

ures # such that k (~, ~)<<. M is compact in the vague topology /or any constant M>~ O. 

Proo/. The set 7 4 ~  + in which k(/t, ~u)~<M is closed by virtue of Lcmma 2.2.1. 

I t  remains to be proved tha t  :H is relatively compact, or equivalently tha t  ~tt is 

(vaguely) bounded: 

sup f / d # <  + c o  for every / 6 C o  ~. 

In  Case I the hypothesis is: k (x, y)/> 0 and k (x, x ) >  0. In  view of the lower semi- 

continuity of k, each point x 0 6 X  has a neighbourhood A such tha t  k(x, y)>~a for 

(x, y ) 6 A •  a > 0  being a suitable constant. Let  ~ denote a function <~ 1 of class 

C~ which equals 1 in some closed neighbourhood B c A of x o and vanishes outside A. 

Then a .  ~ (x) ~ (y) ~< k (x, y) for all x and y, and hence 

for every /~ 6 :H. Clearly, any function / 6  C +, say with /~< 1, is dominated by some 

finite sum of functions ~ obtained in this manner, and consequently f / d ~  remains 

bounded on ~H. In  Case I I ,  the space X is compact, and hence w (X)>  0 because k 

is strictly pseudo-positive). For reasons of homogeneity, 

1/w (X) = sup/~ (X)2/k (#, #)  
# 

(#EW/+, # # 0 ) ,  

and hence /x (X) is bounded o n  ~H, q.e.d. 

I f  k is pseudo-positive, 1/w is a capacity called the Wiener capacity.(1) We 

(1) The three  capacit ies  defined on compac t  sebs K b y  

1/u(K)=max ~(K) ( ~  ~ ,  U (~)<<. 1), 

I/v (K)=max ~.(K) ()~6~K, V().)~<I), 

1/w(K)=max { 2 1 ( K )  - k (I, A)} ( A 6 ~ ) ,  cf. (1), p. 162, 

are  ident ica l  p rov ided  the  pseudo-posi t ive  kernel  k is symmetric and  fulfills F r o s t m a n ' s  maximum 
principle. I n  the  special  case of the  Newton ian  kernel,  the  common  value is t he  classical capaci ty  of 
K as def ined first  by  N. Wiener  [33] (for a rb i t r a ry  compac t  sets). As to  the  h is tory  of t he  ma t he -  
ma t i ca l  concep% of (interior) Newton ian  capaci ty ,  see O. :Frostman [18], Chap.  I I I .  Some his tor ical  
r emarks  concerning the  exterior Newton ian  capaci ty  are found  in 1VI. Brelot  [7], p. 136. 
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deno te  the  in t e r io r  a n d  ex te r ior  W i e n e r  capac i ty  b y  c a p ,  a n d  cap*, respec t ive ly .  The  

fol lowing cha rac t e r i za t i on  of c a p .  A is useful:  

c a p ,  A = 1 / w  (A) = sup  (2 4 (X) - k (4, 2)),  (1) 

where  ~t r anges  over  t h e  class of a]l pos i t ive  measu re s  of f in i te  ene rgy  c o n c e n t r a t e d  

on  A (or e q u i v a l e n t l y :  s u p p o r t e d  b y  some c o m p a c t  subse t  of A).(1) As u s u a l  we 

m a y  wr i t e  cap A i n s t e ad  of c a p .  A or c a p * A  if A is capac i tab le .  

F r o m  Theo rems  2.3 a n d  2.4 we der ive  t he  fol lowing resul t ,  u s i ng  the  correspond-  

ence 2 = t - / ~  ( / ~ ( X ) =  1) b e t w e e n  t h e  two classes of c o m p e t i n g  measures .  

T H E O R E M  2.5. Let k denote a symmetric, pseudo-positive kernel , and K a comTact 

set with cap K <  + oo. (2) The two maximum problems 

and 

2 ( K ) = m a x i m u m  (4 E ~ : ,  V(2)..< 1), 

2 4 (K) - k (4, 2) = m a x i m u m  (2 E ~ )  

have precisely the same solutions, and the value o/ each o/ the two maxima is the Wiener 

capacity cap K. The class o/ all solutions is compact in the vague topology on *]~+ and 

consists o/ all measures 2 E ~ /or which 

k (2, 2) = 4 (X)  = cap K .  

The potential o/ any solution has the /ollowing properties: 

(a) 

(b) 

(c) 

k (x, 2)>1 1 nearly everywhere in K. 

k(x, 2)<~ 1 everywhere in the support o/ 2. 

k (x, 4)= 1 2-almost everywhere in X .  

The  so lu t ions  m e n t i o n e d  a b o v e  are  called capacitary distributions on K .  T h e  class 

of al l  c apae i t a ry  d i s t r i b u t i o n s  on  K is d e n o t e d  b y  A~: (cf. T h e o r e m  4.1 a n d  t h e  re- 

m a r k  fol lowing it).  As to  t h e  proof  of T h e o r e m  2.5, t he  o n l y  p o i n t  in  n e e d  of com- 

m e n t  is the  fac t  t h a t  2 E AK if 2 E ~ :  a n d  k (2, 2) = 2 (X) = cap K ;  a n d  th i s  follows 

(1) This formula follows from the fact that ~ (X) and k (~,)~) are homogeneous in Z of ordeI: 1 
and 2, respectively. Disregarding the trivial case where w (A) = § 0% we may restrict the attention 
to non-zero measures ~ in (1), as it will appear presently. Writing ~=t . /~ ,  where ~ ( X ) = I  and 
t - ~t (X) > 0, we obtain the quadratic 2 t - /c (/~,/~) t 2, which attains its maximum at t = k (~u,/~)-1, the 
maximum being t = k (~u,/~) -1 > 0. Maximizing over /~, we obtain 1/w (A). 

(2) Recall that  the condition cap K < + oo is fulfilled for all compact sets K if and only if the 
kernel k is strictly pseudo-positive; thus in particular if k is strictly positive (k (x, y)/> 0 and k (x, x) > 0) 
or strictly definite. 
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at  once from the implied relation 2 ~ ( X ) -  k ()., ~) = cap K. Observe tha t  A~ reduces 

to the single measure ~t=0 if and only if cap K = 0 .  

The remarks following Theorem 2.4 can be carried over to the present situation. 

1) If  k fulfills F ros tman ' s  maximum principle, then k (x,),) = 1 n.e. in K, and k (x,).) ~< 1 

everywhere. 2) I f  k is de/inite, A~ is convex and consists of all measures ) ,EE~ whose 

potentials have the properties (a) and (b) (or equivalently (a) and (c)). Moreover, 

k (),-/~, ) . -  E~)= 0 for any  two capaci tary distributions ]t and /~ on K. I f  k is strictly 
de/inite, there is just  one capaci tary distr ibution on K. 

I I .  T H E  C A S E  OF A C O N S I S T E N T  K E R N E L  

In  the present chapter  we s tudy  potentials with respect to a de/inite kernel k 

on a locally compact  space X. The l imitat ion to the two cases I :k~>0 ,  and I I : X  

compact  (cf. w 2.1) remains in force in the present chapter,  except for w 5.3. 

Since a definite kernel is pseudo-positive, the interior Wiener capacity cap,  A 

= l / w ( A ) = l / v ( A )  is defined for arbi t rary  sets A ~ X ,  cf. (1), w 2.5, and (7), w 2.3; 

and so is the exterior Wiener capaci ty cap* A = l/w* (A)= l/v* (A). According to (2) 

and (3), w 2.3, 

cap,  A = sup cap K; cap* A :- inf cap G, 
K C A  G ~ A  

where K and G refer to compact  and open sets, respectively. The "smal l"  sets N 

in terms of which the concepts "near ly  everywhere" (n.e.) and " 'quasi-everywhere" 

(q.-e.) were defined in w 2.3, are those for which cap,  N = 0  and cap* N = 0 ,  respec- 

tively. For  any  set A c X ,  

0~<cap ,  A ~ < c a p * A <  + c o .  

If  cap,  A = cap* A, we call A capacitable and m a y  write simply cap A for the Wiener 

capaci ty  of A. 

The principal aim of the present chapter  is to show (in w 4) t ha t  the concept 

and the properties of the capaci tary distributions on a compact  set (Theorem 2.5) 

can be extended in a satisfactory way  to arb i t rary  sets of finite interior or exterior 

capacity,  provided the definite kernel k is consistent (w 3.3). (1) Except  for the case 

of closed sets, one must,  howevcr, give up the requirement  tha t  the capaci tary dis- 

tr ibutions should be concentrated on the set in question. The results will allow us 

to apply Choquct ' s  theory  of capacitability. 

(1) The fact that some restriction on the definite kernel is indispensable appears from examples 
4 and 5, w 8.3. 
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3. The strong topology 

3.1. The spaces ~ and E +. Consider a definite kernel k (cf. w 2.1), and denote 

by - E = E ( X )  the class of all measures # on X such tha t  the energy k ( ~ , # )  is de- 

fined and finite (i.e., ~= + co). The class of all positive measures # E E is denoted 

by  E + = E + (X). 

LEMMA 3.1.1. ~+ is a convex cone. The mutual  energy k (/~, v) is de]ined and 

finite when i~, ~ E E +. 

Proo/. The former s tatement  is easily derived from the latter, which in turn is 

implied by  the fact tha t  

k ( # - ~ ,  # - v ) = k ( p , / ~ ) + k  (v, v ) - 2  k (/~, ~) 

is defined (because k (~u, #) + k (r, v) < + ~ ,  cf. Lemma 1.2.3) and hence >~ 0. 

I f  ~u E E, then/~+, ju- E E +. The converse statement follows from the above lemma. 

In  particular, E =  E + -  E +. Another consequence is that  the mutual  energy k (~t, r) 

is defined and finite for any two measures ~u, v E E, cf. (1), w 2.1. Moreover, k (~u, v) 

is a bilinear form on E; and since k (#, ju)~> 0 for every # E E, we have obtained the 

following result: 

LEMMA 3.1.2. E is a pre-Hilbert space (over the field of real numbers) with the 

scalar product k (1~, ~) and the semi-norm 

I1 11 = 

This semi-norm is a norm (i.e., E is a Hausdorff space) if and only if the kernel 

k is strictly definite. As a corollary of Lemma 3.1.2 we obtain the Cauchy-Schwarz 

inequality: 
Ik(/~, ~)I~II/~II.II~I[ (s, ~Es) ,  (1) 

valid even if k is not strictly definite (cf., e.g., Bourbaki [6], Chap. V, w 1, prop. 2). 

Two measures ~ and S in E are called equivalent if I I ~ - s  I I = 0. 

In  addition to the strong topology on S, defined by  the above semi-norm IISll, 

it is sometimes useful to consider the weak topology on ~, defined by  the semi-norms 

#-->I k (/~, ~)[, ~ E E. The induced topologies on E + are likewise called strong and weak 

topologies on E +. 

3.2. Potentials with respect to a definite kernel. I f  # E E, k (x, #)E ~1 (~) for every 

v E E .  Hence k(x,~u) is defined and finite n.e.  in X (cf. Lemma 2.3.1). 

LEYIMA 3.2.1. Each o/ the /ollowing two conditions is necessary and su//icient in 

order that two measures ,~, ~ E E be equivalent: 



O N  T H E  T H E O R Y  O F  P O T E N T I A L S  I I g L O C A L L Y  C O M P A C T  S P A C E S  165 

(a) k(x, 2 ) = k ( x ,  #) for nearly every x ~ X .  

(a') k (v, 2 ) = k ( v ,  #) for every vEE.  

Proo/. That  (a') implies 112-#11=0 follows when we take v = 2 - / ~ .  The con- 

verse statement follows from the Cauchy-Schwarz inequality (1), w 3.1. The equi- 

valence between (a) and (a') is verified as in the proof of Lemma 2.3.2 

COROLLARY. Any two capaeitary distributions on a compact set (of finite capacity) 

have nearly everywhere the same potential. (In fact, the two capacitary distributions 

are equivalent in view of the second remark to Theorem 2.5.) 

LEMMA 3.2.2. Let 0 < t ~  + ~ ,  # E E ,  and let A denote a set such that k(x, tt)>~t 

nearly everywhere in A. Then 

cap,  ll II 

Proo/. Let 2 denote a eapaeitary distribution on some compact set K ~ A .  

According to Lemma 2.3.2, which holds likewise for ~ E E, 

t .2 ( / ) <  ll21t I1 11. 

Inserting 2(X)=][2[ [2= cap K (cf. Theorem 2.5), we obtain cap K<t-2ll/~llL from 

which the stated inequality follows. 

A similar lemma subsists for the exterior capacity, at  least under certain further 

restrictions (cf. Lemma 4.3.2 and the note attached to it). In  the case of a positive 

measure tt, no further restrictions are needed: 

LEMMA 3.2.3. Let 0 < t <  + ~ ,  # E E  +, and let A denote a set such that k(x, #)>~t 

quasi-everywhere in A.  Then 

cap* A<t-~ll~lI ~. 
Proo/. In  view of the corollary to Lemma 2.3.5, we may  assume without loss 

of generality that  k (x, it) >1 t everywhere in A. For any number  s, 0 < s < t, A is then 

contained in the open set {x E X: k (x, tt) > s}, whose capacity is ~<i s -z II II according 
to the preceding lemma. Hence cap* A<~s-2llltII 2, and the result is obtained by  

letting s--->t. Applying this lemma with t = + oo to #+ and # -  (# E s we obtain: 

COROLLARY. The potential k(x,  tt) of any measure t rEE is defined and finite 

quasi-everywhere in X. 

LEMMA 3.2.4. I[ tt~--~tt strongly in s then 

k (x, #) >1 lira inf k (x, #~) 
n 

nearly everywhere in X.  
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Proof. Let X '  denote the set of points x a t  which k (x,/x) and all k (x,/~n) are 

defined and finite. The set of points at  which the stated inequality does not hold is 

contained in N U C X',  where 

N = { x 6 X ' : k ( x ,  # ) <  lim inf k(x,/tn)}.  

Writing N~. q = {x E X '  : k (x,/t)  ~< inf k (x, #n) - l /q},  

A. .q=  { x e X '  : k(.~, ~) < k (x, ~)-l/q), 

we obtain N = U Np. q; Nv. q = N An. q. 
p, q n > p  

According to the corollaries to Lemmas 2.3.5 and 3.2.3, it suffices to prove tha t  

cap,  N~.q= 0; and this follows from Lemma 3.2.2 with t, /~, and A replaced by  l /q ,  

#~ - /~ ,  and An. a, respectively: 

cap,  N , . q <  cap,  n, .  q <<. q 2 II /~ - /~ lI~-->o 
a s  n - - ~  o o .  

Remark. I t  is not difficult to prove the following stronger result: I] /~n--># 

strongly in E, there is a subsequence {#n~} whose potentials converge to the potential 

k (x,/~) o/ # nearly everywhere. 

3.3. Per[ect kernel. Consistent kernel. Simple examples show tha t  the pre-Hilbert  

space E is in general incomplete (in the uniform structure defined by the "semi- 

distance" II - ll/. In  case of the Newtonian kernel Ix-yl in R n (n>~3) it  was 

proved by  It .  Caftan [10], w 5, tha t  the space E + of positive measures of finite energy 

is strongly complete, and tha t  strong convergence in ~+ implies vague convergence 

to the same limit. 

DEFINITIOn .  A definite kernel is called per/ect if the following two conditions 

are fulfilled: (1) 

(1)1) E+ is strongly complete, i.e., any strong Cauchy filter on ~+ converges strongly 

in ~+. 

(P2) The strong topology on E + is liner than the induced vague togology on ~+, i.e., 

any strongly convergent filter on ~+ converges vaguely t o  the same limit. 

(1) The  condi t ions  (P1) a n d  (P2) do n o t  follow f rom one  a n o t h e r  (cf. Ex .  1 a n d  Ex .  4 or 5, 
w 8.3). I t  is no t  k n o w n  to t h e  a u t h o r  w h e t h e r  (P~) follows f rom (P1) in t h e  case of a strictly def in i te  
kernel .  Note  t h a t  Ex .  5 shows  t h a t  ~ +  m a y  be incomple te  in case of a pos i t ive  a n d  s t r i c t ly  def ini te  

kernel ,  even on  a c o m p a c t  space.  (This  c a n n o t  occur  in case of convo lu t ion  kernels ,  cf. t h e  corol lary  
to T h e o r e m  7.2). F ina l ly  we observe  t h a t  (1)1), t he  s t r ong  comple t enes s  of  ~ + ,  m a y  be  expressed  

as follows: E v e r y  s t r ong  C a u e h y  sequence in ~+ converges  s t r ong ly  (cf. t h e  end  of t h e  proof  of 

L e m m a  3.3.2). 
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A definite kernel possessing property (P2) is necessarily strictly de/inite. (In fact, if 

# E ~ and H/~ ][ = 0, then I[/t+ - /~ -  H = 0, and the sequence/~+,/~+, ... converges strongly, 

hence vaguely, to /~-. Since the vague topology is separated, we conclude that  

/~+=#- . )  l%r the subsequent applications the property of strict definiteness is of 

minor importance. We shall therefore introduce a concept similar to perfectness, but  

app]icable even to definite kernels which are not strictly definite. The crucial prop- 

erty is a kind of consistency between the strong (not necessarily separated) topology 

and the vague topology on E+: 

DEri~mmio~.  A definite kernel is called consistent if the following condition is 

fulfilled: 

(C) If /~ is a vague cluster point for a strong Cauehy filter 4) on ~+, then 4) con- 

verges strongly to /~. 

The following apparently weaker condition is equivalent to (C): 

(C') If a strong Cauehy filter 4) on E + converges vaguely to #, then 4) converges 

strongly to /,. 

In fact, if # adheres vaguely to a strong Cauehy filter 4), there is a finer filter 

4)' D4) which converges vaguely to /~. According to (C'), 4) '-># strongly, and hence 

4)-># strongly because 4) is a strong Cauehy filter (ef. Bourbaki [2], Chap. II,  w 3, 

prop. 4). 

I t  follows immediately from (C) that  any strong Cauchy filter 4) possessing a 

basis consisting of vaguely bounded subsets of E +, converges strongly. (The vague 

adherence of 4) is, in fact, non-void because any vaguely bounded subset of ~l  + is 

vaguely relatively compact.) If a consistent kernel is strictly pseudo-p0sitive, every 

strongly bounded subset of ~+ is vaguely bounded (Lemma 2.5.1), so that  we obtain 

the following result: 

LEMMA 3.3.1. I /  the kernel is consistent and strictly pseudo-positive, the space ~+ 

is strongly complete. 

The consistency alone is not sufficient for E + to be complete (cf. Ex. 6, w 8.3). 

On the other hand, the example k =  0 shows that  E + may be complete in the case 

of a consistent kernel which is not strictly pseudo-positive. 

THEOREM 3.3. A kernel is per/ect i/ and only i/ it is consistent and strictly 

de]inite. 

Proo/. Suppose first k is consistent and strictly definite. Then k is strictly pseudo- 

positive, and hence E + is complete according to the above ]emma. If  a filter 4)con- 
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verges strongly, the strong limit /z is uniquely determined (because E + is separated 

in the strong topology when k is strictly definite). The consistency of k implies tha t  

(I) can have no other vague cluster points than #. Since q) possesses a basis con- 

sisting of vaguely relatively compact sets, we conclude tha t  the vague adherence of 

~P is non-void and reduces to the single measure /z; and consequently (I)-+# vaguely 

(ef. Bourbald [2], Chap. I, w 10, N ~ 1, eor.). The converse is obvious when we use 

(C') as a definition of consistency: If  /c is perfect, and if a strong Cauchy filter (b 

on E + converges vaguely to /t, then (P1) implies tha t  ~ converges strongly, and (P~) 

shows tha t  the strong limit is /z. 

LEMMA 3.3.2. Suppose the locally compact space X is metrizable and o] class Ko. 

The concepts o] a l~er]ect or a consistent kernel remain unchanged i], in either o] the 

de[initions (P1), (P2), resp. (C) or (C'), the [ilter ~P is replaced by a sequence. 

Proof. We begin by considering property (C'). I t  is assumed that  any vaguely 

convergent, strong Cauchy sequence on ~+ converges strongly to its vague limit. We 

propose to show tha t  the kernel is consistent according to definition (C). Thus we 

consider an arbi t rary vague cluster point  /~0 for a strong Cauehy filter r on ~+. 

Since a strong Cauchy filter contains sets of arbitrarily small diameters, there are 

sets A~E~P such tha t  A ,  c A ~  for n > p ,  and diam A~-->0 as n - + ~ .  According to 

Lemma 1.2.1 there is a sequence of sets V n c ~  + forming a fundamental  system of 

neighbourhoods of /~0 in the vague topology on ~ + .  Each vague neighbourhood of 

/~0 intersects every set A E~P because /~0 adheres vaguely to (I). Choose /z~EA~ N Vn. 

For n > p  we have /in E Ap, and hence 

I I # , - j u ,  ll ~< diam AT ( n > p ) .  

Consequently, {#~} is a strong Cauehy sequence. Furthermore, #~---~#o vaguely be- 

cause /~  E Vn. By hypothesis, #--->/~0 strongly. Since 

sup II -s0ll <llm-Soll+ diam An, 
p e A  n 

we conclude tha t  (I)-+#0 strongly. This completes the proof in case of condition (C) 

or (C'). Next,  consider a definite kernel /c such that  (i) every strong Cauchy sequence 

in ~+ converges strongly, and (ii) every strongly convergent sequence in E + converges 

vaguely to the same limit. The simple argument a t  the end of the proof of Theo- 

rem 3.3 shows tha t  such a kernel has the property corresponding to (C'), but  with 

a sequence instead of a filter. We have, however, just  shown tha t  this property 

implies consistency, and since k is strictly definite (same argument as earlier), we 
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conclude from Theorem 3.3 t ha t  k is perfect. Note also t ha t  the above reasoning 

with the sets A, ,  etc., shows tha t  ~+ is complete if the kernel has the proper ty  t h a t  

every strong Cauchy sequence in  ~+ converges strongly. 

The following diagram il lustrates the relations between various types  of kernels 

in t roduced in  the preceding sections (in the cases I : k ~ > 0 ,  or I I : X  compact). 

strictly strictly ~ strictly 
perfect ~ definite =~ pseudo-positive positive 

consistent =~ definite ~ pseudo-positive ~ positive 

symmetric 

3.4. Criteria ]or consistency or strict de/initeness. The following three lemmas can 

be extracted from Car tan 's  proof of the perfectness of the Xewton ian  kernel (H. 

Car tan  [10], w167 4, 5). We begin by  discussing a k ind  of consistency between the vague 

and  the weak topologies on E +. 

LEMMA 3.4.1. A definite kernel possessing the /ollowing property is consistent: 

(CW) If  a filter (I) on a s t rongly bounded  par t  of ~+ converges vaguely  to /~, then  

(I) converges weakly to /~. 

Proo/. I t  is well known tha t  a Cauchy filter �9 on a pre- t t i lbcr t  space has a 

base formed by  subsets of a s t rongly bounded  set, and  that ,  if (I) converges weakly, 

then  (1) converges s t rongly to the same limit.  (1) 

LEMMA 3.4.2. A su/ficient condition /or a definite kernel k to be consistent is that 

the class o/ all measures 2EE /or which the potential k(x,  2) is o/ class Co(X)be  

strongly dense in ~. 

(1) Let (I) denote a strong Cauchy filter on a pre-Hilbert space ~]~ (say, over the field of real 
numbers) with elements x, y, z, etc.; scalar product (x, y); and semi-norm II x ]l = (x, x) }. Suppose qp 
converges weakly to some vector x o, that is, 

lim (x, z)= (x0, z) along if/) 
x 

for every z e ~1~. Then II Xo II < lira inf I] x I] along (I) because 

[[x0II 2= lim (x, x0)< lim inf I]xii.]IxoiI. 
X X 

i e n e e ~  

Hx-x, ll2=Hxll2 + ]]xoN2- 2 (x, xo)< lira inf {Hxll2 + HyH2- 2 (x, y)}=l im inf ]lx-yi[ 2. 
y Y 

The function of x on the right approaches 0 along (I). 
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Proof. We propose to verify condition (CW). Let  �9 denote a filter on the part  

of ~+ determined by  the inequality [l#He~<i,  and suppose (I)--~#0 vaguely. Then 

k(~, 4)= S k(x, 2)d~-+fk(x, ;~)d~0=k (~0, 4) 

for every measure 2 E E  such that  k(x, 4) EC0. In view of the hypothesis and the 

boundedness condition ]I#]]2~<M, this implies that  k (/~, ~)--~k (#0,)-) for every Z E E ,  

i.e., O-~/~ 0 weakly. 

LEMMA 3.4.3. A sufficient condition /or a definite kernel k to be strictly definite 

is that the class of all functions /E  Co (X) representable as potentials k (x, Z) with ~ E 

be rich in Co (X).  

(As to the notion of a rich subclass of Co, see Bourbaki [4J, Ohap. I I I , w  2, N ~ 5.) 

In fact, if ]]#l] = 0  for some /~'EE, it follows from the Cauchy-Schwarz inequality that  

Sk(x ,  2 ) d # = k ( / ~ , 4 ) = 0  for every ~EE. Hence # ( / ) =  f / d # = O  for every f of the 

type described in the lemma, and it follows that  /~ = 0 (cf. Bourbaki [4], loc. cir.). 

Remark.  The criteria for consistency or strict definiteness formulated in Lemmas 

3.4.2 and 3.4.3 are not necessary conditions (except possibly in case I I  where X is 

compact). This appears from Exs. 8 and 9, w 8.3. They are, however, fulfilled (and 

rather easily verified) by many interesting kernels, e.g. Green's function for the La- 

place operator, in particular the Newtonian kernel; furthermore, the kernels of order 

a, 0 <  a <  n; and also the kernels considered by  J.  Deny [15] (inasmuch as the defini- 

tion of energy given there agrees with the classical definition used in the present paper, 

cf. Deny [16] and also Theorem 7.3 in the present paper). Finally, it was shown by 

M. Ohtsuka [24] that  the criterion given in Lemma 3.4.2 is fulfilled by any regular, 

definite kernel on a compact space: (1) 

T~EOREM 3.4.1. Every regular, definite kernel k on a compact space X is consistent. 

To every measure ~t E E + and every number ~ > 0 corresponds a measure ~ E ~+ such that 

<~ #, k (x, 4) is continuous in X ,  and II ~ - # II < ~. 

Proof. Let c denote a constant ~> 0 such that  k + c >~ 0, and ~]'ite 

f (x) = f (k (x, y) + c) d~t (y) = k (x,/~) + c . #  (X). 

(1) The  t h e o r e m  of O h t s u k a  s t a t e s  t h a t  ~ +  is comple te  if k is posi t ive ,  regular ,  a n d  strictly de- 

f in i te  (and if X is compac t ) ;  b u t  his  proof  shows  t h a t  such  a kernel  is cons i s t en t  (and  hence  per fec t  
accord ing  to T h e o r e m  3.3). As  to t h e  second  asser t ion  of t he  t heo rem,  see also H.  C a r t a n  [10], 
l e m m e  5, p. 98, in t h e  N e w t o n i a n  case; a n d  G. Choque t  [13] in  t he  genera l  case. 
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Since /c (x,/Z) is /z-integrable, so is /, and hence we may introduce the measure v=[ . /Z  

of density / with respect to /Z. For the /z-measurable set N = ( x 6 X :  lc(x,/Z)= + o~}, 

we have # ( N ) = O  because /c (x,/Z) is #-integrable. Hence v (N)= f / d / z = O .  According 
N 

to (1), w 1.1, there is a compact set K c O N  such tha t  

v ( K ) > v  ( C N ) - s = v ( X ) - s ,  

the number  ~ > 0 being given. By 

set K i c  K such tha t  the restriction 

because /c (x,/Z) is /inite on K), and 

virtue of Lusin's theorem, (i) there is a compact 

of /~ (x,/Z) to K i is continuous (in the usual sense 

v (K n C K i ) < s .  

I t  follows that  f / d / z = v ( C K z ) < 2 e .  
C1(~ 

Let  ~ denote the trace of /z on K i. Clearly, )~ 6 ~+, S (~.)c Ki, and the restriction of 

k (x, ~) to K 1 is likewise continuous. (It  is evidently finite and lower semi-continuous, 

and the equation 

1~ (x, ~) = lc (x, /Z) - k (x, /Z - ~) 

shows tha t  it is upper semi-continuous because # - ~ > 0 . )  The regularity of/c implies 

now tha t  k (x, ~) is continuous throughout X. Finally, 

k (x, / z -  i ) =  l~ (x, / z ) -  k (x, ~)4  k ( x , / Z ) + e . I ( X ) < / ,  

and hence II/z- ll = f/d/z<2 . 
CK, CKz 

In the following theorem the concept of a kernel ]2 on a space X is taken in 

the restricted sense in which it occurs e.g. in the Japanese literature. It is required 

tha t  k is a continuous mapping of X • X into the extended real line; tha t  Ic (x, y) + + 

for x 4 y ,  and finally that  k(x,  y ) : ~ - ~ .  We shall, moreover, call a kernel K-con- 

sistent if its restriction to K •  is consistent for every compact set K c X  (cf. w 5.3). 

THEOREM 3.4.2. On a locally compact space X,  any symmetric kernel lc>~O satis- 

]ying Frostman's maximum principle is K-consistent. 

Proo/. The kernel k is definite according to an interesting result due to 1~. 

Ninomiya [23], th. 3; and k is regular as shown by  G. Choquet [12] and N. Nino- 

(t) The idea of applying Lus in ' s  or Egorov ' s  theorem in potent ia l  theory  seems to go back to 
K. Yosida [34]. 

12 - 603808 Acta mathematica. 103. Impr im6  le 23 ju in  1960 
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miya  [23], Lemme 3. Hence we obtain  the K-consistency of k by  application of Theo- 

rem 3.4.1 to the restriction of k to K• for arbi t rary  compact  K c X .  Observe also 

t h a t  the space E~ of all positive measures of finite energy with respect to k, and 

supported by  K, is s trongly complete for every compact  K ~ X if we assume, in addi- 

tion, t ha t  k is strictly positive: k(x, x ) > 0  for every xEX. 

3.5. Superposition o/ kernels. The to ta l i ty  of all consistent kernels k on X (where 

k~>0 unless X is compact)  is easily seen to form a convex cone. Even  an infinite 

sum of consistent kernels k~> 0 is consistent, as one m a y  show by  the method  used 

in the proof of Theorem 3.5 below. We shall now consider a more general type  of 

superposition of kernels. Let  X and T denote two locally compact  t tausdorff  spaces, 

and let T>/0 be a fixed measure on T. Further ,  let k (x, y, t) denote a lower semi- 

continuous function of (x, y, t) defined on X • X • T, and suppose k (x, y, t)/> 0 every- 

where unless X and T are compact .  The function k on X •  defined by 

k (x, y) = f k (x, y, t) d z (t) 
T 

is then a kernel on X obtained, as we say, by  superposition of the family of kernels 

kt=k(x, y, t), t E T .  Consider now any  two measures ju and v on X whose mutua l  

energy k(/z, r) with respect to the kernel k= fktd~ is defined. Wi th  the nota t ion  

2=/~ |  this means tha t  fkd2 + and fkd2- are not  bo th  infinite. Applying case 

(ii) of Fubini ' s  theorem (w 1.1) to  the positive measures 2.+, resp. 2- ,  and ~, we obtain  

f kd~§ d~(t) f k, cZ~ § 

/ka  a2- 

Thus one, at  least, of the functions f k td2  + and f ktd2- is T-integrable and hence 

finite v-almost  everywhere. This shows tha t  the mutua l  energy kt (#, v )=  f k t d 2  of 

/z and v with respect to the kernel kt is defined for z-a.e, tET; and also tha t  f k d 2 =  

=fdT( t ) f k td2 ,  i.e., 

k (/~, ~) =f  kt (#, v) d T (t). (1) 

We shall now assume tha t  k~ is definite for T-a.e. tET. In  view of ( 1 ) t h i s  

implies t ha t  k is definite. Moreover, any  measure ju of finite energy k (#, # ) =  i]/~]] ~ 

with respect to k is likewise of finite energy kt(/~, #)=]]#10~ with respect to kt for 

T-a.e. t E T. Note  also tha t  k is strictly de/inite if ~* (S )>  0, where S denotes the  set 
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of values of t for which k t is strictly definite. Except  in the case where T is discrete 

(and hence k a sum of kernels kt) it is not known to the author whether in general 

k is consistent if kt is consistent for z-a.e, t E T. The following theorem answers this 

question in the affirmative provided X is metrizable and of class K, .  

THEOREM 3.5. On a locally compact, metrizable space X o] class K ,  any kernel 

obtained in the above manner by superposition of consistent kernels is consistent. 

Proo[. Consider a strong Cauchy sequence in ~+ (where E + is formed with re- 

spect to the given kernel k), and suppose this sequence converges vaguely to some 

measure te. Our task is to prove tha t  the given Cauchy sequence converges strongly 

to te (cf. Lemma 3.3.2). We begin by  choosing a subsequence {te~} of the given se- 

quence so tha t  Ilte -te + ll<2- ; tha t  is, in view of (1), 

Denoting by A~ the set of those t E T  for which Ilte~--ten+lll~>2 -~, we obtain z(A~) 

~<2 -~. Writing N =  N U A~, we infer tha t  z ( N ) = 0 .  This implies tha t  {ten} is a 
p ~'z >p 

strong Cauchy sequence in E~ (with respect to kt) for r-a.e, t ET.  Since ten-+te 

vaguely, and ks is consistent, it follows tha t  /~-->/ t  strongly in E + for r-a.e, t ET,  

and hence we have for every p 

lim II te --te  II = liter-- tetl  
n 

for T-a.e. tET .  

An application of Fatou 's  theorem (Bourbaki [4], Chap. IV, w 1, prop. 14) gives 

tl - te ll = f Jim II - lt , d , (tl <. lira II m , -  lr. 

Since {ten} is a Cauchy sequence (with respect to k), the expression on the right 

approaches 0 as p--~ ~ .  Consequently {#.}, and hence also the given Cauehy sequence, 

converges strongly to te. 

4. The interior and exterior capacitary distributions 

4.1. The interior capacitary distributions. We shall use the following elementary 

lemma from the geometry of pre-Hilbert  spaces. Le t  F denote a convex subset of a 

pre-Hilbert  space ~/ with the scalar product (#, v) and the seminorm Iitel[. Consider 

the quanti ty 
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II r II:  ~ II be II, 

in terpre ted  as + ~ if F is void. Wi th  these nota t ions  one has the following lemma.  

LEMMA 4.1.1. I t F contains some vector 2 o/ minimal norm: I [2I[=IIF[I ,  then the 

totality o t all such minimal vectors 2 is an equivalence class in ?tt. The inequality 

Ilbe-2112 < II be II ~ -  112 II 3 (1) 

holds /or any be E F and any minimal 2 E F. 

Proot. I t  suffices to establish (1). Fo r  any  number  t, O<t<. l ,  the vector  

v =  ( 1 - t ) . 2 + t . b e = 2 + t ( # - ; t )  

belongs to P, and  hence II ~ II 3 >/II 2 II 3. Eva lua t ing  II ~ 112, we obta in  (be - 2, 2)/> 0, and  

(1) follows. 

We shall app ly  this l emma  to the pre-Hi lber t  space E consisting of all measures  

/z of finite energy k (be, be)= [Ibell z wi th  respect  to a given definite kernel  k on a locally 
compac t  space X.  For  any  set  A c X we denote by  FA the convex class of all meas-  

ures be E E with the  p rope r ty  

(a) k (x, be) >~ 1 near ly  everywhere  in A, 

or, equivalent ly  (cf. L e m m a  2.3:2, which holds likewise for # E E), 

(a') k(v, be)>lv (X) for every  v EE + suppor ted  b y  some compac t  subset  of A. 

I n  view of, say, this la t ter  definition, the  convex set FA is s t rongly closed in E. 

According to L e m m a  3.2.2 (with t = l ) ,  iibell~> cap ,  A for every  #EFA,  t ha t  is, 

It rA II 2/> cap, A. (2) 

I n  part icular ,  FA is void unless cap ,  A < + oo. We proceed to prove  that ,  actual ly,  

II rA II ~ :  cap, A (3) 

provided the kernel  /c is consistent. I n  view of (2),  we m a y  suppose cap ,  A < + ~ ,  

and  it  suffices to  establish the  existence of a single measure  2 E I~A with [[ 2 [ [ 2  cap ,  A. 

Hence  (3) is contained in the following theorem.  

THEOREM 4.1. Suppose the kernel k is consistent, and let A c X ,  cap ,  A <  + oo 

The class AA o/ all positive measures 2 /or which 

II A II ~ :  A ( x ) :  cap. A, 
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and (a) k (x, 2)>~ 1 nearly everywhere in A, 

(b) k (x, 2 ) <  1 everywhere in the support o/ 2, 

and hence (c) k (x, 2 ) =  1 2-almost everywhere in X, 

is non-void and vaguely compact. 

Remarks. The same is t rue  of the  class AA of all measures 2 E AA supported b y  

the closure ~i of A.  The measures forming the class An are called the interior capa- 

citary distributions associated with the set A. I n  general, none of them is concentrated 

on A (unless A is closed). (1) For  a closed set F with cap .  F <  + o o  t h e m e a s u r e s  

2 E A~ m a y  be called interior eapaci tary distributions on F .  They  have all the prop- 

erties listed in Theorem 2.5 for the capaei tary distributions on a compact  set (pro- 

vided capaci ty  is interpreted as interior capacity),  and  coincide with these if F is 

compact.  According to Lemma 4.1.1, AA (and hence AA) is contained in the equi- 

valence class of all minimal measures in the convex class FA. I f  k is strictly definite 

(and hence per/ect, cf. Theorem 3.3), there is just  one interior eapaeitary distr ibution 

associated with A, and this unique minimal measure in FA is supported by  ~i. Fi- 

nal ly we note that ,  in case of a consistent kernel satisfying F ros tman ' s  maximum 

principle, properties (a) and (b) above m a y  be replaced by  the following properties: 

k (x, 2 ) =  1 nearly everywhere in A,  and k (x, 2 ) <  1 everywhere in X. 

Proo] o/ Theorem 4.1. The existence of a measure with the desired properties is 

proved by  an  approximat ion of  A by  means of compact  subsets in the manner  in- 

dicated by  H. Cartan [10], p. 94 f., for the Newtonian  kernel (cf. note  (1), p. 176). 

We employ here a more elementary version of this construct ion (cf. De la Vall6e- 

Poussin [30], Chap. I I ,  w 6). Choose a sequence of compact  subsets K ~  A so tha t  

lim cap K, = cap,  A. (4) 
7~ 

Replacing, if necessary, K~ by  K 1 U K 2 U "" tJ Kn, we m a y  suppose K~D K~ for n > p. 

Denote  by  2n a capaci tary distr ibution on K~, and observe tha t  

2~ E Frp for n > p. (5) 

I t  follows from Theorem 2.5 tha t  2v is a minimal measure in FKp, and hence 

Lemma 4.1.1 implies 

(1) In case of the Newtonian kernel Ix -y1-1  on R ~, the (unique) interior capacitary distribu- 
tion ~ associated with the open unit ball B coincides with the capacitary distribution on the closure 
/~ of B. Thus 2 is the uniform distribution of unit mass on the unit sphere, and ~ (B)= 0. 
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[[4,-4p][2~< I[4, [[~-[[4,][ ~=  cap K , -  cap g , .  

Since cap ,  A < § co, we conclude in view of (4) t h a t  (4~) is a s trong Cauchy sequence 

in E +. As 2, (X)= cap K~ remains bounded,  there exists a vague cluster point  4 

for the sequence {4,}. The  consistency of /c implies now t h a t  4~->4 strongly.  Since 

F ~  is s t rongly  closed, we infer f rom (5) t h a t  4EFKp for every  p. I n  other  words, 

k (x, 4)>~ 1 near ly  everywhere  in each Kp, and hence in the  union 

H =  U K , ;  
n 

t h a t  is, 4 EF  H. Fur thermore ,  

1141l ~= lim 114,112=lim cap gn<~ cap ,  H~< cap ,  A. 

Here  the  sign of equal i ty  subsists in view of (4): 

II 4 II tap, H =  cap, A. (6) 

The fact  t h a t  4 adheres vaguely to  the sequence (4~) implies 4~>0, S ( 4 ) c / t  (because 

S (4~)c K ~ / ~ ) ,  V (4)~< 1 (in view of the  lower semi-cont inui ty  of V (#) on ~ + ,  el. 

L e m m a  2.2.1), and  similarly 

4 (X) ~< lim sup 4~ (X) = l im cap Kn = cap ,  A. (7) 
n 

Since ]c (x, 4)~< 1 in S (4), we have  ]c (x, 4)~< 1 4-almost  everywhere,  and  hence 

cap ,  A = II 4 II 2 = f k (x, 4) d 4 < 4 (X). (8) 

Combining (7) and  (8), we infer tha t ,  actually,  4 (X) = cap ,  A, a n d  k (x, 4) = 1 4-almost  

everywhere.  All the  propert ies  of 4 s ta ted  in the theorem have  thus  been esta~blished 

except  t h a t  p rope r ty  (a) has been proved  only with H in place of A. I n  order to 

prove  t h a t  k (x, 4) ~> 1 near ly  everywhere  in A, we mus t  show tha t  cap K = 0 if K 

is compact ,  K c A ,  and k (x, 4 ) <  1 everywhere  in K.  Wri t ing (1) 

K'~=KnUK; H ' = H U K = U K ' ~ ,  

we obtain  H e l l ' c A ,  and hence, b y  (6), cap ,  H =  cap ,  H' =  cap ,  A. I f  4' is deter- 

mined f rom the sequence (Kn)  in the  same way  as 4 was de termined f rom the se- 

(1) This extra consideration, serving to extend property (a) from H to A, is, of course, unne- 
cessary if A is of class Ka. However, it may be avoided even by an arbitrary set A if one operates 
with the filtering iamily of all compact subsets K ~ A instead of the random sequence Kn. 
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quence {gn} , we have [[4'112= cap.  H'= cap.  H, and zer.. r, because H ' ~ H .  

Hence 4' is minimal in FH, and it follows from Lemma 4.1.1 tha t  ] ] 4 ' - 4 [ ] = 0 ,  or 

equivalently (cf. Lemma 3.2.1) 

k (x, 2 ) = k  (x, 4') nearly everywhere in X. 

Since K c H ' ,  we have ]c (x, 4')~> 1 nearly everywhere in K, and hence k (x, 4)~> 1 n.e. 

in K. By definition of K, k (x, 2 )<  1 everywhere in K, and consequently cap K = 0. 

Having thus proved that  A~ (and hence AA) is non-void, we proceed to show 

tha t  the classes AA and A~, which are obviously vaguely relatively compact, are 

closed in the vague topology. I f  a measure # adheres vaguely to AA, there is a filter 

(P on ~+ converging vaguely to # and possessing a base formed by  subsets of AA. 

Since A~ is contained in an equivalence class, qb is a strong Cauchy filter. In  view 

of the consistency of /c, (I) converges strongly to /~, and hence # is a minimal meas- 

ure in FA. The vague convergence of (I) to # implies, just  as above, tha t  #~>0, 

V (#) < 1, /~ (X) 4 cap.  A, and, subsequently, /~ (X) = cap.  A. Consequently, # is an 

interior capaeitary distribution associated with A, and so AA is vaguely closed. This 

implies tha t  A ]  is vaguely closed, and the proof of Theorem 4:.1 is complete. 

LEMMA 4.1.2. Every set o/ class K~ is capacitable. 

I t  suffices to consider a set A with cap.  A < + ~ .  Each interior eapacitary 

distribution 2 associated with A has a potential which is >~ 1 in A except in the set 

N = A ~  (.J { x e X :  k(x, 4)-~<1-n-1}, 
n 

for which cap.  N = 0 .  When A is of class K,,  so is N; say N = [ 3 , K p ,  where each 

K p i s  compact, and cap.  K ~ - 0 .  Since compact  sets are capacitable (Lemma 2.3.4), 

we infer from the corollary to Lemma 2.3.5 that  cap* N = 0, that  is, k (x, 2) >~ 1 quasi- 

everywhere in A. In  view of Lemma 3.2.3 with t =  1, we conclude tha t  

cap* A<It411 = cap, A. 

4.2. Monotone /amilies o/ sets, and the associated interior capacitary distributions. 

The first par t  of the following theorem was established earlier in the case of an 

arbi trary kernel (Lemma 2.3.3), but  no use will be made of this fact. Recall tha t  

9~ denotes the system of all sets A c X which are measurable with respect to every 

measure on X. 

TR~OREM 4.2. Suppose the kernel k is consistent. I /  A denotes the union o/an 

increasing sequence o/ sets An o/ class 9~, then 
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cap, A = 5m cap, A,. 
n 

I/,  in addition, cap, A < + oo, and i/ 2n denotes an interior capacitary distribution as- 

sociated with An, then every vague cluster point ~ o/ the vaguely bounded sequence (2n} 

is an interior capacitary distribution associated with A, and ~n-->~ strongly. (1) 

I t  follows that  the equivalence class of all minimal measures in FA, converges 

strongly to the equivalence class of all minimal measures in I~A as n-->oo (the strong 

convergence referring to the metric space ~ / ~ ,  where ~ denotes the class of all 

measures of zero energy). If  k is strictly definite, and hence perfect, the (unique) 

interior capacitary distribution ~n associated with An converges strongly and vaguely 

to the interior capacitary distribution associated with A. 

Proo/ o/ Theorem 4.2. I t  suffices to consider the case lira cap, An < + oo. Like 

in the proof of Theorem 4.1, one shows that  (2n) is a s t rong Cauchy sequence in 

E +, and hence it converges strongly to 2, where ~ denotes an arbitrary vague cluster 

point for the vaguely bounded sequence (2n). Moreover, ~ E I~Ap for every p because 

~n E FAp for n >p .  From the corollary to Lemma 2.3.5 follows now easily tha t  2 E FA. 

The strong convergence ~n-->~ implies further that  

I[ ~ ]]2= lim I I ~n I I ~= lim cap, An < cap, A. 
n 

Hence 2 is minimal in FA, and cap, A = lim cap, An. The fact tha t  2 adheres vaguely 

to (2n} implies in the usual way that  2>~0, V ( 2 ) < l ,  2 ( X ) =  cap, A, and also that  

S (2) c_~ if S (2n) C An. This completes the proof. 

LE~MA 4.2.1. Suppose the kernel k is consistent. Consider a decreasing filtering 

/amily ~ o/ arbitrary sets A c X with cap, A < + oo, and write 

Ao= f l A .  
Ae~ 

I /  ~A denotes an interior capacitary distribution associated with A E ~, (2) then every vague 

(1) This latter part  of the theorem may be formulated in a slightly stronger w a y a s  follows. 
The sections 

$9= tJ AAn (p=l, 2 . . . .  ) 
n > p  

form the base of a strong Cauchy filter on ~+ whose vaguo adherence n p  Sp is non-void and con- 
�9 t 

tained in AA.' A similar result subsists with AA~ and AA in place of AA~ and AA, respectively. 

(2) Again one obtains a stronger formulation by introducing the filter (I) on ~+ based on the 

totali ty of sections 
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cluster point ~o along ~ of the vaguely bounded /amily o/ measures {~A}A~ has the 

properties (a), (b), and (c) stated in Theorem 4.1 (but wi th  A o in place of A), and 

[]~oIIi=~t0 ( X ) =  inf cap ,  A. 
Ae~ 

Moreover, ~A-->~O strongly along ~. In  the special case where all the sets A E~ are 

closed and where S (~A) C A, we have 

cap ,  A o =  inf cap ,  A, (1) 
Ae~ 

and ~o is there/ore an interior capacitary distribution on A o. 

Proo/. The "sec t ions"  ~A = {~B : B E ~,  B ~  A} const i tute  the base of a filter (I) for 

which ).o is a vague cluster point .  I t  is easily shown in the  usual  way  t h a t  (I) is a 

s trong Cauchy filter. In  view of the  consistency of the  kernel  k, we infer t h a t  4P->~ 0 

strongly.  Hence  

[I ~o [[2= lim [[ ~A [[~= l im cap ,  A = inf cap ,  A. 
Ae~ A ~  Ae~ 

Since 2AEFA~FA. for every A E~,  we obta in  2oEFA~ The  remaining propert ies  (b), 

(c), and  2o(X)=]]2o]12 are derived in the  usual  way from the fact  t h a t  ~o adheres 

vaguely  to  (I). Moreover,  S (2A)~z~ implies S ( ~ o ) ~ J ,  and  hence 

S (~'o) ~ N ~ .  
Ae~ 

(Note that A o need not be supported by A0, and that (1) need not ho]d for arbitrary 

sets A, cf. note  (1), p. 155.) I f  the  sets A e~ are closed, 2 o is ac tual ly  suppor ted  by  

A0, and  it follows f rom (1), w 2.5, t h a t  

cap ,  A o >~ 2 ~o (X) - ] I  ~o II 2 = inf cap ,  A. 
Ae~ 

This establishes (1), and  the  proof  is complete.  

LEMMA 4.2.2. Suppose k is consistent and X is normal. Every closed set o/ /inite 

exterior capacity is capacitable, and so is every denumerable union o/ such sets. 

Note  t h a t  this l emma  is contained in L e m m a  4.1.2 if the space X is of class K~. 

I n  the  proof of L e m m a  4.2.2 we consider first  a single closed set F 0 wi th  cap* F o < + cr �9 

Denote  b y  G some open set  such t h a t  G ~ F  o, and cap G <  + oo. Since X is sup- 

SA = [J -A-B, resp. SA = (J A~, 
B B 

where A, B ~  and B ~ A. Any vague cluster point 20 of (I) has then the properties listed above. 
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posed to  be normal ,  G conta ins  some closed ne ighbourhood H of F 0. Le t  ~ denote  

the  decreasing f i l ter ing fami ly  of all closed neighbourhoods F c H of F 0. I n  view of 

the  no rma lcy  of X,  F 0 is the  in tersec t ion  of th is  fami ly  ~ .  According  to  the  pre- 

ceding lemma,  

cap* F 0 ~< inf c a p ,  F = c a p ,  F0, 
FeB 

and  hence F 0 is capaci tab le .  As to  the  second p a r t  of the  l emma we refer  to  the  

corresponding p a r t  of the  proof  of L e m m a  4.1.2. Like  in  the  analogous  case of 

measures ,  the  l imi t a t ion  to  closed sets of /inite exter ior  capac i ty  cannot  be dispensed 

wi th  in L e m m a  4.2.2. This  appears  from Ex .  10, w 8.3. 

4.3. The exterior capacitary distributions. W e  cont inue the  s t u d y  of a consis tent  

kernel  /c on a local ly  compac t  space X,  bu t  we shall  now make  the  following two 

add i t iona l  assumpt ions  concerning X:  

(H1) X is normal .  

(H2) E v e r y  open set  is of class F , .  (1) 

A topologica l  space X possessing these  two proper t ies  is called per/ectly normal (Bour- 

baki  [3], w 4, excrc.  7). Clearly,  a n y  met r izab le  space is pe r fec t ly  normal ,  b u t  the  

converse  is false even in  t he  ease of a compac t  space (Bourbak i  [3], w 2, exerc.  13). 

A n  equiva len t  form of (HI2) is t h a t  every  closed set  should be of class G~. Hence  

a n y  closed subse t  of a per fec t ly  no rma l  space is r ep re sen t ab l e  as the  in te rsec t ion  of 

a sequence of closed ne ighbourhoods  of F ;  or, in o ther  words,  F = N Gn, where each 

G~ is open and  contains  F .  I n  the  case of a met r ic  space wi th  the  d i s tance  d we 

may ,  for instance,  use the  fol lowing open sets: 

Gn={xeX: d(x,F)<n-1}.  

The following consequence of (I-I~) is of impor t ance  in the  sequel: A n y  set of 

class (FG),, t h a t  is of the  form 

H = 5 (Fn N G~) (Fn closed, Gn open), 
n = l  

is ac tua l ly  of class F~. 

W e  consider  now a consis tent  kerne l  k on a local ly  compac t  space X sa t i s fy ing 

the  hypotheses  (H1) , (Ha) , and  we assume as usua l  t h a t  k>~ 0 unless X is compac t .  

(1) A set is said to be of class Fo if it is representable as the union of a sequence of closed 
sets. A set is of class G~ if it is representable as the intersection of a sequence of open sets. The 
classes Fa~ and G~a, etc., are defined correspondingly. 
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For brevity, we shall call a set A a-compact, resp. a-/inite, if A can be covered by a 

sequence of sets each of which is compact, resp. of finite exterior capacity. (1) In the 

latter ease, the covering sets may clearly be chosen as open sets, or, in view of (H2), 

as closed sets. In  other words, a set A is a-finite if and only if A is contained in 

some set of the type considered in the second part  of Lemma 4.2.2. In particular, 

every a-/inite (or a-compact) set o/ class (FG),--Fo is eapacitable. In  view of this 

observation, the relations between potentials and interior capacity, described in w 3.2 

in the case of an arbitrary definite kernel, have exact, analogues for the exterior capac- 

ity under the present assumptions of a consistent kernel on a locally compact space 

X satisfying the hypotheses (H1), (H2). 

LEMMA 4.3.1. TWO measures ~, / t E ~  are equivalent i/ and only i] their potentials 

coincide quasi-everywhere. 

Proo/. Suppose 112-#11=0. According to the corollary to Lemma 2.3.5 it suf- 

fices to prove that any set A such that  k (x, ~ - / t )  > t / n  quasi-everywhere in A is 

of zero exterior capacity, and this is implied by the following lemma. 

LEMMA 4.3.2. Let 0<t~< + ~ ,  / tEE, and let A denote a set such that k(x,/t)>~t 

quasi-everywhere in A.  Then 

cap* A <t  ll/tll 2 

Proo/. In  view of the corollary to Lemma 2.3.5 and the fact that  k(x, / t )  is 

defined quasi-everywhere (Lemma 3.2.3), we may assume that  /c (x,/t) is defined and 

>1 t everywhere in A. For any number s, 0 < s < t, A is then contained in the set 

H={ xeX:k ( x , / t+ )  >k (x,/t-) +s}. 

Introducing the open sets Gr and the closed sets Fr (r rational) as follows: 

F~ ={ xeX:k ( x , / t - )  < r}, 

G,= { x e X  : k (x, /t+) >r  +s}, 

we find that  H is of class (FG),, being the union of the sets F~ N G~. Hence H is 

capacitab]e if a-finite or a-compact. I t  suffices to consider case I (k~>0). Here H 

is contained in the open set 

{ x e x  :k(x,/t+) > s}, 

(1) Recall that any a-compact set is a-finite provided the kernel k is strictly pseudo-posltive 
(thus in particular if k is strictly positive or strictly definite). 
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whose capaci ty  is finite according to Lemma 3.2.2. Consequently,  H is capaeitable, 

and  we infer f rom Lemma 3.2.2 t h a t  

cap* H =  cap ,  H < s  2.11 112, 

from which the assertion of the  lemma follows for s - ~  t. (1) 

LEMNA 4.3.3. I[ #~--> /~ strongly in E, then 

k (x,/z)/> lim inf k (x, #~) quasi-everywhere in X.  
n 

This follows from the  preceding lemma in the same way  as Lemma 3.2.4 fol- 

lowed from L e m m a  3.2.3. Again, one m a y  easily prove tha t  there is a subsequence 

{/zm} whose potentials converge quasi-everywhere to  the potential  ]c (x,/z) of /~. Cf. J .  

Deny  [15], Th6or~me 1, c). 

Wi th  any  given set A c X we associate the convex class 

F~ = {# E E : k (x, ~u) ~> 1 quasi-everywhere in A}. 

I t  follows immediately f rom the last lemma above t h a t  F~ is sequentially s t rongly 

closed in E. Since the strong topology on E is defined by  means of a semi-norm, 

P~ is actual ly  closed in the strong topology. According to  L e m m a  4.3.2 with t =  1, 

H/z [[ s ~ cap* A for every /~ E P~; t ha t  is, I[ P~ [13/> cap* A (cf. L e m m a  4.1.1). I n  part icu- 

lar, F~ is void unless c a p * A  < + oo. We proceed to prove that ,  actually,  

II II 2 = cap* A.  

I t  suffices to  establish the  existence of a single measure ~ E P ~  of energy e a p * A  

under  the assumption cap* A < + ~ ;  and  this will be done in the following theorem. 

T~EOREM 4.3. Suppose that the kernel k is consistent and that the locally compact 

space X is per[ectly normal. For any set A c X with cap* A < + ~ ,  the class A*A of 

all positive measures ,~ [or which 

l] ]l = a ( x )  = cap* A 

(1) This lemma is due to H. Cartan [10], Lemme 5, p. 98, in the Newtonian case; but the 
manner in which Caftan reduced it to the elementary Lemma 3.2.2 was different from the procedure 
employed above. Cartan's proof depends on the fact that the Newtonian kernel has the property 
described in the second part of Theorem 3.4.1. His method is, therefore, applicable to any regular 
kernel (even without restrictions on the locally compact space X). 
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and 

and hence 

(a) /c (x, ;i)/> 1 quasi-everywhere in A, 

(b) ]c (x, ~)~< 1 everywhere in the support o/ ;i, 

(c) ]c (x, 2 )=  1 ;i-almost everywhere in X, 

is non-void and vaguely compact. 

The same is true of the class A~' of all measures ;i E A* supported by A. The 

measures of class A~ are called the exterior capacitary distributions associated with the 

set A. The remarks to Theorem 4.1 have obvious analogues in the present case. 

Proo[ o/ Theorem 4.3. In the special case of an open set A=G,  any interior 

capacitary distribution ;t associated with G has the stated properties because the set 

H=Gn{xEX:  lc(x, 2)<1} 

is of class GFo=Fo and hence capacitable (since cap* H<~cap G <  + c~). To an ar- 

bitrary set A with cap*A < + oo corresponds a sequence {G.} of open sets con- 

taining A such that  cap G, < + c~ and 

lim cap G~ = cap* A. 
n 

Since X is perfectly normal, we may assume that  n G, =z[.  Replacing, if necessary, 

G~ by G 1NG~N.. .  NG,, we may suppose, further, that  G~cG~ for n > p .  Denoting 

by ;i~ an interior capacitary distribution associated with G~ and supported by G~, we 

conclude in the usual way that  {;i~} is a strong Cauchy sequence in E +. Since 

;in(X) = cap G~ remains bounded, there exists a vague cluster point 2 for {;in}, and 

hence 2~--> 2. strongly in view of the consistency of/c. Clearly 2~ E P ~  c P~, and hence 

E F~. Moreover, ;i~ is supported by G~ for n>p ,  and hence 2 is supported by each 

~, i .e. ,  
s(;i) n 

P 

Proceeding as in the proof of Theorem 4.1, we conclude that  ;i E A~'. Finally, it  is 

shown in the previous way that  A~ and A~', which are obviously vaguely bounded, 

are vaguely elose:l and hence compact. 

LEMMA 4.3.4 I[ A is capaeitable and o/ /inite capacity, AA~A~ and A ~ = A * ' .  

In fact, the minimal measures in FA and in F~I constitute two equivalence classes 

in E of which the former contains the latter because F A ~F *  and IIrAII2=llr ll 2 

( = c a p  A). Consequently, these two equivalence classes are identical, and the lemma 

follows easily. 
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4.4. Monotone /amilies o/ sets, and the associated exterior capacitary distributions. 

The results in w 4.2 concerning monotone families of sets can be extended with un- 

changed proofs to the case of exterior capacity and exterior capacitary distributions. 

The limitation to sets of class ~[ in Theorem 4.2 is unnecessary here on account of 

the corollary to Lemma 2.3.5. Particularly interesting is the following theorem, which 

corresponds to the first par t  of Theorem 4.2, and which, in the terminology of Cho- 

quet [14], w 15.3, asserts tha t  the capacity associated with the kernel k is alternating 

of order 1, a. 

THeOReM 4.4. Suppose that the kernel k is consistent and that the locally compact 

space X is per/ectly normal. I /  A denotes the union o/ an increasing sequence o/ ar- 

bitrary sets A ~ c  X,  then 

cap* A = lim cap* A~. 
n 

COROLLARY. Any denumerable union of capacitable sets of class ~ is capacitable. 

4.5. Application o/ Choquet's theory o/ capacitability. 

T~EOR]~M 4.5. Suppose that the ]cernel k is consistent and that the locally com- 

pact space X is per]ectly normal. Every K-analytic set is capacitable, and so is every 

a-compact or a-/inite Borel set. 

The hypothesis (H2) implies tha t  the different classical definitions of a Borel set 

are, in fact, equivalent (but the concept of a Borel set is more general than tha t  of 

a K-borelian set in the sense of Choquet [14] unless X is of class K~). However, 

any a-compact Borel set is a K-borelian set, and the capacitability of such a set 

follows, therefore (in view of Theorem 4.4 above), from par t  (i) of a fundamental  

theorem in Choquet [14] (Th~or~me 30.1). Par t  (ii) of the same theorem shows tha t  

any K-analytic subset of X is capacitable (likewise on account of our Theorem 4.4). 

We shall omit  the proof of the capacitability of all a-/inite Borel sets because this 

proof depends on various adaptations of Choquet's theory to the present circumstances. 

Of course, this last case of a-finite Borel sets is of interest only if X is not of class 

Ko. The result should be compared with the well-known fact from measure theory 

tha t  t t * ( A ) = # . ( A )  if A is #-measurable and contained in the union of a sequence 

of /t-integrable sets. In  both cases, the a-finiteness condition on A cannot be dis- 

pensed with (cf. Example  10, w 8.3). 



ON T H E  T H E O R Y  OF P O T E N T I A L S  I N  L O C A L L Y  COMPACT SPACES 185 

5. Extensions of the theory 

5.1. The case o/ a continuous weight function. The preceding theory can be ex- 

tended when we replace the function 1 in the properties (a), (b), and (c) of the 

capacitary potentials (cf. Theorems 2.5, 4.1, and 4.3) by a more general function 

[>~0, and hence /~(X)= f ld/~ by  f / d ~ ,  etc. The simplest case is tha t  of a continuous 

function with values 0 < / (x) < + c~. The preceding theory can be carried over to this 

new case by obvious modifications in the proofs. Alternatively, one m a y  reduce the 

new case to the old case by  introducing the kernel 

kq (x, y) = k (x, y) q (x) q (y), q = 1/[. 

The kernels k and kq are always of the same kind (say, positive, pseudo-positive, sym- 

metric, definite, strictly definite, consistent, or perfect). In  fact, the mapping 

/~--> q ' / z  

is a linear homeomorphism of ~ (X) (with the vague topology) onto itself, leaving 

~ +  (X) invariant.  The identity 

k~(~, v )=  k(q/~, qv) 

shows that,  in case of a definite kernel k, the above mapping carries the space Eq 

of all measures of finite energy with respect to kq isometrically onto the space E 

formed with respect to k. Note also tha t  the potentials are related as follows: 

k~ (x,/~) = q (x). k (x, q/~). 

In  particular, the conditions stated in Lemmas 3.4.2 and 3.4.3 are satisfied simul- 

taneously by  k and kq. Likewise, k and kq are simultaneously regular. 

5.2. Balayage. Suppose now the kernel k is definite, and take for f the potential 

/(x) = k (x, r of a given measure eo of finite energy with respect to k. (The assump- 

tion f>~0 is fulfilled at  least if eo>~0 and k>~O, but  f is now in general discontinuous.) 

Replacing # (X)  by f f d # = k ( # ,  o~) in the definition (1), w 2.5, of the interior Wiener 

capacity, we define for any set A c X 

cap , A = sup  { 2  (4,  - = II II - i n f  II - II 2, 

where 2 ranges over the class of all positive measures of finite energy and concen- 

t ra ted on A (or supported by some compact subset of A). Clearly, 

0 < cap~. A ~ cap~. X < + ~ .  
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We shall now make the assumption tha t  the space ~ of all positive measures 

of finite energy supported by F is strongly complete for every closed set F. (Any 

perfect kernel fulfills this assumption, and so does any consistent and strictly pseudo- 

posi t ive kernel, cf. w 3.3.) In  view of this assumption the above extremal problems 

have solutions when A = F is closed. In  fact the problem is to minimize the distance 

between eo and the points 2 of a convex, complete subset E + of a pre-Hilbert  space 

E. The process of solution of this problem (the "projection" of eo onto E~) i s  called 

the "sweeping-out" process (French: "balayage") .  The resulting measures $ are charac- 

terized within E~ by  the relations 

and their potentials have the following properties: 

(a) k (x, ~)>~ k (x, r in F except in some subset N with c a p , . N =  0, 

(c) k (x, ~) = k (x, co) ~-almost everywhere in X. 

There seems to be no obvious analogue of property (b) in Theorem 2.5 (unless 

/ = k ( x ,  co) is continuous and >0 ,  in which case we are back in the case considered 

above in w 5.1). This is because all reference to the vague topology has disappeared, 

cap~ A = inf cap~. G as G ranges over Next  one may  define an exterior capacity * 

the class of all open sets containing A. Open sets and closed sets are capacitable. 

I f  k>~O, this exterior capacity is countably subadditive. A theory of interior balayage 

can be developed in analogy with w167 4.1, 4.2 (again except for property (b)). There 

is a similar theory of exterior balayage under the additional hypotheses (Hi) , (H2) , w 4.3. 

Finally, it can be shown as before tha t  all K-analytic sets and all Borel sets are 

capacitable. 

5.3. The case o/ a kernel o/ variable sign on a non-compact space. So far, we 

have studied the two cases I :  k>~0, and I I :  X compact. In  the general case of a 

kernel k of variable sign on a locally compact, not necessarily compact space X. we 

shall limit the at tention to measures of (uniformly) compact supports. As mentioned 

in" w 2.1,! this case can be reduced to case I I  simply by  replacing the kernel k by  

its restriction to K •  where K denotes an arbi trary compact subset of X. I t  is, 

however, sometimes preferable to remain in the original locally compact space X; and 

hence the following definitions are convenient (and sometimes of interest even in Case 

I of a positive kernel, cf. Theorem 3.4.2): 

A kernel k on a locally compact space X is called K-de/inite, strictly K-de]inite, 

K-consistent, or K-per/ect if, for every compact set K c X ,  the restriction of k to 
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K •  is definite,  s t r i c t ly  definite,  consistent ,  or perfect ,  respect ively .  I n  Case I (or 

Case I I ) ,  a kernel k is de/inite i/ and only i/ it is K-de[inite. This follows from L e m m a  

2.2.2 and  the  r e m a r k  there to ,  app l i ed  to  the  th ree  t e rms  in the  decompos i t ion  

k(t, ,  t , )=  zc (t, +, t,+) + ~ ( S ,  t , - ) - 2  ~(tt +, tt-).  

A kernel  which is s t r ic t ly  definite,  consistent ,  or perfect  (in Case I or Case I I )  is l ike- 

wise s t r i c t ly  K-def in i te ,  K-cons is ten t ,  or K-per fec t ,  respect ively .  The converse is t r iv ia l  

in Case I I  and  false in Case I .  

Consider now a K-de/inite kernel  k on a loca l ly  compac t  space X.  (According to  

Theorem 3.3, such a kernel  is K-pe r fec t  if and  on ly  if i t  is K-cons i s t en t  and  s t r i c t ly  

K-def ini te . )  W e  denote  b y  E~, resp. E~:, the  space of all  measures ,  resp. pos i t ive  

measures,  of f ini te  energy and  suppor t ed  b y  the  compac t  set K ~ X .  I t  follows then  

(a) f rom L e m m a  3.3.1 t h a t  ~ is s t rongly  comple te  for eve ry  compac t  set K ~ X ,  

prov ided  k is K-cons i s ten t  and  s t r i c t ly  pseudo-posi t ive .  

(b) from the  proof  of L e m m a  3.4.2 t h a t  k is K-cons i s t en t  if there  corresponds to  

eve ry  compac t  set K ~ X  a compac t  set  K I ~  K wi th  the  p r o p e r t y  t h a t  eve ry  

measure  # E E K  can be a p p r o x i m a t e d  in the  s t rong sense b y  measures  ~ E ~ K ,  

for which the  po ten t i a l  k (x, ~) is cont inuous  (or a t  least :  the  res t r ic t ion  of k (x, 2) 

to  K is cont inuous) .  (1) 

(e) f rom Theorem 3.4.1 t h a t  k is K-cons i s t en t  if i t  is regular .  

L e t  us now suppose t h a t  k is K-consistent (cf. Theorem 3.4.2). F r o m  the  resul ts  

of w 4 fo]lows t h a t  there  corresponds to  every  relatively compact set A ~ X  of f ini te  

in ter ior  capac i ty  a non-void,  vague ly  compac t  class of in ter ior  capac i t a ry  d i s t r ibu t ions  

(some of which are  suppo r t ed  b y  A).  A s imilar  resul t  holds  for the  exter ior  capa-  

(1) In order to verify that the restriction of k to K • K has the property (CW) formulated in 
Lemma 3.4.1, we consider a filter (I) on the part of ~ :  determined by ][/t [[ ~<M, and suppose that 
(I) converges vaguely to some measure /to- I t  follows that #o E ~ and [I/to [[ ~< M. To any number 
t/> 0 and any measure ~ E ~ corresponds, by assumption, a measure )~'E ~ such that ][ ~ -  ~' [] < 
and the restriction of k (x, ~t') to K is continuous. The vague convergence (b --~/t0 implies 

k(/t, r ) =  fk (x ,  z')~/t -~ fk (x ,  ~.')a/t0= ~ (/to, r )  

along O. Using the Cauehy-Schwarz inequality, we obtain 

I ~ (/t-/t0, ~)I ~ I k(/t-/t0, ~')I + II/t-/t0 II I I~ - r l l ,  

and hence, along (I), lim sup [ k (/t, ~) - k (/t0, ~) [ ~< 2 M ~ because [[/t -/t0 ][ ~< ]]/t ][ + ]1/to [[ ~< 2 M. Letting 
g 

-~ 0, we conclude that (I) converges weakly to /t 0. 

13 -603808 Acta mathematica. 103. Imprim6 le 23 juin 1960 
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ci tary distributions provided the space X has the proper ty  tha t  every relatively com- 

pact,  open set is of class K ,  (thus in part icular  if every compact  subset of X is 

metrizable). Finally,  every relatively compact  Borel set is capacitable, and so is every 

relatively compact  K-analy t ic  set. 

III. CONVOLUTION KERNELS 

We shall now s tudy  the impor tan t  case where X is a locally compact  topological 

group and where the kernel k (x, y) is invariant under, say, r ight  multiplication: 

k(xz, yz)=k(x,  y) (x, y, zEX).  

Writ ing briefly k(x) in place of 

group X, we find the expression 

for the kernel k(x, y) in terms 

k (x, e), where e denotes the uni t  element in the 

k(x, y) = k ( x y  -1) 

of the kernel /unction k = k (x). The potent ial  of a 

measure # with respect to  a (right) invariant  kernel is, therefore, the convolution 

k-)e# of the kernel funct ion k and the measure ~u (cf. w 6.2). For  this reason we shall 

use the term convolution kernel synonymously  with r ight invar iant  kernel on a locally 

compact  group. 

6. Preliminaries concerning locally compact topological groups 

The following notat ions are convenient.  The reflex of a (real-valued) funct ion / 

on the group X is the funct ion / defined by 

] (X) = / ( z - i ) .  

The reflex of a measure # is the measure /~ defflled by  d~(x)=d#(x-1),  i.e. 

f /d/~= f ]d~ 

for every /E Co(X), and hence also for any  function / such tha t  one of the two 

integrals (and hence also the other) is defined. A function, or a measure, is called 

symmetric if i t  coincides with its reflex. The r ight  translates of a funct ion ] are the  

functions x --> ] (xa), a E X. The r ight  translates of a measure ~u are the measures 

/ --> f / (xa) din (x), a E X. Left  translates of functions and measures are defined cor- 

respondingly. 



ON THE THEORY OF POTENTIALS IN LOCALLY COMPACT SPACES 189 

6.1. Convolution o/ two measures (Cf. H.  Car tan  [9], w II).  Consider  first  two  

posi t ive  measures  # and  v on the  local ly  compac t  group X.  The  m~pping 

]-->H/(xy)d#(x)dv(y) (/6C~(X)) 

is an add i t ive  and  pos i t ive-homogeneous  funct ional  on C~ wi th  values  ~> 0 and  < + oo. 

I] the double integral is /inite /or every /E C~, i t  can be ex tended  in a un ique  and  

obvious w a y  to  a posi t ive,  l inear  funct ional  on Co(X), and  hence there  is a un ique ly  

de te rmined  measure  /2 ~ v, called the  convolu t ion  of # and  v, such t h a t  the  equa t ion  

f / .d(#~er)= / f  /(xy)d#(x)dv(y) (1) 

holds for every  funct ion  / 6  Co(X). B y  app l i ca t ion  of Th4or~me 1 in Bourbak i  [4], 

Chap. IV, w l ,  we infer t h a t  (1) holds for a lower semi-cont inuous  funct ion  / on X 

p rov ided  e i ther  /~> 0 or  /2 and v have  compac t  suppor ts .  (The l a t t e r  case is reduced  

to  the  former  in the  usual  w a y  b y  adding  to  / some cons tan t  c>~0 such t h a t  

](x)+c>~O in the set S(/2)-S(~).) 

F o r  two measures  of var iab le  sign one defines the  convolut ion  b y  

/2 * v =/2  + -X-v + + / 2 -  ~ v~ --/2+ -X-v- - - /2-  -X-v +, 

p rov ided  the  four convolut ions  on the  r igh t  are  well def ined according to  the  above  

definit ion.  I t  is well  known t h a t  this  is t he  case, in par t i cu la r ,  if a~ leas t  one of the  

measures  /2 and v is of compac t  suppor t .  (I) 

The convo]ution product is commutative if and only if the group is Abelian. In 

any case the identity 

( /2"  v) ~ = ~ * h  (2) 

holds in the  sense t h a t  bo th  convolut ions  are  s imul taneous ly  def ined or undef ined.  

Each  of the  d i s t r ibu t ive  laws 

A ~  ( # + _ v ) : 2 ~ e # + ~ e v ;  ( # •  + v % ~ ,  

subsists  p rov ided  the  two convolut ions  on the  r igh t  a re  defined. 

As usual ,  we denote  b y  ex the  mass  + 1  p laced  a t  the  po in t  x 6 X .  F o r  e, we 

wri te  s imply  e. Clearly,  e is the  i d e n t i t y  for the  convolut ion  p roduc t  of measures:  

More general ly ,  /2 * E~ and  ca-x-/2 are  t he  r igh t  a n d  lef t  t r ans la tes  of /2. 

(1) In fact, if /~>0, v~>0, and if /, has compact support, then the supports of ](xy) and of 
#t | v have ~ compact intersection in X x X for any given ] 6 C0 (x). 
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6.2. Convolution o/ /unctions and measures. Consider a lower semi-continuous 

funct ion / and a measure #.  Under  the assumption tha t  either /~>0 or S(/~) is com- 

pact ,  we define the convolutions / ~ / ~  and # ~-/  as functions of x by  

(/-)r (x)= / / (xy-1)d~a(y) ,  

(# ~e/) (x) = f / (y-i  x) d #  (y), 

a t  any  point  x E X  for which the integral in question is defined (cf. w 1.1). I f  /~>~0, 

then /-x-/~ and  /~-)e/ are defined and lower semi-continuous everywhere in X.  I t  is 

easily verified tha t  
( / ~ ) v = ~ /  (1) 

in the sense tha t  both expressions are defined at  the same points of X.  I f  v denotes 

another  measure, likewise of compact  support  unless />~ 0, it follows from Fubin i ' s  

theorem (w ] . l )  t ha t  
# ~ ( /  ~ ~,) = ( #  -~ / )  -~ v = # ~ / - )e  v (2) 

at  any  point  x E X for which the last expression exists according to the following 

de/inition as a double integral: 

(/~-)e /-)ev) (x)=  f f  / (y- lxz-~)d/~(y)dv(z) .  (3) 

This is the case, in particular,  if ~u~> 0 and ~>  0. Finally, it follows f rom Fubini ' s  

theorem tha t  the relations 

/ ~  (# ~- v) = ( / ~  ju)-x-r, (4) 
( ~ ) ~ / = ~ ( v ~ / ) ,  

hold, say by  positive measures /~ and r, in each of the following two cases: a) / ~  0 

and  / ~  v exists; b) /~ and v have compact  supports.  

6.3. The Haar measures. I t  is well known tha t  there exist on any  locally compact  

topological group X positive measures (@0) which are invar iant  under r ight  or left 

translations. These invariant  measures are called the Haar measures on X. I t  is also 

known that ,  if m denotes some r ight  invariant  H a a r  measure, then any  other r ight 

invar iant  measure on X is a constant  multiple of m. Similarly in case of left in- 

var ian t  measures. I f  m is r ight  invariant,  ~h is left invariant .  I f  X is Abelian or 

compact ,  ~h=m,  so tha t  any  right invar iant  measure is left invariant,  and conversely. 

I n  the general case, there is a certain continuous function ~ = ~  ( x ) > 0  on X, the 

modular /unction, with the proper ty  tha t  
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= e "  m. 

Moreover,  Q (xy) = ~ (x) ~ (y); ~ (x -x) = 1/6 (x); Q (e) = 1. 

In  the  sequel we shall let m s tand for a fixed right invar ian t  H a a r  measure  on the  

group X.  

To any  locally m-integrable  funct ion / on X corresponds a m e a s u r e / m  with the  

densi ty  /. For  such a funct ion / the  convolut ion concept  defined in w 6.2 m a y  be 

reduced to  t ha t  of w 6.1. In  fact,  let / denote  a lower semi-continuous,  locally m-inte-  

grable function, and  let # be a posi t ive measure  (of compac t  suppor t  unless />~0). 

Then the  convolut ion (/m)-)+# of the measures  / m  and /~ is well-defined if and  only 

if / ~ / ~  is locally m-integrable.  I n  the  af f i rmat ive  case (e.g., if S(/~) is compact) ,  the  

measure  ( /m) * / ~  has the  densi ty  / * /~:  

(fro) ~ ~ = ( / ~  ~ ) - ~ .  (1) 

I n  fact ,  for any  funct ion ~ E C~ (X), 

f ~d((/~.)m)= f ~(x){f/(xy-1)d.(y)}dm(x)= f {f ~(x)/(xy-1)dm(x))d[s 

which equals the integral  of ~ wi th  respect  to (/m)~/z. Similarly, 

~ (/~) = (~ ~ / ) .  ~.  (2) 

The convolut ion of two /unctions / and g will be defined by  

( / ~ g )  (x )=  f f(xy-i)g(y)dm(y) = f /(y)g(y-~x)d(n(y). (3) 

We  shall only  need the  case where f and g are lower semi-continuous and  >/O. Then 

[ ~eg is likewise lower semi-continuous (since /(xy-1)g(y) is lower semi-continuous on 

X x X, and m E ~/+ (X)). I f  g is locally I-Iaar integrable,  / * g = / * (gm); if [ is locally 

H a a r  integrable,  / ~ g =  (/g~)~g. The following identit ies are easily verified: 

( / ~  gF = ~ ~ ], (4) 

f / g d m  = (]~- g) (e) = (~-x-/) (e), (5) 

f/d~ = ( [~  ~) (4 = (h ~ / )  (~). (6) 
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6.4. Kernel /unction. Energy /unction. A lower semi-continuous function ]C = ]C (x) 

on the locally compact  group X will be called a ]cernel function on X. The corre- 

sponding convolution kernel is defined by  ]c(x, y)=]c(xy-1). This kernel is clearly posi- 

t ive or symmetr ic  if and only if the kernel function ]C is positive (]C ~> 0) or symmetr ic  

(]c=kk). In  a similar way we shall call the kernel funct ion definite, consistent, etc., 

if the  kernel ]c(xy -1) is definite, consistent, etc. 

The potent ial  of a measure # (of compact  support  unless ]C~> 0) is simply the 

convolution ]C~/~. The mutua l  energy ]C (ju, v) of two measures /~ and v (of compact  

support  unless ]C~>0) is the value of /~-x-kk~v (cf. (3), w 6.2) a t  the group ident i ty  e: 

]c(~, ~)= (~ ~ ]c ~ ~)(e). (1) 

In  part icular,  the  energy ]C(2, ~) of a measure 2 (of compact  support  unless ]C~>0) is 

the value ]c~(e) a t  e of the so-called energy function 

(2) 
]C~ (x) = f f  ]C (s x t -1) d ~ (s) d ~ (t), 

associated with the kernel funct ion ]C (ef. J .  Deny  [16]). 

LEMMA 6.4.1. For any ]cernel function ]C and any measure ~ >~0 (of compact  

support  unless ]C>/0), the energy function /ca= ~-)e ]C ~ 2 is itself a kkernel function on 

the group X.  Whenever defined, the corresponding mutual energy o/ two measures fe and 

v o/ compact support is determined by 

]c~(~, ~)= ] c ( ~  ~, 2 ~ v ) .  (3) 

I f  ]C is symmetric or K-de/inite, ]ca has the same property. 

Proof. The only point  requiring a comment  is the val idi ty  of (3). The case of 

measures /~ and v of variable sign is easily reduced to  tha t  of positive measures, and 

here (3) follows from (1) by  repeated applications of the associative laws (2), (4), w 6.2, 

and the ident i ty  (2), w 6.1: 

/~ ~ ]c~ ~ v =/~ ~ ( ~  ]c ~ ) ~ =  (~ ~/~) v ~ ] c ~  (~ ~ ~). (4) 

7. Definite convolution kernels 

In  the present  section we assume tha t  the lower semi-continuous function ]C = ]C (x) 

(the kernel function) on the  locally compact  group X is symmetr ic  (Ic = ]C) and K-de- 

finite. Thus 
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for every  measure /~ of compact  support  for which the energy k ( # , / , )  is defined (i.e., 

k (#  +, # + ) + k ( / ~ - ,  # - )  and k (#  +, # - )  are not  both  infinite, cf. w 2.1). As pointed out  

in w 5.3, this implies tha t  k is definite provided either k>~0 or X is compact.  

7.1. Continuity of the energy function. The  key to the discussion of K-defini te  

convolution kernels is the following result concerning real-valued positive definite func- 

tions (in the usual sense) on a quite a rb i t rary  topological group: (1) 

LWMMA 7.1.1. Let f denote a lower semi-continuous, symmetric function on a topo- 

logical group X ,  with values - o o  < f (x) <~ ~ oo. Suppose f is positive definite in the 

sense that 
~. / (x~ x i  1) q~qj>~ 0 (1) 
z , 3  

/or any finite set o/ points xj E X and finite real numbers q~ such that the sum on the 

left is meaningful. If ,  in addition, the value f (e) o/ / at the unit element o / X  is finite, 

then f is bounded and uniformly continuous. 

Proof. Applying (l) to the single point  e with the weight q = l ,  we get f(e)>~0. 

Using two points e and x with weights 1 and q, we obtain 

f(e) + 2 / ( x ) q + f  (e) q2>~ O. 

The sum on the left is always meaningful because f (e) is finite. I t  follows tha t  f (x) 

is finite. Hence the determinant  f(e) 2 - f ( x )  ~ is ~>0, i.e., 

J/(x)l < / (e). (2) 

Since / (e) = 0 implies / = 0, we assume in the sequel t ha t  / (e) 4 = 0. Another  consequence 

of (2) is tha t  the lower semi-continuous function / is continuous a t  the point  e: 

f (e) ~< lim inf f (x) < lim sup f (x) < / (e). 
x - ~ e  x - ~ e  

Applying (1) with three points, e, x, y, we obtain after  evaluating the determinant  D 

of the quadrat ic  form in ql, q2, qa on the left: 

0 < D.  f (e) = (t (e) ~ - / @)2) (f (e)~ _ f (y)~) _ (f (e) / (xy  -1) - f (x) f (y))~. 

Hence,  I/(e) / ( x y  -1) - f (x) f (y)[ ~< f (e). (f (e) 2 - / (y)~)�89 

Q) Th i s  lenalna shows  t h a t  ]3ochner ' s  t h e o r e m  on  spect ra l  r e p r e s e n t a t i o n  of con t inuous ,  pos i t ive  
def in i te  func t ions ,  s a y  on  t he  real line, r e m a i n s  va l id  if t he  a s s u m p t i o n  of c o n t i n u i t y  is rep laced  b y  

t h a t  of lower seml -con t inu i ty .  
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Now, /(e)l/(xy-1)-/(x)l<lf(e)/(xy-1)-/(x)/(y)]§ .I/(y)-/(e)l. 

Inserting t/(x)l~</(e), and combining with the preceding inequality, we obtain 

I/(xy -~) - / (x) l < ( / (e )  2 - / (y)2)~ + J/ (e)  -- / (y)] .  (3) 

Replacing x and y by x -1 and y- l ,  respectively, and using the symmetry  of /, we 

get the same estimate for ] / ( y - l x ) - / ( x ) l .  The uniform continuity follows now from 

the fact tha t  the right hand side of (3) is independent of x and approaches 0 as y --> e. 

Returning to the study of convolution kernels on a locally compact topological 

group X, we infer immediately from this lemma tha t  any K-definite kernel function 

k on X with k (e)4 + co is bounded and uniformly continuous. In  fact, such a kernel 

function is, by  definition, symmetric, and it is positive definite in the sense (1) be- 

cause the left hand side of (1) is the energy of the measure # =  ~ q~x~, the support 

of which is finite and hence compact. Actually, most kernel functions of interest are 

unbounded: k (e)= + ~ .  A more interesting application of Lemma 7.1.1 is described 

in the following theorem. 

THEOREM 7.1. Let k denote a K-definite kernel /unction on a locally compact 

group X.  For any measure X of finite energy (and of compact support unless k>~0), 

the energy function 

is everywhere defined, bounded, uniformly continuous, and K-definite. 

Proof. In  the case X~>0 it  follows from Lemma 6.4.1 tha t  k~ is itself a K-definite 

kernel function on X. Since k~(e)=][XI]2< + co, we conclude from Lemma 7.1.1, in 

view of the above observation, tha t  k~ is bounded und uniformly continuous. In  the 

general case we apply this result to the positive measures X +, X-, and ]XI=X++X -, 

each of which is of finite energy (and of compact support unless k>~0). The con- 

sideration of IX/ shows tha t  kx is everywhere defined and finite. In  view of the 

"parallellogram law" for symmetric bilinear forms, 

k~ = 2 k~. + 2 k~- - kl~ I. (4) 

This formula shows that  k~ is bounded and uniformly continuous. Applying (3), w 6,4, 

with 2 replaced by X +, X-, or IX/, and with v = / 4  we obtain in view of (4) 

k~(~, ~ ) = l I x . ~ l l  ~ 

for any measure /~ of compact  support. This shows that  k~ is K-definite. 
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The following remark connected with Theorem 7.1 will n o t  be used in  the sequel: 

Remark.  Suppose, in  addit ion,  t ha t  the group X is unimodular ( ~ = 1 ,  ~h=m),  

and  t h a t  the kerne] funct ion ]c = /c (x)  is posit ive (]c ~> 0) and  locally Haar inte- 

grablc (cf. Lemma 7.2.2 below). The measure u = ]c . m  of densi ty  ]c with respect to 

Haa r  measure is then  symmetric .  We call i t  the "kernel  measure" associated with the 

kernel funct ion It. For  any  measure ~ ~> 0 the iden t i ty  

~ + ~-~ ~ = / c ~ . m  (5) 

holds in  the sense t ha t  the convolut ion on the left is defined (1) if and  only if kg is 

locally Haa r  integrable (cf. the proof of the analogous iden t i ty  (1), w 6.3). We shall 

now establish the following result: (~) 

A necessary and su//icient condition that ~>~ 0 be o/ finite energy with respect to 

Ic(xy -1) is that the measure 1 ~  ~ % t exist and have a continuous density with respect 

to Haar measure. I n  the af/irmative case, the energy o/ ,~ equals the value o / th i s  density 

at the group identity e. 

The necessity follows immedia te ly  from Theorem 7.1 and  the above formula (5). 

As to the sufficiency, suppose 1 ~ ~ ~ 2 exists and  has a cont inuous densi ty  / with 

respect to m. Then  i t  follows from (5) t ha t  /c~=/ locally m-almost  everywhere. Since 

]c~- /  is lower semi-continuous,  the locally m-negligible set of points  x where k~ (x)+ 

- / (x) > 0 is open and  hence void (in view of the invar iance of Haa r  measure). Hav ing  

thus ob ta ined  k~ < f everywhere, we conclude t ha t  [[ t [I 2 = k~ (e) ~< / (e) < + ~ ,  and  hence 

i 6 E +, q.e.d. This result  suggests a generalization of the theory of potent ia ls  with 

respect to a definite convolut ion kernel, in  which the kernel  funct ion  k is replaced by  

(1) On any locally compact topological group the convolution o~ = % % #-)5 v of three positive 
measures ;t, /~, v is defined by 

provided the integral on the right is never infinite. I t  can be shown that the associative law 

holds in the sense that the existence of any one of these three expressions implies that of the others 
(provided % * 0, v * 0). 

(3) This result is similar to a result obtained by J. Deny [16], Th6orgme 3, for the group R n. 
The conclusions are the same, but the type of definite kernel function considered by Deny differs 
a priori from that of the present paper. Subsequently, the quoted theorem of Deny implies that the 
kernel functions considered by him are likewise definite (in fact perfect) in our sense. Cf. Theorem 
7.3 of the present paper. 
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a kernel measure u which should be positive definite in a suitable sense. Cf., e.g., J., 

Deny [16], w 3. 

7.2. K-consistency o/ convolution kernels. We denote by ~/+ the class of all measures 

# E ~ +  (X) of compact support and of unit total mass: # (X)= 1. If we associate with 

every neighbourhood V of the unit element e E X the class ~/~ of all measures/~ E ~/+ 

with S(/~)c  V, these classes ~/~ constitute the base of a filter XF on 77/+. This filter con- 

verges vaguely to e ( = t h e  mass § 1 placed at e). In fact, for every continuous func- 

tion / on X, 

lim f/d/~=/(e) along ~F. (1) 
~-->s 

Similarly, lim f f / ( x ,  y )d /u(x)d#(y)=/ (e ,  e) along ~F (2) 

for every function /E  C (X • The verification, say of (2), is simple: 

Iff l(x, Iff 
< max I I ( x , y ) - l ( e , e ) l < ~  

S(~) x S(ID 

provided S(#) is contained in a sufficiently small neighbourhood V =  V~ of e. 

L~,MMA 7.2.1. Given a K-de/inite kernel /unction k, let 2 E~ denote an arbitrary 

measure o/ /inite energy (and of compact support unless k~>0). Then 4-)r # E ~, and 

limll4  - lI:0 along 

Proo/. I t  suffices to consider the case 4>~0. According to Lemma 6.4.1, 

II 4 -)r II 2 = k~(/~, # ) =  f f  k~ (xy -~) dla (x)d r (y), 

and this is finite because k~ is bounded and /~ (X)= 1. Similarly, 

k(2 ~ ,  A)=k~(~, e)= fk~(x)d~(x). 

Applying (2) and (1) with /(x, y) and /(x) replaced by ka(xy -1) and k~(x), respec- 

tively, we obtain along ~F 

lim [[ 4 * p []2 = l im k (4 9e #, 4) = k~ (e) = ]] 2 []~, 

from which the strong convergence 4-x-/~-+ 4 along tF follows. 
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LE~MA 7.2.2. I /  a K-definite kernel /unction k on the group X is Haar inte. 

grable over some neighbourhood o/ the identity e E X,  then k is locally Haar integrable; 

and every measure possessing a density o/ class Co (X) with respect to Haar measure 

has a continuous potential and a /inite energy with respect to k. I /  k is not locally Haar 

integrable, then 0 is the only measure o/ /inite energy. 

Proo]. Suppose first k is Haar  integrable over some neighbourhood W of e, and 

choose a neighbourhood V of e so that V V - 1 c  W. If  ~ E C3 (X) and S ( ~ ) c  V, then 

/~ = ~ m  has the potential k ~ / t  = k ~-~, the value of which at  a point x E V is 

f k (x y- l )  ~ (y) d m (y) = f ~ (z x) k (z) d m (z). 
W 

The latter expression shows tha t  k ~+/~ is bounded and uniformly continuous in V. 

Integrat ing with respect to /~, we infer tha t  # E E +. Accepting for the moment  the 

final assertion of the lemma, we conclude tha t  k is, actually, locally Haa r  integrable 

in X, and hence we could take for F any relatively compact neighbourhood of the 

support of a given function ~ E C~ (X). Thus we conclude that  # = ~ m  has a contin- 

uous potential and a finite energy. To finish the proof of the lemma, we suppose 

now that  there exists a measure 2 4 0  of finite energy. We may  clearly assume tha t  

~>~0, f d/~= I: and tha t  S(~) is compact. For  any given compact set K c X  we choose 

a function crECY(X)  so tha t  ~ ( x ) = l  when xES( )O-1K.  Then ~-)e~ equals 1 every- 

where in K. Writing # = ~ ,  we infer from (2), w 6.3, and the preceding lemma tha t  

( ; ~ * ~ ) ~ = ~ # ~ 8  +. 

The trace ~hK of the left invariant Haar  measure ~t on K coincides with the trace 

of ~%t t  on K because ~ t - ~ = l  on K. Hence ~ K e E  +, i.e., the kernel k ( x y  -1) is 

integrable with respect to ~ h |  over K •  Having thus shown tha t  k ( x y  -~) is lo- 

cally integrable in X •  we finish by  proving tha t  the kernel function k itself is 

locally integrable in X. For any function ~ E C~ (X), ~ 4 0 ,  the function ~ (xy -1) c2 (x) 

of (x, y) is of class C d ( X •  and hence 

f f  k (xy -1) qJ (xy -1) cf (x) d m  (x) d m  (y) < + oo, 

i.e., f k q J d ~ . f q ~ d m  < + ~ ,  from which it follows tha t  fkqJdff~ < + ~ o  because 

] qgdm#O. 

The following application of Lemma 7.2.2 will not be used in the sequel, except 

for the observation tha t  cap X > 0  if (and only i f ) t h e  K-definite kernel function 

k>~ 0 is locally Haar  integrable: 
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L~MMA 7.2.3. Let k denote a locally Haar integrable, K-de/inite kernel /unction 

on the group X,  and suppose that k>~ 0 i/ X is non-compact. Then 

(a) The potential k~2  is locally Haar integrable /or every 2 E E. 

(b) cap,  AT = 0 implies m,  (N) = O. 

(c) cap* N = 0  implies m* (N N K ) = 0  /or every compact set K ~  X.  

Proo/. (a) The potential k-)e2 of 2 f ig is /~-integrable for every ~a E E, in partic- 

ular for / ~ = q m ,  cf EC~ (X). (b) :For any K ~ N ,  the trace mK of m upon K belongs 

to ~+. Hence it follows from Lemma 2.3.1. tha t  m (K) = mK (X) = 0; and consequently 

m, (N) = O. (c) Let  H denote a fixed, compact neighbourhood of the compact set K. 

Since cap* ( N N K ) = 0 ,  there are open sets G ~ ! ~ N K  with cap G as small as we 

please. We may  further assume tha t  G ~  H. By definition, 

cap G = 1/w (G) >~ ~ (x)Vll II 

for every non-zero measure tt E~ + concentrated on G. Taking # = m a  ( =  the trace 

of m upon G), we obtain m(G)2=mc( i )2~] imz] i2capG.  I f  k>~O, IIm ll <<.llm.II 
( <  + ~ ) ,  and hence m(G) becomes as small as we please by  suitable choice of G. 

This shows tha t  m* (N fl K ) =  0. The remaining case where X is compact, but  k is 

of variable sign, is reduced in the usual way to the case k~>O. In  fact, the condi- 

tion cap* N = 0  is not changed if k is replaced by  k+c  for some constant c, as 

pointed out in w 2.3. 

LEMMA 7.2.4. Let k denote a K-de/inite kernel /unction on the group X .  For any 

measure 2 >~ 0 o/ /inite energy (and of compact support  unless k >/0), any neighbourhood 

W o/ the support o/ 2, and any number ~>0,  there is a measure 2'>~0 possessing a 

continuous density o/ compact support contained in W, such that ]] 2'-211< ~. 

Proo/. In  view of Lemma 7.2.2 we may  suppose tha t  k is locally Haar  integrable. 

I t  follows easily from Lemma 2.2.2 and the remark thereto tha t  there is a compact 

set K c S ( 2 )  such tha t  ] ] 2 K - 2 ] ] < ~ / 2 ,  where 2K denotes the trace of 2 upon K. I t  

is easy to show tha t  there is a compact neighbourhood V of the unit  element e E X 

such tha t  K V c  W. According to Lemma 7.2.1 we may  choose V so small tha t  

] ]2K%#--2K]I<~/2 for every measure #E~/~.  Choose a function q~EC~(X)wi th  

S ( r  and f ~ d ~ = l .  Writing #=~v~h, we have #E~/~.  According to (2), w 6.3, 

the measure 2 ' =  2K-x-/x has the density 2K%~ E C~ (X) with respect to ~h, and S (2 ' ) c  W. 

Clearly, ]] 2' - 2 ]] < v//2 + U/2, and the proof is complete. Note tha t  the potential  k~2 '  

of 2' is continuous by  Lemma 7.2.2. 
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T~4~OR~M 7.2. Every K-definite convolution kernel k ( x y  -I) on a locally compact 

topological group X is K-consistent.  I /  X is compact, or i/ k >~ 0 and k (x)= 0 outside 

some compact subset of X,  then k (xy -1) is consistent. 

Proof. The latter part of the theorem follows from Lemma 3.4.2 in view of the 

preceding lemma with W = X ,  because the continuous potential k-x-~t' has compact 

support when k and ~' both have compact supports. The former part  follows from 

the corresponding criterion (b), w 5.3, for K-consistency, combined with the preceding 

lemma. In  fact, for any compact set K c X  we may take K I =  W =  an arbitrary 

compact neighbourhood of K. 

COROLLARY. In  case of a positive and K-definite convolution kernel, E} is 

complete for every compact set K c X. 

This follows from the criterion (a), w 5.3, for the completeness of E~:. Disregarding 

the trivial case k = 0 ,  we have k (xx -~) = k (e) >0 ,  and hence the convolution kernel 

k (xy -1) is strictly positive if at all positive. The question remains open whether this 

corollary holds in the case of K-definite convolution kernels of variable sign. 

7.3. Conditions /or consistency o/ convolution kernels. I t  remains to find condi- 

tions in order that a definite kernel function k >~ 0 on a locally compact, non-compact 

group X be consistent (and not merely K-consistent). Consistency is a global property, 

and it seems plausible that k (x) should approach 0 in some sense as x approaches 

infinity in X. 

LI~MMA 7.3.1. In case o] a consistent convolution kernel (>~0) on a locally com- 

pact group X,  the capacity of any closed, non-compact subgroup of X is either 0 or + o~. 

In  particular, cap X = + co is a necessary condition for consistency of a positive, 

locally tIaar-integrable kernel function on a non-compact group X. If, for example, 

X = R  ~, n >  1, this single condition is not sufficient. 

Proo/ of Lemma 7.3.1. Replacing the kernel function by its restriction to the 

subgroup in question, one finds that  it suffices to prove that  cap X = 0  or § oo. 

Let us suppose cap X <  + oo, and let Ax denote the non-void, vaguely compact class 

of all interior capacitary distributions on X (ef. Theorem 4.1). The invarianee of the 

convolution kernel implies that  Ax is invariant (as a whole) under right translations. 

(In the simple ease where the kernel is strictly definite, the unique interior capacitary 

distribution 2 on X is therefore a right invariant measure on X; and since Haar 

measure on a non-compact group is infinite, whereas 2 (X)= cap X <  + oo, we con- 

clude that  2 = 0 ;  that  is, cap X ~ 0 . )  In the general ease, let 2 denote a fixed interior 
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capacitary distribution on X. The mapping x-->~%sz carries the filter of "neigh- 

bourhoods of infinity" in X ( =  the complements of all relatively compact subsets 

of X) into the base of a filter (I) on the vaguely compact set Ax. Le t /z  denote any 

vague cluster point for O. Then tt EAx, and hence /z (X)=  cap X <  + c~. We com- 

plete the proof by  showing tha t  the translates 2~-ex converge vaguely to 0 as x->o) (the 

Alexandrov point at  infinity adjoined to X); and hence f t = 0 .  Corresponding to a 

given number r / > 0  we determine a compact set K c X  so tha t  2 ( C K ) < ~ .  This is 

possible because 2 (X) = cap X < + c~ by assumption. For any  function ~ E C~ (X), 

say ~ ~< 1, the set /~-1 S is compact, S being the support of ~. Since X is non-compact, 

there are points x E C ( K - 1 S ) .  For any such point x, ~ (yx )  vanishes for y E K ,  and 

hence 

S ~ d (2~sx) = f ~ (y x) d 2 (y) < 1 .2  (C K) < ~. 

Letting x->w, we obtain S ~ d # ~< ~; and hence f ~ d # = 0, i.e., /~ = 0. 

The condition cap X = + ~ amounts to the requirement tha t  a suitable mean- 

value of the kernel k should equal 0. As an illustration we state without proof the 

following lemma, in which X = R  ~ (considered as a group under addition): 

LEMMA 7.3.2. I /  k>~O is a de/inite kernel /unction on R n, then 

t t 

1 limlf.., f ~=l(l_l~)k(x)dxl...dxn. 
cap (R ~) t-- ,~r t ~ 

- t  - t  

I /  M (r) denotes the mean-value o / k  (x) over the sphere ] x I = r, the condition cap X = + 

is equivalent to the limit relation 

if( ) l i m ~  1 -  M(~) n - a d Q = 0 .  
r--->oo 

0 

In  the way of su//icient conditions for a convolution kernel to be consistent, one 

has the following theorem due to J .  Deny [16], and, moreover, a result described in 

the next  section (Theorem 7.4). 

THEOREM 7.3. A regular kernel /unction k>~O on R ~ satis/ying Condition (A) in 

Deny [16], w 1, is per/ect. 

Proo/. The only difficulty is to pass from the positive character implied by Cond. 

(A) to tha t  of the present paper. In  the case of a regular kernel function this is 
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possible by virtue of Thdorgme 3 in Deny [16], p. 97. In  fact, to prove tha t  k is 

definite, we must  show- that  

]S (/~+, ~+) +]S (~-,  ~ - ) > ~ 2 k ( ~  +, ~ - )  

for every measure #. I t  suffices, of course, to consider measures # such tha t  it +, # -  E s 

According to the quoted theorem of Deny, the class s coincides with the class s  

of all positive measures /1 such tha t  the convolution ,~-~(km)-~/1 exists and possesses 

a continuous density with respect to Lebesgue measure m in R ~. Moreover, the mutual  

energy k (/l, v) of any two measures /l, v E s  s  is the value (/1, , )  at  the origin of 

the continuous density of ~-)r (Deny [16], formula (2), p. 98. See also Thdo- 

rbme 2, 2 ~ p. 93 f.). Applying this with /1 and v replaced by #+ or # - ,  one obtains 

]s (~, s )  = (s, ~) >/0, 

with equality only for # = 0. Consequently, ]S is strictly definite in the sense of the 

present paper. I t  follows now from Th6orgme 2 of the quoted paper  tha t  E + is 

complete, and from the last note on p. 94 tha t  strong convergence in E + implies 

vague convergence. Thus  k is perfect. (Alternatively, one might establish the con- 

sistency of k by application of Lemma 3.4.2 in the present paper.) Cond. (A) is not 

necessary for a kernel to be perfect (cf. w 8.2). 

7.4. The case ]S = h-)eh. Let h~> 0 denote a lower semi-continuous function on a 

locally compact group X, and put  k = h-x-h (cf. (3), w 6.3). Then the convolution kernel 

]S (xy -1) = f h (tx -1) h (ty -1) d m  (t) 

is obtained by superposition (in the sense of w 3.5) of the kernels  

]st(x, y ) = h ( t x - ~ ) h ( t y - 1 ) ,  t E X ,  

each of which is obviously definite, the energy being 

]s, 

( =  the value of (h-x-#) 2 at  the point t). Note tha t  ]st is in general inconsistent (cf. 

Ex. 3, w 8.3). I t  follows from w 3.5 that  ]S is definite, the corresponding energy being 

Since S e E  is equivalent to I s l e t  +, that  is k ( l# l ,  I # l ) < ~ ,  we infer from (1) tha t  
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the class E of all measures /~ of finite energy with respect to k is determined by  

the condition h~-[/~] e s  2 (m). (1) 

I f  k ( e )=0 ,  then f h2dm=O, and hence h=O because h is lower semi-continuous. 

(The open set { x E X : h ( x ) > O }  is m-negligible and hence void.) F rom Lemma 7.2.2 

follows tha t  k is locally H a a r  integrabte if and only if h ~ o ( = h ~ ( y J m) )  is in s (m) 

for every ~v E C~ (X). 

I n  the special case where h (and hence k) vanishes outside some compact  subset 

of X,  we infer f rom Theorem 7.2 tha t  k is consistent. I n  the general case, the same 

conclusion is possible at  least if X is Abelian: 

THEOREM 7.4. Let X denote a locally compact Abelian group, and h>~O a lower 

semi-continuous /unction on X.  The kernel /unction k = h ~ h  is consistent, and ~+ is 

complete. 

Proo/. We may,  of course, suppose tha t  k (and hence h) does not  vanish identi- 

cally. Thus the convolut ion kernel k (xy -I) is str ict ly positive: k (e )>0 ,  and we infer 

f rom L e m m a  3.3.1 tha t  E ~ is complete if k is consistent. I n  the  proof of the con- 

sistency, we m a y  assume tha t  k is locally Haa r  integrable, t ha t  is, as pointed out  

above, 

h->e~p E s (m) for every ~o E C~ (X). (2) 

Let  d) denote a strong Cauchy filter on ~+, or just  as well on the  par t  of ~+ de- 

termined by [ [# [ [~<M for some constant  M;  and suppose (I) converges vaguely to 

some measure /t o (cf. Condition (C'), w 3.3). According to (1), the mapping  #-->h-x-# 

carries E isometrically into s (m). The image of r by  this mapping  is, therefore, 

the  base of a Cauchy filter on I~ 2 (m), and converges to some function / E ~  ~ (m) on 

account  of the Riesz-Fischer theorem (cf. Bourbaki  [4], Chap. IV, w 3, th. 2): 

lim f (h~/~ - / ) 2  d m = 0 along (I). (3) 

Our task is to prove tha t  h~l~o= ] m-almost everywhere. Denot ing th roughout  the 

rest of the proof by  ~v an  arb i t rary  funct ion of class C~ such tha t  q0 ~< h, we begin 

by  showing tha t  ~-x-/~-+~o~+/~ 0 weakly in s (m), t ha t  is, 

(1) It  should be observed tha$ the weaker condition h-)6/t E ~2 is necessary, but not sufficient 
for a measure /x of variable sign to be of finite energy with respect to k = h-)(-h. In fact, the energy 
of such a measure /~ does not necessarily exist in the sense of the definition (1), p. 149. Cf. the end 
of note (1) on p. 206; or the final observation in Example 9, p. 213. 
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f (q~-#) vdm-->f (q~-~/zo)vdm along (P (4) 

for every function v 6 s (m). Since 

f (~ .~)~  ~ m  ~< f ( ~ . , ) ~  ~ m  = [I ~ II ~ ~< M 

for all relevant measures #, it suffices to verify (4) for functions v ~ Co, the class Co 

being everywhere dense in s According to (4), (5), and (6), w 6.3, 

f (cf-~#) vain= (v-)+~#)(e)=f (~f~v)d#. 

Since ~ v  ~ Co, (4) now follows from the vague convergence r 

According to (3), h~#--->/ strongly and hence weakly in s 

f (h~#)gdm--~f/gdm along (I) (5) 

for every g E s (m). Taking 

g = ~.w, (% ~ e C~, ~ < h) (6) 

we obtain, since q~eh=h~q9 when X is Abelian, 

f (h.#)(~*W)dm = (~.~.h.~)(e)= f (~.~)(f~*W)rim. (7) 

A similar computation shows that  

f (h*w)2dm=f (h*v)~dm 

because h~h=h~h. In  view of (2), this implies /~z0Es I t  follows now from 

(6), (7), and (4) that,  along (I), 

f (~.~)gam~ f (~*~o)vdm = f (h*/~o)gd~ 

for v=]~-x-~o. Combining this with (5), we obtain 

f (h*~0)gdm= f/grim (s) 

for every function g=~%~0 of the type (6). The class Q of all such functions g is 

contained in Cff (X) and is invariant under right translations. Moreover, Q contains 

non-zero functions of arbitrarily small support. Hence we infer from a result due to 

14- 603808 Acta mathematica. 103. Imprim6 le 29 juin 1960 
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H. Cartan t h a t  ~ is total in C~. (1) I t  follows, therefore, f rom (8) t ha t  the measures 

(h~ju0). m and / .  m are identical, and hence their densities h~ju 0 and / coincide locally 

m-almost  everywhere in X. Since the two densities are of class s (m), we conclude 

that ,  actually,  h~-#0= / m-a]most everywhere. This completes the proof. 

Remark. The above theorem m a y  be extended slightly by  replacing H a a r  measure 

m by  some measure T = q - m  possessing a densi ty q = q  (x)> 0 which is continuous and 

multiplicative: 

q (xy) = q (x) q (y). 

For  any  lower semi-continuous function g~>0 on X, the kernel 

k (x, y) = f g (xt) g (yt) d ~ (t) (9) 

is then definite according to  w 3.5. Moreover, k is consistent if X is Abelian. Wri t ing 

h=q-1/2( ,  one obtains, in fact, 

k (x, y) = q (x)-l/2q (y)-l/~ (h~h) (xy-1), 

and the consistency of k follows from tha t  of ]~%h as explained in w 5.1. As an 

illustration we mention the following kernel on the multiplicative group of real 

numbers  > 0: 
o o  

( e x p  ( - - t x )  exp ( - t y ) t ~ - l  dt.  
1 

k (x, y) = (x + y)-~ - F (~) 
t d  

0 

Here ~ > 0  is a constant ,  q ( t ) = t  ~, and  d m = t - l d t .  We show in Ex. 7, w 8.3, t ha t  

this kernel is str ict ly definite, and hence per/ect~ 

8. Examples 

8.1. Kernels o/ order ct. Let  X denote a locally compact  topological group, and 

let h~ denote a symmetric,  lower semi-continuous, locally H a a r  integrable funct ion 

~>0 on X,  depending on a parameter  ~ ( 0 < ~ < A )  in such a way  tha t  

h~h~=h~+~, ( ~ > 0 ,  f i > 0 ,  ~ + f l < A )  (1) 

and further  t ha t  the measures h~ m va ry  continuously with :r in the vague topology, 

and h~ m-->e vaguely  as ~-->0. This type  o f  a family of kernel functions was studied 

(1) Cf. H. Cartan [8]; or [9], p. 78. For any total subclass ~ c  C + (X), the vector space 
consisting of all finite linear combinations of functions from ~ is positive rich in the sense of Bour- 
baki [4], Chap. I I I , w  2, N ~ 5, and hence the identity stated above in she text follows from Bour- 
baki [4], Chap. III ,  prop. 2. 
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by H. Cartan [9], who proved (w IV) tha t  each h~ is K-perfect. I f  the group X is 

Abelian, it follows from Theorem 7.4 of the present paper  tha t  each h~ is consistent 

and that  E + is complete. I f  it can be shown tha t  the kernel functions h~ are strictly 

definite, we conclude from Theorem 3.3 tha t  they are perfect. This is the case, e.g., 

by  the kernels of order ~ of M. Riesz: 

1 
h~ ( z ) = . w ~ ,  ,Ixl ~-~, ( zeR ~, 0 < ~ < n ) ,  (2) 

Zln ~Cq " 

where Hn (~) = 2 ~ H �89 F (~- ~) (3) 
F (~ ( n -  ~)) 

(cf. M. Riesz [26], in particular 13. 10 f). His proof of the strict definiteness of these 

kernel functions h~ is based on the composition formula (1) together with the following 

identity, in which A denotes the Laplace operator: 

- A h ~ ( x ) = h ~ _ 2 ( x )  (x4=O, ~ > 2 ) .  (4) 

Using these tools, Riesz showed tha t  every sufficiently differentiable function of com- 

pact  support in R n has the form h~->e/z for a suitable measure /z of finite energy with 

respect to h~, ~ being given. Since smooth functions of compact support form a rich 

subclass of Co, it follows immediately tha t  h~ is strictly definite (cf. Lemma 3.4.3). 

Occasionally it is convenient to consider these kernels of order ~ for values ~ >  n. 

For n < ~ < n + 2 ,  the expression (3) is well-defined, and h~ is continuous throughout 

R n. For ~ = n one is led to the logarithmic kernel in R n by  the following definition 

(cf. M. Riesz, loc. cir.) 

hn (x) = lim �89 (hn-~ (x) + hn+~ fort 1 ~-~0 (x)) = (2~)~ log [~ .  

Here (on denotes the surface of the unit sphere in RL The composition formula (1) 

does not subsist for ~ + fl >~ n. Frostman 's  maximum principle is fulfilled for ~ ~< 2 

(el. Fros tman [18], p. 68). Apart  from the constant factor, the Newtonian kernel cor- 

responds to the kernel function h~: 

1 x12_ ~ 
(n - ~ )  ~o~ I (n*  2) 

h 2 (x) = 1 1 
~ log (n=2). 

A related family of perfect kernels "o f  order ~" in R n, 0 < ~ <  + ~ ,  is deter- 

mined by  the kernel functions 
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1 K+(._:> (r) (r= Ix{), 
g~(x) a . ( a )  r �89 ' 

where G~ (~) = (2 7~) �89 2 �89 F (1 ~) 

and K~ (r) is the modified Bessel function of the third kind of order ~. 

is fulfilled (now for all :r 0, f l> 0). In analogy with (4), 

( I -  A)g~=g~_2 (x=~ 0, a > 2 ) .  

Again (1) 

A theory of potentials with respect to these kernels has recently been developed by 

N. Aronszajn and K. T. Smith. Both of these examples are better understood in the 

light of the theory of distributions (cf. Schwartz [27], Chap. II ,  w 3, Ex. 2). 

8.2. Further types of kernels on R ~ depending only on { x - y { .  We begin by 

considering the following simple kernel function /c t on R 1, t > 0  being given: 

k, (x)= (t-{xl)  + :  {t - lxI ,  0}. 

If we denote by ] the characteristic function associated with the open interval 

J =  {xER 1:0 < x < t}, we find kt =j~] ,  and hence /c t is consistent (Theorem 7.2 or 7.4). 

I t  is easily verified that  kt is strictly definite, (1) and hence perfect. Note that  

(1) Suppose p E ~ ( tha t  is, ?'-)(-{ p { 6 ~2) and  kt (/~, p) = 0. Then  ?'-)(-/~ = 0 ahnos t  everywhere .  Fo r  
any  funct ion  9~E C + the  cont inuous  funct ion  ] = ~0+(-# fulfills the  condi t ion  

]-)t'] = ~0-)(-(j-)(-~u) = 0 everywhere .  

x 

I n  view of the  def in i t ion of ], th is  means  t h a t  the  pr imi t ive  f ] (y)dy has the  per iod t: 
0 

i / (y )  dy=(]-X']) ( x ) = 0  for every  x. 
X - - t  

I t  follows t h a t  ], and hence {]l, is periodic wi th  tim period t, and  i-)(-{/{ is therefore  a cons tan t .  
Since 

i + l ] { < ~ + ( i + [ ~ D e s  2, 

this  cons tan t  m u s t  equal  0, so t h a t  [ ]{=  0. Consequent ly ,  

f ~ d~=(~+~)(0)=]  (0)=0 

for every  ~ E  C+,  and  we conclude tha t  D = 0. 
Observe t h a t  the  measure  v of dens i ty  sin (2 ~ x]t) with  respect  to Lebesgue measure  fulfills 

t he  condi t ion k+ev=i+ev=O; and  hence,  formally,  {{~{12=0. The energy Ilvll 2 of v is, however ,  no t  
def ined because jbh[ v{ is no t  square  in tegrable  over the  real line. 
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Theorem 7.3 is inapplicable here because the Fourier  t ransform of kt is the Fejdr 

kernel, which has zeros. 

More generally, let k~> 0 denote an even funct ion on R 1 such t h a t  k (x) is con- 

t inuous and convex for 0 < x < + co, and fur ther  

lim k (x) = 0; lim k (x) = k (0) ~< + co. 
Ixl~r Ixl~O 

Clearly, k (x) is decreasing for x ~> O, and hence p (x) = D+ k (x) ~< 0 for x > O. The con- 

vexi ty  of k implies t ha t  p is increasing. B y  partial  integrat ion we obtain  

oO ~ oO 

k ( x ) = k ( l x [ ) = -  f p ( t ) d t =  f (t--lxl)dp(t)=fkt(x)dp(t) 
Ixl H o 

because p ( t ) = o  (t -1) as t--> + c~. (1) Thus k can be obtained by  superposition of the 

perfect kernels kt, and we conclude from w 3.5 tha t  k is perfect (the only exception 

being k = 0). 

Next,  one m a y  s tudy  similar kernel functions on R n, n~> 2. Denot ing be h the  

Newtonian  kernel funct ion on R ~, we now define 

kt (x) = (h (x) - t) + = max  {h (x) - t, 0}, 

where t>~0 for n~> 3, whereas t is a rb i t rary  in the case n =  2. I t  is possible to prove 

directly by  elementary methods tha t  these kernel functions kt are strictly K-definite, 

and since they  have compact  supports  (except for t = 0 ,  n~> 3, where kt=h),  we con- 

clude from Theorem 7.2 tha t  they  are consistent (and K-perfect).  Actually,  each kt 

is per]ect by  vir tue of Theorem 7.3 (which was inapplicable for n =  1). An  explicit 

calculation of the Fourier  t ransform of ]ct shows, in fact, t ha t  the  regular kernel rune- 

t ion kt fulfills Condition (A) in Deny  [16], w 1. 

Finally,  one m a y  consider a kernel function k~> 0 on R n, n>~ 2, depending only  

on I x l = r  and in such a way  tha t  k(x) is continuous and subharmonic for x 4 0 ,  

k ( 0 ) =  + ~ ,  and k(x)--~O as ]x ] - ->~ .  (The subharmonic i ty  means tha t  k should be 

a convex function of the Newtonian kernel h.) This type  of kernel function was 

studied by  K. Kunugui  [20] and N. Ninomiya  [22], who proved tha t  these kernels 

fulfill F ros tman ' s  m a x i m um  principle and are str ict ly K-definite. I f  we observe tha t  

each of these kernels can be obtained by  superposition in the  sense of w 3.5 of the 

above special kernels kt= ( h - t )  +, which are perfect, we conclude from w 3.5 tha t  the  

kernels of Kunugui  are per/ect. 

(1) In fact, 

t I v (t) l = 2 ( t -  1 t) Iv (t) l~< 2 k (�89 t) - : k (t)-+ 0. 
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For n>~ 3, the above class of kernel functions is a proper subclass of the class 

considered by T. Ugaheri [28], viz. the class of all functions of the form 

k (x) = 90 (r). h (x) = ~ (r). r ~-~, 

where ~ denotes an arbitrary decreasing function of Ix I= r (continuous from the right). 

As shown by Ugaheri, these kernel functions are strictly K-definite (but they do not 

all fulfill Frostman's maximum principle). Actually, the kernels k ~  0 of Ugaheri are 

per/ect. This may be shown in the manner indicated above for the Kunugui kernels. 

In  fact, k can be obtained by superposition of special Ugaheri kernels kt obtained by 

taking ~ ( r ) = l  for r < t ,  ~ ( r ) = 0  for r~>t ( 0 < t ~  +oo) .  

8.3. Miscellaneous examples. We bring a number of examples designed to illus- 

trate various points of the preceding theory. 

Example 1. The simplest example of a de/inite, but inconsistent kernel on a 

locally compact, non-compact space X is the constant k (x, y ) =  1. Clearly, k (/~,/~) 

=#(X)2~>0, and E consists of all bounded measures. To see that k = l  is incon- 

sistent, we observe that  the measure ~x (=  the mass §  placed at x)converges  

vaguely to 0 as x approaches the Alexandrov point ~o at infinity adjoined to X. 

Since the measures ~x all belong to one and the same equivalence class in E +, the 

mapping x-->~x carries the filter of neighbourhoods of (o in X into the base of a strong 

Cauchy filter (I) on E +. If  k = 1 were consistent, (I) should converge strongly to its 

vague limit 0, but  this is not the case since Ilexll = 1. Nevertheless, ~+ is easily 

shown to be strongly complete. Note that the kernel 1 is a convolution kernel if 

X is a group. 

Example 2. The kernel 

cos ( x -  y ) =  cos x cos y + sin x sin y 

on the additive group R 1 is an example of a K-de/inite convolution kernel which is 

not strictly pseudo-positive. (The only such positive kernel is 0.) In  fact, the positive 

measure t0§  e~ has the energy 0. The compact set consisting of the two points 0 

and g has infinite capacity, but each of the two points forms a set of capacity 1. 

The space E~: is strongly complete for every compact set K. 

Example 3. As a generalization of Ex. 1 we consider kernels of the form ] |  

on a locally compact space X: 

k (x, y) = / (x) / (y). 
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We suppose / is lower semi-continuous and 0 < / (x) < + ~ .  Such a kernel is positive 

and definite. I t  is strictly pseudo-positive if / ( x ) > 0  for all x. I t  is not strictly 

definite (unless X reduces to a single point). E consists of all measures /~ such tha t  

f ld I I < + ~ .  The energy and potential of # e ~ are 

II ll =(f/d ) 

~+ is always complete, but  k is consistent if and only i f / E  C~ (X). (The sufficiency 

of this condition follows from Lemma 3.4.2. The necessity can be proved by con- 

siderations similar to those employed in Ex. 1: With every point x of the open set 

G = {x e X : / (x) > 0} one associates the measure /~x = s,:/[ (x).) In any case, it is easily 

shown tha t  all sets are capacitable, and 

cap,  A = cap* A = sup {1/1 (x)e}. 
x e A  

Example 4. A simple example of a strictly de/inite convolution kernel k >~ 0 which 

is not per/ect is obtained by adding the definite kernel 1 (cf. Ex. 1) to the Newtonian 

kernel h in Ra: 

k(x, y ) = l x - y l - ' +  1. 

Since k ( / ~ , / ~ ) ) h  (ju,/~) for any  measure # of finite energy with respect to k, the 

kernel k has the property (P2), w 3.3 (because h has this property). We proceed to 

show tha t  k does not have the property (P1) of completeness of ~+. Let  ar denote 

the uniform distribution of unit mass on the sphere {xERa:lx] =r}.  Then the energy 

of a t - a ,  is the same whether taken with respect to the kernel k or to the New- 

tonian kernel h because the contribution from the constant 1 is {f d((~r-as)}2=O. 

Using a classical proper ty  of the Newtonian potential of aT, we obtain 

1 1 
II ,- slP for s > ,  

r 8 

and {an}~ r is therefore a strong Cauchy sequence with respect to both kernels. In  

view of (P~), the only possible strong limit of {an} is the vague limit 0. However, 

k (an, an) = 1 + n -1 does not approach 0. Consequently, E + is incomplete. 

Denoting the interior capacities associated with the kernels h and k by  y ,  and 

cap,,  respectively, one has 

cap,  A y ,  (A) 
1 + ~ ,  (A)' 



210 B E N T  F U G L E D E  

and similarly for the two exterior capacities. I n  particular,  cap X =  1, and we have 

thus obtained an  al ternative proof of the inconsistency of k (cf. Lemma 7.3.1 or 

Lemma 7.3.2). There is no interior capaci tary distr ibution associated with the entire 

space X = R  s. Nevertheless, the capacitable sets are the same for the two kernels 

h and k. 

Example 5. As an example of a strictly de/inite kernel k>~ 0 which is not K- 

per]ect, we consider the kernel 

k (x, y) = Ix - y 1-1 + b (x) b (y) 

on X = R 3. Here b denotes the characteristic funct ion associated with the open uni t  

ball B={xeR3:  ] x l < l  }. The energy k(# ,  #) of a measure # is obtained from the 

Newtonian  energy h (# ,  #) by  adding # ( B )  ~. The space E + consists of the same 

measures whether  taken with respect to h or to k. Since h (ju,/~) ~< k (/~, #), k fulfills 

(P2), w 3.3. However,  E + is incomplete. I n  fact, when r-->l th rough  some sequence 

of numbers  r <  1, the sequence {at} (ef. Ex.  4) is a strong Cauchy sequence in E B 

which converges vaguely, bu t  not  s trongly to (r 1. Observe also tha t  the open set B 

is of finite capaci ty  �89 bu t  there is no interior capaci tary  distr ibution associated 

with B. 

Example 6. The continuous kernel k (x, y) = xy/(2 - xy) on the  compact  interval 

X = {x E RI: 0 ~< x < 1} is positive, bu t  no t  strictly positive because k (0, 0) = 0. The 

ident i ty  

k(x, y)= ~ 2-PxVy v (0~<x, y~<l) 
p = l  

shows tha t  k is definite and, in fact, consistent because each function x ~ yV is a con- 

sistent kernel (cf. w167 3.4 and 3.5). Note  tha t  0~<k(x, y ) ~ x y .  We proceed to prove 

tha t  ~+ is incomplete. Let  0 < a ~ l ;  a~+~<ag and ~ a ~ <  + c o .  The measures 
i = 1  

[~n = 8a~ "4- 8a ,  "~ "'" "-~ Can 

form a strong Cauchy sequence in ~+ because 

Ilea~tl= ~ k(a~, a~) �89 <<. ~ a,< + ~ .  
t = l  i = 1  t = l  

I f  /z E s denotes some strong limit of {/x=}, then, for every p =  1, 2, . . . ,  

1 

2 a s  
0 
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In t roducing  the measures ~ = x.  p~ = ~ a~ r and ~ = x- re, we obtain 
i = l  

1 1 

l i m  f x~-ld~n= f x'-ld~, 
n-->~ 0 0 

p = l ,  2, . . . ,  

211 

1 1 

and hence lim f P (x) d ~ (x) = f P (x) d Z (x) (1) 
n 0 0 

The inequali ty 

1 1 

0 0 

for every polynomial  P .  

shows tha t  the measures 2,~ 

tha t  Z,-*Z vaguely; t ha t  is, 

are uniformly bounded,  and hence it follows from (1) 

O < t <  + co. 

where L #  denotes the Laplace t ransform of #: 

oo 

(L~) (t)= ~-*~ d~ (x), 
0 

n = l  

I f  An denotes the set {al, a 2 . . . . .  a,~}, we obtain 

/~ (An) = fx-ld~=n, 
An 

which contradicts the finiteness of /~ (X) on a compact  space X.  

Example 7. For  a ny  number  ~ >  0 the kernel 

k(x, g)=(x+y) ~=P(c~) e-t(x+~)t~-ldt 
0 

on the semi-axis X={xERI: 0 < x <  + c o }  is consistent (el. the remark  following 

Theorem 7.4). The energy of a measure # is 

H#]]2=~) (L#)2t~-~dt, 
0 
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The space ~ consists of all measures /~ for which L]/~] is square integrable with 

respect to t=-ldt. For  such a measure /~, L #  converges absolutely for t > 0  and re- 

presents a continuous (in fact, a n a l y t i c ) f u n c t i o n  of t. I f  11#112=0, then L / ~ = 0 ,  and 

hence ~u = 0 (cf., e.g., D. V. Widder  [32], w 6). Consequently,  ]c is per/eet. 

For  a positive measure /~, /c (x,/~) decreases and x=/c (x,/~) increases with x >  0. 

Hence ]c (x,/~) is finite for all x > 0 ,  unless k (x, # ) ~  + oo. This latter possibility 

cannot  occur if F~E~ +. We have thus shown tha t  (x+y) -~ is a #-integrable funct ion 

of y for fixed x > 0 ,  provided # ~ E  +, or equally well: trEE. A /ortiori, the same is 

t rue of the function (x+y) -~-1, and hence there is no difficulty in verifying tha t  

k (x,/~) is analyt ic  for Re (x) > 0 provided # E E. I n  particular,  k (x, tt) can only be 

of class Co(X) if k(x,/t)-----0; tha t  is, if ~u=O. This shows t h a t  the consistency con- 

dit ion formulated in Lemma 3.4.2 is no t  a necessary one. I n  the next  example we 

exhibit  a related convolution kernel with similar properties. 

Example 8. For  any  number  ~ >  0 the kernel funct ion 

]c (x) = (2 cosh 2)  -~ 

on the addit ive group R 1 of real numbers  m a y  be represented as /c= h-~h, where 

h (x) = (F (~))-�89 exp (~ ~ x -  eX). 

The corresponding convolut ion kernel k ( x - y )  is therefore consistent (Theorem 7.4). 

By  the subst i tut ion x =  log u, y = log v, k ( x - y )  is t ransformed into the kernel 

(uv)~ ~ 

(u + v) ~ 

on the positive semi-axis 0 < u ,  v <  + ~ .  I n  view of an observat ion in w 5.1, this 

new kernel is perfect because (u+v) -~ is a perfect kernel (el. the preceding example). 

Consequently,  the original kernel funct ion /c is per/ect, too. For  every /t E • the  p o -  

tential  /c~/t is an  entire analyt ic  funct ion (and hence never of class Co unless # = 0 ) .  

Example 9. I n  order to  show tha t  the condition for strict  definiteness formulated 

in Lemma 3.4.3 is not  a necessary one, we consider the following kernel funct ion 

/c = k (n) on the addit ive group N of integers with the  discrete topology: k (n )=  2 for 

n = 0; k (n) = 1 for n = • l; and k (n) = 0 elsewhere. (This kernel funct ion is a discrete 

analogue of the  kernel funct ion ks studied in w 8.2 in the case n =  1.) I f  ] denotes 

the  characteristic function associated with the set consisting of the points n =  0 and 
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N is 

we have k=]~].  Hence k is consistent, and the energy of a measure /~ on 

II It = Y + 
n 

(We denote by /~  the measure /~ ({n}) of the set consisting of the single point  n.) 

Moreover, /~ E E if and only if ~ ( I /~  ] + l/~+1 l) ~ < + co ; or equivalent ly if and on]y 

if X] /~12<  + ~ .  If  /~EE and ]l/~ll=0, then lt, l is constant  and hence equal to O, 

i.e., # = 0 .  Consequently,  k is strictly definite, and hence per[ect. I f  the potent ial  

k~+# of some measure # E E vanishes outside some finite interval  a<~n <~b, then  /~ is 

supported by  the interval  a + 1 ~< n ~< b - 1. I n  fact, # satisfies the difference equat ion 

in each of the regions n < a  and n>b; and hence ( - 1 ) ~ # ~  is linear in the regions 

n <~ a and n >~ b. Since X 1 r I S < + co, we conclude that ,  actually,  /z~ = 0 when n ~< a 

or n>~b. Denoting by v the measure defined by v~= ( - 1 )  ~, we obtain  

f (k-)(-/~) d?) = ~ (/An_ 1 "~- 2 / ~ n  ~ - /An+l )  " ( - -  1)  n = 0 ,  
n 

the sum on the r ight being actual ly  finite. This shows t h a t  the class of all potentials 

k-x-~ of compact  support  and with ,u E ~ is not rich. Observe tha t  k~u  = 0 and ]-x-v = 0, 

and hence, formally, Ilvil2=0; bu t  the energy of u is not  defined. 

Example 10. As an example of a closed set which is not capacitable with respect 

to  a perfect  convolut ion kernel one m a y  take  the  diagonal D = {(t, u) : t E T,  u E U, t = u} 

in the product  space X = T x  U, where T denotes the Abelian group R a with the 

discrete topology, and U denotes the same abs t rac t  group R a, bu t  with the usual 

Euclidean topology. Clearly, X is a locally compact  Abelian group which is not  of 

class K, .  The kernel funct ion k is defined as the tensor p roduc t  k=g| of the 

characteristic funct ion g associated with the origin in T and the Newtonian kernel 

funct ion h on U. Explicit ly,  

u ) = [ I u [ - 1  for t = O  
k ( x ) = k  (t, / 0 for t # O .  

Since lut-l=c.lul-U-~lul -~ in  U (c being a suitable constant ,  cf. w 8.1), a n d g = g - ~ f f  

in T, we find t h a t  k has the form considered in Theorem 7.4, and  k is therefore 

consistent. I t  is easily verified tha t  k is str ict ly definite, and hence per/ect. Denoting 

he in te r ior  Newtonian  capaci ty  of a subset A c  U by  v , ( A ) ,  one may  easily prove 

tha t  the interior capaci ty  with respect to k of an arb i t rary  set E c X is determined by  
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c a p ,  E = t ~ r 7  , (Et), 

where Et = {u E U: (t, u ) E E } .  For  the  diagonal D we f ind cap .  D =  0 because Dt re- 

duces to the single po in t  u = t whose Newtonian  capaci ty is 0. On the other hand,  

c a p * D =  + ~  because cap.  G = + ~  for every open set G ~ D .  In  fact, Gt contains  

for every t some neighbourhood of t, and  hence 7 ,  (Gt)> O. 
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