ON THE THEORY OF POTENTIALS IN LOCALLY

COMPACT SPACES

BY
BENT FUGLEDE

Copenhagen

Contents

Introduction

Chapter 1. Basic concepts of potential theory .

1. Measures on a locally compact space
2. Kernel, potential, energy, capacity

Chapter II. The case of a consistent kernel . . .

3. The strong topology . . . . . . . . . . . .. ... oo
4. The interior and exterior capacitary distributions
5. Extensions of the theory

Chapter III. Convolution kernels

6. Preliminaries concerning locally compact topological groups
7. Definite convolution kernels

8. Examples. . . . . . . . . ..
References . . . . . . . . . . . . ... L L
Index of terminology and notations
Page
almost everywhere (=a.e.). . . . . , . 146 energy . . . . . . . . . ..
bal energy function . . . . . . .
alayage . . . . . . ... .. ... 185 equilibrium distribution
capacitable . . . . . . .. . . .. 157, 163  equivalent (measures) . . . .
capacitary distribution . . , . . . 159, 162  exterior capacitary distribution
capacity . . . . . . . . . . ... 157, 163  exterior capacity . . . . . .
concentrated. . . . . . . . ., . .. .. 146 exterior measure . . . . , .
consist‘en‘t ............... 167  Haar measure (m) . . . . . .
convolut%on (®) v 189 ff. interior capacitary distribution
convolution kernel . . . . . . . . .. 188 ’

interior capacity . . . . . . .
definite . . . . . . .. .. ... ... 151 interior measure . . . . . . .

10 — 603808 Acta mathematica. 103. Imprimé le 22 juin 1960

Page
..... 140

..... 144

..... 144
..... 149

..... 163

..... 164
..... 173
..... 185

..... 188

..... 188
e 192
..... 204

..... 214

Page
..... 149
..... 192
..... 160
..... 166

... . 183
.. . 1587, 163
..... 146



140

BENT ¥FUGLEDE

Page Page
K-consistent . . . . . . .. . .. 171, 186 trace . . . . . . . . . . .. . . oo .. 146
kK-deflmte .............. 186 vague (bopology) . . . . . . .. ... 145

ernel . . R LRI IR 149 weak (topology) . . . . . . . .. ... 164
kernel function . . . . . . . . . . 188, 192 Wiener capacity 161
Kperfect . . . . . . . .. ... ... 186 o

o-compact, g-finite . . . . . . . . .. 181

maximum prineciple . . . . . . . . . . 150 A. ... . 154
MEASUTE . . v v v v v e e e e e . 144 C, CH, Co, C(;r ............ 144
mutual energy . . . . . . . . . . .. 149 cap, caps, cap®* . . . . . .. . . . .. 162

+

nearly everywhere (=n.e.) . . . . . . 153 2 $8+ """""""" 164
negligible . . . . . . ... ...... e Eo€x ... 187
(H)’ (HI)’ (H2) ............ 180

perfefz‘b ................ 166 B, v) bz, ph k{4, py . . . . ... 149
positive . . . . . ... ... L. 149 gz, .. 192
. potential . . . . . . .. 00000 L. 49 g, ... 144
principle of continuity . . . . . . . .. 1580 o . 0 L, 190
pseudo-positive . . . . . . ... L. 150 ‘m ms, m, ms ... ... ... 145 £.
quasi-everywhere (=q.e.) . . . . . . . 153 w(d),v(d)wld) . ... ... ... 153

" 5 u*(4), v¥(4), w*d) . . ... . ... 153
;Z ei(ar( ) ............... 123 U(,u), V(‘u), W(lu) .......... 150

BUIAL . .o ux, Vx. B v o v e e e e e e e e e 155
strictly definite . . . . . . . . . ... 151 D% oo oo 174, 182
strictly K-definite . . . . . . . . . .. 186 & & - . . . . ... oo 189
strictly positive . . . . . . . . . ... 149 Ay AL AW AY ..o 174 f. 182 £.
strictly pseudo-positive . . . . . . . . 150 ptopu |pl S oo 146, 144
strong (topology) . . . . . . . . . .. 164 “,u” ................ 164

Introduction

Since the modern theory of potentials was initiated by the works of O. Frost-
man [18], M. Riesz [26], and De la Vallée-Poussin [29], the further development has
to a large extent centered around the following essential points: ()

A. The discovery by H. Cartan [10] of the fact that the space &' of all

positive measures y of finite energy

lull= [[le—y P du@duy)

with respect to the Newtonian kernel in R", »>2, is complete in the strong topology,

i.e. the topology defined by the distance ||u—v]||.

B. The systematic use by J. Deny [15] of the Fourier transform in the sense

of L. Schwartz [27] for the study of distributions of finite energy with respect to a

positive definite distribution kernel invariant under translations in R".

(1) As to these and further lines of research, see the expository article on modern potential

theory by M. Brelot [7].
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C. The study of potentials of measures on a locally compact space with respect
to a regulor kernel (i.e. a kernel satisfying the principle of continuity, cf. § 2.1). The
main tool is here the wague fopology, which is related to the classical notion of con-
vergence for positive measures. See G. Choquet [12, 13], M. Kishi [19], N. Ninomiya
[23], M. Ohtsuka [24, 25].

D. The theory of abstract capacities developed by G. Choquet [14].

The present exposition is devoted to the theory of potentials of measures on a
locally compact space, in particular on a group, the main emphasis being placed upon
the study of capacity and capacitary distributions. In the existing literature concerning
this subject the more advanced part of the theory is based on the assumption that
the kernel be regular (cf. the references under C above), and it is usually required
that the kernel fulfil Frostman’s maxzimum principle. Instead of making assumptions
of this nature we have chosen to base our study on the strong topology as well as
the vague topology. Two papers by H. Cartan [9], [10] have served as a guide. We
shall investigate the case of a positive definite kernel possessing the following two prop-
erties: (i) the space £V is strongly complete (cf. above under A), and (ii) the strong
topology on £ ist stronger (=finer) than the vague topology on E*. A positive de-
finite kernel possessing these two properties will be called perfect. (*) It turns out that
the desired type of results concerning capacitary distributions (associated with arbitrary
sets) and capacitability of analytic sets can be obtained in a simple and natural way
in case of a perfect kernel (or just a consistent kernel).(!) These results are of a
global nature, unlike the corresponding results based on the maximum prineiple and
the vague topology. This fact reflects the global character of the concept of a perfect
or a consistent kernel (cf. § 7.3). Apart from its global character, the concept of a con-
sistent kernel is, however, more general than that of a kernel fulfilling Frostman’s maxi-
mum principle. This becomes clear if we consider the case of a compact space (whereby
the global aspects disappear). Then any positive kernel k satisfying the maximum prin-
ciple is positive definite (Ninomiya [23]) and regular (Choquet [12]), and hence it
follows from the proof of a theorem due to M. Ohtsuka [24] that k is consistent (cf.
§ 3.4 of the present paper).

The fact that the Newtonian kernel (and, more generally, the classical Green’s

function) is perfect, was proved by H. Cartan [10]. It is also known that the kernels

(1) A perfect kernel is, in particular, strictly definite, that is, the energy of a measure u=+0 is
>0 if at all defined, This strict definiteness (the so-called principle of energy) is, however, of minor
importance for the development of the theory, and we have therefore introduced the weaker concept
of a consistent kernel (§ 3.3). Such a kernel is definite, but not necessarily strictly definite.
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|z—y|*™ of order « in R" are perfect (0 <o <mn), whereas the maximum prineciple is
fulfilled for &<2 only. This perfect character of the kernels of order « (among other
kernels) was established first by J. Deny [15, 16].(}) We present an alternative, more
elementary and more direct proof based exclusively on M. Riesz’ composition formula
(cf. Theorem 7.4 and §8.1). The first result in this direction is due to H. Cartan [9],
who proved that the kernels of order « are K-perfect, that is, perfect when considered
only on compact subsets of the space. Actually, any strictly positive definite con-
volution kernel has this latter property, as we shall show in § 7. Altogether it turns
out that practically all the definite kernels usually met with in analysis are consistent

(and hence perfect if they are strictly positive definite).

The contents of the present paper may be summarized as follows.

Chapter I is of a preparatory character, and the methods and most of the results
are well known. After a brief survey over the relevant parts of the theory of meas-
ures and integration on a locally compact space X (§ 1) follows an exposition of the
theory of capacity and of the capacitary distributions (%) on compact sets (§ 2). In this
section the potential and energy of measures are formed with respect to an arbitrary
kernel on X. (A kernel on X is defined as a lower semi-continuous function k= k(x, y)
on X xX.)() The proofs are based on the facts that potential and energy are lower
semi-continuous functions on the space of all positive measures on X with the vague
topology, and that the class of all positive measures of total mass 1 supported by a
compact set is compaet in the vague topology.

In Chapter II the kernel % is supposed to be positive definite. (We usually omit
the qualification “‘positive”.) The class £ of all measures u (of variable sign) of finite

energy

(1) In Deny’s theory, referred to above under B, is contained that a wide class of positive de-
finite convolution kernels on R" have properties very similar to those of a perfect kernel in our sense
(cf. Deny [15], Chap. I, 3), the sole modification being that the concept of energy had to be defined
in a manner quite different from the classical definition as a Lebesgue integral adopted in the present
paper. In a supplementary paper Deny [16] proved that this difficulty can be overcome under the
additional assumption that the kernel be regular. Nevertheless, it seems fair to say that the methods
of Fourier analysis are not really adequate in the finer study of capacity and capacitary distributions.

(2) If the kernel fulfills Frostman’s maximum principle, the capacitary distributions are also
called equilibrium distributions because their potential is constant in the set in question (except in
some subset of zero capacity). If the kernel is strictly definite, there is just one capacitary distri-
bution on a given set.

(3) The most important case is that of a positive kernel: 0<k(x, y) < + co. We also admit
kernels of variable sign, but in that case we restrict the attention to potentials and energy of meas-
ures of (uniformly) compact supports.
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B, )= [[ k(@ y)dp (@) duly) < oo

is a pre-Hilbert space with the energy morm || u|l= (k(u, #))}. The subset £" formed
by all positive measures in € is a convex cone. Among the definite kernels we single
out those for which the two topologies (strong and vague) on E* have the following
property of consistency: If a strong Cauchy filter ® converges vaguely to some meas-
ure y,, then @ — gy, strongly. A definite kernel with this property will be called
consistent. It is easily shown that a kernel is perfect if and only if it is consistent
and strictly definite. Certain sufficient conditions of a general nature are obtained,
and it is shown that a kernel obtained by superposition of consistent kernels is con-
sistent. Under the hypothesis that the kernel be consistent we proceed to introduce
the inferior and exterior capacitary distributions associated with an arbitrary set of
finite interior, resp. exterior, capacity.(!) We follow the method indicated by H. Car-
tan [10], §6, for the Newtonian kernel (cf. also Aronszajn & Smith [1] for the kernels
of order o), but certain modifications are required under the present general circum-
stances. As a by-product we obtain the following property of the exterior capacity
of arbitrary sets:
cap* 4 =lim cap* 4,

for any increasing sequence of subsets 4,< X. This result is the key to an applica-
tion of Choquet’s theory referred to above under D, and we conclude that every
K-analytic subset of X is capacitable, i.e. of equal interior and exterior capacity.(?)
The chapter ends with a brief discussion of the theory of ‘“balayage”.

Chapter III is devoted to the particularly interesting case in which the space

X is a locally compact topological group and the kernel a convolution kernel, i.e.

k(@ y)=k(xy™),

(1) In the study of exterior capacitary distributions we must impose upon the locally compact
space X a certain restriction, e.g. that X be metrizable.

(3) For the Newtonian kernel, as well as for Green’s function, this result was obtained by
G. Choquet [14], Chap. II, by application particularly of Cartan’s maximum principle (H. Cartan [10],
§ VI), which leads to the fundamental inequality

cap (4 U B)+cap (4 N B)<cap A+cap B

for arbitrary compact sets 4 and B. The method deseribed above in the text was used first by
Aronszajn and Smith [1] in case of the kernels of order «. Recently, M. Kishi [19] has established
the capacitability of all relatively compact Borelian or K-analytic subsets of a locally compact space
of which every compact subset is metrizable, the assumption on the kernel being closely related (in
fact equivalent) to Frostman’s maximum principle.
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the “kernel function” k==Fk(z) being a given lower semi-continuous function on the
group X. It is shown that any definite convolution kernel is K-consistent (Theorem
7.2). The proof is based on the fact that the energy function
b= uxkxuy

is bounded and uniformly continuous provided p € E* (Theorem 7.1). This result fol-
lows, in turn, from a lemma asserting that a positive definite, lower semi-continuous
funetion f on a topological group is bounded and uniformly continuous provided f is
finite at the identity. The property of a definite convolution kernel to be actually
consistent (not only K-consistent) depends, therefore, on the behaviour of the kernel
function k(x) as z tends to infinity in X, c¢f. § 7.3. In case of an Abelian group we

prove, in particular, that if k=% (x) has the form
k=ﬁ*h,

where k>0 is lower semi-continuous on X, then the convolution kernel k(xy™?) is
consistent, and E* is complete (Theorem 7.4). Several important kernels, including
those of order «, are of this form. Some types of kernels studied by K. Kunugui [20],
N. Ninomiya [22], and T. Ugaheri [28] are investigated further (§ 8.2), and the paper

closes with a number of examples serving to illustrate various points in the theory.

I. Basic CoNcEPTS OF POTENTIAL THEORY

1. Measures on locally compact spaces

The distributions of mass (or charge) to be considered in the present study are
those which can be interpreted mathematically as real-valued measures, in particular
positive measures. Referring to N. Bourbaki [4], [5] for an exposition of the theory
of measures and integration on a locally compact Hausdorff space, we limit ourselves
to listing (in § 1.1) those concepts which are especially relevant in potential theory,
and to stating (in § 1.2) some further necessary results. As to the terminology and

notations we generally follow Bourbaki. (1)

(*) Certain exceptions from this convention will be listed here. Our locally compact (Hausdorff)
space is denoted by X, and the class of all continuous functions on X by C=C (X). (When speaking
of a continuous function, we generally understand that the values are finite real numbers. A lower
semi-continuous function is allowed to take the value + co, but not — co.) The class of all continuous
functions of compact support is denoted by C,=C, (X). For any class F of functions, F* denotes
the class of all positive functions (> 0) from F. The support of a function, or a measure, is denoted
by 8(f), resp. S(z). A set A< X is said to be of class Ky if A may be represented as the union o f
some sequence of compact subsets of X.
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1.1. Principal notions. The class of all (Radon) measures on a locally compact
(Hausdorff) space X is denoted by =M (X). On this linear space, the semi-norms
uw— | f id /4], f€C,y define the so-called vague topology. A filter ® on M (cf. Bour-
baki [2], Chap. I, § 5) converges vaguely to u, € M if

lim ffd[u= ffd,uo along @ for every f€C,.
©

A subclass B of M is called vaguely bounded if each of the above semi-norms re-
mains bounded on B. Any vaguely bounded subclass of T is relatively compact in the
vague topology (Bourbaki [4], Chap. III, § 2, N° 7). The converse is obvious since the
semi-norms are continuous. Particularly useful is the induced vague topology on
M"=Mm* (X), the class of all positive measures. The space ™ is vaguely complete,
and hence closed in 0. More generally, the class 1} of all positive measures sup-
ported by a given closed set F is a closed convex cone in .

The integral (strictly speaking: upper integral) of a lower semi-continuous function
920 with respect to a measure p>0 is defined by

[9du= sup [fdpu.
fectif<o

This integral is additive and positive homogeneous in g and u. Clearly, the mapping
uw—> f gdu, p€M*, is lower semi-continuous in the vague topology on M™* for fixed
lower semi-continuous ¢>0.(!) Since the characteristic function @ associated with an
open. set G X is lower semi-continuous, we may define the measure of G by
w6 = f<PGdM-

Subsequently one introduces the class L'(u) of u-infegrable functions f with val-
ues —oo <f(x) < + oo (Bourbaki [4], Chap. IV, §§ 3, 4). The integral of f with re-

() Under the additional assumption that g €M™ be of compact support, one obtains a de-
finition of f gdu for any lower semi-continuous g (whether positive or not) by replacing the class Co

by the class Cp in the above definition. It is easily verified that this integral is additive und positive
homogeneous with respect to the two variables g and g. Denoting by ¢ 0 a constant such that
g (x) > — ¢ everywhere in S (u), we get

fgdﬂ= f(9+6)dﬂ—cfd,u-

If X is compact, the mapping y—>fgd # is lower semi-continuous on IM* for any given lower
semi-continuous function g on X.
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spect to u is denoted by f fdu.(*) Taking f=@,=the characteristic function asso-
ciated with a set A< X, we obtain the class of y-integrable sets. The measure of such
a set is defined by u(4)= f(pA du. Any compact set is integrable. Next, one defines

the local concepts of a u-measurable function and a u-measurable set (Bourbaki [4],
Chap. 1V, § 5).
For an arbitrary set A< X the exterior and the interior measure of A are deter-
mined by
*(4)= inf u (G d Ay= K), 1
po(A)=inf u (@) and  p,(4)= sup u(K) 0

respectively. (The letter G refers to open sets and K to compact sets.) The equation
w*(A)=u,(A) subsists notably if 4 is open, or if A is u-measurable and contained
in the union of some sequence of p-integrable sets. A set Nc X is called y-negligible
if 4*(N)=0, and locally u-negligible if N 0 K is u-negligible for every compact set K.
These concepts lead to the notions u-almost everywhere (u-a.e.) and locally p-almost
everywhere, respectively.
The trace p, of a measure u>0 on a y-measurable set A< X is defined by
Ha=@a-l, le.,
[fdpa= [} -@adu, fE€CS. @)

(Observe that fg, is u-integrable.) The total mass of u, is u, (X)=p, (4) (cf. Lemma
1.2.2 below). A measure x>0 is said to be concentrated on a set A if the comple-
ment (A is locally u-negligible; or, equivalently, if 4 is u-measurable and u= pu,. It
follows that u(X)=pu,(4). (If A is closed, or if for instance u*(X)< + oo, then
w(CA)=u,(A4)=0, that is, ( 4 is u-negligible. A measure u is, therefore, concen-
trated on a closed set A if and only] if u is supported by A, which means that
S(u)=A.) For any measure >0 and any Iu-measurablé set 4, p, is concentrated
on A. We denote by MM the class of all positive measures concentrated on a given
set 4 X,

Using the canonical decomposition y=u*—pu~, one defines measurability and
integrability with respect to a measure y of variable sign by requiring measurability
and integrability with respect to u* and u~, or, equivalently, with respect to
|w|=p"+u". For any u-integrable function f one defines

(1) In particular, a lower semi-continuous function g (> 0 unless S (¢) is compact) is integrable
with respect to a measure #> 0 if and only if f gd u, as defined above, is finite. In the affirmative

case the two notions of integral coincide.
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[fdu=[fdu*— [fdu.

The same formula serves to define the integral of a lower semi-continuous function

f provided f fdu® and f]‘d 4~ are not both infinite; moreover, it is assumed either
that >0 or that S(u) is compact (cf. note (), p. 145).

The product u®v of two measures y and » on the locally compact spaces X
and Y, respectively, is defined as the unique measure on the product space X xY
such that

[wopydpery=[pdu-[ydy

for every @€Cy(X), w€(Co(Y). Here ¢ ® ¢ denotes the function ¢ (x)-y(y) of class
Co(Xx Y). When integrating with respect to y ® » one may write f f flz, ) dp(x)dy (y)

_instead of ffd(y@v). The following two instances of Fubini’s theorem

[Tt@ydp@dvy)= [dp@) [f@ ) dvy)= [dve) [{@y)du@ (3)

will be used repeatedly in the sequel:

(i) If f is integrable with respect to u®w, ie. f €L (u ®»), then the interior
integrals on the right represent functions of class £'(u) and L'(v), respectively, de-
fined and finite almost everywhere, and (3) subsists.

(iiy H f is lower semi-continuous (and >0 unless u and » have compact sup-
ports), then (3) holds provided the integral with respect to u ® » is defined. (Cf. above.
See also Lemma 1.2.6 below.) This is always the case if x>0 and »>0, in which
case the interior integrals on the right represent lower semi-continuous funections of

x and y, respectively.

As to the proofs, see Bourbaki [5], § 8, N° 1, for the case of positive measures;

and apply Lemmas 1.2.3 and 1.2.6 below in the general case.

1.2. Supplementary results. In order to save space we omit the proofs of the

following lemmas.

Lemma 1.2.1. If a locally compact space X is metrizable and of class K, then
M*(X) satisfies the first axiom of countability.

In view of this lemma the use of filters may often be avoided in the sequel if
one assumes that the locally compact space X is metrizable and of class K, (or,

equivalently, that X satisfies the second axiom of countability, cf. Bourbaki [3], § 2,
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N° 9). In case of such a space X, a positive measure u adheres to a subset
ScM* (X) if and only if § contains a sequence converging to w. In particular, § is
closed if and only if § is sequentially closed. Similarly, any bounded sequence in FH*
contains a convergent subsequence.

We return to the study of measures on an arbitrary locally compact space X.

Lemma 1.2.2. For any lower semi-continuous function g=0, any measure uz0,

and any y-measurable set A< X,
fgd,uA = sup _f gdurx (K compact).

This is a generalization of the second part of (1), § 1.1, which corresponds to

the case g=1. The following lemma deals with measures of arbitrary sign.

Lemma 1.2.3. Suppose g is lower semi-continuous (and >0 unless x4 and » have

compact supports). The identity

fgd(au+bv)=afgdy+bjgdv

subsists in the sense that the integral on the left is defined whenever the two integrals on
the right are both defined and the linear combination is meaningful.
The remaining three lemmas are concerned with the product of two measures

on two locally compact spaces X and Y, respectively.

Lemma 1.24. The mapping (u, v) —>u®@v of MY (X)xM*(Y) into M* (XxY)
s continuous.
(Cf. Bourbaki [4], exerc. 5, p. 100). The corresponding assertion concerning meas-

ures of arbitrary sign would be false,

Lemma 1.25. If AcX and] BC Y are measurable with respect to € M* (X)
and v € M+ (Y), respectively, then the trace of u®v upon AxB equals py® vs.
In particular, u®v is concentrated on AXB if yu is concentrated on 4 and

vy on B.
LeMma 1.2.6. The following identities hold for amy two measures u € M(X) and
yEM(Y):
S(p®v)=8(u)x8 ),
lp@v|=|ul®]],
(@) =(u" ®v")+(u” @v7),
(H®v) =(u*®v7)+ (u~ @)
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2. Kernel, potential, energy, capacity

2.1. Definitions. By a kernel on a locally compact (Hausdorff) space X is meant

a lower semi-continuous function k==Fk (x, ), defined everywhere in X x X, with values
—oco<k(x,y)< + oo,

A kernel is called positive if k(x, y)=0 for every pair (x, y), and strictly positive if,
in addition, k(x, z)>0 for every x€X. A kernel k is called symmetric if k(z, y)=
=k(y, x). For any kernel k, the functions k(x, -) and k(-, ) are lower semi-contin-
uous in X for fixed z and y, respectively.

We proceed to define potential and energy of measures with respect to a given
kernel k. In order to avoid certain difficulties we shall always assume that the meas-
ures in question have compact supports, except in the case of a positive kernel, where
arbitrary measures are admitted. The potential of a measure 4 on X at a point € X
is then defined by

k@, )= [k ydu@y) =k, p*)—k@, )

provided k{z, u™) and k(x, u~) are not both infinite. In particular, the potential of
a positive measure is defined everywhere and represents a lower semi-continuous func-

tion on X. We shall sometimes use the notation

EA, wy=sup k(x, u) (AcX; u=0).
reAd

The mutual energy of two measures y and » (of compact supports unless k> 0)

is defined by
k(s v)= [[ k(@ g)dpu @ dv @) =ku, v+ k@, ») =k, v )=k, (1)

provided k(u*, »")+k(u,v7) or k(u*, v )+k(u,v") is finite (cf. Lemma 1.2.6);
thus in particular if ©>0 and »>0. From Fubini’s theorem follows that

k(u, v)= [k, v)dp@) = [ku y)dv @)

whenever k(u, ») is defined. For v =y we obtain the energy of u:

k(u, )= [[ (@, y)dp @ dp@)= [k, p)du@).

If the kernel k is symmetric, we have the law of reciprocity
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[ (@, p)dv (@)= [k, v)dpu (),

valid at least when k(u, v} is defined.
The following three functions defined for positive measures y (of compact sup-
port unless k>>0) present a certain similarity, and each of them gives rise to a con-

cept of capacity (cf. § 2.3):
Ulw=kX, p) = sup k(x, u)
V() =k(8(g), = sup k(x, )
TeS

W) =k(u, p) = [kiz p)du.
Clearly, —oo <W(u)<V(p) n(X); Vp)< U (u).

A kernel is said to satisfy Frostman’s maximum principle if U(u)=V (u) for every
# €M of compact support.(!) (If a positive kernel satisfies this maximum principle,
then U(u)=V (u) for every u€M*.)

A kernel k& will be called pseudo-positive if W (u)>0 for every u€M* of com-
pact support; and strictly pseudo-positive if W (u)>0 for every u€M", 40, of com-
pact support. Any positive kernel is pseudo-positive, and it is strictly pseudo-positive
if and only if it is strictly positive. (In fact, if k(u, u)=0, the open set of pairs
(%, y) such that k(x, y)>0 does not meet the support S(u)xS(u) of 4 ® u. Hence
k(z, x)=0 for every x€8S(u). The converse statement is verified by taking u=e¢,
(=the mass +1 placed at the point x.)

A kernel k is called regular if it satisfies the principle of comtinuity, i.e. if one
can conclude that the potential k(x, u) of a measure >0 of compact support is
continuous throughout X when it is known that the restriction of k(x, u) to 8(u)is
continuous. (?) As to the study of potentials with respect to a regular kernel, or a
kernel satisfying Frostman’s maximum principle, see for instance the literature referred
to in the introduction (under C). In the present study we shall generally not make

assumptions of this nature (cf., however, Theorems 3.4.1, 3.4.2, and 7.3).

(*) The fact that the Newtonian kernel satisfies this maximum principle was proved by M. A. J.
Maria [21]. The kernels of orders a<2 have the same property, as shown by Frostman [18], p. 68.

(2) The regularity of the Newtonian kernel was proved by G. C. Evans [17], p. 238, and by F.
Vasilesco [31]. For the kernels of order a, 0<wa<mn, see Frostman [18], p. 26. More generally, S.
Kametani has established the regularity of any kernel on R” which is a continuous, decreasing, and
positive function of |x—y| (cef. K. Kunugui [20], p. 78). A further sufficient condition for regularity
is found in H. Cartan & J. Deny [11], §§ 6, 7.
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In the sequel we shall concentrate on either of the following two cases:

I: The kernel % is positive: k(x, y)=>0.
II: The space X is compact.

The remaining case of a kernel of variable sign on a locally compact, non compact space
presents certain difficulties unless the attention is limited (as described above) to meas-
ures supported by some (fixed) compact subset K < X (ef. § 5.3). This limitation actually
amounts to replacing X by the compact space K, and k by its restriction to K x X,
so that one is back in Case II. Throughout the rest of Chapter I and the whole of
Chapter II {except for § 5.3) we shall therefore always assume that one (or both} of
the above cases I or II occurs. This general hypothesis will usually not be repeated.
Case II can mostly be reduced to Case I simply by replacing the kernel k by the
positive kernel %’ obtained by adding to % a suitable constant ¢=0:

E(z,y)=k(z, y)+¢=>0.
This is always possible since a lower semi-continuous function is bounded from below
on a compact space.
A Xkernel k is called definite (= positive definite) if it is symmetric and if the
energy k(u, n) is >0 whenever defined; and strictly definite if, in addition, & (u, u)=0

implies u=0. Thus a symmetric kernel is definite if and only if
k(ut u™)y+k(p™, w)=>2k(ut, u)
for every measure u. Any definite kernel is pseudo-positive, and any strictly definite

kernel is strictly pseudo-positive. Chapters IT and III are devoted to the study of
potentials with respect to a definite kernel.
In the remaining part of Chapter I, only positive measures will be considered,

and the space M* of all such measures will be thought of as a Hausdorff space with
the vague topology (§ 1.1).

2.2. Potential and energy of positive measures.

Levma 2.2.1. The following five functions are lower semi-continuous:

(a) k(u, v)= [k, y)du(@)dv(y) on MM,
(b) bz, u)= [k, y)duly) on X xM*.
(c) Up) =k(X, u) on M*.

() Vip) =k(S(w), p) on M.

(e) W) =k(p, p) on M*.
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Proof. Ad (a): consequence of Lemma 1.2.4 sinece the function fkdl of 1 €

M+ (X xX) is lower semi-continuous (§ 1.1). Ad (b): consequence of (a) because the map-
ping z—¢g, of X into M* is continuous and k(x, u)=k(e;, u) when g denotes the
mass + 1 placed at the point z € X. Ad (c¢) and (d): consequences of (b). We show
this in the case of the function V (u). Let u, € M*, t <V (u,). Then k(xy, uy) >t for
some Z, € S(uy). In view of (b) there are neighbourhoods 4 of z; in X and B of g,

in M such that
k(xz, uy>t for x€4, u€B. 1)

Since x, € S(uy), there is a function f € Cd with S(f)= A4 such that ffd,uo#O, and
hence ffd u=+0 for every u in some neighbourhood B’ of u,. This implies that S(u)

has some point « in common with 4 when u€B’. Using this point z in (1), we con-

clude that V(u)=k(x, p)>t for every u € BN B'. Ad (e): consequence of (a).
Lemma 2.2.2. If a positive measure y is concentrated on some set A< X, then

U(u)= lim U (ug); V(u)= lim V(ug); W(u)= lim W (ux),
K14 Kt4d Kt4

where ug denotes the trace of u upon K, and K ranges over the increasing fillering

family of all compact subsets of A.(%)

Proof. According to Lemma 1.2.2. with g€ Cq, pug— us=p vaguely as K+ 4.

Hence it follows from the preceding lemma that
U< limU <U
(w) o (ux) <U(p)

(in Case I), and similarly with ¥ or W in place of U. Case Il (X compact) follows

from Case I in the usual way.

Remark. If u>0 and »>0 are concentrated on A< X and B< X, respectively,

it follows in the same way that

ki, )= lim k(g v)= 1im k(g ve)=  lm & (um ve),
(1, ») A (> v) o (4 vx) a1 (pm> vx)

where H and K denote arbitrary compact subsets of 4 and B, respectively.

(1) As to the concept of a filtering family (generalizing that of a monotone sequence), we refer
to Bourbaki [2], Chap. I, § 5, N° 4. In case I (k> 0) the sign “lim” may be replaced by supremum
over all compact subsets K < A.
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2.3. Capacities associated with a kernel. Given a kernel k=k(x, y) on X, we
derive from each of the functions U (), V(u), W (u) a set function by defining, for
any set A< X,

w(d)=inf U (u); v(4)=inf V() w(4)=inf W (), (1)

where u ranges over the class of all positive measures concentrated on 4 and of total
mass u(X)=u(Ad)=1. (We interpret these infima as + oo if 4 is void.) The result
would be the same if S(u) were required to be compact and contained in A; this

follows easily from Lemma 2.2.2 and the second relation (1), § 1.1. Hence
u(A)=1inf u(K); v(4)=inf v (K); w(4)=inf w(K), 2)

where K ranges over the class of all compact subsets of A. Clearly, each of the three

set functions is decreasing and attains its minimum at A4 =X. Moreover,
+oozu(d)zv(d)zw(d)> — oo,

If the kernel satisfies Frostman’s maximum principle, u(4)=v(4) for every set 4.
It is well known, and will be shown in § 2.4, that »(4)=w(4) for every set A if
k is symmetric.

To each of the functions =, v, w corresponds an ‘“‘exterior’” set function defined

as follows for arbitrary 4< X:
u” (4) =sup u(G); v*(4)=sup v(G); w*(4)=sup w(@), (3)

where G ranges over the class of all open sets containing A. The relations u*(4)=
=u(4), etc., hold for any open set 4. It will be shown presently that they hold
likewise if 4 is compact (Lemma 2.3.4).

The sets N < X such that w(N)= + oo or w* (N)= + co play an important role
as negligible sets. Observe that each of these two classes of negligible sets remains
unchanged if the kernel % is replaced by k£+c¢ for some constant ¢. In the study of
the two types of negligible sets it suffices, therefore, to consider case I (k>0). A
proposition involving a variable point € A (where A denotes a given subset of X)
is said to subsist nearly everywhere (n.e.) in 4 if w(N)= + co, N being the set of
points of 4 for which the proposition fails to hold. Similarly, the proposition is said
to hold gquasi-everywhere (q.e.) in A if w*(N)= -+ co, The following lemma is easily

verified, for instance in the succession (i)= (ii)= (iil) = (iv) = (v)= (i):
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Lemma 23.1. Let N<X. The following five conditions are equivalent:
(i) w(N)= + oo,
(ii) w(K)= + oo for every compact set K< N.
(iii) p,(N)=0 for every positive measure y of finite energy on X.
(iv) =0 is the only positive measure of finite energy concentrated on N.

(v) u=0 is the only positive measure of finite energy supported by some com-
pact subset of N. ’

We denote in the sequel by U the class of all sets which are measurable with
respect to every measure on X. It follows from condition (iii) of the above lemma
that the union of any denumerable family of sets of class N with w= + oo is a set with

w= -+ oo, The following lemma will be used later.

Lemma 23.2. Let u€M*, AcX, and 0<t< + oo. The following two propositions
are equivalent:
(8) k(x, u)=t for nearly every z€ 4.
(@) k(v, u)=t-v(X) for every positive measure » of finite energy and supported by
some compact subset of A.

In proving that (a) implies (a’), we may suppose k(», u) < oo, ie. k(z, ) is
v-integrable. Writing N ={zx€S(»): k(z, u)<t}, we have w(N)= + oo, and hence
7,(N)=0. Since N is y-measurable and contained in the compact support of v, we
conclude that »*(N)=0, and hence

k@, )= [ k(x, wdv=t: [ dv=t-v(X).
S S @)
Next, suppose (a) is not fulfilled, and write B={x €4 : k(z, u) <t}. Then w(B)+ + oo,
and hence there is, in view of Lemma 2.3.1, a positive measure »==0 of finite energy

supported by some compact set K< B. Since k(z, u)<t in K, we obtain k(v, u)
<t-v(X) in contradiction with (a’).

THEOREM 2.3. For any non-empty compact set K < X, each of the three infima (1),

with A=K, is an actual minimum. The minimizing measures constitute o compact sub-
class of M*.

Proof. Choose a function f€(Cg§ which equals 1 in K. Then u(X)= ffd u de-

pends] continuously on u€Mi. The subset of M* over which 4 ranges in the ex-
tremal problems (1) is therefore closed (in the vague topology). Being vaguely bounded,

this set is compact (and non-empty when K is non-empty). Hence the theorem fol-
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lows from Lemma 2.2.1. We denote the three classes of minimizing measures by

Ux, Vg, and Wy, respectively.

Lrvma 233. If A denotes the union of an increasing sequence of sets A, of
class A, then

u(d)= lim u(4,); v(4)= lim v(4,); w(d)= lim w(4,).

Proof. It suffices to consider case I (k>0), and we may assume that 4 is non-
void. Let w €M%, w(X)=1, and denote by u, the trace of y on the u-measurable
set A,. Then u,(X)=u(4,)—>p(d)=p(X)=1, and hence we may suppose all u,=0.
Writing 2, = un/1(4,), we have 1, € M and A,(X)=1. Hence

w(dn) SW (Aa) = W () /pr (A, < W () /2 (40"

Letting #— oo, we conclude that lim w(4,)< W (u), which implies the non-trivial

part of the limit relation for w. The proof is similar for the functions # and v.

Remark. For a decreasing sequence the corresponding limit relation would be
false in general.(1) It does hold, however, in the case of compact sets; and in that
case the sequence may even be replaced by an arbitrary decreasing filtering famaily
& of compact sets K. Writing K,= M K, we propose to establish the following
relations: e

w(Ky)=lim u (K); v(Kp) =lim v (K); w(K,)=lim w(K) 4)

as K -— K, through . (Of course, the limit sign may be replaced by supremum over
all K €%.) Consider, e.g., the sef function w, and choose for every K €3 some mini-
mizing measure ux € Wx (ie. pxr€ Mk, ux(X)=1, W (ug)=w(K). We disregard the
trivial case where some K is empty). Since the measures ux, K €, belong to the
bounded (i.e. relatively compact) class of all measures p €M™ with u(X)<1, there
exists at least one clusterpoint u, of ux as K— K, through . By virtue of the
lower semi-continuity of W(u) and the fact that w is decreasing, we conclude that,
as K — K, through f,

W () <lim w (K) <w (K). (5)

Clearly 11, is supported by each K €{ and hence by K, It will be shown presently

(!} As an example pertaining to the Newtonian kernel Im—y ]71 in R3, let 4, denote the open
region between two concentric spheres, say A, ={z€RI:1-n "< [¢|<1}. Then N A, is void, but
w(dy)=1. n

11 — 603308 Acta mathematica. 103, Imprimé le 22 juin 1960
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that uy(X)=1. Then it follows from (5) that w(K,)= W (u,). This implies, in turn,
the desired relation (4) and, moreover, that p, is a minimizing measure for the set
K. (*) To see that u,(X)=1, we choose a function f€Cg so that f(x)=1 in some
open set @G> K, Now, @ contains some set H €. (%) For every K € such that
K< H we have

[ fdpe—pe(X)=1,

and hence Lo (X)) = ffd[u0=lim ffdyK=1.

LevMwma 2.34. For any compact set K, u* (K)=u(K), v*(K)=v(K), and w*(K)
=w(K). . ’

This follows from the above remark applied to the filtering family of all com-
pact neighbourhoods H of K. It is well known that the intersection of this family
is K. Hence there corresponds to every number {<w(K) a compact neighbourhood
H of K such that w(H)>¢t If @ denotes the interior of H, we have G > K, and hence

w* (K)zw(@)zwH)>1.

Consequently, w* (K)=w(K), q.e.d.

This lemma, or the remark on which it was based, asserts that the decreasing
set functions u, v, and w are continuous from the outside when considered on compact
sets. Now, let 0=0(t) denote a decreasing function of the real variable {, mapping
the interval w(X)<¢< 4 co (in case of the set function w) in a continuous way into

the extended real line. The set function y(K)=0(w(K)), considered on the class of

(1) The part of this remark which concerns the minimizing measures can be formulated in a
slightly stronger way in which the arbitrary choice of a minimizing measure for each set K € is
avoided. We associate with every set H € § the “‘section”

SH)- U Wy (HESF KEF)
KcH

fonsisting of all minimizing measures for all subsets K < H, K € §. These sections § (H) generate a
ilter @ on a relatively compact subset of TH™ (because u (X)=1), and the proof above shows that
the vague adherence of @ is contained in WK,-

(2) In fact, the decreasing filtering family formed by the compact sets K N} ¢, K€, has a
void intersection. According to the “finite intersection principle”, there is a finite family {Ki}?,:l,
K; €, such that the intersection

n n
(N KN Co= NN Co

n
is void. Since % is filtering, there is a set H € § such that H< () K;, and hence H < G.
i=1
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all compact sets, is then a capacity in the sense of Choquet [14], § 15, (i.e. an in-

creasing set function which is continuous from the outside). According to (2), resp. (3),
Vo (A)=0(w(4) and p*(4)=0("(4))

are the corresponding interior, resp. exterior, capacities. A set A is called capacitable
if y,(A)=9%(4). For such a set we write simply y(4) instead of y,(4) or p*(4).
Similarly, one may study the capacities «(K)=0 (x(K)) and (K)=0 (v (K)). As shown
above, open sets and compact sets are capacitable. Results concerning capacitability
of more general sets can be obtained by application of Choquet’s theory, at least under
suitable assumptions concerning the kernel ¥ and the space X, cf. M. Kishi [19] in
the case of a kernel k>0 satisfying Frostman’s maximum principle. In § 4 of the
present study we obtain -somewhat stronger results in case of a consistent kernel.

We shall now consider the following choice of the function 6:

where @ denotes a real constant <w(X) (vesp. w(X) or v(X)). In particular, any
number ¢<inf k(», y) can be used. The most important case is a=0, which leads to

the Wiener capacity, cf. § 2.5.

Lrmma 2.3.5. If a denotes a constant such that k(x, y)>a, then the interior ca-

1 is countably subadditive on sets of class N, and the exterior capacity

pacity (w(A)—a)”
(w*(4)—a)™' is countably subadditive om arbitrary sets. Similarly with w replaced by

u or v.

Proof. The kernel &' =k-—a is positive, and the corresponding function w’ equals
w—a. Hence the capacity 1/w’ equals the capacity in question. Tt suffices, therefore,
to prove the lemma for a positive kernel k (with a=0). Consider a sequence of sets
4, with the union 4. Our task is to prove, first, that

w(A)'< S w(d,)™ provided 4, €. (6)
Without loss of generality we may assume that the sets A4, are mutually disjoint
and that 4 is not void. For any positive measure g with compact support contained
in 4 and with u(X)=1, we denote the trace of u upon 4, by u, and write i,
= /1t (4,) for such values of n that p(4,)+0. Neglecting the remaining values of

n, if any, we have
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w (An) <k (ln: )*n) =k (/una ;un)/,u (An)z,

and hence, by application of Cauchy’s inequality,
2w ) > (Al ks i) > e (A2 R s pn)-

The resulting inequality holds a fortiori if the summations are extended over all in-
dices n. Note that > u(4,)=pu(4)=p(X)=1 because the sets 4, are u-measurable

and mutually disjoint. Hence (6) will follow if we can show that
2, b (piny pn) <t p1)-

This inequality is easily derived from the corresponding inequality in which the kernel
k is replaced by an arbitrary function f€Cy (XxX) with f<k; and in that case we
may apply (2), § 1.1 (with u replaced by u®u and 4 by A,xA4,):

2 [fd(un® )= 2 [ tdpews [fdpop,

Apxdy

the sets A4,xA4, being mutually disjoint. Having thus established (6), we infer from
the definition (3) of w* that 1/w* is countably subadditive on arbitrary sets.—The
corresponding assertions concerning the capacities 1/u and 1/v may be verified simi-
larly, but it is considerably simpler to make use of the following characterizations of
1/u and 1/v, valid if % (X)>0, resp. v(X)>0; thus in particular if the kernel k is

positive (k>0) or pseudo-positive (w(X)>0):
1/u(A)=sup A, (4) (A€M k(x, A)<1 everywhere)
1/v(A)=sup A,(4) (AEMEL k(x, A)<1 for x€8(A)). (7

CoROLLARY. Let k denote an arbitrary kernel (> 0 unless X is compact), and let
N denote the union of a sequence of sets N, X. If N, €U and w(N,)= + co, then
w(N)= +oo. If w*(N,) =+ oo, then w*(N)= +oo. Likewise w(AU N)=w(4) if
w(N)=+4+oc0 and 4, NeU; w*(4UN)=w*(4) if w*(N)= -+ oco. Similar statements

apply to the set functions » and v.

Remark. In Lemma 2.3.5 (and its corollary above) the assumption that the sets
A, (resp. N,) be of class ¥ (in case of the functions u, v, w) may be replaced by
the slightly weaker hypothesis that A,=A; N B, where 4, €U, whereas B is arbitrary.
Writing 4’ = LnJ A5, we have then 4= A’ N B. Since S(u)<c A< B, the set B is u-meas-
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urable, and so are, therefore, the sets 4,. Note that the restriction to positive kernels
is indispensable in Lemma 2.3.5 {cf. Ex. 2, § 8.3).

24. The case of a symmetric kernel. When the kernel k is symmetric, the two
set functions v and w are identical, and so are v* and w*. It suffices to prove that
v(K)=w(K) for every compact set K. Since we know that v>w, we may assume
that w(K)< + co. We propose to verify, moreover, that the two minimum problems
defining »(K) and w(K) (cf. Theorem 2.3):

v(K)=min V(u); w(K)=min W (u),

(where in both cases u €Mz and w(K)=1) have precisely the same solutions, i.e.
Ux=Wsx. In the theorem below we prove that p € Wy implies V (1) <w (K) (property
(b)). Since w(K)<wv(K), we infer that u € Uy and that, actually, w(K)=7v(K). Con-
versely, u€ Vg implies k(u, u) <V (u)=v(K)=w (K), which shows that y € Ug. Con-
sequently, Ux= Wx. The solutions u € Wy of the second (and hence of the first) mini-

mum problem above will be called capacitary distributions of unit mass on K.

THEOREM 2.4. Let k denote a symmetric kernel, and K a compact set such that
w(K) <+ co. The potential of any capacitary distribution u of unit mass on K has the

following properties:

(a) k(x, p)=w(K) nearly everywhere in K.
(b) k(x, p)<w (K) everywhere in the support of u.
(c) k(x, p)=w(K) p-almost everywhere in X.

Proof. We begin by establishing (a) in the equivalent integrated form (cf.
Lemma 2.3.2):

(a") kv, y)zw(K)-v(X) for every v € ME with k(», v)< + oo, (})
It suffices to consider the case where k (v, u) < + oo and »(X)=1. Then ap-+byisa

“competing” measure for any choice of constants >0, 6>0, with a+b=1. Hence

its energy
Pk(u, p)+2ab-k@v, u)+b%k(», »)

attains its minimum at e=1, b=0. This implies (a’) when it is observed that

(*) The assumption % (v, )< + oo is essential, not only for the proof, but for the validity of the
result. Otherwise one could take v =¢, (=the mass + 1 placed at an arbitrary point z € K) and con-
clude that k(x, u) > w (K) everywhere in K. This would be false even in case of the Newtonian kernel
(unless the unbounded component of Ckis regular for Dirichlet’s problem).
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k(u, p)=w(K). From (a) follows in view of Lemma 2.3.1 that u,(N)=0 when N
denotes the set of points « € K such that k(x, u)<w(K). Since N is measurable and
u finite, we conclude that p* (N)=0. Moreover, u* ([ K)=0, and hence k(z, u)>w (K)

p-a.e. in X. Integrating with respect to u, we obtain
w(K)=k(u @)= [ k@, @) du(@)>wE): p(X)=w(K),

so that, actually, k(z, u)=w(K) wu-a.e. Having thus obtained (c), we complete the

proof by observing that (b) is equivalent to the following consequence of (c):

(b") k(x, u)<w(K) p-almost everywhere in X.

In fact, the set G={zr€X: k(z, u)>w(K)} is open, and hence u(G)=0 if and only
if GNn8S(u) is void. ’

Remark 1. If the symmetric kernel %k satisfies Frostman’s maximum principle,

then U (u)=V (u), and hence we obtain the following stronger versions of (a) and (b):
(a,) k(x, u)=w(K) nearly everywhere in K.

{by) k(x, u)<w(K) everywhere in X.

In view of (a,) the capacitary distributions u € Wx (= Ux= Vx) are then called equi-
Librium distributions (of unit mass) on K. Cf. Frostman [18], §§ 17, 31, for the kernels

of order x<2. For any value of «, 0 <a<n, it was shown by Frostman that the

inequality k(z, u)> w(K) holds for every interior point 2 of K.

Remark 2. If k is definite, the class Wx (=Vg) of all capacitary distributions
of unit mass on a compact set K with w(K)< + oo is conver (and compact) and
consists of all competing measures u € Mk, u(X)=1, such that k(z, u)> W (u) nearly

everywhere in K; or equivalently
k(v, W)=k(u, n) for every vy €Mz with »(X)=1 and k(», ) < co.
(In fact, this inequality implies_, when applied to the capacitary distributions v € W,
O<k(w—p, v—u)=k{v, ») +k(u, ))—2k@, u)<k(v, »)—k(u, p).
Thus Elu, p)<k(v, »)=w(K),

and consequently u € UWg.) Observe also that k(v —pu, v—pu)=0 for any two measures
u and v of class Wg. This shows that, in case of a strictly definite kernel, there is

just one capacitary distribution of unit mass on K.
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2.5. The case of a pseudo-positive kernel. A kernel k is pseudo-positive (§ 2.1) if
and only if w(X)>0, or equivalently if w(K)>0 for every compact set K. A kernel
is strictly pseudo-positive if and only if w(K)>0 for every compact set K.

Levmma 25.1. If the kernel k is strictly pseudo-positive, the set of all positive meas-

ures u such that k{u, p) <M is compact in the vague topology for any constant M >0.

Proof. The set H<M* in which k(u, u) <M is closed by virtue of Lemma 2.2.1.
It remains to be proved that H is relatively compact, or equivalently that 3¢ is
(vaguely) bounded:

sup ffd,u< +oo  for every f€ECq.
HEH

In Case I the hypothesis is: k(z, ¥)>0 and k(z, z)>0. In view of the lower semi-
continuity of k, each point z, € X has a neighbourhood 4 such that k(x, y)>a for
(,y) EAxA, a>0 being a suitable constant. Let ¢ denote a function <1 of class
C¢ which equals 1 in some closed neighbourhood B< 4 of x, and vanishes outside 4.

Then a-¢ (x) ¢ (y)<k(xr, y) for all x and y, and hence

a-([@du) <ku p<M

for every u €. Clearly, any function f€Cq, say with f<1, is dominated by some
finite sum of functions ¢ obtained in this manner, and consequently f fdu remains

bounded on . In Case II, the space X is compact, and hence w(X)>0 (because k

is strictly pseudo-positive). For reasons of homogeneity,
1/w(X)= sup 41 (X)P/k(uw, p)  (WEM*, p==0),

and hence u(X) is bounded on H, q.e.d.
If k is pseudo-positive, 1/w is a capacity called the Wiener capacity.(!) We

(1) The three capacities defined on compact sets K by

1/u (K)=max A (K) A€Mz, UM<,
1/v (K)=max A(K) AeMi, vH<yy,
1jw(K)=max {24(K)~k(4, A} (A€ ME), cf. (1), p. 162,

are identical provided the pseudo-positive kernel % is symmetric and fulfills Frostman’s maximum
principle. In the special case of the Newtonian kernel, the common value is the classical capacity of
K as defined first by N. Wiener [33] (for arbitrary compact sets). As to the history of the mathe-
matical concept of (interior) Newtonian capacity, see O. Frostman [18], Chap. III. Some historieal
remarks concerning the ewterior Newtonian capacity are found in M. Brelot [7], p. 136.
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denote the interior and exterior Wiener capacity by cap, and cap®, respectively. The

following characterization of cap, 4 is useful:
cap, A=1/w(Ad)=sup {24(X)—k(4, 1)}, (1)

where A ranges over the class of all positive measures of finite energy concentrated
on A (or equivalently: supported by some compact subset of A4).(1) As usual we
may write cap A instead of cap, 4 or cap* 4 if 4 is capacitable.

From Theorems 2.3 and 2.4 we derive the following result, using the correspond-

ence A=£f-u (u(X)=1) between the two classes of competing measures.

THEOREM 2.5. Let k denote a symmetric, pseudo-positive kernel, and K a compact

set with cap K < + co.(2) The two mazximum problems

A(K)=maximum (A€ME, V(A<1),
and 2 (K)—k(A, ) =maximum (1€ M%)

have precisely the same solutions, and the value of each of the two maxima is the Wiener
capacity cap K. The class of all solutions is compact in the vague topology on M* and

consists of all measures A€ Mk for which
kA, )=A(X)=cap K.

The potential of any solution has the following properties:

(a) k(zx, A)=1 nearly everywhere in K.
(b) k(x, A)<1 everywhere in the support of A.
(c) k(zx, A)=1 A-almost everywhere in X.

The solutions mentioned above are called capacitary distributions on K. The class
of all capacitary distributions on K is denoted by A% (cf. Theorem 4.1 and the re-
mark following it). As to the proof of Theorem 2.5, the only point in need of com-
ment is the fact that A€ Ax if A€ Mi and k(4, 1) =1(X)=cap K; and this follows

(*) This formula follows from the fact that A (X) and k(4, 1) are homogeneous in 4 of order 1
and 2, respectively. Disregarding the trivial case where w (4) = + co, we may restrict the attention
to non-zero measures A in (1), as it will appear presently. Writing A=t . u, where p(X)=1 and
t=A(X)>0, we obtain the quadratic 2¢—k (u, ,u)tz, which attains its maximum at ¢ =k (g, ,u)_l, the
maximum being ¢=k (u, ,u)_1 > 0. Maximizing over u, we obtain 1/w (4).

(*} Recall that the condition cap K < + oo is fulfilled for all compact sets K if and only if the
kernel k is strictly pseudo-positive; thus in particular if % is strictly positive (k (z, y)> 0 and k (z, ) > 0)
or strictly definite.
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at once from the implied relation 24 (X)—k (4, 1)= cap K. Observe that Ax reduccs
to the single measure 1=0 if and only if cap K=0.

The remarks following Theorem 2.4 can be carried over to the present situation.
1) If k fulfills Frostman’s maxzimum principle, then k (xz, )=1 n.e. in K, and k(z, A)<1
everywhere. 2) If k is definite, A% is convex and consists of all measures A € £} whose
potentials have the properties (a) and (b) (or equivalently (a) and (¢)). Moreover,
k(A—pu, 2—u)=0 for any two capacitary distributions 4 and u on K. If kis strictly

definite, there is just one capacitary distribution on K.

II. Tue CAsE oF A ConsiSTENT KERNEL

In the present chapter we study potentials with respect to a definite kernel k
on a locally compact space X. The limitation to the two cases 1:k>0, and II: X
compact (cf. § 2.1) remains in force in the present chapter, except for § 5.3.

Since a definite kernel is pseudo-positive, the interior Wicner capacity caps 4
—1/w(A)=1/v(A4) is defined for arbitrary sets A< X, cf. (1), § 2.5, and (7), § 2.3;
and so is the exterior Wicner capacity cap* 4 =1/w* (4)=1/v* (4). According to (2)
and (3), § 2.3,

capy A= sup cap K; cap* 4-- inf cap G,
KcA GDA

where K and G refer to compact and open sets, respectively. The “small” sets N
in terms of which the concepts ‘“‘nearly everywhere” (n.e.) and ‘‘quasi-everywhere”
(q.-e.) were defined in § 2.3, arc those for which capy N—0 and cap® N—0, respec-

tively. For any set A< X,
0< capy A< cap® A< + o0,

If caps A= cap* A, we call 4 capacitable and may write simply cap 4 for the Wiener
capacity of 4.

The principal aim of the present chapter is to show (in § 4) that the concept
and the properties of the capacitary distributions on a compact set (Theorem 2.5)
can be extended in a satisfactory way to arbitrary sets of finite interior or exterior
capacity, provided the definite kernel k is consistent (§ 3.3). (*) Except for the case
of closed sets, one must, however, give up the requirement that the capacitary dis-
tributions should be concentrated on the set in question. The results will allow us

to apply Choquet’s theory of capacitability.

(*) The fact that some restriction on the definite kernel is indispensablo appears from examples
4 and 5, § 8.3.
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3. The strong topology

3.1. The spaces € and E*. Consider a definite kernel & (cf. § 2.1), and denote
by ‘€=€(X) the class of all measures 4 on X such that the energy k(u, p) is de-
fined and finite (i.e., = +oo). The class of all positive measures y €& is denoted
by £f=E&" (X).

Lemma 311. & is a convexr cone. The muiual energy k(u, v) is defined and
finite when u, vEE™.

Proof. The former statement is easily derived from the latter, which in turn is
implied by the fact that

k(u—v, u—v)=k(u, u)+k@ v)—2k(u, »)

is defined (because k(u, u)+k (v, v)< + oo, cf. Lemma 1.2.3) and hence >0,

It u€é&, then u*, u~ €E*. The converse statement follows from the above lemma.
In particular, £=E*—E*. Another consequence is that the mutual energy % (u, »)
is defined and finite for any two measures u, v€E, cf. (1), § 2.1. Moreover, k(u, »)
is a bilinear form on &; and since k(u, u) >0 for every u€E, we have obtained the

following result:

Lremma 3.1.2. &€ is a pre-Hilbert space (over the field of real numbers) with the

scalar product k{u, v) and the semi-norm

el = (& (e, )2

This semi-norm is a norm (i.e., £ is a Hausdorff space) if and only if the kernel
k is strictly definite. As a corollary of Lemma 3.1.2 we obtain the Cauchy-Schwarz
inequality:
&G <l Il (w, v€8), (1)
valid even if k is not strictly definite (cf., e.g., Bourbaki [6], Chap. V, § 1, prop. 2).
Two measures A and u in € are called equivalent if ||A—pu||=0.
In addition to the strong topology on &, defined by the above seminorm ||ul|l,
it is sometimes useful to consider the weak fopology on &, defined by the semi-norms
u—>|k(u, »)|, v€E. The induced topologies on E* are likewise called strong and weak

topologies on ET.

3.2. Potentials with respect to a definite kernel. If u €&, k(z, u) € L' (v) for every
v € £. Hence k (x, u) is defined and finite n.e. in X (cf. Lemma 2.3.1).

LeMMa 3.2.1. Each of the following two conditions is mecessary and sufficient in

order that two measures A, u€E be equivalent:
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(a) k(x, A)=Fk (», u) for nearly every z€X.
(@) k(v, )=k (v, u) for every veE.

Proof. That (a’) implies ||A—pu||=0 follows when we take y=A—u. The con-
verse statement follows from the Cauchy-Schwarz inequality (1), § 3.1. The equi-
valence between (a) and (a’) is verified as in the proof of Lemma 2.3.2

COROLLARY. Any two capacitary distributions on a compact set (of finite capacity)
have nearly everywhere the same potential. (In fact, the two capacitary distributions

are equivalent in view of the second remark to Theorem 2.5.)

LeMMa 3.2.2. Let 0<t< +oo, u€E, and let A denote a set such that k(x, u)=>t

nearly everywhere in A. Then
capx A<t p|f".

Proof. Let A denote a capacitary distribution on some compact set KA.
According to Lemma 2.3.2, which holds likewise for €&,

- AX) <k <2 | -

Inserting A4 (X)=|[A|?= cap K (cf. Theorem 2.5), we obtain cap K<t | u|?, from
which the stated inequality follows.

A similar lemma subsists for the exferior capacity, at least under certain further
restrictions (cf. Lemma 4.3.2 and the note attached to it). In the case of a positive

measure u, no further restrictions are needed:

LeMma 323, Let 0<t< +oo, u€E", and let A denote a set such that k (x, u)>1
quasi-everywhere in A. Then
cap® A<t7%|| pf.

Proof. In view of the corollary to Lemma 2.3.5, we may assume without loss
of generality that k (x, u)>t everywhere in 4. For any number s, 0<s<{, A is then
contained in the open set {x€X: k(x, u)>s}, whose capacity is <s7 2| u||* according
to the preceding lemma. Hence cap* 4 <s™?||u|’, and the result is obtained by
letting s—¢. Applying this lemma with t= + oo to u* and u~ (u€E), we obtain:

CoroLnarY. The potential & (z, u) of any measure €& is defined and finite

quasi-everywhere in X.
Lemma 3.24. If u,—~p strongly in &, then
k (@, u) > lim inf & (z, p,)

nearly everywhere in X.
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Proof. Let X' denote the set of points # at which k(x, u) and all k (x, u,) are
defined and finite. The set of points at which the stated inequality does not hold is
contained in N U X’, where

N={z€X :k(z, p)< lim inf k (z, u,)}.

Writing N, ,={z€X :k(x, u)< inf k(z, u,)—1/q},
n>p
A, = {eX 1 k(x, u)<k(x, u)—1/q},
we obtain N=UDN,g Np,=NA4, .
r.q n>p

According to the corollaries to Lemmas 2.3.5 and 3.2.3, it suffices to prove that
caps N o=0; and this follows from Lemma 3.2.2 with ¢, 4, and 4 replaced by 1/q,
Un—u, and 4, ., respectively:
caps Ny, o< caps Ap o <¢° || ptn— p [0
as m—>o0,
Remark. It is not difficult to prove the following stronger result: If u,—>u
strongly in &, there is a subsequence {un;} whose potentials converge to the potential

k(z, u) of u nearly everywhere.

3.3. Perfect kernel. Consistent kernel. Simple examples show that the pre-Hilbert
space £ is in general incomplete (in the uniform structure defined by the “‘semi-
distance” ||p—»]]). In case of the Newtonian kernel |2 —y[* ™ in R* (n>3) it was
proved by H. Cartan [10], § 5, that the space £ of positive measures of finite energy
is strongly complete, and that strong convergence in £ implies vague convergence

to the same limit.

DeFINITION. A definite kernel is called perfect if the following two conditions
are fulfilled: (1)
(P,) E* is strongly complete, i.e., any strong Cauchy filter on € converges strongly
in £,
(P,) The strong topology on E* is finer than the induced wvague togology on EF, i.e.,

any strongly convergent filter on £* converges vaguely to the same limit.

(1) The conditions (P;) and (P,) do not follow from one another (cf. Ex. 1 and Ex. 4 or 5,
§ 8.3). It is not known to the author whether (P,) follows from (P,) in the case of a strictly definite
kernel. Note that Ex. 5 shows that & may be incomplete in case of a positive and strictly definite
kernel, even on a compact space. (This cannot occur in case of convolution kernels, cf. the corollary
to Theorem 7.2). Finally we observe that (P,), the strong completeness of E™, may be expressed
as follows: Every strong Cauchy sequence in ET converges strongly (cf. the end of the proof of
Lemma 3.3.2).
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A definite kernel possessing property (P,) is necessarily strictly definite. (In fact, if
w€E and || u||=0, then ||u* —u~||=0, and the sequence u*, u*, ... converges strongly,
hence vaguely, to u~. Since the vague topology is separated, we conclude that
w"=u".) For the subsequent applications the property of strict definiteness is of
minor importance. We shall therefore introduce a concept similar to perfectness, but
applicable even to definite kernels which are not strictly definite. The crucial prop-
erty is a kind of consistency between the strong (not necessarily separated) topology
and the vague topology on &£*:

DerixNITION. A definite kernel is called consistent if the following condition is
fulfilled:

(C) If u is a vague cluster point for a strong Cauchy filter ® on £%, then @ con-
verges strongly to u.

The following apparently weaker condition is equivalent to (C):

(C') If a strong Cauchy filter ® on £ converges vaguely to u, then @ converges
strongly to u.

In fact, if u adheres vaguely to a strong Cauchy filter @, there is a finer filter
®’>® which converges vaguely to u. According to (C'), ®—pu strongly, and hence
®—y strongly because @ is a strong Cauchy filter (cf. Bourbaki [2], Chap. II, § 3,
prop. 4).

It follows immediately from (C) that any strong Cauchy filter @ possessing a
basis consisting of vaguely bounded subsets of £', converges strongly. (The vague
adherence of @ is, in fact, non-void because any vaguely bounded subset of WM™ is
vaguely relatively compact.) If a consistent kernel is strictly pseudo-positive, every
strongly bounded subset of £" is vaguely bounded (Lemma 2.5.1), so that we obtain
the following result:

Lemma 3.3.1. If the kernel is consistent and strictly pseudo-positive, the space £
18 strongly complete.

The consistency alone is not sufficient for £ to be complete (cf. Ex. 6, § 8.3).
On the other hand, the example k=0 shows that £&" may be complete in the case

of a consistent kernel which is not strictly pseudo-positive.

THEOREM 3.3. A kernel is perfect tf and only if it is consistent and strictly
definite.

Proof. Suppose first k is consistent and strictly definite. Then % is strictly pseudo-

positive, and hence £ is complete according to the above lemma. If a filter ® con-
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verges strongly, the strong limit u is uniquely determined (because £ is separated
in the strong topology when % is strictly definite). The consistency of k implies that
® can have no other vague cluster points than u. Since @ possesses a basis con-
sisting of vaguely relatively compact sets, we conclude that the vague adherence of
® is non-void and reduces to the single measure y; and consequently ®—u vaguely
(cf. Bourbaki [2], Chap. I, § 10, N° 1, cor.). The converse is obvious when we use
(C') as a definition of consistency: If k is perfect, and if a strong Cauchy filter @
on E' converges vaguely to u, then (P,) implies that @ converges strongly, and (P,)
shows that the strong limit is u.

LeEmMa 3.3.2. Suppose the locally compact space X is metrizable and of class K.
The concepts of a perfect or a consistent kernel remain unchanged if, in either of the

definitions (P,), (Py), resp. (C) or ('), the filter @ is replaced by a sequence.

Proof. We begin by considering property (C’). It is assumed that any vaguely
convergent, strong Cauchy sequence on E£' converges strongly to its vague limit. We
propose to show that the kernel is consistent according to definition (C). Thus we
consider an arbitrary vague cluster point u, for a strong Cauchy filter ® on E°.
Since a strong Cauchy filter contains sets of arbitrarily small diameters, there are
sets A,€® such that 4,4, for n>p, and diam 4,—0 as n—oco. According to
Lemma 1.2.1 there is a sequence of sets V,< ' forming a fundamental system of
neighbourhoods of p, in the vague topology on M*. Each vague neighbourhood of
Ho intersects every set 4 €® because y, adheres vaguely to ®. Choose u,€4,0 V,.

For n>p we have u,€4,, and hence
| a— 5 || < diam 4, (n>p).

Consequently, {u,} is a strong Cauchy sequence. Furtherrﬁore, U o vagﬁely be-

cause u, €V,. By hypothesis, u,—>u, strongly. Since

#S?}) e — o |l < || ptn— t10|| + diam A4,

we conclude that ®—y, strongly. This completes the proof in case of condition (C)
or (C'). Next, consider a definite kernel % such that (i) every strong Cauchy sequence
in E" converges strongly, and (ii) every strongly convergent sequence in £* converges
vaguely to the same limit. The simple argument at the end of the proof of Theo-
rem 3.3 shows that such a kernel has the property corresponding to (C’), but with
a sequence Instead of a filter. We have, however, just shown that this property

implies consistency, and since k is strictly definite (same argument as earlier), we
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conclude from Theorem 3.3 that % is perfect. Note also that the above reasoning
with the sets A4,, etc., shows that E£' is complete if the kernel has the property that
every strong Cauchy sequence in €' converges strongly.

The following diagram illustrates the relations between various types of kernels

introduced in the preceding sections (in the cases 1:%k>0, or II: X compact).

strietly __ strictly strictly
pertect definite = pseudo-positive h positive
4 \ ¢ ¥

consistent = definite = pseudo-positive < positive

symmetric

3.4. Criteria for consistency or strict definiteness. The following three lemmas can
be extracted from Cartan’s proof of the perfectness of the Newtonian kernel (H.
Cartan [10], §§ 4, 5). We begin by discussing a kind of consistency between the vague

and the weak topologies on &T.

Lemma 34.1. 4 definite kernel possessing the following property is consistent:

(CW) If a filter ® on a strongly bounded part of £F converges vaguely to u, then

® converges weakly to u.

Proof. It is well known that a Cauchy filter ® on a pre-Hilbert space has a
base formed by subsets of a strongly bounded set, and that, if @ converges weakly,

then @ converges strongly to the same limit. (1)

Lemma 3.4.2. A sufficient condition for a definite kernel k to be consistent is thal
the class of all measures AEE for which the potential k(x, ) is of class Cy(X) be
strongly dense in E.

(*) Let @ denote a strong Cauchy filter on a pre-Hilbert space H (say, over the field of real
numbers) with elements x, y, 2, ete.; scalar product («, y); and semi-norm ||z || = (, w)’}. Suppose @
converges weakly to some vector z,, that is,

lim (%, 2)=(x,, 2) along ©
T

for every z€ 3. Then [| % || < lim inf [|#|| along ® because

IEN lim (@, )< lim int [EIRIENE

Hence,

= =]+ || ||F - 2 (2 )< limyinf =P+ v P2 @, v)} = limyinf R

The function of & on the right approaches 0 along @.
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Proof. We propose to verily condition (CW). Let @ denote a filter on the part
of ' determined by the inequality ||u#|®<M, and suppose ®—>pg, vaguely. Then

Bu, )= [ k(@ Ddu—> [ k(@ 1) duy=k (5o, )

for every measure A€E such that k(x, A)€C, In view of the hypothesis and the
boundedness condition ||u|[*<M, this implies that k& (u, 2)~k (uy, 2) for every A€E,
ie., ®—p, weakly.

Lemma 3.43. A sufficient condition for a definite kernel k to be strictly definite
18 that the class of all functions f€C,(X) representable as potentials k (x, ) with A€E
be rich in C,y (X).

(As to the notion of a rich subclass of C,, see Bourbaki [4], Chap. III, § 2, N° 5.)
In fact, if ||u||=0 for some ,u)e E. it follows from the Cauchy-Schwarz inequality that

[z, A)du="k(u, 2)=0 for every A€E. Hence u(f)= [fdu=0 for every | of the
type described in the lemma, and it follows that u=0 (cf. Bourbaki [4], loc. ecit.).

Remark. The criteria for consistency or strict definiteness formulated in Lemmas
34.2 and 3.4.3 are not necessary conditions (except possibly in case IT where X is
compact). This appears from Exs. 8 and 9, § 8.3. They are, however, fulfilled (and
rather easily verified) by many interesting kernels, e.g. Green’s function for the La-
place operator, in particular the Newtonian kernel; furthermore, the kernels of order
o, 0<a<n; and also the kernels considered by J. Deny [15] (inasmuch as the defini-
tion of energy given there agrees with the classical definition used in the present paper,
cf. Deny [16] and also Theorem 7.3 in the present paper). Finally, it was shown by
M. Ohtsuka [24] that the criterion given in Lemma 3.4.2 is fulfilled by any regular,

definite kernel on a compact space: (1)

THEOREM 3.4.1. Hvery regular, definite kernel k on a compact space X is consistent.
To every measure uy€E" and every number £>0 corresponds a measure A€ E* such that

A<p, k(x, 1) is continuous in X, and ||2—u|l<e.

Proof. Let ¢ denote a constant >0 such that k+c¢>0, and write

F@)= [ (k@ y)+o)dp @)=k @ u)+c- u(X).

() The theorem of Ohtsuka states that E' s complete if k is positive, regular, and strictly de-
finite (and if X is compact); but his proof shows that such a kernel is consistent (and hence perfect
according to Theorem 3.3). As to the second assertion of the theorem, see also H. Cartan [10],
lemme 5, p. 98, in the Newtonian case; and G. Choquet [13] in the general case.
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Since k(x, u) is u-integrable, so is f, and hence we may introduce the measure v={f-u

of density f with respect to u. For the u-measurable set N={x€X: k (2, u) = + oo},

we have u(N)=0 because k(x, y) is u-integrable. Hence v (N)= f fdu=0. According
N

to (1), § 1.1, there is a compact set K<(jN such that

y(E)>y ((N)—e=v(X)—g¢,

the number £>0 being given. By virtue of Lusin’s theorem, (!) there is a compact
set K;< K such that the restriction of % (%, u) to K, is continuous (in the usual sense

because k (x, u) is finite on K), and
y(KnGCK,)<e.

It follows that f fdu=v (K, <2e.
cKl
Let A denote the trace of y on K,. Clearly, A1€&*, §(A)c K,, and the restriction of
k(x, A) to K, is likewise continuous. (It is evidently finite and lower semi-continuous,
and the equation
k(z, )=Fk(x, p)—k(z, u— 1)

shows that it is upper semi-continuous because w—1>0.) The regularity of & implies

now that k(x, 1) is continuous throughout X. Finally,
k(x, u—2)=k(x, u)—kx A)<kx, u)+ec-A(X)<f,

and hence le—AilP= [k@ p-Ddu@< [fdu<e.
ok, £E,

In the following theorem the concept of a kernel £ on a space X is taken in
the restricted sense in which it occurs e.g. in the Japanese literature. It is required
that k is a continuous mapping of X x X into the extended real line; that k (x, y)+ + oo
for =y, and finally that k(x, y)= — co. We shall, moreover, call a kernel K-con-

sistent if its restriction to Kx K is consistent for every compact set K< X (cf. § 5.3).

TrEOREM 3.4.2. On a locally compact space X, any symmeltric kernel k>0 satis-

fying Frostman’s maximum principle is K-consistent.

Proof. The kernel k is definite according to an interesting result due to N.
Ninomiya [23], th. 3; and % is regular as shown by G. Choquet [12] and N. Nino-

(!) The idea of applying Lusin’s or Egorov’s theorem in potential theory seems to go back to
K. Yosida [34].

12— 603808 Acta mathematica. 103, Imprimé le 23 juin 1960
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miya [23], Lemme 3. Hence we obtain the K-consistency of k by application of Theo-
rem 3.4.1 to the restriction of & to KxK for arbitrary compact K< X. Observe also
that the space €% of all positive measures of finite energy with respect to %k, and
supported by K, is strongly complete for every compact K< X if we assume, in addi-
tion, that k is strictly positive: k(x, z)>0 for every x€X.

3.5. Superposition of kernels. The totality of all consistent kernels k£ on X (where
k>0 unless X is compact) is easily seen to form a convex cone. Even an infinite
sum of consistent kernels k>0 is consistent, as one may show by the method used
in the proof of Theorem 3.5 below. We shall now consider a more general type of
superposition of kernels. Let X and T denote two locally compact Hausdorff spaces,
and let >0 be a fixed measure on T. Further, let k (z, y, {) denote a lower semi-
continuous function of (x, y, t) defined on X xX xT, and suppose % (z, ¥, t) =0 every-

where unless X and T are compact. The function ¥ on X xX defined by

k(z,y)= [k y, t)dz ()
T

is then a kernel on X obtained, as we say, by superposition of the family of kernels

ky=Fk(x, y,t), t€T. Consider now any two measures # and » on X whose mutual
energy k(u, v) with respect to the kernel k= f kydv is defined. With the notation
A=u®v, this means that ‘I’kol/'LJr and f kd A~ are not both infinite. Applying case

(ii) of Fubini’s theorem (§ 1.1) to the positive measures A", resp. -, and 7, we obtain

[kdrr=[dr@®) [kdir,
Jkda =[dv @) [kda .

Thus one, at least, of the functions f kdAt and f k;d A™ is t-integrable and hence
finite 7-almost everywhere. This shows that the mutual energy k;(u, »)= f kid A of
4 and » with respéct to the kernel k, is defined for r-a.e. { €T'; and also that fkd/l=
=[dvt)[kd, ie.,

E(p, v)= [ Te (u, »)d T (8). (1)

We shall now assume that k; is definite for t-a.e. t€T. In view of (1) this
implies that k is definite. Moreover, any measure g of finite energy k(u, pu)=| u|P
with respect to k is likewise of finite energy k;(u, u)=| ||} with respect to k; for
r-a.e. t€T. Note also that k is strictly definite if 7*(8)>0, where S denotes the set
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of values of ¢t for which %, is strictly definite. Except in the case where 7' is discrete
(and hence k a sum of kernels k;) it is not known to the author whether in general
k is comsistent if k; is consistent for r-a.e. t€T. The following theorem answers this

question in the affirmative provided X is metrizable and of class K,.

THEOREM 3.5. On a locally compact, metrizable space X of class K, any kernel

obtained in the above manner by superposition of consistent kernels is consistent.

Proof. Consider a strong Cauchy sequence in £ (where £* is formed with re-
spect to the given kernel k), and suppose this sequence converges vaguely to some
measure p. Our task is to prove that the given Cauchy sequence converges strongly
to p (cf. Lemma 3.3.2). We begin by choosing a subsequence {u,} of the given se-

quence so that ||p,—p..1]|<27"; that is, in view of (1),

[ ttn = sa|F= [ Nl ptn = pn s F d = ()< 47"

Denoting by A, the set of those t€T for which ||u,— pns1lji=>2"", we obtain 7(4,)
<27". Writing N=N U 4,, we infer that v (V)=0. This implies that {u,} is a
»

n>p
strong Cauchy sequence in & (with respect to k) for t-a.e. t€7. Since u,—>pu
vaguely, and k; is consistent, it follows that w,— u strongly in &f for z-a.e. t€T,

and hence we have for every p

Lim || pp—pa|f =l pto— pllf  for z-ae. teT.
An application of Fatou’s theorem (Bourbaki [4], Chap. IV, § 1, prop. 14) gives
o =l = [t ] gty — e d e (6) < Y it |t — g [

Since {u.} is a Cauchy sequence (with respect to k), the expression on the right
approaches 0 as p—>co. Consequently {u,}, and hence also the given Cauchy sequence,

converges strongly to u.

4. The interior and exterior capacitary distributions

4.1. The interior capacitary distributions. We shall use the following elementary
lemma from the geometry of pre-Hilbert spaces. Let I" denote a convex subset of a
pre-Hilbert space H with the scalar product (u,») and the seminorm | u||. Consider
the quantity
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I'||= inf ,
ITl= iof [}
interpreted as + oo if I' is void. With these notations one has the following lemma.

Lemma 4.1.1. If T’ contains some vector A of minimal norm: ||A||=||T||, then the

totality of all such minimal vectors A is an equivalence class in H. The inequality

= alP<|lwlP~1I4]? (1)
holds for any w€I' and any minimal A€T.

Proof. It suffices to establish (1). For any number ¢, 0<¢<1, the vector

y=(1=8A+t-u=A+t(u—2)

belongs to I', and hence ||»|?*>||A|. ZEvaluating ||»][>, we obtain (u—4, 1)>0, and
(1) follows.

We shall apply this lemma to the pre-Hilbert space £ consisting of all measures
w of finite energy k (u, u)=||u|* with respect to a given definite kernel & on a locally
compact space X. For any set A< X we denote by I'y the convex class of all meas-

ures p €& with the property
(@) k(x, u)=1 nearly everywhere in 4,
or, equivalently (cf. Lemma 2.3.2, which holds likewise for u€ &),
(a') k(v, uwy=v (X) for every v€E* supported by some compact subset of A.

In view of, say, this latter definition, the convex set I', is strongly closed in E&.

According to Lemma 3.2.2 (with t=1), ||u|]*> capx A for every u€Il',, that is,
Tal*> caps 4. 2)

In particular, Ty is void unless caps A< + oco. We proceed to prove that, actually,
ITAll? = caps 4 (3)

provided the kernel k is comsistent. In view of (2),'We may suppose caps A< -+ oo,
and it suffices to establish the existence of a single measure A€T", with || 4| = caps 4.

Hence (3) is contained in the following theorem.

THEOREM 4.1. Suppose the kernel k is consistent, and let A< X, capy A< + o0

The class A, of all positive measures A for which

|A|]2=A(X)= caps 4,
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and (@) k(x, A)=1 nearly everywhere in A,
(b) k(x, A)<1 everywhere in the support of A,
and hence (€) k(z, )=1 A-almost everywhere in X,

15 non-void and vaguely compact.

Remarks. The same is true of the class A of all measures A €A, supported by
the closure A4 of A. The measures forming the class A, are called the inferior capa-
citary distributions associated with the set 4. In general, none of them is concentrated
on A (unless A4 is closed). (!) For a closed set F with caps F< + co, the measures
2€A% may be called interior capacitary distributions on F. They have all the prop-
erties listed in Theorem 2.5 for the capacitary distributions on a compact set (pro-
vided capacity is interpreted as interior capacity), and coincide with these if F is
compact. According to Lemma 4.1.1, A, (and hence AJ) is contained in the equi-
valence class of all minimal measures in the convex class I'y. If k is strictly definite
{(and hence perfect, cf. Theorem 3.3), there is just one interior capacitary distribution
associated with 4, and this unique minimal measure in I'y is supported by A. Fi-
nally we note that, in case of a consistent kernel satisfying Frostman’s mazimum
principle, properties (a) and (b) above may be replaced by the following properties:

k(xz, A)=1 nearly everywhere in 4, and % (z, A)<1 everywhere in X.

Proof of Theorem 4.1. The existence of a measure with the desired properties is
proved by an approximation of 4 by means of compact subsets in the manner in-
dicated by H. Cartan[10], p. 94 f., for the Newtonian kernel (cf. note (*), p. 176).
We employ here a more elementary version of this construction (cf. De la Vallée-

Poussin [30], Chap. 1I, § 6). Choose a sequence of compact subsets K,=A4 so that
lim cap K, = caps 4. (4)
Replacing, if necessary, K, by K,U K, U --- U K,, we may suppose K,> K, for n>p.
Denote by A, a capacitary distribution on K,, and observe that
,€l%, for n>p. (5)

It follows from Theorem 2.5 that 1, is a minimal measure in I'kr,, and hence

Lemma 4.1.1 implies

() In case of the Newtonian kernel |x~ylvl on R®, the (unique) interior capacitary distribu-
tion A associated with the open unit ball B coincides with the capacitary distribution on the closure
B of B. Thus 1 is the uniform distribution of unit mass on the unit sphere, and A (B)=0.
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14— A [F< {20 [P = [| 25]I* = cap K, — cap K.

Since capyx A < + oo, we conclude in view of (4) that {1,} is a strong Cauchy sequence
in €. As 2,(X)=cap K, remains bounded, there exists a vague cluster point 4
for the sequence {1,}. The consistency of k implies now that i,—A strongly. Since
I'x, is strongly closed, we infer from (5) that A1€T'x, for every p. In other words,

k(x, A)>1 nearly everywhere in each K,, and hence in the union
H=UK,;
n
that is, A€l'y. Furthermore,

|[A]]>= lim ||ln||2=linm cap K, < capx H< capy 4.

Here the sign of equality subsists in view of (4):
| 1]]?= caps H = caps A. (6)

The fact that A adheres vaguely to the sequence {A,} implies >0, S (1)< H (because
S (i) < K,<H), V(A)<1 (in view of the lower semi-continuity of ¥V (u) on ™, cf.

Lemma 2.2.1), and similarly

A(X)< lim sup 4, (X)= lim cap K, = caps 4. (7)

Since k(x, 1)<1 in S(A), we have k (2, 1)<1 A-almost everywhere, and hence
caps A=|[A|F=[k(x, ) dA<A(X). (8)

Combining (7) and (8), we infer that, actually, A (X)= caps 4, and k (x, 1)=1 A-almost
everywhere. All the properties of 4 stated in the theorem have thus been established
except that property (a) has been proved only with H in place of 4. In order to
prove that k(x, A)>1 nearly everywhere in 4, we must show that cap K=0 if K
is compact, K< 4, and k(x, A)<1 everywhere in K. Writing (1)

K,=K,UK; H-=HUK=UK,,

we obtain H< H'< 4, and hence, by (6), cap« H= capy H = cap, 4. If 1 is deter-

mined from the sequence {K,} in the same way as 1 was determined from the se-

(}) This extra consideration, serving to extend property (a) from H to A4, is, of course, unne-
cessary if A4 is of class Ks;. However, it may be avoided even by an arbitrary set A if one operates
with the filtering family of all compaect subsets K 4 instead of the random sequence K,.
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quence {K,}, we have ||A'||?= caps H = caps H, and A’ €'z Ty because H'> H.
Hence A’ is minimal in I'y, and it follows from Lemma 4.1.1 that |2’ —A4||=0, or

equivalently (cf. Lemma 3.2.1)
k(x, )=k (z, ') nearly everywhere in X.

Since K< H’, we have k(z, )>1 nearly everywhere in K, and hence & (z, 1)>1 n.e.
in K. By definition of K, k(z, A)<1 everywhere in K, and consequently cap K =0.

Having thus proved that A’ (and hence A,) is non-void, we proceed to show
that the classes A, and A, which are obviously vaguely relatively compact, are
closed in the vague topology. If a measure w adheres vaguely to Ay, there is a filter
® on &' converging vaguely to u and possessing a base formed by subsets of Aj.
Since A, is contained in an equivalence class, @ is a strong Cauchy filter. In view
of the consistency of k, ® converges strongly to u, and hence p is a minimal meas-
ure in I'y. The vague convergence of ® to u implies, just as above, that x>0,
Vi) <1, p(X)< caps 4, and, subsequently, u(X)= caps 4. Consequently, p is an
interior capacitary distribution associated with 4, and so A, is vaguely closed. This

implies that A is vaguely closed, and the proof of Theorem 4.1 is complete.

LEmmA 4.1.2. Every set of class K, is capacitable.
It suffices to consider a set A4 with capy A< + co. Each interior capacitary

distribution A asscciated with 4 has a potential which is >1 in A4 except in the set

N=An U {z€X: kx, )<1—n"1},

for which capy N=0. When A is of class K,, so is N; say N= U, K,, where each
K, is compact, and caps K,=0. Since compact sets are capacitable (Lemma 2.3.4),
we infer from the corollary to Lemma 2.3.5 that cap® N =0, that is, & (z, 1) =1 quasi-

everywhere in 4. In view of Lemma 3.2.3 with {=1, we conclude that
cap® A <||A||*= caps 4.

4.2. Monotone families of sets, and the associated interior capacitary distributions.
The first part of the following theorem was established earlier in the case of an
arbitrary kernel (Lemma 2.3.3), but no use will be made of this fact. Recall that
A denotes the system of all sets A <X which are measurable with respect to every

measure on X.

THEOREM 4.2. Suppose the kernel k is consistent. If A denotes the union of an

increasing sequence of sets A, of class U, then
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capy 4 = lim caps 4,.

If, in addition, caps A< + oo, and if A, denotes an inferior capacitary distribution as-
sociated with A,, then every vague cluster point A of the vaguely bounded sequence {A,}
is an interior capacitary distribution associated with A, and A,—1 strongly. (1)

It follows that the equivalence class of all minimal measures in I'y, converges
strongly to the equivalence class of all minimal measures in I', as n—oo (the strong
convergence referring to the metric space £/M, where N denotes the class of all
measures of zero energy). If %k is strictly definite, and hence perfect, the (unique)
interior capacitary distribution 4, associated with A4, converges strongly and vaguely

to the interior capacitary distribution associated with A.

Proof of Theorem 4.2. It suffices to consider the case lim capy 4,< + oo. Like
in the proof of Theorem 4.1, one shows that {4,} is a strong Cauchy sequence in
&*, and hence it converges strongly to 4, where i denotes an arbitrary vague cluster
point for the vaguely bounded sequence {A,}. Moreover, 1€I'4, for every p because
J, €4, for n>p. From the corollary to Lemma 2.3.5 follows now easily that A€L,.

The strong convergence A,—>A implies further that
[[A]]>=lim || 4,|]*= lim caps A, < capsx 4.
Hence A is minimal in T',, and caps 4 = lim cap« 4,. The fact that 1 adheres vaguely

to {A,} implies in the usual way that 1>0, ¥V (1)<1, 41(X)= caps 4, and also that
S)<d it 8(A,)=4,. This completes the proof.

Lemma 4.2.1. Suppose the kernel k is consistent. Consider a decreasing filtering
family & of arbitrary sets A< X with capx A< + oo, and write

A4,= N A.

Aeg

If A, denotes an interior capacitary distribution associated with A €3, (2) then every vague

(1) This latter part of the theorem may be formulated in a slightly stronger way as follows.
The sections

So= UAs (=12 ..)

n>p

form the base of a strong Cauchy filter on E™ whose vague adherence N, S, is non-void and con-
tained in A4.' A similar result subsists with A:,;n and qu in place of A, and A4, respectively.

(2) Again one obtains a stronger formulation by introducing the filter ® on E™ based on the
totality of sections
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cluster point A, along ¥ of the vaguely bounded family of measures {Aqjacy has the
properties (a), (b), and (c) stated in Theorem 4.1 (but with 4, in place of A), and

|| A6 }1> = 2, (X)) = inf cap. 4.
AeF

Moreover, As—>A, strongly along §F. In the special case where all the sets AEF are
closed and where S{(A)< A, we have
capy A,= inf caps 4, (1)

A€

and Ay ts therefore an interior capacitary distribution on A,.

Proof. The “sections” 5,={i;:B€F, B A} constitute the base of a filter @ for
which 4, is a vague cluster point. It is easily shown in the usual way that ® is a
strong Cauchy filter. In view of the consistency of the kernel k, we infer that ®—4,

strongly. Hence
| 4]]? = lim || A4|[*= lim caps 4 = inf caps 4.
Aefy Adefy Ae

Since A €ly,<=I'y, for every A€, we obtain A,€1',,. The remaining properties (b),
(¢), and Ay (X)=||4,|[® are derived in the usual way from the fact that A, adheres
vaguely to ®. Moreover, S(i,)< 4 implies S (1,) =4, and hence
S (A<= N 4.
Ae

(Note that A, need not be supported by 4, and that (1) need not hold for arbitrary
sets A, cf. note (), p. 155.) If the sets A €F are closed, 4, is actually supported by
A4,, and it follows from (1), § 2.5, that

caps Ay=2 2y (X) —|| 20| = inf caps 4.
Ael
This establishes (1), and the proof is complete.

LeEMwma 42.2. Suppose k is consistent and X 1is normal. Every closed set of finite
extertor capacity is capacitable, and so is every denumerable union of such sets.

Note that this lemma is contained in Lemma 4.1.2 if the space X is of class K.
In the proof of Lemma 4.2.2 we consider first a single closed set F, with cap® Fy< + co*

Denote by G some open set such that G>F,, and cap G'< + oco. Since X is sup-

SA:UAB, resp. SA=UAIB,
B B

where 4, B 6% and BC A. Any vague cluster point 4, of ® has then the properties listed above.
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posed to be normal, G contains some closed neighbourhood H of F,. Let {§ denote
the decreasing filtering family of all closed neighbourhoods F< H of F,. In view of
the normalcy of X, F, is the intersection of this family {§. According to the pre-

ceding lemma,
cap® F,< inf capy F = cap. F,
Fel

and hence F, is capacitable. As to the second part of the lemma we refer to the
corresponding part of the proof of Lemma 4.1.2. Like in the analogous case of
measures, the limitation to closed sets of finite exterior capacity cannot be dispensed
with in Lemma 4.2.2. This appears from Ex. 10, § 8.3.

4.3. The exterior capacitary distributions. We continue the study of a consistent
kernel & on a locally compact space X, but we shall now make the following two

additional assumptions concerning X:

(H;) X is normal.
(H;) Every open set is of class F,. (1)

A topological space X possessing these two properties is called perfectly normal (Bour-
baki [3], § 4, exerc. 7). Clearly, any metrizable space is perfectly normal, but the
converse is false even in the case of a compaet space (Bourbaki [3], § 2, exerc. 13).
An equivalent form of (H,) is that every closed set should be of class G5. Hence
any closed subset of a perfectly normal space is representable. as the intersection of
a sequence of closed neighbourhoods of F; or, in other words, F = G,, where each
G, is open and contains F. In the case of a metric space with the distance d we

may, for instance, use the following open sets:
G,={z€X: d(z, F)<n'}.

The following consequence of (H,) is of importance in the sequel: Any set of
class (F'@),, that is of the form

H=U (F,n@G,) (F, closed, G, open),
n=1

is actually of class F,.
We consider now a consistent kernel k& on a locally compact space X satisfying

the hypotheses (H,), (H,), and we assume as usual that £>0 unless X is compact.

() A set is said to be of class F; if it is representable as the union of a sequence of closed
sets. A set is of class Gs if it is representable as the intersection of a sequence of open sets. The
classes Fgs and Gsg, etc., are defined correspondingly.
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For brevity, we shall call a set 4 o-compact, resp. o-finite, if A can be covered by a
sequence of sets each of which is compact, resp. of finite exterior capacity. (!) In the
latter case, the covering sets may clearly be chosen as open sets, or, in view of (H,),
as closed sets. In other words, a set A is o-finite if and only if 4 is contained in
some set of the type considered in the second part of Lemma 4.2.2. In particular,
every o-finite (or o-compact) set of class (F@),=F, is capacitable. In view of this
observation, the relations between potentials and interior capacity, described in § 3.2
in the case of an arbitrary definite kernel, have exact analogues for the exferior capac-
ity under the present assumptions of a consistent kernel on a locally compact space
X satisfying the hypotheses (H,), (H,).

Lemma 43.1. Two measures 4, u€E are equivalent if and only if their potentials

coincide quasi-everywhere.

Proof. Suppose ||A—u|=0. According to the corollary to Lemma 2.3.5 it suf-
fices to prove that any set 4 such that k(z, A—pu)>1/n quasi-everywhere in 4 is

of zero exterior capacity, and this is implied by the following lemma.

Lemma 43.2. Let 0<t< + oo, u€E, and let A denote a set such that k(x, u) >t
quasi-everywhere in A. Then
cap* A<t || u.

Proof. In view of the corollary to Lemma 2.3.5 and the fact that k(x, p) is
defined quasi-everywhere (Lemma 3.2.3), we may assume that k (z, u) is defined and

=t everywhere in A, For any number s, 0<s<¢, A is then contained in the set
H={z€X :k(x, u")>k(z, u)+s}.
Introducing the open sets G, and the closed sets F, (r rational) as follows:

F,={z€X :k(z, u)<r},
G ={xeX:k(x u")>r+s},

we find that H is of class (FG),, being the union of the sets F,NG,. Hence H is
capacitable if o-finite or o-compact. It suffices to consider case I (k>0). Here H

is contained in the open set

{w€X k(z, u*)>s},

() Recall that any o-compact set is o-finite provided the kernel k is strictly pseudo-positive
(thus in particular if k is strictly positive or strictly definite).
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whose capacity is finite according to Lemma 3.2.2. Consequently, H is capacitable,

and we infer from Lemma 3.2.2 that
cap” H—cap, H< 5™ | ],
from which the assertion of the lemma follows for s—¢.(%)
Lemma 43.3. If p,—u strongly in E, then

k(x, u)=lim inf k(x, p4,)  quasi-everywhere in X.
n

This follows from the preceding lemma in the same way as Lemma 3.2.4 fol-
lowed from Lemma 3.2.3. Again, one may easily prove that there is a subsequence
{un} whose potentials converge quasi-everywhere to the potential k(z, u) of u. Cf. J.
Deny [15], Théoréme 1, c).

With any given set 4 <X we associate the convex class
I'i={u€é&: k(zx, u)>1 quasi-everywhere in A}.

It follows immediately from the last lemma above that I'; is sequentially strongly
closed in &. Since the strong topology on & is defined by means of a semi-norm,
% is actually closed in the strong topology. According to Lemma 4.3.2 with t=1,
|| #ll>>cap* A for every u€T%; that is, ||[%]]*>cap® 4 (cf. Lemma 4.1.1). In particu-

lar, T is void unless cap* 4 < + co. We proceed to prove that, actually,
|| T%||2 = cap* 4.

It suffices to establith the existence of a single measure A €Ty of energy cap® 4

under the assumption eap* 4 < + co; and this will be done in the following theorem.

THEOREM 4.3. Suppose that the kernel k is consistent and that the locally compact
space X is perfectly normal. For any set A< X with cap® A< + oo, the class A% of

all positive measures A for which

[| 21[* = 2(X) = cap® 4

() This lemma is due to H. Cartan [10], Lemme 5, p. 98, in the Newtonian case; but the
manner in which Cartan reduced it to the elementary Lemma 3.2.2 was different from the procedure
employed above. Cartan’s proof depends on the fact that the Newtonian kernel has the property
described in the second part of Theorem 3.4.1. His method is, therefore, applicable to any regular
kernel {even without restrictions on the locally compact space X).
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and (@) k(x, A)=1 quasi-everywhere in A,
(b) k(x, })<1 everywhere in the support of A,

and hence (¢) k(z, A)=1 A-almost everywhere in X,

18 non-void and vaguely compact.
The same is true of the class A% of all measures 1€ A% supported by 4. The
measures of class A% are called the exterior capacitary distributions associated with the

set A. The remarks to Theorem 4.1 have obvious analogues in the present case.

Proof of Theorem 4.3. In the special case of an open set 4 =G, any interior

capacitary distribution A4 associated with G has the stated properties because the set
H=Gn{z€X: k(z, A)<1}

is of class GF,=F; and hence capacitable (since cap® H<cap G< + ). To an ar-
bitrary set A with cap® 4 <+ oo corresponds a sequence {G,} of open sets con-
taining 4 such that cap G, < + c and

lim cap G, = cap® 4.

Since X is perfectly normal, we may assume that M G,=4. Replacing, if necessary,
n

@, by G.n@N..NG, we may suppose, further, that G,= @, for n>p. Denoting
by A, an interior capacitary distribution associated with @, and supported by G,, we
conclude in the usual way that {1,} is a strong Cauchy sequence in &£7*. Since
Ay (X)=cap G, remains bounded, there exists a vague cluster point A for {1,}, and
hence ,->1 strongly in view of the consistency of k. Clearly 4, €'y, < I, and hence

A €T%. Moreover, 4, is supported by G, for n>p, and hence A is supported by each
G, ie., -
S()ycnad,—4.
o

Proceeding as in the proof of Theorem 4.1, we conclude that A €AY . Finally, it is
shown in the previous way that A% and A%, which are obviously vaguely bounded,

are vaguely closed and hence compact.

Levma 434 If A is capacitable and of finite capacity, As= A% and A= A%Y.
In fact, the minimal measures in I'y, and in I'j constitute two equivalence classes
in € of which the former contains the latter because I',>T% and |[I',||>=|T%|]?

(=cap 4). Congequently, these two equivalence classes are identical, and the lemma

follows easily.
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4.4. Monotone families of sets, and the associated exterior capacitary distributions.
The results in § 4.2 concerning monotone families of sets can be extended with un-
changed proofs to the case of exterior capacity and exterior capacitary distributions.
The limitation to sets of class ¥ in Theorem 4.2 is unnecessary here on account of
the corollary to Lemma 2.3.5. Particularly interesting is the following theorem, which
corresponds to the first part of Theorem 4.2, and which, in the terminology of Cho-
quet [14], § 15.3, asserts that the capacity associated with the kernel k is alternating

of order 1, a.

THEOREM 4.4. Suppose that the kernel k is comsistent and that the locally compact
space X is perfectly mormal. If A denotes the union of an increasing sequence of ar-
bitrary sets A, <X, then

cap® 4 =1lim cap® 4,.
n
COoROLLARY. Any denumerable union of capacitable sets of class U is capacitable.

4.5. Application of Choguet’s theory of capacitability.

THEOREM 4.5. Suppose that the kernel k is consistent and that the locally com-
pact space X s perfectly normal. Every K-analytic set is capacitable, and so is every

g-compact or ¢-finite Borel set.

The hypothesis (H,) implies that the different classical definitions of a Borel set
are, in fact, equivalent (but the concept of a Borel set is more general than that of
a K-borelian set in the sense of Choquet [14] unless X is of class K,;). However,
any o-compact Borel set is a K-borelian set, and the capacitability of such a set
follows, therefore (in view of Theorem 4.4 above), from part (i) of a fundamental
theorem in Choquet [14] (Théoréme 30.1). Part (ii) of the same theorem shows that
any K-analytic subset of X is capacitable (likewise on account of our Theorem 4.4).
We shall omit the proof of the capacitability of all g-finite Borel sets because this
proof depends on various adaptations of Choquet’s theory to the present circumstances.
Of course, this last case of ¢-finite Borel sets is of interest only if X is not of class
K,. The result should be compared with the well-known fact from measure theory
that u*(4)=u,(4) if A is y-measurable and contained in the union of a sequence
of u-integrable sets. In both cases, the o-finiteness condition on 4 cannot be dis-
pensed with (cf. Example 10, § 8.3).
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5. Extensions of the theory

5.1. The case of a continuous weight function. The preceding theory can be ex-
tended when we replace the function 1 in the properties (a), (b), and (c) of the

capacitary potentials (cf. Theorems 2.5, 4.1, and 4.3) by a more general function
f=0, and hence u(X)= f ldy by f fdu, ete. The simplest case is that of a continuous

function with values 0 <f(x)< + co. The preceding theory can be carried over to this
new case by obvious modifications in the proofs. Alternatively, one may reduce the

new case to the old case by introducing the kernel
k(@ y)=k(x, y)g@) q(y), q=1/f.

The kernels & and %, are always of the same kind (say, positive, pseudo-positive, sym-

metric, definite, strictly definite, consistent, or perfect). In fact, the mapping
H—=qp
is a linear homeomorphism of M (X) (with the vague topology) onto itself, leaving

M7 (X) invariant. The identity
kl] (luw ’))) = k (qﬂ: QV)

shows that, in case of a definite kernel £, the above mapping carries the space &,
of all measures of finite energy with respect to %, isometrically onto the space &

formed with respect to k. Note also that the potentials are related as follows:

ko(@, p)=q(x) k(z, qu).

In particular, the conditions stated in Lemmas 3.4.2 and 3.4.3 are satisfied simul-

taneously by % and k, Likewise, ¥ and k, are simultaneously regular.

5.2. Balayage. Suppose now the kernel % is definite, and take for f the potential
f(x)=k(z, w) of a given measure w of finite energy with respect to k. (The assump-

tion f>0 is fulfilled at least if w>0 and %> 0, but f is now in general discontinuous.)
Replacing p(X) by jfd u=k(u, w) in the definition (1), § 2.5, of the interior Wiener

capacity, we define for any set 4cX

cap,,,*A=51;p {2k, 0)— k4, 1)} = ||w||2—i1;f |2 =]

where ] ranges over the class of all positive measures of finite energy and concen-

trated on 4 (or supported by some compact subset of 4). Clearly,

0<cap, 4 < capy,: X < + oo,
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We shall now make the assumption that the space £ of all positive measures
of finite energy supported by F is strongly complete for every closed set ¥. (Any
perfect kernel fulfills this assumption, and so does any consistent and strictly pseudo-
positive kernel, cf. § 3.3.) In view of this assumption the above extremal problems
have solutions when 4 =F is closed. In fact the problem is to minimize the distance
between w and the points A of a convex, complete subset £ of a pre-Hilbert space
E. The process of solution of this problem (the “projection” of w onto £F) is called
the “sweeping-out” proecess (French: “‘balayage’). The resulting measures 4 are charac-

terized within £; by the relations
| 4]* =% (4, w) = cap.+ F,
and their potentials have the following properties:

(a) k(x, )= k(z, ) in F except in some subset N with cap,«N=0,
(c) k(z, )=k (x, w) A-almost everywhere in X.

There seems to be no obvious analogue of property (b) in Theorem 2.5 (unless
f=k(x, w) is continuous and >0, in which case we are back in the case considered
above in § 5.1). This is because all reference to the vague topology has disappeared.

Next one‘may define an exterior capacity cap, A =inf cap,G as & ranges over
the class of all open sets containing 4. Open sets and closed sets are capacitable.
If k>0, this exterior capacity is countably subadditive. A theory of interior balayage
can be developed in analogy with §§ 4.1, 4.2 (again except for property (b)). There
is a similar theory of exterior balayage under the additional hypotheses (H,), (H,), § 4.3.
Finally, it can be shown as before that all K-analytic sets and all Borel sets are

capacitable.

5.3. The case of a kernel of variable sign on a wnon-compact space. So far, we
have studied the two cases I: k>0, and II: X compact. In the general case of a
kernel %k of variable sign on a locally compact, not necessarily compact space X. we
shall limit the attention to measures of (uniformly) compact supports. As mentioned
in" § 2.1, this case can be reduced to case II simply by replacing the kernel k by
its restriction to K xK, where K denotes an arbitrary compact subset of X. It is,
however, sometimes preferable to remain in the original locally compact space X; and
hence the following definitions are convenient (and sometimes of interest even in Case
I of a positive kernel, cf. Theorem 3.4.2):

A kernel k on a locally compact space X is called K-definite, strictly K-definite,

K-consistent, or K-perfect if, for every compact set KX, the restriction of k& to
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KxK is definite, strictly definite, consistent, or perfect, respectively. In Case I (or
Case II}, a kernel & is definite if and only if it is K-definite. This follows from Lemma

2.2.2 and the remark thereto, applied to the three terms in the decomposition
() =k(p®s wh) +ku™, o) —2k(u*, p7).

A kernel which is strictly definite, consistent, or perfect (in Case I or Case II) is like-
wise strictly K-definite, K-consistent, or K-perfect, respectively. The converse is trivial
in Case II and false in Case I.

Consider now a K-definite kernel k on a locally compact space X. (According to
Theorem 3.3, such a kernel is K-perfect if and only if it is K-consistent and strictly
K.definite.) We denote by &g, resp. Ex, the space of all measures, resp. positive
measures, of finite energy and supported by the compact set K< X. It follows then

(a) from Lemma 3.3.1 that &z is strongly complete for every compact set K <X,
provided k is K-consistent and strictly pseudo-positive.

(b) from the proof of Lemma 3.4.2 that k is K-consistent if there corresponds to
every compﬁct set K<X a compact set K, > K with the property that every
measure u € Ex can be approximated in the strong sense by measures 1€ &g,
for which the potential k(z, 1) is continuous (or at least: the restriction of k(z, 1)
to K is continuous). (1)

(c) from Theorem 3.4.1 that k is K-consistent if it is regular.

Let us now suppose that & is K-consistent (cf. Theorem 3.4.2). From the results
of § 4 follows that there corresponds to every relatively compact set A <X of finite
interior capacity a non-void, vaguely compact class of interior capacitary distributions

(some of which are supported by A). A similar result holds for the exterior capa-

(1) In order to verify that the restriction of & to K x K has the property (CW) formulated in
Lemma 3.4.1, we consider a filter @ on the part of £ determined by || || <M, and suppose that
® converges vaguely to some measure p,. It follows that u, € EF and [l || < M. To any number
#>0 and any measure 1€ E& corresponds, by assumption, a measure A € E%, such that ||[A-1'||<7n
and the restriction of k (x, 1") to K is continuous. The vague convergence ® — g, implies

k()= [ k(@ Mydp— [ I (o, 2)d g =k (i, ¥)
along @. Using the Cauchy-Schwarz inequality, we obtain
| = e )< (gt 2|+ | =i || (| 2= 2]

and hence, along @, lim sup | % (14, 1) =& (#y, A) | <2 M 5 because || p— g, |[<|| ][ +]] t4o || <2 M. Letting
“w
7 — 0, we conclude that © converges weakly to u,.

13 — 603808 Acta mathematica. 103. Imprimé le 23 juin 1960
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citary distributions provided the space X has the property that every relatively com-
pact, open set is of class K, (thus in particular if every compact subset of X is
metrizable). Finally, every relatively compact Borel set is capacitable, and so is every

relatively compact K-analytic set.

III. ConvorLuTioN KERNELS

We shall now study the important case where X is a locally compact topological

group and where the kernel k(x, ) is tnvariant under, say, right multiplication:
k(zz, y2) =k, y) (v, y,2€X).

Writing briefly %k(x) in place of k(x, ¢), where e denotes the unit element in the
group X, we find the expression
k(@ y)=kxy™)

for the kernel k(z,y) in terms of the kernel function k=k(x). The potential of a
measure u with respect to a (right) invariant kernel is, therefore, the convolution
kxu of the kernel function ¥ and the measure g (cf. § 6.2). For this reason we shall
use the term convolution kernel synonymously with right invariant kernel on a locally

compact group.

6. Preliminaries concerning locally compact topological groups

The following notations are convenient. The reflex of a (real-valued) function f

on the group X is the function f defined by

f@)=f@™).

The reflex of a measure p is the measure g defined by dju(zx)=du(z™"), ie.

[tdi=[fdu

for every f€(C,(X), and hence also for any function f such that one of the two
integrals (and hence also the other) is defined. A function, or a measure, is called
symmetric if it coincides with its reflex. The right translates of a funetion [ are the
functions z — f(za), e €X. The right translates of a measure p are the measures

f— f fxa)du(x), a€X. Left translates of functions and measures are defined cor-

respondingly.
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6.1. Convolution of two measures (Cf. H. Cartan [9], § II). Consider first two

positive measures x and v on the locally compact group X. The mapping

=~ [[fepdu@dry) (FeCS (X))

is an additive and positive-homogeneous functional on C§ with values >0 and < + oco.
If the double integral is finite for every f€ (g, it can be extended in 2 unigue and
obvious way to a positive, linear functional on C,(X), and hence there is a uniquely

determined measure y % v, called the convolution of u and », such that the equation

[H-awv)y= [[f@y)dp)dv(y) (1)

holds for every function f€C,(X). By application of Théoréme 1 in Bourbaki [4],
Chap. IV, §1, we infer that (1) holds for a lower semi-continuous function f on X
provided either >0 or x and v have compact supports. (The latter case is reduced
to the former in the usual way by adding to f some constant ¢>0 such that
flx)+c>0 in the set S(u)-S(»).)

For two measures of variable sign one defines the convolution by
pxv=p %oty % v —pt ey —p %0,

provided the four convolutions on the right are well defined according to the above
definition. It is well known that this is the case, in particular, if at least one of the
measures ¢ and v is of compact support. ()

The convolution produect is commutative if and only if the group is Abelian. In

any case the identity
(%) =¥ 2)

holds in the sense that both convolutions are simultaneously defined or undefined.
Each of the distributive laws

A¥(ptv)=Axputidsxy; (utv)*xi=uxitrxi,
subsists provided the two convolutions on the right are defined.

As usual, we denote by &, the mass +1 placed at the point x € X. For g we

write simply ¢. Clearly, ¢ is the identity for the convolution product of measures:
MHKE=EX =M.

More generally, ux &, and £,% u are the right and left translates of u.

(*) In fact, if u>0, »>0, and if u has compact support, then the supports of f (xy) and of
# ®7 have a compact intersection in X x X for any given f € C, (X).
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6.2. Convolution of functions and measures. Consider a lower semi-continuous
function f and a measure . Under the assumption that either >0 or S(u) is com-

pact, we define the convolutions fx u and ux f as functions of x by
(Fxp) @)= [fey ™) dpw)
(w*f) @)=y @) dpy),

at any point x € X for which the integral in question is defined (cf. § 1.1). If u>0,
then fxpu and pxf are defined and lower semi-continuous everywhere in X. It is
easily verified that y

(f*p) =pxf D

in the sense that both expressions are defined at the same points of X. If y denotes
another measure, likewise of compact support unless >0, it follows from Fubini’s

theorem (§ 1.1) that
ux(fxv)=(uxf)ev=pxfxy 2)

at any point € X for which the last expression exists according to the following

definition as a double integral:
(uxf*v)(@= [[fy ez duly)dv(2). (3)

This is the case, in particular, if 4>0 and »>0. Finally, it follows from Fubini’s
theorem that the relations
f % (uxv)=(f % p)*v,

4)
(m*v)*f=u*@*f),

hold, say by positive measures y and v, in each of the following two cases: a) f>0

and pu%v exists; b) y4 and » have compact supports.

6.3. The Haar measures. It is well known that there exist on any locally eompacﬁ
topological group X positive measures (+0) which are invariant under right or left
translations. These invariant measures are called the Haar measures on X. It is also
known that, if m denotes some right invariant Haar measure, then any other right
invariant measure on X is a constant multiple of m. Similarly in case of left in-
variant measures. If m is right invariant, # is left invariant. If X is Abelian or
compact, 7% =m, so that any right invariant measure is left invariant, and conversely.
In the general case, there is a certain continuous function p=p(z)>0 on X, the

modular function, with the property that
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=g -m.
Moreover, olxy)=o@ o) o@=1/p(); o(e)=1.

In the sequel we shall let m stand for a fixed right invariant Haar measure on the
group X.

To any locally m-integrable function f on X corresponds a measure fm with the
density f. For such a function f the convolution concept defined in § 6.2 may be
reduced to that of § 6.1. In fact, let f denote a lower semi-continuous, locally m-inte-
grable function, and let u be a positive measure (of compact support unless f>0).
Then the convolution (fm) u of the measures fm and p is well-defined if and only
if f u is locally m-integrable. In the affirmative case (e.g., if S(u) is compact), the
measure (fm)% u has the density fx u:

(Fm) o= (f % r) - m. (1)
In fact, for any function ¢ € Cq (X),
fedt*mm)= [o@{[ f@ydpw}dm @)= [{[ ¢@ ey dm@)}dum)
= [{leeni@dne}lduw,
which equals the integral of ¢ with respect to (fm) u. Similarly,
g% (F97) = (1% ) - . 2)
The convolution of two functions f and g will be defined by
(f%9) @)= [fey g dm@)= [f@) gy ) dn@®). (3)

We shall only need the case where f and g are lower semi-continuous and > 0. Then
f*g¢ is likewise lower semi-continuous (since f(xy ')g(y) is lower semi-continuous on
XxX, and m €M™ (X)). If g is locally Haar integrable, f % g=f% (gm); if f is locally
Haar integrable, fxg=(f#)x¢. The following identities are easily verified:
(F>g) =g, )
[tgam=(fxg) (=@ (@), (5)

[fdu =(F%u) (@ =(x]) (). (6)
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6.4. Kernel function. Energy function. A lower semi-continuous function k=k(z)
on the locally compact group X will be called a kernel function on X. The corre-
sponding convolution kernel is defined by k(x, y)=k (xy™"). This kernel is clearly posi-
tive or symmetric if and only if the kernel function k is positive (k> 0) or symmetric
(I;=k). In a similar way we shall call the kernel function definite, consistent, ete.,
if the kernel k(xy™') is definite, consistent, ete.

The potential of a measure u (of compact support unless £>0) is simply the
convolution k% g. The mutual energy k(u, v) of two measures y and » (of compact

support unless £>0) is the value of u%kx» (cf. (3), § 6.2) at the group identity e:
k(s v)= (% k%) (e). (1)
In particular, the energy k(A, 1) of a measure A (of compact support unless k> 0) is
the value k;(e) at e of the so-called energy funciion
ki=A% k%A,
ka(x)= [[ k(sat™)dA(s)dA(t),

associated with the kernel function k (cf. J. Deny [16]).

Levma 6.4.1. For any kernel function k and any measure A1=0 (of compact
support unless k>0), the energy function ki=AxkxA is tself a kernel funmction on
the group X. Whenever defined, the corresponding mutual energy of two measures y and

v of compact support is determined by
kap, v)=Fk (A% u, Axv). (3)
If k is symmetric or K-definite, k; has the same property.

Proof. The only point requiring a comment is the validity of (3). The case of
measures y and v of variable sign is easily reduced to that of positive measures, and
here (3) follows from (1) by repeated applications of the associative laws (2), (4), § 6.2,
and the identity (2), § 6.1:

ﬁ*h*v=ﬁ*d*k*b*v=@*yf*k*u%w. (4)

7. Definite convolution kernels

In the present section we assume that the lower semi-continuous function k =k (z)
(the kernel function) on the locally compact group X is symmetric (7c=k) and K-de-

finite. Thus
lP =R (u, )= (i % k% p) () >0
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for every measure u of compact support for which the energy k(u, p) is defined (i.e.,
k(u', u"y+k(u", p~) and k(u*, u~) are not both infinite, cf. § 2.1). As pointed out
in § 5.3, this implies that k is definite provided either k>0 or X is compact.

7.1. Continuity of the energy function. The key to the discussion of K-definite
convolution kernels is the following result concerning real-valued positive definite func-

tions (in the usual sense) on a quite arbitrary topological group: (1)

Lemma 7.1.1. Let | denote a lower semi-continuous, symmetric function on a topo-
logical group X, with wvalues — oo <f(x)< + co. Suppose | is positive definite in the

sense that
le f@z)g:9,>0 (1)

for any finite set of points x; € X and finite real numbers gq; such that the sum on the
left ©s meaningful. If, in addition, the value f(e) of f at the unit element of X is finite,

then f is bounded and wuniformly continuous.

Proof. Applying (1) to the single point e with the weight ¢=1, we get f(e)=>0.

Using two points e and x with weights 1 and ¢, we obtain

fe)+2f(x)g+f(e)g*=0.

The sum on the left is always meaningful because f(e) is finite. It follows that f(z)

is finite. Hence the determinant f(e)®—f(x)® is >0, i.e.,

[} (@) <f(e). @)

Since f(e)=0 implies /=0, we assume in the sequel that f(e)+0. Another consequence

of (2) is that the lower semi-continuous function f is continuous at the point e:

f(e)<lim inf f(x) <lim sup f(z) < f(e).

z—>e

Applying (1) with three points, e, z, y, we obtain after evaluating the determinant D
of the quadratic form in ¢, g,, ¢; on the left:

0<D-f(e)=(f (e —f @) (f(*—F &) — (f(e) f wy™) — f @) f (1))
Hence, Ife) fley™) —f@ f)|<fle)- (fe) —f ()

(1) This lemma shows that Bochner’s theorem on spectral representation of continuous, positive
definite functions, say on the real line, remains valid if the assumption of continuity is replaced by
that of lower semi-continuity.
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Now, f@f @y H—f@|<lf@f@y™)—f@fpl+f@|-|f@) 1@l
Inserting |f(x)|<f(e), and combining with the preceding inequality, we obtain

[f@y™) —f@)| < (e~ f)H +]f)— ). (3)

! and y7 ', respectively, and using the symmetry of f, we

Replacing # and y by z~
get the same estimate for |f(y~'x)—f(x)|. The uniform continuity follows now from
the fact that the right hand side of (3) is independent of « and approaches 0 as y —e.

Returning to the study of convolution kernels on a locally compact topological
group X, we infer immediately from this lemma that any K-definite kernel function
k on X with k(e)# + oo is bounded and uniformly continuous. In fact, such a kernel
function is, by definition, symmetric, and it is positive definite in the sense (1) be-
cause the left hand side of (1) is the energy of the measure u=73;¢; ey, the support
of which is finite and hence compact. Actually, most kernel functions of interest are
unbounded: k(e)= + co. A more interesting application of Lemma 7.1.1 is described

in the following theorem.

THEOREM 7.1. Let k denote a K-definite kernel function on a locally compact
group X. For any measure A of finite energy (and of compact support unless k> 0),

the energy function
ki=Axkx2

18 everywhere defined, bounded, uniformly continuous, and K-definite.

Proof. In the case 1>0 it follows from Lemma 6.4.1 that k; is itself a K-definite
kernel function on X. Since k;(e)=||A|]*< + oo, we conclude from Lemma 7.1.1, in
view of the above observation, that k; is bounded und uniformly continuous. In the
general case we apply this result to the positive measures A", 17, and |A|=A"+ 1",
each of which is of finite energy (and of compact support unless k> 0). The con-
sideration of |A| shows that k; is everywhere defined and finite. In view of the

“parallellogram law” for symmetric bilinear forms,
]C,1=2]C1+ +2k;- '—kw. (4)

This formula shows that k; is bounded and uniformly continuous. Applying (3), § 6.4,
with A replaced by A%, 1~, or ||, and with »=pu, we obtain in view of (4)

a(p, ) =| 2 % pl?

for any measure u of compact support. This shows that ki is K-definite.
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The following remark connected with Theorem 7.1 will not be used in the sequel:

Remark. Suppose, in addition, that the group X is wnimodular (o=1, % =m),
and that the kernel function k = k(x) is positive (k> 0) and locally Haar inte-
grable (cf. Lemma 7.2.2 below). The measure x=Fk-m of density £ with respect to
Haar measure is then symmetric. We call it the “kernel measure” associated with the

kernel function k. For any measure 1>0 the identity
/:L*%%Z=k,1-m (5)

holds in the sense that the convolution on the left is defined (*) if and only if k; is
locally Haar integrable (cf. the proof of the analogous identity (1), § 6.3). We shall

now establish the following result: (2)

A necessary and sufficient condition that >0 be of finite energy with respect to
k(xy™') is that the measure J%n %) exist and have a continuous density with respect
to Haar measure. In the affirmative case, the energy of A equals the value of this density

at the group identity e.

The necessity follows immediately from Theorem 7.1 and the above formula (5).
As to the sufficiency, suppose A% ] exists and has a continuous density f with
respect to m. Then it follows from (5) that k,—=f locally m-almost everywhere. Since
k;—f is lower semi-continuous, the locally m-negligible set of points x where k;(x)+
~f(x)>0 is open and hence void (in view of the invariance of Haar measure). Having
thus obtained %, <f everywhere, we conclude that || A|[*=4%;(¢)<f(e) < + oo, and hence
A€E", qe.d. This result suggests a generalization of the theory of potentials with

respect to a definite convolution kernel, in which the kernel function % is replaced by

() On any locally compact topological group the convolution @ =24 % p % v of three positive
measures A, u, v is defined by

[pdo=[[[seyndi@anmire,  #eC,
provided the integral on the right is never infinite. Tt can be shown that the associative law
(A¥pu)$v=A%(uxv)=A%ux*y

holds in the sense that the existence of any one of these three expressions implies that of the others
(provided A=0, v=0).

(%) This result is similar to a result obtained by J. Deny [16], Théoréme 3, for the group R”.
The conclusions are the same, but the type of definite kernel function considered by Deny differs
@ priort from that of the present paper. Subsequently, the quoted theorem of Deny implies that the
kernel functions considered by him are likewise definite (in fact perfect) in our sense. Cf. Theorem
7.3 of the present paper.
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a kernel measure x which should be positive definite in a suitable sense. Cf., e.g., J.,
Deny [16], § 3.

7.2. K-consistency of convolution kernels. We denote by Ut the class of all measures
u €M™ (X) of compact support and of unit total mass: u(X)=1. If we associate with
every neighbourhood V of the unit element ¢ € X the class U3 of all measures y € U™
with S(u) <V, these classes U} constitute the base of a filter V" on MM*. This filter con-
verges vaguely to ¢ (=the mass 41 placed at ¢). In fact, for every continuous func-
tion f on X,

lim ffd,u=f(e) along V. (1)
U—>e
Similarly, 1”131 [[f@, du@)dpy)=Ffl e along ¥ 2)

for every function f€ C(X xX). The verification, say of (2), is simple:

[t ndu@du@—fe o|=|[[ (@ n—fe o) du@duy)|<

< max |f(z, y)—f(e,e)[<n
S(u) x S(u)

provided S{u) is contained in a sufficiently small neighbourhood V=7V, of e.

Lemma 7.2.1. Given a K-definite kernel function k, let A€ E denote an arbitrary

measure of finite energy (and of compact support unless k>0). Then A% p€E&, and

}‘1_13 [A%u—2||=0 along ¥.
Proof. Tt suffices to consider the case 4>0. According to Lemma 6.4.1,
2% ullP=Ralp, )= [[ baey™) dp (@) dpy),
and this is finite because k; is bounded and g (X)=1. Similarly,
k%, )=k, &)= [ ks (@) du ().

Applying (2) and (1) with f(x, y) and f(x) replaced by k;(zy™') and k; (), respec-
tively, we obtain along ¥

lim || A% p|[*=lim k(4% u, 1) =ka(e) =] A|]%
u u

from which the strong convergence 4% u—4 along ¥ follows.
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Lrmma 7.2.2. If a K-definite kernel function k on the group X is Haar inte-
grable over some neighbourhood of the identity e € X, then k is locally Haar integrable;
and every measure possessing a density of class Cy(X) with respect to Haar measure
has a continuous potential and o finite energy with respect to k. If k is not locally Hoar

integrable, then O is the only measure of finite energy.

Proof. Suppose first & is Haar integrable over some neighbourhood W of e, and
choose a neighbourhood V of e so that VV ' < W. If g€ (i (X) and S(p)<V, then
#=gm has the potential k% u=Fk % ¢, the value of which at a point z€V is

fk(wy‘l)w(y)dm(y)zV{w(zx)k(z)dm(@.

The latter expression shows that k- u is bounded and uniformly continuous in V.
Integrating with respect to u, we infer that y € £*. Accepting for the moment the
final assertion of the lemma, we conclude that % is, actually, locally Haar integrable
in X, and hence we could take for V any relatively compact neighbourhood of the
support of a given function ¢ € Cy (X). Thus we conclude that y=g¢@m has a contin-
uous potential and a finite energy. To finish the proof of the lemma, we suppose
now that there exists a measure 140 of finite energy. We may clearly assume that

A=20, fdl= 1, and that S(4) is compact. For any given compact set K <X we choose

a function ¢ € Cq (X) so that ¢ (x)=1 when 2€8(4)"* K. Then 1% ¢ equals 1 every-
where in K. Writing u=¢@#, we infer from (2), § 6.3, and the preceding lemma that

Axg)m=A%u€g&".

e

The trace My of the left invariant Haar measure % on K coincides with the trace
of A%xu on K because A%g@=1 on K. Hence 7ig€E", ie., the kernel k(xy™) is
integrable with respect to M © % over Kx K. Having thus shown that k(zy™') is lo-
cally integrable in XxX, we finish by proving that the kernel function k itself is
locally integrable in X. For any function ¢ € C¢ (X), ¢+0, the function ¢ (xy™ ") ¢ (2)
of (z, y) is of class ¢ (X xX), and hence |

[[k@Ey D e@y™) p@)dm@ dmy) <+oo,

ie., fk(pdm-qulm < + oo, from which it follows that fk(pdm < + oo because
f pdm=o0.

The following application of Lemma 7.2.2 will not be used in the sequel, except
for the observation that cap X >0 if (and only if) the K-definite kernel function
k>0 is locally Haar integrable:
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Lemma 7.23. Let k denote a locally Haar integrable, K-definite kernel function
on the group X, and suppose that k>0 if X is non-compact. Then
(a) The potential kA is locally Haar integrable for every A€E.
(b) cap, N=0 implies m, (N)=0.
{¢) cap® N=0 tmplies m* (NN K)=0 for every compact set K< X.

Proof. (a) The potential kx4 of A€E is u-integrable for every u €&, in partic-
ular for u=¢pm, ¢ €C§ (X). (b) For any K< N, the trace mg of m ui)on K belongs
to £°. Hence it follows from Lemma 2.3.1. that m (K)=mg (X)=0; and consequently
m, (N)=0. (c) Let H denote a fixed, compact neighbourhood of the compact set K.
Since cap* (NN K)=0, there are open sets GoN NK with cap G as small as we
please. We may further assume that Gc H. By definition,

cap G=1/w (@) > pu (X)*/| plf?

for every non-zero measure w€E&* concentrated on G. Taking y=mg (= the trace
of m upon @), we obtain m(G)*=mg (X)*<||mg|f cap G. If k=0, ||me|]<||mx|?
(< + o0), and hence m (G) becomes as small as we please by suitable choice of G.
This shows that m* (N n K)=0. The remaining case where X is compact, but % is
of variable sign, is reduced in the usual way to the case k>0. In fact, the condi-
tion cap* N=0 is not changed if k is replaced by k+c¢ for some constant ¢, as
pointed out in § 2.3.

LEMMA 7.24. Let k denote a K-definite kernel function on the group X. For any
measure A>0 of finile energy (and of compact support unless k> 0), any neighbourhood
W of the support of A, and any number 1>0, there is a measure A’ >0 possessing o

continuous density of compact support contained in W, such that |4’ —Alj<n.

Proof. In view of Lemma 7.2.2 we may suppose that & is locally Haar integrable.
It follows easily from Lemma 2.2.2 and the remark thereto that there is a compact
set K<8 (1) such that ||Ax—A||<#/2, where Ax denotes the trace of A upon K. It
is easy to show that there is a compact neighbourhood V of the unit element e€X
such that KV< W. According to Lemma 7.2.1 we may choose V so small that
|| Az*p—Ag||<n/2 for every measure w€UY. Choose a function ¢€Cq (X) with
S(p)<V and [@dm=1. Writing p—g@m, we have u€U}. According to (2), § 6.3,
the measure A’ = Ag%u has the density Axx¢@ € Cy (X) with respect to #, and S(A')< W.
Clearly, |4’ —2||<%n/2+7/2, and the proof is complete. Note that the potential kx4’
of A’ is continuous by Lemma 7.2.2.



ON THE THEORY OF POTENTIALS IN LOCALLY COMPACT SPACES 199

THEOREM 7.2. Every K-definite convolution kernel k(xy™') on a locally compact
topological group X is K-consistent. If X 1is compact, or if k>0 and k(x)=0 outside

some compact subset of X, then k(xy™') is consistent.

Proof. The latter part of the theorem follows from Lemma 3.4.2 in view of the
preceding lemma with W=2X, because the continuous potential k%A has compact
support when % and A’ both have compact supports. The former part follows from
the corresponding ecriterion (b), § 5.3, for K-consistency, combined with the preceding
lemma. In fact, for any compact set K< X we may take K,= W = an arbitrary
compact neighbourhood of K.

CoroLLARY. In case of a positive and K-definite convolution kernel, £% is
complete for every compact set K< X.

This follows from the criterion (a), § 5.3, for the completeness of £. Disregarding
the trivial case k=0, we have k(xxz ')=Fk(¢)>0, and hence the convolution kernel
k(xy™') is strictly positive if at all positive. The question remains open whether this

corollary holds in the case of K-definite convolution kernels of variable sign.

7.3. Conditions for consistency of convolution kernels. It remains to find condi-
tions in order that a definite kernel function £>0 on a locally compact, non-compact
group X be consistent (and not merely K-consistent). Consistency is a global property,

and it seems plausible that % (2) should approach 0 in some sense as x approaches
infinity in X.

Lemma 7.3.1. In case of a consistent convolution kernel (>0) on a locally com-
pact group X, the capacity of any closed, non-compact subgroup of X is either 0 or + oco.

In particular, cap X = + co is a necessary condition for consistency of a positive,
locally Haar-integrable kernel function on a non-compact group X. If, for example,
X =R", n>1, this single condition is not sufficient.

Proof of Lemma 7.3.1. Replacing the kernel function by its restriction to the
subgroup in question, one finds that it suffices to prove that cap X =0 or 4+ oo.
Let us suppose eap X < + oo, and let Ay denote the non-void, vaguely compact class
of all interior capacitary distributions on X (cf. Theorem 4.1). The invariance of the
convolution kernel implies that Ay is invariant (as a whole) under right translations.
(In the simple case where the kernel is strictly definite, the unique interior capacitary
distribution A on X is therefore a right invariant measure on X; and since Haar
measure on a non-compact gronp is infinite, whereas A (X)= cap X < + oo, we con-
clude that A=0; that is, cap X =0.) In the general case, let A denote a fixed interior
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capacitary distribution on X. The mapping z—>Axeg, carries the filter of ‘‘neigh-
bourhoods of infinity” in X (= the complements of all relatively compact subsets
of X) into the base of a filter @ on the vaguely compact set Ayx. Let y denote any
vague cluster point for ®. Then x€ Ay, and hence y(X)= cap X< + 0. We com-
plete the proof by showing that the translates Axe, converge vaguely to 0 as x—>w (the
Alexandrov point at infinity adjoined to X); and hence p=0. Corresponding to a
given number >0 we determine a compact set K< X so that A(( K)<x. This is
possible because A(X)= cap X< + oo by assumption. For any function ¢ €Cq (X),
say ¢<1, the set K § is compact, S being the support of ¢. Since X is non-compact,
there are points z€( (K 'S). For any such point », ¢ (yz) vanishes for y €K, and

hence

[pdxe)=[pyx)dAy)<1-21(CEK) <.

Letting x—w, we obtain f‘PdM<77§ and hence f(pd[u=0, ie., u=0.
The condition cap X = + co amounts to the requirement that a suitable mean-
value of the kernel & should equal 0. As an illustration we state without proof the

following lemma, in which X =R" (considered as a group under addition):

Lemma 73.2. If k=0 is a definite kernel function on R", then

||
cap (Rn) t—->oo t" f f ( ) (x) dwl dxn.

If M (r) denotes the mean-value of k (x) over the sphere |x|=r, the condition cap X = + oo

ts equivalent to the limit relation

r

lim lf(l—g)M(g)g"‘ld&):O.

r>oo T

In the way of sufficient conditions for a convolution kernel to be consistent, one
has the following theorem due to J. Deny [16], and, moreover, a result described in

the next section (Theorem 7.4).

THEOREM 7.3. A regular kernel function k>0 on R™ satisfying Condition (A4) in
Deny [16], § 1, ts perfect.

Proof. The only difficulty is to pass from the positive character implied by Cond.
(4) to that of the present paper. In the case of a regular kernel function this is



ON THE THEORY OF POTENTIALS IN LOCALLY COMPACT SPACES 201

possible by virtue of Théoréme 3 in Deny [16], p. 97. In fact, to prove that % is

definite, we must show that
k(p®, )" ) +k(u, p) =2k ", p7)

for every measure u. It suffices, of course, to consider measures y such that p*, u~ €E*.

According to the quoted theorem of Deny, the class €' coincides with the class &'

of all positive measures A such that the convolution lv%(km)*i exists and possesses
a continuous density with respect to Lebesgue measure m in R". Moreover, the mutual

energy k (A, ») of any two measures A, v€ET =&  is the value (4, ») at the origin of

the continuous density of i*(km)%v (Deny [16], formula (2), p. 98. See also Théo-
réme 2, 2°, p. 93 f.). Applying this with 4 and » replaced by u* or p~, one obtains

k(u, w)=(u, u)=0,

with equality only for u=0. Consequently, k is strictly definite in the sense of the
present paper. It follows now from Théoréme 2 of the quoted paper that €' is
complete, and from the last note on p. 94 that strong convergence in £ implies
vague convergence. Thus k is perfect. (Alternatively, one might establish the con-
sistency of k£ by application of Lemma 3.4.2 in the present paper.) Cond. (4) is not

necessary for a kernel to be perfect (cf. § 8.2).

74. The case k=hxh. Let A>0 denote a lower semi-continuous function on a

locally compact group X, and put k=hxh (ef. (3), § 6.3). Then the convolution kernel
k@y™y=[ha )bty dm (1)
is obtained by superposition (in the sense of § 3.5) of the kernels
ki(z, y)=h(txHh(ty "), teX,
each of which is obviously definite, the energy being
ke (e, ) ={[ B (t2) d p (@)

(= the value of (h%pu)® at the point f). Note that %, is in general inconsistent (cf.
Ex. 3, § 83). It follows from § 3.5 that % is definife, the corresponding energy being

[ lF =, )= [ Gk dm. 1)

Since €& is equivalent to |u|€E*, that is k(| u], |u|) < co, we infer from (1) that
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the class £ of all measures p of finite energy with respect to % is determined by
the condition hx|u|€L?(m). (1)

If k(e)=0, then f h*dm =0, and hence h=0 because & is lower semi-continuous.

(The open set {x€X :k(x)>0} is m-negligible and hence void.) From Lemma 7.2.2
follows that k is locally Haar integrable if and only if A%y (=hx*(ym)) is in L£*(m)
for every p€Cq (X).

In the special case where k2 (and hence k) vanishes outside some compact subset
of X, we infer from Theorem 7.2 that k is consistent. In the general case, the same

conclusion is possible at least if X is Abelian:

THEOREM 74. Let X denote a locally compact Abelian group, and h>=0 a lower
semi-continuous function on X. The kernel function k=hxh is consistent, and E* is

complete.

Proof. We may, of course, suppose that k (and hence %) does not vanish identi-
cally. Thus the convolution kernel k (xy~') is strictly positive: Z(¢)>0, and we infer
from Lemma 3.3.1 that £ is complete if & is consistent. In the proof of the con-
sistency, we may assume that k is locally Haar integrable, that is, as pointed out
above,

hxyp€L?(m) for every y€(Cq (X). (2)

Let @ denote a strong Cauchy filter on EF, or just as well on the part of €' de-
termined by ||u|*<M for some constant M; and suppose ® converges vaguely to
some measure u, (cf. Condition (C'), § 3.3). According to (1), the mapping u-—>hxu
carries £ isometrically into L£%(m). The image of ® by this mapping is, therefore,
the base of a Cauchy filter on L£*(m), and converges to some function f€L?(m) on
account of the Riesz-Fischer theorem (cf. Bourbaki [4], Chap. IV, § 3, th. 2):

lim f (h%u—f?dm=0  along ®. (3)
u

Our task is to prove that hxu,=f m-almost everywhere. Denoting throughout the
rest of the proof by ¢ an arbitrary function of class Ci such that ¢ <%, we begin
by showing that gxu—>@xu, weakly in L£*(m), that is,

() It should be observed that the weaker condition h%,uEEZ is necessary, but not sufficient
for a measure u of variable sign to be of finite energy with respect to k=Fh%h. In fact, the energy
of such a measure g does not necessarily exist in the sense of the definition (1), p. 149. Cf. the end
of note (!) on p. 206; or the final observation in Example 9, p. 213.
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f((p*[u) vdm—>f (p*u)vdm  along ® (4)
for every function v€L£?{m). Since
[ xR am< (e dm =l ulF <M

for all relevant measures u, it suffices to verify (4) for functions v €C,, the class C,

being everywhere dense in £2 According to (4), (5), and (6), § 6.3,
[ (pxp)yvdm=(wxpxp) ()= [ (xv)dp.

Since @xv€C,, (4) now follows from the vague convergence ®—pu,.
According to (3), h%u—>f strongly and hence weakly in £

f(h*,u)gdm%ffgdm along @ (5)
for every g€L?(m). Taking
g=g*y, (9, p€Co, p<h) (6)
we obtain, since gxh=hxp when X is Abelian,
[ tx ) (@xp) dm = (peprhp) (€)= [ (p*p) (hxy) dm. (7)
A similar computation shows that
[ xR dm=[ (hxp)*dm

because hh=hxh. In view of (2), this implies i;%y)eﬁz (m). It follows now from
(6), (7), and (4) that, along O,

| hxpygdm— [ (@xug)vdm= [ (hxue) gdm
for 7J=ib%1p. Combining this with (5), we obtain

[ wxpg)ygdm=[fgdm (8)

for every function g=g@xyp of the type (6). The class G of all such functions g is
contained in Cg (X) and is invariant under right translations. Moreover, § contains

non-zero functions of arbitrarily small support. Hence we infer from a result due to
14 — 603808 Acta mathematica. 103. Imprimé le 29 juin 1960
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H. Cartan that G is total in Cy.(!) It follows, therefore, from (A8) that the measures
(h%py)-m and f-m are identical, and hence their densities hxpy, and f coincide locally
m-almost everywhere in X. Since the two densities are of class £?(m), we conclude

that, actually, A pu,=f m-almost everywhere. This completes the proof.

Remark. The above theorem may be extended slightly by replacing Haar measure
m by some measure 7=g-m possessing a density ¢=g¢ (x)>0 which is continuous and
multiplicative:
7 (xy)=¢ (@) q ()

For any lower semi-continuous function g=>0 on X, the kernel

k@, y)= [g@t)gyt)dv () (9)

is then definite according to § 3.5. Moreover, k is consistent if X is Abelian. Writing

h=¢ "¢, one obtains, in fact,
k (2, y)=g (@) Y2 q (y) 2 (hxh) (@y™Y),

and the consistency of k follows from that of hxh as explained in § 5.1. As an
illustration we mention the following kernel on the multiplicative group of real

numbers >0:

o

1 -
k(z, y)=(x+y)'“=m f exp (—tx) exp (—ty)t* ' dt.
0
Here «>0 is a constant, ¢ (f)=1* and dm=t"1dt. We show in Ex. 7, § 8.3, that

this kernel is strictly definite, and hence perfect.

8. Examples

8.1. Kernels of order «. Let X denote a locally compact topological group, and
let h, denote a symmetric, lower semi-continuous, locally Haar integrable function

>0 on X, depending on a parameter o (0 <ax<A) in such a way that
ho¥hg = ho g, (x>0,8>0, a+p<A) 1)

and further that the measures h,m vary continuously with « in the vague topology,

and %, m—& vaguely as «a—>0. This type of a family of kernel functions was studied

() Cf. H. Cartan [8]; or [9]), p. 78. For any total subclass QC Cs (X), the vector space v
consisting of all finite linear combinations of functions from G is positive rich in the sense of Bour-
baki [4], Chap. IIT, § 2, N° 5, and hence the identity stated above in the text follows from Bour-
baki [4], Chap. III, prop. 2.
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by H. Cartan [9], who proved (§ IV) that each h, is K-perfect. If the group X is
Abelian, it follows from Theorem 7.4 of the present paper that each h, is consistent
and that €' is complete. If it can be shown that the kernel functions &, are strictly
definite, we conclude from Theorem 3.3 that they are perfect. This is the case, e.g.,

by the kernels of order o of M. Riesz:

ha(x)=ﬁ|x1“-”, (x€R™ 0<a<mn), @)
where H, ()= 2% at" I"‘%%L—)) (3)

(cf. M. Riesz [26], in particular p. 10 f). His proof of the strict definiteness of these
kernel functions %, is based on the composition formula (1) together with the following

identity, in which A denotes the Laplace operator:
_'Ahtz (x):ha~2 (.’E) (x:':(): OC>2). (4)

Using these tools, Riesz showed that every sufficiently differentiable function of com-
pact support in E™ has the form A,%u for a suitable measure u of finite energy with
respect to h,, o« being given. Since smooth functions of compact support form a rich
subclass of C,, it follows immediately that h, is strictly definite (cf. Lemma 3.4.3).
Occasionally it is convenient to consider these kernels of order « for values «>n.
For n<a<n+2, the expression (3) is well-defined, and h, is continuous throughout
BE". For a=mn one is led to the logarithmic kernel in R" by the following definition
(cf. M. Riesz, loc. cit.)
o () = 0 3 (o (@) + Fon e (2)) = 22 Tog 1o,
a0 (2m)" ||
Here w, denotes the surface of the unit sphere in R™ The composition formula (1)
does not subsist for «+f>n. Frostman’s maximum principle is fulfilled for o< 2
(cf. Frostman [18], p. 68). Apart from the constant factor, the Newfonian kernel cor-

responds to the kernel function &,

1 -n
(n—2)wnlx]2 (n=2)
hy () = 1 1
2%10gm (n=2).

A related family of perfect kernels “of order «” in R", 0 <x< + oo, is deter-

mined by the kernel functions
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1 Kyn-u(r)
s K0 o),

where Gy ()= (2" 22T ()

and K,(r) is the modified Bessel function of the third kind of order 4. Again (1)
is fulfilled (now for all «>0, §>0). In analogy with (4),

1=A)gu=gaz2 (xF+0, a>2).

A theory of potentials with respect to these kernels has recently been developed by
N. Aronszajn and K. T. Smith. Both of these examples are better understood in the
light of the theory of distributions (cf. Schwartz [27], Chap. IL, § 3, Ex. 2).

8.2. Further types of kernels on R" depending only on |z—y|. We begin by

considering the following simple kernel function k; on R', £>0 being given:
ky(z)=(¢—|z|)* = max {t—|=|, 0}
If we denote by j the characteristic function associated with the open interval

J={z€R':0<z<t}, we find k,=j*j, and hence k, is consistent (Theorem 7.2 or 7.4).
It is easily verified that k; is strictly definite, (1) and hence perfect. Note that

() Suppose u€E& (that is, §%| p| ECz) and kg (4, ) =0. Then j%u =0 almost everywhere. For
any function ¢ €Cy the continuous function f=g@u fulfills the condition
¥ f=@*(j%u)=0 everywhere.

x

In view of the definition of j, this means that the primitive f f (y) dy has the period &
0

T
[ tmdy=G*n@=0 for every z.
“t

z

It follows that f, and hence |f|, is periodic with the period ¢, and j%|f| is therefore a constant.
Since

. . 2
i*| fl<p*(*|u]) €L,
this constant must equal 0, so that |f|=0. Consequently,
[#an=@xm©=7©)=0

for every <p€CcTr , and we conclude that u=0.

Observe that the measure v of density sin (2 7 «/t) with respect to Lebesgue measure fulfills
the condition kXv=j¥»=0; and hence, formally, ]|v[|2=0. The energy ||1J“2 of v is, however, not
defined because j*%|v| is not square integrable over the real line,
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Theorem 7.3 is inapplicable here because the Fourier transform of k, is the Fejér
kernel, which has zeros.
More generally, let k>0 denote an even function on R! such that k() is con-

tinuous and conver for 0 <x < + oo, and further

lim &k (x)=0; lim k (x)=k (0)< + oo.

|2]->00 |1z|->0

Clearly, & (x) is decreasing for x>0, and hence p (x) =D, k () <0 for >0. The con-

vexity of k& implies that p is increasing. By partial integration we obtain

k(x)=k(|z])= - fp(t)dt=|f(t—lxl)dp(t)=fkt (@)dp (t)
|z | 0

because p (t)=o(t™") as t—+oo. (1) Thus k can be obtained by superposition of the
perfect kernels k;, and we conclude from § 3.5 that k is perfect (the only exception
being k=0).

Next, one may study similar kernel functions on R™, n>2. Denoting be h the

Newtonian kernel function on R", we now define
by ()= (b ()~ )" = max {h (z)—t, 0},

where >0 for n>3, whereas ¢ is arbitrary in the case n=2. It is possible to prove
directly by elementary methods that these kernel functions k; are strictly K-definite,
and since they have compact supports (except for t=0, n>3, where k;=h), we con-
clude from Theorem 7.2 that they are consis’oenﬁ (and K-perfect). Actually, each £
is perfect by virtue of Theorem 7.3 (which was inapplicable for n=1). An explicit
caleulation of the Fourier transform of k; shows, in fact, that the regular kernel func-
tion k, fulfills Condition (4) in Deny [16], § 1.

Finally, one may consider a kernel function >0 on R", n>2, depending only
on |z|=7 and in such a way that k(x) is continuous and subharmonic for z=+0,
k(0)= + oo, and k(x)->0 as |#|>oo, (The subharmonicity means that k should be
a convex function of the Newtonian kernel A.) This type of kernel function was
studied by K. Kunugui [20] and N. Ninomiya [22], who proved that these kernels
fulfill Frostman’s maximum principle and are strictly K-definite. If we observe that
each of these kernels can be obtained by superposition in the sense of § 3.5 of the
above special kernels k= (h—1¢)*, which are perfect, we conclude from § 3.5 that the

kernels of Kunugui are perfect.

(1) In fact,
tlp@|=20¢-30|p@|<2kGt)-2k ()0
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For n>3, the above class of kernel functions is a proper subclass of the class

considered by T. Ugaheri [28], viz. the class of all functions of the form
k(@)= @) h@)=g @) ",

where ¢ denotes an arbitrary decreasing function of [x|=r (continuous from the right).
As shown by Ugaheri, these kernel functions are strictly K-definite (but they do not
all fulfill Frostman’s maximum principle). Actually, the kernels k=0 of Ugaheri are
perfect. This may be shown in the manner indicated above for the Kunugui kernels.
In fact, £ can be obtained by superposition of special Ugaheri kernels k; obtained by
taking @ (r)=1 for r<t, ¢ (r)=0 for r=¢ (0<t< + o0).

8.3. Miscellaneous examples. We bring a number of examples designed to illus-

trate various points of the preceding theory.

Bxample 1. The simplest example of a definite, but inconsistent kernel on a
locally compact, non-compact space X is the constant k (x, y)=1. Clearly, k(u, u)
=u(X)?>0, and € consists of all bounded measures. To see that k=1 is incon-
sistent, we observe that the measure &, (= the mass +1 placed at x) converges
vaguely to O as z approaches the Alexandrov point o at infinity adjoined to X.
Since the measures &, all belong to one and the same equivalence class in E*, the
mapping x—>¢, carries the filter of neighbourhoods of w in X into the base of a strong
Cauchy filter ® on E*. If k=1 were consistent, ® should converge strongly to its
vague limit O, but this is not the case since ||e,||=1. Nevertheless, £* is easily
shown to be strongly complete. Note that the kernel 1 is a convolution kernel if

X is a group.
Example 2. The kernel

cos (x—y)= cos x cos ¥+ sin x sin y

on the additive group R! is an example of a K-definite convolution kernel which is
not strictly pseudo-positive. (The only such positive kernel is 0.) In fact, the positive
measure &,-+&, has the energy 0. The compact set consisting of the two points 0
and 7 has infinite capacity, but each of the two points forms a set of capacity 1.

The space €% is strongly complete for every compact set K.

Ezample 3. As a generalization of Ex. 1 we consider kernels of the form f®f

on a locally compact space X:

k(x, y)=1 () f ()



ON THE THEORY OF POTENTIALS IN LOCALLY COMPACT SPACES 209

We suppose f is lower semi-continuous and 0<f(x)< + co. Such a kernel is positive
and definite. It is strictly pseudo-positive if f(x)>0 for all x. It is not strictly

definite (unless X reduces to a single point). & consists of all measures yu such that

J‘fd|,u|< + co. The energy and potential of u€E are
lelP=([fan) k@ w=7@-[ldpn.

&' is always complete, but k is consistent if and only if f€Cy (X). (The sufficiency
of this condition follows from Lemma 3.4.2. The necessity can be proved by con-
siderations similar to those employed in Ex. 1: With every point x of the open set
G={x€X :f(x)>0} one associates the measure u,=e¢,/f(x).) In any case, it is easily
shown that all sets are capacitable, and

cap, A= cap® 4 = sup {1/f ()*}.

Example 4. A simple example of a strictly definite convolution kernel k>0 which

is not perfect is obtained by adding the definite kernel 1 (cf. Ex. 1) to the Newtonian
kernel % in R3:

k(@ y)=|z—y| 7+ 1.

Since k£ (u, u)>h(u, p) for any measure u of finite energy with respect to k, the
kernel & has the property (P,), § 3.3 (because % has this property). We proceed to
show that k& does not have the property (P,) of completeness of £". Let ¢, denote
the uniform distribution of unit mass on the sphere {x € R®:|z|=7r}. Then the energy

of o,—-0, is the same whether taken with respect to the kernel k¥ or to the New-
tonian kernel % because the contribution from the constant 1 is {fd(a,—cs)}2=0.

Using a classical property of the Newtonian potential of ¢,, we obtain

||o',——(rs||?‘=1—1 for s>r,
r s
and {0,}° is therefore a strong Cauchy sequence with respect to both kernels. In
view of (P,), the only possible strong limit of {o,} is the vague limit 0. However,
k (0, 6,)=1+n"" does not approach 0. Consequently, £ is incomplete.
Denoting the interior capacities associated with the kernels # and %k by y, and
cap,, respectively, one has

Ve (4)

P A=177 14)
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and similarly for the two exterior capacities. In particular, cap X =1, and we have
thus obtained an alternative proof of the inconsistency of k (cf. Lemma 7.3.1 or
Lemma 7.3.2). There is no interior capacitary distribution associated with the entire
space X = R®. Nevertheless, the capacitable sets are the same for the two kernels
h and k.

Example 5. As an example of a strictly definite kernel k>0 which is not K-

perfect, we consider the kernel
k(@ g)=|z—y|" +b(x)b(y)

on X=R3 Here b denotes the characteristic function associated with the open unit
ball B={x€R® |x|<1}. The energy k(u, u) of a measure g is obtained from the
Newtonian energy h(u, u) by adding u(B)®. The space £ consists of the same
measures whether taken with respect to 2 or to k. Since h (u, u) <k (u, u), k fulfills
(Py), § 3.3. However, £ is incomplete. In fact, when r—1 through some sequence
of numbers r<1, the sequence {o,} (cf. Ex. 4) is a strong Cauchy sequence in &
which converges vaguely, but not strongly to o,. Observe also that the open set B

is of finite capacity %, but there is no interior capacitary distribution associated
with B.

Example 6. The continuous kernel % (x, y)=2y/(2—xy) on the compact interval
X={zx€R" 0<x<1} is positive, but not strictly positive because % (0, 0)=0. The
identity

k(x, y)= ~12"’90”y" 0<%z, y<1)

»

shows that %k is definite and, in fact, consistent because each function 2*¢® is a con-
sistent kernel (cf. §§ 3.4 and 3.5). Note that 0<k(z, y)<zy. We proceed to prove

that £ is incomplete. Let 0<a;<1; a;,1<a; and > a;< + co. The measures
i=1

Un=Ea,+Eq, T -+ T &Ea,

form a strong Cauchy sequence in £* because
oo 0 o«
2, H&u”: 2 k(a, a)< 3 ai< + oo
i=1 i=1 i=1

If €& denotes some strong limit of {u,}, then, for every p=1, 2, ...,

1
2“’{fx”d(,un—,u)}2<||,un—,uH2—>O as n—>oo,
0
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4
Introducing the measures A, =2 u,= D a;eq; and A=z u, we obtain
=1

lim fx” Ld A ffx” 'di, p=12, ..,

n—>00 0

and hence hij )d 4, (x)*-fP (@) d A (x) 1)

for every polynomial P. The inequality

1 1
HIanp =2 {[wdpmf <l
0 0
shows that the measures 1, are uniformly bounded, and hence it follows from (1)
that 4,~~1 vaguely; that is,

e
A= > a,e&q,

n=1

If A, denotes the set {a,, a,, ..., @,}, we obtain

(A= fx‘ldlzn,
An

which contradicts the finiteness of u (X) on a compact space X.

Example 7. For any number «>0 the kernel
]' ~t(l‘+i’/) -1
kE(x, ))=(x+y)” =~(— T dt

on the semi-axis X={x€R: 0<2< + oo} is consistent (cf. the remark following

Theorem 7.4). The energy of a measure y is

=]

! (Lp)?etdt,

Il =5

where L u denotes the Laplace transform of u:

Lp®=e™du(@), 0<t<-+oo.
0
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The space & consists of all measures u for which L|u| is square integrable with
respect to ¢ 'd¢. For such a measure u, Lu converges absolutely for £>0 and re-
presents a continuous (in fact, analytic) function of ¢ If ||u||*=0, then Ly =0, and
hence u=0 (cf., e.g., D. V. Widder [32], § 6). Consequently, k is perfect.

For a positive measure p, k(x, u) decreases and 2*k (x, ) increases with »>0.
Hence k(x, #) is finite for all x>0, unless k(x, u)= + oco. This latter possibility
cannot occur if w€&E*. We have thus shown that (zx+4)™* is a y-integrable function
of y for fixed >0, provided u€E*, or equally well: u€E. A fortiori, the same is
true of the function (x+y)™*"', and hence there is no difficulty in verifying that
k(x, u) is analytic for Re () >0 provided w€&. In particular, & (x, ) can only be
of class Cy(X) if & (2, u)=0; that is, if 4 =0. This shows that the consistency con-
dition formulated in Lemma 3.4.2 is not a necessary one. In the next example we

exhibit a related comwolution kernel with similar properties.

Example 8. For any number «>0 the kernel function
z\ %
—1{2 cosh =
k(x) ( cos 2)

on the additive group R' of real numbers may be represented as k=hxh, where
h(x)=(T («))"* exp faz—e).

The corresponding convolution kernel k (x—y) is therefore consistent (Theorem 7.4).

By the substitution = log », y= log v, k (x—y) is transformed into the kernel

(wov)t*
(u+v)*

on the positive semi-axis O<u, v< + co. In view of an observation in § 5.1, this
new kernel is perfect because (u+v)™* is a perfect kernel (cf. the preceding example).
Consequently, the original kernel function k is perfect, too. For every u€E the po-

tential kxp is an entire analytic function (and hence never of class C, unless u=0).

Example 9. In order to show that the condition for strict definiteness formulated
in Lemma 3.4.3 is not a necessary one, we consider the following kernel function
k=k(n) on the additive group N of integers with the discrete topology: k (n)=2 for
n=0; k(n)=1 for n=+41; and k(n)=0 elsewhere. (This kernel function is a discrete
analogue of the kernel function k; studied in § 8.2 in the case n=1.) If § denotes

the characteristic function associated with the set consisting of the points =0 and
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n=1, we have k={xj. Hence k is consistent, and the energy of a measure u on
N is
ol =2 G gt 2}

(We denote by u, the measure pu({n}) of the set consisting of the single point =.)
Moreover, €& if and only if 3 (|p,|+|tn+1|)? < +oo; or equivalently if and only
if S|pal?< +oo. If ue€ and ||u||=0, then |u,| is constant and hence equal to O,
ie., u=0. Consequently, k is strictly definite, and hence perfect. If the potential
k¥u of some measure u €& vanishes outside some finite interval a<n <b, then y is

supported by the interval ¢ +1<n<b—1. In fact, u satisfies the difference equation
Un-1 +2Mn+,un+1 =0

in each of the regions n<a and n>b; and hence (—1)"p, is linear in the regions
n<a and n>b. Since 3 |u,[?< + oo, we conclude that, actually, u,=0 when n<a

or #n2b. Denoting by v the measure defined by v,=(—1)", we obtain
f(k*u)dv=2(Mn_1+2un+,un+1)-(*1)"=0,

the sum on the right being actually finite. This shows that the class of all potentials
kxu of compact support and with u € € is not rich. Observe that kxy=0 and jxv=090,

and hence, formally, ||#|*=0; but the energy of v is not defined.

Example 10. As an example of a closed set which is not capacitable with respect
to a perfect convolution kernel one may take the diagonal D={(t, u):t€T, u€U, t=u}
in the product space X=7xU, where T denotes the Abelian group R*® with the
discrete topology, and U denotes the same abstract group R?, but with the usual
Euclidean topology. Clearly, X is a locally compact Abelian group which is not of
class K, The kernel function %k is defined as the tensor product k=g®h of the
characteristic function g associated with the origin in 7' and the Newtonian kernel
function 2 on U. ZExplicitly,

{|u|“1 for ¢=0
E@) =k uw)=
0 for t=+0.

Since |u|™t=c-|u|%%|u|™® in U (c being a suitable constant, cf. § 8.1), and g=gxg
in T, we find that %. has the form considered in Theorem 7.4, and k is therefore
consistent. It is easily verified that & is strictly definite, and hence perfect. Denoting
he interior Newtonian capacity of a subset A< U by y, (4), one may easily prove
that the interior capacity with respect to k of an arbitrary set £ < X is determined by
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cap, B~= tEZTV* (B4,

where E,={u€U: (¢, u)€EE}. For the diagonal D we find cap, D=0 because D, re-

duces to the single point uw=¢ whose Newtonian capacity is 0. On the other hand,

cap®* D= + co because cap, G= + oo for every open set G>D. In fact, G; contains

for every ¢ some neighbourhood of f, and hence y, (Gy)>0.
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