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The founda t ions  of a sys temat ic  general  t heo ry  of l a t t i ce -ordered  r ings were la id  b y  

Birkhoff  and  Pierce in [3]. They  in t roduced,  as an  objec t  for fur ther  s tudy ,  the  class o f / -  

rings. This special  class of l a t t i ce -ordered  r ings d isp lays  a r ich s t ructure :  i t  can be charac-  

te r ized  as the  class of al l  subd i rec t  unions of ordered  rings. Birkhoff  and  Pierce ob ta ined  

m a n y  proper t ies  o f / - r i ngs ,  bas ing the i r  s t ruc ture  t heo ry  on the  / - radical  of a n / - r i n g .  I n  

[20], Pierce ob ta ined  an  i m p o r t a n t  decomposi t ion  theorem f o r / - r i n g s  wi th  zero /-radical .  

This pape r  continues the  s t u d y  of the  s t ruc ture  o f / - r ings .  

I n  Chapter  I ,  we presen t  the  necessary  backg round  ma te r i a l  and  ob ta in  a character iza-  

t ion of t h e / - r a d i c a l  of a n / - r i n g  t h a t  yields  a new proof  of the  decomposi t ion  theorem of 

Pierce.  

I n  Chapter  I I ,  we presen t  a s t ruc ture  theo ry  fo r / - r i ngs  based  on a n / - r i n g  analogue of 

the  Jacobson  rad ica l  for abs t r ac t  rings. I n  Sect ion 1, the  J - r ad i ca l  of a n / - r i n g  A is defined 

to  be t he  in tersect ion of the  m a x i m a l  modu la r  r i gh t / - i dea l s  of A.  I n  Sect ion 2, the  J - r a d i c a l  

is charac te r ized  in t e rms  of the  no t ion  o f / - qu a s i - r e gu l a r i t y ,  and  this  charac te r iza t ion  is 

used to  ob ta in  cer ta in  proper t ies  of the  J - r ad ica l .  

I n  Sect ion 3, we consider a r ep resen ta t ion  t heo ry  fo r / - r ings .  W e  show t h a t  e v e r y / - r i n g  

t h a t  has  a fai thful ,  i r r educ ib le , / - r ep resen ta t ion  is a t o t a l l y  ordered  r ing wi th  i den t i t y  t h a t  

conta ins  no non-zero proper  one-s ided/ - idea ls .  I n  Sect ion 4, the  not ions  o f / - p r i m i t i v e / - r i n g  
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and l-primitive/-ideal are introduced. The central result is: an ]-ring is 1-primitive if and 

only if it has a faithful, irreducible, /-representation. As a consequence of this we have: 

every maximal modular right/-ideal is an/-primitive (two-sided) l-ideal; hence the J-radical 

of an/ - r ing A is the intersection of the/-primitive/-ideals of A. This yields the main de- 

composition theorem for/-rings with zero J-radical: they are precisely the subdirect unions 

of ordered rings with identity that  contain no non-zero proper one-sided/-ideals. 

In Section 5 of Chapter I I ,  we characterize the subdirectly irreducible /-rings and 

consider the special results obtainable for ]-rings that satisfy the descending chain condition 

for/-ideMs. Section 6 treats some special questions that arise during the course of the earlier 

part of the chapter. 

In  Chapter I I I ,  we consider the problems of imbedding an /-ring as a right /-ideal 

(respectively, as a sub@ring) of an ]-ring with identity. In  general, neither type of imbed- 

ding is possible. With each/-r ing A, we associate a ring extension A 1 of A with identity, 

and we define a partial ordering of A 1 (the "strong order") that  extends the partial order 

on A and makes A1 into a partially ordered ring. The main results are: 1) A can be imbedded 

as a sub-/-ring of an/ - r ing with identity if and only if A1, with the strong order, can be 

imbedded in an/-r ing whose identity element is that  of A1; 2) A can be imbedded as a right 

1-ideal in an/-ring with identity if and only if A is what is called an "/D-ring" and the strong 

order makes A 1 into an/-ring. 

In  Chapter IV, we consider the existence in/-rings of one-sided/-ideals that  are not 

two-sided. In  Section 1, we present an example of an ordered ring without non-zero divisors 

of zero that contains a one-sided/-ideal that  is not two-sided, and we show that  every such 

ordered ring contains a subring isomorphic to this example. In  Section 2, we briefly con- 

sider the problem for larger classes of/-rings. 

CHAPTER I. B A C K G R O U N D  M A T E R I A L  

l .  Lattice-ordered groups 

In  this section, we present those definitions and results in the theory of lattice-ordered 

groups that will be needed in what follows. Standard references on lattice-ordered groups 

are [2] Chapter XIV, [4], and [14]. 

In  later sections, we will be concerned only with lattice-ordered groups that  are com- 

mutative. Hence, whenever it would be inconvenient to do otherwise, the results in this 

section will be stated for abelian groups. For this reason, we will write all groups additively. 

Partial order relations will be denoted by ~< ; the symbol < will be used in totally ordered 

systems only. 
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DEFINITION 1.1. A partially ordered group is a group G which is pa r t i a l l y  ordered,  

and  in which gl~<g~ implies  a + g l + b ~ < a + g ~ + b  for all  a, b6G.  If  G is a l a t t i ce  

under  th is  pa r t i a l  order,  t hen  G is called a lattice-ordered group. If  G is t o t a l l y  ordered,  

t hen  G is called an  ordered group.(1) 

Le t  G be a p a r t i a l l y  ordered group.  A n  e lement  b of G is said to  be positive if  b >~ O. 

The set of al l  posi t ive  e lements  of G is deno ted  b y  G +. I f  G is a l a t t i ce -ordered  group and  

a 6 G, t hen  the  absolute value of a is ] a [ = a V ( - a), the  positive part  of a is a + = a V 0, and  

the  negative part of a is a -  = ( - a) V 0.(3) 

l~ 1.2. A partially ordered group G is a lattice-ordered group i / a n d  only 

i / a  + = a V 0 ex i s t s /or  every a 6 G  ([2], 10. 215, Theorem 2). 

The  in te rac t ion  of the  group opera t ion  and  the  la t t i ce  opera t ions  in a l a t t i ce -ordered  

group creates m a n y  in teres t ing  re la t ions  and  ident i t ies .  Those t h a t  we will use are collected 

in the  following proposi t ion;  the i r  proofs  m a y  be found  in [2] and  [4]. 

P R O P O S I T I O ~ I . 3 .  I /  G is an abelian lattice-ordered group, and i /  a, b, ceG, then: 

i) a § 2 4 7  and a §  

ii) (-a) A(-b)~-(aVb) .  
iii) a + b = ( a V b ) + ( a A b ) .  

iv) la+bl <laI+lbl and la-bl> llal-lbl]. 
V) a ~ a + - - a  - .  

vi) a + A a - = O .  

vii) I /  b, cEG + and a = b - c, then b = a+ + x and c = a -  + x, where x = b A c. 

viii) I / a A b = O a n d a A c = O ,  t h e n a A ( b + c ) = O .  

ix) For  any  non-negative integer n, n (a  A b) = n a  A nb  and n (a  V b) = n a  V nb.  I n  

particular, (na) + = na  +, (na)-  = na- ,  and n [a [ = [na I" 

x) I / n  is a positive integer and n a  >~ O, then a >~ O. 

xi) [a[ = a + + a - .  

xii) Every  element o / G  has in / in i te  order. 

xiii) I]  a, b, c 6 G + and a ~ b § c, then there are elements b', c' 6 G + with b' <~ b, c' ~ c, 

a n d a = b '  §  

Throughou t  this  paper ,  the  word  " h o m o m o r p h i s m "  (" i somorphism")  will, unless 

qualified, denote  a mapp ing  t h a t  is bo th  an  a lgebraic  homomorph i sm (isomorphism) and  

(1) The meaning of "ordered group" used here is found in [2]. In [4], the term "ordered group" 
is used to designate what we have here called "partially ordered group". 

(2) In [2], the term "negative part of a", and the notation a - ,  are used to designate the element 
a A 0 =  - [(--a) V 0]. 
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a lattice homomorphism (isomorphism). Thus, for lattice-ordered groups, we have ([3], 

p. 52, Lemma 1): 

PROPOSITIO~ 1.4. A group homomorphism 0 o/ a lattice-ordered group G into a 

lattice-ordered group G' is a homomorphism i/ and only i/ one o/ the /ollowing conditions is 

satisfied/or a, b E G: 

i) (a V b)O = aO V bO; 

ii) (a A b)O =aO A bO; 

iii) laiO=iaOI ; 

iv) a+O = (a0)+; 

v) a A b = 0 i m p l i e s a 0 A b 0 = 0 .  

I f  0 is a homomorphism of a lattice-ordered group G into a lattice-ordered group G', 

then the kernel of 0 is an/ -subgroup of G in the sense of: 

DEFINITION 1.5. An 1-subgroup of a lattice-ordered group G is a normal sub- 

group H of G tha t  satisfies: 

aEH and IbI ~< [a t imply bEH. 

If  H is any/-subgroup of G, then the difference group G - H can be made into a lattice- 

ordered group by  defining a + HE(G - H )  + if and only if a-EH.  Then we have: 

T H E O R E M 1.6. There is a one-to-one correspondence 0 ~-~Ho between the homomorphisms 

defined on a lattice-ordered group G and the 1-subgroups o/G; such that, i/ 0 maps G onto Go, 

then Go and G - Ho are isomorphic under the correspondence aO~-~a + Ho. 

THEOREM 1.7. I /  0 is a homomorphism o/ a lattice-ordered group G onto a lattice- 

ordered group G', and i / ~  denotes the/amily o/ all 1-subgroups o/ G that contain the kernel o/ 

O, then H-->HO is a one-to-one mapping o] ~ onto the /amily o/ all l-subgroups o/ G' ([2], 

p. ix, Ex. 2(a)). 

If  S is any non-empty subset of an abelian lattice-ordered group G, then the smallest 

/-subgroup of G tha t  contains S will be denoted <S>: 

(S}  ={aEG: laI ~ n i b  I + m i c I ;  b, cES, n, m positive integers}. 

I f  H and K are/-subgroups of G, then the join of H and K is 

( H + K }  =(aEG: laI ~< IhI + [/~I; hEH, k e K } .  

By Proposition 1.3, xiii), this is just H + K = { h  + k :  hEH,  kEK}.  I t  is clear tha t  the 

intersection of any collection of /-subgroups of G is an /-subgroup of G. 

The following observation, although an obvious consequence of the definition of l- 

subgroup, is very important,  and will be used often. 
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PROPOSITION 1.8. I /  G is an ordered group, then the 1-subgroups o /G/orm a chain. 

Many of the part ial ly ordered groups tha t  are impor tan t  in applications are Archi- 

median in the sense of the following definition. 

D E F I N I T I O N  1.9. A part ial ly ordered group G is said to be Archimedean if for 

every pair  a, b of elements of G, with a #  0, there is an integer n such tha t  n a ~ b .  

T ~  E O RE M 1.10 (H61der). Any Archimedean ordered group is isomorphic to a subgroup 

o/the additive group o/ all real numbers, and so is commutative ([2], p. 226, Theorem 15). 

Thus, if G is an Archimedean ordered group, then every non-zero positive element of 

G is a strong order unit  in the sense of: 

D E F I N I T I O N  1.11. An element e of a latt ice-ordered group G is called a strong 

order unit of G if for every aEG there is a positive integer n such tha t  ne >~ a. A weak 

order unit of G is a positive element e of G which satisfies: e A a = 0 if and only if a = 0 .  

2. Lattice-ordered r ings 

I n  Sections 2 and 3, we present those results f rom [3] t ha t  we will need. 

Throughout  this paper, all rings are assumed to be associative, and a ring ident i ty  

element, when it exists, will be denoted by  1. As usual, if I and J are any  two subsets of 

a r i n g A ,  t h e n l J d e n o t e s t h e s e t { ~ a ~ b ~ : a ~ E Z ,  b ~ E J } . 4 = l  

D E F I N I T I O N  2.1. A partially ordered ring is a ring A which is part ial ly ordered and  

in which: 

i) a>~b implies a + e > ~ b + c  for each cEA, and 

ii) a>~0 and b / > 0  imply ab>~O. 

If  A is a lattice, then A is called a lattice-ordered ring; if A is to ta l ly  ordered, then 

A is called an ordered ring. 

A partial ly ordered ring is said to be Archimedean if its part ial ly ordered addit ive group 

is Archimedean. 

PROPOSITION 2.2. The set A + o/positive elements o/a partially ordered ring A satis/ies: 

I) 0EA+; 

II) A+ n ( -A+)  ={0}; 

III) A+ + A+_~ A+; 

IV) A+.A+~_A+; 

V) a >1 b i/ and only i / a  - bEA +. 
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Conversely, i / A  + is a subset o /a  ring A which satis/ies conditions I ) - IV) ,  then V) de/ines 

a partial order in A, under which A is a partially ordered ring. 

I f  A is a latt ice-ordered ring, then the additive group of A is a latt ice-ordered group. 

Thus, we m a y  speak of the absolute value, positive part ,  and negative par t  of any  aEA, 

and the relations in Proposi t ion 1.3 are valid in A. We also have: 

PROPOSITION 2.3. In  any lattice-ordered ring A, 

i) a > / 0 i m p l i e s a ( b V c ) > ~ a b V a c ,  a ( b A c ) < ~ a b A a c ,  ( b V c ) a ~ b a V c a ,  and(bAc)a<~ 

ba A ca; 

ii) lab[ <~ [a I]b I. 

D E F I N I T I O N  2.4. A homomorphism of a lattice-ordered ring A into a latt ice-ordered 

ring A '  is a ring homomorphism 0 of A into A '  t ha t  satisfies (a V b)O - aO V bO for every 

pair a, b of elements of A (cf. Proposit ion 1.4). 

D E F I N I T I O N  2.5. A subset I of a latt ice-ordered ring A is an l-ideal of A if: 

i) I is a ring ideal of A, and 

ii) ae I ,  beA,  and I b] ~< lal imply beI .  

I f  I is merely a r ight  (left) ring ideal of A, then I is called a right (felt) l-ideal of A. 

Eve ry / - idea l  in a latt ice-ordered ring is the kernel of a homomorphism,  and we have 

(cf. Theorems 1.6 and 1.7): 

THEOREM 2.6. There is a one-to-one correspondence O~-~ Io between the homomorphisms 

de/ined on a lattice-ordered ring A and the 1-ideals o] A; such that, i / 0  maps A onto Ao, then 

Ao and A/ Io  are isomorphic under the correspondence aOc-+a § Io. 

T H F~ O R v, M 2.7. I /  0 is a homomorphism o/a lattice-ordered ring A onto a lattice-ordered 

ring A', and i/ 3 denotes the/amily o/all (right, le/t, two-sided) l-ideals o / A  that contain the 

kernel o/O, then I--> IO is a one-to-one mapping o/ Y onto the/amily o/all  (right, le]t, two- 

sided) l-ideals o /A ' .  

A (right, left, two-sided)/- ideal  I of A is said to be proper if 14 = A. If  I is such tha t  

it is contained in no other proper (right, left, two-sided) /-ideal, then I is said to be a 

maximal (right, left, two-sided)/-ideal.  

D E F I N I T I O N  2.8. A latt ice-ordered ring A is said to be l-simple if A 2 # { O )  and if 

A contains no non-zero proper/- ideals .  

I f  S is any  subset of a latt ice-ordered ring A, then  <S> denotes the smallest /- ideal  of 

A containing S; (S>r((S>I) denotes the smallest r ight  (left) 1-ideal of A containing S. 

I t  is clear t ha t  the intersection of any  collection of (right, left, two-sided) /-ideals of 

a latt ice-ordered ring A is a (right, left, two-sided)/- ideal  of A. The ]oin of two (right, left, 
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two-sided) / - ideals  I ,  J of A is the (right, left, two-s ided) / - ideal  

I + J = ( a + b :  aEI ,  bEJ}  

(cf. the  discussion following Theorem 1.7). The product  of two (right, left, two-sided) 

/-ideals I ,  J is the  (right, left, two-s ided) / - ideal  

(I J} ={cEA: IcI ~< ~ aib~; a~EI, b~J}. 
i = l  

Since c E ( I J }  implies 

m a y  write 

I c I ~< a,b,  < l ai I I bj I for suitable a~ E I, b~ E J, we 
~=1 i j = l  

( I J } = { c E A :  Ic[<~ab; aEI ,  bE J}.  

PROPO SITIOIq 2.9. 

/orm a chain. 

An immedia te  consequence of Proposi t ion 1.8 is: 

I / A  is an ordered ring, then the (right, left, two-sided) 1-ideals o / A  

f-rings 

The class of lat t ice-ordered rings admi ts  a disquieting amoun t  of pathology.  For  

example,  Birkhoff  and  Pierce have  given an example  of a commuta t ive  la t t ice-ordered 

ring with  ident i ty  element  1 in which 1 is not  a posit ive element  (even though  a square). 

For  this reason, they  have  suggested the s tudy  of a special class of lat t ice-ordered rings: 

those t h a t  a re / - r ings  in the  sense of the following definition. 

D E F I N I T I O N  3.1. An /-ring is a la t t ice-ordered ring in which a A b = 0  and c ~>0 

imply  ca A b = ac A b - O. 

I t  is to this class of rings t h a t  we will restrict  our a t tent ion.  

E v e r y  ordered ring is a n / - r i n g ,  since, in an ordered ring, a A b = 0 implies either a = 0 

or b = 0. Any  abelian lat t ice-ordered group G can be made  into a n / - r i n g  b y  defining ab = 0 

for a]l a, b E G. The following, more  interesting, example  of a n / - r i n g  serves to mo t iva t e  

the choice of terminology.  

EXAMPLE 3.2 (cf. [10]). Le t  X be a Hausdor f f  space, C(X) the set of all continuous 

real-valued functions on X. I f  all operat ions are defined pointwise,  then  C (X) becomes an 

Areh imedean / - r ing :  f o r / ,  gEC(X) and each x E X ,  

( / +  g)(x) = / (x)  + g(x), /g(x) =/ (x) .g(x)  

(/A g) (x) = / (x) A g (x). 
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With each point x of X there are associated two/-ideals of special interest, defined by: 

Ox ={]eC(X) :  ][V] ={0} for some neighborhood V of x}, and 

M ~ = { / e C ( X ) : / ( x )  =0}. 

In  general, O~ is properly contained in Mx. For each x, the l-ideal M~ is maximal in C(X), 

and C (X) /Mx is isomorphic to the ordered field of real numbers. 

I f  A is an/-ring,  we will call a subring of the ring A a sub-l-ring if it is also a sublattice 

of the lattice A. 

PROPOSITION 3.3. I / A  is an/-ring, then: 

i) every sub-l-ring o / A  is an/-ring; 

ii) every homomorphic image of A is an/-ring; 

iii) i/ A has an identity, then 1 is a weak order unit in A.  

We also have the following partial characterizations of/-r ings as lattice-ordered rings: 

:PROPOSITION 3.4. I] A is a lattice-ordered ring with positive identity element 1, then 

A is an/-ring i/: 

i) 1 is a strong order unit in A;  or 

ii) 1 is a weak order unit in A and A contains no non-zero positive nilpotent elements. 

Now, let (A~: ~EF} be a non-empty family of/-rings,  and consider the set A of all 

functions a : F->  [J (A~ : ~ E F } such tha t  a~ = a (~) E A~ for each ~ E F. In  A, define addition 

and multiplication by  

(a + b)~ = a~ + b~ and (ab)~ = a~b~ for each ~eF .  

Then, as is well known, A is a ring. Moreover, if we define a partial order in A by 

a/> b if and only if a~ ~> b~ for each ~EF, 

then A is a lattice-ordered ring, where 

(a A b)~ = a~ A b~ and (a V b)~ = a~ V b~ for each ~EF. 

I t  is clear tha t  A is an/-r ing.  

DEFINITION 3.5. The /-ring A described above is called the complete direct union 

of the family (A~: ~EF} of/-rings.  

For each aEF,  the mapping a-->a~ is a homomorphism of A onto A~. If  B is any sub- 

/-ring of A, then this mapping, restricted to B, is a homomorphism of B into A~. 
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DEFINITION 3.6. A sub-/-ring of the complete direct union of the family {A~ : ~EF} 

of/-r ings is said to be a subdirect union of tha t  family if the homomorphism a-> a~ maps B 

onto A~, for each c~EF. 

We have the following important  characterization ([2], p. 92, Theorem 9): 

T~EOREM 3.7. An  /-ring A is isomorphic to a subdirect union o/ the/amily {A~ : ~EF} 

o/ /-rings i/ and only i/there is a collection  er} o/1-ideals in A such that A / I ~  is 

isomorphic to A~ /or each ~eF, and n{ I~ :  ~EF} ={0}. 

We will denote a subdireet union of the family {A~:  er} of/-rings by ~s (A~:  er}. 
Note that,  in general, this does not denote a unique/-ring. For example, if F is infinite and 

if each As contains an identity, then the complete direct union of the family {A~ :~EF}  

is a subdirect union of this family that  contains an identity element. A subdirect union of 

the same family that  does not contain an identity element is the discrete direct union in 

the sense of the following definition. 

DEFINITION 3.8. The discrete direct union of the family {A~: ~EF} of /-rings is 

the sub-/-ring of their complete direct union consisting of those elements a with a~ = 0 

except for a finite number  of ~ E F. 

I f  an / - r ing  A is the complete direct union of a finite ~amily {A~: i = 1, 2 . . . . .  n} of 

/-rings, it will be called merely the direct union of this family. 

An/ - r ing  will be called subdirectly irreducible in case all of its subdirect union repre- 

sentations are trivial. Stated precisely, 

D E F I N I T I O ~  3.9. An /-ring A is said to be subdirectly irreducible if A 4{0}  and 

every isomorphism 0 of A onto a subdirect union ~s {A~: ~EF} of/-r ings is such tha t  the 

mapping a--> (aO)~ is an isomorphism for at  least one a EF. 

COROLLARY 3.10. An  /-ring A is subdirectly irreducible if and only i / the intersection 

o/all  o/ the non-zero 1-ideals o / A  is not {0} (Theorem 3.7). 

Thus, A is suhdirectly irreducible if and only if A contains a unique smallest non-zero 

/-ideal, given by 
[1 {I:  I is a non-zero/-ideal of A}. 

The following lemma and its corollary give insight into the nature of subdirectly ir- 

reducible/-rings. 

LE~MA 3.11. I f  a and b are elements o/ an /-ring A such that a A b = 0 ,  then 

(a} N (b) = (0}. 

Now, if an / - r ing  A is not an ordered ring, then there are incomparable elements x, y 

in A. Then a = (x - y)+ and b = (x - y)-  are non-zero elements of A with a A b = 0 (Propo- 
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si t ion 1.3, vi)). B y  the  lemma,  <a> and  <b> are  non-zero / - idea l s  in A wi th  zero in tersect ion,  

so A is no t  subd i rec t ly  i r reducible ,  b y  Corol lary 3.10. Thus,  we have:  

COROLLARY 3.12. Every subdireetly irreducible ]-ring is an ordered ring. 

I t  was r e m a r k e d  in [3] t h a t  every  ordered  r ing is a subd i rec t ly  i r reducible  /-ring. 

However ,  the  fol lowing example  shows t h a t  this  is no t  the  case. I n  Chapter  I I ,  we will 

character ize  t h o s e / - r i n g s  t h a t  are subd i rec t ly  i r reducible .  

Example  3.13. Le t  Q[~] denote  the  r ing of po lynomia l s  in one (commuting)  in- 

de t e rmina t e  ~ over  the  ordered  field Q of r a t iona l  numbers .  Order  Q [2] lexicographical ly ,  

wi th  the  cons tan t  t e rm domina t ing :  a o + a l~  § �9 �9 �9 + an~ n >~ 0 if and  only  if a 0 > 0, or a 0 = 0 

and  a 1 > 0, or . . . .  or a 0 = a 1 . . . . .  a=_ x = 0 and  a~ ~> 0. Unde r  this  order,  Q [~] is a com- 

m u t a t i v e  ordered  ring; i t  is c lear ly  non-Archimedean ,  since n2  ~< 1 for every  in teger  n. 

The p roper  /- ideals of Q[X] are jus t  the  r ing ideals  <~n> = { a j n  § + . . .  + 

a=+k). =~k} for each posi t ive  integer  n. Thus,  b y  Corol lary  3.10, Q[2] is no t  subd i rec t ly  ir- 

reducible,  since r l  {<2->: n = l ,  2 . . . .  } - { 0 } .  

Now, eve ry  ordered  r ing is a n / - r i n g ,  so every  subdi rec t  union of ordered rings is also 

a n / - r i n g .  Conversely,  the  wel l -known theorem of Birkhoff  ([2], p. 92, Theorem 10) s ta tes ,  

in th is  case, t h a t  e v e r y / - r i n g  is i somorphic  to  a subdi ree t  union of subd i rec t ly  i r reducible  

/-rings.  Thus: 

THEOREM 3.14. A lattice-ordered ring is an / - r ing  i / a n d  only i / i t  is isomorphic to a 

subdirect union o~ ordered rinas. 

I t  is now an  easy m a t t e r  to  de te rmine  some of the  special  p roper t ies  o f / - r i ngs .  For ,  

a n y  p r o p e r t y  t h a t  holds  in every  ordered  r ing and  t h a t  is p reserved  under  subdi rec t  union 

is en joyed  b y  a l l / - r i ngs .  The following proper t ies  are  of th is  sort:  

THEOREM 3.15. 17/A is an/-r ing,  then,/or a, b, cEA:  

i) I /  a >~ O, then a(b V c) = ab V ac, a(b A c) = ab A ac, (b V c)a = ba V ca, and (b A c)a 

= b a  A ca. 

ii) lab/ = [ a ] - ] b ] .  

iii) I / a  A b = O, then ab = O. 

iv) a ~ ~> 0. 

v) I / a ,  bEA  + and n is any positive integer, then n l a b  - b a  I <~ a ~ + b 2. 

COROLLARY 3.16. A n / - r i n g  without non-zero divisors o/zero is an ordered ring. 

COROr~LARY 3.17. Every Archimedean /.ring is commutative. 

There  are, however,  n o n - c o m m u t a t i v e / - r i n g s .  E x a m p l e s  of non -commuta t i ve  ordered  
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rings will be given in Chapters I I  and IV. Any ring constructed from these by  subdirect 

union will be a non-commutat ive/-r ing.  

In  any /-ring A, the set Zn(A ) = { a e A :  a n = 0} is an/- ideal  of A for each positive in- 

teger n. 

Dv, FI~CITIO~r 3.18.(1) If  A is an/ - r ing,  then the 1-radical of A, denoted N(A) ,  is the 

set of all nilpotent elements of A: 

N(A) = U{Zn(A) : n = 1, 2 . . . .  }. 

I t  is easily seen tha t  N(A)  is an l-ideal of A and tha t  A / N ( A ) h a s  zero/-radical.  

~ow,  for' each n, Zn(A ) is a nflpotent /-ideal; tha t  is, [Zn(A)]n={o}. However,/V(A} 

m a y  not be nilpotent, as is shown by the following example. 

Example 3.19. Let  Q[2] be the ring of polynomials with rational coefficients, ordered 

lexicographically as in Example 3.13. For each positive integer n, let A n denote the ordered 

ring Q[2]/(2n>. Then, in An, the element ~ = 4  + ( 2  n> satisfies ~ n - l #  0 and ~n =0 .  I f  A 

denotes the discrete direct union of the family {A~: n =1, 2 . . . .  }, then it is clear tha t  

N (A) is not nilpotent. 

]DEFINITION 3.20. An /-ring A is said to satisfy the descending chain condition for 

/-ideals if every properly descending chain 11 ~ 12 ~ I s ~ ... of/-ideals of A is finite. 

TH]~OREM 3.21. I /  A is an ]-ring that satis]ies the descending chain condition ior l- 

ideals, then N (A) is a nilpotent l.ideal. 

4. Ordered rings and prime /-ideals 

The results presented in this section are, as is the case with all of this chapter, not 

entirely new. However, as presented here, each has some claim to originality. 

Recall (e.g., [23], p. 221) tha t  if A is a commutat ive ordered ring without non-zero 

divisors of zero, then there is exactly one way tha t  the field F of quotients of A may  be 

ordered so tha t  A is an ordered subring of F. This order on F is given by  

a/b>~O if and only i fab~>0.  

I t  is easily seen that  F is Archimedean if and only if A is. 

We now present alternate proofs of two results of Hion ([11], [12]). 

(1) Birkhoff and Pierce have considered the /-radical of an  a rb i t r a ry  latt ice-ordered ring. The 

definition given here is merely the special form tha t  t he / - r ad ica l  assumes  in ]-rings. 
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THEOI~EM 4.1. I / a n  ordered ring A contains non-zero divisors o/zero, then it contains 

a non-zero nilpotent 1-ideal. 

Proo/. I f  A contains non-zero divisors of zero, then there are non-zero positive elements 

a, b of A with ab = O. Thus, 0 = ab ~ (a A b) 2 >~ O. Since A is an ordered ring, this means 

tha t  either a 2 = 0 or b 2 = 0. Thus Z s (A) is a non-zero nilpotent/-ideal of A (el. the discussion 

following Definition 3.18). 

T~]~OR~M 4.2. I / A  is an Archimedean ordered ring, then either i) A is isomorphic to 

an ordered subring o/the ordered field el real numbers, or ii) A s = {0} and the ordered additive 

group el A is isomorphic to a subgroup o/the ordered additive group o/real numbers. 

Proo/. I f  A contains a non-zero divisor of zero, then A contains a non-zero/-ideal I 

with 12 = {0}, by Theorem 4.1. Since A is Archimedean, its additive group contains no 

non-zero /-subgroups (Theorem 1.10), so I = A. Thus A s =  {0}, and ii) now follows by  

Theorem 1.10. 

I f  A contains no non-zero divisors of zero, then, since A is commutat ive by  Corollary 

3.17, we may  imbed A in its field F of quotients. As remarked above, F is an Archimedean 

ordered field. By  a well-known theorem, F is isomorphic to a subfield of the ordered field 

of real numbers, so i) holds. 

Recall that ,  in any abstract  ring A, a proper (ring) ideal P of A is said to be prime in 

case I l I s~_P for any two (ring) ideals I1, 12 of A implies II~_P or Is~_P (cf. [19]). Also, 

a ring A is said to be prime if and only if {0 } is a prime ideal in A. Hence, P is a prime ideal 

in a ring A if and only if A l P  is a prime ring. Prime/-ideals, that  is,/-ideals tha t  are prime 

ring ideals, play an important  role in the structure theory for/-r ings.  

THEOREM 4.3. A proper 1-ideal P in an/-ring A is prime i / a n d  only i / I l I 2 ~ P / o r  

any two 1-ideals 11, 12 o / A  implies II~_P or I 2 ~ P .  

Proo/. Suppose tha t  1112 _~ P for any two 1-ideals 11, 12 of A implies I1 -~ P or 12 _~ P. 

I f  11 and I s are any two (ring) ideals of A with 11 I2-~ P, then (11 Is)_~ P. That  11 _~ P or 

12 c p will be shown by  proving tha t  ( I1 )  ( I s )  -~ (1112). I f  a E (11) and b E ( I s ) ,  then 

[a I ~< ~ /as/ and [b] ~ ~ ]bj] for a~eI  1 and b~EIs, Then, [ab[ = ] a [ . ] b [  ~< (~ ]a~]) 

(~  [bj]) = ~ ]a,bj[, whence a b E ( I l l s ) .  Thus, ( I ~ ) ( I s )  ~ ( I l I 2 )  c p .  
J ~,7 

The converse is obvious. 

T~EOR~M 4.4. An/ - r ing  A is prime i/ and only i / A ~ :  {0} and A is an ordered ring 

without non-zero divisors o/zero. 
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Proo/. If  A is a prime/-r ing,  then A 4 (0} by  definition. Moreover, A is an ordered ring, 

for we have seen (cf. the discussion following Lemma 3.11) tha t  any / - r i ng  that  contains 

incomparable elements contains non-zero /-ideals I1, I2 with 11 fi 12 = {0}, and hence 

I l I ~ I  1 fi I ~ =  {0}. I f  A contained non-zero divisors of zero, then it would contain a 

non-zero/-ideal I with 12 = {0}, by  Theorem 4.1, contrary to the definition of prime ring. 

Thus, A is an ordered ring without non-zero divisors of zero. 

The converse is obvious. 

COROLLARY 4.5. I /  A is an ordered ring, and i] A :~ N(A) ,  then N(A)  is a prime 

1-ideal. 

Proo/. A / N ( A ) ~ :  {0}, and A / • ( A )  is an ordered ring without non-zero divisors of 

zero, by  Theorem 4.1 and the remark following Definition 3.18. 

COROLLARY 4.6. A proper 1-ideal P in an /-ring A is prime i] and only i] abCP 

implies aEP or bEP ]or a, bEA. 

Proo/. If P is prime, then A l P  is a pr ime/-r ing,  so it contains no non-zero divisors of 

zero. 

Conversely, suppose abEP implies aEP or bEP for a, bEA. I t  is clear that  A l P  

contains no non-zero divisors of zero. Hence, by  Corollary 3.16, A l P  is an ordered ring 

without non-zero divisors of zero. Since A / P 4  {0}, it is a p r ime/ - r ing  by Theorem 4.4. 

Thus, P is a prime/-ideal.  

Corollary 4.6 is the first appearance of a phenomenon tha t  will present itself again in 

Chapter I I .  We may  describe this, roughly, as follows: in considering the/- ideal  structure 

of/-rings, the absence of commutat iv i ty  seems to have less effect than in the ideal structure 

of abstract  rings. In  the present instance, the equivalence in Corollary 4.6 is true for (ring) 

ideals only in commutative abstract  rings. 

A subset M of an / - r ing  A is called a multiplicative system if a, bCM implies abEM.  

By Corollary 4.6, a proper/- ideal  P of A is prime if and only if the complementary set of 

P in A (i.e., {aEA: a(~P}) is a multiplicative system. Conversely, we have the following 

result. The proof, which is omitted, is a standard argument (e.g., [18], p. 105). 

THEOREM 4.7. I /  I is an l-ideal in an/-ring A, and M a multiplicative system in A 

that does not meet I,  then there is a prime 1-ideal P o] A that contains I and does not meet M.  

We can now prove the following important  theorem ([20]). 

T~EOREM 4.8. The l-radical N(A)  o] an /-ring A is the intersection o] the prime 

l-ideals o /A .  Hence, 1V (A ) = {0} if and only i] A is isomorphic to a subdireet union o] ordered 

rings without non-zero divisors o] zero. 
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Proo/. Since N (A) consists of the nilpotent elements of A, it is contained in every prime 

/-ideal of A, by Corollary 4.6. Conversely, if a(~N(A),  then M =(a ,  a 2, a 3 . . . .  ) is a multi- 

plicative system tha t  does not meet N(A) .  Hence, there is a pr ime/- ideal  P that  contains 

N ( A )  but  does not meet M, by  Theorem 4.7. 

Thus, N ( A )  = {0} if and only if there is a family {P~: zeEF} of prime /-ideals in A 

with [7 {P~: aCF} = (0}, hence if and only if A is isomorphic to a subdirect union of the 

family (A/P~: aCF} of pr ime/ - r ings  (Theorem 3.7). By Theorem 4.4, each of these has 

the required form. 

In  [19], McCoy defined a notion of the radical of an abstract  ring which coincides, in 

the presence of the descending chain condition for right ideals, with the classical radical. 

One of his important  results was the exact analogue of Theorem 4.8. Thus, we may  view 

the/-radical  of an / - r ing  as the analogue of the McCoy radical for abstract  rings. 

According to Proposition 2.9, the/- ideals  of an ordered ring form a chain. Hence, by 

Theorem 2.7, we have: 

PROPOSITIOn 4.9. I /  an 1-ideal I o/ an /-ring A is such that A / I  is an ordered ring, 

then the l-ideals o/ A that contain I / o r m  a chain. 

Thus, any  such/-ideal I is contained in at  most one maximal/-ideal.  I t  is easily shown 

(just as in abstract  rings) tha t  every /-ideal in an /-ring with identity is contained in a 

maximal/- ideal .  Hence: 

PROPOSITIOn 4.10. I /  A is an /-ring with identity, then every 1-ideal I in A such 

that A / I  is an ordered ring is contained in a unique maximal 1-ideal. 

In  particular, every prime/-ideal  in an/ - r ing  A with identity is contained in a unique 

maximal/- ideal .  This result is, in a certain sense, a generalization of similar results tha t  

have appeared in less general contexts (e.g., [5], [10]). 

CHAPTER I I .  T H E  J - R A D I C A L  A N D  T H E  S T R U C T U R E  O F  

J-SEMISIMPLE f-RInGS 

In  this chapter, we consider a structure theory for/-r ings which is modelled after the 

Jacobson theory for abstract  rings. Most of the definitions are exact analogues of the defini- 

tions of corresponding notions in the Jacobson theory; many  of the theorems can be viewed 

similarly. 

1. The J- radical  of  an  f . r l n g  

DEFINITION 1.1. A right l-ideal I of an / - r ing  A is said to be modular if there exists 

an eEA such tha t  x - e x C I  for each xEA.  The element e is said to be a le/tidentity 

modulo I.  
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PROPOSITION 1.2. Let A be an/-ring, I a modular right l-ideal in A.  

i) There exists an eEA + such that e is a left identity modulo I. 

ii) I / I '  is a right 1-ideal o /A  containing I, then I '  is modular (with the same left identity). 

iii) I / e  is a left identity modulo I, then I is proper i /and only i / e  ~ I. 

iv) I / I  is proper, then I can be imbedded in a maximal (modular) right 1-ideal. 

Proo/. i) Suppose e is a left identity modulo I .  Then, for each xEA,  we have 

]x I - / e l  Ix I EI,  since x- -  exEI  and I x -  ex I ~ I Ix]  - [ e x ] [ .  Thus, for each xEA,  we have 

x + -  l e l x + e / a u g  x- - l e l x - e Z ,  so x - l e l x  = (x+- le lx+)  - ( x -  - l e l x 0  oZ. 
ii) and iii) are obvious, and iv) is an easy application of Zorn's lemma, using iii). 

DEFINITION 1.3. Let A be any/ - r ing .  The J-radical of A, which is denoted J(A) ,  

is the intersection of all the maximal modular right/-ideals of A. I f  A ~: {0} and J (A) = {0}, 

then A is said to be J-semisimple. I f  J (A)  = A, tha t  is, if A contains no maximal modular 

right/-ideals, then A is said to be a J-radical ring. 

The examples that  follow demonstrate the fact tha t  the J-radical of an /-ring is 

distinct from the 1-radical; however, we will see (Corollary 2.6) tha t  the J-radical always 

contains the l-radical. 

For any / - r ing  A, let R(A) denote the Perlis-Jacobson radical of A considered as an 

abstract  ring; that  is, R (A) is the intersection of the maximal modular right (ring) ideals 

of A. Since R(A) contains all nil one-sided (ring) ideals of A ([13], p. 9), we have N(A) __ 

R (A). However, the following examples show that  J(A)  and R (A) bear little relationship 

to each other. 

Example 1.4. Let  A denote the ring Q[~] of polynomials with rational coefficients, 

ordered lexicographica]]y as in Example 1.3.13. A is an ordered ring without non-zero 

nilpotent elements, so N ( A ) = { 0 ) .  Also, R ( A ) = { 0 )  ([13], p. 22). The unique maximal 

(modular) r ight/- ideal  of A is (~>, whence J(A)  = (A>. We have: 

{ 0 )  = ;v (A) = R (A) c J (A) = ( 4 )  ~ {0} .  

Example 1.5. Let B denote the ordered subring {p/q: (q, 2) = 1) of the ordered 

field Q of rational numbers, and consider the direct union C of B and the ring A of Example 

1.4. Then C consists of all ordered pairs (x, y), where x E B  and yEA.  Since B contains no 

non-zero proper 1-ideals, it is readily seen that  J(C) consists of all elements of the form 

(0, y), where yE(~) .  :Now (cf. [13], p. 21, and p. 10, Theorem 1), R(C) consists of all ele- 

ments of the form (x, 0), where x is an element of the ring ideal (2) of B. Thus, in this case, 

N(C) ={0}, R ( C ) #  {0}, J ( C ) #  {0), and R(C) fl J(C) ={0}. 
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Example 1.6. Le t  A denote  the  ring of even integers wi th  the  usual order. Then  

we have  N ( A ) = R ( A ) = { 0 } .  However ,  A is an /-simple commuta t ive  /-ring wi thout  

identi ty,  so A is clearly a J - rad ica l  ring. 

I t  is interest ing to  note  t h a t  the analogue of one of the outs tanding unsolved problems 

in the Jacobson  theory  for abs t rac t  rings has its solution in the  preceding example:  there  

do ex is t / - s imple  J - rad ica l  rings. 

2. The  not ion  of  / -quas i - r egu la r i ty  

I f  a is any  e lement  of a n / - r i n g  A, let (1 - a ) A  denote the  set { x - a x :  x E A } .  The 

r igh t / - idea l  ((1 - a ) A ) r  genera ted b y  this set is the smallest  modula r  r igh t / - idea l  with a 

as a left ident i ty.  

D E F I N I T I O N  2.1. An element  a of a n / - r i n g  A is said to be right l-quasi-regular (right 

1-QR) if ((1 - a ) A ) r  = A.  

PROPOSITION 2.2. Let A be an/-ring, aEA.  

i) a is right 1-Q R i /and  only i/there are a finite number o/elements x 1 . . . . .  x n in A such 
n 

t~at lal ~ Ix , -ax ,  I. 

ii) I /  l a [ is right l-Q R, then a is also. 

iii) I / a  is nilpotent, then a is right l-Q R. 

iv) I / a  is a non-zero idempotent, then a is not right l-Q R. 

Proo/. 

i) I f  a is r ight  1-QR, then  aE( (1  - a ) A ) ~  = A.  But  this means  t h a t  there are elements  

zl . . . . .  z~e(1 -a)A such t h a t  [a I -<< [zl] + ]z~[ + . - .  + [z~[. E a c h  z~ is of the  form x ~ - a x ~  

for some x, EA. 
n 

Conversely, if there are elements x I . . . . .  x~eA,  with [a] ~<,-~1 I x , - a x e [ ,  then  it  is 

clear t h a t  a E ((1 - a)A)~. But ,  since ((1 - a)A)~ is a modula r  r ight / - idea l  with left  ident i ty  

a, this implies (Proposit ion 1.2) t h a t  ((1 - a ) A ) ~  = A. Thus, a is r ight  1-QR. 

ii) I f  [a[ is r ight  I-QR, then  there are elements  x 1 . . . . .  xn of A wi th  

,=1 ~ x§ Ix:l+ ~lx~- lalx~l 

n n 

,~l[X + - - a  x~l-k  ,~11 x i  - - a  x~-I- 

Thus,  by  i), a is r ight  l-Q R. 
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iii) Suppose a n = l  al n = O .  Set x = l  al + l  al s + ' ' "  + I  al ~ 1. Then I al = x - I  a lx ,  so 

]a I is r ight  I-QR. B y  ii), a is r ight  I-QR. 
n 

iv) Suppose a is r ight  1-QR, say lal < ,Z Ix,- a~,I  for . . . . .  x n e A  I f  a is also idem- 

potent ,  then  
n 

D E F I ~ I T I O ~  2.3. A right  1-ideal I in an ]-ring A is said to be 1-quasi-regular (1-QR) 

in case every  element  of I is a r ight  l-Q R element  of A. 

Note  t h a t  we do not  have  any  analogue of the notion of the quasi-inverse of an e lement  

t h a t  occurs in the Jaeobson  theory.  However ,  the following proposi t ion is the analogue of 

a result  concerning quasi-inverses in abs t rac t  rings ([13], p. 8, Proposi t ion 1). 

PROPOSITION 2.4. I] I is an 1-QR right 1-ideal in an ]-ring A, then each element o / I  

is a right 1-QR element o] the ]-ring I; that is, i / a E I ,  then there are elements x 1 . . . . .  xnEI 

such that lal <- I axe ,  

Pr00/. I f  aEI,  then  a is a r ight  1-QR element  of A, hence there are elements  Yl . . . . .  
n n 

y~EA s u c h t h a t  lal <~1 ~ ly~-ay~l  ( P r o p o s i t i o n 2 . 2 ) . T h e n a  s = i a I  s<~ial~= lY~-aYi] 

]ay~ - a (aye) I . I f  we let Ia denote  the  r igh t / - idea l  in the ]-ring I genera ted b y  (1 - a) I ,  

then  we have shown t h a t  a s E Ia. But ,  a is a left ident i ty  modulo  I~ (in I) ,  so a s E Ia implies 

a E Ia, whence a is r ight  l-Q R in the  ]-ring I .  

The following theorem,  the central  result  of this section, will be improved  in Section 4, 

where it will be shown tha t  J(A)  is a ( two-sided)/- ideal  in A. 

THEOREM 2.5. The J-radical o] an ]-ring A is an I-QR right l-ideal o] A that contains 

every 1-Q R right 1-ideal o] A. 

Proo/. I f  a is not  r ight  1-QR, then  ((1 - a ) A > r  is a proper  modular  r ight  /-ideal in A 

with  left ident i ty  a. B y  Proposi t ion 1.2, ((1 - a)A>r c a n  be imbedded  in a max imal  modular  

r igh t / - idea l  M which also has left ident i ty  a~M.  But  then, a~J(A) .  

Now, suppose t h a t  I is an l-QR r ight  l-ideal in A and t h a t  I~=J(A). Then  there is a 

m a x i m a l  modular  r igh t / - idea l  M of A such t h a t  I ~ M.  Le t  e be a left ident i ty  modulo  M. 

B y  Proposi t ion 1.2, we m a y  assume t h a t  e is positive. Since M is maximal ,  I + M = A. 

Hence,  by  Proposi t ion 1.1.3, xiii), there  are posit ive elements z EM and b EI  such t h a t  

e = z + b. Then e - z = b E I is r ight  1-QR. Thus, b y  Proposi t ion 2.2, there arc elements  

x, . . . . .  x,~eA such t h a t O ~ < e - z ~ <  Z [ x , - ( e - ~ ) x i ]  = ~ I(x~-ex,)  +zx ,  I. But  M i s  a 
i = 1  ~=1 

12 - 6 0 1 7 3 0 3 3 .  Acta mathematica. 104.  I m p r i m 6  le 19 d 6 c e m b r e  1960  
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modular right/-ideal with left identity e, and z E M, whence x~ -  e x~ and z x~ are elements 

of M for each i, so the right hand member of the above inequality is an element of M. 

Then e - z E M ,  whence eEM, since zEM. This is a contradiction. 

COROLLARY 2.6. J(A)  contains all nil right 1-ideals o/ A; hence J(A)  contains the 

1-radical N (A) (Proposition 2.2). 

Since the /-radical contains all of the nilpotent elements of A (Definition 1.3.18), 

Corollary 2.6 yields the following result, which is in contrast with the situation in the 

Jacobson theory. 

COROLLARY 2.7. I / A  is J-semisimple, then A contains no non-zero nilpotent elements. 

We have already seen (Example 1.4) that  the converse of Corollary 2.7 is not true; 

there are/-rings without non-zero nilpotent elements which are not J-semisimple. 

COROLLARY 2.8. J (A) contains no non-zero idempotent elements (Proposition 2.2). 

COROLLARY 2.9. I/cf is a homomorphism o/ A onto an/-ring A ', then ~[J(A)]  g J ( A '). 

Proo/. The image of an 1-QR right/-ideal in A is an I-QR right/-ideal in A'.  

As in the case of its analogue in the Jacobson theory, the inequality of Corollary 2.9 

cannot, in general, be strengthened; for we have the following example of a homomorphic 

image of a J-semisimple/-ring that is not J-semisimple. 

Example 2.10. Let A = C(R), the /-ring of all continuous real-valued functions on 

the space R of real numbers with the usual topology (cf. Example 1.3.2). I t  is easily seen 

that  A is J-semisimple (e.g. Theorem 2.11). Let pE R. There are functions in A that  vanish 

at p but not on any neighborhood of p (e.g. the function / defined by/ (x)  = (x - p ) ,  so 

that  Op :~ Mp. Thus, Op is an/-ideal in A which is properly contained in exactly one maximal 

(modular) right /-ideal. Hence, A/Op contains precisely one non-zero maximal (modular) 

/-ideal M~/Op, which must be J (A/Op). 

THWOREm 2.11. I / A  is an Archimedean /-ring with identity, then A is J-semisimple. 

Proo/. We can write A as a subdirect union of ordered rings A~, for ~ in some index set 

F (Theorem 1.3.14). For each aEF, let h~ denote the homomorphism of A onto A~, and let 

I~ denote the kernel of h~. l~ow, rl { I~: :r E F } = {0 }, and, for each ~, A~ contains an identity 

h~(1), so that  J(A~,) is a proper right/-ideal in A~ by Corollary 2.8. Now suppose that  a is 

a positive element in J(A). For each aCF, h~(a) is a positive element of J(A~), by Corol- 

lary 2.9. Since each A~ is an ordered ring and J(A:,) is a proper right/-ideal in A~, we have 

nh~ (a) <~ h~ (1) for all positive integers n. Thus, we have, for each positive integer n and each 

EF, h~ (1 - na) >~ O. But then h~ [(1 - ha) A 0] = 0 for each ~ EF and each positive integer n; 
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whence ( 1 - - n a ) A O E f ' l { I ~ : o ~ E r } = { O } ,  for each positive integer n. Since A is Archi- 

medean, this means tha t  a = 0, so J (A)  ={0}. 

COI~OLLARY 2.12 (Birkhoff-Pierce).  An Archimedean ]-ring with identity contains no 

non-zero nilpotent elements (Corollary 2.7). 

Neither  Theorem 2.11 nor its corollary can be strengthened to a s ta tement  concerning 

arb i t rary  Archimedean f-rings (without identity). For, an example of an  Archimedean 

ordered ring A in which ab = 0 for all a, b EA is easily constructed. 

3. /-representations and 1-modules 

As in the Jacobson theory,  a fundamenta l  role in the structure theory  for ]-rings is 

played by  a representat ion theory.  We will restrict our a t tent ion to /-representations in 

the sense of the following definition. 

DE]~INITIO~ 3.1 (Birkhoff-Pierce).  A homomorphism 0 of an ]-ring A onto an ]-ring 

zT is said to be an 1-representation of A in the abelian lattice-ordered group G if the elements 

of A are (group) endomorphisms of G, and the operations and order in A are defined by:  

i) for every gEG and d, 5 E ~ ,  

g(c~ + 5) - gS~ § gb and g(gb) = (gS)b; 

ii) g E ~  + if and only if g~EG + for every gEG +. 

The /-representation is said to be ]aith]ul if 0 is an isomorphism. 

Birkhoff and Pierce have shown ([3], p. 57, Corollary 3), using the familiar (right) regular 

representation, tha t  every ]-ring has a fai thful / -representat ion.  This section is devoted to 

the s tudy  of those ]-rings tha t  have faithful, i rreducible, /-representations (Definition 3.7). 

These ]-rings will be used to obtain an impor tan t  characterization of the J-radical  in 

Section 4. 

I t  is often more convenient, in considering a given l-representation of an / - r ing  A in an 

abelian latt ice-ordered group G, to focus a t tent ion on G and upon the interplay between 

the operations in A and those in G. I n  such cases, we view G as an A-l-module in the 

sense of the following definition. 

D E F I N I T I O N  3.2. I f  A is a n / - r i n g  and G is an abelian latt ice-ordered group, then G is 

said to be an A-l-module if a law of composition is defined on G • A into G which, for gl, 

g2 E G and a, b EA, satisfies: 

i) (gl +g2)a =gla +g2a, 

ii) g~(a + b) =g~a +glb, 

iii) g~(ab) = (gla)b, and 

iv) gaEG+ for every gEG+ if and only if ga- = 0  for every gEG. 



182 D.G. JOHNSON 

T H E O R EM 3.3. There is a one-to-one correspondence 0~--~ Go between the l-representations 

o/an/-ring A and the A-l-modules, such that 0 is an l-representation o /A  in Go and g (aO) = ga 

/or each g E Go. 

Proo/. Suppose tha t  a-~5` is an l-representation of A in G. We m a y  define a law of 

composition on G• into G by  setting ga = gs`. Now gSEG + for every gEG + if and only 

if 5 >~ 0, hence if and only if 5 -  = 0. Since a-->5` is a homomorphism,  5`- =a ~ ,  so we have 

gaEG + for every gEG + if and only if ga- = 0 for every gEG. Thus, since conditions i)-iii) 

of Definition 3.2 are clearly satisfied, this law of composition makes G into an A-l-module. 

Conversely, if G is an  A-l-module, then, for each a E A, define the mapping  5, of G into 

itself by  setting g5 = ga. By condition i) of Definition 3.2, 5 is a (group) endomorphism of 

G. Conditions ii) and iii) show tha t  the mapping a ->5  is a (ring) homomorphism of A onto 

the ring A =(5: a~A} ,  where the operations in A are as in i) of Definition 3.1. 

Now let I denote the kernel of this ring homomorphism:  I = ( a E A : g a  = 0 for each 

gEG}. Then I is a (ring) ideal of A and, moreover,  if a e I ,  then ]alEI, since 0 =gaeG+ 

for every gEG + implies ga-=O for each gEG, whence glal = g ( a §  for each 

geG. If  a e I  and ]bi<~la l ,  then la] - ] b  lEA +, so g(]a I - I b l ) = - g l b l E G +  for every 

g E G +. But  g ib I eG+ for each gEG +, so g ib I = 0 for every g E G +. Hence, if g e G, then g l b ] = 

g+ ] b] - g-I b [ = 0, so ]b ] e I .  Finally, b +, b- E I ,  and, since I is a ring ideal of A, we have 

shown tha t  b = b + - b- e I whenever I b I ~< I a ] and a e I .  Thus, I is an / - idea l  in A. 

Hence, we m a y  use the ring homomorphism a--~5` to transfer the lattice structure of 

A to ~ .  I n  this way, ,4 becomes a n / - r i n g  isomorphic to  A / I .  The partial  order on .~ is 

given by  5  ̀E A+ if and only if a -  E I ,  hence if and only if ga- = 0 for every g E G. By  condition 

iv) of Definition 3.2, we have 5  ̀E.4 + if and only if g5 E G+ for every g E G +. Thus, the partial  

ordering of A is as required by  Definition 3.1:a-->5 is an / - representa t ion  of A in G. 

Thus, to every A-l-module G corresponds an / - represen ta t ion  of A in G (the l-repre- 

sentat ion "associated" with the A-l-module G), and conversely. We will use the notions of 

Lmodule  and 1-representation interchangeably,  as convenience dictates. 

We say tha t  an A-/-module is faithful if and only if the associated/-representat ion is 

faithful. Note  tha t  an A-l-module G is faithful if and only if ga = 0 for all gEG implies 

a ~ 0 .  

LEMM), 3.4. 1/ G is an A-l-module, then ]ga I ~ Ig] ]a[ /or every gEG and a e A .  Con- 

versely, if A ks an /-ring o/ (group) endomorphisms o/ an abelian lattice-ordered group G 

which satis/ies Igs`l = Ig115`l ]or every geG and every 5`EA, then 5 e A  + i /and only i / g S e G  + 

]or every g E G +. 

Proo/. First, if G is an  A-l-module, g e G, and a E A, then 
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Igal = I(g + -  g - ) ( a + -  a- ) l  ~ Ig+a+l + lg+a-I § Ig-a+I + Ig-~-I  

= g+a+ + g+a-  + g -u+  + g - a -  = (g+ + g- ) (~+ + a-)  = Ig[ 1 a l  

If ~i is a n / - r i n g  of (group)endomorphisms of the abelian lat t ice-ordered group G in 

which Ig~I = Igl I~I for every  gEG and every  SEA,  then  dEz{+ if and  only if ~ = [5 I, 

whence if and only if g5 = Igl I~[ = Ig~l ~G+ for every gCa+. 

We m a y  re-s tate  the  second pa r t  of L e m m a  3.4 as follows: I f  a law of composit ion is 

defined on G • A into G which satisfies conditions i)-iii) of I)efinit ion 3.2 and  [ga ] = I gl [a l 

for every  g E G and a E A, then  G is an  A-l-module.  The  following example  shows t h a t  this 

condition is not  satisfied b y  every  A-l-module.  

Example 3.5. Le t  G be the  la t t ice-ordered group consisting of all ordered pairs (m, n) 

of integers, with addi t ion and  lat t ice operat ions defined coordinatewise: 

(m, n) + (m', n ')  = (m + m' ,  n + n')  

(m, n) E G + if and only if m ~> 0 and n ~> 0. 

Let  A denote the ring of integers wi th  the usual order. 

Define a law of composit ion on G• into G by  sett ing (m, n)p = (0, p(m + n)). I t  is 

easily seen t ha t  this makes  G into an A-l-module.  However ,  the  condition above is not  

satisfied: [(1, - 1 ) 2 [  = I(0, 2 - 2 ) 1  = (0,0)4= (0, 4) = I(1, - 1 ) ]  [21 . 

D E F I N I T I O N  3.6. I f  G is an A-l-module,  then  H is said to  be an  A-l-submodule of 

G if: 

i) H is a n / - s u b g r o u p  of the lat t ice-ordered group G; 

if) for every  h EH and every  a6A ,  haEH. 

D E H ~ I T I O ~  3.7. An A-l-module G is said to be irreducible (and the  associated 

/ - representat ion of A is also said to be irreducible) if: 

i) the only A-l-submodules  of G are {0} and  G; 

if) there is a non-zero e lement  eEG + with eA = G. 

THEOREM 3.8. I /  an /-ring A has a/aith/ul, irreducible, l-representation, then A is a 

prime/-ring. 

Proo/. Suppose G is a faithful,  irreducible, A-l-module.  Le t  11, 12 be non-zero 1-ideals 

in A. Then, since G is faithful,  there are elements  gl, g2 E G such t h a t  gl/14= {0} and g~ 12 4= 

{0}. The /-subgroup <gl l l> = { g E ~ :  ]gl < lgla[, aeI1}  is clearly an A-l-submodule  of G. 

Since G is irreducible and gl /1  + {0}, we have  @111} = G. 

Choose b E 12 such t h a t  g2b + O. Since g2E(glI1}, there is an element  aft 11 such t h a t  

Ig2l < l a a l  �9 Then0f l :  Igubl <~ Ig~l Ibl < ]glal  Ibl < l a I  lal Ibl = l a l l a b l ;  s o 0 .  a b ~ Z l I  2. 
Thus,  A is a p r ime / - r ing .  
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COROLLARY 3.9. 1] an ]-ring A has a ]aith]ul, irreducible, 1-representation, then 

A is an ordered ring without non-zero divisors o/zero (Theorem 1.4.4). 

PROPOSITION 3.10. I] G is a ]aith]ul, irreducible, A-l-module, and eEG + satis]ies 

e A  = G, then the mapping a-->ea is a homomorphism o] the ordered additive group o] A onto 

G. The kernel o] this homomorphism, I e = { a E A :  e a = O } ,  is a maximal modular right 

l-ideal in A .  

Proo]. Note  that ,  if a E A  +, then eaEG +, since eEG+. Now, since A is to ta l ly  ordered, 

a A b = 0 implies either a = 0 or b = 0. Hence, a A b = 0 implies ea A eb = 0. Thus, since the 

mapping a-->ea is clearly a group homomorphism onto G, a-->ea is, by  Proposit ion 1.1.4, 

a homomorphism of the ordered addit ive group of A onto G. 

Then, by  Theorem 1.1.6, the kernel Ie of this homomorphism is an / - subgroup  of the 

ordered additive group of A which is clearly a right (ring) ideal of A. I t  is easily seen tha t  

the irreducibility of G forces Ie to be a maximal  r ight  1-ideal of A. 

Since e A = G, there is a u E A such t h a t  e u = e. I f  a E A then e ( a - u a  ) = e a - e u a  = 0, 

so u is a left ident i ty  modulo I~. 

COROLLARY 3.11. I] G is a ]aith/ul, irreducible, A-l-module, then G is an ordered 

group, and ]ga I = ]gl I a] /or every g e G  and every a E A .  

Proo]. G is an  ordered group, since it is a homomorphie  image of the ordered additive 

group of A. The second s ta tement  now follows. For, either I g i l a  ] = ga = ]ga] or 

Igi I a ] = - g a  = Iga l ,  since A and  G are bo th  tota l ly  ordered. 

L~MMA 3.12. I] G is a ]aith/ul, irreducible, A-l-module and i/0=4 = glEG +, then 

b ,  = { a e A  : gla = 0} = le. 

Proo]. I t  is clear tha t  Ig, is a r ight  (ring) ideal in A. Also, if a e Ig, and l b] ~<]a I, then 

0 <~ Iglb I =]gl] ]b] <~ ]glI [hi = ]gla! = 0 .  Thus Ig, is a r ight  /-ideal in A. By  Proposit ion 

3.10, Ie is a maximal  r ight  1-ideal in the ordered ring A. Hence, Ig, _~ Ie, since the r ight 

/-ideals of A form a chain. 

I f  Ig,:~ Ie, then gxI~q={0}. I t  is clear tha t  the 1-subgroup <glle> = { g E G :  ]g] ~< ]glal, 

a e l e }  is an A-l-submodule of G. Since g~I~#{0},  we have (g~I~> = G, by  irreducibility. 

Le t  u E A  + be a left ident i ty  modulo Ie (Proposition 3.10). Then u $ I e  and u >/a  for every 

h e i r ,  since A is an ordered ring. Since (glIe> = G, there is an  aEI~ such tha t  gl a >7 g l u #  O. 

Then gl (a - u)/> 0, and this means t h a t  gl (a - u) = 0, since a ~ u. Thus, a - u E Ig, ~_ Ie. 

Since a E 1~, this implies t h a t  u E I~, a contradiction. 

THEOREM 3.13. I f  an ]-ring A has a /aith/ul, irreducible, 1-representation, then A 

contains no non-zero proper right l-ideals. 
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Proo/. Let  G be a faithful, irreducible, A-l-module. Now, by  Corollary 3.9 and Proposi- 

t ion 3.10, A is an ordered ring containing the (unique) maximal  modular  r ight / - idea l  I~. 

B y  Lemma 3.12, if aEIe, then gla = 0 for every glEG+. But  then ga = 0 for every gEG. 

Since G is a faithful A-l-module, this means a = 0. Thus (0} is a maximal  r ight / - ideal  in A. 

COROLLARY 3.14. I /  an /-ring A has a/aith/ul, irreducible, l-representation, then A 

has an identity. 

Proo/. By Proposit ion 3.10 and Theorem 3.13, {0) is a maximal  modular  r ight / - ideal  

in A. Thus, there is an eEA such tha t  x - exE{O) for every x~A; tha t  is, e is a left ident i ty  

in A. By  Corollary 3.9, A contains no non-zero divisors of zero. Thus e is a left ident i ty  in 

a ring wi thout  non-zero divisors of zero, so e is, i n  fact, a two-sided ident i ty  in A. 

COROLLARY 3.15. I /  an /-ring A has a/aith/ul, irreducible, l-representation, then A is 

a J-semisimple ordered ring with identity. 

4. / -pr imit ivi ty 

We have seen (Corollary 3.15) tha t  every /-ring tha t  has a faithful, irreducible, l- 

representat ion is a J-semisimple ordered ring with identity.  I n  this section we will see, 

conversely, t ha t  these are the only J-semisimple ordered rings and tha t  they  are the 

components in a subdirect union representat ion for J-semisimple/-r ings.  

DEFINITIOSI 4.1. If  I is any  right 1-ideal in an /-ring A, then the quotient 1-ideal 

( I  : A) is the set {sEA:  AaG I}. 

LEMMA 4.2. Let A be an/-ring, I a right l-ideal in A. Then: 

i) (I : A) is an 1-ideal in A. 

ii) I / I  is modular, then (I : A) is the largest 1-ideal o] A contained in I. 

Proo/. I t  is well known ([13], p. 7), and also easily seen, t ha t  ( I  : A) is a (ring) ideal in 

A and tha t  if I is modular,  then ( I  : A) is the largest (ring) ideal of A contained in I .  More- 

over, ( I :  A) is an /-ideal. For, if aE( I :  A), [b] < [a[,  and xEA, then  [xb[ = Ix[ [b] < 

ix[ laI = Ixa] ,  whence xbEI,  since xaEI .  Thus, b e ( I :  A). 

D E F I N I T I O N  4.3. An /-ring A is said to be l-primitive in case there is a maximal  

modular  right 1-ideal M of A with (M : A) ={0}.  An l-ideal P of A is an l-primitive 1-ideal 

in case A / P  is an / -p r imi t ive / - r ing .  

I t  is clear t ha t  an/ - ideal  P of A is /-primit ive if and only if there is a maximal  modular  

r ight 1-ideal M of A with P = (M : A). 
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Definit ion 4.3 is the exact  analogue of the definition of pr imit ive  ring and pr imi t ive  

ideal in the  Jacobson  theory.  Now, every  pr imit ive  commuta t ive  (abstract)  ring is a field 

([13], p. 7, Theorem 1), so every  l-ideal in a commuta t ive  ]-ring t h a t  is also a pr imi t ive  

(ring) ideal is /-primitive. However ,  the  following examples  show that ,  in general, the  

notions of p r imi t iv i ty  and l -pr imit ivi ty  do not  coincide. 

Example 4.4. Let  A denote the  ring of integers with the usual  order. Then  A is a 

commuta t ive , / - s imple ,  ordered ring with ident i ty ,  whence it  is easily seen to  be / -p r imi t ive .  

However ,  A is not  a pr imit ive  ring, since it is not  a field. 

Example 4.5. Le t  F be an  ordered field, a an (order-preserving) au tomorph i sm of 

F such t ha t  no power  of a is the  ident i ty  au tomorphism.  (For an  example  of such F,  o, 

cf. [1], p. 46.) I f  aEF, then  we will denote  the image of a under  ~ b y  a ~. Let  F[2,  a / d e n o t e  

the set of polynomials  in one indeterminate  2 over  F.  Addit ion in F[~,  a/ is defined as 

usual; the produc t  of two elements  in F[2,  a / i s  obta ined b y  first mult iplying,  formally ,  

termwise 
(~  a, ~i) (~  br 2 ~) = ~ a, 2 ~ bj 2 ~, 

i j z,j 

and then  simplifying by  means  of the rule 2a  = a~2, aE F.  

Then (cf. [13], p. 22, E x a m p l e  3), F[2,  a/ is a pr imit ive  ring in which the only (two- 

sided) ideals are the  principal  ideals (~n). Now, F[~,  a / c a n  be made  into an ordered ring b y  

ordering lexicographically: a 0 § al~ 4 "  �9 �9 § an2 n >~ 0 if and only if a o > 0, or a o = 0 and  

a 1 > 0, or ... ,  or a o = a 1 . . . . .  an-1 = 0 and  an ~> O. The unique max ima l  m o d u l a r / - M e a l  

of F[2,  a / i s  (2>. Hence  {0} is an / - idea l  of F[2,  a / t h a t  is a pr imit ive  (ring) ideal, bu t  is not  

/-primitive.  

T H ~ O R E ~  4.6. An ]-ring A is 1-primitive i /and only i / A  has a/aith/ul, irreducible, 

l-representation. 

Proo]. I f  A has a faithful,  irreducible, / -representation,  then  we have  a l ready seen 

(Theorem 3.13 and Corollary 3.14) t ha t  {0) is the  (unique) max ima l  modula r  r igh t / - idea l  

in A. Thus A is clearly a n / - p r i m i t i v e  ]-ring. 

Conversely, suppose A is a n / - p r i m i t i v e  ]-ring. Then A contains a max ima l  modu la r  

r igh t / - idea l  M with  (M : A) = {0). Le t  G denote the addi t ive abel ian lat t ice-ordered group 

A - M .  Define a law of composit ion on G• into G b y  ( x + M ) a = x a + M  for each 

x § M E G and each a E A. 

Note  t h a t  the law of composi t ion t h a t  we have  defined satisfies Ix + M I l al  = 

(]x[ + M ) l a  [ = Ixa] + M  = I(x +M)a I for every  x + M e G  and every  aeA.  Since condi- 

t ions i)-iii) of Definit ion 3.2 are obviously satisfied, G is an A-l-module  by  t h e  r emark  
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following Lemma 3.4. Moreover, G is a faithful A-l-module. For,  if (x + M)a  = 0 for every 

x + MEG, then x a E M  for every xEA,  whence aE(M : A) ={0}.  

I t  remains to show tha t  G is an irreducible A-l-module (Definition 3.7). I f  eEA + is a 

left ident i ty  modulo M, then e + M is a non-zero positive element of G such that ,  if xEA,  

then (e § M) x  = ex + M = x § M. Thus,  (e + M ) A  = G. If  H is any  l-subgroup of G, then  

H is of the form M '  - M, where M '  is an / - subgroup  of the latt ice-ordered addit ive group 

of A tha t  contains M (Theorem 1.1.7). I f ,  moreover,  H is an A-l-submodule of G, then 

M '  is clearly a right l-ideal of A, whence M '  = M or M '  = A, since M is a maximal  r ight  

1-ideal. But  this means tha t  H ={0}  or H = G, so G contains no non-zero proper A-l-sub- 

modules. Thus,  G is a faithful, irreducible, A-l-module. 

COROLLARY 4.7 In  an /-ring _4, every maximal modular right l-ideal is a two-sided 

l-ideal. Hence, J (A) is a two-sided 1-ideal o / A .  

Pro@ Let  M be a maximal  modular  r ight 1-ideal in A. Then (M : A) = P is the largest 

1-ideal of -4 contained in M, and A / P  is /-primitive. But  A / P  has a faithful, irreducible, 

1-representation, so A l P  contains no non-zero proper r ight  1-ideals by  Theorem 3.13. 

Since M / P  is a proper r ight  l-ideal in A l P ,  we have M / P  ={0};  tha t  is, M ~ P .  

COROLLARY 4.8. An/-r ing  A is 1-primitive i /and  only i / i t  is an 1-simple ordered ring 

with identity (Corollary 3.14). 

Thus, every / -pr imi t ive  l-ideal is maximal.  I t  is not  t rue tha t  every maximal  1-ideal is 

/-primitive (for example, the l-ideM {0 } in the ring of even integers). However,  if A has an 

identity, then every maximal / - idea l  is modular,  and we have: 

COROLLARY 4.9 I /  A is an /-ring with identity, then an 1-ideal o / A  is l-primitive if 

and only i / i t  is maximal. 

COROLLARY 4.10. An  Archimedean /-ring is 1-primitive i /and  only i / i t  is isomorphic 

to a subring of the ordered field o/real numbers that contains the identity (Theorem 1.4.2). 

COROLLARY 4.11. An  ordered ring is J-semisimple if and only if it is 1-primitive. 

Proof. I f  A is an ordered ring, then there is at  most  one maximal  modular  r ight l-ideal 

M in A, since the r ight / - ideals  of A form a chain (Proposition 1.2.9). I f  M exists, then it 

mus t  coincide with J(A) ,  so J ( A ) =  {0} if and only if {0} is a maximal  modular  r igh t  

/-ideal in A, hence if and only if A is/-primit ive.  

Since, by  Corollary 4.7, every maximal  modular  r ight 1-ideal is a two-sided /-ideal 

(hence an / -pr imi t ive  1-ideal), J (A )  is the intersection of / -pr imi t ive / - ideAs.  This leads to 

the main  structure theorem for J-semisimple/- r ings:  



188 D.G. JOHNSON 

THEOREM 4.12. An/-ring A is J-semisimple i /and only i / A  is isomorphic to a sub- 

direct union o/l-simple ordered rings with identity. 

Proo/. A is J-semisimple if and only if the family (P~: ~EF} of/-primitive/-ideals of 

A satisfies N(P~: ~EF} =(0},  hence if and only if A is isomorphic to a subdirect union 

of the 1-primitive /-rings A/P~, by Theorem 1.3.7. By Corollary 4.8, each of the A/P~ 

has the desired form. 

We now know (Corollary 4.7) that  the J-radical of an/- r ing is a two-sided/-ideal. 

With this, we can now complete the description of J(A)  that  was begun in Section 2. 

We may define the concepts "left J-radical", "left l-primitivity", and "left /-quasi-  

regular" in a manner similar to that  above. Corollary 4.7 and its analogue in this "left 

theory" then show that  the J-radical and the left J-radical coincide. These facts are sum- 

marized in the following: 

THEOREM 4.13. Let A be an/-ring. The J-radical J (A)  is an l-QR l-ideal, and 

i) J (A) is the intersection o/all maximal modular left 1-ideals o / A  (and each o/these is 

actually a two-sided 1-ideal); 

ii) J (A) is the join o/ the 1-QR left l-ideals o/ A. 

I t  is interesting to note that  the analogue of another of the open questions in the 

Jacobson theory is readily solved here: l-primitivity and left l-primitivity do coincide for 

/-rings. 

COROLLARY 4.14. Every I-QR right l-ideal in an/-ring A consists entirely o/left 1-QR 

elements o /A .  

Theorem 4.12 provides a description of J-semisimple /-rings. For /-rings that  are 

not J-semisimple, we have: 

THEOREM 4.15. I / A  is an/-ring that is not a J-radical ring, then A / J ( A )  is J-semi- 

simple. 

Proo/. Let 0 denote the c611ection of maximal modular right/-ideals of A. If PE ~,  

then P ~ J ( A ) ,  so P / J ( A )  is clearly a maximal modular right /-ideal of A/J(A) .  Since 

N (P: PE O} = J(A),  we have J(A/J(A))~_ f ' l (P/g(A): PE ~)~ =(0}. Thus, if J(A)  4 A, 

then A / J  (A) is J-semisimple. 

The following theorem is an analogue of a result in the Jacobson theory ([13], p. 10, 

Theorem 1). However, it occurs here in much stronger form: the analogous result for ab- 

stract rings is true only for two-sided ideals. 

THEOREM 4.16. I /  I is any right l-ideal in an/-ring A, then J ( I )  = J(A)  N I. 
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Proo/. Let B denote the r ight / - ideal  of I generated by  J ( I ) .  I .  Clearly, B is a right 

1-ideal in A. Moreover, B ~ J ( I ) ,  so each of its elements is right 1-QR. Hence, B~_J(A) ,  

so a e J (I) implies a~E J (A). But  A / J  (A) is {0 } or J-semisimple, hence it contains no non- 

zero nilpotent elements (Corollary 2.7), so a E J (I) implies a E J (A). 

Conversely, J (A)  N I is an I-QR right l-ideal in A, so it is an 1-QR r ight/- ideal  in I by 

Proposition 2.4. Hence, J (A) N I ~ J (I). 

5. f-rings with descending chain condition for /-ideals 

In  this section, we will be concerned primarily with/-r ings tha t  satisfy the descending 

chain condition for/-ideals (Definition 1.3.20). As in the structure theory for abstract  rings, 

these/-r ings exhibit several special properties. 

I f  A is an ordered ring that  satisfies the descending chain condition for l-ideals, then 

A must  contain a smallest non-zero/-ideal, since the 1-ideals of A form a chain. Hence, by 

Corollary 1.3.10, A is subdirectly irreducible. Thus, we are led first to consider subdirectly 

irreducible/-rings. 

LEM~A 5.1. I / A  is a subdirectly irreducible/-ring with zero l-radical, then A is 1.simple. 

Proo/. By definition, A ~ {0}. Now, A is an ordered ring (Corollary 1.3.12), and A 

contains no non-zero nilpotent elements, so A contains no non-zero divisors of zero, by  

Theorem 1.4.1. Thus, A 2 4  {0}. 

Suppose A is not/-simple.  Then, since A is subdireet]y irreducible, A contains a smal- 

lest non-zero/-ideal I .  We show first that ,  if b, c are any two non-zero positive elements of 

I ,  then bc < b fl c. For suppose that  bc>~ b. Then, if x is any positive element of A not in 

I ,  we have bcx>~ bx, whence b(cx - x) >~ O. Since b > 0 and A contains no non-zero divisors 

of zero, cx>~ x, whence x E I .  This contradiction shows tha t  bc < b. Similarly, bc < c, so 

b c < b A c .  

Now let a > 0 be a fixed element in I ,  and set J = {d E A: I dl < bae for some b, c e I} .  

Then J is an / - idea l  in A: if d, d ' e J ,  then there are elements b, b', c c ' e I  with ]d I < bac 

and I d'] ~ b' a c'. Since A is ordered, we may  assume tha t  b a c/> b ' a  c'. Then, ] d - d' I ~< 

I d ] + I d ' [  ~<(2b)ac, and [dx I = [ d [ I x [  <~ba(c[x[) for a l l x E A ,  whence ( d - d ' ) , d x ,  and 

(similarly) xd  are in J .  Since a #  0 and N ( A )  ={0}, J is a non-zero/-ideal of A, so J ~  I ,  

since I is the smallest non-zero/-ideal of A. Then aEJ ,  so there are positive elements b, 

c E I  with a ~ bac. But, by  the above, bac < ba A c < b h a A c ~ a. This contradiction yields 

the lemma. 

The following theorem characterizes those /-rings that  are subdirectly irreducible. 

This is another instance in which the structure theory for / - r ings  differs markedly from 
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tha t  for abstract  rings. The analogous problem is much more difficult for commutat ive 

abstract  rings (cf. [8] and [17]), and very little has been done in the non-commutat ive case. 

TH~OR]~M 5.2. A n  ]-ring A is subdirectly irreducible i / a n d  only i/ either 

i) A is l-simple; or 

ii) A i8 an ordered ring, and there is a non-zero element a in A + such that a 2 = 0 and, 

/or any non-zero element b in A such that b e = 0, we have (b} ~_ (a}.  I n  this case, I = (a )  is 

the smallest non-zero l-ideal in A.  

Proo/. Suppose first tha t  A is a subdireetly irreducible /-ring. Then, by  Corollary 

1.3.12, A is an ordered ring. If  A is not /-simple, then N ( A ) 4 { 0 } ,  by Lemma 5.1. In  

particular, Z2(A ) = { a e A : a  2 = 0} :~ {0}. Now, A may  fail to be/-s imple  in either of two 

ways. In  the first case, A =Z~(A) ,  and A contains no non-zero proper/-ideals.  I t  is clear 

that ,  in this case, condition ii) is satisfied, with I = ( a )  = A for any non-zero element a 

of A. In  the second case, A contains proper non-zero/-ideals, so it contains a smallest such 

1-ideal I (Corollary 1.3.10). Since I is contained in every non-zero/-ideal of A, it is contained 

in Z~ (A), and if a is any non-zero element in I ,  then I = (a) .  Hence, condition ii) holds in 

this case. 

Conversely, every/-simple l-ring is trivially subdirectly irreducible. Suppose A satisfies 

condition ii), and let B be any non-zero /-ideal in A. I f  b is any  non-zero element in B,  

then either [b I > a  or a~>lb[.  If  a> / !b ] ,  then b e = l b ]  2 ~ < l a ] ~ = 0 , s o  B ~ ( b } ~ ( a ) = I ,  

by  condition ii). I f  I b I > a, then, clearly, B ~_ I .  Thus, I is contained in every non-zero 

/-ideal in A, so A is subdirectly irreducible. 

For the remainder of this section, we will be concerned only wi th/ - r ings  tha t  satisfy 

the descending chain condition for/-ideals.  As remarked earlier, every ordered ring with 

descending chain condition is subdirectly irreducible. Hence, by  Lemma 5.1, we obtain: 

COROLLARY 5.3 (Birkhoff-Pierce). A n  ordered ring A ~= {0}, with zero 1-radical, that 

satisfies the descending chain condition/or 1-ideals is l-simple. 

The proof of this result given by  Birkhoff and Pierce actually proves the stronger 

statement in Lemma 5.1. I t  is their proof that  we have used above. 

I f  A is an / - r ing  that  satisfies the descending chain condition for/-ideals, and if P is a 

prime/-ideal  in A, then, by  Theorem 1.4.4, A l P  is an ordered ring without non-zero divisors 

of zero tha t  clearly satisfies the descending chain condition for /-ideals. By Corollary 5.3, 

A l P  is an 1-simple/-ring, so we have: 

COROLLARY 5.4. I n  an /-ring satis/ying the descending chain condition /or 1-ideals, 

every prime l-ideal is a maximal l-ideal. 
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In  the Jacobson theory for abstract  rings, the radical of any ring which satisfies the 

descending chain condition for right ideals is a nilpotent ideal. The analogue of this result 

does not hold for the J-radical, for we have seen, in Example 1.6, a commutative J-radical 

ring tha t  is/-simple (and hence contains no non-zero nilpotents). However, we do have the 

result in question for/-r ings with identity. 

THE O R EM 5.5. I /  A is an/-ring with identity that satis/ies the descending chain condi- 

tion/or 1-ideals, then J (A) is nilpotent (hence J (A) = N (A)). 

Proo/. We show tha t  J(A)  = N(A); the theorem then follows by  Theorem 1.3.21. By 

Corollary 5.4, every prime/- ideal  of A is a maximal l-ideal. Since A has an identity, every 

maximal / - ideal  is / -primit ive by Corollary 4.9. Hence N(A),  the intersection of the prime 

/-ideals of A (Theorem 1.4.8), is the intersection of the /-primitive /-ideals of A; that  is, 

N(A)  = J ( A ) .  

COROLLARY 5.6. Let A be an ordered ring that satis/ies the descending chain condition 

/or 1-ideals. 

i) Every proper l-ideal in A is nilpotent. 

if) I / A  has an identity, then every proper one-sided 1-ideal in A is nilpotent. 

Proo/. By Theorem 1.3.21, N(A) is nilpotent. Thus, if •(A) = A, then A is nilpotent. 

I f  N(A)~:  A, then N(A) is a prime/- ideal  of A, by Corollary 1.4.5. So N(A)  is the unique 

maximal 1-ideal in the ordered ring A, by Corollary 5.4. Thus, i) follows in either case. 

I f  A has an identity, then J (A)  is the unique maximal right (left)/-ideal of A. Hence, 

if) follows from Theorem 5.5. 

We close this section with a decomposition theorem for J-semisimp]e f-rings satisfying 

the descending chain condition for /-ideals, the analogue of the classical Wedderburn-  

Artin theorem. The proof given here is a simplification of the proof in [3]. 

LEMMA 5.7 (Bi rkhof f -P ie rce) . / /A ~ (0} is an/-ring that satis/ies the descending chain 

condition /or 1-ideals, then A has zero 1-radical i/ and only i/ A is isomorphic to a (/inite) 

direct union o/1-simple ordered rings. 

Proo/. I f  A has zero/-radical,  then it contains a collection {P~} of prime/-ideals with 

A P~ = {0 }. Since A satisfies the descending chain condition for l-idea/s, we may  choose a 
n 

finite number of these, say P1, ..., P~, with [')P~ = {0}. We may  also assume tha t  this finite 
i = l  

collection is minimal, in the sense tha t  no proper sub-collection has intersection {0}. By 

Corollary 5.4, each P~ is a maximal /-ideal, hence 

(P1N . . . N P j _ I ) + P s = A  for j = 2 , 3  . . . . .  n. 



192 D.G.  JOHNSON 

Thus, by [2] (p. 87, Theorem 4), A is isomorphic to the direct union of the/-simple ordered 

rings A/Pi ,  i = 1, 2 . . . . .  n. 

The converse is obvious. 

If, in the proof above, we replace the word "pr ime"  by the word "/-primitive" each 

time it occurs, we obtain a proof of the following theorem, where this t ime the converse is 

immediate by Theorem 4.12. 

THE OREM 5.8. I / A  is an/-ring that satis/ies the descending chain condition/or l-ideals, 

then A is J-semisimple i / and  only i/ A is isomorphic to a (/inite) direct union o/ l-simple 

ordered rings with identity. 

COROLLARY 5.9. I / A  is a J-semisimple /-ring that satis/ies the descending chain condi- 

tion/or 1-ideals, then A has an identity. 

COROLLARr 5.10. I /  A is an Archimedean /-ring that satis/ies the descending chain 

condition/or l-ideals, then the/ollowing statements are equivalent. 

i) A is J-semisimple. 

ii) A contains an identity. 

iii) A is isomorphic to a (/inite) direct union o/ subrings o/ the ordered/ield o/real numbers, 

each o/ which contains the identity. 

Proo/. Now, i) and ii) are equivalent by  Corollary 5.9 and Theorem 2.11; and iii) 

implies ii) trivially. By Theorem 5.8, if A is J-semisimple, then A is isomorphic to a finite 

direct union of/-simple ordered rings A1, ..., An, each of which contains an identity. Thus, 

A contains an isomorphic copy of each At, and, since A is Archimedean, each A~ must  be 

Archimedean also. By Theorem 1.4.2, the A~ have the required form. 

I t  can be seen very easily tha t  the decomposition given by Theorem 5.8 for a J-semi- 

s imple/-r ing A tha t  satisfies the descending chain condition for /- ideals  is unique in the 
m 

following sense: if A = A i and A = ~ B~ are two such decompositions, then m = n and, 
i = l  i = l  

for some arrangement of B 1 . . . . .  Bin, Ai and B~ are isomorphic, for i = 1 . . . . .  n. The ana- 

logous s tatement  for abstract  rings ([13], p. 42, Theorem 1) depends only upon the fact 

tha t  A S = A (Corollary 5.9) and upon the notion of indecomposabflity, which has the same 

meaning in/-rings,  so the argument need not be repeated here. 

6. R e m a r k s  

In  this section, several asides to the main stream of this chapter are considered. They 

consist mostly of questions tha t  arose naturally during the course of this study. 
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1. I t  was r e m a r k e d  in Section 3 t h a t  a n / - p r i m i t i v e / - r i n g  is, in a cer ta in  sense, the  

/ -r ing analogue of a divis ion ring: the  / -pr imi t ive  /-r ings are  precisely  those  /-r ings wi th  

i d e n t i t y  t h a t  conta in  no non-zero p roper  r ight  (left) /-ideals. Since a n / - p r i m i t i v e / - r i n g  is 

an  ordered  r ing wi thou t  non-zero divisors  of zero, i t  never theless  seems n a t u r a l  to  ask  

whe ther  an  / -pr imi t ive  / - r ing can a lways  be imbedded  in an  (ordered) divis ion ring. The  

following example  gives a negat ive  answer to  th is  quest ion.  

E x a m p l e  6.1. Chehata  ([7]) and  Vinogradov  ([22]) have  i ndependen t ly  given the  

same example  of an  ordered  cancel la t ive semigroup S wi th  leas t  e lement  which cannot  be 

imbedded  in a group. The semigroup S is the  famous  example  of Malcev ([16]): i t  consists 

o[ a countable  number  of e lements  which are  d iscre te ly  ordered;  thus  we m a y  denote  the  

e lements  of A b y  x l ,  x 2 . . . . .  where i < j implies  x~ < xj. We  m a y  ad jo in  an  i d e n t i t y  e lement  

to  S as follows: let  S '  = S[.J {x0}, where, for i - 1, 2 . . . . .  x~xo =XoX~ = x i  and  x 0 < x~, and  

X 2 ~ X0. 

Now let  A denote  the  semigroup r ing of S '  over  the  (ordered) field of r a t iona l  numbers :  

A consists of al l  f ini te sums ~ a~x~, where each a~ is a r a t iona l  number .  Add i t i on  in A is 
5=0 

defined coordinatewise;  the  rule for mul t ip l i ca t ion  is given b y  

) a~x~ bjxj = ( ~ a~bj) x~. 
i j x~xj = Xk 

n 
Order  A lexicographical ly :  ~ a~x~ > 0, where a~ ~ 0, if and  only  if a~ > 0. Clearly, th is  

i 0 

makes  A into an ordered  r ing wi th  i den t i t y  x 0. E v e r y  posi t ive  e lement  of A t h a t  is less t h a n  

x 0 in  this  order  is of the  form axo ,  0 ~ a < 1, so A is /-simple. Hence,  A is a n / - p r i m i t i v e  

/-ring. A cannot  be imbedded  in a division ring. For ,  if i t  were, then  the  semigroup S, a 

sub-scmigroup of the  mul t ip l i ca t ive  semigroup of A,  would be imbedded  in a group,  con- 

t r a r y  to  the  resul t  s t a t ed  above.  

2. B y  Corol lary 4.7, every  m a x i m a l  modu la r  r ight  1-ideal in a n y / - r i n g  is a two-s ided 

ideal.  I t  seems na tu r a l  to  ask if there  e x i s t / - r i n g s  t h a t  conta in  r ight  1-ideals t h a t  are no t  

two-sided.  The following example  answers this  quest ion af f i rmat ive ly .  

E x a m p l e  6.2. Le t  A be the  a lgebra  over  an  ordered  field F genera ted  b y  two ele- 

ments  e, z, where e 2 = e, e z  = z, and  z e  = z 2 = 0. The e lements  of A are of the  form a e  + b z ,  

where a, b E F .  Order  A lex icographica l ly  wi th  e domina t ing  z: a e  + b z  >~ 0 i f  and  only  if 

a > 0 or a = 0 and  b >/0. I t  is easi ly  seen tha t ,  under  this  order,  A is an  ordered  ring. 

Now let  F be a non -Arch imedean  field, r a non-zero p r o p e r / - s u b g r o u p  of the  ordered  
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additive group of F. Then (Pz ={bz: bE(I)} is a right l-ideal in A, since dPz .A  =(0}. But 

(Pz is not two-sided: A . @ z  = Fz~=(I)z. 

In this example, the existence of a right /-ideal that  is not two-sided is intimately 

connected with the presence of a left annihilator of the ring. This leads us to ask if there 

exist ordered rings without non-zero divisors of zero which contain one-sided t-ideals that  

are not two-sided. The affirmative answer to this question will be presented in Chapter IV. 

3. In  the Jacobson theory for abstract rings, the analogue of our definition of right 

/-quasi-regularity (Definition 2.1) has an equivalent formulation in terms of the circle 

operation ([13], p. 7). This use of the circle operation yields a more conveniently applied 

condition on the elements of the radical: the existence of a right quasi-inverse. The question 

considered here is the following: does there exist an / - r ing  analogue of the existence of a 

right quasi-inverse that  is equivalent to right 1-quasi-regularity? 

If  A is an /-ring with identity, and if a E A  is right 1-QR, then 1 E ( ( 1 - a ) A ) r  = A .  
n 

Hence, thereareelomentsxl . . . . .  xninAsuchthatl < Ix,-ax l:ll-al, llx l. Then 
i = 1  = 

1 = 12 ~< [(1 - a )  ~ Ix, i/~ = (1 - a ) y ,  where y = ~ Ix, i(1 - a )  ~ ]x~]. If we write y = 1 - x, 
i=1 i=l i = l  

then 1 ~< (1 - a) (1 - x), so a + x - a x  < O. Conversely, i f  a + x - a x  <~ 0, then, with y = 1 - x ,  

it is easily seen that 1 <~ y - ay ,  whence ((1 - a ) A ) r  = A .  

Thus, the proper/-ring analogue of the existence of a right quasi-inverse of an element 

a seems to be the existence of an element x such that  a o x  = a + x - a x  <~ O. We have thus 

proved the following result: 

PROPOSITION 6.3. I / A  is a n / - r i n g  wi th  identity, then a E A  is right I -QR i[ and only 

i / t he re  exists an  x E A such that a o x <~ O. 

We also have the following result, the proof of which is omitted: 

PROPOSITION 6.4. I / A  is an ordered ring, then a E A  is right 1-QR i /  and only i / there  

is an x E A such that a o x <~ O. 

I t  is clear that  we may, by applying Proposition 6.4 in each coordinate, extend this 

result to every complete direct union and every discrete direct union of ordered rings 

(Definitions 1.3.5 and 1.3.8). However, the status of this question for arbitrary subdirect 

unions of ordered rings is not known. 

C H A P T E R  I I I .  I M B E D D I N G  A N  f-RING I N  A N  f - R I N G  W I T H  I D E N T I T Y  

The problem that  gives rise to this chapter is the following: given an/-r ing A without 

identity, is it possible to imbed A as a sub-/-ring of an / - r ing  A* with identity? That is, 

we hope to find an/-r ing A* with identity and an isomorphism of A into A*. 
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I t  is more  na tu r a l  to  ask  if a g i v e n / - r i n g  A can be imbedded  as a r i g h t / : i d e a l  of an 

/ -r ing A* wi th  iden t i ty .  I t  will be seen t h a t  bo th  quest ions have,  in general ,  a nega t ive  

answer.  Hence,  the  centra l  p rob lem of the  chap te r  becomes the  charac te r iza t ion  of those 

/-r ings t h a t  can be imbedded  as r ight  /-ideals (respectively,  sub-/-rings) of /-r ings wi th  

ident i ty .  

l .  Preliminary concepts 

I n  this  section, we present  the  no t a t i on  and  t e rmino logy  t h a t  is to be used th roughou t  

th is  chapter .  The resul ts  s t a t ed  in th is  sect ion are  due to  Brown and  McCoy ([6]) and  are 

va l id  for a r b i t r a r y  rings. I n  this section only, the terms ring, homomorphism, ideal, imbedding, 

etc. will have their usual (ring theoretic) meaning. 

Le t  A be any  ring. If a f ixed e lement  a EA satisfies ab = ba = nb for some f ixed integer  

n and  al l  b E A,  then  a is said to  be an  n-/ier of A,  and  n is said to  have an n-/ier a in A.  

Note  t h a t  the  zero of A is a lways  a 0-tier of A,  and  t h a t  there  is a 1-tier e of A if and  only  

if e is the  iden t i t y  e lement  in A.  

The set K of al l  integers n which have  n-t iers in A is an  ideal  in the  r ing of integers.  

The ideal  K is called the  modal ideal of A; i ts  non-negat ive  genera to r /c  is called the  mode 

of A.  

I t  is well  known t h a t  every  r ing can be imbedded  as an  ideal  in a r ing wi th  iden t i ty .  

The usual  construct ion,  which was a p p a r e n t l y  first  publ i shed  b y  Dorroh  ([9]), follows. 

Throughout  this  chapter ,  for a n y  ring A,  we will le t  A '  denote  the  r ing of ordered  

pairs  (n, a), n an integer  and  a E A,  where 

(n, a) = (m, b) if a n d  only if n = m and  a = b, 

(n, a) § (m, b) = (n §  a § b), 

(n, a) (m, b) = ( n m ,  m a  + nb § ab). 

Then  A '  is a r ing wi th  i den t i t y  in which A = {(0, a ) : a E A  } is an  ideal  i somorphic  wi th  A.  

W h e n  no confusion will  result ,  we will  suppose the  ident i f ica t ion  a o  (0, a) has  been made,  

so t h a t  A is considered as an  ideal  in A' .  

I f  a is an  n-t ier  of A,  for n ~= 0, t hen  the  set  @ (n, a) of al l  in tegra l  mul t ip les  of (n, - a) E A '  

is a two-s ided  ideal  in A ' .  Denote  the  r ing A'/@(n, a) b y  A (n ,  a), and  le t  (m, b)--->(m, b) 

denote  the  na tu r a l  homomorph i sm of A '  onto  A (n, a). Then the  correspondence b-+ (0, b) 

f rom A onto the  ideal  of A (n, a) consist ing of al l  e lements  of the  form i0, b) is an  iso- 

morphism.  

1 3 - 6 0 1 7 3 0 3 3 .  Acta mathematica. 104. I m p r i m ~  le 20 d~cembre 1960 
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As usual, if no confusion will result, we will assume tha t  the identification b ~ ( 0 ,  b) 

has been made, so tha t  A is considered as an ideal in A (n, a). 

Let  ~ denote the collection of rings consisting of A '  and all A (n, a), for 0 :~ n E K and 

a an n-tier of A. Eve ry  member  of ~ is a ring with ident i ty  tha t  contains A. A central result  

in [6] is the "completeness" of this set of extensions of A in the sense of the following: 

T ] ~ o ~ ] ~ M  1.1 (Brown-McCoy).  I /  B is any ring with identity that contains A ,  then 

there is a subring B 1 o/ B that contains A and a ring S E ~ such that B 1 is isomorphic with S 

under an isomorphism that leaves A elementwise /ixed. 

The main results of this chapter  are, in a certain sense, the analogues of this result 

(Theorems 2.5 and 4.4, Corollary 2.6). 

2. The strong order 

I n  this section, we will consider the special form tha t  the results s tated in Section 1 take 

for /-rings. Throughout  the rest of this chapter, we will let A denote an /-ring wi thout  

identity,  k the mode of A, and x a k-tier of A. If  k ~  0, then x is unique: 

L E M ~ A  2.1. I / A  is an / - r ing  with mode k > O, and i /  x is a k-/ier o/ A ,  then: 

i) x >~ O; 

ii) A contains no non-zero annihilator on either side; 

iii) I / a  is an n-/ier o / A ,  then a = tx,  where t = nile. 

The simple proof of this lemma is omitted. For  a n y / - r i n g  A, we will let A 1 denote the 

ring A ' / o  (/c, x), where, for ]c =V 0, x is the (unique) k-tier of A, and x = 0 if k - 0. (Hence, 

A 1 is isomorphic to A '  if k = 0.) 

We will see tha t  the ring extension A1 of A can always be part ial ly ordered by  a partial  

ordering tha t  extends the order on A and makes A1 into a part ial ly ordered ring. To 

define this partial  order on A1, we first consider the subset P (A') of the ring extension A '  

defined by: (n, a ) C P ( A ' )  if and only if either 

i) n = 0  and a E A  +, or 

ii) n=~ 0 and nd  + d a E A  +, n d §  + for all dEA +. Since, in A' ,  (n,a)(O, d ) =  

(0, n d  + ad) and (0, d) (n, a) = (0, nd  + da), condition ii) merely states tha t  (n, a) (0, d) E 

P ( A ' )  and (0, d)(n, a ) E P ( A ' )  for all (0, d)EP(A ' ) .  The following example shows tha t  the 

conditions "nd  § d a E A  + for all d E A + "  and " n d  + a d E A +  for all dEA+"  are independent.  

Example  2.2 (cf. Example  II.6.2). Let  A be the  algebra over the ordered field Q 

of rat ional  numbers  generated by  two elements e, z, where e 2 = e, z 2 = ze = 0, and ez = z. 

Order A lexicographically with e dominating: ae + bz >~ 0 if and only if a > 0 or a = 0 and 
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b >~ 0. I n  A ' ,  consider the  e lement  (1, - e - z). F o r  a n y  e lement  ae + bzEA +, 1. (ae + bz) + 

( - e - z ) ( a e + b z ) = a e + b z - ( a e + b z ) = O E A  +. t towever ,  eEA +, and  l e + e ( - e - z ) =  

- z ~ A + .  

W e  will show t h a t  P(A')  has the  following proper t ies :  I) ( 0 , 0 ) E P ( A ' ) ,  I I )  

P(A ' )  N ( - P ( A ' ) )  =Q(lc, x), I I I )  P(A')  + P(A')~_P(A') ,  IV) P(A') .P(A' )~_P(A') .  Then,  

b y  I I )  and  I I I ) ,  (n, a)EP(A') if and  only  if (n, a) § x)C_P(A'). Hence,  the  subset  

A~ of A l i n  the  following theorem is well-defined.  

THEOREM 2.3. Let A be any/-ring, and A 1 as above. The subset A~ o/ A 1 defined b y  

(n, a)EA~ if and  only  if (n, a)EP(A') 

is the set o/ positive elements/or a partial ordering o / A  1 that extends the order o/ A and under 

which A 1 is a partially ordered ring. 

Proo/. B y  Propos i t ion  1.2.2 and  the  r emarks  made  above,  i t  is sufficient to  p rove  

proper t ies  I ) - I V )  s t a t ed  above.  P r o p e r t y  I) c lear ly  holds.  

I I )  Suppose (n ,a )EP(A ' )N( - -P(A ' ) ) .  I f  n=O, t hen  a E A + N ( - - A + ) ,  so a = 0 ,  

whence (n, a) = (0, 0) E o (/c, x). I f  n ~ 0, then  i t  can easi ly be shown t h a t  - a is an n-t ier  

of A,  so n = tk  and  - a = tx for some integer  t, b y  L e m m a  2.1, iii). Tha t  is, (n, a) = t(k, - x) 

c ~o (It, x). 

Conversely,  if ( n , a ) - t ( k ,  - x )  C~(/c,x), then  n d + a d - t k d - t x d = O = n d + d a  

EA + N ( - A  +) for every  dEA+, so (n, a)EP(A') N ( - P ( A ' ) ) .  

I I I )  Suppose (n, a), (m, b)EP(A'). F o r  eve ry  dEA +, nd +ad, nd +da, md +bd, 

m d +  db are posi t ive  e lements  of A,  so (n + m)d + (a + b)d - ( n d  + ad) + (md + bd) EA+ 

and,  s imilarly,  (n + m)d + d(a + b) EA +. Thus ,  if n + m~:  0, i t  is clear t h a t  (n, a) + (m, b) 

EP(A ' ) .  I f  n + m = 0, t hen  there  are two cases: 

i) n = m = 0. Then  a, b E A +, so a + b E A+, whence (n, a) + (m, b) = (0, a + b )EP  (A') .  

ii) n = - m +  0. Suppose n > 0. Now, since ( - n ,  b)EP(A'), we note  t h a t  bEA +, since 

- n b - + b b - = - n b - - b  .2EA+ implies  t h a t  b - = 0 .  Also, if 0=#=dEA +, then  - n d +  

bdEA +, so bd~= O. As no ted  above,  (n + m)d + d(a + b) = d(a + b) eA+ for every  dEA +. 

Hence,  in par t icu la r ,  b(a + b)EA+, so [b(a + b)]-  = b(a + b)- = 0. Thus, (a + b)-  = 0, so 

we have  (n, a) + (m, b) = (0, a + b) EP(A ' ) .  

IV) Suppose (n, a), (m, b)EP(A'). W e  wish to  show t h a t  (n, a)(m, b) = (nm, nb + 

ma + ab)EP (A'). There are th ree  cases: 

i) n = m  = 0 .  I n  this  case, a, bEA+,  so abEA +, whence (n, a)(m,  b) = (0, ab)EP(A'). 

ii) n ~- O, m = 0 or n = O, m :~ O. W e  suppose n 4 O, m = O; the  o ther  case is s imilar .  
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Since (m, b) = (0, b)EP(A'),  we have b~A+; since (n, a)EP(A') ,  we have nb + abEA*.  

Thus, (n, a)(m, b) = (0, nb + ab)EP(A') .  

iii) nm+O.  Then, for every dEA  +, we have n m d + ( n b + m a + a b ) d = n ( m d +  

bd) + a(md + bd) EA +, since (n, a), (m, b) EP(A' ) .  Similarly, n m d  + d(nb + ma  + ab) EA + 

for every dEA  +. Hence, (n, a)(m, b)EP(A').  

D E F I N I T I O N  2.4. The part ial  order for A 1 defined by  the set A1 ~ of Theorem 2.3 is 

called the strong order for A 1. 

I f  A 1 is made into a part ial ly ordered ring under  a partial  ordering ~ tha t  extends the 

order on A, then any  in, a) >~ 0 is positive in the strong order for A 1. For, if dEA+, then 

(0, d) >~ 0, since ~ extends the order on A. Then, since A 1 is a part ial ly ordered ring under  

4 ,  (n, a) (O, d) = (O, n d + a d ) > l O  and (0, d) (n, a) = (0, n d + d a ) > / 0 ,  whence n d + a d ,  

nd + daEA +. Thus, (n, a) is positive in the strong order for A 1. I n  the usual terminology,  

we have shown tha t  the strong order is "s t ronger"  than  ~<. Thus, the strong order is the 

strongest possible partial  ordering of A 1 tha t  extends the order on A and makes A 1 into 

a part ial ly ordered ring. 

T H E O R E ~  2.5. Let A be an/-ring without identity. 

i) I / A  is imbedded as a sub@ring o /an/ -r ing  B with identity, then there is a subring C 

o / B  containing A such that C is ring isomorphic to A 1 under a correspondence that leaves A 

elementwise /ixed. Moreover, the partial order induced in A 1 by that o/ B restricted to C via 

this ring isomorphism is the strong order/or A 1. 

ii) A can be imbedded as a sub@ring o /an / - r ing  with identity i / a n d  only i /A1 ,  with 

the strong order, can be imbedded as a subring o/ an /-ring whose identity element is the identity 

element o / A  1. 

iii) A 1 can be made into an/-ring by a partial ordering that extends the partial order on 

A i /  and only i/ the strong order/or A 1 makes A1 into an/-ring. 

The proof of this theorem will be accomplished by  establishing a series of intermediate 

results, which will be designated by  1), 2), etc. We first remark tha t  the subring C of par t  i) 

of the theorem need not  be a sub-/-ring of B, as will be shown later by  an example. 

I n  the construct ion of the suhring C, we will, a t  times, need to differentiate between 

the following three cases: 

I) A has mode k > 1; we will, as usual, let x denote the k-fier of A. 

I I )  A has mode ]c ~ 0 ,  and there is an element y E A  + such tha t  yiaI A ]aly ~ lal for 

every  a E A. 
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I I I )  A has mode k = 0, and A does not  satisfy II) .  Hence, for each aEA+, there is an 

element zaEA + such tha t  aza A z~a ~ z~. 

Now, since B is an f-ring, it is isomorphic to a subdirect union of ordered rings (Theorem 

1.3.14). Thus, we m a y  choose a collection {/~: ~ E F } of/- ideals  in B with zero intersection 

such tha t  each B~ = B / I ~  is an  ordered ring. For  each :r let h~ denote the na tura l  

homomorphism of B onto B~. 

I n  B, define the element T as follows: in cases I) and II) ,  ~ = 1 A 2y, where y e A +  

is such tha t  y la l  A Id ly  >~ la[ for each a e A ;  in case I I I ) ,  i = 1, the ident i ty  of B. Then, 

1) For  each ~EF,  we have h,.(i) = h~(1) or h~(i) = 0 .  

For, if h~(i) =~ h~(1), then i = 1 A 2y~= 1, and h~(i) =h~(1A  2y) =h~(1) A h~(2y) = 

h~ (2 y), since B~ is an ordered ring. Then, if we assume tha t  h~ (y) 4 0, we have h~ (y) = 

h~(y).h(1) >h~(y) .h~(2y)  =2h~(y2). But,  since y2 >~y, this yields h~(y) >2h~(y)  > 0 ,  a 

contradiction. Hence, h~(y )=0 ,  so h~(T)= h~(1)A 2 h ~ ( y ) = 0 .  An  immediate  consequence 

of 1) is 

2) ] 2 = i ,  a n d b l = l b f o r e a c h b E B .  

Now, if T~: 1, then i = 1A 2y,  and  a l  = a ( 1  A 2y) = a A  2 a y  = a  = ] a f o r  e a e h a E A  +, 

since a y  >1 a and y a  >1 a. Thus, since we m a y  write each element of A as the difference of 

positive elements, we have 

3) T a = a T = a f o r e a c h a E A .  

I f  B is an ordered ring, then we have the following result  in case I): 

4) I f  B is an ordered ring, and y is an n-tier of A, for n > 0, then n.  1 = y. 

For,  y > 0 by  Lemma 2.1, whence (y - 1)y = (n - 1)y > 0. Hence, y > 1, so we have 

O=]y~-ny I =yly-n]l  >~ly-nll >~0. 
We use 4) to prove: 

5) In  case I), k. i = x. 

B y  4), whenever h~( i )=h~(1) ,  we have kh~(1)=h~(x) ,  since h~(x) is a k-tier of the 

subring h~ (A) of the ordered ring B~ with identity.  I f  h~(1) = 0, then h~ (x) = h~ (i .x) = 0. 

Thus, h~ (ki - x) = kh~( i )  - h~(x) = 0 for each ~ Er ,  so k i  - xE n (/~: ~ e r )  ={0}.  

We now have: 

6) The subring C of B generated by  i and A is (ring) isomorphic with A 1 under  the 

correspondence n i + a ~  (n, a). 

For,  by  2) and 3), i is the ident i ty  element for C. I n  cases I I )  and I I I ) ,  it is clear tha t  

this correspondence is one-to-one. I n  case I), we have (n, a) = 0 if and only if (n, a) E @ (k, x), 

whence if and only if n - t k  and a = - t x  for some integer t. Thus, under  the correspondence 

n i  + a ~ ( n ,  a), n l  + a---> 0 if and only if n l  + a = t k l  - t x  = 0, by  5). Hence, in this case, 
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also, the correspondence is one-to-one. Since ni § a-->(n, a) is clearly a (ring)homomor- 

phism, this proves 6). 

We will call the "strong order for C" tha t  partial order on C tha t  is induced, via this 

isomorphism, by the strong order for A 1. 

7) The partial  ordering of B, restricted to C, is the strong order for C. 

The partial  ordering of B, restricted to C, extends the order on A and makes C into 

a partially ordered ring. As we have already noted (el. the discussion following Definition 

2.4), the strong order is the strongest such partial order on C; tha t  is n i  § a E B+ implies 

that  n i  § a is positive in the strong order. 

Conversely, suppose n T + a is positive in the strong order for C, but  that  n i + a ~ B +. 

We will show that,  in each of the three cases, there is an element dEA + such tha t  nd § 

da ~A +, thus contradicting the assumption tha t  n l  § a is positive in the strong order for C 

I) Since n i  + a ~B+, we have ]c(nl + a) ~B +, by  Proposition 1.1.5, x). But, k ( n i  + a) = 

n . k i  +/ca = nx  + xa, by 5), and xEA + by Lemma 2.1. 

I I )  View the elements of B as elements of the complete direct union of the B~. Then, 

since n l  +a~.B+, there is an ~EF such that  h:~(nl + a ) < 0 .  Now, h~(i)=h~(1),  since 

otherwise, by  1), h ~ ( i ) = 0  and, by  2) and 3), h~(ni +a)=h~(]).h:~(nT +a).CO. Thus, 

since 2y >~2y A 1 =1,  we have h=(2y)/> h~(i), and h~,(n(2y) + (2y)a) = h~(2y).h~(nT + a) 

h:~(ni §  < 0 ,  whence n(2y) + (2y)a~A+. 

I I I )  We first note that,  since n i + a is positive in the strong order for C, we must  

have n >~0. For if n < 0, then 0 ~< nz +a z  <~ - z  §  and, similarly, 0 <~ - z  §  for 

every zEA +. But this means tha t  [az I = lal Izl >~alz I /> [z I and Iza I >1 Izl for every zEA,  

contrary to the hypothesis of case I I I ) .  Thus, n ~> 0. 

Now, since we have assumed tha t  n i § a ~ B +, we must have n > 0, since n T § a is 

positive in the strong order for C, and the strong order coincides, in A, with the partial 

order on B. 

As before, there is an ~ e F with h~ (n i + a) < 0 and h~ i = h~ (1) Jr 0 is the identity ele- 

ment  of B~. Thus, we have h : , ( - a ) > n h ~ ( i ) = n h ~ ( 1 ) > O ,  so h ~ ( l a l ) = l h ~ ( - a ) l  = 

h: , ( -a)  ~> h~(1). Hence, h~(nla [ § la[a) =h~( la l ) .h~(ni  §  <~h~(nT §  < 0 ,  which im- 

plies tha t  nla I § la[a~ O. 

Now, 6) and 7) prove par t  i) of Theorem 2.5. To prove par t  ii), we have: 

8) B* = i  B - ( i  b: b e B }  is an / - r ing  with identity i .  

For, by 2), the mapping b ~ ] b is a ring homomorphism of B onto B*. Moreover, since 

i E B  +, we have (ib) + = ib  + for each bEB, so, by Proposition 1.1.4, this mapping is also a 

homomorphism of the lattice structure. Since i is the identity element in C, the elements 
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of C are fixed under  this homomorphism.  I t  is clear t ha t  T is the ident i ty  element of B*, 

so par t  ii) of Theorem 2.5 is proved. 

Now, if B - A1, then b--~] b is an isomorphism, since B is generated as a ring by  1 and 

A. This proves par t  iii) of Theorem 2.5. 

Thus, the proof of Theorem 2.5 is now complete. An immediate  consequence of par t  i) 

of the theorem is the following corollary: 

COROLLARY 2.6. A n  ordered ring A without identity can be imbedded as a subring 

o~ an ordered ring with identity i / a n d  only i / A  1 is an ordered ring under the strong order. 

The following example shows tha t  the subring C of B in par t  i) of Theorem 2.5 need 

not  be a sublattice of B. 

Example 2.7. Let  A denote the /-ring of all continuous real-valued functions on the 

interval [0, 1] which sa t i s fy / (0)  = 0 a n d / ( 1 )  = 2n  for some integer n, where the algebraic 

and lattice operations are as in Example  1.3.2. Le t  B denote t h e / - r i n g  of all continuous 

real-valued functions on [0, 1]. Then A is a n / - r i n g  without  ident i ty  t ha t  is imbedded as 

a sub-/-ring of t he / - r ing  B with identity.  The subring C of B consists of all n [ + / ,  where 

T is the ident i ty  in B (i.e. i(x) = 1) a n d / E A ;  hence gEC if and only if g(0) = m  and g(1) = 

2n  § m for integers m, n. 

Now, C is not  a sublattice of B since, if / denotes the element of A defined b y / ( x )  = 2x, 

then g - i A ] satisfies g(0) = 0 and g(1) = l, whence g~C. 

The next  theorem describes a special class of / - r ings  which can be imbedded as/-ideals 

in / - r ings  with identity.  The s ta tement  concerning ordered rings will be s trengthened con- 

siderably in Section 4. 

THEORE~I 2.8. Let A be an / - r ing  in which lab/ <~ [a] A ]b[ lot every pair a, b o/ ele- 

ments o/ A.  

i) Under the strong order, A 1 - A '  is an / - r ing  and A is an l-ideal in A 1. 

ii) I / A  is an ordered ring, then, under the strong order, A 1 is also. 

Proo/. Since labl ~< lal A Ibl for every pair  a, b of elements of A, it is clear t ha t  the 

mode of A is 0, hence tha t  A 1 = A ' .  Since, for every dEA+, and every integer n >~ l, we 

have nd  >~ d = I d I ~> I ad  ] ~> - ad  and, similarly, n d >~ - da, for every a E A, the strong order 

for A 1 is just the lexicographic order: 

(n, a ) E A i  ~ if and only if n > 0 or n = 0 and a ~> 0. 

For  each (n, a) EA1, it is clear tha t  (n, a)+ = (n, a) V 0 exists and is given by: 
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(n, a) if n > 0 ,  

(n , a )  V 0 =  (0, a +) if n = 0 ,  

(0, 0) if n < 0 .  

Thus, by  Proposi t ion 1.1.2, A 1 is, under  the strong order, a latt ice-ordered ring. I n  A1, 

the ident i ty  element (1, 0) is a strong order unit:  if (n, a ) 6 A  1, then ( in  I + 1)(1, 0) >/(n, a). 

Hence, by  Proposit ion 1.3.4, i), A 1 is an ]-ring. 

To complete the proof of i), we must  show tha t  A is an / - idea l  in A 1. I t  is a ring ideal, 

so we must  show tha t  ](0, a)] = (0,]al)  ~> (n, b) >~0 implies (n, b ) e A  (that is, n =0 ) .  Now,  

(n, b) >~ 0 implies n ~> 0, and (0, ]a ]) >~ (n, b) implies ( - n, ]a I - b)/> 0, whence - n >~ 0. Thus 

n = 0 .  

We have shown tha t  A 1 is an / - r i ng  and A is an / - idea l  in A 1. If, now, A is an ordered 

ring and (n, a)EA1, then it is clear t ha t  (n, a )6A~  or (n, a ) E ( - A ~ ) ,  so A 1 is an ordered 

ring. 

3. Imbedd ing  as a sub - f - r i ng  

We consider the following condition for a n / - r i n g  A:  

for all a, b, c 6 A  + and all integers n, 

(ab - nb) A (nc - ac) • 0, (ab - nb) A (nc -- ca) <~ 0, (*) 

(ba - n b )  A (nc - a c )  ~ 0, (ba - n b )  A (nc - ca) <~ O. 

This condition is clearly equivalent  to: 

for all a, b, e6A+ and all integers n, 

[(ab - n b )  V (ba - nb)] /~ [(nc - ac) V (nc - ca)] <~ O. (*) 

LEMMA 3.1. I /  A is an ordered ring that catis/ies (*), then A can be imbedded in an 

ordered ring with identity. 

Proo/. We show tha t  the strong order for A 1 is a total  order. Let  (n, a)6A1; we wish to 

show tha t  (n, a ) E A {  U ( - A { ) .  I t  is clearly sufficient to consider the case n >/0. I f  n = 0, 

then (n, a )EA~ U ( - A { ) ,  since A is an ordered ring. I f  n > O a n d a 6 A + , t h e n ( n ,  a )EA~ .  

If  n > 0 and - aEA+, and if (n, a)~= 0, then there is a b 6A  + such tha t  either nb + ab ~= 0 

or nb + ba=# O. We suppose nb t a b  = n b -  ( - a ) b  > 0; the other  cases can be handled 

similarly. For  any  cEA+ we have, by  (*), 

(nb - ( - a ) b )  A ( ( - a ) c - n c )  <~ 0 and ( n b -  ( - a ) b )  A ( c ( - a )  - n c )  <~ 0. 

Since n b t a b > O ,  we have ( c ( - a ) - n c ) V ( ( - a ) c - n e ) ~ < O ,  whence n c + a c E A +  and 

nc + c a E A  + for each c 6 A  +. Thus, in this case, (n, a )EA~ .  
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THEOREM 3.2.(1) I / A  is an/-r ing,  then the/ollowing are equivalent: 

i) A can be imbedded as a sub-l-ring of an / - r ing  with identity; 

ii) A satisfies condition (*); 

iii) if A = ~,  (A~ : a E F } is any representation of A as a subdirect union o/ordered rings 

A~, then each A~ can be imbedded in an ordered ring A* with identity. 

Proof. Suppose A is a sub-f-r ing of the  / -r ing B wi th  iden t i ty .  I f  a, b, cEA+ and  

if n is a n y  integer  then,  in B, ( a - - n . ] ) A ( n . l - - a ) < 0 ,  and  i t  is easi ly  seen t h a t  

(ab - n b )  A (nc -- ac) -- (a -- n.  l ) b  A (n- 1 -- a)c ~ O. The o ther  re la t ions  in (*) follow simi- 

lar ly .  Thus,  i) implies  ii). 

Tha t  iii) implies i) is obvious.  To see t h a t  ii) imp/ i t s  iii), observe t h a t  condi t ion  (*) is 

preserved  under  homomorphism.  Hence,  if A satisfies (*), t hen  each A~ satisfies (*), 

whence each A~ can be imbedded  in an  ordered ring A* wi th  i den t i t y  b y  L e m m a  3.1. 

As an  immed ia t e  consequence of the  equivalence of i) and  iii) above,  we have:  

COROLLARY 3.3. I /  A is an ordered ring, then A can be imbedded as a sub-/-ring of 

an /-ring with identity i/ and only i/ A can be imbedded in an ordered ring with identity. 

I t  is now easy to  give an  example  of a n / - r i n g  t h a t  cannot  be imbedded  as a sub-/-r ing 

of a n / - r i n g  wi th  iden t i ty .  For ,  b y  Theorem 3.2, we have  only  to  d i sp lay  a n / - r i n g  in which 

condi t ion  (*) fails to  hold.  

Example  3.4. L e t  A be the  a lgebra  over  the  ordered  field Q of r a t iona l  numbers  

genera ted  b y  two e lements  e, z, where e 2 = e, z 2 = z e = 0, and  ez = z. Order  A tex icographica l ly  

wi th  e dominat ing :  ae + bz >~ 0 if and  only  if a > 0 or a = 0 and  b >~ 0. W i t h  this  ordering,  

A becomes an  ordered  ring. The e lement  2 e E A  + satisfies 2e . e  = 2e and  z . 2 e  ~ O. Thus,  

there  are  e lements  a, b, c E A  +, (a = 2 e ,  b = e ,  c = z )  and  an  integer  n ( n =  1) such t h a t  

(ab - n b )  A (nc -- ca) > 0. Thus,  A is a n / - r i n g  which does no t  sa t i s fy  condi t ion  (*). 

THEOREM 3.5. I /  A is an ordered ring without non-zero divisors o/ zero, then A can 

be imbedded in an ordered ring with identity that contains no non-zero divisors o/zero. 

Proo/. W e  first  show t h a t  A can be imbedded  in an  ordered  ring wi th  i d e n t i t y  b y  

showing t h a t  condi t ion  (*) holds  in A.  

Le t  a, b, cE A  +, and  le t  n be an  integer.  W e  m a y  assume t h a t  b 4  0, since otherwise 

the  re la t ions  of (*) hold  t r iv ia l ly .  I f  a b - n b E A +  then,  for d E A  +, ( d a - n d ) b =  

d (a b - n b) ~ A+. Since 0 ~ b E A +, this  implies  t h a t  d a  - n d E A+ for each d E A+. I n  par t i cu la r ,  

b a - n b E A  +, so b ( a c - n c )  = ( b a - n b ) c C A  +, whence a c - n c E A  +. Thus, if a b - n b E A  +, 

(1) The author wishes to thank the referee, whose observations led to the present form of Theorem 
3.2. 
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then ( n c - c a ) V  ( n c - a c ) < ~ 0 .  If, on the other hand, a b - n b E - A  +, then ( b a - n b ) b  = 

b ( a b - n b ) E - A  +, whence b a - n b E - A  +. Thus, in this case, ( b a - n b )  V ( a b - n b )  ~ 0 .  

We have shown that, in either case, the relations of condition (*) hold. 

Thus, under the strong order, A 1 is an ordered ring. To show that A 1 contains no non- 

zero divisors of zero, it is sufficient, by Theorem 1.4.1, to show that  A 1 contains no non- 

zero nilpotent elements. Hence, suppose (n, a )EN (A1), the set of nilpotent elements of A1. 

Since N (A1) is an/-ideal  in A1, (n, a)(O, b) = (O, nb + ab)EN(A1)  for each bEA.  Since A 

contains no non-zero nilpotent elements, we have nb + a b  = 0  for each bEA.  Similarly, 

nb § ba = 0 for each b EA.  Hence, - a  is an n-tier of A and it follows that (n, a)E~ (]~, x) 

(Lemma 2.1), so (n, a) = O. Hence, N(AI) =(0}. 

Theorem 3.5 is the analogue of a result of Szendrei ([21]) for abstract rings without 

non-zero divisors of zero. In  fact, Szendrei's ring construction is the same one thar we have 

used. In  [15], Johnson remarked, without proof, that  Szendrei's result also applied to 

ordered rings. 

There are two important classes of /-rings for which special imbeddings are 

always available: 

T~EOR]~M 3.6. I /  A is a J-semisimple /-ring, then A can be imbedded as a sub- 

/-ring o/ a J-semisimple /-ring with identity. 

Proo/. By Theorem II.4.12, A is isomorphic to a subdireet union of/-simple ordered 

rings with identity; their complete direct union is a J-semisimple/-ring with identity. 

THEOREM 3.7. I / A  is an / - r ing  with zero 1-radical, then A can be imbedded as a sub-l- 

ring o/ an /-ring with zero l-radical that contains an identity. 

Proo/. By Theorem 1.4.8, A is isomorphic to a subdirect union of ordered rings A~ 

which contain no non-zero divisors of zero. Each of these can be imbedded in an ordered 

ring A* with identity that  contains no non-zero divisors of zero by Theorem 3.5. The 

complete direct union of the A* is the required/-ring with zero/-radical. 

4. Imbedding  as an  / - ideal  

The main result of this section is a strengthening of Theorem 2.5 for imbedding as a 

(right) /-ideal: if an / - r ing  A without identity can be imbedded as a (right) /-ideal in an 

/-ring B with identity, then there is a standard imbedding available (i.e., under the strong 

order, A 1 is an/-ring). 

The following result immediately eliminates many/-r ings from consideration: 
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PROPOSITION 4.1. IJ A is an/-ring without identity that contains elements a, b such 

that !ac I >~ ]c I and Icb] >~ ]e] ]or all cEA, then A cannot be imbedded as a right 1-ideal in any 
/-ring B with identity. 

Proo/. Note  t h a t  i t  is sufficient to  assume t h a t  there  is an  a ' e A  such t h a t  l a'c] >~lcl 

and  Ica'l >~ Icl for al l  ceA  (e.g. a ' =  lal  v Ib!).  

N o w  suppose t h a t  A is a r i g h t / - i d e a l  in the  j - r ing B wi th  ident i ty .  Then  1 A la'IEA. 

But ,  ( 1 a  la ' l )[el=lcl  a la'c I - [ c  I for every  cEA. Thus,  for any  cEA, (1a la'l)c - 
(1 A la'l)(c+--c -) = c  + - c -  = c .  Similar ly ,  c(1 A t a ' l )  = c  for every  cEA. Thus, 1 A la ' l  is 

an  i den t i t y  in A, a contradic t ion .  

F o r  the  sake of economy,  we in t roduce  the  following nota t ion :  

D E F I N I T I O N  4.2. I f  A is a n / - r i n g  t h a t  satisfies 

1) A does no t  conta in  an  i d e n t i t y  element ,  and  

2) A contains  no e lement  a '  such t h a t  la'c] A ]ca'] >~ Icl for al l  cEA,  

then  A is called an /D-r ing .  

I n  view of Propos i t ion  4.1, we need concern ourselves only  wi th  /D-rings. They  are  

the  o n l y / - r i n g s  w i thou t  i den t i t y  t h a t  can poss ib ly  be i m b e d d e d  as r i g h t / - i d e a l s  i n / - r i n g s  

wi th  iden t i ty .  However ,  not  eve ry /D- r ing  can be so imbedded:  

Example 4.3. Le t  2V denote  the  space of non-nega t ive  integers in the  usual  (discrete) 

topology.  Then C (N) consists of al l  sequences of real  numbers .  Le t  A denote  the  sub-J- 

r ing of C(N) consist ing of those mall sequences a = (a~: n = 0 ,  1, 2 . . . .  ) wi th  a 0 = 21c, an  

even integer.  Then  A is easi ly  seen to  be an  ]D-ring. 

W e  show t h a t  A cannot  be imbedded  as an  l- ideal  in an  J-ring wi th  i d e n t i t y  b y  proving  

t h a t  if A is imbedded  as an  1-ideal in a l a t t i ce -ordered  r ing B wi th  iden t i ty ,  then  the  

i den t i t y  e lement  of B is no t  a weak  order  uni t  (cf. P ropos i t ion  1.3.3). For ,  le t  bEA be 

defined b y  b 0 = 2 and  b~ = 0  for ng= 0. Now b 2 = 2b~;b ,  so b~; 1, whence b A lg= b. But ,  

since A is an  l- ideal  in B and  bEA +, we mus t  have  b A 1EA.  The only  a E A  wi th  0 ~< a ~< b 

and  a g= b is a = 0, so b A 1 = 0. Since b g= 0, 1 is no t  a weak  order  un i t  in B. 

Thus,  A is an  example  of a c o m m u t a t i v e / D - r i n g  wi thou t  non-zero n i lpo ten t  e lements  

t h a t  can be imbedded  as a sub- / - r ing of an  J-ring wi th  i d e n t i t y  b u t  cannot  be i m b e d d e d  

as  a r ight  1-ideal in a n y  J-ring wi th  iden t i ty .  

B y  condi t ion  2) of Def ini t ion 4.2, every  ]D-ring has mode  ]c = 0, so A1 = A ' .  W e  

not ice  t h a t  if (n, a)EA' is pos i t ive  in  the  s t rong order,  t hen  n >~0. For ,  if n < 0, t hen  

-Id] + ladI >~ nid I +aid] >~ 0 and  - ] d  I + Ida] >~ O, whence ladl A Idal ~ Id], for eve ry  

d EA, con t r a ry  to  Def ini t ion 4.2. 
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Now, by  Theorem 2.5, if an/D-r ing A is imbedded as a sub-/-ring of a n / - r i n g  B with 

identity,  then there is a subring C of B tha t  contains A and is ring isomorphic to A '  under  

a correspondence tha t  leaves A elementwise fixed. Moreover, the part ial  order induced in 

A' ,  via this ring isomorphism, by  the part ial  order in B is the strong order. As noted above, 

the mode of A is zero. Moreover, A contains no y >~ 0 which satisfies ya A ay  >~ a for every 

a E A  +. Thus, in the language of Section 2, A belongs to case I I I .  We recall, f rom the proof 

of Theorem 2.5, that ,  in case I I I ,  the ident i ty  element of the subring C of B can be taken  

to be the ident i ty  element of B. We now have: 

THEOREM 4.4. I /  an /D-ring A can be imbedded as a right 1-ideal in an/-r ing B with 

identity, then B contains a sub-f-ring C that contains A and the identity o/ B and such that C 

is isomorphic to A' ,  with the strong order/or A' ,  under a correspondence that keeps A element- 

wise/ixed. 

Proo/. By the remarks made above, we need only show tha t  the subring C of B provided 

by  Theorem 2.5 is a sub-/-ring of B. We will denote the elements of C by  (n, a), etc. (i.e., as 

the elements of A') .  We will show tha t  (n, a)+ = (n, a) V 0EC for each (n, a)EC. Then, by  

Proposi t ion 1.1.2, C is a latt ice-ordered ring, hence a sub-/-ring of B. 

Let  (n, a) EC. We consider three cases: 

i) n = 0 .  Then, (0, a)+ = (0, a+)EC. 

ii) n > 0. (n, a) = (n, a +) - (0, a-)  expresses (n, a) as the difference of positive elements 

of B. Hence, (n, a) + = (n, a +) - (n, a+) A (0, a-) ,  by  Proposit ion 1.1.3, vii). Now, since A is 

an/- ideal  in B and (0, a-)  EA, we have (n, a +) A (0, a-)  eA, since (0, a-)  ~> (n, a +) A (0,a-) >/0. 

Thus, (n, a)+eC. 

iii) n < 0. (n, a) = (0, a +) - ( - n, a-)  expresses (n, a) as the difference of positive 

elements. As before, (0, a +) A ( - n ,  a - ) e A ,  so (n, a)+ = (0, a+) - (0, a+) A ( - n ,  a - )eC.  

Since, if A is a r ight  1-ideal in B, then A is a r ight / - ideal  in the sub-/-ring C of B, we 

have: 

COROLLARY 4.5. I /  A is an/-r ing without identity, then A can be imbedded as a right 

l-ideal in an/-r ing with identity i / a n d  only i / A  is an/D-ring and A '  is an/-r ing under the 

strong order. 

Since A is a two-sided (ring) ideal in A' ,  this yields: 

COROLLARY 4.6. A n / - r i n g  A can be imbedded as a right l-ideal in an/-r ing B with 

identity i / and  only i / A  can be imbedded as an l-ideal in some/-ring B* with identity. 

Our central problem, tha t  of characterizing those /-rings tha t  can be imbedded as 
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r ight  /-ideals in /-rings wi th  ident i ty,  is now reduced to t h a t  of characterizing those /D" 
rings A for which A '  is a n / - r i n g  under  the strong order. For  ordered rings, we have: 

T H E o 1r E M 4.7. I / A  is an ordered ring without identity, then the/ollowing are equivalent: 

i) A can be imbedded as an 1-ideal in an / - r ing  with identity; 

ii) A can be imbedded as an 1-ideal in an ordered ring with identity; 

iii) for every pair  a, b of elements  of A,  lab I <~ [a I A ]b[; 

iv) /or every pair a, b o/non-zero elements o/ A ,  l a b / <  lal A ]b I . 

Pro@ Tha t  iv) implies iii) and  ii) implies i) are trivial,  and iii) implies ii) by  Theorem 

2.8. Now, it  is easily seen t h a t  iii) implies iv). Fo r  suppose a, b EA are non-zero elements  and  

t h a t  labl lal A Ibl. Since A is an ordered ring, lal A Ibl is lal or Ibl. If  la] A ]bl = 

lal and  tabl  ~< lal a Ibl,  then  we must  have  l a b / =  [a],  whence la(2b)l  = 2 1 a  I ~; 

lal A IZbl=lal .  
The proof will be completed b y  showing tha t  i) implies iii). I f  A can be imbedded  as 

an /-ideal in a n / - r i n g  with  identi ty,  then  A is an /D- r ing  (Corollary 4.5) and A satisfies 

condition (*) (Theorem 3.2). I f  a, b ~A + are such t ha t  ab > b (or ba > b) then, by  condition (*), 

[(ab - b) V (ba - b)] A [(c -- ac) V (c -- ca)] <~ 0 for each c e A  +. Hence,  the  e lement  a of A 

satisfies (e - ac) V (e - ca) = e - ac A ca  ~< 0 for each ceA+,  contradict ing the fact  t ha t  A 

is an/D-r ing.  Hence,  iii) is satisfied. 

For  a rb i t r a ry  /-rings, no such character izat ion is known. I n  fact, it is not  known 

whether  it is sufficient to  require only  t h a t  A '  be a latt ice under  the strong order. I t  is 

not  inconceivable tha t ,  if A '  is a la t t ice-ordered ring, then  the  special na ture  of A '  and  

the presence in A '  of the max ima l / - idea l  A, which is itself an / - r ing ,  force A '  to be an / - r ing .  

We note the following result, the proof  of which is omit ted:  

PROPOSITION 4.8. Let A be an/D-ring. Then A ' ,  under the strong order, is a lattice- 

ordered ring if and only if  (1, O) A (0, a) exists /or every aeA+.  

C H A P T E R  I V .  0 N E - S I D E D  / - I D E A L S  I N  f - R I N C S  

I n  Chapter  I I ,  a question was raised concerning the existence in / - r ings  of one-sided 

l-ideals t ha t  are not  two-sided. At  t ha t  t ime,  we presented an example  of an ordered ring 

containing a r igh t / - idea l  t ha t  is not  two-sided. I n  this chapter,  we present  an  example  of 

an  ordered ring A wi thout  non-zero divisors of zero wi th  this proper ty ,  and we show t h a t  

if an ordered ring wi thout  non-zero divisors of zero has a r ight  1-ideal t h a t  is not  two-sided, 

then  it contains a subring isomorphic to A. I n  Section 2, we consider the s ta tus  of this 

question for the larger classes o f / - r ings  t ha t  have  been considered in this paper .  
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1. All example 

Example  1.1. Le t  S denote  the  free semigroup wi thou t  i d e n t i t y  genera ted  b y  two 

e lements  a, x: the  e lements  of S are  "words"  of the  form 

z = a n l x G a n ' ~ x  G . . .  a n ~ x  ~r, (1) 

where the  n~ and  k s are non-nega t ive  integers,  and  n 1 and  ]~1 a r e  not  bo th  zero. W i t h  each 

e lement  z of S, where z has  the  form (1), associate  the  non-nega t ive  integer  N(z)  = ~ n~. 

We define a t o t a l  order  in S as follows. I f  z E S  is as in (1), and  if z' = an'x~'an~xk~... 

a x E ~, t hen  we will say  t h a t  z > z' if and  only  if 

i) N(z )  < N ( z ' ) ,  or 

if) N(z )  = N(z ' )  and  ei ther  

1) n I = n;, k 1 = k;, n 2 =ng,  k 2 = kg . . . . .  km 1 = k/n-!, and  n m < nm for some m = 1, 2 . . . . .  

r - l ,  or 

2) n l = n ~ ,  /c l = k ~ ,  n 2=n~ ,  / Q = k ~  . . . . .  /c~ 1=]c~  i, n m = n ~ ,  and  k m>/c;n for some 

m = 1, 2, . . . ,  r. 

Thus,  if z ~ z' and  if N (z) = N (z'), t hen  the  order  re la t ion  be tween z and z' is de te rmined  

b y  observing the  first  exponen t  a t  which the  expressions of z and  z' in the  form (1) differ. 

I t  is easi ly seen t h a t  th is  is a t o t a l  order  on S. Moreover,  th is  order  is p reserved  under  

mul t ip l ica t ion;  t h a t  is, if z, z', z " E S ,  with z > z', then  z z " >  z ' z "  and  z " z  > z"z ' .  For ,  if 

N(z )  < N ( z ' ) ,  t hen  N ( z z " )  = N ( z " z )  < N ( z " z ' )  = N ( z ' z " ) ,  and  if N(z )  = N ( z ' ) ,  then  

N ( z z " )  = N ( z ' z " ) = N ( z " z ) = N ( z " z ' )  and  whichever  of the  condi t ions  1) and  2) of if) 

above  holds for z, z' will also hold for zz" ,  z ' z "  and  z"z ,  z"z ' .  

Now let  A denote  the  semigroup r ing of S over  the  r ing of integers.  The e lements  of 

A are f inite formal  sums: 

I n  A,  add i t ion  is def ined eoordinatewise,  and  mul t ip l i ca t ion  is def ined by:  

y k z i z ) = z k  

I n  order  to  define an order  in A,  we wri te  the  e lements  of A in the  form ~ m~z~, where 
i = 1  

i < ?" implies z~ > zj. Now, say  t h a t  ~ m~z~ >~ 0 if and  only  if m 1 > 0, or m I = 0 and  m2 > 0, 
i = 1  
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or . . . ,  or m I - m2 . . . . .  ran_ 1 = 0 and  m~ >~ 0. I t  is read i ly  ver if ied t h a t  this  is a t o t a l  order  

in A,  under  which A is an ordered  ring. Clearly, A contains  no non-zero divisors of zero. 

I n  A,  <a>,. is a r igh t  /- ideal  t h a t  is not  two-sided,  since (a>r = 

{dEA:  ]d] ~< moa +a ~ m~z~, m o an integer,  ~ m~z~EA } and,  clearly,  xa~.(a>r. 
i =1 i--1 

The res t  of this  sect ion is devo ted  to the  proof  of the  following result .  

T H E O R E ~  1.2. I] A is an ordered ring without non-zero divisors o/zero that contains 

a right 1-ideal that is not two-sided, then A contains a subring that is isomorphic to the ring o/ 

Example  1.1. 

B y  Theorem I I I .3 .5 ,  the  s t rong order  makes  the  r ing extens ion A 1 of A into  an  ordered  

r ing wi thou t  non-zero divisors  of zero in which the  ordering extends  t h a t  on A.  l~ecalling 

the  deta i l s  of this  imbedding,  we note  t h a t  if I is a n y  r i g h t / - i d e a l  in A,  then  i t  is a r igh t  

(ring) ideal  in A D and  hence t h a t  if I is p roper  in A,  then  ( I } r  is a p roper  r ight  Lideal  in A 1. 

Now, if I is a r igh t  1-ideal in A t h a t  is not  two-sided,  then  there  are posi t ive  e lements  

a E 1 and  x C A such t h a t  x a r I .  Then,  in A, (a}r is a r i gh t / - i dea l  t h a t  is no t  two-sided.  Hence,  

as no ted  above,  t he  r igh t  1-ideal J = (a}r  in A 1 is a r ight  Lideal  of A 1 t h a t  is no t  two-sided.  

Since A 1 contains  an  iden t i t y  element,  J is a modu la r  r ight  l-ideal.  Hence,  J can be 

ex t ended  to a m a x i m a l  (modular)  r i g h t / - i d e a l  M of A 1 (Proposi t ion II .1.2).  B y  Corol lary 

II .4 .7,  M is a two- s ided / - i dea l  in A 1. Thus, J *  - ( a}  is a p r o p e r / - i d e a l  in A1, since J *  ___ M;  

i t  is the  smal les t  (two-sided) l- ideal  of A 1 t h a t  contains  J .  

Now let  J ,  denote  the  largest  l - ideal  of A 1 t h a t  is conta ined  in J .  Since the  r ight  1- 

ideals of A 1 form a chain, J*  is the  sma l l e s t / - i dea l  of A 1 t h a t  p rope r ly  contains  J , .  Hence,  

A 1 / J  , is a subd i rec t ly  i r reducible  ]-ring, wi th  smal les t  non-zero 1-ideal J * / J , .  By Theorem 

II .5 .2 ,  J * / J ,  consists en t i re ly  of n i lpo ten t  e lements  of order  two; t h a t  is, z E J *  implies  

z ~ E J , .  

Now, let  I* = J* (1 A and  I ,  - J ,  N A.  W e  have:  I ,  c (a)r  ~- I ~ I*. Thus, we have  

proved:  

L E M ~ A  1.3. I /  A is an ordered ring without non-zero divisors o/ zero that contains a 

right 1-ideal I that is not two-sided, then A is not l-simple. More precisely, there is an l-ideal 

I ,  ~_ I and an 1.ideal I* ~_ I,  with 1.2 ~ I , .  

F o r  the  sake of economy,  we will write,  for b, c E A 1, b ~ c in case b ~ n c for every  in teger  

n. Note  tha t ,  since xa(~J, we have  xa  ~ na  for every  integer  n, whence x>~l  in A 1. 

The proof  of Theorem 1.2 will proceed as follows. We consider the  sub-semigroup T 

of the  mul t ip l i ca t ive  semigroup of A genera ted  b y  a, x, and  show t h a t  the  order  induced  in 

T b y  t h a t  in A is the  same as the  order  def ined on the  semigroup S of E x a m p l e  1.1. More- 
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over,  we will show t h a t  if z, z' E T and  z > z', t hen  z > ~ z ' .  Then the  subr ing B of A genera ted  

b y  T is jus t  the  semigroup r ing of T over  the  r ing of in tegers  and  the  order  on B is the  same 

as the  order  on the  r ing A of E x a m p l e  1.1. For ,  if ~ m ~ z ~ E B ,  where each z~E T, each m~ 
t = l  

s a n  integer,  and  i < ]  implies  zf > z j ,  t hen  ~ m i z ~  >70 if and  on ly  if m 1 > 0 ,  or m 1 = 0  
4=1 

and  m 2 > 0 ,  or . . . ,  or m 1 = m  2 . . . . .  ran_  1 = 0 and  mn ~>0. 

I n  wha t  follows, we will make  t ac i t  use of the  following facts:  

1) The e lements  of T are non-zero posi t ive  e lements  of A.  

2) A contains  no non-zero divisors of zero, hence T is cancel lat ive.  Thus,  if z, z', 

z" E T and  z z '  > z z " ,  then  z' > z " .  

n. k, n~ . .  anrxk~ Z' = a n : x k : a  n: " " Let  z,  z ' E T ,  say  z = a  x a . and . . . a n s x  ks. As before, le t  

N(z)  = ~ n~ and  N ( z ' ) =  ~ n~. Tha t  N(z)  is un ique ly  de t e rmined  for each z e T  is shown 
i = l  ]=1  

b y  I)  below. 

X k~ Z p = X k: .  I f  N (z) = N (z') = 0, t hen  z = and  Since, in A1, x ~ 1, we have  z > z' if and  

only  if k 1 > k~, in which case z > ~ z ' .  If  N(z)  = 0 and  N ( z ' ) 4  0, then,  in A1, z' e J*, whence 

z ' ~ I ~ z  = x k'. Thus, if e i ther  N ( z )  or N ( z ' )  is zero, t hen  the order  re la t ion  between z and  

z '  is the  same as t h a t  defined in E x a m p l e  1.1. I n  w h a t  follows, we will consider  those  zE T 

wi th  N (z) >/1. 

I) I f  N(z)  < N(z ' ) ,  t hen  z > ~ z ' .  

W e  prove  this  b y  induct ion  on N(z).  I f  N(z)  = 1 and  N(z ' )  > 1, t hen  z >~a, so z ~ i I . ,  

and  z' m a y  be wr i t t en  as the  p roduc t  of two e lements  of I* ,  whence z 'E I , .  Since I ,  is an 

/- ideal  in A,  z > ~ z ' .  

Now suppose t h a t  t > 1 and  t h a t  I)  is t rue  whenever  iV(z) < t. I f  N ( z )  = t and  N ( z ' )  > t ,  

t hen  we consider two cases: 

i) k.>~ k;. F o r  any  in teger  n, 

nr X k r -  ks  - -  " " " " " z - -  n u '  = (a  n` x k' . . .  a n a n ~ x  k' . . .  a ns) x % 

~ (an~ Xk~ . . .  a n t  _ n a n ~ x k ~  . . .  a n s )  x k s  

. . .  - -  n a n '  x k~ . . .  a ns 1) a x ks >~ 0 (an~ Xk~ a n t -  1 

b y  the  induc t ion  hypothes is .  

ii) k~< ]c~. F o r  any  in teger  n, 

z - n z '  = (a  n` x k~ . . .  a n r  - -  It  a n. x k' . . .  a ns x ks - k~.) x k , .  
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N o w ,  since x a > a x ,  we h a v e  

" X k :  " " - " X k :  a n s  - 1 x k S  - kr an~ . . .  ans xkS kr ~ an~ . . .  a ,  

so z --  n z '  > (a  nl x kl . . .  a n r -  1 _ n a n: x k: . . .  a n'~ 1 xk~ - k,) a x kr >~ 0 

b y  t h e  i n d u c t i o n  hypo thes i s .  

Thus ,  in  each  case, z >~ z ' ,  so I) is e s t ab l i shed .  

I I )  I f  N ( z ) = N ( z ' ) ,  n l = n ;  , ]Cl = It;, n 2 = n  ~ . . . .  , ]Cm_l=km_l,  a n d  n m < n ~ n ,  t h e n  z > z ' .  

T h e  p roof  is aga in  by  i n d u c t i o n  on  i V ( z ) .  I f  i V ( z ) -  l ,  t h e n  the re  is o n l y  one  

case: z = x kl a x k~ a n d  z '  = a x k:, w h e r e / c  I ~ 0. T h e n  z >~ x a (~ I ,  whi le  z '  E I ,  w h e n c e  z > z' .  

N o w  suppose  t h a t  t > l ,  a n d  t h a t  I I )  ho lds  w h e n e v e r  i V ( z ) < t .  L e t  z, z '  E S 

sa t i s fy  t he  h y p o t h e s i s  of I I ) ,  w i t h  N ( z ) = t .  T h e r e  are  f o u r  cases: 

i) m ~ 1. F o r  a n y  i n t ege r  n, 

z - n z ' = a n ' x k l a ( a n ~ - l x  k~ . . .  x k ' - n a ~ ; - l x  k~ . . .  xkS)>~ 0 

b y  t h e  i n d u c t i o n  hypo thes i s .  

ii) m =  1 a n d  n 1 4 0 .  F o r  a n y  i n t ege r  n, 

z - n z '  = a (a n' - 1 xk~ ... xk, _ n a n; - 1 xk: ... x~:) 1> 0 

b y  t h e  i n d u c t i o n  hypo thes i s .  

iii) r e = l ,  n 1 = 0 ,  a n d  n ~ 4 1 .  F o r  a n y  i n t ege r  n, 

z - n z '  = x kl a n~ x k~ . . .  x k" - n a n: x k: . . .  x ks. 

N o w ,  s ince x a  ~ a x ,  we h a v e  

x k' a n~ . . .  x ~r > a x k, a n~ - 1 . . .  Xkr, 

w h e n c e  z -- n z '  > a (x ~' a n~- 1 ... x k, _ n a n:- 1 xk: ... xk~) >~ 0 

b y  t h e  i n d u c t i o n  hypo thes i s ,  s ince n l -  1 > 0. 

iv)  m =  1, n l = O ,  a n d  n l = l .  As  in t h e  p roo f  of I),  we cons ider  t w o  cases: 

1) /c~>k:.  F o r  a n y  i n t ege r  n, 

z - -  n z '  = ( x  k '  a n~ x k~ . . .  a n" x kr k s  - -  n a x k" a n~ . . .  a n s )  x ks  

(xklan~ x k" . . .  a n ' - - n a x k : a  n: . . .  an'S) xkS 

= ( x k ' a n ~ x  k~ . . .  a n ' - I  _ n a x ~ : a n :  . . .  a n s - 1 ) a x k ' s > ~ O  

b y  t h e  i n d u c t i o n  hypo thes i s .  

1 4 -  60173033. A c t a  m a t h e m a t i c a .  104. I m p r i m 6  le 20 d6cembre  1960 
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2) ]Cr< k:. F o r  a n y  in tege r  n,  

. . . . . .  - kr) X k  r Z - -  ZtZ' : ( x k l a  n~ a " r -  n a x k ~ a  ~ a n s x  ks 

( x kl a n~ . . .  a nr - -  Tb a x kl a n2 . . .  a ns - 1 x k S  - kr a )  X kr 

n , - 1  " " " - l x k i - k r  ) = ( x k l a  n2 . . .  a - - n a x k ~ a  n2 . . .  a ns a x ~ ' ~ O  

b y  the  i n d u c t i o n  hypothes i s .  

Thus ,  i n  each case, we h a v e  z >~ z', so ] I )  is es tab l i shed .  

l p �9 p 

I I I )  I f  N (z)  = N ( z ' ) ,  n 1 = n l ,  IQ = k l ,  n~  = n2 . . . . .  n,~ = n m ,  and/cm > k~, t h e n  z >~ z .  

The  proof  is a g a i n  b y  i n d u c t i o n  on  N(z) .  F o r  N ( z ) =  1, the re  are  two cases; 

k 2  Z p i) z = x k' a x , x ~ a x k', w i t h  k 2 > k~. F o r  a n y  in t ege r  n ,  

z - n z '  = x k' a x k' ( x  k~-  k, _ n )  > O. 

ii) z = x  a x  , x a x  , w i t h  k l > / O .  F o r  a n y  in t ege r  n ,  

x ~: ~ " a x k' ~ I ,  while  a x k~ e I .  z - n z ' ~  ( x  ~ k ~ a x k ~ - - n a x ~ ' ) > O ,  since x k~-k: 

Now suppose  t h a t  t >  1 a n d  I I I )  holds  w h e n e v e r  N ( z ) < t .  Le t  z ,  z ' E  S sa t i s fy  

the  hypo thes i s  of I I I ) ,  w i t h  N (z )=  t. The re  are two eases: 

i) n l=#0 .  F o r  a n y  in tege r  n, 

z _ n z , = a ( a n , - l x k l a n ~  x k ~ _ n a n , - l x  k[ 1~s) . . . . . .  X >~0 

b y  the  i n d u c t i o n  hypothes i s .  

ii) n l = 0 .  W e  consider  two cases: 

1) k 1 =/c~, F o r  a n y  in tege r  n,  

z - n z' = x k' a (a ~ -  1 xk, ... xk~ _ n a ~ - 1 x~ ... xk~) >/0 

b y  the  i n d u c t i o n  hypothes i s .  

2) /c1>/c~. F o r  a n y  in t ege r  n ,  

. . .  n a ~ x  k~ ... x ~)~>0 b y  I I ) .  z - n z '  = x kl ( x  ~ ' -  k, an~ x k ,  _ k" 

Thus ,  m each case, z >~ z' so I I I )  is es tab l i shed .  

I) ,  I I ) ,  a n d  I I I )  show t h a t  the  order  i n  T is exac t ly  t he  order  g iven  for t he  

semigroup  S in  E x a m p l e  1.1. As n o t e d  ear l ier ,  th i s  comple tes  t he  proof  of T h e o r e m  1.2. 
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2. The general question 

The result s tated in Lemma 1.3 can be s tated in the following more general form: 

P R 0 P 0 S I T I 0 ~ 2 . 1 .  Every ordered ring that contains a non-zero proper one-sided 1-ideal 

contains a non-zero proper two-sided l-ideal. 

Proo]. For  ordered rings wi thout  non-zero divisors of zero, this follows from Lemma 

1.3 and its left analogue. I f  A is an ordered ring containing non-zero divisors of zero bu t  

no non-zero proper 1-ideals, then A contains non-zero nilpotents by  Theorem 1.4.1, hence 

Z~(A) = ( a E A :  a 2= O} = A ,  since Z2(A ) is an /-ideal in A (cf. the discussion following 

Corollary 1.3.17). Then, since eve ry / - subgroup  of the addit ive group of A is an l-ideal in 

A, there are no non-zero proper / - subgroups  of the additive group of A. Hence, there are 

no non-zero proper one-sided/-ideals in A. 

As an  immediate consequence, we have: 

COROLLARY 2.2. Every maximal l-ideal in an ]-ring A is a maximal right (left) 1-ideal 

o/A. 
I n  the remainder of this section, we summarize what  is known about  the existence of 

one-sided 1-ideals t ha t  are not  two-sided in the general classes of ]-rings tha t  have been 

considered in this paper. 

Recall t ha t  the ring A of Example  II .6.2 is an ordered ring containing only one non- 

zero proper  two-sided 1-ideal (Fz). Hence, A satisfies the descending chain condition for 

1-ideals, and A is subdirectly irreducible, so we have: 

l) There exist ]-rings satisfying the descending chain condition for l-ideals tha t  contain 

one-sided 1-ideals t ha t  are not  two-sided. 

2) There exist subdirectly irreducible ]-rings tha t  contain one-sided 1-ideals tha t  are 

not  two-sided. 

Since the ring of Example  1.1 contains no non-zero divisors of zero, we have: 

3) There exist ]-rings with zero 1-radical t ha t  contain one-sided 1-ideals tha t  are no t  

two-sided. 

I f  A is an ]-ring with zero / - radica l  t h a t  satisfies the descending chain condition for 

1-ideals, then, by  Lemma II.5.7, ~t is isomorphic to a (finite) direct union of/-simple ordered 

rings A1, ..., An. By  Proposit ion 2.1, each M~ contains no non-zero proper one-sided 1- 

ideals. I f  I is a r ight  (left) 1-ideal in A, then I f3 M i is a r ight  (left) l-ideal in A~ for i = 1, 

.... n. Hence, each I f3 A~ is {0) or A~, so I is clearly a two-sided 1-ideal in .4. Thus, we have: 

4) I f  A is an ]-ring with zero/ - radica l  which satisfies the descending chain condition 

for/-ideals,  then every one-sided/-ideal  of A is two-sided. 
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Since the  J - r ad i ca l  of a n / - r i n g  a lways  contains  t h e / - r a d i c a l ,  we have:  

5) I f  A is a J - semis imple  /-r ing which satisfies the  descending chain condi t ion  for 

/-ideals, t hen  every  one - s ided / - idea l  of A is two-sided.  

Our f inal  example ,  which is due to  Professor  Henr iksen,  shows the  following: 

6) There exis t  J - semis imple  /-r ings t h a t  conta in  one - s ided / - idea l s  t h a t  are  no t  two- 

sided. 

Example 2.3. Le t  A be an  ordered  r ing wi th  i d e n t i t y  and  wi thou t  non-zero divisors  

of zero t h a t  conta ins  a r i g h t / - i d e a l  I t h a t  is not  two-s ided  (cf. Sect ion 1). Le t  A [2] denote  

the  r ing of po lynomia l s  in one inde te rmina te  2 wi th  coefficients in A,  ordered lexicogra-  

ph ica l ly  wi th  the  leading coefficient domina t ing :  a 0 + a12 + �9 �9 �9 + an2 n >~ 0 if and  only  if 

a n > 0 ,  or a n = 0  and  an_ 1 > 0 ,  or . . . ,  or a n = a n _ l  . . . . .  a 1 = 0  and  a 0~>0. W i t h  this  

ordering,  A [2] is an  ordered  r ing wi th  i den t i t y  and  wi thou t  non-zero divisors  of zero; 

i t  is c l ea r ly / - s imple ,  since l a21 > 1 for every  0 =~ a EA. Hence,  A [2] is a n / - p r i m i t i v e / - r i n g .  

Observe t h a t  A is an  ordered  sub-r ing of A[2] and  tha t ,  if y E A [ 2 / ,  t hen  y ~ A  implies  

[y [ > [ a [ for every  a e A .  

Now let  B denote  the  set of al l  sequences in A [2] t h a t  are  even tua l ly  in A:  if z E B ,  

t hen  z = (zl, z 2 . . . .  ), where each zi EA [2], and  there  is an  integer  n such t h a t  i ~> n implies  

z~ EA. Unde r  coordinatewise  r ing and  la t t i ce  operat ions ,  B is a n / - r i n g ;  i t  is c lear ly  a sub- 

d i rec t  union of copies of t h e / - p r i m i t i v e / - r i n g  A [2]. Hence,  B is a J - s e m i s i m p l e / - r i n g  wi th  

iden t i ty .  

Le t  J = ( z E B :  z is even tua l ly  in I} .  Since I is a r i g h t / - i d e a l  in A t h a t  is no t  two- 

sided, i t  is clear t h a t  J is a r i g h t / - i d e a l  in B t h a t  is no t  two-sided.  
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