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Introduction 

If  we embed an (n-1)-sphere  in an n-sphere, the complement consists of two 

components. Our problem is to describe the components more exactly. 

For n = 2, there is a classical theorem of SchSenflies which says that  an arbitrary 

simple closed curve in the two-dimensional sphere S 2 separates S 2 into two components 

whose closures are both topologically equivalent to a disk. The Riemann mapping 

theorem yields, moreover, a conformal equivalence between the interior of a simple 

closed curve and the open disk. 

The reasonable conjecture to make would be that  some analogous result holds 

for all dimensions; more precisely, that  the complementary components of an ( n -  1)- 

sphere embedded in n-space are topologically equivalent to n-cells. 

A classical counter-example (in dimension n = 3) to this unrestricted analogue of 

the "two-dimensional SchSenflies theorem is a wild embedding of S 2 in S 3 known as 

the Alexander Horned Sphere [1]. One of the complementary components of this 

embedding is not homeomorphie with the n-cell, and, in fact, not simply connected. 

One's intuition shrugs at this counter-example, attributes its existence to the 'pa- 

thology of the non-differentiable', or whatever, and persists in believing the statement 

t rue - -a t  least for nice imbeddings. In  particular, the Alexander Horned Sphere 

embedding can be made neither differentiable nor polyhedral. 

Under the assumption that  the two-sphere S 2 is embedded polyhedrally in S 3, 

Alexander [1], and later, Moise [4], proved that  the closures of the complementary 

components of S 2 were topological 3-cells. 

(1) A research announcement has already appeared in Bull .  Amer.  Math.  Soc. 65, 1959. 
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My aim is to prove tha t  if S n-1 is embedded nicely in S ~, the closure of the 

complementary components are n-cells. The word "nicely" is defined in section 1, and it 

includes the class of differentiable embeddings as a special case. However, it is yet  

unknown whether the class of polyhedral embeddings is also included as a subclass 

of nice embeddings. 

The main theorem is proved in section 2. A corollary, the Open Star Theorem, is 

given in the last section. I t  states tha t  the open st~r of a vertex in a tr iangulated mani- 

fold is homeomorphic with Euclidean n-space. This is a weak partial result towards 

what is known as the Sphere Problem. The Sphere Problem asks whether or not  the 

closed star of a vertex in a triangulated manifold is combinatorially equivalent to a 

closed n-cell, I n. I t  is not known yet  whether the closed star  is even topologically 

equivalent to I L  

I am thankful  to Professor R. H.  Bing, Professor Ralph Fox, and John  Stallings 

for suggestions yielding improvements  in the presentation of the proof of the main 

theorem. 
1. Section of terminology 

The Euclidean n-space, or the Cartesian product of n copies of the real line R, 

will be denoted R n. A point x E R ~ is thus an n-tuple of real numbers (x 1 . . . . .  x,) and 

I1 11 = m a x  Ix, I. 
i = 1 . . . . .  n 

We use the following notations. 

The standard n-cube I n = (x e Rnl [I x I[ ~< 1}, 11 = I .  

The standard n-sphere S n = ( x  e Rn+l I II x II = 1). 

The standard n-annulus  A m = ( x ~ Rn [ 1 ~< II x II < 2). 

The standard n-stock S t  n is obtained by attaching two copies (An)l (An)2 of A n 

via the identification: 

{x e (A~)I I Xl = e )  ~ { x  e (A n)21Xl = - -  e ) .  

The n-annulus has two boundary components, each homeomorphic with S n. I 

shall refer to {x e R~l [Ixll = 1) as the internal boundary component, denoted in a A  n, 

and ( x e R n l  I lx l l=2)  as the external boundary component, denoted ex ~ A  n. I shall 

also need names for standard homeomorphisms of S n-1 onto each boundary compo- 

nent. Denote by i: sn-1--->in ~ A  n the identity homeomorphism, and by i*: sn-1---> 

ex ~A ~ the radial projection homeomorphism. 

Similarly, I shall need a name for the external boundary component of S t  n. 

Call it ex ~ S t  ~. Call the two internal boundary components w 1 and w 2. Let  T1, T~ 

be standard identi ty homeomorphisms of S n-1 into each internal boundary component. 
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Let  ~ be some fixed homeomorphism of ex ~ S t  n onto S ~-1, for instance: 

( x )  = 

Z 1 2 X~ for X E (A~)I ~ ex 8 S t  ~, x =  (x 1 . . . .  x~) ( . . . . .  

If  X and Y are topological spaces, X ~ Y will signify tha t  there is a homeo- 

morphism between them.  

I f  X is a manifold, ~ X  will refer to its boundary ,  and  int X will be the space 

X - ~ X .  

If  X and Y are topological spaces, and  / : A - +  Y a continuous map,  X UI Y or 

Y (JfX will refer to the topological space X tJ Y with the equivalence relation x N/ (x ) ,  

equipped with the identification topology. There is no ambigui ty  arising from reversing 

the order  of X and Y; where it is absolutely cIear which a t taching map  / is meant ,  

X tJ I Y m a y  be referred to as X U Y. And  further,  in the  course of the proof, iter- 

a ted identifications X 1 UrX~ IJr~ ... (JfnX~ will be used. Where no confusion can arise 

I shall dispense with the parentheses necessary to  indicate the precise order of iden- 

tifications. 

B y  C X ,  the cone over a space X,  is meant  the space X •  with X •  

identified to a point.  B y  a subcone C t X  is meant  the image in C X of X •  [0, t] for 

0 ~ < t ~ l .  

A similari ty  trans]ormation S: C X - +  C X is a map  S of the form S (X • t ) =  X • S (t), 

where S:  [0, l ] - ~  [0, 1] is a monotonic  continuous funct ion such t h a t  ~ ( 0 ) = 0 .  

Finally,  a Euclidean similari ty  trans/ormation is a mapping  T of k n - - ~ R  ~ 

which is of the form: 

T: x - - ~ x + b ,  where b E R  ~ and ~ is a positive number ,  for x E R L  

D ~ F I ~ I T I O N :  An embedding 7~: s n - I - - ~ R  ~ is nice if one can extend 7~ to a 

homeomorphism ~*: I • S ~-1 -~ R ~ (i.e. ~* (0 • S ~-~) = ~ (S ~-1)) such tha~ 

(i) ~* ( ( -  1 ) •  ~-1) is contained in the bounded complementary  component  of 

~* ( 0 •  n-l) [this requirement  is made for convenience only] and 

(ii) ~* is linear in the neighborhood of some point  of ( - 1 ,  0 ) •  n. 

(This requirement,  also, is phrased in a manner  which saves words in a future ap- 

plication. Manifestly, there is no loss of generali ty incurred by  assuming tha t  the ' l inear 

point '  lie in t ha t  restricted terri tory.)  Linear  is meant  in  the sense of a map  of a 

subset of the vector  space R ~ into itself. 
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2. The main  theorem 

The  ma in  theorem to be p roved  is the  following: 

THEOREM. Let S n-1 be nicely imbedded in S n. Then the closures o/ the comple- 

mentary components o/ S n-1 are homeomorphic to the n-cell. 

Outline o/ the proo/. 

(A) I n  the  class of n -mani fo lds  which b o u n d  ( n - 1 ) - s p h e r e s  (in a nice way) ,  

a mul t ip l i ca t ion  is def ined.  I n tu i t i ve ly ,  one t akes  two such mani fo lds  M ,  N a n d  

a t t aches  t h e m  to  the  in te r io r  boundar ies  of an  n-s tock,  fo rming  a new manifold ,  

M .  N,  which aga in  has  an  ( n - 1 ) - s p h e r e  bounda ry .  Compl ica t ions  exis t  in the  defini-  

t ion  since we m u s t  p rove  t h a t  the  f inal  space M .  N is well def ined.  For ,  a pr ior i ,  M .  N 

depends  s t rong ly  on the  homeomorph i sms  used to  a t t a c h  M a n d  N to the  in te r io r  

boundar ies .  

(B) (Lemma 2) M . N = N . M .  

(C) If  M c S  n, one can cons t ruc t  a man i fo ld  N for which  M . N ~ I  n. (N is 

roughly  the  c o m p l e m e n t a r y  man i fo ld  S n - i n t  M.)  

(D) Le t  B ~ = M - N . M - N  ... U ~ where ~ is the  one-poin t  compac t i f i ca t ion  of 

the  rest ,  t hen  (Lemma 3) there  are  two ways  of viewing B ~r 

(a) B ~ = ( M . N ) . ( M . N )  ... (J o~ 

and  since M .  N ~- I n, B ~ = I  n . I  n . . .U  ~ ,  

f rom which one eas i ly  deduces  t h a t  B ~ ~ I  n. 

(b) B r = M  . (N - M )  . (N . M)  ... U o~ 

and  since N . M = M ' N  b y  (B), 

B ~ = M . I  n - I  ~ ... U 

f rom which one eas i ly  f inds t h a t  B ~  M.  

(E) M ~ I  n for b y  (b) M ~ B  ~, and  b y  (a), B~r  n. 

The proo]. 

The Semi-Group X. Le t  X be the  collect ion of couples ]m = (M, ~),  where  

(i) M is a compac t  n -man i fo ld  wi th  b o u n d a r y  e m b e d d a b l e  in  E u c l i d e a n  n- 

space in such a manne r  t h a t  i t  has  an  ( n - 1 ) - s p h e r e  b o u n d a r y  0 M  nice ly  em- 

b e d d e d  in Rn; 
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(ii) (I): ~M--~S  ~-1 is a homeomorphism. 

If  ~ E X, 7?/= (M, @), I will denote M b y  ] ~ [ and (I) by (P~ when it is helpful 

to do so. Call IX I the set of manifolds M satisfying condition (i) above. Two ele- 

ments ~ ,  7?/' E X will be called equivalent (denoted: ~ ' )  if there is a homeo- 

morphism h: ] ~ ]  -> ] ~ ' 1  and a commutative diagram: 

pl 'l 
v 

S n-1 <Td> S n - 1  

T h e  object of real interest is the set of equivalence classes of X, under the 

relation defined above. Denote this set by X. A multiplication is defined in X as 

follows: If ~ ,  Tl are representatives in X of equivalence classes of X, 

Notice that  this is just a definition of what is commonly known as "addition 

of manifolds". The reason for carefulness is that  at  present we cannot prove that  

the naive definition of "manifold addition" is independent of the attaching homeo- 

morphism. This is, in fact, the only reason tha t  the elements of X were chosen to 

be couples (M, (I)) rather than just topological spaces. 

In order to justify the definition of 7?/-~ we must prove the following two 

lemmas. 

L]~[MA. X is closed under this multiplication. 

We have to show that  [77l-~[ satisfies (i). The proof is however simple and 

can be omitted. 

I might also include the remark that  it is not strictly necessary for the proof 

of the main theorem. 

L]~MMA. The above multiplication is well-de/ined on the equivalence classes o/ X ,  

and hence yields a multiplication in X .  

All one need show to prove the lemma is tha t  if 7?/ is replaced by an element 

~ ' e  X equivalent to it, ~ - ~  and ~ ' .  T[ are again equivalent. 
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By the definition of equivalence, ~ and ~ '  satisfy a commutative diagram: 

!o,.-o,o, 
Sn-1 Sn-1 

where h is a homeomorphism h: I ~ '1  -~ I m l and 

= (I ml  U..or s t .  u. .o, ,  I ~  I. , ) .  

The homeomorphism H: [ ~ ' -  ~1 ~ [ 7?/. ~ l  defined as follows: 

H I S  t n U I ~ I = identity 

H/Im'l:h 

yields the equivalence. H is thus defined on I ~ l "  ~11 ; clearly it is defined compatibly 

with attaching maps and is a homeomorphism. F ina l ly ,  H/O]~I"  ~1 is the identi ty 

homeomorphism yielding the commutative diagram: 

~lm'-~l eo,d ~lm.nl 
v v 

s n - 1  s n - 1  

We stated that  X is a semi-group, or, in other words, the multiplication defined 

above is associative. This could easily be proved from the definition. However, it  is 

not needed for the main theorem, and so I shall not prove it. 

Let :TEX be the couple (I n, ~) where t: aI~-->S n-~ is the identity map. 

LEMMA 1. I /  M E [ X  I and / is a homeomorphism o/ ~M onto in ~A n, then 

M U ) A n ~ M .  

LEM•A 1'. I /  ~ E X ,  then ~ . ~ J = ~ .  

Proo/ o/ Lemma 1. Intuitively the situation is clear. M E IX I is so defined that  

~M has an annulus neighborhood, AL Since ~M is an (n-1)-sphere nicely embedded 

in R ~, ~M=Q(S"-I•  where p is a homeomorphism of, say, Sn-lx[0,  1] into M. Let 

A* be the annulus 0(S n 1• 1])in M,  and denote by M* the closure of the 

complement of A* in M. Then M = M *  U A*, and M O r A n = M  * O A* UfA n. 
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A homeomorphism from M to M UIA ~ can be obtained by leaving the comple- 

ment of A* fixed and stretching it over itself and AL To define such a homeo- 

morphism #: M---> M 0IA n formally, let # be the identi ty on M* and define # from 

{~(s, 2t) 6A*, 0~<t~<�89 
A* to A*UrA ~ by # ( e ( s , t ) ) =  (/e(s,O), 4 t - 1 )  6 A~, �89 

Lemma 1' follows immediately from Lemma 1, since 

I'm-Yl=l'mlu,,c,,,(zr'u,,,I") and (I)~..==T. 

There is a homeomorphism k: StnU~,,In--->A n, sending T 1 to t and v to t *-1. Thus 

and (I)~,.~=i *-1. Furthermore, /~ of Lemma l yields a commutative diagram: 

;o,. ;~ 
sn-1 sn-1 

LEMMi 2. W~" )l ~ ~l" W~. 

The essential point of the proof is contained in a statement concerning St  n. 

L]~MMA 2'. There is a homeomorphism R* o/the standard n.stock which interchanges 

the interior boundaries by a rigid Euclidean motion, and leaves the external boundary 

pointwise ]ixed. Further, 
T / w  1 = Ts T~I; T / w  s -~ Z i ~i. 

Lemma 2' is obvious, and Lemma 2 follows immediately, for there is a homeo- 

morphism T: IW/-)/I--~]T/.7~I i.e. 

T :  Iml U.,o%.St" t n u~,.%, I ~1 ~ I ml u~,~ s u~,~ 
such that  

I T / S  t" = R* 

T/I ~ [  = identi ty 

T/I ~1 = identity. 

I t  is merely a verification to show that  T is well defined, and yields an equivalence 

between ~ . T /  and ~ .  ~ .  
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F i g .  i .  

L~,M~.~ 3. ~rl 1 ~ . 7 ~ 1 ~ i . ,  then lT~l-~I ", I~ [~I" .  

Let A ~ be a topological space composed of an infinite number of ammli At 

attached side by side, eompactified by a single point ~ .  A ~ is to be thought of as 

embedded in the Euclidean space. (See Fig. 1.) 

Any two adjacent annuli At U At+l form an n-stock. Denote, as above (Fig. 1), 

the n-stocks A2t-1 U A~ by fli and A2t U A2t+l by fl[. Let tot be the internal bound- 

arc of At. There are Euchdean similarity transformations a~, a~ bringing fla ~ fl~ and 

fll a ~  ~ fl~. Let v~ be the euclidean similarity transformation bringing eo~ to wt- Further, 

fll is to be identified with the standard n-stock, and COx with 8 =-~. 

We attach a copy Mr of M = ] ~ [  in each o~i-1 by a homomorphism 

M . . . .  �9 , ~ n - 1  - - >  0)2~_1 

and similarly a copy N~ of N = ]7"1] in each (o2t by a homeomorphism 

I ~  - -  > , Q n  - 1 �9 

Let B ~ be the "filled-in" space A ~U/V~LJMj and 
j 

/~; =fl;  U hrt U Mt+l. From the definition of flit, fi;, it is clear that  

and, using Lemma 2, fi~ "~ ] 7'/" ~F/~] ~ I".  
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CI/ B ~ I  n. 

Let  K be the union of the external boundaries of fl~, compactif ied by  c~, 

K =  5 ext ~fl~U oo. 
i - 1  

K can be considered as a subset of A ~ and hence of RL  As a subset of R n, ext ~fii 

bounds a cell, c~, and it is clear t h a t  

is homeomorphie  to a cell, V"~I  n. 

There is a homeomorphism II  f rom V onto B ~. I I  is defined to  be the ident i ty  

mapping  from K c  V to K c B  ~, This defines I I  on ~ci for each i 

I I :  ~ci-> ~ fi~. 

Since both  c, and fi~ are topological n-cells, one need only prove a simple lemma. 

L E ~ M A  (a). I /  I I  is a homeomorphism o/ ~ I n - - ~ I  n, then II can be extended 

to a homeomorphism 
II*:  I n ~ I L  

Proo/. Consider each I n to  be the uni t  ball in R ~, and extend I I  radially. There- 

fore, one can extend I I  to each c~. This yields a homeomorphism H*: V-->-B ~. Thus 

B ~ 1 7 6  ~ V ~ I n. 

(II)  B ~ ~ M .  

There is a second way  to  decompose B~:  

B ~ =  (A~ uM~)u (U A~ u Mju ivj) u ~ ,  
~>I 
j>l 

or B ~ ~  U (U fi~U oo). 
i 

LEMMA (b). A ~ U ( U f l [ U  ~ ) ~ A  n. 

Proo/. Let  K '  = A 1 U ext ~ fl; U oo, 

considered as a subset of A ~ and hence of RL Each  ext ~fl; bounds a cell c[ in R n. Let  

V ' = K ' U ( U c ~ ) ,  V ' c R L  

I t  is clear t h a t  V ' ~ A L  
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J 
J 

F i g .  2 .  

GO 

Define a homeomorphism YI' of V' onto A t U ( U ~ fl[) U ~ as follows. I I '  maps  

K'~_ V' to  K'  ___A 1U ([Jfl[)U ~ by  the ident i ty  map.  This defines H '  on each ~c[. 
t 

t n - e  Since we know tha t  c~ ~ I  and fl~ ~ I  n, the above L e m m a  (a) allows us to extend I I '  

to  a homeomorphism of each c; with each /~. This yields the homeomorphism 

H*' :  V ' ~ A l U  U~fl;}U~, 
proving- Lemma- (b). 

We have obtained B ~ ~ M  U A n. Lemma 1 applies, yielding 

B~C ~ M U  A " ~ M .  

(I) and  (II) yield a proof of L e m m a  3, for 

I"  ~ BCC ~ M.  

The a rgument  is symmetr ica l  in l ~ [  and I l, and  so both I~l  and I) l l  are to- 

pological cells. 

We can now complete the proof of the main  theorem. 

Let  M and  N be the two complementary  components .  Le t  ~: S ~ - I - + S  n be the 

nice embedding.  Then one can assume tha t  there is a map  ~: I •  S ~, and, 

moreover,  

~ ( [ -  1, 0 ] •  ~([0, -}- 1]• 

Let  M* = M - ~ ([ - ~, 0] • S ~-1). 
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Then M* ~M.  To see this apply Lemma 1, after noticing that 

M = M * U @ ( [ - � 8 9  (}]US ~-1) 

and that  @([-�89 O]• is topologically an annulus. Then 

S ~ = M * U A u N ~ M U A U N .  

Since @ is linear in the neighborhood U of a point in [ - ~ ,  0 ] •  n-l, let A be a 

standard simplex in U. Then A -  int A is homeomorphic with the standard n-stock by 

a homeomorphism /z: 
S t ~ -__, A - int A. 

tt 

Also, @(A) is a standard simplex in S ~, and so S n - i n t  q ( A ) ~ I  n. Therefore, 

I n ~ M  0 @ o f f  (S t  n) U _iV. 

Let /=#-1o@-1/~M, g=ff-io@-l/~N. 

Then In=MUfStU~N.  Or, if one sets 

then 

But Lemma 3 applies and 

proving the theorem. 

= (M, / ) ,  T/= (N, g), 

N=Inl P, M=lml m 

The dlfferentiable case 

The main theorem merely states that  a topological equivalence between the 

closure of the interior component of a nicely embedded sphere and the standard cell 

can be obtained. This raises the question whether or not a diffeomorphism between X and 

the unit cell can be obtained when the embedding S~-1--> S n is assumed to be a diffeo- 

morphism. That any differentiable embedding S ~-1 -->S ~ is nice in the above sense 

is a standard lemma (See Thom [3]). The methods of the proof can be refined, in 

this case, to yield a homeomorphism between X and I ~ which is actually an equi- 

valence of differential structures except at the point oo. More precisely, one can ex- 

tend the given embedding 

@: ~I~=S"-I-+ S ~ 
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to  a homeomorphism (I)*: I n - - > S  '~ 

t ha t  is a diffeomorphism except  a t  oo [4]. 

I n  fact,  this is the best one can hope for. Milnor [5] has exhibited a diffeo- 

morphism (I): S ~ --> S e c S 7 which cannot  be extended to  a diffeomorphism (I)*: 17 -> S T. 

The simplicial case 

I f  one assumes t h a t  (I) is a simplicial embedding it is unknown  whether  (I) is 

nice in the above sense. Assume, then,  t ha t  (I) is a simplicial, nice embedding 

S ~ - 1 r  , S n. Then it is an open question whether  or no t  (I) can be extended to  a 

simplicial homeomorphism (I)*: I~--> S n. Unlike the differentiable analogue there is no 

counter-example to this. 

Moreover, it is a simple mat te r  to refine the above proof to  yield an  extension 

(I)* which is simplicial except  a t  oo. This means t h a t  there is an  infinite tr iangula- 

t ion T z  of X - ~  and an infinite t r iangulat ion Tx. of I n - ( I ) - 1 ( ~ )  such t h a t  with 

respect to  each of these t r iangulat ions (I)* is simplicial, and Tx  is compatible with 

the  t r iangulat ion of X -  oo inheri ted f rom X, and TI~ is compatible with the tr iangula- 

t ion of I n - r  (co) inherited f rom I ~. 

Some further generalizations 

Let  ~ be the semi-group of kno t  types.  ~ is the  set of equivalence classes of 

combinatorial  imbeddings of S 1 in S 3. Two imbeddings are equivalent  if one can 

be brought  to the other  by  a combinatorial  au tomorphism of S 3 onto itself. 

The definition of addi t ion of knots  is s tandard  and the set ~ forms a semi- 

group with respect to  this operation. I t  was an  observat ion of Fox  tha t  the con- 

s t ruct ion used in the  main  theorem could be also used to  prove tha t  ~ has no in- 

verses, a theorem due originally to Shubert .  

This remark  can be generalized: 

Define an  imbedding (1): S k -> E n to  be invert ibIe  if it satifies (1) and (2) below. 

(1) (I) is linear on some open set of S k, which m a y  be chosen to  be the lower 

hemisphere, by  obvious shifting. If  two embeddings (I), iF: Sk--> E n satisfy (1), then  

there is a natura l  wa y  to  " a d d "  them, obtaining an imbedding denoted (I)§ ~ :  S k --> E n. 

(2) There is a tic, sat isfying (1), such tha t  / =  r + iF: S k --> E ~ extends to a homeo- 

morphism 
/*: D k  + I --> E n, 

where  D ~+1 is the (k+  1)-cell, and  S ~ is considered as its boundary .  
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J 
xK 
• 

K 

/ 

/ 

1 

// 
Fig .  3. 

The interior boundary oJ the (] + 1)st copy o] I x K is attached to the exterior boundary o] the ]-th. 

13 

TH~O~V,M. I /  09: S k---> E ~ is invertible, then 09 can be extended to a homeomorphism 

dp*: D ~+1 --> E ~. 

A proof and applications of this fact  will be given elsewhere. 

3. The open star theorem 

By a t r iangulated manifold will be meant  a simplicial complex tha t  is topo- 

logically locally Euclidean. The closed star of a vertex v in a t r iangulated manifold 

M will be the subeomplex of M consisting of all simplices containing v. The open 

star of v is just  the interior of the closed star  of v. 

THEOREM. The open star o/ a vertex in  a triangulated n-mani[old is topologically 

equivalent to R L  

P r o @  Let  K denote the boundary  of the closed star  of a ver tex v. Then the 

open star of v can be considered to  be just C K U K x I U K x I U  ... where the at- 

taching maps  are as in Fig. 3. 

Choose o, an  n-dimensionaI simplex with v as vertex. Le t  o '  be a simplex con- 

tained in G, and similar in shape to  o. Then ~(a ' )  is an  ( n - 1 ) - s p h e r e  nicely em- 

bedded in 0. 

Le t  U be a neighborhood of v homeomorphie  with R n, disjoint f rom y, ~', the  

opposite faces of v in G and G'. I assume t h a t  o '  has been chosen sufficiently near 

so t h a t  0' intersects U and tha t  U c CK.  
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?, 

o- o" 

14 

Fig. 4. 

Choose a point p E int  a'N U. Since U is Euclidean space, there is a homeo- 

morphism 2: U--> U, such tha t  A is the identi ty homeomorphism outside of a suffi- 

ciently large sphere S c U, and 2 (p )=v .  The homeomorphism ~ can be extended to 

a homeomorphism of CK-->CK by defining ~ to be the ident i ty outside S. 2(a(a ' ) )  

is a sphere Z, which contains v in its interior. I f  y is the face opposite v, ~ (y )=  y. 

Choose a sufficiently small subcone C ' K  of C K  so tha t  C ' K  lies entirely in the 

interior of Z. The region between C K and int C ' K  is topologically K x I .  Therefore 

7 c K x I ,  and there is a copy, Zj, of ~ embedded in each K x l  contained in the 

open star. See Fig. 5. 

L ] ~ M A  4. The closed region A between Zj and 7-j_1 is topologically an annulus. 

One could obtain Lemma 4 by  first proving the simple but  technical corollary 

to the main theorem: 

Let ~ ,  ~ be two nice embed, dings of S ~-1 into S ~ such that ~ (S ~-1) N ~7"(S n-l) is 

empty. Then the closure o] the comple~nentary component o[ ffP (S ~-1) U IF (S ~-1) which 

has ~P (S ~-1) U IF (S ~-1) as boundary is topologically an annulus. 

I content myself, however, with a direct application of the main theorem. 



ON EMBEDDINGS OF SPHERES 

Fig.  5. 

15 

Z i 

Fig .  6. 

i 
Each ~?jcCK U (K• is the image of ~ = 2 ( ~ a ' )  under a similarity trans- 

k=l  

formation vj. Both ~j and ~j-1 are contained in Tj2(a) and 

Since 2 is the identity transformation on 7, 7 c :~a '  is mapped linearly onto 

y j=Tj~(7)  in ~j, and also onto yj 1 =Tj-x ~(7) in ~]-1. Thus 7j, 7J-1 are linear sim- 

p/ices. 
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Fig. 7. 

LEMMA 5. There is an n-ceU (pictorially it is a tube)D contained in A and inter- 

secting yj and D-1 on (n-1) .cel ls  Aj and As_l respectively. 

The eonstruotion of D is straightforward, and I shall merely sketch the method 

by  which one may  obtain such a D. 

First a point zj E D can be joined to a point zj-1 ED-1 by  an arc C in A. Take 

an open neighborhood of C, and in it, replace C by  a polygonal are 0. Finally take 

a closed regular neighborhood of C in A, /3. Since D and yj-1 are hyperplanes 

(locally) one can modify 13 near zj and zj 1 to yield D, a regular neighborhood which 

intersects D and D-1 at  (n - 1)-cells Aj 9 zj, A]_ 1 9 Z]-I. 

L]~M~A 6. a ( A - D )  is an (n-1)-sphere nicely embedded in vj2(a),  where ~j2(a) 

is considered to be a simplicial n-cell with simplicial structure transported lrom a by Tj 2. 

The proof of Lemma 6 is straightforward and tedious, and so it is omitted. 

We now prove Lemma 4. 

Consider A ~ to be a a ' •  Define a mapping 6 bringing ~ a ' •  to 5j by  , j2 ,  

and a a ' x  1 to 5j-1 by ~j-12. Construct a tube 

f r o m  

to 

in such a way tha t  the closure of 

is topologically an n-cell, D".  

is already defined on 

but  undefined on 

D' c a a ' x I  

. ; 1 A j c ~ a ' x O  

Tj-_11 kj_l  c a a '  x 1, 

8 g ' •  

~Ti 1A 1U ~Tj--11 A]-I, 

L' =~D'  - T i  1A t IJ T~ 1 AI-1. 
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Our problem is to extend ~ to a homeomorphism 3 of 

0 a ' •  (0} U { 1 } c L '  

tO Zj U Zj-1 U L, 

where L = 0 D - Aj U A j_l. 

Since L and L '  are bo th  homeomorphic  with A ~-1, and (~/~L is a combinatorial  

homeomorphism of ~ L '  onto a L,  the problem is merely to  ex tend ~ given combina- 

torial homeomorphism (~ from ~A ~-1 onto itself to  a combinatorial  homeomorphism 

of A ~-1 onto itself. This requires checking tha t  the two homeomorphisms obtained 

by  restricting ($ to each of the components  of ~A ~-1 behave compat ib ly  with re- 

spect to orientation,  and then applying Theorem 1 of [6]. I n  this way  (~ is extended 

to L. 

B y  Lemma 6, 8 ( A - D )  is a nicely embedded sphere, hence the closure of the 

interior of ~ ( A - D )  is topologically an  n-cell. Now 5 /3D"  maps  the  boundary  of an  

n-cell onto the boundary  of an n-cdll and so can be extended to a homeomorphism 

of D" .  Similarly ~/~D' can be extended to a homeomorphism of D '  onto D. ~ is 

therefore a homeomorphism of A n onto A.  

Proo[ o/ the open star theorem. 

C K U ( I •  

can be regarded as ~ ( a ' ) U  A~ 

which is topologically 1 ~ U A~ U A ~U ... 

when the interior boundary  of A~+I is a t tached  to the exterior boundary  of A~, and  

the  interior boundary  of A~' is a t tached to  ~ I  ~. Hence 

CKI.J ( K •  ~ R  ~. 
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