GLOBAL BOUNDARY BEHAVIOR OF MEROMORPHIC FUNCTIONS

BY

P. T. CHURCH

University of Michigan and Syracuse University (1)

1. Introduction

Let f be a function sending the open unit disk D into the Riemann sphere S. A point y on S is in the global cluster set of f, denoted by C(f), if and only if there exists a sequence of points z_n in D such that $\lim |z_n| = 1$ and $\lim f(z_n) = y$. Thus, for example, if f is continuous on D, and can be extended to be continuous on \overline{D} , then C(f) is the image of the bounding circle and hence a Peano space.

If f is continuous, then C(f) is a continuum. Conversely, it is easy to prove that any continuum C on the sphere S is the global cluster set for some continuous function f. Collingwood ([3], p. 123) and Cartwright asked whether every continuum on S is the global cluster set of a function f meromorphic on the open disk D. D. B. Potyagailo [8] and W. Rudin [10] independently gave as counter-example the continuum consisting of the union of (a) a spiral, $r = \theta/(\pi + \theta)$, $\pi \leq \theta < \infty$, (b) the unit circumference, and (c) an interval, $1 \leq x \leq 2$, y = 0.

Because this example is not locally connected, and because, if f is continuous on \overline{D} , then C(f) is locally connected, one might conjecture that every locally connected continuum is the global cluster set for some function f meromorphic on D. In Section 2, we give a counter-example to this conjecture. The example also answers in the negative a question of Gerald MacLane [5]: Is every Peano space the image of the bounding circle of a function f meromorphic on D and continuous on \overline{D} ?

 $^{^{(1)}}$ This paper is essentially a chapter of the author's dissertation, written under the direction of Professor G. S. Young at the University of Michigan. Certain improvements in the proofs and the preparation for publication were done under NSF Grant G-8240.

^{4-60173047.} Acta mathematica 105. Imprimé le 13 mars 1961

In Section 3 a topological sufficient condition for a continuum to be the global cluster set for a function f meromorphic on D is given. This condition is different from and simpler than a sufficient condition given by D. B. Potyagailo [8].

Other work relating to the boundary behavior of functions analytic or meromorphic on the open disk and continuous on the closed disk has been done by Salem and Zygmund [11], Piranian, Titus, and Young [7], Schaeffer [12] and Marston Morse [6]. Point cluster sets of meromorphic functions have been studied by Gross [4].

It is significant that the results in this paper are proved almost entirely by topological techniques. Throughout the sequel "map" means continuous function, $S(x, \varepsilon)$ is the open disk about x of radius ε , S is the Riemann sphere, and D is the open unit disk.

2. The Example

THEOREM 2.1. There exists a Peano space P which is not the global cluster set of any function f meromorphic on the open unit disk.

COROLLARY 2.2. There exists a Peano space P which is not the image of the bounding circle for any function f meromorphic on the open unit disk and continuous on the closed unit disk.

Construction of the example. The Peano space P_1 is the union of \overline{D} and the following sets described using polar coordinates:

(1) the closed disks with centers $(2-2^{-n}, m\pi/2)$ and radii 2^{-n-3} , together with the line segments $1 \le r \le 2$, $\theta = m\pi/2$, which join these disks to the unit disk (*n* a positive integer and *m* odd);

(2) the closed disks with centers $(\frac{1}{4}(2-2^{-n}), \frac{1}{4}m\pi)$ and radii 2^{-n-5} , together with the line segments $1 \le r \le 1 + \frac{1}{4}$, $\theta = \frac{1}{4}m\pi$, which join these disks to the unit disk (*n* a positive integer and *m* odd); at the *k*th stage, the closed disks with centers $((2-2^{-n}) 4^{1-k}, m\pi 2^{-k})$ and radii $2^{-n-2k-1}$, together with the line segments $1 \le r \le 1 + 4^{1-k}$, $\theta = m\pi 2^{-k}$ (*n* a positive integer and *m* odd). This completes the definition of P_1 .

Given any disk $D' \neq D$ of P_1 , map the plane onto itself using the natural similarity transformation followed by a rigid motion that maps D onto D', sending the vertical line through D onto the ray from D that passes through D'. Hence, to each disk in P_1 are added its own "satellites". The resulting set is called P_2 .

Now, given any disk D' on P_2 but not on P_1 , add, in the manner above, satellites corresponding to those of D in P_2 ; the result is P_3 .

In general, given P_n , and any disk D' on P_n but not on P_{n-1} , add satellites corresponding to those of D in P_n , and call the result P_{n+1} .

Let *P* be the closure of $\bigcup_{n=1}^{\infty} P_n$ (see the figure). From its definition *P* is clearly closed, bounded, and arcwise connected. To prove that *P* is locally connected, it is sufficient to show ([15], p. 20) that, for every $\varepsilon > 0$, *P* is the union of a finite number of connected sets each of diameter less than ε .

DEFINITIONS. Let f be a map of a topological space A into a topological space B. If, whenever U is open in A, f(U) is open in B, then f is *interior*. If for every y in f(A), $f^{-1}(y)$ is totally disconnected, then f is *light*.

A non-constant meromorphic function is light interior. Conversely, Stoilow ([14], p. 121) proved: If f is a light interior map of a plane region into the sphere S, then f = gh, where h is a homeomorphism, and g is meromorphic.

Proof of Theorem 2.1. We will prove the stronger result that there is no light interior map $f: D \rightarrow S$ having C(f) = P. The proof will use only the following properties (consequences of the Stoilow Theorem) of the maps:

- (1) The set of points at which f is not one-to-one has no limit point in D.
- (2) For each point q in the range of f, the set $f^{-1}(q)$ has no limit point in D.

Suppose there is such a light interior map f. We will show that this assumption leads to a contradiction. Since the range of f is open, it must meet S-P. But, since no point of S-P is in C(f), the range of f includes S-P. Let C be the set of points in D at which f is not one-to-one. Let B be (S-P)-f(C), and let E be

 $f^{-1}(B)$. Observe that, in any set at positive distance from P, the points of f(C) are isolated.

Each q in B has only a finite number of inverse image points (otherwise, from property (2), q would be in C(f)). Let q_1, q_2, \dots, q_n be the points of $f^{-1}(q)$, and let N be a neighborhood of q in B at positive distance from P. Choose mutually disjoint neighborhoods N_i about q_i such that $N_i \subset f^{-1}(N)$ and the restriction of f to N_i is one-to-one (i=1, 2, ..., n). Then $\bigcap_{i=1}^n f(N_i)$ is open, and its complete inverse image consists of n neighborhoods (of $q_1, q_2, ..., q_n$), each of which is mapped homeomorphically onto it. Thus E is a covering space of the base space B, with projection map f, and n, $1 \leq n < \infty$, the number of points in $f^{-1}(q)$, is independent of the choice of q in B ([13], p. 67).

For every ε , $0 < \varepsilon < 1$, let A_{ε} be the open annular region of points in D at distance less than ε from the boundary of D. Since the largest (open) disk of P, call it D_1 , is in C(f), the range of f must meet D_1 . Therefore, there is an open set U_1 and an $\varepsilon_1 > 0$ such that U_1 does not meet A_{ε_1} , and $f(U_1)$ meets both D_1 and S-P(and therefore B).

There is some $m \pi 2^{-k}$ such that the spike at $(1, m \pi 2^{-k})$, which has length 4^{1-k} , with all its attached disks lies entirely within $f(U_1)$. Let D_2 be the largest (open) disk on this spike. Since $D_2 \subset C(f)$, $f(A_{\varepsilon_1})$ meets D_2 , and there is an open set $U_2 \subset A_{\varepsilon_1}$ and an $\varepsilon_2 > 0$, such that $A_{\varepsilon_1} \cap U_2 = 0$, $f(U_2) \subset f(U_1)$, and $f(U_2)$ meets both D_2 and S - P (and therefore B). Since U_1 and U_2 are disjoint, $n \ge 2$.

In general, let open sets U_i and an $\varepsilon_k > 0$ be given such that the U_i are mutually disjoint, $f(U_i) \subset f(U_{i-1})$ (i=1, 2, ..., k), $\bigcup_{i=1}^k U_i$ does not meet A_{ε_k} , and $f(U_k)$ meets both P and B. There is some disk D_{k+1} of P contained in $f(U_k)$. Since $D_{k+1} \subset C(f)$, there is a neighborhood $U_{k+1} \subset A_{\varepsilon_k}$ and an $\varepsilon_{k+1} > 0$, such that $A_{\varepsilon_{k+1}} \cap U_{k+1} = 0$, $f(U_{k+1}) \subset f(U_k)$, and $f(U_{k+1})$ meets both D_{k+1} and B. Since the U_i are pairwise disjoint, and $f(U_{i+1}) \subset f(U_i)$, (i=1, 2, ..., k), we have $n \ge k+1$. Thus n is infinite, and $B \subset C(f)$, contradicting our assumption.

Remark. Let P' be the Peano space obtained from P by replacing each closed disk by its bounding circle, together with one of its diameters. The previous proof also shows that P' is a counter-example. We mention both of them so as to rule out conjectures that might otherwise be made. Observe that S-P is simply connected, and that P' is one-dimensional.

Remark. Consider the following theorem of Rudin [9]. Suppose

- (a) E is a closed subset of the boundary of D, E having Lebesgue measure zero;
- (b) ϕ is a continuous function on E;
- (c) T is a two-cell such that $\phi(E) \subset T$.

Then there exists a function f analytic on D and continuous on \overline{D} such that

- (i) $f(z) = \phi(z)$ for all z in E;
- (ii) $f(\overline{D}) \subset T$.

Let E be a Cantor set (of zero measure) on bdy (D); there is a continuous map ϕ of E onto P ([15], p. 35). Let T_n be a sequence of simply connected regions containing P such that $T_{n+1} \subset T_n$ and $\bigcap_{n=1}^{\infty} T_n = P$, and let f_n be the functions given by the Rudin theorem. Our result implies that, if the (pointwise) limit function f exists, then it is not analytic. On the other hand, P is the intersection of the Peano spaces T_n (e.g., topological disks), each of which *is* the image of the bounding circle under a map f analytic on D and continuous on \overline{D} .

3. The Sufficient Condition

DEFINITION. A non-empty continuum C on the sphere S has Property P if there is a sequence (possibly finite) of simply connected regions $\{U_n\}$ (n=0, 1, 2, ...)such that:

- (1) C is the closure of \bigcup bdy (U_n) ;
- (2) for every positive integer n, there is an integer m < n such that $bdy(U_n) \cap bdy(U_m)$ contains a point p_n accessible from $U_n \cap U_m$;
- (3) if the sequence U_n is infinite, the limit superior of $\{U_n\}$ is contained in C.

THEOREM 3.1. If a continuum C on S has Property P, then C is the global cluster set of a function f meromorphic on D. Moreover, the range of f is $\bigcup U_n$.

Let $d(U_n)$ denote the diameter of the largest circular open set in U_n . (Intuitively, $d(U_n)$ is the width of U_n .) If $d(U_n) \rightarrow 0$, then (3) is satisfied. In particular, if the measure of U_n converges to zero, then (3) is satisfied.

Property P is reasonably natural since any continuum C on S can be represented as the closure of \bigcup bdy (U_n) , where each U_n is a simply connected region. That is, S-C has a finite, or countably infinite, number of components, $\{V_n\}$, each V_n simply connected. The boundary of each V_n is contained in C, and $C-\operatorname{Cl}[\bigcup$ bdy $(V_n)]$ is open in S (Cl [X] denotes the closure of X). If $C-\operatorname{Cl}[\bigcup$ bdy $(V_n)] \neq 0$, then there is a countably infinity set of open disks, $\{D_n\}$, such that each D_n is contained in $C - Cl [\bigcup bdy (V_n)]$, and

$$C - \operatorname{Cl} [\bigcup \operatorname{bdy} (V_n)] \subset \operatorname{Cl} [\bigcup \operatorname{bdy} (D_n)] \subset C.$$

Condition (2) is necessary to eliminate the Rudin example [10] from our class, and (3) to eliminate the author's example of Section 2.

If R is any region, then \overline{R} is a continuum with Property P. Any dendrite has Property P. If C has Property P, and h is a homeomorphism of S onto itself, then h(C) has Property P.

On the other hand, from the author's example of Section 2, not every Peano space, boundary curve, or unicoherent continuum possesses Property P (for definitions, see [15]).

DEFINITION. Two simply connected regions U and V on the sphere S are said to meet properly at p on bdy $(U) \cap bdy(V)$ if p is accessible by an arc in $U \cap V$.

LEMMA 3.2. Let U and V be simply connected regions on the sphere S such that bdy(U) and bdy(V) each contain more than one point,

bdy $(U) \cap$ bdy $(V) \neq 0$, $U \cap V \neq 0$, $U \not\subset V$, and $V \not\subset U$.

Let p_i (i = 1, 2, ..., n) be any finite set of points (of S). Then any component W of $U \cap V$ is a simply connected region such that U meets W properly at a point $q \neq p_i$ (i = 1, 2, ..., n), W meets V properly, and bdy (W) contains more than one point.

Proof. There exist points r in $U \cap V$ and s in V - U, $r \neq p_i$, $s \neq p_i$ (i = 1, 2, ..., n); hence, there is an infinite family of arcs in V, disjoint except that each has r and s as endpoints. Let γ be one of these arcs which does not meet any point p_i (i = 1, 2, ..., n), and let W be the component of $U \cap V$ which contains r. Then γ has a subarc beginning at r which lies entirely in W except for its endpoint q on bdy $(U) \cap$ bdy (W). Thus U meets W properly at q, Similarly, W meets V properly.

DEFINITION. A continuum C on the sphere S has Property P' if

- (1) it has property P;
- (2) there exists some function ϕ mapping the positive integers into the nonnegative integers so that U_n meets $U_{\phi(n)}$ properly at p_n , $\phi(n) < n$; and
- (3) if $n \neq n'$, $\phi(n) = \phi(n')$, and $p_n = p_{n'}$, then $U_n \cap U_{n'} = 0$.

LEMMA 3.3. If a continuum C on S has Property P, then it has Property P'. Moreover, if the simply connected regions given by Property P are denoted by U_n , and those of Property P' by V_n , then $\bigcup U_n = \bigcup V_n$. *Proof.* Given a sequence of simply connected regions $\{U_i\}$ satisfying P, we will construct a sequence of simply connected regions $\{V_i\}$ satisfying P'.

We may assume that the sequence $\{U_i\}$ has no repetitions. Let V_0 be U_0 .

Now suppose that we have defined V_0, V_1, \ldots, V_k to replace $U_0, U_1, \ldots, U_{n-1}$ such that

- (1) For each i (i=0, 1, ..., n-1) there is an integer ϱ (i) $(\varrho$ (i)=0, 1, ..., k) such that $V_{\varrho(i)} = U_i$.
- (2) If $j \ (j=0, 1, ..., k)$ is not in the range of ϱ , then j+1 is, and $V_j \subset V_{j+1}$.
- (3) bdy $(V_j) \subset C$.
- (4) There is a function ϕ mapping the integers 1, 2, ..., k into the integers 0, 1, ..., k-1, so that $\phi(j) < j$ and V_j meets $V_{\phi(j)}$ properly at a point q_j .
- (5) Moreover, if $\phi(j) = \phi(h)$ and $q_j = q_h$, then $V_j \cap V_h = 0$.

Let us call conditions (1) – (5) Property P_{n-1} of V_0, V_1, \ldots, V_k . We will find at most two additional V_j 's so that the enlarged family has Property P_n .

There is an integer m < n such that U_n meets $U_m = V_{\varrho(m)}$ properly at a point p_n , by Property P. Let h (h = 0, 1, ..., k) be maximal such that either V_h and U_n meet properly, or they satisfy the hypothesis of Lemma 3.2. If V_h and U_n meet properly (at y), let U_n be V_{k+1} , h be $\phi(k+1)$, and y be q_{k+1} . Then the family V_0 , V_1 , ..., V_{k+1} has Property P_n (condition (5) is satisfied because of the maximality of h).

If V_h and U_n do not meet properly, let the W given by Lemma 3.2 for $q \neq q_i$ (i = 1, 2, ..., k) be V_{k+1} , U_n be V_{k+2} , k+1 be $\phi(k+2)$ and h be $\phi(k+1)$. Then the set V_0 , V_1 , ..., V_{k+2} has Property P_n .

The sequence $\{V_i\}$ (finite or infinite as the sequence $\{U_i\}$ is finite or infinite) thus constructed satisfies Property P'.

LEMMA 3.4. Let U and V be simply connected (proper) subregions of the sphere S. Let F be a simply connected region bounded by a Jordan curve, bdy (F) containing a point p of bdy (U) \cap bdy (V), $\overline{F} - \{p\}$ in $U \cap V$. Then there is a finite-to-one interior map g of U onto $U \cup V$ such that:

- (1) The map g is the identity on U-F.
- (2) (a) If bdy (V) = {p} and Γ is any arc ending at p, then there exists ε>0 and an open set F', F' ⊂ F ∪ {p}, such that g maps F' homeomorphically onto S (p, ε) Γ.
 (b) If bdy (V) is not a single point, then given any y on bdy V, there exists ε>0 and an open set F', F' ⊂ F ∪ {p}, such that g maps F' homeomorphically onto V ∩ S (y, ε).

- (3) If $\{x_k\}$ is a sequence in F converging to p, and if $g(x_k)$ converges to y, then y is on bdy (V).
- (4) If {y_k} is a sequence in V converging to a point y on bdy (V), then there is a sequence {x_k} in F with g (x_k) = y_k and x_k converging to p. Moreover, any such sequence {x_k} in F converges to p.

Proof. Suppose that S, viewed as the extended plane, has been assigned polar coordinates. There is no loss of generality in assuming that F is the hemisphere $0 < r < \infty$, $0 < \theta < \pi$, and p is infinity. Let g' be the finite-to-one interior map of U onto S which is the identity on U - F and on F sends (r, θ) into $(r, 5\theta)$. If bdy (V) is a single point (i.e., $V = S - \{\infty\}$), let g be g'.

If bdy (V) is not a single point, let A and A' be the great circle arcs $r \ge 0$, $\theta = 0$ and $\theta = \pi$, respectively. Let R, R', and R'' be the open sectors $0 < \theta < 2\pi/5$, $2\pi/5 < \theta < 4\pi/5$, and $4\pi/5 < \theta < \pi$ in F, respectively. The map g' sends R and R'homeomorphically onto S - A, and R'' homeomorphically onto F. We will construct an orientation-preserving homeomorphism h of $S - \{\infty\}$ onto V such that h is the identity on $A - \{\infty\}$. Then g will be g' on $U - (R \cup R')$ and hg' on $\overline{R} \cup \overline{R'}$.

Let a_1 be the arc r=1, $0 \le \theta < \frac{1}{2}\pi$, b_1 the segment $\theta = 0$, $-1 \le r \le 1$, and c_1 the arc r=1, $\frac{1}{2}\pi \le \theta \le \pi$. Let D_1 denote the open upper half unit disk, and D_2 the lower one. There is a homeomorphism r of \overline{D}_1 onto the closed rectangle bounded by x=0, x=-1, y=0, and y=1, which maps b_1 onto the x-axis between x=-1 and x=0, and c_1 onto x=-1 between y=1 and y=0. Let s be the map of this closed rectangle onto the closed triangle bounded by the x- and y-axes, and by the line x-y+1=0, given by s(x, y) = (x, y(1+x)). There is a homeomorphism t of this closed triangle onto \overline{D}_1 which maps the x-axis between x=-1 and x=0 onto b_1 .

Let u be the homeomorphism of \overline{D}_1 onto the quarter sphere $r \ge 0$, $\frac{1}{2}\pi \le \theta \le \pi$, given by $u(z) = (z-1)(z+1)^{-1}$. Let S_1 be the open hemisphere r > 0, $0 < \theta < \pi$, and let S_2 be r > 0, $-\pi < \theta < 0$. Let v be the homeomorphism of the quarter sphere onto \overline{S}_1 given by $v(r, \theta) = (r, 2\theta - \pi)$. Let w_1 be the composition vutsr of these functions in order, and let w_2 be the analogous map, defined by reflection, of \overline{D}_2 onto \overline{S}_2 . The map w_i (i=1, 2) is a homeomorphism of D_i onto S_i , of a_i onto A and of b_i onto A', which maps c_i into $\{\infty\}$.

Now, some great circle through the origin and infinity meets bdy(V) in a point other than infinity, since bdy(V) contains more than one point. There is an arc A''on the great circle, A'' beginning at the origin, ending at a point $q \neq \infty$ of bdy(V), and lying entirely in V except for q. Then A and A'' meet only in the origin, and $V-(A \cup A'')$ has two simply connected components. Let V_1 be the component for which $\theta > 0$ and r > 0, and let V_2 be the other component. Let x_i (i=1, 2) be a conformal map of the open unit disk D onto V_i . Let a'_i , b'_i , and c'_i be the arcs corresponding to $A - \{\infty\}$, $A'' - \{q\}$, and bdy $(V_i) \cap$ bdy (V), respectively, under the Caratheodory [1] correspondence of prime ends. There is a homeomorphism y_i of \overline{D}_i onto \overline{D} mapping a_i onto a'_i , b_i onto b'_i , and c_i onto c'_i so that $y_i x_i w_i^{-1}$ (defined on $\overline{S}_i - \{\infty\}$) is the identity on $A - \{\infty\}$ and maps $A' - \{\infty\}$ onto $A'' - \{q\}$ as a transformation of similitude. The homeomorphism h of $S - \{\infty\}$ onto V is $y_i x_i w_i^{-1}$ on $\overline{S}_i - \{\infty\}$ (i=1, 2).

The reader may verify that g is a finite-to-one interior map satisfying (1), (3), and (4). For (2), (in the case $bdy(V) \neq \{\infty\}$) suppose first that y is not infinity. Choose $\varepsilon > 0$ so that $A \cap S(y, \varepsilon) = 0$. Since g = hg' maps R homeomorphically onto V - A,

$$F' = g^{-1} \left(S \left(y, \ \varepsilon \right) \cap V \right) \cap R$$

will suffice. Suppose that y is infinity. Then g' maps the open sector R^* , $\pi/5 < \theta < 3\pi/5$ in $\overline{R} \cup \overline{R}'$, homeomorphically onto S - A'. But h maps S - A' homeomorphically onto V - A''. Choose $\varepsilon > 0$ so that $S(\infty, \varepsilon) \cap A'' = 0$, and let

$$F' = g^{-1} \left[S\left(\infty, \ \varepsilon
ight) \cap V \right] \cap R^*$$

PROPOSITION 3.5. If a continuum C possesses Property P, then there is a light interior map f of D into the sphere S such that C is the global cluster set C(f). The range of f is $\bigcup U_n$.

Proof. By Lemma 3.3, C thus has Property P'. Let $\{U_j\}$, $\{p_j\}$, and ϕ be the associated open sets, points, and function. For each j > 1, p_j on bdy $(U_j) \cap$ bdy $(U_{\phi(j)})$ is accessible by an arc in $U_j \cap U_{\phi(j)}$; let Γ_j be one such arc. As before, A_ε will denote the annular region $1 - \varepsilon < |z| < 1$.

Let f_0 be a homeomorphism of D onto U_0 . If the sequence consists of U_0 alone, then f_0 is f. Otherwise, about Γ_1 we can form a simply connected region F_1 , bdy (F_1) a Jordan curve containing p_1 , $\overline{F}_1 - \{p_1\}$ in $U_0 \cap U_1$. Let g_1 be the finite-to-one interior map of U_0 onto $U_0 \cup U_1$ given by Lemma 3.4. Let $f_0^{-1}(F_1) = E_1$, and let $f_1 = g_1 f_0$.

In general, suppose that we have constructed a set of functions $f_0, f_1, \ldots, f_{n-1}$ such that:

- (1) Each f_j is a finite-to-one interior map of D onto $U_0 \cup U_1 \cup \ldots \cup U_j$.
- (2) There exist open sets E_j , E_j in $A_{1/j}$ (except for E_0 and E_1), such that $f_{j+1} = f_j$ on $D E_j$; E_0 is D.

- (3) The closure of E_j in D is contained in E_{φ(j)}, and f_{φ(j)} (and f_{j-1}) maps E_j homeomorphically onto a simply connected region F_j, bdy (F_j) a Jordan curve containing p_j, F_j {p_j} in U_j ∩ U_{φ(j)}.
- (4) If for some positive integer h, $k = \phi^h(j)$, where ϕ^h is the *h*th iteration of ϕ , then $\overline{E}_j \cap D \subset E_k$; otherwise, $\overline{E}_j \cap \overline{E}_k \cap D = 0$. If $\phi(j) = \phi(m) = k$, then $\overline{F}_j \cap \overline{F}_m$ is 0 or $\{p_j\}$.
- (5) (a) If bdy (U_j) = {p_j} and Γ is any arc ending at p_j, then there exist ε > 0 and an open set E, E ∩ D ⊂ E_j, such that f_j maps E homeomorphically onto S (p_j, ε) Γ. (b) If bdy (U_j) is not a single point, then, given any point p on bdy (U_j), there exists ε > 0 and an open set E, E ∩ D ⊂ E_j, such that f_j maps E homeomorphically onto U_j ∩ S (p_j, ε).
- (6) The function f_j maps E_j onto U_j so that if {x_k} is a sequence in E_j, |x_k|→1, and f_j (x_k)→y, then y ∈ bdy (U_j). Conversely, if {y_k} is a sequence in U_j converging to a point y on bdy (U_j), then there exist x_k in E_j such that f_j (x_k) = y_k. Moreover, for any such x_k, |x_k|→.1

Call properties (1)-(6) Property Q_{n-1} of $f_0, f_1, \ldots, f_{n-1}$. The function f_0 possesses Q_0 . We will prove that, if $f_0, f_1, \ldots, f_{n-1}$ satisfy Q_{n-1} , then there exists f_n such that f_0, f_1, \ldots, f_n satisfy Q_n . (The function f_1 was constructed separately for purposes of clarity, and we will not use the fact that f_0, f_1 satisfy Q_1 in the succeeding argument).

The set $\Gamma_n - \{p_n\}$ is contained in $U_n \cap U_{\phi(n)}$, and p_n is on bdy $(U_n) \cap$ bdy $(U_{\phi(n)})$. There exists $\delta > 0$ such that $S(p_n, \delta) \cap U_{\phi(n)}$ is disjoint from each \overline{F}_m having m < n, $\phi(m) = \phi(n)$, and $p_m \neq p_n$. By Property P', if m < n, $\phi(m) = \phi(n)$, and $p_m = p_n$, then $U_m \cap U_n = 0$. Thus $S(p_n, \delta) \cap U_{\phi(n)} \cap U_n$ is disjoint from each $\overline{F}_m - \{p_m\}$ having m < nand $\phi(m) = \phi(n)$.

If bdy $(U_{\phi(n)})$ is a single point $\{p_n\}$, let Γ be any arc ending at p_n such that $\Gamma \cap \Gamma_n = 0$. There exists ε given by $Q_{\phi(n)}$ (5 (a)), such that $0 < \varepsilon \leq \delta$, and

$$S(p_n, \varepsilon) - \Gamma \subset f_{\phi(n)}(E \cap A_{1/n}),$$

by $Q_{\phi(n)}$ (6). The arc Γ_n has a subarc Γ'_n containing p_n , Γ'_n in $S(p_n, \varepsilon)$. Thus, there is a simply connected region F_n such that bdy (F_n) is a Jordan curve containing p_n , and $\overline{F}_n - \{p_n\}$ is in $[U_n \cap S(p_n, \varepsilon)] - \Gamma$.

If bdy $(U_{\phi(n)})$ is not a single point, there exist ε and E given by $Q_{\phi(n)}$ (5(b)), such that $0 < \varepsilon \leq \delta$ and

$$S(p_n, \varepsilon) \cap U_{\phi(n)} \subset f_{\phi(n)}(E \cap A_{1/n}),$$

by $Q_{\phi(n)}$ (6). The arc Γ_n has a subarc Γ'_n in $S(p_n, \varepsilon)$. Thus, there is a simply connected region F_n such that bdy (F_n) is a Jordan curve containing p_n , and $\overline{F}_n - \{p_n\}$ is in

$$U_{\phi(n)} \cap U_n \cap S(p_n, \varepsilon)$$

Let g_n be the finite-to-one interior map of $U_{\phi(n)}$ onto $U_{\phi(n)} \cup U_n$ given by Lemma 3.4. Let

$$E_n = (f_{\phi(n)}^{-1}(F)) \cap E.$$

$$\overline{E}_n \cap D \subset E_{\phi(n)} - \bigcup_{j=\phi(n)+1}^{n-1} (\overline{E}_j \cap D),$$

from the construction of E_n and from Q_{n-1} (4), we have $f_{n-1} = f_{\phi(n)}$ on $\overline{E}_n \cap D$. Let $f_n = g_n f_{n-1}$ on E_n , $f_n = f_{n-1}$ elsewhere. Then f_1, f_2, \ldots, f_n clearly satisfy Q_n ((2), (3), and (4)) by Q_{n-1} and the construction of f_n .

To prove that f_n is a finite-to-one interior map, observe that f_n is $g_n f_{n-1}$ on E, and is f_{n-1} on $D - \overline{E}_n$ (g_n is the identity on $U_{\phi(n)} - F_n$). Since f_{n-1} and g_n are finite-to-one interior, f_n is finite-to-one interior on E, and on $D - \overline{E}_n$. But E and $D - \overline{E}_n$ are open sets whose union is D, so f_n is finite-to-one interior on D, giving Q_n (1).

Given p on $bdy(U_n)$ (or, if $bdy(U_n) = \{p_n\}$, given an arc Γ ending at p_n), let $F' \subset F_n$ be the set (given by Lemma 3.3) on which g_n is a homeomorphism. The function f_{n-1} maps E_n homeomorphically onto F_n . Since f_n is $g_n f_{n-1}$ on E_n , let E be

giving Q_n (5).

Since

$$f_{n-1}^{-1}(F') \cap E_n$$

For (6), suppose that $\{x_k\}$ is a sequence in E_n , with $|x_k| \rightarrow 1$, and $f_n(x_k) \rightarrow y$. Since $E_n \subset E_{\phi(n)}$, $f_{\phi(n)}(x_k)$ has all its limit points on bdy $(U_{\phi(n)})$ by Q_{n-1} (6). But $f_{\phi(n)}(E_n) = F_n$, and $\overline{F}_n \cap \text{bdy}(U_{\phi(n)})$ is the point p_n . Also $f_{n-1} = f_{\phi(n)}$ on E_n . Thus, $f_{n-1}(x_k) \rightarrow p_n$. Now, applying Lemma 3.4, if $g_n(f_{n-1}(x_k)) \rightarrow y$, then y is on bdy (U_n) . Since f_n is $g_n f_{n-1}$ on E_n , we have the desired result.

Conversely, suppose that $\{y_k\}$ is a sequence in U_n converging to y on bdy (U_n) . From Lemma 3.4, there is a sequence $\{w_k\}$ in F_n such that $g(w_k) = y_k$ and $w_k \rightarrow p_n$. But F_n is contained in $U_{\phi(n)}$, and p_n is on bdy $(U_{\phi(n)})$. The function $f_{\phi(n)}$ maps E_n homeomorphically onto F_n , so there exist x_k in E_n such that $f_{\phi(n)}(x_k) = w_k$. By $Q_{\phi(n)}$ (6), since $E_n \subset E_{\phi(n)}$, $|w_k| \rightarrow 1$. But $f_{n-1} = f_{\phi(n)}$ on E_n , and $f_n = g_n f_{n-1}$ there, so that $f_n(w_k) \rightarrow y$.

Thus, there exists a sequence of functions $\{f_n\}$, corresponding with $\{U_n\}$ such that, for each n, f_0 , f_1 , ..., f_n satisfy Q_n .

If $\{U_n\}$ is a finite sequence of m+1 sets, then let f_m be f. The map f is light interior by $Q_m(1)$, and

$$C(f) = bdy(U_0) \cup bdy(U_1) \cup \cdots \cup bdy(U_m) = C.$$

Thus, we may assume that the sequence $\{U_n\}$ is infinite. Let f be $\lim_{n\to\infty} f_n$. Given any z in D, choose a positive integer N so that z is in $D - \bar{A}_{1/N}$. Since $E_n \subset A_{1/N}$, for all $n \ge N$, by Q_n (2), $f_N = f$ on some neighborhood V of z. Since f_N is interior on V, and since z is arbitrary, f is interior. Let y be in the range of f, and let $z \in f^{-1}(y)$. Choose N and V as before. Since f_N is finite-to-one, $f^{-1}(y) \cap V$ is finite. Since z is arbitrary, $f^{-1}(y)$ consists of isolated points; thus f is light.

To prove that $C \subset C(f)$, it is sufficient to prove that, given any y in bdy (U_n) , there is a sequence $\{z_k\}$ in D, $|z_k| \to 1$ such that $f(z_k) \to y$.

Let $\{U_{n_i}\}$ denote those U_m 's such that $\phi(m) = n$, and let $F_{n_i} = f_n(E_{n_i})$, as before. If S(y, 1/k) is disjoint from all the F_{n_i} , let y_k be any point of $S(y, 1/k) \cap U_n$. If S(y, 1/k) meets some F_{n_i} , and if $p_{n_i} \neq y$, then there exists p in $S(y, 1/k) - F_{n_i}$ and q in $S(y, 1/k) \cap F_{n_i}$. There is some arc γ in S(y, 1/k) which joins p and q and is disjoint from p_{n_i} . Thus γ contains a point, call it y_k , of bdy $(F_{n_i}) \cap U_n$. If $i \neq j$, then $\overline{F}_{n_i} \cap \overline{F}_{n_j}$ is 0 or the point p_{n_i} , by Q_k (4) (k = 1, 2, ...), so that y_k is not in any F_{n_i} . Lastly, if S(y, 1/k) meets some F_{n_i} with $p_{n_i} = y$, then the Jordan curve bdy (F_{n_i}) meets S(y, 1/k) in a point y_k not p_{n_i} . Thus, again, y_k is in U_n , and not in any F_{n_i} .

Thus, each y_k is in

$$f_n (E_n - \bigcup_{i=n+1}^{\infty} E_i),$$

so there exists x_k , $|x_k| \rightarrow 1$, with $f_n(x_k) = y_k$, by Q_n (6). But $f = f_n$ on

$$E_n - \bigcup_{i=n+1}^{\infty} E_i,$$

so y is in C(f). Hence, $C \subseteq C(f)$.

Let y be any point of

$$C(f) - \bigcup_{n=0}^{\infty} \mathrm{bdy}(U_n).$$

There is a sequence z_k in D, $|z_k| \rightarrow 1$, such that $f(z_k) \rightarrow y$. Since f agrees with f_n on

$$E_n - \bigcup_{i=n+1}^{\infty} E_i$$

$$f(E_n - \bigcup_{i=n+1}^{\infty} E_i) \subset U_n$$

 $(n=0, 1, ...), y \in \lim \sup U_n$. By condition (3) of Property P, $C(f) \subset C$; hence, C(f) = C.

LEMMA 3.6. If a continuum C on the sphere S is the global cluster set C(f) of a light interior map f of D into S, then there is a meromorphic function F on D such that C(F) is C. The range of F is the range of f.

Proof. In the special cases where C is a single point p or is S, we use $F(z) \equiv p$ or $F(z) = \exp[(z-1)^{-3}]$, respectively (see [13], p. 25). By the theorem of Stoilow ([14], p. 121), f = gh, where h is a homeomorphism, and g is meromorphic. The domain G of g is simply connected. If G is the plane, then either infinity is a removable singularity or a pole, and C(f) is a single point; or infinity is an essential singularity, and C(f) is S. Since we may assume that C is neither S nor a single point, there is a conformal map h' of D onto G. The desired map F is gh'.

Theorem 3.1 is an immediate consequence of Proposition 3.5 and Lemma 3.6.

COROLLARY 3.7. If a continuum C on S possesses Property P, with no U_n containing infinity, then C is the global cluster set of an analytic map.

Remarks. A slightly weaker sufficient condition results if (1) and (3) of Property P are replaced by: C is the closure of

 $[\bigcup bdy (U_n)] \cup [\lim sup (U_n)].$

In a later paper the author will discuss two natural questions:

- (1) Is property P a necessary condition?
- (2) What is a necessary and sufficient condition [2] for a continuum C on S to be the image of bdy (D), under a function f meromorphic on D and continuous on \overline{D} ?

References

- [1]. C. CARATHEODORY, Über die Begrenzung einfach zusammenhängender Gebiete. Math. Ann., 73 (1913), 323-370.
- [2]. P. T. CHURCH, Boundary images of meromorphic functions. Notices Amer. Math. Soc., 5 (1958), 603 (Abstract 549–18).

- [3]. E. F. COLLINGWOOD & M. L. CARTWRIGHT, Boundary theorems for a function meromorphic in the unit circle. Acta Math., 87 (1952), 83-146.
- [4]. W. GROSS, Über die Singularitäten analytischer Funktionen. Monatschr. f
 ür Math., 29 (1918), 1–47.
- [5]. G. R. MACLANE, On the Peano curve associated with some conformal maps. Proc. Amer. Math. Soc., 6 (1955), 625-630.
- [6]. M. MORSE, Topological methods in the theory of functions of a complex variable. Princeton, 1947.
- [7]. G. PIRANIAN, C. J. TITUS, & G. S. YOUNG, Conformal mappings and Peano curves. Michigan Math. J., 1 (1952), 69-72.
- [8]. D. B. POTYAGAILO, On the set of boundary values of meromorphic functions. Dokl. Akad. Nauk. SSSR, 86 (1952), 661-663 (Russian).
- [9]. W. RUDIN, Boundary values of continuous analytic functions. Proc. Amer. Math. Soc., 7 (1956), 808-811.
- [10]. —, On a problem of Collingwood and Cartwright. J. London Math. Soc., 30 (1955), 231-238.
- [11]. R. SALEM & A. ZYGMUND, Lacunary power series and Peano curves. Duke Math. J., 12 (1945), 569-578.
- [12]. A. C. SCHAEFFER, Power series and Peano curves. Duke Math. J., 21 (1954), 383-389.
- [13]. N. R. STEENROD, The Topology of Fiber Bundles. Princeton, 1951.
- [14]. S. STOILOW, Leçons sur les principes topologiques de la théorie des fonctions analytique. Second edition, Paris, 1956.
- [15]. G. T. WHYBURN, Analytic Topology. New York, 1942.

Received February 6, 1960