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In this work we study the relations connecting a solution of the Navier-Stokes

equations

HAW—poW-TW—Vp=0
vV -w=0,

(1)

(*) This investigation was supported by the Office of Naval Research.
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with the values achieved by the solution on the boundary of the region of definition,
and with the magnitudes of certain energy integrals which are associated naturally
with the solutions of (1).

The notation in (1) is the usual one of vector analysis. Each of the quantities
which appears admits a simple physical interpretation. The solution w(x) can be inter-
preted as the velocity field of an incompressible fluid motion, and p(x) is then the
associated pressure. The constant w is the viscosity coefficient of the fluid, and the
term u Aw denotes accordingly the shearing force on a unit volume due to relative
motion at a fluid interface. ¢ denotes the density of the fluid, ¢ w- V w the inertial
reaction of a unit volume, and Vv p is the force per unit volume acting normal to a
fluid interface. The first equation expresses the equilibrium of these forces at points
of the flow; the second expresses the assumption that p is constant in the motion.

Because of the difficulty in integrating (1) in a general case, it is natural to
consider the linear equations satisfied by the perturbations of a particular solution.

The simplest of these are the Stokes equations

pAW=Vp=0 (2)
Vew=0

which correspond to the identically vanishing solution of (1). A major task of the
present work will be to examine the connection between the solutions of (2), and the
solutions of (1) which correspond to small boundary data.

The system (2) has been studied in considerable detail by Odqvist [11], who
proved the existence of a Green’s Tensor for an arbitrary region. Odqvist used this
tensor to obtain an integral equation for the solutions of (1), and this equation led
in turn to a proof of existence of a solution of (1) in a finite region {, corresponding

to prescribed data w* on the boundary 2 which satisfy the (necessary) condition
§ w*ndS=0 (3)

(n=unit exterior direct normal), provided only that |w*| is everywhere sufficiently
small ([11], see also [10]).

The first general study of (1) for arbitrary prescribed data is due to Leray [8].
Leray derived  general a priori estimates on the solutions of (1), depending only on 2
and on the boundary data. He applied these estimates, using a device which is now

classical but which was at that time not yet clearly formulated, to prove the exist-
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ence of at least one solution of (1) in G corresponding to arbitrary (sufficiently
smooth) data w* on 2. The solution is obtained by a continuous deformation in
function space, starting with the solution of (2) given by Odqvist, and essential use
is made of Odqvist’s integral equation and of his estimates on the Green’s Tensor.

From a physical point of view the problem just discussed has little meaning,

* =0, and in this case one sees easily that

since the natural boundary condition is w
the only solution of (1) in G is w = 0. Of more interest is the exterior problem, in
which a solution is sought which assumes data w* on 2 and which tends to a given
constant vector W, at infinity. In this case, however, new difficulties arise. Experi-
mental evidence indicates that, at least for large prescribed data, the solution either
does not exist or is unstable. For the linear system (2), it is known that no solution
exists in two dimensions.(!) In three dimensions, the solution exists but is known to
violate, in a mneighborhood of infinity, the assumptions under which the equations were
derived (see, e,g. [12, p. 165]). Also for the strict equations (1) there is evidence
that solutions may exhibit pathological behavior at infinity. An example in two di-
mensions is discussed in § 6 of this paper. Nevertheless, Leray succeeded in constructing,
for arbitrary prescribed data in three dimensions, a solution of (1) in the exterior &
of 2 which equals wW* on 2, for which the Dirichlet Integral is finite, and which
tends to w, in the sense of an integral norm. Leray also obtained a priori estimates
on the solution which are valid in any compact subregion of E.

The behavior of the solution at infinity has been discussed in some detail in [1]
and in [2). In [1] we have proved that the solution of Leray (more generally any
solution with finite Dirichlet Integral) necessarily tends to a limit in the strict sense
as X-—>oco, and a representation of the solution by means of an integral equation is
obtained. In [2] we discuss solutions which need not have finite Dirichlet Integral.
We show there that whenever w—w, at infinity, then necessarily all first order
derivatives of W tend to zero. If, in addition, |w—w,|<Cr *° for some &> 0, then
w(x) has the same asymptotic structure at infinity as the corresponding solution of
the system obtained by linearizing (1) about the solution w = w,. In particular,

-1

|W—wy|<Cr™' and there exists a paraboloidal “wake” vegion outside of which

<Cr7% It is not known however whether there exist solutions which exhibit

IW“WO

the assumed rate of decay to w, at infinity.

(1) See, e.g., [4]. An improved discussion of this phenomenon will appear in a forthcoming work
of I. D. Chang and the author.
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The crucial step in the method of Leray consists in obtaining an a priori bound
for the Dirichlet Integral(l) of any possible solution, depending only on boundary
data. Leray proved the existence of such a bound, and also gave an independent
demonstration which yiélded an explicit estimate (?). In § 2 of this paper we obtain
a bound for the Dirichlet Integral by a method which derives conceptually from that
of Leray. Our result is a slight improvement on that of Leray, in the sense that
we do not insist that the outflow integral (3) vanish, but merely require it to be
sufficiently small. The demonstration we give uses a technical device due to E. Hopf [5}
which, we believe, simplifies and clarifies the reasoning considerably.

In §3, we apply the bounds on Dirichlet Integral in order to obtain a-priori
estimates on any possible solution and on its first derivatives, depending only on
prescribed data. In the case of a finite region §, these bounds are essentially those
of Leray. For the region £ exterior to 2, we improve the results of Leray by giving
estimates which are uniformly valid throughout the flow region.

We show in § 4 that solutions with finite Dirichlet Integral are necessarily con-
tinuous at infinity. We present here a proof which' is more elementary than the one
we have given in [1]. In §5 we prove the existence of a solution corresponding to
prescribed boundary data. Again the result is essentially that of Leray when the
region is finite. The new features in the other case are that the solution is shown
to attach continuously to the prescribed value at infinity, that some outflux is per-
mitted, and that uniform bounds are available for the solution and its derivatives.

The principal new results of this paper are presented in § 7. Here we study the
manner in which the solutions of (1) transform into those of (2) as the prescribed

data tend to zero. Precisely, we consider data of the form Aw*, Aw, 0<i<1l.(3)

(1) This integral can be interpreted physically as half the sum of the rate at which energy is
converted into heat by the fluid, and the total vorticity in the flow.

(?) Another proof of the existence of a bound, based on an inequality of Sobolev, has been
given by O. A. Ladyzhenskaia [7]. The method of Leray, besides yielding an explicit estimate, is
intrinsically simpler and more elementary. .

(?) Equivalently, we could keep the boundary data fixed and let u — oo or ¢ — 0. In the formez
case we would find | w (x; ) — W,y (z) | <C/u in a bounded region, and

Jw (w3 @) — Wl | <Cip tr e p™

in an exterior region. The estimate for a bounded region can be obtained also from the work of Od-
qvist [11]. The emphasis in the present paper is on the behavior of the solution in a neighborhood
of infinity, to which the methods of Odqvist do not seem to apply.
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We prove that if w(x; 1) is a solution of (1) with these data and if W (x) is the
solution of (2) with data w*, w, then |A 'w(x; 1) — W, (X)|=0(4) when the region is
finite, and A7 w(x; A) — Wy (x)|=0(/Ar'+2) in the case of an infinite region. (%)
Analogous estimates for the derivatives are also given. Thus, we see that the solu-
tions of (2) in an exterior region are uniformly close to the corresponding solutions
of the Navier-Stokes equations (1), even though the perturbation from the latter
solutions to the former is singular in this region. These considerations are applied to
a discussion of the force exerted on I by the fluid. and an estimate is given for
the error incurred by using the solution of (2) to calculate the force. The demonstra-
tions are straightforward, but lean heavily on the developments in the earlier sections
of the paper.

In the final section we improve the classical uniqueness theorem for (sufficiently
small) solutions in a finite region § by showing that this result can be given in an
a priori formulation, depending only on boundary data. (The classical result assumes
a knowledge of one solution in the entire region, see, e.g. [16].) We obtain this
theorem as a special case of a more general result, that the difference of two suffi-
ciently small solutions w; (x) and w,(X) can be bounded uniformly in § in terms of
the solution of the linear equations (2) with boundary data equal to wy(X)—w,(xX).
To our knowledge, this is the first result on continuous dependence of the solutions
of (1) on boundary data to be published.

The chief concern of this paper is with solutions of the system (1) in three di-
mensions. Those of our results which pertain to solutions in a finite region are pre-
sumably valid also in the corresponding two dimensional case, but a rigorous proof
requires certain general estimates which are not yet available. The behavior of a two
dimensional solution at infinity appears to present difficulties of a more profound
nature, and a precise discussion must probably await the development of new

methods.

1. Notation and definitions; preliminary estimates; the representation formula

We consider a vector field w(X), W= (w,, w,, w;), which is defined in a region
G of three dimensional Euclidean space, X = (x;, ¥y, #3). Such a field is said to be a

solution of the Navier-Stokes equations,

(*) The origin of coordinates is assumed interior to X. The result implies, in particular, the
uniform inequality | W (X; 1) - W, (x)|<C Vl in £4+X.
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HAW—0oW-VW—Vp=0 (1)
v-w=0

in ¢ whenever there exists a scalar field p(x) in §, such that (1) is satisfied through-
out G by the pair (w, p). It is assumed that w(x) and p(x) are sufficiently smooth
that all quantities entering in (1) are defined and continuous throughout §. The
vector field w(x) and scalar p(x) have the physical significance of velocity and pres-
sure, respectively. We have found these interpretations helpful in providing motiva-
tion and suggesting methods, but they are of course unnecessary for the formai
mathematical developments. In order to simpliy notation we shall normalize (1) so
that g =p=1. This can always be achieved by multiplication of w and of p by ap-

propriate constant factors. Equations (1) then take the form

AW—W-VW—Vp=0 (4)
vV -w=0. ‘

Since most of our results are valid for every value of the Reynold’s number, () this
normalization entails no loss of generality. In §7 we shall permit the Reynold’s
number to vary, but we shall effect this by varying the boundary values of the
velocity field and keeping all other parameters constant. '
A vparticular solution of (4) is the uniform flow, w = w, = const. The perturbations

of this solution are solutions of the linear system,

AW—Wy VW=V p=0 (5)
V- -w=0,

the equations of Oseen. In the case wy,=0, we obtain the eguations of Stokes,

Aw—Vp=0 ' (6)
vV -w=0.

We shall need a fundamental solution temsor ¥ (X,y) associated with (5). Such a
tensor has been determined explicitly by Oseen [12, p. 34]. It can be obtained from

the relations,

(1) The Reynold’s number is defined by the relation R=gUL/u, where U and L denote a
characteristic speed and length in the flow. For a discussion of the role played by this quantity in
the theory of (1) and in experimental observation, see, e.g. [6].
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The tensor x = (X;) and vector = (y;) become singular at x=y in such a way that

. O X , O
S =1 8 — (222 + 22 0. d S, 8
ik rl_I)I[I) Er{ll)k )ig (890, o2, Ny O Oy (8)
where 2, denotes the surface of a sphere of radius r about X as center and n=(n;)
is the unit exterior directed normal on 2,. For fixed 4, the column vectors X; de-
fine, as function of X, a solution of (5) with y, as corresponding pressure. As func-

tion of y, %; defines a solution of the adjoint system,

AW+Wy  VW—Vp=0 9
vV -w=0.

In the case w,=0, the tensor (¥;) takes a particularly simple form. We then have

~1[0y; | (@i—wy) (@ —y;) 5 — Y
iq — ——— — - a P T T T . 10
%y Sn{rw+ 5 e (10)

We define the stress tensor Tw by the relation

geuy %> (11)

TW) = — 08, + [ —

( W)u pazi+<axj +8x,
Formal integration by parts leads to the relations, valid for any divergence-free vector
fields u(x) and v(x) and associated scalars p(x), ¢(x) defined in a region G with

boundary 2,

f u-(Au—Vp)dV+2f
g

(def )2 dV = 3§ u-Tuds (12)
G x

f [ (AV—Vg)—V-(Au—Vp)dV= % (u-Tv—-v-Tu)d s,
G p>
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where def u=13 (2w;/éx;+0u;/éx) is the deformation temsor associated with the mo-
tion. (1) These identities are to be understood in the sense that w-7 v=wu (T v);n
and summation is extended over repeated indices.

From (8) and (12) we obtain the representation, valid for any solution of (4) in G,
w(x) = § W Ty—y-Tw+(x W) (W, -n)}dSy+ f X (W—Wp)-VwdVy, (13)
p> g

where 7'y is formed by interpreting the componénts of ¢ as pressures. One sees
easily that, conversely, any vector field w(x) which satisfies (13) is a solution of the

Navier-Stokes equations (4). We find similarly a relation for the pressure,

)= §_ (0T =T (pow (wo-n>}dsy+fg b (W) vWdVy, (14

where we have introduced a ‘“pressure” p* = [WO -V (Tixy)] corresponding to the vector
Y (x, y).

We collect here some elementary properties of the tensor y (x, y) for later re-
ference. In what follows, we assume (without loss of generality) that the vector w,
is directed along the positive z;-axis. We denote by ¢ the (polar) angle made by a
ray which starts from the point x, with the positively directed x;-axis, and by r the
distance from X to a point y of this ray. We present the estimates for y (X, y) as
function of y for fixed x. Considered as function of x, all estimates for ¥ (x, y) re-
main true if ¢ is replaced by (z—¢). Since % is a function only of (y—x), we may
assume that X is the origin of coordinates. Letting || denote an upper bound for

the magnitudes of all components of ¥, we then have for some positive constant C,

11—e
i) as r =+ oo, <(C-
) lxl<Cl——:
|v l<01_6708~686—63f
X (68)% pt?

where s=r+y,=r(L+cos @), and o=}|W,|,

ii) for any integer N >0, the Nth derivative x™ of y in any direction satisfies

the inequality |%™|<Cr ¥**® uniformly in ¢ for sufficiently large 7,

(*) Throughout this paper, we denote volume integrals by j‘ ... dV, and integrals over closed
surfaces by fﬁ .. ds.
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iii) for a spherical surface 2 of radius R and center at X, there holds
b Ixlas<c, fﬁ |Ty|ds<C,
J Zp Zr

ff; |vxld8<0R-%,f§ |x[fdS<CR™,
Zr Zr

1

iv) in a neighborhood of the singular point x=y, |y|<Cr ™" |vy|<Or 2

Property iv) follows immediately from the definition (7) of ¥ (X, y). Property
ii) is obtained from a generalization of property i) to higher derivatives. Property
iii), except for the estimate on Ty, follows easily from property i). Property i) is
obtained by tedious but formal computation, starting from (7). We omit details. The

analogous estimates for ) (x, y) are obvious. We have, in fact, Y (z, )=V (r""). The

estimate in iii) for f |Tx|d8 follows from this and from the estimate for
Zr

J | V¢ |d8S. Some further estimates on ¥ (X, y) are included in [2]. We have given
Zr

here only those which are necessary in the present context.

We shall deal with solutions w(x) of (4) which are defined in a bounded region G,
and with solutions defined in a region £ which contains a neighborhood of infinity.
In either case we denote the boundary of the region by 2. 2 is to consist of a finite
number of closed, connected component surfaces. By a smooth surface 2 we shall
mean a surface which admits in a neighborhood of each of its points a parametric
representation by means of functions which have continuous derivatives of all orders
entering in the context. Although in most cases slightly weaker assumptions will suf-
fice, we will be safe to assume that these functions are of class C®. Correspondingly,
we will usually assume that the boundary values w* of w are of class C® when
considered as functions of the same parameters.

Throughout this paper the symbol ¢ will be used to denote a positive constant,
the value of which may however change even within a given context. Thus, from
the relation < C(1+a®) we may conclude f<Ca® for all o>1.

2. A priori estimation of the Dirichlet integral

In this section we derive the bounds on the Dirichlet integral of solutions of

(4), which are basic to the subsequent developments. We prove first & preliminary
14— 61173051, Acta mathematica. 105, Imprimé le 30 juin 1961
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result concerning the possibility of constructing solenoidal extensions of prescribed

vector fields. (%)

LemMmaA 2.1. Let W* be prescribed data on a smooth surface 2., which are of class

C® on 2 and which satisfy the outflow condition f (w*-n)dS8=0 for each component
Z;

2; of 2. Then there exists an infinity of vector fields b (X) which are defined throughout

space, which vanish outside a neighborhood of 2, and are such that curl Y (X)=w" on 2.

The field (x) can be chosen to be bounded together with all its partial derivatives up

to third order, the bounds depending only on the corresponding derivatives of w* with

respect to suttable surface parameters and on the smoothness of 2.

The vector field v (x)=curl ¢ then provides a solenoidal extension of the given
data w".

Lemma 2.1 is true in any number of dimensions. We present here a proof for
three dimensional case. We consider first a representative component 2, of 2, and
introduce a partition of unity over Z,. That is, we cover 2, by a finite number of

neighborhoods 2§, k=1, ..., N, and define non-negative functions f® of class C* on
N

2, such that, a) each f® vanishes outside 2§” and, b) > f®=1 at all points of 2.
o1

(For details of the construction see, e.g., De Rham [15].) We may assume that the
2§? and f® are chosen in such a way that each such neighborhood admits a repre-
sentation of class C® onto the interior of a plane unit disc I'® and that each
f*®=0 in the annular region consisting of all points in the disc whose distance from
the origin exceeds %. Finally, we extend each representation to a mapping from a
(thin) cylinder Z® of which T'® is the mid-section, onto a neighborhood of Z{°, by
mapping the normals to the disc isometrically onto the normals to 2, at corresponding

points, and we extend the partition functions by constancy along the normals.

N
At each point of 2, we have w*= > f® w*. Denote by «;, &, the rectilinear
K1
coordinates of the disc I'® and by a, the distance along the normal to the disc.

Let Af”, AP, A be the components of f®w*, and let

(1) This lemma has been used by several authors, but we know of no proof in the literature
previous to a demonstration we have given in [2]. The proof presented here is due to Professor C.
Loewner (oral communication). It is more elementary than the one in [2], and it has the advantage
that estimates on the extension field can easily be found from a knowledge of the corresponding esti-
mates for w¥*.
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P{O = AP (m2 903) L AP (”3 931) A (% f”z)

Xy Qg Qg g Op g

PP = AP (x2 “3) L AP (xa xl) AP (x1 -'752)

Oy &% g Oy O3 %

X, X Ty X T, Ty
Pék) — Aik) ( 2 3) + A(Zk) ( 3 1) + A%k) ( 1 )’

&y %y Oy Oy oy &y

where the quantities in parentheses denote Jacobians. Denote by P® the vector,
PR = (PP, PP, PP). P® is defined on T'™® and vanishes outside a circle of radius 1.
We now seek a vector field w = (w;, ,, ;) defined in Z®, such that curl w =P®

on I'” and =0 whenever of + o3> 1. In general there is no such solution, for one
sees easily that a necessary condition is f
¢

Py in order to achieve this condition. To do this, observe first that each point

k)Pé’“ do, doy=0. We therefore modify

where 0<{® <1 in 2§ is interior to one of the other covering neighborhoods, say
2§, and 0<f?<1 at this point. We select a neighborhood N of such a point which

lies interior to both neighborhoods, and modify P§ in N so thatf

PP dea, day=0.
*
r N

Simultaneously, we modify the corresponding term in 2§’ so that w*= > f* w* re-
k=1

mains unchanged. With this new function P§” we determine a vector field w = (@, @,, 0}

so that curl w=P§® on I'®. We begin by defining this field on I'®. We may,

for example, set @,=0 in I'®, @, =0 on the semicircle of +af=1, o, <0, and de-

termine @, in I'® by the condition 8®,/0a,= — P§”. Then in the annular region

where P{?=0 we have 8@®,/d0, — 0 ®,/dx, =0, hence there exists a function @ (e, o)

such that w = V ¢. (The condition f k)P(gk)docldocz =0 shows that @ is necessarily single

¢
valued.) We may now extend ¢(x,, a,) to the entire disc I'®, and define

W=W—-V@

on I'®. Finally, we extend w to the entire cylinder Z® by setting ws=0 and ex-
tending w;, w, 80 that dw,/days= — P{” and dw,/80,=PF on I'®. We may clearly
also arrange that w =0 on the boundary surface of Z%. The resulting field w (a;, a,, ots)
then satisfies the desired relation curl w=P%* on I'®.

Since 2, is by assumption connected, any covering of the sort described has
the property that for any two of the neighborhoods 2§’ and 2§, there is a chain

of neighborhoods 2§, 2§, ..., 2§, such that each adjacent pair intersects at points
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where neither partition function vanishes. Thus, starting from any given neighborhood
0 it is possible by repetition of the above argument to construct, in a finite

number of steps, corresponding fields w for each of the 2§’ with the possible excep-
tion of one last one, which we denote by 23", in which we can not modify the func-

tion P§” without affecting the previous construction. But by assumption,

jgz (% f”’w*) ‘nds= jgz w*-m)dS8=0,

j=1

while by the nature of the construction,

fﬁ (I:g o w*) mdS=0,

Eﬂ
hence % (fw*)-ndS=0,
Zﬂ

and we see that no modification of this last function is necessary. Thus a vector
field w?® can be defined in a neigborhood of each of the images of the 2§ such
that curl w”=P? in I'?, and w” vanishes on the boundary of Z%.

We now transform these fields into a neighborhood of the original surface 2.
To do this, set '
(_J‘)?’ q)(j): (1/)(17'), w(27'), 1/)(37‘))

290 = wf p

in a neighborhood of 2§, with summation extended over repeated indices, and set

= él .

A simple calculation then shows that ¢ is a field of the type sought, i.e., curl = w*
on 2, Repeating the entire procedure for each component of 2 completes the con-
struction of the field. (We must of course arrange—what is easily done—that the
field constructed over each component vanishes over all other.) The estimates on ||

and on its derivatives can be obtained directly from the method of construction.

2 a. Estimation of the Dirichlet Integral in a bounded region

We consider first the interior region bounded by a single closed surface 2. We
suppose that 2 is smooth, and that prescribed data w* of class C® are given on 2

which satisfy condition (3). Applying Lemma 2.1, we obtain a vector field ¢ (x}) de-
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fined throughout space, such that curl Y =w" on 2. We may assume that ¢ (x) and
its derivatives up to third order are bounded, the bounds depending only on 2 and
on w'.

Let 26 be chosen smaller than any of the radii of curvature at points of 2,
and also so small that all points on a normal line of length 24 originating from an
arbitrary point P of 2 are closer to P than to any other boundary point. Then in the
shell region A4s; determined by the inequality 0 <s<§, a non-singular coordinate system
is defined by the normals to 2 and the surfaces 2, of constant distance s from 2
along the normals, with local surface coordinates on 2, obtained from those of 2 by

constancy along the normals.

)
Lemma 2.2 (Hopt [5]). For any preseribed >0, there is a real function A (X

with the following properties:

a) A(X) is defined in a neighborhood of 2 and has continuous derivatives up to the
third order which are bounded, the bounds depending only on 2, on Y(X) and
on &.

b) Ax)=1 on 2, A(X)=0 outside As;,

c) VA{X)=0 on 2,

d) |eurl 2| <es ! throughout As.

Such a A(x) can be obtained as a non-negative function of s alone. A possible
construction is as follows:
Let M =max ||, M,=max |curl ]. Choose d,<d and sufficiently small that
As As

2M,0,<e, and define
e [*1 o\*
w3 |, 5 (1=5) o
for all s>s, Here s, is the unique value of s determined by the conditions

/'L(s)=1~6i, 0<s<dy
o

It is then clear that for s<s,, A(s) can be defined with continuous third derivatives

&

in such a way that A1(0)=1, 2 (0)=0, 0<|Ai(s)|<1, and |4 (s)|<m in the inter-
0
val 0<s<s). In particular, |1 (s)|< 3 J::ls in the entire range 0<s<§, and, using

the identity curl A =4 curl $ —YxV 1, we easily obtain the desired estimates.
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Consider now a solution w(x) of (4) defined in the region § bounded by a smooth

closed surface 2, such that w(x)=w" on 2.

TueorEM 2.3 (Leray [8]). Let w* be of class C® on 2, and let W(X) be a solu-
tion of (4) in G such that w(X)=w" on 2. Then D[w]= [|VW[2dV ts bounded by
o G

a quantity which depends only on 2 and on the derivatives of W* up to second order,

and not on the particular solution considered.

Proof. Corresponding to the data w* we introduce a field v (x)=curl A with
the properties indicated in Lemmas 2.1 and 2.2. Let n=w—v. We rewrite (4) in the
form

A= In—Vp=—AV+EN VV+VV+tV-VYV, (16)
V=0,

multiply the first equation by ¥, and integrate over (. We obtain, since =0 on

2 and since v=0 outside A;,

fIande=—( Vn-vvdV—kf v-‘q-VndV—l—f v-v-vndv.  (17)
G v As As

As

By Lemma 2.2 and the Schwarz Inequality, we find

3 2 3 3
flvn|2dV<K(f|vn|2dV) +e(f %dv) (flvnlde), (18)
¢ g As S g

where K denotes a majorant for quantities which depend only on 2, on w*, and on &.

Integrating along a normal to 2, we find

4

2 218 %) o’
L PR ¥ +2f 0y,
S lo )

0o$ 0
S L2 3 8 1
(e ([
oS 0

’ 2 s
hence f —2ds<4f [vqlds,
o8 0

from which we conclude immediately

2
f n—de<K1f |V nftdv, 19)
A58 As
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K, depending only on the maximum curvature of 2 (and not on w*). Inserting this

result in (18) and choosing ¢=1/2 K}, we obtain

flvanV<4K?
g

But from w=vn+v we find
f\VWFdV<2f|VanV+2f|VVPdV
g G g

from which Theorem 2.3 follows immediately.

2b. Estimation of the Dirichlet Integral in an exterior region; case of zero outflux

It cannot be expected that an estimate on Dirichlet Integral in an exterior re-
gion depending only on prescribed data can be obtained, even for solutions which
tend to a limit at infinity and for which this integral is finite, cf. the example in §86.
Under suitable assumptions, however, such an estimate does exist. We consider here
two such cases. The region of definition for the solution is assumed to be the exterior
€ of a smooth closed surface 2, 2 to consist of a finite number of connected com-
ponents carrying prescribed data w* of class C®. Denote by Ex the region bounded
by 2 and by the surface of a sphere 2 centered at the origin and with radius R
sufficiently large that > lies interior to 2. Let w, be a prescribed (constant) vector.

THEOREM 2.4 (Leray ([8]). Let w(x) be a solution of (4) in Er such that
WEX)=w" on 2 and W(X)=W, on 2 Then D[W]=f | VWAV is bounded by a
ER

quantity which depends only on W*, on 2, and on w, (and not on R).
Theorem 2.4 is true in any number of dimensions. To prove it, we introduce a

new field u(x)=w(x)—~w, In terms of u(x), equations (4) become
Al—u'Vu—wy-vu—vVp=0 (20)
V-a=0
and the boundary conditions become
u=u'=w"~w, on 2
u=0 on ZR'

The remainder of the proof follows very closely the proof of Theorem 2.3. We choose
v(x)=curl A so that v(x)=u* on 2, v(x)=0 outside As, and set y=u-—v, The
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relations (16) become
A~ VN—We ' V—VUP=—AVF+ - VV+V- VNtV VV+W;-VV,
v -n=0,

and (17) becomes, since =0 on > and on 2,
f |V'q|2dV=—f vn~VvdV+f veg-vndV
ER A Ay
+f V‘V‘V‘I}dV‘i‘f VW, VndV.
Ay As

We obtain (18) and (19) as before. Combining these inequalities and choosing again
e=1/2 K}, the required estimate follows.(})

The sense in which Theorem 2.4 applies to solutions defined throughout the ex-
terior of 2 is illustrated by the following corollary, which we shall apply in §5.

CoroLLARY. Let {R;} be a sequence of values tending fo infinity and let wg,
denote a sequence of solutions of (4) in Eg, such that Wg=WwW" on 2 and Wg,= W, on 2g;.
We suppose further that the sequence {Wg}, together with all partial derivatives up to

first order, comverges at all points in the exterior € of 2, uniformly in any compact

subregion of &, to a wvector field w(x). Then D[W]=J | VWAV <M < oo, where M
&
depends only on W*, on 2, and on W,.
Let R, be arbitrary but fixed. By Theorem 2.4, we have

: f lvwﬂjlde<f [V Wg, 2@V <M < oo for all R;> R,
ERy Eﬂj

By uniform convergence in &£, there follows f | v w|>dV < M. Since R, is arbitrary,
£

Ro

we must have f|VW|2dV<M, q.e.d.
&

() Note added in proof: In order to obtain an indication of the suitability of this method for
finding energy integral estimates in a practical case, Mr. Paul L. Patterson has used the method to
estimate the Dirichlet Integral for the explicitly known solution of (6) which vanishes on a sphere of
radius @ and which tends to a limit w, at co. From the choice,

$ = (0, — wy x5, 0),
S,=4a, '
A=083"(8,—5) (3s+0,),
he has obtained the estimate, f £ | v w ]2 dV<381lma w(2). The actual value, computed from the known

solution, is 6mawp. We remark however, that in the non-linear case, the estimate tends rapidly to
infinity as the Reynolds’ number increases. We do not know in what sense this situation reflects reality.
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The second case we consider is that in which the solution is defined throughout

the exterior £ of 2 and tends to a limit at a suitable rate.

THEOREM 2.5. Let w(X) be a solution of (4) in E, and let w(x)=w" on 2. Sup-

1

pose there exists an e>0 such that as r— oo, |W(X)—Wy|<Cr ¥° for some constant

C and constant wvector wy==0. Then D[w]=f | VWAV <M < oo, where M depends
only on 2, on W*, and on W, )

The main burden for the proof of Theorem 2.5 rests on estimates given in [2]
for asymptotic behavior of solutions of (4) in €. The demonstrations are too com-
plicated to reproduce here. It is shown in [2] that the hypotheses of Theorem 2.5

imply, in particular, the estimates
5) la*dS—0, 4; |vulFdS—o, § p*dS—0
Zr v Zg Zr

for u(x)=w(x)—w, and p(x) as B— oo, provided p(x) is modified by a suitable
additive constant. Using these estimates, we introduce a sphere 2z and apply the
reasoning in the proof of Theorem 2.4 to w(x) in the region &£z The only change
that occurs is in the surface integral over 2p, which no longer vanishes but assumes
the value

0
ngR [u-a—g—h]2 (u-n)—]u|2(w0-n)—p(u-n)] ds.

The above estimates show that this term vanishes in the limit as R -> co. This fact

established, the proof of Theorem 2.5 then coincides with that of Theorem 2.4.

2 c. Estimation of the Dirichlet Integral in an exterior region; general case

We show now that in the case of an exterior region in three or more dimen-

sions, the conditions (3) 3€ (W*+n)dS=0 which we have imposed on the boundary
p>

data can be relinquished, and a bound on Dirichlet Integral obtained nevertheless
for any possible solution of a suitable class, provided that the net outflux through
2 is sufficiently small. For simplicity, we restrict the discussion to the three dimen-
sional case in which 2 consists of a single connected component. The method fails
in two dimensions, but in every other respect these restrictions are unnecessary. Let
@ be the net flux across 2,

Q= 3€ (w*-n)dS. (21)
=
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Then since V-w=0 in &, @ is necessarily the net flux across any surface 25 en-
closing 2, and hence if ©+0 the boundary condition w=w, on 2; cannot be ful-
filled by any solution. The simplest choice available to us is obtained by adjoining

to W, the velocity field of a potential source flow whose singularity lies interior to 2.

TaEOREM 2.6. Let w(x) be a solution of (4) in Ep such that w(X)=w"* on

2 and W(X)=WO—£ v (%) on 2z Then if Q is sufficiently small (depending only

on 2), the Dirichlet Integral Dw]= J |V w|?dV is bounded by a quantity which de-
&R

pends only on W*, on X, on w, and on Q (and not on R).

1

We choose the origin of coordinates interior to 2, and let y(X)= —4—% v (;)
Then on 2, the data u*—vy satisfy condition (3), hence for any £>0 there exists &
field h(x)=curl A of the type described in Lemmas 2.1 and 2.2, such that
h(x)=u*—y on 2. Let v(X)=y+h in & Then v(x)=u" on 2, and setting n=u—v,
we have =0 on 2 and on 2j From (20) we find

A= VN—W VY- Vp=—AV+-VV+V - VN+V-VV+W;*VV,
vV :n=0.

Multiplying by v and integrating over & yields, since Ay=0,

D)= L Vn-Vthan ven-vndV
5 B

&,

-—f v-v-vndV—j YV Wy VndV.
R Er

We study the right hand side term by term:

3 3
J vn-vth’<(f |vh|2dV) (f [vnide)
Ag A &R

J‘ v-n-vndV=f h-n-vndVJrf Y'n-vndv,
&r As €R

f h-n-vndV <8K1j‘ [vn2dv
As As

(cf. the proof of Theorem 2.3), and an integration by parts, using the relations
_ @ 1 .
vV-n=0, y= 4(pv mE yields

Qf 1 * -
e TndV =2 Z(An-Vin)dV,
LRYn ) in 8“( " n)

where V*% denotes the transpose of the matrix V. Also,
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J V-V-VndVl<2f y2|V'q|dV+2f | vyqldv
Er R As

<K(f |vn|2dV)2,
(31

K depending only on prescribed data, since y* is integrable over the exterior of 2.

Similar reasoning shows that

LRv-wo-vndVng (LEI vnlzdv)%.

Collecting these estimates we obtain

D)< K (D[]} +¢ K, Dinl + 1o Dln), @2)
TTy

where 7, is the shortest distance from the origin to 2. From (22) we see that an
estimate for D[y], independent of R and the particular solution considered, can be
obtained whenever <4z, Using this estimate, we can find a bound for D[u] from
the inequality

Du]<2D[n]+2D[vl<2D[n]l+4D[h]+4D[y]

and the fact that y has finite Dirichlet Integral over the region exterior to 2.
We remark finally that the Corollary to Theorem 2.4 and the conclusions of Theo-

rem 2.5 are valid also in this case.

3. A priori estimation of the solution

The estimates on Dirichlet Integral obtained in the preceeding section are applied
here to find pointwise estimates for any possible solution, depending only on pre-
scribed data. We base these estimates on general properties of the Green’s Tensor

associated with the linearized equations

AW~Vp=0 (6)
A-w=0

in a bounded region. We consider in detail only the three dimensional case. It seems
certain that similar estimates hold for two dimensional solutions. but the necessary
estimates on the Green’s Tensor have not yet been formally verified in this case. In

higher than three dimensions, there appears to be an intrinsic difficulty in the method.
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TurorEM 3.1 (Odqvist [11, p. 365]). For any interior region § bounded by o suf-
ficiently smooth closed surface 2., there is a unique tensor G (X,y)=(Gy), such that each
column vector, considered as function of X, is @ solution of (8) for all X in G with
Xy, such that G(X,y)=0 for X on 2 and y in G, and such that at x=y, G(X,¥)
has the singularity of the fundamental solution tensor ¥ (X,y) defined in (7). Throughout
G+ 2, the tensor G(X,y) and the (suttably normalized) associated pressure vector P (X,y)

admit, as function of X, uniformly in y, the estimates

rl—’s
6 yl<s  [6Ey -G, |<0 (23)
xy 7o
C C
VG y|<z [PEp|<5
Xy Xy
rl-g yl-e
|V (G(x,y)-GE,y)|<C ’;g |P(x,y)-Px,y)|<C A

for any >0, provided X and X' lie exterior to a sphere of radius r, centered af y.

G (x,y) has the symmetry property, Gy (X,y)= G4y, X).

We shall assume Theorem 3.1 and use it in what follows. Using the Green’s

Tensor, any solution of (6) in G which equals w* on 2 admits the representation

W (X)= 3€Zw*-TGds (24)

px)= f w*-TPdS,
z

where the “pressure” used in forming the expression TP is the identically vanishing
function. Conversely, the representation (24) leads to the construction of a solution

in G which assumes boundary data w* on 2. We have, in fact:

THEOREM 3.2 (Odqvist [11]). Let w* (x) be boundary data of class C® and satis-
fying condition (3) on the smooth closed surface 2. Then there is a unique solution W(X)
of the linearized equations (6) in the region G bounded by =, such that w(x)=w" on 2.
Throughout G+ 2, w(x) and the suitably normalized associaled pressure p(X) satisfy,

for any £>0, the inequalities

[w®)|<0, |[vwE|<C, [p®|<C, (25)
[vwx) - vwy <0y  lp@-p®|<Crns
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where C depends only on W*, on 2, and on e. At any interior point of G, the deriva-
tives of W(x) of all orders are bounded, depending only on 2, on w*, and on distance

from the point to 2.

Proof. The function w(x) defined by (24) is clearly a solution of (6) in §. Ap-
plying Lemma 2.1, we may extend w* into the interior § as a divergence-free vector
field v(x) with bounded second derivatives, depending only on the boundary data.
Let n=w~—v. Transforming (6) by the identities (12) yields, for x in @,

7 (X)= fG-AvdV

p(x)= fP-AvdV.

The assumption of boundary data by w(x) and the estimates (25) then follow from
the estimafes (23) of Odqvist by standard potential-theoretic arguments. To obtain
the interior estimates, we represent w(x) by means of the fundamental solution

tensor (7), which is explicitly known,
w(x)=§ (W* Ty —x - Twh. (26)
p>

Interior bounds then follow directly by differentiation of (26) under the integral sign

and use of the estimates (15).

We shall need also the following lemma, due to Payne and Weinberger [13]:

Lemma 3.3. Let y(x) be a vector valued function defined and piecewise continuously
differentiable () in « neighborhood N of infinity. Then there exists a constant vector v,

such that for any sphere 2.p which lies, together with its exterior Ey, in N,

1 2
— ff - adsS< 2dv. 27
R ZzzlY YOl fERIVYI ( )

From Lemma 3.3 we can obtain the following result:

Lemma 3.4. Let y(x) be a vector valued function defined and piecewise continuously
differentiable throughout space. Then there exists a constant vector Yy, such that, for any

choice of the origin of coordinates,

() That is, continuous in N and continuously differentiable except on a finite number of
smooth surfaces.
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- 2
f——'Y 2Y°| dV<4f |vy[2dv, (28)
E r E

the integration being taken over the entire space E.

Proof. We may assume that J‘ | v y|*dV < oo, for otherwise Lemma 3.4 is tri-
E

vially correct. Let y, be the vector whose existence is asserted in Lemma 3.3. Integra-

tion by parts in a sphere Vj of radius R and boundary 2 yields

2
f Y=Yl dV:“f lv,.v(,{_\,ﬁ)zdmlfﬁ ly— Yo P dS. (29)
Vg ve " -R Zr

7‘

Using Schwarz’ Inequality and Lemma 3.3 yields

— 2 2 3
f Y= xof dv<2(f Y%l dV) (f lvﬂmv) +e(R),
Ve r Vg r? Ve

where ¢ (R)—0 as R-—oco. Lemma 3.4 then follows by a passage to the limit.

Remark 1. In the special case that the function ¥y (x) vanishes outside a compact
set, the surface integral in (29) vanishes for sufficiently large R, and it is unnecessary

to apply Lemma 3.3 in the proof.
Remark 2. In case it is known that y tends to a limit at infinity, this limit

necessarily coincides with y,. For otherwise we would have R™! 3€ lYy—vofd8—c0
Zr

as R—oo, a contradiction.

3 a. Estimation of the solution in a bhounded region

We assume as given a solution w(x) in a finite region §, which takes on values
w* on the boundary > of G. It is then possible to extend w* to the exterior of G
in such a way that the extension vanishes outside a compact set and has finite
Dirichlet Integral, depending only on w*. By Theorem 2.3, w(x) has interior to § a
finite Dirichlet Integral, depending only on w*. Denote the sum of these two inte-
grals by D. Using the identities (13, 14), we find for w(x), p(X) the representation,

w(x)=§§ w*-TGdS+JG-W-VWdV, (30)
= 4

p(x)=§ w*-TPdS%—fP-w-VWdV.
by 6
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The first term on the right is a solution of the linearized system (6) which assumes
the boundary data w*. This solution, which we denote by w, (X), satisfies the in-
equalities (25) of Theorem 3.2. Using Theorem 3.1 and Lemma 3.4, we find (cf. the
remarks at the end of §1),

w2 b 3
[w(x)|<|w1(x)|+0(f%dv) (f|vw|2dv) <0+D<C,
6 6
constants depending only on prescribed data. Further,
lvwl<lvw |+ [ EOIYWOp oo (LYW p @)
! 4 732:y G T?{y

Multiplying by r_2 and integrating with respect to X, we obtain

v b
flv:;‘(x)ldvx<o+of I—V-"—"@]dvy<o+0(f|vm2) av <0
g zX g G

Toy
by Schwarz’ Inequality. Inserting this result in (31), we obtain
| v wx)|<C.

Placing these results in the relation (30) for the pressure and using Theorems 3.1 and
3.2, we obtain immediately
|p| <0,

and the estimates (23) for the Green’s Tensor imply, by standard potential theoretic

arguments,

|[vwE)—vwy|<Criye |p®-pm|<0ri;e

Collecting these results, we obtain:

TaEOREM 3.5 (Leray [8]). For any bounded region (G, the estimates (25) of Theo-
rem 3.2 are valid also for any solution of the Nawier-Stokes equations (4), with constanis

independent of the particular solution considered.

3 b. Estimation of the solution in an exterior region

We base the estimates for an exterior region on the following general property

of solutions of the Navier-Stokes equations:
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TurEoREM 3.6. Let w(X) be a solution of (4) in a region G (finite or infinite)
for which the Dirichlet Integral is finile, JIVW|2dV< oo, Suppose it is possible to
G

extend W(X) to a piecewise continuously differentiable vector field defined in the enbire
space, possessing finite Dirichlet Integral and tending(t) fo a limit w, as X —~ oo, Then in
every compact subregion of G, w(X) and the associated pressure p(X) satisfy the inequa-
lities (25) of Theorem (3.2), wilth constants depending only on the Dirichlet Integral of
w(X) and of its extension, on distance to the boundary 2 of G, and on W,. The estimate
for p(x) depends also on the choice of an additive constant, and on the particular sub-

region considered.

Proof. Let x be a point of §, let 4d be the distance from x to the boundary.
Describe spheres 8, and S, of radii d and 2d, respectively, with x as center. We
then have the representation

w(x)=3€ W-TGdS-I—f G-w-vwdv, (32)
Sy V.

where V, is the interior of S, and G(x,y) is the Green’s Tensor associated with the

system (6) in V,. We rewrite (32) in the form

u(x)=§ u-TGdS+f G-u-VudV+f G-w,-vudV,
S, 2

Vv, v,

where we have set u(x)=w(x) —w,.
For x interior to S, |TG(X,y)| <Cd™® on S, Thus,

2
(fﬁ u-TGdS) <3§ u’dsS '(TG)zdS<0d‘25f (Ww—wy)°ds.
S2 Sz S: Sz

By Lemma 3.3, 3€ (W—wy)2dS<2dD, where D is the sum of Dirichlet Integrals
S

of w(x) and its extension. Also, by Theorem 3.1,

2 2
(f G-u-VHdV) <C’f %de |vwPdv<c
Vv, | v, ¥ vy

by Lemma 3.4. Finally,
2
(J G-WO-VudV) <O|wo|f |vw]rdV <.
Vs V.

Collecting these inequalities, we obtain an estimate of the form

{1} It is sufficient that w—w, in the sense of Lemma 3.3.
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D
w9 <0 (D /4 VDlwaly+ ol

which establishes the interior bound on |w(x)|.

Now we permit X to vary within §;. We observe first that § u-7GdS can

Sy
be differentiated under the sign for x in V,, resulting in a uniformly bounded fune-

tion, depending only on the bound for |u| on S, We then obtain from (32),
IVW@H<O+Obe%ﬂdV (33)
for all x in V,. Multiplication by r_* and integration over V, yields
f |v—f~'dV<0+0_f [vw]rdV <c.
v, v

Repeating this reasoning with V; replaced by V, and V, by V, shows that
f RAUPY)
v, T

Insertion in (33) yields the bound on |V w|. The estimates (23), together with (32)
and the corresponding relation for p(x), imply by the usual methods of potential
theory the remaining estimates (25). The function p(x) is, however, determined in a
given sphere only up to an additive constant. If determinations in overlapping spheres
are to coincide, one of them must be adjusted by a suitable constant. Thus (for
example), along any path of length L covered by spheres in § of radius bounded
from zero, the determination of p(x) may conceivably change by an amount CL. In
particular, Theorem 3.6 does not provide a uniform bound for p(x) in an infinite
region.

We study next a particular case. The region ¢ has as boundary component a
smooth connected closed surface 2. It is assumed that on 2, w takes on data w* of
class C®. The same assumptions on Dirichlet Integral are made as in Theorem 3.6.
Let A4, be a neighborhood of 2 in § which contains no boundary points and which
is bounded by 2 and by a smooth closed surface >, in G. Let A4, be another such
neighborhood, such that 2, lies in 4, On 2, estimates on |w| are available from

Theorem 3.6. Let x lie in 4,. We may write
w(x)=<§ W-TGdS+f G-w-vwdV,
T rrE, Ay

where G (X, ¥) is the Green’s Tensor for the system (6) relative to A,.
15— 61173051, Acta mathematica. 105, Imprimé le 30 juin 1961
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For x in A,, the integral over 2, can be differentiated under the sign and has
bounded derivatives up to second order. The integral over 2 may be studied by the
method of proof of Theorem 3.2, and leads to estimates of the form (25), valid up to 2.
Finally, we apply to the volume integral the analysis in the proof of Theorem 3.5.
We obtain:

TueEOREM 3.7. Under the hypotheses of Theorem 3.6, suppose G has as boundary
component a smooth closed surface 2 carrying data W* of class C®. Then the estimates

(25) are valid for w(x) in a neighborhood of 2 and up to = uself.

Lemwma 3.8. Let 2 consist of a finite number of smooth closed components carrying
data. w* of class C®. Let Ep be the region bounded by 2 and by a sphere 2y about the
origin of large radius R. Let W, be a prescribed constant vector, and let {wy(x)} denote
a family of solutions, depending on R, such that,

i) We(x)=w" on 2, wR(x)=wo—%v (%) on 25 (Q=const.),

ii) {wg(x)} have Dirichlet Integrals uniformly bounded in R. Then there is a sub-
sequence of the {Wx(X)} which converges uniformly in the closure of any fixed region Eg,,
together with its derivatives up to first order, to a solution of (4) in the exterior € of 2.
The Dirichlet Integral of the limit solution w(X)] has the same bound, and [W(X), p(X)
satisfy the estimates (25) uniformly throughout E.

To prove Lemma 3.8, we note that the {wj;(x)} can obviously be extended to
all space with Dirichlet Integrals bounded independent of R. Theorems 3.6 and 3.7
then show that the {wy(X)} are equicontinuous and have equicontinuous derivatives
of first order. Hence there is a subsequence which converges, uniformly together with
its derivatives of first order, in any Eg. But for any fixed sphere V with surface 8

in &, we have

WR(X)=§ WR'TGdS‘i‘f G'WR'vadV
N v

and the uniform convergence then shows that this relation holds also for the limit
field w(x). A formal calculation then shows that w(x) satisfies (4) The bounds on
the solution follow from Theorems 3.6 and 3.7 except for the bound on p(x), which
must be replaced by |p(x)| <C|x|. The estimate |p(x)<C is, however, correct. We
shall prove it in §4.

Remark: If Q satisfies the hypotheses of Theorem 2.6 it is unnecessary to assume

that the Dirichlet Integrals are bounded.
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4. Behavior at infinity; the representation formula

Let 2 consist of a finite number of smooth closed surfaces carrying data w* of

class C®. Let w(x) be a solution of (4) in the exterior £ of 2, such that D[w]

=f | VWAV < oo.
&

TeEOREM 4.1 (¢f [1]). There exists a constant vector w, and a scalar p, such that
W (X)=>Wy, P (X)—=>P, 6S X—>00 in any way.

To prove this result, we first apply Lemma 3.3 to obtain the existence of a
vector w, with the properties described in that lemma. Next, we rewrite (4) as a

system for u (x)=w (x)—w,,
Au—u-vu—w,-vu—vp=0 (34)
V-u=0
and introduce a fundamental soluﬁon tensor ¥ (X, y) associated with the linearized system
Au—Wy Vu—Vp=0 (5)
vVeu=0. '
The tensor y (X,y) has the properties described in § 1. In terms of it, we obtain

the representation

u(x)=3€ [u~TX—x-Tu—|—{X~u)(WO~n)]dS+f x-u-vudVvV (13)

S+E, £n

for a sphere 2, enclosing 2 and corresponding annular region £z. (By Theorem 3.7,

Tu is continuous up to 2, hence the integral over 2 has a meaning.) Choose >0,

choose R, sufficiently large that f | v W]*d V <e, where Ep, is the exterior of 2g,.
Ep,

Next, choose |x| sufficiently large that at all points of Eg, [%-u-V u| <Z;9’—E%§ This
0

can be done because of the property (15i) of % (X, y). Then for R>|x|, we have

f x-u-VudV‘—l—f x-u-VudV\
R, ER—ER,

3 %
<e+(fx2u2dV) (f IVWIZJV) .
£ ERo

By (15i) we have, in particular, |x|*<C/r*. Hence, using Lemma 3.4, we obtain

f x-u-vudV
&R
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f X-u-VudV‘<Ce
&R

for all sufficiently large |x|, uniformly in R for R>|x|. Further, we note that for

any fixed X,

f x-u'vudVl<C’f |VW|2 dV, which —>0 as B->oo. Hence,
| JER Er
for fixed x, f x-u-vudV tends to a finite limit as R—co.

R

Using (15) again, we see that the integral over 2 tends to zero as x—oco. Thus,
from (13),

w(x) =ny () +naos )+ § 148,

Here 1, (x)—>0 as X—oo, 7, (X; R)—>7,(X) as R—co for fixed X, and 0, (x)—>0 as
X—> 00,

Fixing X and letting R—>oo, we see that the integral over 2, must tend to a
limit. Let

F(x):limjg [Ty —x-Tu+(xu) (W n)]ds. (35)
R-oc v g

Then u (%) =1, (%) + 7, (x) + F (x)

and we see that it will be sufficient to prove that F (x)-—>0 as X—>co. This may be
verified directly, using the estimates (15) and Lemma 3.3, for all terms of the in-
tegrand except x. 7'u, for which these estimates do not suffice. We can overcome
this difficolty by noting that by differentiating ¥ (X, y) a sufficient number of times,
in arbitrary directions, the resulting derivatives can be made to decay in magnitude
to zero faster than any preassigned negative power of |[x—y|. Thus, since |Tu|<CR
on 2z by Theorem 3.8, we should expect that a derivative of F (X} to a sufficiently
high order would tend to zero as a limit. We cannot differentiate (35) under the
sign, but it is legitimate to form successive difference quotients of F (x) as the limit
of the integrals involving the corresponding difference quotients of y. A simple ap-
plication of the mean value theorem shows that for fixed differences, these quotients
have the same order of decay for |[Xx—y|—cc as the analogous derivatives. Let N

(&)

be the smallest integer such that if i in (35) is replaced by the result d " of taking

N (fixed) differences in arbitrary directions, the integral over 2j tends to zero. Then

R-—>0

SF (x).= lim [u-Tox™—ox™ - Tu+ @ x™ u)(w,-n)ds
Py )



ON THE STEADY-STATE SOLUTIONS OF THE NAVIER-STOKES EQUATIONS, III 225

vanishes identically in x. But the differences are arbitrary, and we conclude that.
F(x} is necessarily a polynomial in X of degree at most N—1, F(x)=Py_;(X) (see,
for example, Lemma 3 in [1]). Therefore,

u (X) = (%) -+ (X) +Py_y (x)
with %, (X), %, (X) tending to zero at infinity. On the other hand,

Jim 1{ w (x)dS=0

R0 Zr

by Lemma 3.3, from which we see that Py_;(X) must vanish identically. This com--
pletes the proof that w (x)—>w,. The corresponding result for p(x) is obtained by
an analogous, although more technical, discussion, based on (14) (cf [1]). We omit

details. We have incidentally proved:

THEOREM 4.2: Let W(X) satisfy the conditions of Theorem 4.1. Then w(x), p(X),.

admit the representations
W(X):Wo‘F% [u-Tx—x-Tu+(x-u)(wo-n)]dSJrfx-u-VudV
Z &

P(X):Po*‘fﬁz[u'TtP—tP-Tqu(u[)-u)wo-n)]dSJrfzap-u-Vuo’fV,

where 1 (X)=w(X)—W,.

Remark. The outflux condition (3) is not assumed in Theorems 4.1 and 4.2.

TuroreM 4.3. Let w(x) be the limit, uniform up to 2 and in every compact sub-

region of &, of solutions of a sequence of interior problems: WP (x)=w* on 2,

. Q 1
w? (x):wo—ﬁv ~] on R;, Rj—co,
w9 (X) satisfies (4) in Ex, f [VWOPdV <M< oo, M independent of j. Then W (X)—>W,
ER;
as X—>o0, 7
Proof. It suffices to show that the vector w, determined in Theorem 4.1 coin-
cides with the data imposed on Eg. But for a fixed region &z, W”+Q VvV (r'/4x

has bounded Dirichlet Integral in &g, hence f [w? —wy|?r?d V < C by Lemma 3.4,

€R,

hence by uniform convergence f |w—w,[?r2dV <. Since R, is arbitrary,
ERy
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J‘ lw—w,[Pr2<C.
&

This inequality cannot hold for two distinet values of w,, and the result follows.

5. Existence theorems

5 a. Existence of a solution in a finite region

We apply now the fixed point theorem (1) of Leray and Schauder [9] to obtain the
existence of at least one solution of (4) corresponding to prescribed data w* of class

C® on a smooth closed surface 2. It is assumed that w* satisfies the outflux condi-

tion, ?( (w*-n)dS=0. If such a solution exists, it admits the representation
by

W(x)=j£ W*-TGdS+f G-w-vwdV,

z g

where G (X,y) is the Green’s Tensor for the linearized system (6) in the region §
bounded by 2. This representation can be considered as an integral equation for the
unknown Ww(X).

Consider now the functional equation
w(x)~2fG-w-deV+§ wTGdS=w—J(w; 1)=0 (36)
[ z

for a “point” w of a suitable Banach space B: here 1 is a real parameter such that
0<A<1. We seek to demonstrate the existence of a solution of (36) for the para-
meter value A=1. To do so, we show that the space B can be so chosen that the
hypotheses of Leray and Schauder [9] are satisfied.

Choose B to be the linear manifold of all vectors w (x) defined and continuously
differentiable in G+ 2, such that

i) |w)|<C
i) |[vwE)<C
i) |[vwx)—vw(y)|<C|x—y|

As norm of w(x), we set
[|w||= gib {C} (37)

(!} Actually, only a relatively simple form of this theorem is used here, see Schaefer, H., “Uber
die Methode der a-priori Schranken”. Math. Ann. 129 (1955), 415-416.
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for all constants C such that 1), i1) and iii) are satisfied. Under this definition, B becomes

a normed, linear, complete Banach space of vector functions.

1. J(w; ) is completely continuous for each 4 on the range 0 <A<1. In fact,
setting w=J (w; A1), and the estimates (23) on G (X, y) in Theorem 3.1 imply that
w satisfies i), ii), iii) whenever W satisfies i), ii). It follows that the image of a
bounded set is bounded. But in the norm (37), every bounded set has equicon-

tinuous first derivatives, hence contains a convergent subset.
2. I A=0, J(w; 0)=§ w*-TGdS, where w* is prescribed. That is, J(w; 0)
P

maps all of B into a single point. Thus, the transformation ® (w)=w—J (w; 0) is a
uniform translation of B, and it follows that the index of the (unique) solution of
@ (w)=0 is one.

3. For 0<A<1, all solutions of (36) are bounded in B. This result is contained
in Theorem 3.5 for the case A=1. But if 0<<A<1, all estimates leading to the proof
of Theorem 3.5 remain in force, hence the theorem remains correct, uniformly in A.

These properties of J(w; A) imply, by the theorem of Leray and Schauder, the
existence of a continuum of solutions of (36) corresponding to the segment 0 <<A<1.
Buat formal calculation verifies that any solution of (36) for the parameter value

A=1 is necessarily a solution of (4) which attaches continuously to w* on 2. Hence:

TaeorEM 5.1 (Leray [8]). Let w* be of class C® on a smooth closed surface 2.
which bounds a region . Then there is at least one solution of (4) in G such that
w=w" on 2.

The question of uniqueness of the solution is discussed in § 8.

5 b. Existence of a solution in an exterior region

Let 2 consist of a finite number of connected closed components, and let ¢ be
so small that the hypotheses of Theorem 2.6 are satisfied. Let 2j be a sphere about
the origin of radius R so large that 2 lies in its interior. By Theorem 5.1, there is
at least one solution of the problem: w (X)=w* on 2, w(X)=w,— @ vV (r ")/4 7 on 2,
W (x) a solution of (4) £z. By theorem 2.6, the Dirichlet Integrals of all such solu-
tions are uniformly bounded, independent of R. By Lemma 3.8, the solutions form
a bounded set in B, and for any sequence R;— oo, there is a subsequence of solutions
w? which converges uniformly together with all first order derivatives in any com-

pact subregion to a solution of (4). By Theorem 4.3, w(X)->w, as X—>co. Hence:
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TrHEOREM 5.2 (cf. Leray [8]; Finn [1]).

Let w* be prescribed data of class C® on a smooth closed surface 2., and suppose
the net oulflux Q is sufficiently small (depending only on 2). Then there is at least
one solution W(X) of (4) defined in the exterior £ of 2, such that w(x)=w" on 2 and

such that w(x) tends to a prescribed vector w, at infinity.

6. Remarks on the preceding sections; an example

In connection with the solution in an exterior region &, there remain several
questions which must be answered before the theory can be considered in any rea-

sonable sense as complete. We mention some of these.

1) Does the solution whose existence we have demonstrated necessarily admit
an asymptotic development at infinity in inverse powers of 7 (or suitable functions
of r) analogous to the classical expansion for harmonic functions, or more generally,
the known developments at infinity for solutions of the equations of potential com-
pressible flow (cf. [3])? The answer to this question is of importance in the deter-
mination of the forces and moments exerted on 2 by any possible solution in &.
Various recent investigations have been devoted to the determination of such de-
velopments under the assumption that they exist and can be obtained by iterative
procedures whose convergence is not easily demonstrated, hence it seems worth-while
to point out that, at least in two dimensions, not every solution which is regular in
a neighborhood of infinity and tends to a limit at infinity can be represented asymp-
totically by an expansion in reasonable functions of r with coefficients independent
of r. An example is provided by the famlly of vector fields W= (u, v)=w (2, y) de-
fined by the following relations:

—a X
—(1—o)r %—(1+a)r—2

— e (1—a) r ¥ Y
v=—(1l—a)r ; (l—hx)r2

For any real «, w(x, ¥) is a solution of the two-dimensional system (4) at all points
except at the origin, and if «>0, w—0 as r—>oo. In the range O<a <1, r*|W|>1—«
as r—co, that is, |w| behaves asymptotically as r~*. Since « is arbitrary in this
range, any possible expansion would be in terms of functions which vanish more slowly
than any negative power of 7.

Letting o—0, we obtain a family of solutions, each member of which has Ii-
miting value zero at infinity. These solutions converge uniformly together with their

derivatives of all orders in any compact subregion excluding the origin, to the solu-
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tion w defined by

z r y
g .

a=y
:

<
=
=

This solution is discontinuous at infinity. Thus, there exist solutions which are bounded
in the exterior & of a circle but discontinuous at infinity, and such solutions can
even be obtained as the limit, uniform in compact subregions of €, of solutions having
limiting behavior at infinity.

The behavior exhibited in this example is in marked contrast to the known pro-
perties of velocity fields arising from equations of potential fluid flow (cf. [3]).

It is not known whether pathological behavior is possible in three dimensions.
We can assert, however, that no example of the type described above can exist in
this case. In fact, let W (x) be any vector valued function having finite Dirichlet In-
tegral D in a three-dimensional neighborhood & of infinity, and such that W (X)—>W, as
X—oco. Then given any e>0, there is a constant C(s) and o set E, of measure less
then ¢ on a unit sphere S,, such that all points of S, not in K, are intersection points
of lines extending to infinity from the center of S,, along which | W (X)—Ww,|<Cr %,

Proof. Let S by any sphere which lies, with its exterior, in &, and let its ra-

f f w2rldrdQ<D
QJe

where () denotes the surface of a concentric unit sphere S, Hence for any &>0,

dius be p. Clearly

f wirtdr<iD
0 £
along rays through the center of S, except perhaps for a set of measure less than

¢ on S,. Now along such a ray,

|W(R)—W0|2=(f:wrdr)2<f:w%r2drf:7—12dr<jlgiD
from which the assertion follows.

We remark that we have proved in [1] that if a three dimensional solution w (X)
tends to a non-zero limit w,, and if for some £>0, |W(X)—W,]<Cr 3%, then w(x)
necessarily has at infinity, up to higher order terms, the asymptotic structure of the
fundamental solution tensor y (X, y) corresponding to the linearized system (5). This

result, together with the above property of general vector fields, suggests that solu-
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tions with finite Dirichlet Integral necessarily exhibit at infinity the behavior of % (x, y).
We have, however, been unable to prove this. It seems not inconceivable that solu-
tions exist which exhibit singular behavior in one critical direction, say the direction
of the vector wy.

2. Our second question concerns the method by which the solution is constructed.
It seems to me inelegant and unsatisfactory to obtain the solution of an exterior
problem as the limit of a sequence of solutions of interior problems. It would be pre-
ferable to find the solution directly in a suitable class of functions defined throughout
£. T have been unable to determine such a class. To begin with, it seems doubtful
that an a-priori estimate on Dirichlet Integral depending only on boundary data, can
be found on the single assumption that this integral is finite, even though this as-
sumption implies that the solution is continuous at infinity. For example, we may
consider the family of solutions discussed under 1). As «—0, all derivatives of w(X)
remain smaller than fixed bounds on the unit circumference, but the Dirichlet In-
tegrals tend to infinity.(!) It would seem natural to seek the solution in a class of
vector functions satisfying an inequality of the form |w (x)—w,|<Cr™' as r—>oco,
since this is the expected behavior of the solution and implies the desired a-priori
bound on Dirichlet Integral. It is shown in [2] that an integral operator equivalent
to the one defined by (13) transforms such a class into itself. For an existence theorem
it would, -however, be necessary to obtain an a-priori estimate on the constant C.
Such an estimate is not yet available. Except for the potential flows, which from
the point of view of this paper are the trivial solutions, it is not known whether there
exists a single solution of an exterior boundary value problem which decays to its
limit at the (expected) rate |w—w,|<Cr™',

3) Although the necessary estimates on the Green’s Tensor analogous to (23)
have never been formally demonstrated, there seems little doubt that also in two
dimensions, the procedure of § 5 will lead to the construction of a solution defined
in the exterior of 2 which assumes the given boundary data and has finite Dirichlet
Integral. Whether every such solution necessarily assumes, the prescribed data at in-
finity is uncertain. That the answer to this question is not obvious is already in-
dicated by the example discussed under 1). The problem seems not accessible to

methods which are presently available.

(1) We point out, however, that in this example there is a net outflux across the circumference,
and in this case we are unable to find any construction which yields an a-priori bound on Dirichlet
integral in two dimensions. On the other hand, the outflux does not seem to be the essential source
of singular behavior, since throughout the range of « considered, it remains between fized positive
bounds.
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4) Finally, we may ask under what circumstances the solution is unique. It is
known (see, e.g. [16]) that a sufficiently small solution in a bounded region is unique
among all competing solutions with the same boundary data. (We give an improved
version of this theorem in § 8.) It seems likely that solutions which are large in
magnitude are not unique, but no examples are known. In the case of an exterior
region &, experimental evidence indicates that the solution is again unique if |w| is
everywhere sufficiently small. A strict mathematical proof of this is yet to be given.
We do prove in § 7, however, that solutions corresponding to sufficiently small pre-

scribed data differ by arbitrarily small amounts, depending only on the given data.

7. Transition to zero Reynolds’ Number

We study in this section a family of solutions of (4) defined in a fixed region
(exterior or interior), and corresponding to boundary data which transform to zero
in a prescribed manner. We show that these solutions necessarily tend uniformly, in
the appropriate sense, to the solution of the corresponding problem for the equations
(6), which are the equations obtained from (4) by linearizing about the solution

w (x)=0.

7 a, Transition to zero Reynolds’ Number; case of a bounded region

Let w* be a prescribed vector function of class C® on a smooth closed surface
2, and satisfying the outflux condition (3). Let A be a parameter, 0<A<1. Let
W (x; 1) be a solution of (4) in the region G bounded by Z, such that w(x; 1) =Aw"
on 2. Such a solution exists for each i, as was shown in § 5, and for sufficiently
small 1 the solutions are unique, as will be shown in the next section. () Let w,(xX)
be the (unique) solution of the linear system (6) in G which assumes the data w* (x)
on 2, let W(x; A)=A""w(x; 4), and let P(x; A)=1"1p(x; A).

THEOREM 7.1. There exists a constant C, depending only on 2 and on w*, such
that | W (x; ) — Wy (x)| <C A throughout G-+ 2.

To prove this result, it will be necessary to obtain an estimate on Dirichlet
Integral as function of 4. To do so, we réturn to the considerations of § 2. We can
introduce, by Lemma 2.1, a field v(x)= curl ¢ in G+ 2 such that v(x)=w" on 2.
Let n (x; A)=W (X; ) —v(x). Then n(x; 2) is divergence-free, and 0 (x; ) =0 on 2.
We have from (4),

(*) In the proof that follows, we make no use of this fact.
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An—ln-vn~%Vp=—AV+An-Vv+lv-vy|+/‘Lv-VV,

v -n=0.

We multiply the first equation by % and integrate over (j, obtaining

flvnlde=—J Vn-VvdV+lfv-n-VndV+lfv-v-V'qu
G G g G

3 b3 ¥
<O(f|Vn|2dV) +Ol(f'q2dV) (f|Vn|2dV)
g g g

by Schwarz’ Inequality, where C' defends only on w* and on 2. Since =0 on 2,
/h 1
fyfdv<0f ~2dV=~0fer-v~q2dV
g 67 ¢’

772 H b
cso([ Zav)! ([ 1 npar)
a7 G
(cf. the proof of Lemma 3.4), hence

b3 3
(f nZdV) <O(f |V'q|2dV) ,
g g

O depending only on 2, and we find

lenlde<O(L|vnlde)%—MOLIvnlde,

for a constant ¢ depending only on w* and on 2. Thus, for all A<1/2C we ob-

tain the estimate

f[vnlzdv<0.

G

But j|vwlzczv<zf|vn|2dv+2f v v[Fay
G G G

and hence f |V W(x; )fdV<C (38)
G

uniformly for all sufficiently small 1, depending only on w* and on 2.

Let G(x,y) be the Green’s Tensor for the linear system (6) in the region G. Then

W (x; y)=f£2W*-TGdS—Z,J;GW’V'VWdV, (39)
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hence by the definition of W, (x),
W (x; z>—w0(x>|2<ouzf‘f—:dvf|vW|2dV,
where we have used the estimates (23) of Odqvist for |G (x, y)|. Applying (38) and
Lemma 3.4, we obtain the desired result,
|W(x; ) —W,(x)|<C2A (40)

provided only that A is sufficiently small, depending on 2 and on w*. For the re-

maining values of A, the result follows from Theorem 3.5.
THEOREM 7.2. Under the assumptions of Theorem 7.1,
[VWED)- VW) [<Ch |Px1)-Py(x)|<Ci,
and for any &>0,
(VW )— 7 We®]—[VWE -V W,@|<Oidny,
|[P(x, 2) = Py )] =[P (y, )) — P, < C1Any

uniformly in G+ 2, where C depends only on 2 and W*, and O, depends on 2, on
w*, and on e.

Proof. From (40) and Theorem 3.2 we obtain
Wi(x; A)<C

for all sufficiently small . Hence from (39), using the estimates (23) on @ (x, y),

V.

|V W (x; 1) — on(x)[<ozf vrzvd
G
In particular, by Theorem 3.2,
vW
s d

s

V.

| vV W (x; /1)]<0+0/1f
g
Multiplying by #7* and integrating over G yields

f—'vyldV<0+OZf—fvwldV<0+OlfF—lsz{dV
¢ T ¢ T ¢ T

from which, for small 2,

flv—zv—ldV<O,
g 7
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hence | vV W(x; 4)— v Wy (x)|<CA

The pressure term is estimated similarly, and the remainder of the proof is obtained
by use of standard methods of potential theory, starting with the estimates (23) of
Theorem 3.1.

7 b. Transition to zero Reynolds’ number; exterior region

The method of § 7a cannot be applied to an exterior region without modifica-
tion, since the components of the Green’s Tensor for the system (6) in an exterior
region are in general not square integrable. In order to obtain estimates for the de-
viation of the given solution from the solution of the linearized equations, we con-

sider first a finite region of special form.

Lemma 7.3. Let 2 consist of a finite number of smooth closed surfaces, and let
Er be the annular region bounded by 2 and by a sphere 25 about the origen of (large)
radius R. Let X, be a point on a fived concentric sphere 2, which contains 2. in iis
interior, and let Gy (X, y) be the Green’s Tensor for (6) in Ep. Then on the surface 25,
|T Gr (X, ¥)| <CR72, and uniformly for all y in Eg, |Gr (X, ¥)| <Cryly, where C de-

pends only on 2 and on 2, (and not on R).

Proof. For the singular part ¥ (X, ¥) of Gz(X,y), these estimates are easy con-
sequences of the defining relations (10), hence we need only prove them for the re-
gular part yz(X, y). We obtain first a bound for the Dirichlet Integral of yz. To do
this, we introduce a comparison field v (x, y) which is divergence-free, equal to yz
on 2 and on 2, and vanishes outside a neighborhood of the boundary (of Lemma 2.1).
It is clear that such a field can be constructed near > to have uniformly bounded
Dirichlet Integral for all x on 2, To construct the field near 25, we exploit the
homogeneity of the system (6). Thus, the values of ¥ (X, ¥) for y on 2 are exactly
R1y* (G, M), where x* (o, ) are the values on the surface of a unit sphere 2, of
the fundamental solution tensor ¥ (§,, n) with singularity at ¢ =R 'x,. The values x*
can be extended to the interior of 2, so that the extension vanishes outside a neigh-
borhood A; of 2, and has Dirichlet Integral uniformly bounded, independent of R.
Let v,(§, n) denote this extension. Then vz (%, ¥)=R 'V, (R'X, R'y) yields an
extension of the given data on 2 to a neighborhood A of 2z. We have

f IVVR|2dV='I‘13f |vv,[PdV<CR™
Ap A
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We may suppose that the neighborhoods of 2 and of 2 do not intersect. Let
V (X5, ¥) be the sum of the two comparison fields. Then v (X, ¥) has bounded Di-
richlet Integral, uniformly in R and in x,, for X, on 2,. Let n=yz—V. Then n=0

on 2 and on 2, and, from (6),

) b3
flvnPdV:f |vn-vv)dv<(f |vn|2dV) (f |VV|2dV)
&R &R &R ER

from which J[V'q]de<O.
Er
But flvmmsz |vn|2dv+zf |7 vEdr,
&R &R &R
hence f | v ye[?dV <C,
ER

which was to be proved.

We observe next that yp can be extended to the whole space as a piecewise
continuously differentiable field which tends to zero at infinity and has bounded Di-
richlet Integral, independent of R. In fact, a particular extension is provided by the

singular part ¥ (X,, ) of Gz. Hence by Lemma 3.3,

1 2
= SQZ’deS<C

for an arbitrary sphere 2.’ of radius R’.
We may now use these estimates to find a bound for y, on 2,. Let x, be a
point on 2, let V be a sphere of radius r, and surface S about x,. Let Gy be the

Green’s Tensor for this sphere. Then

|YR|2=

3§ YR~TGVds[2<§£ y%def(TGV)zdS,
N S

hence on 2, lvz| <C.

Next, we estimate 7'y, on 2. Let G, by the Green’s Tensor for the region &,
bounded by 2 and by 2, Since this region is fixed, we have the estimates (23) of
Odqvist. In &,

Yo= YR-TGdS—jQ X - TGdS,
por z
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where x* denotes the boundary data arrising from the singularity at X,, which is
used to define y;. Since these data have bounded third derivatives on 2, they can
be extended by Lemma 2.1 to the interior as a divergence free vector field v (x) with

bounded second derivatives. Hence,

~

Yl )= YR-TGdS—IrJ G-AvAV.
0 &
The first term on the right has bounded derivatives up to 2. because of the above
bound for |ya| on 2, The second term can be estimated by formal application of
(23). A similar discussion establishes a bound for the pressure up to 2.
Consider now the field y; in the entire region &£;. Let G (X, y) be the Green’s
Tensor for the sphere bounded by 2;. We have

_ x):jg TG~ G-Ty)dS+_ (" TG)dS
= J Zp

where y* denotes boundary data due to the singularity at X,. The second term on
the right is the regular part vy (x, X) of the Green’s Tensor for the entire sphere,
with singularity at x;,. Homogeneity considerations, starting from the Green’s Tensor
for the unit sphere, show that |y (x4, X)|<CR™" and |Ty|<CR™® for X on 2;. In
the first term on the right, which we denote by yx, x* and T y; are known to be
bounded. Again using the homogeneity of (6) to estimate G and 7' G, we find
lys|<Cl|x|™" in &z, and |Tys|<CR? on 2z Thus yz=vy+ys has again these
properties. This completes the proof of Lemma 7.3.

We are now prepared to estimate the deviation of the solutions of (4) from those
of (6) in an exterior region. Again we consider a boundary 2 consisting of a finite
number of smooth closed surfaces. Let w* be prescribed data on 2, and let w, be
a prescribed constant vector. Let A be a (small) positive parameter, and let w(x; 4)
be a solution of (4), such that w=2Aw" on 2, w—Aw, at infinity. The existence of
such a solution (1) is proved in § 5 and we assume that w(X; 1) can be constructed
by the method of that section. That is, w(X; A) is the limit, uniform in compact
subregions, of solutions of the interior problem: w=AW* on 2, w=AW, on 2z where
2z is a sphere of large radius R. Let W(x; A)=A"'w(x; A), P(z; A)=1""p(x; ), and

(1) It is unnecessary to assume the outflux condition (3) for w" since if A is sufficiently small,
the conditions of Theorem (2.6) will automatically be satisfied.
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let W, (x), P,(x) be the solution (1) of (6) and corresponding pressure such that W, (x) =w*
on 2 and W, (x)-—>Ww, at infinity.

THEOREM 7.4. There exist constants O and C,, depending only on 2, on W* and
on Wy, such that (2)

W (X; 1) — W, (X)| <CA+Cyr VA
untformly in the closed exterior of 2.

Proof. We start by obtaining an estimate for the Dirichlet Integral of W(x; A).
Because of the assumed method of construction of w(x; A1), this ean be achieved by
formal modification of the reasoning in the proof of Theorem 7.1, analogous to the
change required from § 2a to § 2b, and we omit details. We find

f|vW]2dV<O
&

for all sufficiently small 4.
Consider a fixed sphere 2, surrounding 2 and let 2, be a sphere of radius R
surrounding 2,. Let € be the region bounded by X and by 2z, and Gy be the

Green’s Tensor for (6) in £;,. For any point x of 2, we have
W z)—xv(,:ffzw*-TGRdSJrfﬁZR(W—wo)-TGRdS
—I—ZJSRGR-(W—WO)-VWdV+Zf8RGR‘WO-VWdV. (41)
We may rewrite (41) in the form -
W (x; z)—Wo(x)=fER(W(x)—wo)-TGRdS—§ER(WO—w0)-TGRds+
+lfSRGR'(W~WO) Y WdV+Zf€RGR-W0- vWav.
Consider first the surface integrals over 2. We have

[§., Vw0 rnas] <f Wowras g, @i

<CR-R*=CR™

(1) The existence of a solution W, (x) and its uniqueness in a class of solutions which differ from
w, by O (r_l) is proved in [11]. The uniqueness in the most general class of solutions which are con-

tinuous at infinity is proved in [4]. A still more general uniqueness theorem will appear in a forth-
coming work of I. D. Chang and the author.

(3} The origin of coordinates is assumed interior to X. The result implies, in particular, the
uniform inequality |W (x; A) — W, (x) ! <0Viin E+3.
16 — 61173051. Acta mathematica. 105. Imprimé le 30 juin 1961.
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by Lemma 3.3 and Lemma 7.3. Also, on 2, IWO—W0|<CR_1 (see footnote (1),
p- 237), hence by Lemma 7.3,

HQ (WO—WO)-TGRdS'<OR‘1.
Zr
We study the volume integrals, using Lemmas 3.4 and 7.3:

2 (W —w,)*
‘Z Gr-(W—w,) VWAV <012f _5—'de |V WPV <CA
£R ER L ER

2
}zf GrWo VWAV <022f %dvf |v WEdV<CAR.
ER ERT ER

Now choose R=2"". The above estimates yield, for all X on 20,
|W (x5 4)— W, ()| <CV,

This result established, we consider the fixed region &, bounded by 2> and by
2o The associated Green’s Tensor G, satisfies the estimates (23) of Odqvist. For x

in &, we have

W (x; l)~W0(x)=3€E (W—W,) T 6,ds

0

+1f GO-(W~WO)-VWdV+Zf Gy Wy VWAV,
& &

Let us consider values of X in a neighborhood of 2 (bounded away from 2,).

We ,see immediately that the two volume integrals admit uniform bounds, hence by
the above estimates, we find that in this fixed neighborhood of %, | W (x; 1) — W (x)| < OVA.
A repetition of the reasoning which led to Theorem 7.2 then shows that throughout
this neighborhood, |V W~V W0|<Oﬂ. Similarly, we show that if the pressures p
and P, are suitably normalized, then |P(x;1)—P, x)|<CVA up to 2. Hence
|TW—-TW,|<CVi up to Z.

Now let ¥ (x, y; ) be the fundamental solution tensor associated with the sys-
tem (5). For any point X in the exterior € of 2, we have by Theorem 4.2 the re-

presentation

W (x; 2)—W0=§ W Tyx—x - TWH+Ayx (W —wp) (W, -n)]dS
=
—H.f X (W—w,) - VWdAV.
&

Letting ¥, (X, y) denote the fundamental solution tensor for the system (6), we have



ON THE STEADY-STATE SOLUTIONS OF THE NAVIER-STOKES EQUATIONS, IIT 239

W(,(x)—wo=§2[w*-TXO—X0~TW0]dS.

Thus, for all points of &,
W A=Wy (= (W' (T =T x0) = (= Xo) T Wy - (T W=7 W14
)
—(—fo X~(W*~W0)(w0-n)dS+AJ X (W—wy)  VWdV. (42)
= &

Because of what we have already shown, we need only study points x at large
distance from 2. Formal (although tedious) calculation, starting from the definition

(7) for % (X, ¥; o), shows that for ryy bounded from zero, | (X, ¥; 6) = %o (X, ¥)<C &
| T % (x, 55 0)— T %, (X, y)|<Ol/Erx"3}. Also, for all rxy, [x (X, ¥; 0)|<Crl! uniformly
in ¢ as 6—>0. The desired result, | W (x; 1) — W, (X)I<Ol+01ﬁr‘1 uniformly in &,
then follows immediately from (42), from the above estimates, from Lemma 3.4, and

from the definition of o.

We can extend this result to obtain corresponding estimates on the derivatives
of the solution-

THEOREM 7.5. Under the assumptions of Theorem 7.4,
[V W 2)— v Wy (x)|<CA+C,VarT,
| P (x; A)— Py (x)| <CA+C VAr?,
and for any &> 0,
[V W(x; 2) = vV Wo )] [V W(y; ) — vV Wy <[CA+C,VarT]rlye
[[P (x5 2) = Py (0] = [P (3; A)— Py M1 < [CA+C, VarTrlye

uniformly in E+2, where O, C; depend only on 2, on w*, and on w,, and C, Oy
depend on 2, on W*, on W,, and on .

For any compact region containing 2, the proof of this result is essentially con-
tained in the proof of Theorem 7.2. For a point x at large distance r from 2, we

may enclose X in a unit sphere V of surface S, and write
W 4= § W-TGdS+1f ¢ W-yWav,
S v

where G (X, y) is the Green’s Tensor for (6) in V. Hence
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W (x; z)—Wo(x)=§§ (W—W0)~TGdS+Af G-W-vWdV,
S v

and by Theorem 7.4,

bYW,y

| v W (x; 2)—VWO(X)]<01+OIV1¢*1+021J‘
14

o
Since |V W, (x)| < Cr 2% the remainder of the proof can be obtained by a repetition

of the reasoning in the demonstration of Theorem 7.2.

7 e¢. Transition of the force exerted on a fluid interface

We consider a solution of (4) defined in & region § (or &) bounded by 2. De-
note by 2’ an arbitrary smooth closed contour which lies in the flow region. The
03> exartel across the interface 2.’ on the particles in the region G’ interior to 2

is defined as the integral of the stress tensor over 2/,

P — —45 Twds.
-

\ . o B ow;  owy
That is, F;= f‘\:[ paii+(8x,+axi)]n’d&

Consider again a family of solutions w(x; 1) with boundary data Aw*, 1w,
0<A<1, and let W(x; )=2""w(x; 1), P(x; A)=2""p(x; 1). Again let W, (x), P, (xX)
denote the solution and corresponding pressure of the solution of (6) with boundary

data w*, w,. For this solution, the force on 2’ is given by
—ff TW,d8.
=

Applying Theorems 7.2 and 7.5, we conclude:

THEOREM 7.6. There exist constants C and Ay, depending only on 2., on W*, and

(for am exterior region) on W,, such that whenever A <A,

1

SV -F|<0O

‘Z ol <C A
in an interior region, and

‘%F’—F(, <0Va

for an eaterior region E.
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A case of particular interest is that of a flow of a viscous fluid past an obstacle,
ie. of a solution w(x) of (1) exterior to 2, such that w=0 on 2 and w->w, at in-
finity. Theorem 7.6 shows that for large values of the viscosity u, the ratio of the
force on 2 to u can be approximated by the corresponding quantity for the solution

of the linearized equations, with an error not larger than C/ Va, Tt is in principle
possible to obtain an explicit value for C in particular cases, e.g., the flow past a

sphere, and we plan to carry out these calculations in the near future.

8. Uniqueness and continuous dependence

Uniqueness theorems for time independent motions of a viscous fluid at small
Reynolds number can be traced back to Osbourne Reynolds [16]. Except for improve-
ments in detail and in exposition the available knowledge has remained unchanged
since that time. Essentially, the result states that if w,(X) is a solution of (4) in &«
finite region G bounded by a smooth closed surface 2., and if the mazimum of |w, (X)|
in G is sufficiently small, then there is no other solution of (4) in G which assumes the
same boundary data. The general line of proof is as follows: Let w,(X) be another

solution, and set W (X)=w;—W,, P(X)=p,—p,. Then W(x)=0 on 2, and

AW-W-YTW-—vVP=W-Vw,-w,- VW 43)
V- -W=0.

Scalar multiplication of (43) by W (x) and integration over § leads to

f}vW\de= —fW-W-ledV=fw1-W'VWdV,
g g g

H ¥
hence fIVW|2dV<y(f Wde) (J]VWPdV) ,
g g g

where y = max |w, (x)|. Since W(x)=0 on 2, there is a constant C, depending only
g

on 2, such that JWZdV<02f | v WEd V. Hence
G G

f |vw]2dv<y0f |v WP dV
g ]

and if y is smaller than C* we conclude |V W|=0, hence W=0 in G, q.e.d.
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We present in this section an improvement of this theorem, in the sense that
the only knowledge assumed is of an a-priori character, on the boundary values w*

of the solution. Nothing is assumed about the behavior of the solution interior to G.

THEOREM 8.1. Let w* be prescribed data of class C® on a smooth closed surface
2, and let w denote a bound for the magnitudes of W* and of its second order deri-
vatwes on 2. Then if u is sufficiently small, depending only on 2, there is at most one

solution of (4) in G which is equal to W* on 2.

We remark that if w* satisfies condition (3) there is at least one solution (cf.
§ 5), hence in this case there -is exactly one solution.
Theorem 8.1 appears as a special case of a more general result, which shows the

continuous dependence of the solution on its boundary values.

TaeorEM 8.2. Let w; (X), W,(X) be two solutions of (4) in G which assume
boundary data Wi, Wi of class C® on 2. Let u be a common magjorant for wi, Wi, in
the sense of Theorem 8.1. Let W*=wi—w3 and let W, (X) be the (unique) solution
of the linear system (6) such that Wy (X)=W* on 2. Then if u is sufficiently small,

depending only on 2., we have
[ Wy (%) — W, (X) | <2 max | W, (x)]
6+%

wniformly for all X in G+ 2.

Proof: The difference W (X)=w, (X) — W, (X) satisfies

AW—VP=W-VYw;+w, VW
vV -W=0,

where P (X)=p,—p,. Let G (X, y) be the Green’s Tensor for the system (6) in §. Then

W(x)=§;EW*-TGdS+‘f

G'W-ledV—l—f G-w,- VWAV
G 6
from which W(X)ZWO(X)+fG-W'ledV——fW-Wz-VGdV.

6 G

Let M= max |W(x)|, M,= max|W,(x)|. We may assume that the value M is
g+Z G+X

achieved at a point not on 2, since otherwise the theorem is trivially correct. We

find, using the estimates (23) of Odqvist,

M<M0+Mf@dv+zuf|v:—;ldv. (44)
G G
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But by Theorem 2.3,

1 B3
[1Ixday ([ Lav)' ([ 19wk ar) <em,
g g? g

where ¢,—0 as u—0. Also, by Lemma 3.4,

[lser<([ ) (] 200 <o )

where W, denotes an extension of w, to the exterior of 2, which vanishes outside a

compact subregion. Appiying Lemma 3.4 and Theorem 2.3, we find

W,
J‘g]—r%-ld V<ey(p),

where ¢, (#)—>0 as pu—0. Thus, if u4 is chosen so small that & (1) + &, (u) <3, We ob-
tain from (44)
M<2M,,

which was to be proved.
Finally, we state a result which does not differ essentially from one that we have

used in § 5, but which seems worthwile to formulate explicitly.

THEOREM 8.3. Let {w,(X)} be a sequence of solutions of (4) defined in a finite
region G with smooth boundary 2, and suppose that the boundary values {w,} are uni-
formly bounded and have third derivatives smaller in magnitude than o fixed bound. Then
there is a subsequence of the {w,} which converges uniformly in G+ 2, together with all

derivatives of first order, to o solution of (4) in) G.

Theorem 8.3 follows immediately from Theorem 3.5, from classical theorems on

equicontinuous families, and from the representation formula (30).
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