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I n t r o d u c t i o n  

In this work we study the relations connecting a solution of the Navier-Stokes 

equations 
,u A w - - @ w .  V w - -  Vp=O (1) 

T " w = O ,  

(~) This investigation was supported by the Office of Naval  Research. 
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with the values achieved by the solution on the boundary of the region of definition, 

and with the magnitudes of certain energy integrals which are associated naturally 

with the solutions of (1). 

The notation in (1) is the usual one of vector analysis. Each of the quantities 

which appears admits a simple physical interpretation. The solution w (x) can be inter- 

preted as the velocity field of an incompressible fluid motion, and p (x) is then the 

associated pressure. The constant ~t is the viscosity coefficient of the fluid, and the 

term /x A w denotes accordingly the shearing force on a unit  volume due to relative 

motion a t  a fluid interface. Q denotes the density of the fluid, Q w.  V w the inertial 

reaction of a unit volume, and V p is the force per unit volume acting normal to a 

fluid interface. The first equation expresses the equilibrium of these forces at  points 

of the flow; the second expresses the assumption tha t  ~ is constant in the motion. 

Because of the difficulty in integrating (1) in a general case, i t  is natural  to 

consider the linear equations satisfied by the perturbations of a particular solution. 

The simplest of these are the Stokes equations 

# A W -  V p = 0  (2) 

V " w = O  

which correspond to the identically vanishing solution of (1). A major  task of the 

present work will be to examine the connection between the solutions of (2), and the 

solutions of (1) which correspond to small boundary data. 

The system (2) has been studied in considerable detail by  Odqvist [11], who 

proved the existence of a Green's Tensor for an arbi trary region. Odqvist used this 

tensor to obtain an integral equation for the solutions of (1), and this equation led 

in turn to a proof of existence of a solution of (1) in a finite region 6,  corresponding 

to prescribed data  w* on the boundary ~ which satisfy the (necessary) condition 

w * . n d S = 0  (3) 

(n = unit  exterior direct normal), provided only tha t  ]w*] is everywhere sufficiently 

small ([11], see also [10]). 

The first general s tudy of (1) for arbi trary prescribed data is due to Leray [8]. 

Leray der ived general a priori estimates on the solutions of (1), depending only on 

and on the boundary data. He applied these estimates, using a device which is now 

classical but  which was a t  tha t  t ime not yet clearly formulated, to prove the exist- 
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enee of at  least one solution of (1) in ~ corresponding to  arbi t rary  (sufficiently 

smooth) data  w* on ~. The solution is obtained by  a continuous deformation in 

funct ion space, start ing with the  solution of (2) given by  Odqvist,  and essential use 

is made of Odqvist ' s  integral equat ion and of his estimates on the Green's Tensor. 

F rom a physical  point  of view the problem just discussed has little meaning, 

since the natural  boundary  condition is w * ~ - 0 ,  and in this case one sees easily t ha t  

the only solution of (1) in ~ is w = 0. Of more interest is the exterior problem, in 

which a solution is sought which assumes data  w* on Z and which tends to a given 

cons tant  vector  w 0 at  infinity. I n  this case, however, new difficulties arise. Experi-  

mental  evidence indicates that ,  at  least for large prescribed data,  the solution either 

does not  exist or is unstable. For  the linear system (2), it is known tha t  no solution 

exists in two dimensions. (1) In  three dimensions, the solution exists but  is known to 

violate, in a neighborhood of infinity, the assumptions under  which the equations were 

derived (see, e,g. [12, p. 165]). Also for the strict  equations (1) there is evidence 

t h a t  solutions m a y  exhibit  pathological  behavior at  infinity, An  example in two di- 

mensions is discussed in w 6 of this paper. Nevertheless, Leray  succeeded in constructing, 

for  arbi t rary  prescribed da ta  in three dimensions, a soh t i on  of (1) in the exterior E 

of  Y: which equals w* on ~, for which the Dirichlet Integral  is finite, and which 

tends to  w 0 in the sense of an integral norm. Leray  also obtained a priori est imates 

on  the solution which are val id in any  compact  subregion of E. 

The behavior of the solution at  infinity has been discussed in some detuil in [1] 

and  in [2]. I n  [1] we have proved tha t  the solution of Le ray  (more generally any  

solution with finite Dirichleb Integral)  necessarily tends to a limit in tile strict sense 

as  x--> oo, and a representat ion of the solution by  means of an integral equat ion is 

obtained.  I n  [2] we discuss solutions which need no t  have finite Dirichlet Integral .  

We show there tha t  whenever w - + w  0 at  infinity, then necessarily all first order 

derivat ives of w tend to zero. If, in addition, I w - w 0 l < C r  ~-~ for some e > 0 ,  then 

w (x) has the same asymptot ic  s t ructure at  infinity as the corresponding solution of 

the  system obtained by  linearizing (1) about  the solution w - - w 0 .  I n  particular,  

[ w - w ~ [ < C r  -1 and there exists a paraboloidal  "wake"  region outside of which 

I w - w0] < Cr .2. I t  is no t  known however whether there exist solutions which exhibit  

t he  assumed rate of decay to w o at infinity. 

(1) See, e.g., [4]. An improved discussion of this phenomenon will appear in a forthcoming work 
~3f I. D. Chang and the author. 
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The crucial step in  the method  of Leray consists in  obta in ing  an  a priori b o u n d  

for the Dirichlet  Integral(1) of any  possible solution, depending only on b o u n d a r y  

data .  Leray proved the existence of such a bound,  and  also gave an  i ndependen t  

demons t r a t ion  which yielded an  explicit  es t imate (2). I n  w 2 of this paper  we ob t a in  

a bound  for the Dirichlet  In tegra l  by a method  which derives conceptual ly from t h a t  

of Leray.  Our result  is a slight improvement  on t ha t  of Leray, in  the sense t ha t  

we do no t  insist  t ha t  the outflow integral  (3) vanish,  bu t  merely require i t  to be  

sufficiently small. The demons t ra t ion  we give uses a technical  device due to E. Hopf [5] 

which, we believe, simplifies and  clarifies the reasoning considerably. 

I n  w 3, we apply  the bounds  on Dirichlet  In tegra l  in  order to ob ta in  a-priori 

est imates on a n y  possible solut ion and  on its first derivatives,  depending only  on 

prescribed data.  I n  the case of a f inite region ~,  these bounds  are essentially those 

of Leray.  For the region ~ exterior to ~, we improve the results of Leray by  giving 

est imates which are uni formly  valid th roughout  the flow region. 

We show in  w 4 t ha t  solutions with f ini te  Dirichlet  In tegra l  are necessarily con- 

t inuous  a t  inf ini ty .  We present  here a proof which' is more e lementary  t han  the one 

we have given in [1]. I n  w we prove the existence of a solut ion corresponding to  

prescribed b o u n d a r y  data.  Again  the result  is essentially t ha t  of Leray when the  

region is finite. The new features in  the other case are tha t  the solut ion is shown 

to a t tach  cont inuously  to the prescribed value a t  inf ini ty ,  t h a t  some outf lux is per- 

mi t ted ,  and  tha t  uniform bounds  are available for the solut ion and  its derivat ives.  

The principal  new results of this paper  are presented in  w 7. t te re  we s tudy  the  

m a n n e r  in  which the solutions of (1) t ransform into those of (2) as the prescribed 

da ta  t end  to zero. Precisely, we consider da ta  of the form 2w*, X w 0, 0 < ~ < 1. (a) 

(1) This integral can be interpreted physically as half the SUln of the rate at which energy is 
converted into heat by the fluid, and the total vorticity in the flow. 

(~) Another proof of the existence of a bound, based on an inequality of Sobolev, has been 
given by O. A. Ladyzhenskaia [7]. The method of Leray, besides yielding an explicit estimate, is 
intrinsically simpler and more elementary. 

(a) Equivalently, we could keep the boundary data fixed and let ju --> co or Q --> 0. In the former 
ease we would find [ w (x; ~t) - W 0 (x) [ < C/l~ in a bounded region, and 

l w(x; ~)-  Wo(x) l<C(~t-�89 -1) 

in an exterior region. The estimate for a bounded region can be obtained also from the work of Od- 
qvist [11]. The emphasis in the present paper is on the behavior of the solution in a neighborhood 
of infinity, to which the methods of Odqvist do not seem to apply. 
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W e  prove  t h a t  if w(x;  2) is a solut ion of (1) w i th  these  d a t a  and  if W0(x ) is the  

solut ion of (2) w i th  d a t a  w*, w 0 t hen  12 l w (x; 2 ) - W  0(x) l =  O(2) when the  region is 

f inite,  and  I -lw(x;2)-W0(x)l=o(V r 1+ )in the  case of an  inf in i te  region.(1) 

Analogous  es t imates  for the  der iva t ives  a re  also given.  Thus,  we see t h a t  the  solu- 

t ions of (2) in an  exter ior  region are  un i fo rmly  close to  the  corresponding solut ions 

of the  Nav ie r -S tokes  equat ions  (1), even though  the  p e r t u r b a t i o n  f rom the  l a t t e r  

solut ions  to  the  former  is s ingular  in  ti l ts region.  These considera t ions  are  app l i ed  to  

a discussion of the  force" exer ted  on ~ b y  the  fluid, and  an  es t ima te  is given for 

the  error  incurred  by  using the  solut ion of (2) to  calcula te  the  force. The demons t ra -  

t ions are  s t ra igh t forward ,  b u t  lean  heavi ly  on the  deve lopment s  in the  ear l ier  sect ions 

of the  paper .  

I n  the  f inal  sect ion we improve  the  classical uniqueness  theorem for (sufficiently 

small)  solut ions in a f ini te  region ~ b y  showing t h a t  this  resul t  can be given in an  

a pr ior i  fo rmula t ion ,  depending  only on b o u n d a r y  da ta .  (The classical resul t  assumes 

a knowledge  of one solut ion in the  ent i re  region,  see, e.g. [16].) W e  ob t a in  th is  

theorem as a special  case of a more  general  resul t ,  t h a t  the  difference of two suffi- 

c ien t ly  small  solut ions  wx (x) and  w 2 (x) can be bounded  un i fo rmly  in ~ in t e rms  of 

the  so lu t ion  of the  l inear  equat ions  (2) wi th  b o u n d a r y  d a t a  equal  to  wl  ( x ) - w 2  (x). 

To our knowledge,  this  is the  f irst  resu l t  on cont inuous  dependence  of the  solut ions 

of (1) on b o u n d a r y  d a t a  to  be publ ished.  

The chief concern of this  pape r  is wi th  solut ions of the  sys tem (1) in  three  di- 

mensions.  Those of our resul ts  which pe r t a in  to solut ions in a f ini te  region are pre- 

s u m a b l y  va l id  also in the  corresponding two d imensional  case, b u t  a r igorous proof  

requires  cer ta in  general  es t imates  which are no t  y e t  ava i lab le .  The behav ior  of a two 

dimensional  solut ion a t  in f in i ty  appears  to p resen t  diff icult ies of a more  p rofound  

na tu re ,  and  a precise  discussion m u s t  p r o b a b l y  awa i t  the  deve lopmen t  of new 

methods .  

l .  N o t a t i o n  a n d  d e f i n i t i o n s ;  p r e l i m i n a r y  e s t i m a t e s ;  t h e  r e p r e s e n t a t i o n  f o r m u l a  

W e  consider a vec tor  field w (x), w = (w 1, w 2, w~), which  is def ined in  a region 

of three  d imensional  Euc l idean  space, x =  (x 1, x 2, %).  Such a field is said to be a 

solution o/ the Navier-Stokes  equations, 

(1) The origin of coordinates is assumed interior to ~. The result implies, in particular, the 

uniform inequality [ W (x; 2) - W o (x) [ < C l/~ in ~ + Y,. 
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~ A  w - - p w .  V w - -  V p = O  (1) 

V -w=O 

in ~ whenever there exists a scalar field p (x) in ~, such that  (1) is satisfied through- 

out ~ by the pair (w, p). I t  is assumed that  w (x) and p (x) are sufficiently smooth 

that  all quantities entering in (1) are defined and continuous throughout ~. The 

vector field w (x) and scalar p (x) have the physical significance of velocity and pres- 

sure, respectively. We have found these interpretations helpful in providing motiva- 

tion and suggesting methods, but they are of course unnecessary for the formal 

mathematical developments. In order to simpliy notation we shall normalize (1) so 

that  # = ~ =  1. This can always be achieved by multiplication of w and of p by ap- 

propriate constant factors. Equations (1) then take the form 

A w - w .  V w - V p = 0  (4) 

V . w = 0 .  

Since most of our results are valid for every value of the Reynold's number, (1)this 

normalization entails no loss of generality. In w 7 we shall permit the Reynold's 

number to vary, but we shall effect this I by varying the boundary values of the 

velocity field and keeping all other parameters constant. 

A particular solution of (4) is the uniform flow, w ~ w 0 = const. The perturbations 

of this solution are solutions of the linear system, 

A W - - W  o- V w - -  V p = O  (5)  

V . w = 0 ,  

the equations o/ Oseen. In  the case w0=0,  we obtain the equations o/ Stokes, 

w -  V p=O (6) 

~7 . w = 0 .  

We shall need a fundamental solution tensor ~ (x, y) associated with (5). Such a 

tensor has been determined explicitly by 0seen [12, p. 34]. I t  can be obtained from 

the relations, 

(1) The Reynold's number is defined by the relation R=QUL/~, where U and L denote a 
characteristic speed and length in the flow. For a discussion of the role played by this quantity in 
the theory of (1) and in experimental observation, see, e.g. [6]. 
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~20 ($is = {1, i = j  
Zis=(~sAO 8xi~x s' 0, i # j  (7) 

~s = - ~ [ A  (I) + Wo" v O] vxt 

0 1 f~ 1-e-~do: 
8~a 

Iw.I W 0 �9 (y X) 
a = ~  8 - r x y - ~  

~ IWol 

The tensor X =  (Z~s) and vector tp = (Fs) become singular at  x = y  in such a way tha t  

(s) 

where ~r denotes the surface of a sphere of radius r about  x as center and n =  (nj) 

is the unit  exterior directed normal on ~ .  For fixed j, the column vectors Z,j de- 

fine, as function of x, a solution of (5) with ~s as COiTesponding pressure. As func- 

tion of y, Z,s defines a solution of the adjoint system, 

A w + w  o" V w - -  ~Tp=0 (9) 

V . w = 0 .  

In  the case w o =0 ,  the tensor (Zis)" takes a particularly simple form. We then have 

- l  l(~,s ~ (xi-y~) (xs-ys)} 
Z~s = - ~  t r~  r~y ' 

xj -  yj (10) 
~fs 4~r~y" 

We define the stress tensor T w by the relation 

(ew~ ~wj~ 
( T w ) , j  = - p ~ j +  \~xj + ~ ] "  ( l l )  

Formal integration by parts leads to the relations> valid for any divergence-free vector 

fields u(x) and v(x) and associated scalars p(x), q(x) defined in a region ~ with 

boundary ~, 

fq u . ( A  u- -  V p ) d V + 2  f~ (def u)2dV = ~r~ u. T u d S  

fo r- .(A v q ) - v . ( A  u -  v 
Z 

(12) 
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where def u = � 8 9  (~u~/Oxj+~uj /Sx i )  is the de/ormation tensor associated with the mo- 

tion.(1) These identities are to be understood in the sense that  u - T v = u ~  (Tv)~jnj 

and summation is extended over repeated indices. 

From (8) and (12) we obtain the representation, valid for any solution of (4) in 6,  

w(x)= f0X'(w-w0)'vw V,, (13) 

where T X is formed by interpreting the components of ~ as pressures. One sees 

easily that, conversely, any vector field w (x) which satisfies (13) is a solution of the 

Navier-Stokes equations (4). We find similarly a relation for the pressure, 

p ( x ) = ~ { w . T , - , . T w + ( , - w ) ( w 0 . n ) } d S y §  fq  , . ( w - w 0 ) . v w d V y  ' (14) 

r 11~1  
,v,,ero wo ,,avo in ro uood corresponding to the vector 

L \ ' A y / /  

(x, y). 

We collect here some elementary properties of the tensor X (x, y) for later re- 

ference. In  what follows, we assume (without loss of generality) that  the vector w 0 

is directed along the positive xl-axis. We denote by ~ the (polar) angle made by a 

ray which starts from the point x, with the positively directed xl-axis , and by r the 

distance from x to a point y of this ray. We present the estimates for X(x, y) as 

function of y for fixed x. Considered as function of x, all estimates for X (x, y) re- 

main true if ~ is replaced by ( g - ~ ) .  Since ~ is a function only of ( y - x ) ,  we may 

assume that x is the origin of coordinates. Letting I~1 denote an upper bound for 

the magnitudes of all components of ~, we then have for some positive constant C, 

C 1 1 - e  -"8 
i) as r - ~ ,  Ixl< 

r a s  

Ivxl<C 
1--  e os _ a s e-~S al  

(as)~ # '  

where s = r + y l = r ( l §  and a = l l w o ] ,  

ii) for any integer N >  0, the Nth  derivative ~(N) of ~ in any direction satisfies 

the inequality I X(N)I < C r  �89 uniformly in ~ for sufficiently large r, 

(1) Throughout this paper, we denote volume integrals by S "'" d V, and integrals over closed 
surfaces by ~ ... dS. 
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iii) for a spherical surface ~n of radius R and center at  x, there holds 

txldS<C,   .ITxldS<O, 

iv) in a neighborhood of the singular point x = y ,  [:xI<Cr-', I V:xI<Cr -~. 

Proper ty  iv) follows immediately from the definition ( 7 ) o f  X(X, y). Proper ty  

if) is obtained from a generalization of property i) to higher derivatives. Proper ty  

iii), except for the estimate on T X, follows easily from property i). Property i) is 

obtained by  tedious but  formal computation, starting from (7). We omit details. The 

analogous estimates for ~b (x, y) are obvious. We have, in fact, ~b (x, y ) =  V (r-l). The 

estimate in iii) for [ "  I T x I d S  follows from this and from the estimate for 
JE R 

f ~  IV X[ on X(X, y) are [2]. given d S. Some further estimates included in We have 
R 

here only those which are necessary in the present context. 

We shall deal with solutions w (x) of (4) which are defined in a bounded region 6,  

and with solutions defined in a region ~ which contains a neighborhood of infinity. 

In  either case we denote the boundary of the region by ~. ~ is to consist of a finite 

number of closed, connected component surfaces. By  a smooth sur]ace ~ we shall 

mean a surface which admits in a neighborhood of each of its points a parametric 

representation by  means of functions which have continuous derivatives of all orders 

entering in the context. Although in most  cases slightly weaker assumptions will suf- 

fice, we will be safe to assume that  these functions are of class C (8). Correspondingly, 

we will usually assume tha t  the boundary values w* of w are of class C (3) when 

considered as functions of the same parameters.  

Throughout this paper the symbol C will be used to denote a positive constant, 

the value of which may  however change even within a given context. Thus, from 

the relation fl < C (1 + a2) we may  conclude fi < C a~ for all ~ > 1. 

2. A priori estimation of the Diriehlet integral 

In  this section we derive the bounds on the Dirichlet integral of solutions of 

(4), which are basic to the subsequent developments. We prove first a preliminary 

14 : - -61173051 .  Acta mathematica. 105. I m p r i m 6  le 30 j u i n  1961 
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result concerning the possibility of construct ing solenoidal extensions of prescribed 

vector  fields. (1) 

LEMMA 2.1. Let W* be prescribed data on a smooth surface ~, which are o/ class 

C (3) on ~ and which satis/y the out/low condition ~ ( w * - n ) d S  = 0 /or each component 
J zi 

~i o/ ~. Then there exists an in/inity o/ vector /ields ~b (x)which are de/ined througho~lt 

space, which vanish outside a neighborhood o/ ~, and are such that curl ~b (x)= w* on ~. 

The /ield ~ (x) can be chosen to be bounded together with all its partial derivatives up 

to third order, the bounds depending only on the corresponding derivatives o/ w* with 

respect to suitable sur/ace parameters and on the smoothness o/ ~. 

The vector  field v (x)= curl ~b then provides a solenoidal extension of the given 

da ta  w*. 

Lemma 2.1 is t rue in any  number  of dimensions. We present here a proof for 

three dimensional case. We consider first a representat ive component  ~0 of ~, and 

introduce a par t i t ion of un i ty  over ~0. That  is, we cover ~0 by  a finite number  of 

neighborhoods ~(0 k), k = 1 . . . . .  /V, and define non-negat ive functions fk) of class C ~ on 
N 

~0 such that ,  a) each /(k) vanishes outside ~(0 k) and, b) ~ / ( ~ ) =  1 a t  all points of ~0. 

(For details of the construct ion see, e.g., De R h a m  [15].) We m a y  assume tha t  the 

~k) and /(k) are chosen in such a way  t h a t  each such neighborhood admits  a repre- 

sentat ion of class C (a) onto the interior of a plane uni t  disc F (k) and tha t  each 

/(k)= 0 in the annular  region consisting of all points in the disc whose distance from 

the origin exceeds ~. Finally,  we extend each representat ion to a mapping from a 

(thin) cylinder Z (~) of which F (k) is the mid-section, onto a neighborhood of ~k), by  

mapping  the normals to the disc isometrically onto the normals to ~0 a t  corresponding 

points ,  and we extend the par t i t ion functions by  constancy along the normals. 
N 

At  each point  of ~0 we have w * =  ~/(k)  w*. Denote  by  ~1, ~2, the rectilinear 
k = l  

coordinates of the disc F (k) and by  ~3 the distance along the normal  to the disc. 

Le t  A(1 k), A(~ ), A (~)~ be the components  of /(k)w*, and let 

(1) This lemma has been used by several authors, but we know of no proof in the literature 
previous to a demonstration we have given in [2]. The proof presented here is due to Professor C. 
Loewner (oral communication). I t  is more elementary than the one in [2], and it has the advantage 
that estimates on the extension field can easily be found from a knowledge of the corresponding esti- 
mates for w*. 
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where the quantities in parentheses denote Jaeobians.  Denote  by  p ( k ) t h e  vector ,  
p(k>= (p(k>, .(k) ~ , p(~)), p(k) is defined on F (~) and vanishes outside a circle of radius 1. 

We now seek a vector  field to = (co:, e%, o)3) defined in Z (k), such tha t  curl to = p(k) 

on F (k) and to = 0 whenever ~ + ~ >~ ~. I n  general there is no such solution, for one 

sees easily tha t  a necessary condit ion is ( (k) j r(k)P8 d a : d o % = O .  We therefore mod i fy  

P(3 k) in order to achieve this condition. To do this, observe first t ha t  each point. 

where 0 </(~)< 1 in ~ )  is interior to one of the other  covering neighborhoods,  say  

~ ) ,  and 0 </o) < 1 at  this point. We select a neighborhood N of such a point  which 

lies interior to  bo th  neighborhoods, and modify  P(~)in N so t h a t  ( P(~)doq do: s = O. 
J r  (k) 

N 
Simultaneously,  we modify  the corresponding term in ~})~) so tha t  w * =  ~/(~) w* re- 

k = l  

mains unchanged.  Wi th  this new function P(~) we determine a vector  field ~ = (~5i, ~52, 0} 

so tha t  curl ~ = P ( a  ~) on F (z). We begin by  defining this field on F (~). We m a y ,  

for example, set 6 2 = 0  in F (~), s  on the semicircle a ~ + a ~ =  1, a s < 0 ,  and de- 

termine iS: in F (z) by  the condition 8r  s = - P ~ ) .  Then in the annular  region 

where P(~) = 0 we have 8 ~5:/~ a s - 8 t5~/8 a :  = 0, hence there exists a funct ion q (a:, ztz) 

such tha t  ~ = V ~. (The condition [ P(a ~) d ~x d zr s = 0 shows tha t  ~v is necessarily single 
,]1~(k) 

valued.) We m a y  now extend ~ ( ~ ,  ~s) to the entire disc F (~), and define 

t o = ~ -  Vcp 

on F (k). Finally, we extend to to the entire cylinder Z (~) by  sett ing o) a -  0 and ex- 

tending to:, cos so tha t  D ws/~a~ = -  p(k) and ~ t o l / ~  2 =p(k) on F (k). We m a y  clearly 

also arrange tha t  to = 0 on the boundary  surface of Z Ck). The resulting field ca (al, as, as) 

then satisfies the desired relation curl to = p(k) on F (~). 

Since 70 is by  assumption connected, any  covering of the sort described has  

the proper ty  tha t  for any  two of the neighborhoods ~J) and ~.(0 k), there is a chain 

of neighborhoods ~J), Z(0 ~ . . . . .  7(o ~), such tha t  each adjacent  pair intersects a t  points  
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where neither partition function vanishes. Thus, starting from any given neighborhood 

Z(01), it is possible by repetition of the above argument to construct, in a finite 

number of steps, corresponding fields to for each of the ~s) with the possible excep- 

tion of one last one, which we denote by ~(0 N), i n  which we can not modify the func- 

tion ~aD(N) without affecting the previous construction. But by assumption, 

N 

while by the nature of the construction, 

(w*" n) d S = 0, 

hence 

~ ,  (~ l / ( j )  w* ) \ ] = 1  . n d S = 0 ~  

f z, (](N)w*).ridS=0, 

see that  no modification of this last function is necessary. Thus a vector and we 

field to(J) can be defined in a neigborhood of each of the images of the ~ )  such 

that  curl to(J)= p(s) in F (j), and to (s) vanishes on the boundary of Z (j). 

We now transform these fields into a neighborhood of the original surface ~0- 

To do this, set 

2 ~ )  = co~ j) ~ ~ ~(J) = (~), ~), ~')) 
~x~' 

in a neighborhood of ~'), with summation extended over repeated indices, and set 

N 

j = l  

A simple calcu]ation then shows that  t~ is a field of the type sought, i.e., curl t~ = to* 

on ~0. Repeating the entire procedure for each component of Z completes the con- 

struction of the field. (We must of course arrange what is easily done- - tha t  the 

field constructed over each component vanishes over all o ther . )The  estimates on I t~] 

and on its derivatives can be obtained directly from the method of construction. 

2 a. Estimation of  the Dirichlet Integral in a bounded region 

We consider first the interior region bounded by a single closed surface ~. We 

suppose that  Z is smooth, and that  prescribed data w* of class C (3) are given on 

which satisfy condition (3). Applying Lemma 2.1, we obtain a vector field ~ (x )  de- 
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fined th roughout  space, such t h a t  curl t~ = w* on ~. We m a y  assume t h a t  t~ (x) and  

its der ivat ives  up to  third order are bounded,  the bounds  depending only on ~ and  

o n  W*.  

Le t  20 be chosen smaller  than  any  of the radii  of curva ture  a t  po in t s  of ~ ,  

and  also so small  t h a t  all points  on a normal  line of length 24 originat ing f rom an  

a rb i t r a ry  point  P of ~ are closer to P t han  to  any  o ther  bounda ry  point .  Then  in the  

shell region A~ de termined  by  the inequal i ty  0 ~ s ~< 5, a non-singular  coordinate  sys tem 

is defined by  the normals  to ~ and  the surfaces ~s of cons tant  dis tance s f rom 

along the normals ,  wi th  local surface coordinates on ~ obta ined f rom those of ~ b y  

constancy along the normals .  
) 

LEMMA 2.2 (Hopf  [5]). For any prescribed e > 0 ,  there is a real /unction ,~ (x 

with the /ollowing properties: 

a) ~ (x) is de/ined in a neighborhood o/ 5 and has continuous derivatives up to the 

third order which are bounded, the bounds depending only on ~, on ~(x)  and 

o n  E.  

b) 2 ( x ) = l  on ~, 2(x)=O outside A~, 

c) v ~ ( x ) = 0  on Y, 

d) I curl ~ ~ l < s s 1 throughout .,4~. 

Such a ~t(x) can be obta ined  as a non-negat ive  funct ion of s alone. A possib]e 

construct ion is as follows: 

Le t  M = m a x  ] d~], M 1 = m a x  ] curl ~k]. Choose 4 0 < 4 and  sufficiently small t h a t  
Adt A~ 

2 M 14 0 < s, and define 

f (  ;o; e ' 1  1 -  d(r 

for  all s~> s 0. Here  s o is the unique value of s de te rmined  by  the conditions 

S 
~ t ( s ) = l - - - - ,  O < s < ~  o. 

~o 

I t  is then  clear t h a t  for s ~< So, ~ (s) can be defined wi th  cont inuous th i rd  der iva t ives  

in such a way  t h a t  ~ (0) = 1, 2' (0) = 0, 0 ~< I~(s) l ~< 1, and  ] ~' (s) l < 2--~s,  in the inter-  

E 
val  0 ~< s < s 0. In  part icular ,  I~t ' (s)] < 2 ~ s  in the entire range 0 < s < 4 o, and,  using 

the  iden t i ty  curl 2d~ = ~  curl ~ -  d~• V 2, we easily obta in  the desired est imates .  
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Consider now a solution w (x) of (4) defined in the region ~ bounded by a smooth 

closed surface ~, such tha t  w ( x ) = w *  on ~. 

T ~ E O R E ~  2.3 (Leray [8]). Let w* be o/ class C (3) on ~, and let w(x) be a solu- 

tion o/ (4) in ~ such that w (x )=w *  on ~. Then n [ w ] =  I ' I V w [ 3 d V  is bounded by 
ig 

a quantity which depends only on ~ and on the derivatives o/ w* up to second order, 

and not on the particular solution considered. 

Proo[. Corresponding to the data w* we introduce a field v (x)= curl ~ ~ with 

the properties indicated in Lemmas 2.1 and 2.2. Let  ~ l = w - v .  We rewrite (4) in the 

f o r m  

A ~ - ~ ' V ~ I -  V p =  - A v+~l"  V v + v "  V v i + v "  V v, (16) 

V "v 1 =0 ,  

mult iply the first equation by v l, and integrate over 6. We obtain, since Yi = 0 on 

and since v = 0 outside A~, 

B y  Lemma 2.2 and the Schwarz Inequality, we find 

(18) 

where K denotes a majorant  for quantities which depend only on X, on w*, and on e- 

Integrating along a normal to X, we find 

7 d s  . . . .  s 2 ~ s d s  

~12ds)�89 ( f  ~ '2ds)  �89 

hence ~ d s < 4 I V ~ le d s, 

from which we conclude immediately 

f ,4 ~-~2 d V ~ K l f ,4 I V ~q [ 2 d v , (19) 



ON TILE STEADY-STATE SOLUTIONS OF THE I~AVIER-STOKES EQUATIOI~S, I I I  2 1 1  

K 1 depending only on the maximum curvature of ~ (and not on w*). Inserting this 

result in (18) and choosing ~ = 1/2K~,  we obtain 

ol v ~l~dV <4K~. 
But from w = ~q + v we find 

f ,vwi2dV<~2 f lv~l~dV+2 f ivvl~dV 

from which Theorem 2.3 follows immediately. 

2 b. Estimation of  the Dirichlet Integral in an exterior region; case of  zero outflux 

I t  cannot be expected that  an estimate on Dirichlet Integral in an exterior re- 

gion depending only on prescribed data can be obtained, even for solutions which 

tend to a limit at infinity and for which this integral is finite, cf. the example in w 6. 

Under suitable assumptions, however, such an estimate does exist. We consider here 

two such cases. The region of definition for the solution is assumed to be the exterior 

of a smooth closed surface ~, ~ to consist of a finite number of connected com- 

ponents carrying prescribed data w* of class C (~). Denote by ER the region bounded 

by ~ and by the surface of a sphere 2R centered at the origin and with radius R 

sufficiently large that  ~ lies interior to En. Let w 0 be a prescribed (constant)vector. 

TH]~OR~M 2.4 (Leray [8]). Let w(x) be a solution o/ (4) in ER such that 

w(x)=w* on 5 and w ( x ) = w  0 on ~R. Then D [ w ] = f  [Vw[2dV is bounded by a 
d ER 

quantity which depends only on w*, on ~, and on w 0 (and not on R). 

Theorem 2.4 is true in any number of dimensions. To prove it, we introduce a 

new field u (x) = w (x) - w 0. In terms of u (x), equations (4) become 

A u - u .  V u - w  o. V u -  V p = O  (20) 

V . u = 0  

and the boundary conditions become 

u = u * = w * - w 0  on 

u - 0  on ~R. 

The remainder of the proof follows very closely the proof of Theorem 2.3. We choose 

v ( x ) = c u r l ~ d ?  so that  v (x )=u*  on ~, v ( x ) = 0  outside As, and set v l = u - v ,  The 
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relat ions (16) become 

A ~ i - v i .  V ~ i - W o .  V~ i -  V p =  - A v + ~  I .  V v + v .  V ~ i + v .  V v + w  0- Vv,  

V "~l =O, 

and  (17) becomes, since ~q =O on ~ and  on ~R, 

f ,v 12dV=-f v 'vvdV§ f v' 'v dV 
+ /A v ' v ' v ~ d V +  /A v 'WoV~dV.  

We obta in  (18) and  (19) as before. Combining these inequali t ies and  choosing again 

e =  1 /2K1  ~, the required es t imate  follows.(1) 

The sense in  which Theorem 2.4 applies to solutions defined th roughout  the ex- 

terior of ~ is i l lustrated by  the following corollary, which we shall apply  in  w 5. 

COROLLARY. Let (Rj} be a sequence o/ values tending to in/inity and let wRj 

denote a sequence o/ solutions o/ (4) in ~Rj such that wRj= w* on ~ and wRj= w0 on ~aj. 

We suppose /urther that the sequence {wRj}, together with all partial derivatives up to 

/irst order, converges at all points in the exterior ~ of ~, uni/ormly in any compact 

subregion o/ ~, to a vector field w(x). Then D [ w ] =  t~ I Vwl2dV<.M< co, where M 

depends only on w*, on ~, and on w 0. 

Let  R 0 be a rb i t ra ry  bu t  fixed. By Theorem 2.4, we have 

f IVwR,12dV~ f IVwR,12dV<M<oo for all R , > R  o. 
~Ro ,~Rj 

By uni form convergence in  Eno, there follows [ ] V w 12 d V < M. Since R o is a rb i t rary ,  
J 

we mus t  have / ]  Vwl  2dV<~M, q.e.d. 
Js  

(1) Note added in proo]: In order to obtain an indication of the suitability of this method for 
finding energy integral estimates in a practical case, Mr. Paul L. Patterson has used the method to 
estimate the Dirichlet Integral for the explicitly known solution of (6) which vanishes on a sphere of 
radius a and which tends to a limit w 0 at oo. From the choice, 

= (0, - w0 x3, 0),  

(~0 = 4 a ,  

;t = ~ 4  ( ~ o -  s)8 (3 s + ~o), 

he has obtained the estimate, fe  [ V w ] ~ d V < 31 x~ a w02. The actual value, computed from the known 
solution, is 6 ~ a w~. We remark however, that in the non-linear case, the estimate tends rapidly to 
infinity as the Reynolds' number increases. We do not know in what sense this situation reflects reality. 
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The second case we consider is that  in which the solution is defined throughout 

the exterior E of ~ and tenlis to ~ limit at  a suitable rate. 

TI~EOREM 2.5. Let w(x) be a solution o/ (4) in g, and let w(x)=w* on 5. Sup- 

pose there exists an e > 0  such that as r--> oo, [ w ( x ) - w o I < C r - � 8 9  -~ /or some constant 

C and constant vector w04:0. Then D[w]= t ' ] V w ] 2 d V < M < c ~ ,  where M depends 

only on ~, on w*, and on w 0. 

The main burden for the proof of Theorem 2.5 rests on estimates given in [2] 

for asymptotic behavior of solutions of (4) in E. The demonstrations are too com- 

plicated to reproduce here. I t  is shown in [2] that  the hypotheses of Theorem 2.5 

imply, in particular, the estimates 

for u (x) = w (x) - w 0 and p (x) as R--> ~ ,  provided p (x) is modified by a suitable 

additive constant. Using these estimates, we introduce a sphere ~n and apply the 

reasoning in the proof of Theorem 2.4 to w (x) in the region En. The only change 

that  occurs is in the surface integral over ~n, which no longer vanishes but assumes 

the value 

u . ~ - n - l U l 2 ( u - n ) - l u  ( w 0 . n ) - p ( u . n )  dS.  

The above estimates show that  this term vanishes in the limit as R -~  co. This fact 

established, the proof of Theorem 2.5 then coincides with that  of Theorem 2.4. 

2 c. Est imation o f  the Dirichlet Integral in an exterior region; general case 

We show now that in the case of an exterior region in three or more dimen- 

sions, the conditions (3) ~ (w*'n) d S = 0  which we have imposed on the boundary 
d Z 

data can be relinquished, and a bound on Dirichlet Integral obtained nevertheless 

for any possible solution of a suitable class, provided that  the net outflux through 

is sufficiently small. For simplicity, we restrict the discussion to the three dimen- 

sional case in which X consists of a single connected component. The method fails 

in two dimensions, but in every other respect these restrictions are unnecessary. Let  

Q be the net flux across X, 

Q= ~ ( w * . n ) d S .  (21) 
J 
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Then since V .w = 0 in E, Q is necessarily the net flux across any surface ~R e n -  

closing ~, and hence if Q # 0  the boundary condition w=w0  on ~a cannot be ful- 

filled by any solution. The simplest choice available to us is obtained by  adjoining 

to w 0 the velocity field of a potential  source flow whose singularity lies interior to Z. 

THEORE~ 2.6. Let w(x) be a solution o/ (4) in ER such that w ( x ) = w *  on 

and w ( x ) = W o - ~  V on ~ .  Then i/ Q is su//iciently small (depending only 

on ~), the Dirichlet Integral D [ w ] =  { t ~7 wl2dV is bounded by a quantity which de- 
al 

pends only on w*, on ~, on Wo and on Q (and not on R). 

We choose the origin of coordinates interior to ~, and let ~, ( x ) = -  4 ~  " 

Then on ~, the data  u * - y  satisfy condition (3), hence for any  e > 0  t~here exists a 

field h ( x ) = c u r l  ;tt~ of the type described in Lemmas 2.1 and 2.2, such tha t  

h (x) = u* - 1( on ~. Let  v (x) = 1( + h in ER. Then v (x) = u* on Y, and setting ~1 = u - v, 

we have ~ = 0  on ~ and on ~R. From (20) we find 

A v l - ~ .  V ~ - w 0 -  V ~ -  V p =  - A y + ~ l -  V v + v -  V Yl+v-  V v + w 0 .  V v, 

v .vl=O. 

Multiplying by ~i and integrating over E~ yields, since A I( = 0, 

-- f~R Y.v .v~dV- f~R v'w~ 
We study the right hand side term by term: 

(ef. the proof of Theorem 2.3), and an integration by  parts, using the relations 

V ' v I = O '  Y = - 4 ~  

f,,, 1( v dV=  f ,~ l (A ~" v*  

where V**l denotes the transpose of the matr ix  V *1. Also, 
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(; )~ < K  Iv l dr , 
~R 

K depending only on prescribed data, since y4 is integrable over the exterior of ~. 

Similar reasoning shows that  

f RV'Wo'V dVI<K(fe lvnI dV) +" 
Collecting these estimates we obtain 

D [Vl] ~< K (D [~l]) + + e K  x D [~1] + ~ Q  D[~I], (22) 
4:r r 0 

where r o is the shortest distance from the origin to X. From (22) we see that  an 

estimate for D [~], independent of R and the particular solution considered, can be 

obtained whenever Q < 4 : r r  0. Using this estimate, we can find a bound for D [u] from 

the inequality 

DIn]  ~< 2 D [)]] + 2D[v]  ~< 2D [~] + 4D[h]  + 4 D [ y ]  

and the fact that  y has finite Dirichlet Integral over the region exterior to Z. 

We remark finally that  the Corollary to Theorem 2.4 and the conclusions o /Theo-  

rem 2.5 are valid also in this case. 

3. A priori estimation of the solution 

The estimates on Dirichlet Integral obtained in the preceeding section are applied 

here to find pointwise estimates for any possible solution, depending only on pre- 

scribed data. We base these estimates on general properties of the Green's Tensor 

associated with the linearized equations 

• w -  v p  = o (6) 

A . w = 0  

in a bounded region. We consider in detail only the three dimensional case. I t  seems 

certain that similar estimates hold for two dimensional solutions, but  the necessary 

estimates on the Green's Tensor have not yet  been formally verified in this case. In 

higher than three dimensions, there appears to be an intrinsic difficulty in the method. 
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T~EOREm 3.1 (Odqvist [11, p. 365]). For any interior region ~ bounded by a su/. 

/iciently smooth closed sur/ace ~, there is a unique tensor G (x, y )=  (G~j), such that each 

column vector, considered as /unction o/ x, is a solution o/ (6) /or all x in ~ with 

x # y ,  such that G ( x , y ) = 0  /or x on ~ and y in 6,  and such that at x = y ,  G(x,y) 

has the singularity o/ the ]undamental solution tensor X (x, y) de/ined in (7). Throughout 

+ ~, the tensor G (x, y) and the (suitably normalized) associated pressure vector P (x, y) 

admit, as /unction o/ x, uni/ormly in y, the estimates 

r I - e  C I fi (x, y)[ < - -  I fi (x, y) - fi (x', y)[ < C xx" (23) 
r x  y r ~  

[ V fi (x, y) [ < r~-,C i e (x, y) i < r ~-c 
x y  x y  

r 1 -e 
I V (G (x, y) - fi (x', y))[ < r~ IP(x, y ) - P  (x', Y)I < c - -  

r 1 - e  
XX p 

r~ 

/or any e > 0 ,  provided x and x' lie exterior to a sphere o/ radius r o centered at y. 

G (x, y) has the symmetry property, G~j (x, y) = Gj+ (y, x). 

We shall assume Theorem 3.1 and use it in what follows. Using the Green's 

Tensor, any solution of (6) in ~ which equals w* on ~ admits the representation 

w(x)= ~ w * ' T G d S  (24) 
Z 

p(x)=  f w * ' T P d S ,  

where the "pressure" used in forming the expression T P  is the identically vanishing 

function. Conversely, the representation (24) leads to the construction of a solution 

in ~ which assumes boundary data w* on ~. We have, in fact: 

THeOrEm 3.2 (Odqvist [ii]). Let w*(x) be boundary data o/ class C (~) and saris- 

lying condition (3) on the smooth closed sur/ace ~. Then there is a unique solution w (x) 

o/ the linearized equations (6) in the region ~ bounded by ~, such that w (x)= w* on ~. 

Throughout ~ + ~, w (x) and the suitably normalized associated pressure p (x) satis/y, 

/or any e > 0, the inequalities 

Iw(x)l<c,  I v w ( x ) l < c ,  Ip(x) l<v,  (25) 

~rl -~  IVW(X)--VW(y)I <Crl-~xy, IP(x)--P(Y)I < v  xy ,  



ON THE STEADY-STATE SOLUTIONS OF THE NAVIER-STOKES EQUATIONS, III 217 

where C depends only on w*, on ~, and on e. At  any interior point o[ 6, the deriva- 

tives o/ w (x) o] all orders are bounded, depending only on Z, on w*, and on distance 

]rom the point to ~. 

Proo/. The function w (x) defined by  (24) is clearly a solution of (6) in 6. Ap- 

plying Lemma 2.1, we may  extend w* into the interior ~ as a divergence-free vector 

field v (x) with bounded second derivatives, depending only on the boundary data.  

Let  ~ q = w - v .  Transforming (6) by  the identities (12) yields, for x in 6, 

f c, . A v dV 

p(x)= f V. A v dV. 

The assumption of boundary data by w (x) and the estimates (25) then follow from 

the estimates (23) of Odqvist by  standard potential-theoretic arguments. To obtain 

the interior estimates, we represent w(x) by means of the fundamental  solution 

tensor (7), which is explicitly known, 

w (x) = f ~  (w*" T X - X" T w*). (26) 

Interior bounds then follow directly by differentiation of (26) under the integral sign 

and use of the estimates (15). 

We shall need also the following lemma, due to Payne and Weinberger [13]: 

LEMMA 3.3. Let y (x) be a vector valued ]unction de/ined and piecewise continuously 

di//erentiableO) in a neighborhood N o/ in/inity. Then there exists a constant vector Yo 

such that /or any sphere ~R which lies, together with its exterior ER, in N, 

From Lemma 3.3 we can obtain the following r e s u l t :  

L~MMA 3.4..Let y(x) be a vector valued ]unction de]ined and pieeewise continuously 

di//erentiable throughout space. Then there exists a constant vector Yo such that, /or any 

choice o/ the origin o/ coordinates, 

(1) That is, continuous in N and continuously differentiable except on a finite number of 
smooth surfaces. 
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fz 1u176 I v 3 ( 1 2 d V , r 2  (2S) 

the integration being taken over the entire space E. 

We may  assume tha t  . f l  V 3 ( 1 2 d V < ~ ,  for otherwise Lemma 3.4 is tri- Proo/. 

vially correct. Let  3(0 be the vector whose existence is asserted in Lemma 3.3. Integra- 

tion by parts  in a sphere V~ of radius R and boundary ~R yields 

r~ d V =  - v~ r r " V ( 3 ( -  3(o)~ d V  + ~ ~ 

Using Schwarz' Inequali ty and Lemma 3.3 yields 

where e (R) -+0  as R-->~.  Lemma 3.4 then follows by a passage to the limit. 

Remark 1. In  the special case that  the function 3((x) vanishes outside a compact 

set, the surface integral in (29) vanishes for sufficiently large R, and it  is unnecessary 

to apply Lemma 3.3 in the proof. 

Remark 2. In  case it  is known tha t  3( tends to a limit a t  infinity, this limit 

coincides with Y0- For  otherwise we would have R = I ~  necessarily 
J ZR 

as R --> co, a contradiction. 

3 a. Est imation of  the solution in a bounded region 

We assume as given a solution w (x) in a finite region 6,  which takes on values 

w* on the boundary ~ of 6. I t  is then possible to extend w* to the exterior of 

in such a way tha t  the extension vanishes outside a compact  set and has finite 

Dirichlet Integral, depending only on w*. By Theorem 2.3, w (x) has interior to ~ a 

finite Dirichlet Integral, depending only on w*. Denote the sum of these two inte- 

grals by  D. Using the identities (13, 14), we find for w(x), p(x) the representation, 

W ( X ) :  (30) 
J Z Y~ 
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The first term on the right is a solution of the linearized system (6) which assumes 

the boundary data w*. This solution, which we denote by w 1 (x), satisfies the in- 

equalities (25) of Theorem 3.2. Using Theorem 3.1 and Lemma 3.4, we find (cf. the 

remarks at the end of w 1), 

(f0 )~ [w(x)l<lw (x)l+c dV I vwl~dV <C+D<C,  

constants depending only on prescribed data. Further, 

y~ f~ v w(y)l Ivw(x)[<lVWl(X)[+ Iw(y)[ [vw(Y)ldVy<C+c dVy. 
r 2 r 2 

x y  x y  

(31) 

Multiplying by rx~ and integrating with respect to x, we obtain 

r2 dV <~ C 
z x  6 r z y  

by Schwarz' Inequality. Inserting this result in (31), we obtain 

I vw(x)l<c. 

Placing these results in the relation (30) for the pressure and using Theorems 3.1 and 

3.2, we obtain immediately 

Ip] <c, 

and the estimates (23) for the Green's Tensor imply, by standard potential theoretic 

arguments, 

[ V w ( x ) - V w ( Y ) ]  <Crl-~xr [P(x) -p(Y) t<Crlxy  ~" 

Collecting these results, we obtain: 

THEO~E~ 3.5 (Leray [8]). For any bounded region 6, the estimates (25) o/ Theo- 

rem 3.2 are valid also /or any solution o/ the Navier-Stolces equations (4), with constants 

independent of the particular solution considered. 

3 b. Est imation o f  the solution in an exterior region 

We base the estimates for an exterior region on the following general property 

of solutions of the Navier-Stokes equations: 
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T ~ n O R E M  3.6. Let w(x)  be a solution o/ (4) in a region 6 (finite or infinite) 

which the Dirichlet Integral is finite, J ~ I V w l 2 d V < ~ .  Suppose it i8 possible to /or 

extend w (x) to a piecewise continuously di[]erentiable vector field defined in the entire 

space, possessing finite Dirichlet Integral and tending(1) to a limit w o as x --> oo. Then in 

every compact subregion o[ 6 ,  w (x) and the associated pressure p (x) satis/y the inequa- 

lities (25) o/ Theorem (3.2), with constants depending only on the Dirichlet Integral o] 

w (x) and o[ its extension, on distance to the boundary ~ o/ 6, and on w 0. The estimate 

/or p (x) depends also on the choice o/ an additive constant, and on the particular sub. 

region considered. 

Pro@ Let  x be a point  of 6 ,  let 4 d  be the dis tance f rom x to  the boundary .  

Describe spheres S 1 and $2 of radii d and  2d, respect ively,  wi th  x as center. We  

then  have  the representa t ion  

w(x)=f w.T•dS+f  -w.vwdV, (32) 
S~ V2 

where V 2 is the interior  of S~ and G (x, y) is the Green 's  Tensor  associated with  the 

sys tem (6) in V~. We rewri te  (32) in the form 

u ( x ) = ~  u . T G d S +  f G . u .  V u d V +  f G ' w 0 " v u d V ,  
8 2 V 3 V~ 

where we have  set  u (x) = w (x) - w 0. 

For  x interior  to $1, I T G ( x , y ) [  < C d  -~ on S s. Thus,  

L e m m a  3.3, ~ ( w - w o ) 2 d S < 2 d D ,  where D is the sum of Dirichlet  In tegra ls  B y  
d S~ 

of w (x) and its extension.  Also, b y  Theorem 3.1, 

(f ; dV Ivwl dV C 
V~ V~ V~] 

b y  L e m m a  3.4. Finally,  

 elw.lf Ivwl2dV <C. 
V, 

Collecting these inequalities, we obta in  an es t imate  of the form 

(i) I t  is sufficient, tha~ w-~w o in the sense of Lemma 3.3. 
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which establishes the interior bound on I w (x)I. 

Now we permit x to vary within S 1. We observe first that  + u. TGdS can 
J $2 

be differentiated under the sign for x in V1, resulting in a uniformly bounded func- 

tion, depending only on the bound for l ul on s 2. We then obtain from (32), 

[ V w ( x ) [ < c + c f  L~-~ IdV (33) 
V2 

for all x in V r Multiplication by rx2 and integration over V 1 yields 

f ldV< c+cf f vwl2dV<C. 
V~ V. 

Repeating this reasoning with V 1 replaced by V 2 and V 2 by Va shows that  

V~ 

Insertion in (33) yields the bound on IV wl. The estimates (23), together with (32) 

and the corresponding relation for p (x), imply by the usual methods of potential 

theory the remaining estimates (25). The function p (x) is, however, determined in a 

given sphere only up to an additive constant. If determinations in overlapping spheres 

are to coincide, one of them must be adjusted by a suitable constant. Thus (for 

example), along any path of length L covered by spheres in ~ of radius bounded 

from zero, the determination of p (x) may conceivably change by  an amount C L. In  

particular, Theorem 3.6 does not provide a uniform bound for p(x) in an infinite 

region. 

We study next  a particular case. The region 0 has as boundary component a 

smooth connected closed surface 2. I t  is assumed that  on 2, w takes on data w* of 

class C (a). The same assumptions on Dirichlet Integral are made as in Theorem 3.6. 

Let +40 be a neighborhood of 2 in ~ which contains no boundary points and which 

is bounded by ~ and by a smooth closed surface ~0 in ~. Let ,"tl be another such 

neighborhood, such that  ~1 lies in M0. On 20, estimates on l wl are available from 

Theorem 3.6. Let  x lie in ,4r  We may write 

w(x)= ~ w.TGaS+f~ G ' w - V w d V ,  
i!]+Z0 0 

where G (x, y) is the Green's Tensor for the system (6) relative to M0- 

1 5 -  61173051. Acta mathematica. 105. I m p r i m g  le 30 juin 1961 
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For x in "~1' the integral over Z0 can be differentiated under the sign and has 

bounded derivatives up to second order. The integral over ~ may be studied by the 

method of proof of Theorem 3.2, and leads to estimates of the form (25), valid up to ~. 

Finally, we apply to the volume integral the analysis in the proof of Theorem 3.5. 

We obtain: 

T~nOREM 3.7. Under the hypotheses of Theorem 3.6, suppose ~ has as boundary 

component a smooth closed surface ~ carrying data w* o/ class C (3). Then the estimates 

(25) are valid for w(x) in a neighborhood of 5 and up to 5 itself. 

LEMMA 3.8. Let ~ consist of a finite number of smooth closed components carrying 

data w* o/ class C (8). Let ~R be the region bounded by ~ and by a sphere ~R about the 

origin of large radius R. Let w 0 be a prescribed constant vector, and let {wR(x)} denote 

a /amily of solutions, depending on R, such that, 

i) wR(x)=w* on ~, w n ( x ) = w 0 - ~ Q ~ v ( 1 )  on ~n (Q=const.) ,  
~ m 

ii) (wR(x)} have Dirichlet Integrals uniformly bounded in R. Then there is a sub- 

sequence o/ the {wR(x)) which converges uniformly in the closure of any fixed region ER,, 

together with its derivatives up to first order, to a solution o/ (4) in the exterior E of ~. 

The Dirichlet Integral o/ the limit solution w (x)] has the same bound, and [w(x), p(x) 

satisfy the estimates (25) uniformly throughout E. 

To prove Lemma 3.8, we note that  the {wR(x)} can obviously be extended to 

all space with Dirichlet Integrals bounded independent of R. Theorems 3.6 and 3.7 

then show that  the (wR(x)} are equicontinuous and have equicontinuous derivatives 

of first order. Hence there is a subsequence which converges, uniformly together with 

its derivatives of first order, in any ERo. But  for any fixed sphere V with surface S 

in ERo, we have 

w~(x)= ~swR.TGdS+ fvG'wR'vw~dV 
and the uniform convergence then shows that  this relation holds also for the limit 

field w (x). A formal calculation then shows that  w (x) satisfies (4) The bounds on 

the solution follow from Theorems 3.6 and 3.7 except for the bound on p(x), which 

must be replaced by ]p (x)[ < C Ix[. The estimate [p (x) < C is, however, correct. We 

shall prove it in w 4. 

Remark: I f  Q satisfies the hypotheses of Theorem 2.6 it is unnecessary to assume 

that the Dirichlet Integrals are bounded. 
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4. Behavior  at infinity; the representation formula  

Let ~ consist of a finite number of smooth closed surfaces carrying data w* of 

class C (3). Let  w(x) be a solution of (4) in the exterior E of Z, such that  D[w] 

T~EOR~Z~ 4.1 (c/ [1]). There exists a constant vector w o and a scalar To such that 

w(x)-->w o, p(x)-->p0 as x-->~ in any way. 

To prove this result, we first apply Lemma 3.3 to obtain the existence of a 

vector w 0 with the properties described in that  lemma. Next, we rewrite (4) as a 

system for u (x) = w (x) - wo, 

A u- -u 'VU- -W o ' V u - V p = O  (34) 

27 " u = 0  

and introduce a fundamental solution tensor X (x, y) associated with the linearized system 

• u - w 0 "  V u -  V p = 0  (5) 

V " u = 0 .  

The tensor X (x, y) has the properties described in w 1. In terms of it, we obtain 

the representation 

u (x)= f [ u . T x - x . T u + ( z . u ) ( w o . n ) ] d S + f ~  X ' u ' v u d V  (13) 
Z § 1 6 2  

for a sphere ~n enclosing ~ and corresponding annular region •n. (By Theorem 3.7, 

T u  is eontiuuous up to ~, hence the integral over Z has a meaning.) Choose e > 0 ,  

R o sufficiently large that  [ ]V w]2d V<e ,  where Eno is the exterior of Zn~ c h o o s e  
d E  R~ 

3e  
Next, choose ]x ] sufficiently large that  at all points of E n~ I X ' u "  V u ] < 4 ~  R~" This 

can be done because of the property (15i) of Z(x, y). Then for R > ] x ] ,  we have 

f x.u.vugV= x.u.vudv+f . . X.U.VudV. 

By (15i) we have, in particular, Ixl~<O/r 2. Hence, using Lemma 3.4, we obtain 



224 ROBERT FINN 

x.u. VudV < ce 

for all sufficiently large Ix l, uniformly in R for R > Ix I" Further,  we note tha t  for 

any fixed x, [ f  x...V,,aV<.Oflvwl aV, whieh as 

for fixed x, fen X" u" V u d V tends to a finite limit as R--->oo. 

Using (15) again, we see tha t  the integral over ~ tends to zero as x - , o o .  Thus, 

f rom (13), 

u (x) = ~q~ (x) + ~2 (z; R) + f [ ] d S. 
Z.r 

Here  I l l(X)--->0 aS X---> c r  ~q2(x;R)-+~=(x) as R-->c~ 

X---> o o .  

Fixing 

limit. Let  

for fixed x, and ~2 (x)-+0 as 

x and letting R-->oo, we see tha t  the integral over ~R must  tend to a 

F ( x ) = l i m ~  [u. Tx-~.Tu+(X.u)(Wo.n)]dS.  (35) 

Then u (x) = m (x) + ~2 (x) + F (x) 

and we see tha t  it will be sufficient to prove tha t  F(x)-+0 as x-+c~.  This may  be 

verified directly, using the estimates (15) and Lemma 3.3, for all terms of the in- 

tegrand except X" T u, for which these estimates do not suffice. We can overcome 

this difficulty by noting tha t  by  differentiating X (x, y) a sufficient number of times, 

in arbi trary directions, the resulting derivatives can be made to decay in magnitude 

to zero faster than  any preassigned negative power of [ x -  y[. Thus, since [ T u  [ < C R  

on ZR by Theorem 3.8, we should expect tha t  a derivative of F (x) to a sufficiently 

high order would tend to zero as a limit. We cannot differentiate (35) under the 

sign, but  it is legitimate to form successive difference quotients of F (x) as the limit 

of the integrals involving the corresponding difference quotients of X" A simple ap- 

plication of the mean value theorem shows tha t  for fixed differences, these quotients 

have the same order of decay for ] x - y [ - + o ~  as the analogous derivatives. Let  N 

be the smallest integer such tha t  if X in (35) is replaced by the result ~ x(N) of taking 

N (fixed) differences in arbi t rary directions, the integral over ~R tends to zero. Then 

f 6 F<N) (x) = lim [u.Td:~(N)--(~(N).Tu+(c~(N).n)(wo.n)]dS 
/~-->or ]~R 
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vanishes identically in x. But  the differences are arbitrary, and we conclude that.  

F (x) is necessarily a polynomial in x of degree at  most N - 1 ,  F ( x ) ~ P ~ - i  (x) (see, 

for example, Lemma 3 in [1]). Therefore, 

u (x) =)]1 (x) + ~  (x) +PN-1  (X) 

with ~ql (X), ~ (X) tending to zero at infinity. On the other hand, 

. 1 
l l m - - ~  u 2(x) d S = 0  
n-+~ R J~R 

by Lemma 3.3, from which we see that  PN-1 ( x ) m u s t  vanish identically. This com- 

pletes the proof that  w(x)-~w 0. The corresponding result for p ( x ) i s  obtained by 

an analogous, although more technical, discussion, based on (14) (el [1]). We omi t  

details. We have incidentally proved: 

T~EOR~Z~ 4.2: Let w(x) satis/y the conditions o/ Theorem 4.1. Then w(x), p(x),. 

admit the representations 

w(x) =w0+ ~ [ ~ ' T x - x  .T~+ (X'u)(w0.~)]dS+~Xj~ .u- v l i d  V 
Z 

p (x)= p0 + 

where u (x) = w (x) - w 0. 

Remarlc. The outflux condition (3) is not assumed in Theorems 4.1 and 4.2. 

T ~ E O ~ M  4.3. Let w(x) be the limit, uni[orm up to ~ and in every compact sub- 

region o/ 6, o/ solutions o/ a sequence o/ interior problems: w (j) (x)=w* on ~, 

w ~;~ (x)  = w ~  - i ~  v 0n R j , / ~ j ~  ~ ,  

(x) satis/ies (4) in ERj, ( ] V w (j) 12 d V < 21/< oo, M independent o/].  :Then w (x)---~w~ W0) 

d ~Rj 
as x-~  ~ . 

Proo]. I t  suffices to show that  the vector w o determined in Theorem 4.1 coin- 

cides with the data imposed on ERj. But  for a fixed region ~R0, w(~)+ Q v (r-1/4zt  

has bounded Dirichlet Integral in ER0, hence t" I w(s) - w0 [e r-e d V < C by Lemma 3.4, 
d 

by uniform convergence ~ ] w - w o ] ~ r  -sd  V < C .  Since R 0 is arbitrary, hence 
d 
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f [w-w0l~r-~<C. 
This inequality cannot hold for two distinct values of w0, and the result follows. 

5.  E x i s t e n c e  t h e o r e m s  

5 a. Existence of  a solution in a finite region 

We apply now the fixed point theorem (1) of Leray and Schaudcr [9] to obtain the 

existence of at  least one solution of (4) corresponding to prescribed data w* of class 

C (~) on a smooth closed surface ~. I t  is assumed tha t  w* satisfies the outflux condi- 

tion, ~ ( w * . n ) d S = 0 .  I f  such a solution exists, it admits the representation 
E 

w I x / :  w .  �9 + w .  w 

where G (x, y) is the Green's Tensor for the linearized system (6) in the region O 

bounded by  ~. This representation can be considered as an integral equation for the 

unknown w (x). 

Consider now the functional equation 

w(x)-~ f G'w'VwdV+~zw*'TGdS=w-J(w;A)=O (36) 

for a "point"  w of a suitable Banach space 9; here ~ is a real parameter  such tha t  

0 ~<A ~< 1. We seek to demonstrate the existence of a solution of (36) for the para- 

meter  value ~ =  1. To do so, we show tha t  the space ~ can be so chosen tha t  the 

hypotheses of Leray and Schauder [9] are satisfied. 

Choose ~ to be the linear manifold of all vectors w (x)defined and continuously 

differentiable in ~ + ~, such tha t  

i) Iw(x)l<c 
ii) Ivw(x)<C 

iii) I v w(x ) -  v w ( y ) l < c l x - y l ~ .  

As norm of w(x), we set 

II w II = glb {C) (37) 

(1) Actual ly,  only a re lat ively simple form of th is  theorem is used here,  see Schaefer,  X-I., " O b e r  
die  Methode  der  a-priori  Schranken" .  Math. Ann.  129 (1955), 415-416. 
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for all constants C such tha t  i), if) and iii) are satisfied. Under this definition, ~ becomes 

a normed, linear, complete Banach space of vector functions. 

1. Y (w; ~) is completely continuous for each ~ on the range 0 ~<~ ~< 1. In  fact, 

setting w ~ y (w; ~), and the estimates (23) on fi (x, y) in Theorem 3.1 imply  tha t  

satisfies i), if), iii) whenever w satisfies i), if). I t  follows tha t  the image of a 

bounded set is bounded. But  in the norm (37), every bounded set has equieon- 

tinuous first derivatives, hence contains a convergent subset. 

2. I f  A=0,  Y ( w ; 0 ) = ~  w * . T G d S ,  where w* is prescribed. That  is, Y (w; 0) 
J 

maps all of B into a single point. Thus, the transformation (I) (w) = w - Y (w; 0) is a 

uniform translation of B, and it  follows tha t  the index of the (unique) solution of 

(I) (w)=0  is one. 

3. For 0 ~ <  1, all solutions of (36) are bounded in B. This result is contained 

in Theorem 3.5 for the case ~ ~ 1. But  if 0 ~ 2 ~< 1, all estimates leading to the proof 

of Theorem 3.5 remain in force, hence the theorem remains correct, uniformly in ~. 

These properties of Y (w; ~) imply, by the theorem of Leray and Schauder, the 

existence of a continuum of solutions o~ (36) corresponding to the segment 0 ~< ~ ~< 1. 

But  formal calculation verifies that  any  solution of (36) fo r  the parameter  value 

= 1 is necessarily a solution of (4) which attaches continuously to w* on ~. Hence: 

T~EO~EM 5.1 (Leray [8]). Let w* be o/ class C (3) on a smooth closed sur/ace 

which bounds a region ~. Then there is at least one solution o/ (4) in ~ such that 

W = W *  o n  >~. 

The question of uniqueness of the solution is discussed in w 8. 

5 b. Existence of  a solution in an exterior region 

Let ~ consist of a finite number  of connected closed components, and let Q be 

so small that  the hypotheses of Theorem 2.6 are satisfied. Let  ~ be a sphere about  

the origin of radius R so large tha t  ~ lies in its interior. By Theorem 5.1, there is 

at  least one solution of the problem: w (x)=w* on ~, w ( x ) = w 0 - Q  v (r 1)/47~ on ~R, 

w (x) a solution of (4) ~R- By theorem 2.6, the Diriehlet Integrals of all such solu- 

tions are uniformly bounded, independent of R. By Lcmma 3.8, the solutions form 

a bounded set in B, and for any sequence RF*  ~ ,  there is a subsequence of solutions 

w (j) which converges uniformly together with all first order derivatives in any com- 

pact  subregion to a solution of (4). By Theorem 4.3, w (x)~>w 0 as x - - ~ .  Hence: 
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TH~ORS, M 5.2 (cf. Leray [8]; Finn [1]). 

Let w* be prescribed data o] class C (3) on a smooth closed sur/ace X, and suppose 

the net out/lux Q is su//iciently small (depending only on X). Then there is at least 

one solution w(x) o/ (4) de/ined in the exterior ~ o/ ~, such that w (x)=w* on ~ and 

such that w (x) tends to a prescribed vector w 0 at in/inity. 

6. Remarks  on the preceding sections; an example  

In  connection with the solution in an exterior region E, there remain several 

questions which must  be answered before the theory can be considered in any rea- 

sonable sense as complete. We mention some of these. 

1) Does the solution whose existence we have demonstrated necessarily admit  

an asymptot ic  development a t  infinity in inverse powers of r (or suitable functions 

of r) analogous to the classical expansion for harmonic functions, or more generally, 

the known developments a t  infinity for solutions of the equations of potential com- 

pressible flow (cf. [3])? The answer to this question is of importance in the deter- 

mination of the forces and moments  exerted on X by  any possible solution in ~. 

Various recent investigations have been devoted to the determination of such de- 

velopments under the assumption that  they exist and can be obtained by iterative 

procedures whose convergence is not easily demonstrated, hence it  seems worth-while 

to point out that,  at  least in two dimensions, not every solution which is regular in 

a neighborhood of infinity and tends to a limit at infinity can be represented asymp- 

totically by  an expansion in reasonable functions of r with coefficients independent 

of r. An example is provided by  the family of vector fields w = (u, v )=  w (x, y) de- 

fined by  the following relations: 
, X u = ( 1 - ~ ) r - ~ Y - - - ( l  

v =  -- ( 1 - ~ )  r-~-X--r (1 § 

For any real :r w (x, y) is a solution of the two-dimensional system (4) at all points 

except a t  the origin, and if so>0, w-->0 as r-->o~. In  the range 0 < ~ < 1 ,  r~ lw[ - -> l - : r  

as r-->oo, that  is, Iwl behaves asymptotical ly as r-% Since ~ is arbi t rary in this 

range, any possible expansion would be in terms of functions which vanish more slowly 

than  any negative power of r. 

Letting ~-->0, we obtain a family of solutions, each member  of which has li- 

miting value zero at  infinity. These solutions converge uniformly together with their 

derivatives of all orders in any compact subregion excluding the origin, to the solu- 
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tion @ defined by  

5 = y  x ~ =  x y 
T ,/.2 T r 2" 

This solution is discontinuous a t  infinity. Thus, there exist solutions which are bounded 

in the exterior ~ of a circle but  discontinuous a t  infinity, and such solutions can 

even be obtained as the limit, uniform in compact subregions of E, of solutions having 

limiting behavior at  infinity. 

The behavior exhibited in this example is in marked contrast to the known pro- 

perties of velocity fields arising from equations of potential  fluid flow (cf. [3]). 

I t  is not known whether pathological behavior is possible in three dimensions. 

We can assert, however, that  no example of the type described above can exist in 

this case. In  fact, let w (x) be any vector valued [unction having [inite Dirichlet In- 

tegral D in a three-dime~sional neighborhood E o/ in/inity, and such that w (x)-->w o as 

x-->oo. Then given any e>O, there is a constant C(s) and a set E,  of measure less 

then e on a unit sphere So, such that all points o[ S o not in E, are intersection points 

of lines extending to infinity from the center of So, along which t w ( x ) - w 0 1 <  C r -�89 

Proo[. Let  S by  any sphere which lies, with its exterior, in E, and let its ra- 

dius be @. Clearly 

wrr  d r d ~ < D  

where ~ denotes the surface of a concentric unit sphere S 0. Hence for any ~ > 0, 

o~w~r2dr < l  D 

along rays through the center of S, except perhaps for a set of measure less than 

s on S o . Now along such a ray, 

Iw<R)-wol:= < W2rr2dr ~dr<~ 
R 

from which the assertion follows. 

We remark that  we have proved in [1] tha t  if a three dimensional solution w(x) 

tends to a non-zero limit w0, and if for some s > 0 ,  [ w ( x ) - w  0I < C r  -~ ~, then w(x) 

necessarily has a t  infinity, up to higher order terms, the asymptotic  structure of the 

fundamental  solution tensor X (x, y) corresponding to the linearized system (5). This 

result, together with the above property of general vector fields, suggests tha t  solu- 
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t ions  wi th  f ini te  Di r ich le t  I n t eg ra l  necessar i ly  exh ib i t  a t  in f in i ty  the  behavior  of ~ (x, y). 

W e  have,  however,  been unable  to  p rove  this.  I t  seems no t  inconceivable  t h a t  solu- 

t ions  exis t  which exhib i t  s ingular  behav ior  in one cr i t ical  direct ion,  say  the  d i rec t ion  

of the  vec tor  w 0. 

2. Our  second ques t ion  concerns the  me thod  b y  which the  solut ion is cons t ruc ted .  

I t  seems to me ine legant  and  unsa t i s fac to ry  to ob t a in  the  solut ion of an  ex te r ior  

p rob lem as the  l imi t  of a sequence of solut ions of in ter ior  problems.  I t  would  be pre- 

ferable to  f ind the  solut ion d i rec t ly  in a sui table  class of funct ions  defined t h roughou t  

E. I have  been unable  to  de te rmine  such a class. To begin wi th ,  i t  seems doub t fu l  

t h a t  an  a-pr ior i  e s t ima te  on Dir ich le t  In t eg ra l  depending  only  on b o u n d a r y  da ta ,  can 

be found on the single a s sumpt ion  t h a t  th is  in tegra l  is finite,  even though  this  as- 

sumpt ion  implies  t h a t  the  solut ion is cont inuous  a t  inf ini ty .  F o r  example ,  we m a y  

consider  the  f ami ly  of solut ions discussed under  1). As ~->0,  all de r iva t ives  of w(x)  

r ema in  smal ler  t h a n  f ixed  bounds  on the  un i t  circumference,  b u t  the  Dir ich le t  In-  

tegrals  t end  to  inf ini ty .  (1) I t  would  seem na tu ra l  to  seek the  solut ion in a class of 

vec tor  funct ions  sa t i s fy ing an  i nequa l i t y  of the  form l w ( x ) - w 0 1 < C r  -1 as r - ~ ,  

since th is  is the  expec ted  behavior  of the  solut ion and  implies  the  desired a-pr ior i  

bound  on Dir ich le t  In tegra l .  I t  is shown in [2] t h a t  an  in tegra l  opera to r  equ iva len t  

to  the  one def ined b y  (13) t r ans fo rms  such a class in to  itself.  F o r  an  exis tence theo rem 

i t  would,  h o w e v e r ,  be necessary  to ob ta in  an  a-pr ior i  e s t ima te  on the  Constant  C. 

Such an es t imate  i s  no t  y e t  avai lable .  E x c e p t  for the  po ten t i a l  flows, which f rom 

the  po in t  of v iew of this  p a p e r  are  the  t r iv ia l  solutions,  i t  is no t  known  whe ther  there  

exis ts  a single solut ion of an ex te r ior  b o u n d a r y  value  p rob lem which decays  to  i t s  

l imi t  a t  the  (expected) ra te  ] w - w 0 ]  < Cr -1. 

3) Al though  the  necessary  es t imates  on the Green 's  Tensor  analogous  to  (23) 

have  never  been fo rmal ly  demons t r a t ed ,  there  seems l i t t le  d o u b t  t h a t  also in two  

dimensions,  the  p rocedure  of w 5 will lead  to  the  cons t ruc t ion  of a solut ion def ined 

in  the  exter ior  of ~ which assumes the  given b o u n d a r y  d a t a  and  has  f ini te  Di r ich le t  

In tegra l .  W h e t h e r  every  such solut ion necessar i ly  a s sumes  the  prescr ibed  d a t a  a t  in- 

f in i ty  is uncer ta in .  T h a t  the  answer  to  th is  ques t ion is no t  obvious  is a l r e a dy  in- 

d i ca t ed  b y  the  example  discussed under  1). The p rob lem seems no t  accessible to  

me thods  which are  p re sen t ly  avai lable .  

(1) We point out, however, that in this example there is a net outflux across the circumference, 
and in this case we are unable to find any construction which yields an a-priori bound on Dirichlet 
integral in two dimensions. On the other hand, the outflux does not seem to he the essential source 
of singular behavior, since throughout the range of a considered, it remains between fixed positive 
hounds. 
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4) Finally, we may ask under what  circumstances the solution is unique. I t  is 

known (see, e.g. [1.6]) tha t  a sufficiently small solution in a bounded region is unique 

among all competing solutions with the same boundary data. (We give an improved 

version of this theorem in w 8.) I t  seems likely tha t  solutions which are large in 

magnitude are not unique, but  no examples are known. In  the case of an exterior 

region E, experimental evidence indicates tha t  the solution is again unique if l w] is 

everywhere sufficiently small. A strict mathematical  proof of this is yet  to be given. 

We do prove in w 7, however, tha t  solutions corresponding to sufficiently small pre- 

scribed data differ by arbitrarily small amounts, depending only on the given data. 

7.  T r a n s i t i o n  t o  z e r o  R e y n o l d s '  N u m b e r  

We study in this section a family of solutions of (4) defined in a fixed region 

(exterior or interior), and corresponding to boundary data which transform to zero 

in a prescribed manner. We show that  these solutions necessarily tend uniformly, in 

the appropriate sense, to the solution of the corresponding problem for the equations 

(6), which are the equations obtained from (4) by  linearizing about  the solution 

w ( x ) ~ 0 .  

7 a. Transition to zero Reynolds'  Number; case of  a bounded region 

Let w* be a prescribed vector function of class C (~) on a smooth closed surface 

~, and satisfying the outflux condition (3). Let  2 be a parameter,  0~<2~<1. Let  

w(x;  A) be a solution of (4) in the region ~ bounded by  Z, such tha t  w(x; 2)=Aw* 

on ~. Such a solution exists for each 2, as was shown in w 5, and for sufficiently 

:small A the solutions are unique, as will be shown in the next  section. (1) Let  w 0 (x) 

be the (unique) solution of the linear system (6) in ~ which assumes the data w* (x) 

on ~, let W ( x ; 2 ) = 2  l w ( x ; 2 ) ,  and let P ( x ; 2 ) = 2  l p ( x ; 2 ) .  

THEOREM 7.1. There exists a constant C, depending only on ~ and on w*, such 

:that ] W (x; 2) - W o (x)] < C 2 throughout ~ + F. 

To prove this result, it will be necessary to obtain an estimate on Dirichlet 

Integral  as function of 2. To do so, we return to the considerations of w 2. We can 

introduce, by  Lemma 2.1, a field v ( x ) =  curl t~ in ~ + ~  such tha t  v ( x ) = w *  on ~. 

Let  ~q (x; 2) = W (x; 2) - v (x). T h e n  ~q (x; 2) is divergence-free, and ~ (x; 2) = 0 on ~. 

We have from (4), 

(1) In the proof that follows, we make no use of this fact. 
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i 
A ~I-AYI. ? ~ i - i  v p =  - A v+X~I- v v + 2 v "  v ~ l+ tV"  v v, 

v -v i =o .  

We multiply the first equation by ~1 and integrate over 0,  obtaining 

by Schwarz' Inequality, where C defends only on w* and on ~. 

fotdV<'-'C~ r/~2-2d,o r 

Since ~1 = 0  on 7, 

f0 1 ~12 V = - C  r V r ' V  dV 
)' ' 

\do r / 

(cf. the proof of Lemma 3.4), hence 

( fo t  a v) +~ c(fol v ,~l~ a v) ~, 
C depending only on ~, and we find 

foi v ~l~ av <c(fol v ~,~ dV/  + ~c fol v ~l~a v, 

for" a constant C depending only on w* and on 7. Thus, for all 2 < 1 / 2 C  we ob- 

tain the estimate 

o l v n l ~ e v < o .  

~ut f~.lvwl2dv<~2 folv,~12dv+2 

;o and hence I V W (x; 4)] 2 d V ~ C (38} 

uniformly for all sufficiently small 4, depending only on w* and on ~. 

Let  II (x, y) be the Green's Tensor for the linear system (6) in the region (I. Then 

Z q 



from which, for small 4, 
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hence by  the definition of W o (x), 

[w(x;4)-W0(x)12<c242 7dr I vWl2dV, 

where we have used the est imates (23) of Odqvist  for 16[ (x, y)[. Applying (38) and 

Lemma 3.4, we obtain the desired result, 

I W (x; 4) - Wo (x) l ~< C 4 (40) 

provided only tha t  2 is sufficiently small, depending on ~ and on w*. For  the re- 

maining values of 4, the result follows from Theorem 3.5. 

THEOREM 7.2. Under the assumptions o/ Theorem 7.1, 

I V W(x;  4 ) -  V W 0 ( x ) l < C 4 ,  I P ( x ; 4 ) - P o ( x ) l < C 4 ,  

and /or any e > O, 

[[V W (x; 4) - V W o (x)] - [V W (y; 2) - V W o (y)] l < C 1 4 f ly  e, 

[ [P  (x, 2) - P0 (x)] - [P (y, 4) - P0 (Y)] ] < GI 4 f ly  e 

uni/ormly in ~ + ~, where C depends only on • and w*, and C 1 depends on Z, on 

w*, and on e. 

Proo/. From (40) and Theorem 3.2 we obtain 

W (x; 4) < C 

for all sufficiently small 4. Hence from (39), using the estimates (23) on 6[ (x, y), 

f V W d  IvW(x;,~)-VWo(x)J~<c4 ~ -  V. 

In  particular,  by  Theorem 3.2, 

Ivw(x; 4)f c+c4  -Vdv. 
j~ r 

Multiplying by  r -2 and integrat ing over ~ yields 
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hence I V W (x; ;~) - V W 0 (x) 1 < C l .  

The pressure term is estimated similarly, and the remainder of the proof is obtained 

by  use of standard methods of potential  theory, starting with the estimates (23) of 

Theorem 3.1. 

7 b. Transition to zero Reynolds' number; exterior region 

The method of w 7 a cannot be applied to an exterior region without modifica- 

tion, since the components of the Green's Tensor for the system (6) in an exterior 

region are in general not square integrable. In  order to obtain estimates for the de- 

viation of the given solution from the solution of the linearized equations, we con- 

sider first a finite region of special form. 

LEMMA 7.3. Let ~ consist o/ a /inite number o~ smooth closed sur/aces, and let 

ER be the annular region bounded by ~ and by a sphere ~R about the origen o/ (large) 

radius R. Let x 0 be a point on a /ixed concentric sphere ~o which contains ~ in its 

interior, and let GR (x, y) be the Green's Tensor /or (6) in En. Then on, the sur/ace v 

I T G a ( x  0,y) l < C R  -2, and uni/ormly /or all y in ER, ]G, (x  0 , y ) ] < c r  -1 where C de- 
Xo Y '  

pends only on Z and on Z o (and not on R). 

Proo/. For the singular par t  X (x, y) of Ga (x, y), these estimates are easy con- 

sequences of the defining relations (10), hence we need only prove them for the re- 

gular par t  yR (x, y). We obtain first a bound for the Dirichlet Integral  of ys. To do 

this, we introduce a comparison field v (x, y) which is divergence-free, equal to yR 

on Z and on ~n, and vanishes outside a neighborhood of the boundary (of Lemma 2.1). 

I t  is clear tha t  such a field can be constructed near ~ to have uniformly bounded 

Dirichlet Integral  for all x on ~0. To construct the field near ~n, we exploit the 

homogeneity of the system (6). Thus, the values of X (x0, Y) for y on ~R are exactly 

R-1X * (T0, *l), where X* (T0, vl) are the values on the surface of a unit sphere ~1 of 

the fundamental  solution tensor Z (To, ~]) with singularity a t  ~ =R-lxo .  The values X* 

can be extended to the interior of ~1 so tha t  the extension vanishes outside a neigh- 

borhood ;41 of 71 and has Dirichlet Integral  uniformly bounded, independent of R. 

Let  vl(~,  *i) denote this extension. Then vR(x 0, y ) = R - l v l ( R - l x o ,  /~- ly)  yields an 

extension of the given data on Z R to a neighborhood AR of 7 R. We have 

[vv.l dV=)  Ivv l"dv<ca 
R * 
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We may suppose that  the neighborhoods of 5 and of ~R do not intersect. Let 

v (Xo, y) be the sum of the two comparison fields. Then v (x0, y) has bounded Di- 

richlet Integral, uniformly in R and in xo, for x 0 on Xo. Let ~ = yR--v.  Then )] = 0 

on ~ and on ~n, and, from (6), 

/ f (f )~ )0 rv l dv= Iv, .vv)dv  Ivnl dv Ivv dv 
ER ER 8R 8R 

from which f [ v)]]2d V<C. 
ER 

But f RIVY I dv<2fERIV I2dV+2f slVvI2dv' 

hence f [VyR]~dV<C, 
which was to be proved. 

We observe next that  yn can be extended to the whole space as a piecewise 

continuously differentiable field which tends to zero at infinity and has bounded Di- 

richlet Integral, independent of R. In  fact, a particular extension is provided by the 

singular part X (Xo, Y) of Gn. Hence by Lemma 3.3, 

for an arbitrary sphere 5 '  of radius R'.  

We may now use these estimates to find a bound for yn on :F 0. Let x o be a 

point on ~o, let V be a sphere of radius r 0 and surface S about x 0. Let Gv be the 

Green's Tensor for this sphere. Then 

hence on 50, ITs] <C.  

Next, we estimate TyR on X. Let G o by the Green's Tensor for the region E o 

bounded by ~ and by ~o. Since this region is fixed, we have the estimates (23) of 

Odqvist. In Eo, 

y . = f  y,'TGdS-~ ~*.TGdS, 
Zo :E 
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where X* denotes the boundary  da ta  arrising f rom the singulari ty at  x 0, which is 

used to define YR. Since these da ta  have bounded third  derivatives on ~, t hey  can 

be extended by  Lemma 2.1 to the interior as a divergence free vector  field v (x) wi th  

bounded  second derivatives. Hence, 

yn(x0, x ) =  ~ y R ' T G d S + f e G ' A v d V .  
5~a 0 

The first term on the r ight  has bounded derivatives up to X because of the above 

bound  for ]Y~I on ~0. The second term can be est imated by  formal application of 

(23). A similar discussion establishes a bound for the pressure up to Y0. 

Consider now the field YR in the entire region ER. Let  G (x, y) be the Green's  

Tensor for the sphere bounded by  ~R. We have 

Z R  

where X* denotes boundary  da ta  due to the singulari ty at  x 0. The second term on 

the r ight  is the regular par t  y (x0, x) of the Green's Tensor for the entire sphere, 

with singularity at  x 0. Homogene i ty  considerations, s tart ing from the  Green's Tensor 

for the uni t  sphere, show tha t  I Y (x0, x ) ] <  C R -1 and I T y l <  C R  -2 for x on ~R- I n  

the first te rm on the right, which we denote by  yr., X* and T YR are known to be 

bounded.  Again using the homogenei ty  of (6) to est imate (~ and  T G, we find 

ty l< lxl 1 in ER, and IT.  I<CR on Thus  has again these 

properties. This completes the proof of Lemma 7.3. 

We are now prepared to  estimate the deviation of the solutions of (4) f rom those 

of (6) in an exterior region. Again we consider a boundary  ~ consisting of a finite 

number  of smooth  closed surfaces. Let  w* be prescribed da ta  on ~, and let w 0 be 

a prescribed constant  vector.  Let  ~ be a (small) pgsitive parameter ,  and let w (x; ~) 

be a solution of (4), such tha t  w = 2  w* on ~, w - - ~  w o at  infinity. The existence of 

such a solution (1) is proved in w 5 and we assume tha t  w (x; X) can be constructed 

by  the method  of t ha t  section. Tha t  is, w (x; 2 ) i s  the limit, uniform in compact  

subregions, of solutions of the interior problem: w = ~ w *  on ~, w = ~  w 0 on ~R, where 

~R is a sphere of large radius R. Le t  W (x; 2) = A -1 w (x; ~), P (x; ~) = X-1 p (x; ~), and 

(1) I t  is unnecessary to assume the outflux condition (3) for w 
the conditions of Theorem (2.6) will automatically be satisfied. 

since if k is sufficiently small, 



O N  THE STEADY-STATE SOLUTIONS OF THE NAu EQUATIO]r III 237 

let W o (x), P0 (x) be the solution (1) of (6) and  corresponding pressure such tha t  W 0 (x) = w* 

on ~ and  W o (x)--~w0 a t  inf ini ty .  

T ~ E O R E ~  7.4. There exist constants C and C1, depending only on ~, on w* and 
on w0, such that (2) 

I W ( x ;  ~) -- W0 (X) [ < C ~ § C1 r-1 ~/~ 

uni/ormly in the closed exterior o/ •. 

Proo[. We s tar t  by  ob ta in ing  an  est imate for the Dirichlet  In tegra l  of W (x; 2). 

Because of the assumed method of const ruct ion of w (x; ~), this can be achieved by  

formal modif icat ion of the reasoning in  the proof of Theorem 7.1, analogous to the 

change required from w 2 a to w 2 b, and  we omit  details.  We find 

f lvWl~dV<~ 
for all sufficiently small  ~. 

Consider a fixed sphere ~o sur rounding  ~ and  let ~R be a sphere of radius  R 

sur rounding  ~0. Let  ER be the region bounded  by ~ and  by  ~R, and  GR be the 

Green's  Tensor for (6) in ~n. For  any  point  x of ~o we have 

(W-w0).T  dS 
E ER 

We m a y  rewrite (41) in  the form 

(Wo-wo).T  dS+ 
ER ER 

+xf . v W d  V. 

Consider first the surface integrals over ~R. We have 

[~z ( W -  wo)'TGRdS]2<~ ~ R ( W -  wo)~ dS ~z (T GR) ~ dS 

<~CR.R-2=CR -1 

(l) The existence of a solution W 0 (x) and its Uniqueness in a class of solutions which differ from 
w 0 by 0 (r -1) is proved in [11]. The uniqueness in the most general class of solutions which are con- 
tinuous at infinity is proved in [4]. A still more general uniqueness theorem will appear in a forth- 
coming work of I. D. Chang and the author. 

(~) The origin of coordinates is assumed interior to ~. The result implies, in particular, the 

uniform inequality I W (x; ~) - W 0 (x) ] < C ~/~ in ~ + E. 

1 6  - 61173051. Acta mathematica. 105. Imprim6 le 30 juin 1961. 
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by Lemma 3.3 and Lemma 7.3. Also, on ~R, I w 0 - w o l  < C R - 1  (see footnote (1), 

p. 237), hence by Lemma 7.3, 

l~xR(Wo-wo).TG~dS <CR -1. 

We study the volume integrals, using Lemmas 3.4 and 7.3: 

f V 2 2 2 f  (Wzw~ 2 ( A 2 
8R 8R 

f i e f  f A GR.Wo. V W d V  ~<C22 l d  

Now choose R = 4 -1. The above estimates yield, for all x on ~0, 

I w (x; 4) - Wo (x) l < c V~. 

This result established, we consider the fixed region Eo bounded by ~ and by 

~o. The associated Green's Tensor G o satisfies the estimates (23) of Odqvist. For x 

in Eo, we have 

= f  ( W - W o ) ' T G  odS W (x; 4) - W0 (x) x0 

+ 4 f  G o . ( W - w o ) . V W d V + 2 f  G o . W o ' V W d V .  
8 0 G0 

Let us consider values of x in a neighborhood of E (bounded away from ~o). 

We .see immediately that  the two volume integrals admit uniform bounds, hence by 

the above estimates, we find that in this fixed neighborhood of E, [W (x; 4) - W 0 (x)[< GV2. 

A repetition of the reasoning which led to Theorem 7.2 then shows that throughout 

this neighborhood, I V W - V  Wo] < C ]/2. Similarly, we show that if the pressures 2) 

and Po are suitably normalized, then IF (x; 4 ) -  Po (x) l < ~ ~ up to E. Hence 

ITW-TWoI<CV~ up to Z. 
Now let X (x, y; ~) be the fundamental solution tensor associated with the sys- 

tem (5). For any point x in the exterior E of ~, we have by Theorem 4.2 the re- 

presentation 

W ( x ; 4 ) - w  o = ~  [ w * . T x - x . T W + 4 x ' ( w * - W o ) ( W o ' n ) ] d S  
d 

+ 4 j s x ' ( W - w 0 ) ' v  W d  V. 

Letting Xo (x, y) denote the fundamental solution tensor for the system (6), we have 
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W 0  ( x )  - w 0  = ~ 

Thus, for all points of E, 

[w* �9 T Xo - Xo" T Wo] d S. 

W (x;) .)  - W o (x) : ~ [w*" (T X - T Xo) - (X - Xo)" T W o -  X" (T W -  T Wo) ] d S  
Z 

+ 2 ~  X . (W*-Wo) (Wo 'n )dS+2  j x . ( W - w o ) ' v W d V .  
Z 

(42) 

Because of what we have already shown, we need only study points x at  large 

distance from ~. Formal (although tedious) calculation, starting from the definition 

(7) for X(X, y; r shows that  for rxy bounded from zero, IX(x, y; a)-Xo(X, y)<Cc~ 

I T X (x, y; a) - T Xo (x, Y) I < c ~ , 7 ~ .  Also, for all rxy, [ X (x, y; a) l < C rxyl uniformly 

in a as a-+0. The desired result, IW(x; ~ ) - W o ( x ) l < C t + C l ~ r  -1 uniformly in s  

then follows immediately from (42), from the above estimates, from Lemma 3.4, and 

from the definition of a. 

We can extend this result to obtain corresponding estimates on the derivatives 

of the solution- 

T~EOREM 7.5. Under the assumptions o/ Theorem 7.4, 

Iv W(x; 2)- v Wo (x)] <C2+ClV~r -1, 

I p (x; 2) - Po (x)I < C / +  C 11/~ r -1, 

and /or any ~> 0, 

I IV W (x; 2) - v W o (x)] - [ v  W (y; 2) - v W o (y)][ < [C 2 + C 1 l/~ r -1] r 1 - 8  x y  

[[P (x; 2) - Po (x)] - [P (y; 2) - Po (Y)]I < [C 2 + 81V~ r -1] r]xy ~ 

uni/ormly in E § ~, where C, C 1 depend only on ~, on w*, and on Wo, and C, U1 

depend on ~, on w*, on w0, and on ~. 

For any compact region containing Z, the proof of this result is essentially con- 

tained in the proof of Theorem 7.2. For a point x at large distance r from ~, we 

may enclose x in a unit sphere V of surface S, and write 

W ( x ; 2 ) = ~ s W . T G d S §  

where (] (x, y) is the Green's Tensor for (6) in V. Hence 
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w (x; 2) -Wo (x)= (W-Wo).r ds+ f .w.vwdv  
and by Theorem 7.4, 

Iv  W (x; 2 ) -  v Wo(x)]<-.C2+Cl~r-l+C22/J--~-~dV. 
Since IV W 0 (x)]< C r  -e, the remainder of the proof can be obtained by  a repetition 

of the reasoning in the demonstration of Theorem 7.2. 

7 c. Transition of  the force exerted on a fluid interface 

We consider a solution of (4) defined in a region ~ (or E) bounded by 7. De- 

note by  ~ '  an arbi trary smooth closed contour which lies in the flow region. The 

o:~-~ ex~rb~/[ across the interface ~ '  on the particles in the region 6 '  interior to Y 

is defined as the integral of the stress tensor over Y', 

That  is, 

F ' = - f  T w d S .  

z' \~ xs ~ x d j  n jdS"  

Consider again a family of solutions w(x; 2) with boundary data 2w*, 2Wo, 

0 < 2 ~< 1, and let W (x; 2) = 2 -1 w (x; 2), P (x; 2) = 2 -1 p (x; 2). Again let W 0 (x), Po (x) 

denote the solution and corresponding pressure of the solution of (6) with boundary 

da ta  w*, w 0. For this solution, the force on 7 '  is given by  

Fo=-f TWodS. 
Z" 

Applying Theorems 7.2 and 7.5, we conclude: 

THEOREM 7.6. There exist constants C and 20, depending only on ~, on w*, and 

(/or an exterior region) on w o, such that whenever 2 <20, 

in an interior region, and 

]or an exterior region E. 
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A case of part icular  interest is t ha t  of a flow of a viscous fluid past  an obstacle, 

i.e. of a solution w (x) of (1) exterior to  Z, such t h a t  w = 0  on Z and w - + w  0 at  in- 

finity. Theorem 7.6 shows t h a t  for large values of the viscosity /~, the ratio of the  

force on Y to # can be approximated  b y  the corresponding quan t i ty  for the solution 

of the linearized equations, wi th  .an error no t  larger t h a n  C/]/~, I t  is in principle 

possible to  obtain  an  explicit value for C in part icular  cases, e.g., the flow past  a 

sphere, and we plan to carry out  these calculations in the near future. 

8. Uniqueness  and cont inuous  dependence 

Uniqueness theorems for t ime independent  motions of a viscous fluid at  smalI 

Reynolds  number  can be t raced back to Osbourne Reynolds  [16]. Excep t  for improve-  

ments  in detail and i n  exposition the available knowledge has remained unchanged~ 

since tha t  time. Essentially, the result  states t ha t  i/ w I (x) is a solution o/ (4) in a'~ 

finite region ~ bounded by a smooth closed sat/ace ~, and if the maximum of lw 1 (x)I 

in ~ is sufficiently small, then there is no other solution of (4) in ~ which assumes the 

same boundary data. The general line of proof is as follows: Let  w2 (x) be another  

solution, and set W (x) = w 1 -  w2, P (x) = Pl - P~" Then  W (x) = 0 on ~, and 

A W - W .  V W -  V P = W .  V w~ - w~ .  V W 

V - W = O .  

(43) 

Scalar multiplication of (43) by  W (x) and integrat ion over ~ leads to 

f l v W l 2 d V  = - f o w ' W ' V w l d V = f  w l " W ' V W d V ,  

hence w , . .  ( f 0 , .  ~ . 

where Y = max l wl (x)[. Since W (x)=  0 on ~, there is a constant  C, depending only  

on ~, such that fqW2dV<-. .c2foIvWI2dV.  Hence 

f Ivwl'dV<  f, IvWl'dV 
and  if y is smaller t han  C -1 we conclude ] v  W I - = 0  , hence W ~ O  in ~, q.e.d. 
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We present in this section -~ an improvement  of this theorem, in the sense t h a t  

the  on ly  knowledge assumed is of an a-priori character,  on the boundary  values w* 

of  the solution. Nothing is assumed about  the behavior  of the solution interior to  6 .  

T~EOR~M 8.1. Let w* be prescribed data o/ class C (8) on a smooth closed sur/ace 

~, and let /~ denote a bound /or the magnitudes o/ w* and o/ its second order deri- 

vatives on ~. Then i/ /~ is su//iciently small, depending only on ~, there is at most one 

solution o/ (4) in ~ which is equal to w* on ~;. 

We remark tha t  if w* satisfies condition (3) there is at  least one solution (cf. 

w 5), hence in this case there is exact ly one solution. 

Theorem 8.1 appears as a special case of a more general result, which shows the 

cont inuous dependence of the solution on its boundary  values. 

TI tEOREM 8.2. Let wl(x) ,  w~(x) be two solutions o/ (4) in ~ which assume 

.boundary data w~, we* o/ class C (3) on ~. Let /~ be a common majorant /or wl,* w~,* in 

the sense o/ Theorem 8.1. Let W * = w t - w ~  and let W o (x) be the (unique) solution 

,o/ the linear system (6) such that W o (x )=  W* on ~. Then i/ ~ is su//iciently small, 

,depending only on ~, we have 

[w~ ( x ) - w  e (x) l < 2  max ]W o (x) l 
6+E 

uni/ormly /or all x in ~ + ~. 

Proo/: The difference W (x) = w 1 (x) - w e (x) satisfies 

A W -  V P = W .  V Ws+W e" V W 

V . W = 0 ,  

where  P (x) = Pl - Pc- Let  G (x, y) be the Green's Tensor for the system (6) in 6- Then 

W(x)=f~W*.TGdS+fG.W.VwldV+f~.we.vWdV 
f r o m  which W ( x ) = W o ( x ) +  ~ G ' W ' V w l d V - f W ' w e ' V G d V .  

J G  

;Let M =  max ]W(x)] ,  M o =  max  I Wo(x)[.  We m a y  assume t h a t  the value M is 
g+E q+E 

achieved at a point  not  on ~, since otherwise the theorem is tr ivially correct. We 

find, using the estimates (23) of Odqvist,  

M < ~ M ~  (44) 
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But  b y  Theorem 2.3, 

1 [v w:{ 2 d V)+ <e: (~), 

where el-~0 as # -+0 .  Also, by  Lemma 3.4, 

r \ j ~  r 

where w2 denotes an  extension of w 2 to the exterior of ;~, which vanishes outside a 

compact  subregion. Applying L e m m a  3.4 and  Theorem 2.3, we find 

r~ dV<%(#), 

where e2 (/~)-->0 as #-+0.  Thus, if # is chosen so small t h a t  e 1 ( # ) +  e2 (/~)<�89 we ob- 

tain f rom (44) 

M <~2M o, 

which was to be proved. 

Finally,  we state a result  which does not  differ essentially f rom one tha t  we have 

used in w 5, bu t  which seems worthwile to formulate  explicitly. 

TJZEOREM 8.3. Let {w~ (x)} be a sequence o/ solutions o/ (4) defined in a /inite 

region ~ with smooth boundary ~, and suppose that the boundary values {wn*} are uni- 

/ormly bounded and have third derivatives smaller in magnitude than a fixed bound. Then 

there is a subsequence o/ the {w~} which converges uni/ormly in ~ + ~, together with all 

derivatives o/ /irst order, to a solution o/ (4) in) ~. 

Theorem 8.3 follows immediately from Theorem 3.5, from classical theorems on 

equicontinuous families, and from the representat ion formula (30). 
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