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Introduction 

Let the equations 

x=/(t), y=g(t) (0~<t~< 1), 

define a continuous are in the plane E 2 and let us assume that  the derivative of 

g (t) with respect to /(t) vanishes everywhere. According to Lebesgue ([4], p. 296) 

this means tha t  

g (t + h) - g (t) 
lim 0 (0~<t~<l), 
h-~0 / (t + h) - / (t) 

where we ignore as h-->0 those values of h which produce simultaneously vanishing 

increments A /  and A g and where the above limit relation is assumed to hold, by  

definition, in the interior of any common interval of constancy f o r / a n d  g. Lebesgue 

showed that  g (t) is necessarily constant provided tha t  we assume / (t) to be of bounded 

variation. R. Caccioppoli [2] and J.  Petrovski [6] showed tha t  g (t) is constant even 

without the last additional assumption concerning /(t). 

H. Whitney [8] showed that  the situation is different for skew arcs: Whitney 

constructs in the complex x-plane a Jordan arc 

J:x=/(t) (0 ~t~< 1), (1) 

(1) The  m a i n  resu l t s  of t he  p r e sen t  pape r  were a n n o u n c e d  in t h e  note :  Sur  les arcs ascendants 
pente partout nulle et des probl~mes qui s'y rattachent, C. R.  Acad. Paris,  249 (1959), 1079-1080. 

S u b s e q u e n t l y  M. G. Glaeser  k ind ly  b r o u g h t  to our  a t t e n t i o n  t he  references  [3] a n d  [8] w h i c h  he lped  

u s  to sho r t en  a n d  i mprove  our  paper .  

8 -  61173055. Aeta mathematica. 106. Imprlra4 le 28 septembre I961. 
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and also a real-valued, non-decreasing, non-constant  continuous funct ion g ( t ) in  [0, 1] 

such tha t  

lim g (t + h) - g (t) 
h-~o I / (t + h) - / (t) l = 0 for all t in [0, 1]. (2) 

I t  is clear t ha t  the point  (/(t), g (t)) describes a Jo rdan  arc, in the 3-dimensional space, 

which is rising while having, in view of (2), everywhere vanishing slopes with respect 

to  the complex x-plane which is thought  of as horizontal.  For  a par t icular ly simple 

example of such a skew arc (whose projection J is the arc of I t .  yon  Koch) see G. 

Glaeser ([3], 57-58). 

Our first result is 

T H ] ~ O R ~ t  1. There exists in the complex x-plane a Jordan arc J, having the/ol- 

lowing properties: Let v and v' be distinct points o/ J and let J (v, v') be the subarc 

o / J  having v, v' as end points while m 2 J (v, v') denotes its 2-dimensional Lebesgue measure. 

To every positive e there corresponds a constant C~ such that /or all subarcs 

O<m~J  (v, v ' ) < C ~ [ v - v ' [  ~-~. (3) 

An arc enjoying these properties will be constructed in w 1 below. Before we 

discuss the significance of Theorem 1 let us first show how it furnishes one more example 

of an arc of the kind first constructed by  Whitney.  To obtain it we erect at  each 

point  v, of J ,  an ordinate y =  G (v)= m S J (0, v). This is a continuous point-funct ion 

on J which increases strictly in view of the first inequali ty (3): If  J (0, v) is a proper 

subarc of J(O,v')  then G ( v ' ) - G ( v ) = m 2 J ( v  ,v ' )>O.  By (3) 

G (v') - G (v) = m2 J (v, v') 

]v'-v] !lv-v'] <C~lv -v ' l  1-~ 

I f  we select ~ < 1  and let v'-->v we see tha t  the skew arc described b y  (v, G(v)), vEJ ,  

has everywhere a vanishing slope. 

Observe tha t  the e appearing in Theorem 1 is required to be positive. This is 

not  an accident because of 

TI~EOREY~ 2. Let J be a plane Jordan arc such that m~J>O. Then 

lim m2 J (v, v') _ + oo (4) 
Iv-v'l  2 

holds at almost all points v, o/ J, in the sense o] the ms-measure. 
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This  resul t  allows an  app l i ca t ion  to  the  no t ion  of lower quadra t i c  l ength  of arcs.  

W e  use the  following 

D E F I N I T I O N  1. Let the complex-valued /unction x = / ( t ) ,  ( 0 ~ t ~ < l ) ,  describe a 

continuous arc B in the plane. I /  t O = 0 < t 1 < t 2 < " "  < t n = 1 ,  w e  de/ine the lower qua- 

dratic length o/ B by 

5 (2) B = l im ~ ]/(t~) - / (t~-l)[2, (5) 
- -  i = l  

where the limes in/erior is taken as m a x  ] t i - t ~ _ l l - > 0 .  

I t  was shown b y  A. Ville [7] t h a t  L a) B = 0 p rov ided  t h a t  m 2 B = 0. I t  now tu rns  

out  t h a t  the  add i t iona l  condi t ion  m a y  be ignored since we have  the  following 

THEOREM 3. The lower quadratic length o/ any plane continuous arc vanishes. 

Using Theorem 2 we first  p rove  Theorem 3 for the  case of a J o r d a n  arc  (Sec- 

t ion  2.2). A l emma to the  effect t h a t  a n y  cont inuous  arc m a y  be reduced  to  a J o r d a n  

arc  b y  removing  app rop r i a t e  loops easi ly  al lows to  complete  a general  proof  of Theo-  

rem 3 (Section 2.3). 

I n  con t ras t  to Theorem 2 we have  a different  s i tua t ion  for J o r d a n  arcs of f in i te  

~-dimensional  Hausdor f f  measure;  we s t a t e  th is  as 

THEOREM 4. Let 1 < ~ < 2 .  

A~-measure such that 

/or all subarcs J (v, v'). 

There are plane Jordan arcs o/ /inite and positive 

A~ J (v' v') < K (6) 
Iv-v,I 

However ,  a weaker  analogue of Theorem 2 sti l l  holds  which shows t h a t  the  ex- 

ponen t  ~ of I v -  v' ]~ in (6) can no t  be increased.  Indeed ,  we have  

T H E O R E M  5.  I /  J is a plane Jordan arc such that O < A ~ J  < ~ ,  1< o~ < 2 then 

- - A ~ J ( v ,  v')>~ 
l im [ v - v '  1 (7) Vt~O'Y [ o~ 

at almost all points v in the sense o/ the A~-measure. 

W e  t u r n  now to a discussion of Lipschi tz  classes of poin t - funct ions  G (v )de f ined  

on an arc J .  W e  shall  use the  following 

D E F I N I T I O N  2. Let ~(x)  be de/ined /or x > 0  and be positive, continuous, non- 

decreasing and such that ~ (  + O)= O. Let J be a Jordan arc and G (v) be de/ined on, J .  
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We write G (v) E Lipj ~ (x) provided that there is a /inite-valued positive ]unction A (v) 

such that 

I G ( v ) - G ( v ' ) l < A ( v ) r  (v, v 'EJ,  v=~v'), (8) 

and we say that G (v) is o/ Lipschitz class r (x) along J. I /  A (v) is bounded we write 

G (v) E U Lipj r (x) 

and say that G (v) is uni/ormly o/ Lipschitz class ~ (x) along J. 

I t  is well known tha t  if J is the segment [0, 1] and r (x )=o(x) ,  as x->0, then 

constants are the only elements of the class Lipj r (x). The si tuation is different for 

plane arcs J :  For  the are J of Theorem 1 and the funct ion G (v ) -  m~J (0, v) we see 

from (3) tha t  

G(v) e U L i p j x  2 ~ (~>0),  

while G (v) is certainly no t  constant.  

W h a t  about  the class U Lipj x ~ obtained by  letting here ~ become zero? The 

answer becomes obvious if we apply our Theorem 3. Indeed,  let G (v) satisfy the 

inequali ty 

] G ( v ) - G ( v ' ) [ < A [ v - v ' [  2 (v, v ' eJ ;  A const.). 

I f  J is t raced out  by  x = / ( t ) ,  0~<t~< 1, and if a and fl are the endpoints of J then 

[G (fl) - G (cr ~< Y. I G (/(t~)) - G (] (t~-l)) I < A ~ 1 ]  (t~) - / (t,_l)12. 
1 

However,  we know tha t  the last-writ ten sum will converge to zero for an  appro- 

priate sequence of divisions by  vir tue of Theorem 3. Thus G (~)= G (fl). Since this 

a rgument  m a y  be applied to any  subarc we have established 

T~EOREM 6. I] J is a plane Jordan arc and the ]unction G (v) is uni/ormly o/ 

the Lipschitz class x 2 along J, then G (v) is necessarily a constant. 

Let  now J be a J o r d a n  arc in the plane such tha t  

A ~ J < ~  ( 1 < ~ < 2 ) .  

By  Theorem 4 we see tha t  Theorem 6 does no t  generalize to such arcs, for if J is an arc 

as described by  Theorem 4 and G (v) = A ~ J (0, v) then (6) implies t ha t  G (v) E U Lipj x ~ 

while G (v) is no t  constant .  However,  a slightly weaker analogue of Theorem 6 holds 

which we state as 
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T~V, OREM 7. I] J is a plane Jordan arc o/ finite A%measure, 1 < a < 2 ,  and 

G (v) is o/ Lipschitz class r (x) along J, then 

( x )=o(x  ~) as x->O, (9) 

implies that G (v) is a constant. 

We conclude our I n t r o d u c t i o n  wi th  a few resul ts  when the  J o r d a n  arc  J is in 

a space of d imension higher  t h a n  two.  There  is a na tu r a l  genera l i za t ion  of Theorem 7: 

I /  J c E ~ , A  ~ J <  ~ ,  l<~<~n and G(v) eLip~r  then 

r (z) = o (x ~) (10) 

implies that G (v) in a constant. 

Theorem 7 and  i ts  genera l iza t ion  jus t  s t a t ed  suggest  t h a t  if J is an  arc  of the  

real  H i lbe r t  space H,  aga in  the  class Lip~ ~ (x) will conta in  only cons tan t s  p rov ided  

t h a t  the  scale-funct ion r (x) t ends  to  zero suff ic ient ly  fas t  as x--> + 0. However ,  i t  

is a curious fac t  t h a t  such is no t  the  case and  we s ta te  th is  as our las t  

T~EOREM 8. Let r (x) be a given scale-/unction subject to the conditions o/ De- 

finition 2. There are in the Hilbert space H Jordan arcs J such that the class U Lip j  • (x) 

contains /unctions which are not constants. 

Observe t h a t  the  scale-funct ion r (x) m a y  t end  to  zero as fas t  as we wish. 

w 1. Proof of Theorem l 

1.1. THE CONSTRUCTION OF THE ARC J .  Le t  S O be the  uni t - square ,  one side of 

which connects  x = 0 to  x = 1. This  and  all  following squares will  be assumed  to be 

closed. We shall  now cons t ruc t  a con t inuum J1 as follows: L e t  

1 1 
0 ~ -  2 16n2 ( n = l ,  2, . . .) .  (1.1) 

I n  S O we cons t ruc t  four  corner  squares s~, s~, Sl ~, s~ of sides = 01. W e  now connect  these 

squares b y  three  segments  (or links) as shown in fig. 1, obserwing t h a t  two of these 

l inks lie along the  two ver t ica l  sides of S o while the  t h i rd  l ink a b lies on the  line 

which carries the  two lower sides of s~ and  s~. 

On the  l ink ab we consider  i ts  Cantor  midd le - th i rd  set  ~ and  in pa r t i cu l a r  i ts  

comp lemen ta ry  set of in tervals .  On each of these  in te rva ls  as  side we cons t ruc t  a 

square,  ly ing  above  a b, and  denote  b y  a the  set of squares  so ob ta ined .  W e  now 

form the  union  [a, b/U a which is ev iden t ly  a con t inuum joining a to  b. We  r epea t  
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D a b E 
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sl 

0 I 

Fig. I. 

the same construction on each of the remaining two links placing the sets of squares 

as indicated in fig. 1. This completes the construction of the continuum Jl. Observe 

t h a t  J1 is composed of four  corner squares,  enumerab ly  m a n y  intermediate squares a n d  

f inal ly  three  Cantor  sets. Leav ing  out  the  Cantor  sets we have  a collection of squares 

s~ which we denote  b y  S 1. W e  es tabl ish  an  order  re la t ion  among the  e lements  of 

S 1 = {s~} ob ta ined  b y  t ravers ing  J1 f rom x = 0 to  x = 1. E a c h  square s 1 has  an entry 

point and  an  exit point defined in an  obvious way.  

The second s tep of our cons t ruc t ion  is as follows: I n  each square sl(slES1)we 

join i ts  e n t r y  po in t  to  i ts  ex i t  po in t  by  a con t inuum similar  in s t ruc ture  to  J1, 

the  only  difference being t h a t  the  sides of i ts  four corner squares are  now = 0 3 �9 side s 1. 

Replac ing  in J1 each square  Sl b y  i ts  sub-con t inuum so cons t ruc ted  we ob ta in  our  

second con t inuum J~. I t  is composed of a set S 2 of squares  s2=s~ and  enumer-  

a b l y  m a n y  Cantor  sets. 

This  cons t ruc t ion  is now repea t ed  indef in i te ly  b y  ob ta in ing  Jn f rom Jn-1  b y  

replac ing each sn-1 (ESn_I) b y  a con t inuum similar  in s t ruc ture  to  J1, hav ing  4 corner  

squares  of sides = 0n" side sn 1. S, = {sn} will denote  the  set of squares of Jn. 

E v i d e n t l y  J1 D J~ ~ ... 

a n d  J = N Jr  (1.2) 

is easi ly  shown to be  a J o r d a n  arc joining the  po in t  x = 0  to  x = 1. 

Le t  us show t h a t  

m S J > 0. (1.3) 

To see th is  le t  ~n  ( n = l ,  2, . . .) denote  the  set  of those  4 ~ e lements  of Sn which are  

ob ta ined  b y  const ruct ing ,  s t a r t ing  from S o , only  corner  squares while omi t t ing  the  
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in t e rmed ia t e  squares a l together .  These 4 ~ e lements  of ~ ,  are  squares  of sides = 0102.. .  0~ 

and  J n ~ = .  B y  (1.1) and  (1.2) we therefore  f ind 

m 2 J = l i r a  m ~  J ~  >~ l im m 2 ~,~ = l im 4 ~ ( 0 1 0  2 . . .  0 ~ )  2 = 1 - > 0 

a n d  (1.3) is es tabl ished.  

A s imilar  discussion shows eas i ly  t h a t  every  subarc  J (v, v') of J has posi t ive  

m~-measure and  this  a l r e ady  es tabl ishes  the  f irst  i nequa l i t y  (3). We now t u r n  to  a 

proof  of the  second inequa l i t y  (3). 

1.2. PROOF Or THEOREM 1. A proof  of the  second inequa l i t y  (3 )wi l l  require  

a closer discussion of the  re la t ion  be tween  a subarc  J (v, v') and  the  squares  s~ of 

the  con t inuum Jn" The inclusion re la t ion  J ( v ,  v ' ) c s ~  requires  no explana t ion ;  if 

s~f) J c J ( v ,  v') then  we shall  say  t h a t  J ( v ,  v') conta ins  the  square s,,  or t h a t  s~ is 

conta ined  in J ( v ,  v'). The symbol  Sn will also be used to  denote  the  area  of the  

square  sn. The square s.  conta ins  four  corner  squares  s=+l; the  leas t  d is tance  or the  

wid th  of the  corr idor  be tween  two of these will be deno ted  b y  corrs=,  i t s  va lue  being 

1 
corr  s~ = (1 - 2 0~+1) side sn 8 (n + 1) 2 side s~. (1.4) 

Our  proof  is based  on the  following p re l im ina ry  remarks :  

1. The distance between two complementary intervals o/ the Cantor set is at least 

equal to the length o/ the smaller interval. The distance between a complementary inter- 

val and an endpoint o/ the Cantor set is never less than the length o/ the interval. 

2. Given e >O there is a constant Be such that 

S n 

(rs~)'cor - -  "2-" < B,  (I .5) 

/or all n and all squares s~. 

Omit t ing  the  simple proof  of the  f irst  r emark ,  we t u rn  to  the  second. 

of (1.4) and  the  ev iden t  inequa l i ty  side s ~ < 2  -~, we ob ta in  

I n  view 

S n 
Sn,2) ~ < 8 2-~ (n + 1) 2(2-~) (side s~) ~ < 8 2 (n + 1) 4 2 -~n, 

(corr 

which is a bounded  sequence and  (1.5) is es tabl ished.  

Given the  arc  J (v, v') we define the  integer  n such t h a t  J (v, v') is con ta ined  

in  a square  sn b u t  no t  in any  s~+l. W e  now dis t inguish  th ree  cases depending  on 

the  re la t ion  of J (v, v') to  the  four corner  squares of s~. 
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1. J (v, v') contains points o/ at least two corner squares o/ s n. From the defini- 

t ion of corr sn and the inequal i ty  (1.5) we obtain tha t  

m 2 J (v ,  v ' )  i s ~  

Iv - v' 12-~ ~ icorr sn) 2-~ < B,. (1.6) 

2. J (v, v') ]ully contains a corner square sn+l, o/ sn, but does not contain points 

o] any o/ the other corner squares o/ sn. A glance at  fig. 1 (where the large square 

now represents sn) shows tha t  

1 1 
I v - v' I > 12 side 8 n +1 = ~ On +1 side Sn > ~ side sn. 

But  then m2 J (v, v') s~ 
I v - v '  12-~ < (8 1 side sn) 2-* < 82 (side sn) ~ ~< 8 2. (1.7) 

3. In  the remaining cases (see fig. 1) all the squares sn+l containing points of 

J (v, v') are based on one and the same straight  line. This will imply  t h a t  the are 

J (v, v') is fairly stretched, in fact  we shall prove the following: I[ 

d = diam J (v, v') (1.8) 

then [v - v ' [~  ~ d. (1.9) 

i s j and to fix the ideas we shall assume t h a t  the square Indeed,  let vEs,+l, v'E ~+1 
8 i n+l does not  exceed s~+l in size. Let  v 0 be the orthogonal  projection of v on to the 

common base line of our squares. Let  v~ be the exit  point  of s t ~+1 and v~ the en t ry  

point  of 8~+ 1. 

We distinguish two cases depending on whether  I v 2 -  v, I is ~> d/13 or < d/13.  

I n  the first case when ]v2-v l l  ~>d/13 it is evident  tha t  also 

iv _ v, I >~ _1 d (1.10) 
13 " 

Let  us now assume 

The opening remark  

/ortiori 

IV-Vol<  d, 
as well as 

diam J (v, v2) • diam J (v, vl) �9 diam J (vl, v2) < ~ d �9 13 ~ d. 

]v2-vl] < ~d.  

1 of Section 1.2 implies t h a t  side sn+1<~lv2-vl l<d/13 and a 

(1.11) 
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By (1.12) 

and therefore 

We now conclude from (1.8) that  

10 (1.12) diam J (v~, v') > i 3  d. 

Consider now the sequence of corner squares sn+~c s~+l which have the common entry 

point v 2 (~=1, 2 . . . .  ;sn+l=S~+l) and let p be such that  

V I ~8n+p~ V p ~8n+p+l .  

10 
diam Sn+~>~ diam J (v~, v') >~i~d 

1 10 2 Iv'-v I> side diam 
3V~ ] 1 3 d > ~  d- 

a /ortiori iv ' _ vo [ > 2 But then d. 

This and (1.11) imply (1.9) which has now been shown to hold in any ease. 

Returning to our proof of (3) we observe (1.8) implies that  m,~J(v, v ' ) < d  ~ and 

now by (1.9) 

m2J (v, v') 
I v _ v ,  12_ ~ < 13~ d~< 132. (1.1a) 

The estimates (1.6), (1.7) and (1.13) establish (3) and our proof is completed. 

w 2. The lower quadratic length of plane ares 

2.1. P g o o F  oF T ~ o R ~  2. The key to our discussion of quadratic length is 

Theorem 2 which we are now going to establish. Let m 2 J > 0. Denote by E the set 

of points v of J to which corresponds some v ' ( 4 v )  such that  

m2J(v ,  v' 
[ v _ v ,  12 )> A > 8, (2.1) 

where A is a certain constant. E is open. Let E 1 be the complement of E oll J .  

We shall show that, for any A, m2E1=O. 

Suppose that  for a certain A this is not true, hence m 2E 1>0,  and let an in- 

terior point v 0 of J be a density point of E 1. Then to any ~ > 0  corresponds an 

r 0 > 0 such that  

m s (C (Vo, r) -- E l )  < 7  2 r ~ if r < ro, (2.2) 

9 -  61173055. Acta mathematica. 106. Imprim6 le 27 septembre 1961. 
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where c (Vo, r) denotes the circle having center v 0 and radius r; this circle and all 

circles of the  present discussion will be considered to be closed. At  this point  we 

select positive quantit ies ($, ~, r subject  to the inequalities 

(~<2 ,  ~ 3 ~ < ~ ,  4 A r < r o ,  (2.3) 

and notice t h a t  the first two imply  ~]2 32 A < 62< ~ " 2 / A  hence 

16 A 2 ~]s < ~. (2.3') 

We shall use the order relation among the points of J using the symbol  ~ ,  and  

shall speak of the first and last point  of J in a given closed set, denoting both  as 

the extreme points of J .  Let  now v 1 and v s, v l~,Vo~V s be the extreme points of J 

belonging to  the circle c (v0, r) so tha t  no v-<v 1, or v>-v 2 belongs to the circle. Ob- 

viously Iv1 - v 0 I=  ]vs - v01 = r, while the arc J (v 1, v2) need not  belong entirely to the 

circle c (v 0, r). I n  fact  the diameter  of the arc J (vl, vs) m a y  well be large compared 

with 2r .  As v 0 does no t  belong to E we have 

m 2 J  (v 1, v o ) < ~ A [ v l - v o ] S = A r  2, 

m s J (v o, vs) <~ A [ v s - v o ]2 = A r s, 

and therefore m s J (vl, vs) ~< 2 A r ~. (2.4) 

Writ ing U = E 1 J (v 1, vs) 

we have a /ortiori m 2 U <~ 2 A r ~. (2.5) 

We denote by  d (p; U) the distance from the point  p to  the set U and by  (l, U} 

the set of points p of the plane such tha t  d(p ,  U)~<l and not belonging to U. We 

shall now s tudy  the set 

V = { ~ r ,  U } ' c ( v  o, 4 A r )  

in its relation to the arc J .  First  we add  to  V such points  of U which lie in 

c(v0, 4 A r )  to obtain  the closure V. Let  now v a and v a be the extreme points of J 

belonging to V and let us show tha t  

V3"~Vl, Vs'~V 4. (2.6) 

To see this we have to show tha t  v 1EV and v sEV.  Suppose tha t  v I ~ V  so t h a t  

E 1 c (vl, (~ r) = o. But  evidently 

m 2 {c (vo, r ) ,  (~ (Vl, (~ r)} > 6 2 r 2, 
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whi le  t h e  se t  of p o i n t  of c (v  o , r )  w h i c h  a re  n o t  in  E 1 is of m e a s u r e  < 9 2 r  s, wh ich  

is < ~s r e. A s imi l a r  a r g u m e n t  shows t h a t  v s E V a n d  t h e  r e l a t i o n s  (2.6) a re  e s t a b l i s h e d .  

W e  f i na l l y  obse rv e  t h a t  v 3 a n d  v 4 can  n o t  b e l o n g  to  U = E  1 J (vl ,  vs) a n d  t h e r e f o r e  

v 3 a n d  v 4 l ie  in  V. T h u s  v a a n d  v4 a re  also t h e  e x t r e m e  p o i n t s  of J be long ing  to  

V. S ince  v a a n d  v 4 be long  to  {~r ,  U}, t h e r e  a re  p o i n t s  v~, v~ of U such  t h a t  

B y  (2.2) a n d  t h e  l a s t  c o n d i t i o n  (2.3) 

m s {c (v 0, 4 A r) - E l}  < *]216 A s r ~ 

f r o m  which ,  in  v i ew  of V =  c (v 0, 4 A  r), we conc lude  t h a t  

m s ( V -  VE1) <,}2 16 A 2 r e. (2.8) 

B u t  t he  p a r t  of E 1 t h a t  be longs  to  V l ies on  the  a rc  J (va, va), a n d  a g a i n  t h e  p o i n t s  

of E 1 J ( v l ,  v s ) =  U do n o t  be long  to  V. W e  conc lude  t h a t  

E~ V ~ J (va, v~) + J (v2, va). (2.9) 

N o w  V = ( V - E 1 V) + E 1 V, 

m s V = m  s ( V -  V E 1 ) + m  e E  1 V ,  

a n d  (2.8), (2.9) i m p l y  

m 2 V < *]2 16 A 2 r 2 + m 2 J (v3, Vl) + m 2 J (vs, v4) 

a n d  a / o r t i o r i  

m s J (va, v~) + m s J (v~, v4) > m s V - ~s 16 A s r 2. (2.10) 

To  e s t i m a t e  m s V f r o m  be low we sha l l  i n t r o d u c e  p o l a r  c o o r d i n a t e s  (if, 0) w i t h  t he  

o r ig in  a t  vo, a n d  we wr i t e  

l(O)= U(Q, 0), (rl, rS, 0)= U (~,0). 
~>~0 rl~<q~<r ~ 

W e  cons ider  t he  set  of d i r e c t i o n s  

01 [0 ] u .  ((t -*])  r, r, 0) = ~]. 

O b s e r v i n g  t h a t  a l l  p o i n t s  of E 1 c (v 0, r) l ie on  t h e  a rc  J (vl, vs), we h a v e  

E 1 c (v o, r) -- E 1 J (v 1, vs) c (Vo, r) = U c (v o, r) 

a n d  t h u s  c (v o, r) - E 1 = c (vo, r) - U.  
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B y  (2.2) m s {c (v o, r) - U} < U s r ~, 

from which it follows at  once tha t  

Consider now the set 

m 0 1 < 2  U. (2.11) 

Os [01 m { U.  (r, 4 A r, 0)} > (4 A - 1 - ~) r]. 

B y  (2.5) and  writing So = (r, 4 A r, O) we have 

2 A r S > m a U > ~ m s U  �9 (.J (r, 4 A r ,  O) 
OeOz 

=ff~176176176176176 o, aorj ao>r'r 
2 A  8 

Hence m 02 < 4-A - 1 - (~ < ~ "  (2.12) 

Consider finally the set @ a which is the complement  of @1+ Os. 

By  (2.11) and (2.12) m O a > 2 ~ - l .  (2.13) 

Let  C U  denote the complement  of U. For  any  0 6 O a  the segment ( ( 1 - ~ ) r ,  r, O) 

contains points  of U while m {(r, 4 A r, 0) U} ~< (4 A - 1 - ~) r and therefore 

m {(r, 4 A r ,  O ) . C V }  >(~r. (2.14) 

Consider now, for a fixed 0 6 Oa, the intersections of the sets U and  C U with the 

closed segment ( ( 1 - ~ ) r ,  4 A r ,  0): I t s  intersection with U is a closed non-void set 

while its intersection with C U is an  open set, i.e. a collection of non-overlapping open 

intervals of total  measure > ~ r  b y  (2.14). I f  none of these intervals exceeds ~ r  in 

length then  they  belong to {(5 r, U} by  the definition of this set. I f  one of these 

intervals, I say, exceeds (~ r in length then obviously the two sub-intervMs of length 

(5 r, co-terminal with I ,  mus t  belong to {~ r, U}. I n  any  case we have shown t h a t  

m ( ( i l - • ) r ,  4 A t ,  0){Sr ,  U})>~($r. 

Now by  (2.13) 

m 2 (J [ ( ( 1 - ~ ) r ,  4 A r ,  O){(~r, U } J > ( 1 - u ) r ~ r m |  
Oe@8 

and  a /ortiori, by  the definition of V, 

m s V > 5 r  2 & 
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B y  (2.10) and  (2.3') 

m 2 J (Va, v~) + m 2 J (v~, v4) > 4 r 2 (~ 

and  a t  leas t  one of the  te rms  on the lef t  side, say  the  f irst  one, satisfies the  i nequa l i t y  

m2 J (v3, v~) > 2 r 2 ~. 

Now b y  (2.7) and  (2.3) 

2 r  2 ~ 2 
m s J ( v 3 '  ) >  ~2r 2 ~ > A  

I v y -  v; = 

which is impossible  because v~ E E 1. This  con t rad ic t ion  es tabl ishes  Theorem 2. 

2.2. PROOF OF THEOREM 3 W~EN B IS A JORDAN ARC. Le t  J = J ( 0 ,  1) be a 

J o r d a n  are.  Given ~ we are  to  show t h a t  we can inscribe a po lygon  of ver t ices  

0 = Uo<Ul'< ... < u s  = 1, (2.15) 

s ch t h a t  I s < (2.16) 
i = l  

Suppose this  to  be a l r e ady  es tabl ished;  the  add i t i ona l  r equ i remen t  of the  theorem,  

t h a t  (2.16) can be ach ieved  while m a x  l u ~ - u ~ _ l l  is as  smal l  as we please,  can now 

be sat isf ied in an  obvious way.  Indeed ,  we can f irst  subdiv ide  J into a f ini te  se- 

quence of arcs  of suff icient ly small  d iamete rs  a n d  then  a p p l y  the  resul t  (2.16) to  each  

of these arcs. 

We  m a y  ignore the  s imple case when m2J=O for two reasons:  

(1) I t  is eas i ly  disposed of b y  the  second p a r t  of our  proof  which uses coverings 

U of smal l  ~ d2; (2) I t  is covered b y  A. Ville 's  t heorem of 1936. W e  m a y  therefore  

assume t h a t  m 2 J > 0. 

Le t  e > 0  be given.  F o r  ($1>0 denote  b y  E~,, the  set of those  po in ts  v, of J ,  

to  which correspond poin ts  v" with I v -  v'l> ~51 a n d  sa t i s fy ing  the  condi t ion  

m~J(v, v') 2m2J 
I v - v ' l  2 > (2.17) 

l ira m 2 E~, = m 2 J .  
&-+0 

B y  Theorem 2 

We assume ~1 so chosen t h a t  

2 
m2E~' > ~3 m2 J" 
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Denote  b y  E~  and  E~, the  d is jo in t  sets of those  poin ts  of E~  to which correspond 

poin ts  v'>-v or v " < v  respect ively:  E ~ = E ~ + E ~ .  Le t  E '  ~, be one of the  sets  on the  

1 
r igh t  h a n d  side whose measure  is > ~ m  2 J .  Suppose  i t  is E~,. 

We  can obvious ly  select a sequence of d is jo in t  arcs  

J (vii, V;1) ,  J ( v 1 2 ,  v;2), . . . ,  J ( v  1 .... v;.~,), 

, t p p 
in na tu r a l  order  a long J ,  where vH, v12 . . . .  , vl, ~, are po in ts  of E~, = E~ +, and  V l l  , V12 . . . . .  Vl, n~ 

the  corresponding po in ts  sa t is fying (2.17), so t h a t  the  measure  of E;, outs ide  these n 1 

arcs  be as smal l  as we please. These arcs are  p icked  successively along J a n d  the i r  

number  n 1 is necessar i ly  f inite because the  m2-measure of each arc  exceeds 2 ~  m 2 J / ~ .  

Wri t ing  

F i  : J (v11, ?)11) + J (v12, v~e) §  § J (Vx . . . .  Vl, n,), 

we m a y  therefore  assume t h a t  

1 
ms F1 > ~ ms J .  

Le t  now ~e > 0  and  denote  b y  E~ the set  of those  v of J - F  1 to  which corre- 

spond  poin ts  v' sa t i s fy ing (2.17), v' belonging to  the  same arc  of J - l "  1 as v, and  

such t h a t  ]v - v' I > ~2. As before m 2 E,~-->m 2 (J  - F1) as ~2-->0. Assume ~e so chosen t h a t  

2 
m 2 Eo, > ~ m s (J - -  F1). 

' E '  W e  now define the  set E~, as  ~, was def ined before a n d  a set F 2 of d is jo in t  arcs  

in J - l " 1 ,  such t h a t  for each are  J (v, v') of F 2 (2.17) holds,  while 

1 
m2 F 2 > 3 m2 (J - 1~1). 

Simi la r ly  sets Pa, Fa . . . . .  Fk are  def ined successively such t h a t  

1 
m 2 F , > ~ m  2 ( J - F  1 ... F~ 1) ( i = 2 ,  . . . , / c ) .  

Since the  measure  of each 1~1 exceeds a t h i rd  of the  remain ing  measure ,  we can reach  

a va lue  k such t h a t  

m 2 (J  - F 1 - . . .  - Fk) < ~. (2.18) 
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Le t  J (v~, v~), 

B y  (2.17) 
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( i =  1 . . . . .  N),  be all the  arcs of F I +  ... + F k  is ascending order.  

N N 

" 2 ~ ~ m 2 J ( v ~ ,  v~)<~ ~ (2.19) 

The d is tance  be tween  a n y  pa i r  of arcs  of J -  1~1- . . . -  F~ being posi t ive,  le t  i t  be 

grea ter  t h a n  2 ~ ( > 0 ) .  Denote  b y  U = U ( ~ , J - F  1 - . . . - F k )  a collection of closed 

convex sets (e.g. squares wi th  sides pa ra l l e l  to  f ixed  directions),  each set  of d i ame te r  

< a and  such t h a t  eve ry  po in t  of the  closure J - F  1 - . . . -  Fk is an  in ter ior  po in t  of 

a t  least  one of the  sets. U m a y  a lways  be a s sumed  to  consist  of a f ini te  number  

of sets. I f  we denote  b y  d the  d i ame te r  of the  general  set of U then,  b y  (2.18), we 

can choose U so t h a t  

We m a y  wr i te  

2 d < ( 2 . 2 0 )  
U 

N 

J - F 1 -  . . . -  F k =  ~ J (v~, V~+l) , 
i = 0  

where v 0 = 0  a n d  VN+I= 1, while the  first  and  the  las t  arc  of th is  sum m a y  no t  exist .  

A n y  e lement  of U can cover po in ts  of one arc  only.  Thus we can wri te  

N 

u. 

where U~ consists of those sets of U which cover po in ts  of the  arc  J (v~, v~+l). Clearly,  

b y  (2.20), 
N 

2 _  2 - Z d  (2.21) 
~=0 Ui U 

Take the general arc J (v;, v,+1) and define on it a finite sequence of points 

i 
v~ = w~.0, wi.1 . . . . .  wi.~ = v~,l (2.22) 

in  the  following way:  Le t  w~. 0 be in ter ior  to the  set  U(~ 1). I f  also vi+l is in U(1 ~) then  

p~= 1 a n d  we are through.  I f  not ,  le t  w~. 1 be the  las t  po in t  of the  arc  J (v~ ,  V~+l) 

which belongs to  U (1)~ . Clear ly  w~. 1 is on the  b o u n d a r y  of U (1)'~ , le t  w~. 1 be in ter ior  to  

U~ 2). I f  also V~+l belongs to  U~ 2) then  p ~ = 2  a n d  we s top  the  process.  I f  not ,  le t  

wi.z be the  las t  po in t  of J ( w L 1  , Vi+l) belonging to  U~ 2). Cont inuing in th is  way,  we 

ob ta in  the  sequence of po in t s  (2.22) such t h a t  the  po in ts  w~.j 1 and  w~. s belong to  

the  same set  U~ j) ( ] =  1 . . . . .  Pi), where the  p~ sets U~ s) are  d i s t inc t  e lements  of the  

collection U~. We conclude t h a t  
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p~ 

Iw,,J 
1 ~ 1  Ut 

and therefore 
N pi 

2 e 

i = 0  ] = 1  
(2.23) 

We have thus obtained the following monotone sequence of points along J :  

p 
0 ~ W 0 , 0 ~  W0,1 ,  . . .  ~ WO, p o ~ V  1, V l = W l ,  0~ W1,1~ . . .  ~ Wl,  p l ~ V 2 ~  

p 
V2 = W2,0 ,  . . .  , WN, P N ~ I .  

Denoting them in order by 0 = % ,  ul, . . . ,  u s = l ,  we have 

N p~ 
2 l -u,12=Zlv,-v, t  + 5 Xlw,, 

i = 0  ] = 1  

by (2.19) and (2.23), and the desired inequality (2.16) is established and therefore 

also the theorem for the ease when B is a Jordan arc. 

2.3. A LEMMA ON CONTINUOUS ARCS AND PROOF OF THEOREM 3. Let B 

be a non-closed continuous arc in the plane. By omitting from B subarcs with coin- 

cident endpoints (loops) we may reduce B to become a Jordan are J joining the 

original endpoints of B. A precise description of this intuitive idea is given by (1) 

LEMMA 1. Let x = / ( t )  be an continuous complex-valued /unction o/ t E I = [ 0 ,  1] 

such that / ( 0 ) # / ( 1 ) .  We can / ind in  I a per/ect set F such that the image / ( F )  is a 

Jordan arc J ,  having as endpoints / (0)  and /(1), in  the sense that the relations 

a e F ,  a ' e F ,  a < a '  / ( a ) = / ( a ' )  (2.24) 

hold i /  and only i /  the open interval (a, a') is contiguous to F .  

Remark  1. The set F is by no means always uniquely defined. An arc B in 

the shape of a pretzel, with its ends slightly extended, admits three distinct sets ~' 

obtained by removing from I appropriate single open intervals. 

Remark  2. The lemma and its proof require nothing beyond the continuity of 

/ (t). The lemma therefore holds as stated if the values of / (t) are in a Hausdorff space. 

(1) Lemma 1 is a special case of the following Arcwise Connectedness Theorem: Every two 
points a and b o / a  locally connected continuum M can be joined in M by a simple continuous arc. 
(See [9], p. 36.) However, a simple proof of Lemm~ 1 is here included for the reader's convenience. 
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Proo/: W e  call the  open in te rva l  S = (t, t ') a loopsegment prov ided  t h a t  / (t) = / (t'). 

Le t  L denote  the  t o t a l i t y  of loopsegments .  Since L is ev iden t ly  compact ,  the re  exists  

a longest  loolosegment which we denote  b y  S 1 = (tl, t~)and define F 1 = I - S  1. Observe 

t h a t  if S E L, S c F1, t hen  S can no t  a b u t  on S 1 since the i r  union  would  give a longer 

]OOlosegment. Le t  S 2 be the  longest  among the  S c_~  1 and  consider  F 2 = I -  S 1 -  S 2. 

We r epea t  th is  opera t ion  successively ob ta in ing  the  loolosegments S 1, S 2 . . . .  such t h a t  

the  closed segments  $1, ~2 . . . .  are  pairwise  d i s jo in t  and  1 ( $ 1 ) ) l  ( $ 2 ) )  . . . .  E i t he r  the  

process t e rmina te s  when Fn = I -  S 1 -  . . . -  S~ conta ins  no fu r the r  loopsegment ,  or else 

i t  cont inues  indef in i te ly  when ev iden t ly  l (S~)-+0. I n  e i ther  case le t  f 2 = ~ S ~  and  

consider  the  perfect  set F = I - ~ .  

Let  (a,a') sa t is fy  the  condi t ions  (2.24). W e  cannot  have  [ a , a ' ] c F .  Indeed,  

(a ,a ' )EL  a n d  should have  been r emoved  before l (Sn)has  become < a ' - a .  Hence  

[a, a ' ]  ~: F and  therefore  (a, a ' ) ~  S~ = (t~, t~) for some i a n d  where we choose /or i the 

least value which will do. Now we m u s t  have  (a, a ' )  = St = (t~, t~) for if (a, a ' )  ~= S~ then  

a ' - a > l  (S~) a n d  (a, a ' )  should have  been r emoved  be/ore S~. This proves  our  l emma  

except ,  perhaps ,  the  ma in  po in t  t h a t  J is a J o r d a n  arc.  To see this,  le t  ~ = T (t) be 

a cont inuous  non-decreas ing funct ion  in the  range  I ,  ~ ( 0 ) = 0 ,  ~ (1 )=  1 and  such t h a t  

(t) = ~  (t') for t < t '  if and  only  if the  in te rva l  (t, t ')  is con ta ined  in f2 = ~ S~. I f  we 

now iden t i fy  the  two endpoin ts  t~ a n d  t~ of S~ for all  i, we ob ta in  a set  F 1 which 

b y  T = T (t) is homeomorlohic wi th  the  range 0 ~ ~ ~< 1. On the  o ther  hand ,  we have  

shown t h a t  J = / ( F )  = / ( F i )  is a homeomorph  of F 1. I t  therefore  follows t h a t  J is 

a homeomorloh of the  in t e rva l  0 ~< T ~  < 1 a n d  our  l emma  is es tabl ished.  

A general  proof  of Theorem 3 now becomes obvious.  Given s > 0 and  app ly ing  

Theorem 3 to  the  Jordan arc  J jus t  cons t ruc ted  we can f ind a divis ion 

O~t  (~ (1)<. . .<t  (n)=l 

where all t (~) E F and  such t h a t  

II - I (t(' ,)12 < 

and  this  a l r e ady  es tabl ishes  the  theorem.  

w 3. On plane Jordan arcs of finite and positive A~-measure 

3.1. PRooF o F  T H E O r e M  4. To ob ta in  an  arc  J hav ing  the  proper t ies  requ i red  

b y  Theorem 4 we r epea t  wi th  some s impli f icat ions  the  cons t ruc t ion  of w 1.1: We now 

choose 0~ = 0, i ndependen t  of n, sa t is fying the  equa t ion  
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4 0 ~ = 1  (1 < ~ < 2 ) .  

S ta r t ing  as in w 1.1 wi th  the  un i t  square So, le t  the  con t inuum J1 consist  of four  

corner  squares of sides = 0 and  of th ree  rec t i l inear  l inks (fig. 1). J2 is ob t a ined  f rom 

J1, b y  replac ing each square s 1 b y  a con t inuum geomet r ica l ly  s imilar  to  J1 (because 

02 = 01 = 0) which  joins i ts  e n t r y  po in t  to  i ts ex i t  po in t  a n d  so for th .  Now J =  N J~ 

is our presen t  J o r d a n  arc.  I f  we observe t h a t  J is covered b y  collection ~n of 4 n 

squares having  d iameters  O n V2, we see t h a t  

A ~ J ~< (V2) ~ 

and  we leave i t  to  the  reader  to  show t h a t  A ~ J >  0. I n  t e rms  of the  no ta t ions  of 

w 1 we can say  t h a t  J consists of the  set 

E= lim E= 175 
n--->cr n n 

plus  an  enumerab le  set of l inks whose A~-measure is 0. To a n y  arc J (v, v'), which 

is not  a rec t i l inear  segment ,  corresponds a va lue  n such t h a t  J (v, v ' ) ~  ~ belongs to  

one square of ~n b u t  to  more  t h a n  one square of ~n+l .  F r o m  this  i t  follows t h a t  

A ~ J  (v, v') < 0n~2�89 

On the  o ther  h a n d  I v -  v' I is sure ly  grea ter  t h a n  or equal  to  the  w id th  of the  cor- 

r idors  of Sn. Since corr  s~ =O n ( 1 - 2  0) we ob ta in  

Iv-v'l>o (1-2o). 

H e n c e  

which proves  Theorem 4. 

We migh t  r e m a r k  t h a t  there  are  p lane  J o r d a n  arcs 

1 < ~ < 2, such t h a t  

l i~  A:J(v' v') + 
v, v Iv -v ' [  

J of f inite A=-measure,  

a t  a lmos t  all  po in ts  v in the  sense of A=-measure,  b u t  we do no t  dwell  on giving 

an  exemple  here. 

3.2. P ~ o o F  o F  T ~ O R E M  5. W e  p ick  8 > 0  and  A such t h a t  0 < A < I  a n d  

denote  b y  E the  set  of those po in ts  v of J,  to  which correspond v' sa t i s fy ing the  

inequal i t ies  
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A ~ J ( v ' ~ ) > A ,  ]v -v ' l<a .  (3.1) 
Iv-v'j 

The set E is either void or open; in  any  case its complement  E 1 = J - E  is closed. 

Let  us now show t h a t  if 

A ~ E~ = 0 (3.2) 

for every fractional A and  every d then  our theorem follows. Indeed,  let  A~, 0 < A n  < 1, 

and  (5~ (n = 1, 2 . . . .  ) be such tha t  

l i m A , = l ,  l i m d ~ = O ,  

and  let E (~), E(1 ~) be the corresponding sets defined above. We assume tha t  A ~ E(1 ~) = 0 

for every n and  therefore F = [7 ~ E(1 ~) also has the proper ty  A ~ F = 0. If  v E J - F then  

A~J(v, v'~) 
Iv_vs 

for appropriate  points  v~, and  the inequa l i ty  (7) follows on le t t ing n - - > ~ .  

To establish (3.2) let  us assume tha t  A ~ E 1 > 0 and  see t ha t  we get a contradict ion.  

By  the defini t ion of A~-measure, for every e > 0 we can f ind a closed convex set U 

of diameter  d U as small as we please, in  par t icular  d U < 8, and  such tha t  

A ~ (E 1 U) > (1 - s) (d U) ~, 

a n d  in  par t icular  such tha t  

A ~ (E 1 U) > A (d U) ~. (3.3) 

Let  vl, v~ be the extreme points  of J belonging to the closed set E 1 U. I n  par t icular  

J (vl, v~) D E 1 U. Bu t  then  A ~ J (Vl, v2) ~> A ~ (E 1 U) and  (3.3) implies 

A ~ J ( v .  v2) > A 
(dU)  ~ 

and  a /ortiori A ~ J (vl, %) 
iv_v l >A, IVl-V l<dU< . 

However, these inequali t ies imply  t ha t  v 1 and  v 2 belong to E while they  ac tual ly  be- 

long to E 1 by  construction.  This contradic t ion establishes the theorem. 
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w 4. On Lipschitz classes o f  functions defined on Jordan arcs 

4.1. PROOF OF THEOREM 7. I t  follows f rom the  as sumpt ions  of Theorem 7, 

n a m e l y  G ( v ) E L i p j  q~(x) and  (9) t h a t  to  a n y  a > 0 ,  however  small ,  corresponds  a 

funct ion  (~ (v) > 0 such t h a t  

IG(v)-G(v')l<alv-v'l  if 

Le t  E~ be the  set of po in ts  v of J ,  for which 

I G ( v ) - G ( v ' ) l < a l v - v ' l  ~ if Iv-v'l< 2 -n 

The set E n is closed a n d  lira E,~=J. Take  a sequence {'~n}, e~>e~+l ,  en-->0, and  such 

t h a t  Z s~ < A ~ J .  Here  we assume t h a t  A ~ J > 0, the  proof  for the  case when A ~ J = 0 

being a s impl i f ied  vers ion of the  presen t  one. F o r  eve ry  n we can f ind  a set  

Pn=Pn (En-E~-I,  2 -n) of convex sets, each of d iamete r  < 2  -n, and  such t h a t  eve ry  

po in t  of E,~-En_I is an  in ter ior  po in t  of a t  leas t  one of the  sets. W e  shall  also 

assume t h a t  

~,d~<A~(E~-E~_I)+~,  
Pn 

where d denotes  the  d i ame te r  of a general  set of the  collect ion Pn. E v e r y  po in t  of 

J is an  in ter ior  po in t  of a t  leas t  one convex set of the  collect ion ~ P= a n d  b y  the  

Heine-Bore l  theorem there  is a f inite subcol lect ion P of ~ P= wi th  the  same p rope r ty .  

We obvious ly  have  

~ d~<A~J + ~ ~ <2A~J.  (4.1) 
P 

Let  p(1), p(2), . . - ,  p(k) denote  all  the  convex sets which are  e lements  of P .  I f  

p(i)EP~, t hen  le t  v (~) be a po in t  of ( E n - E ~ - I ) n p  (i). Wri t ing  r(i)=dp(~)<2 -~, we con- 

s t ruc t  the  circle c (~)= c (v (~), r (i)) which clearly conta ins  p(~). 

Thus J ~ C - c (1) + c (~) + ... + e (~) 

k 

and  b y  (4.1) ~ (r(~))~<2A~J.  (4.2) 

By  the  def ini t ion of En we see t h a t  for any  v Ec(~)f3 J 

]G (v) - G (v(~)) ] < a Iv - v (~) I ~ < a (r(~)) ~ 

and  therefore  for a n y  pa i r  v', v" of po in ts  of c(~)f3 J 

l G (v') - G (v")  I < 2 a (r(~)) ~. 
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Let  v0~v* by  any  pair of points of J and let v o be an interior point  of c (~~ 

Denote b y  v 1 the last point  v>-v o, v ~ v * ,  such tha t  v E c  (~'). We have 

{G (v0) - G (vl){ < 2 a (r(~l)) ~. 

Now v 1 is an interior point  of one of the circles of C, say of c (~'), i1:4:io, and  let v~ 

be the last point  v>-vl ,  v < v * ,  such tha t  v E c  (~'). As before 

{G (v~) - G (v~){ < 2 a (r(~')) ~ 

and  so forth. After  a finite number  of steps, in fact  after k'~< k steps, we shall reach 

the point  v*. By  (4.2) we find 

{ G (V0) -- G (V*){ < {G (v0) -- ~ (Vl) { + { ~ (Vl) - e (v2) { + . . .  + { G (Vk,) --  ~ (V*){ 

< 2 a ((r(~~ ~ + (r(~1>) ~ § ... § (r(i~')) ~) < 4 a A ~ J .  

Since a was arb i t rary  we conclude tha t  

G (v0) - G (v*) = 0 

which was to be proved. 

4.2. P~OOF OF T ~ E O ~ M  8. There remains as our last task to furnish a proof 

of Theorem 8. Let  the positive monotone function ~ (x) of tha t  theorem be given. 

We select a funct ion ~ (x) which is convex and continuously differentiable in the range 

[0, 1] and  such tha t  

0 < y J ( x ) < r  ( 0 < x ~ < l )  ~f(0)=O. (4.3) 

Let  t = A  ~ (x), A =~r/~0 (1). (4.4) 

This is a relation which maps  the range O~<x~< 1 onto 0~<t~<z. We now invert  (4.4) 

obtaining the concave increasing funct ion 

x=(F(t ) )  ~ ( o < t < ~ ,  F(t)~>o). (4.5) 

We now consider the function 

h ( t ) = l - ( F ( t ) )  2 (0~<t<z), (4.6) 

which has the following properties: h (0)=  1, h (7~)=O, h (t) is convex in [0, ~] and  

continuously differentiable in (O, 7e). Notice in part icular  t ha t  in the range (0, z),  

h' (x) < 0 and non-decreasing. We now extend the definition of h (t) to  the range [ -  ~, ~] 



134 

so as to be even, and expand it in cosine series 

oo 

h (t) = ~ A~ cos v t. 
o 

Clearly A o > O. Bu t  also all A~ > O. Indeed  

f: =-fo A , =  h(t) c o s v t d t  1 
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( - h '  (t)) sin v td t>O.  

(4.7) 

1 = ~ 2 a ~ .  
0 

E 2 (t) = ~ 2 a~ (1 -- cos v t) = 4 a~ sin2 --.v t (4.8) 
1 1 2 

This expansion implies t ha t  2' (t) is a screw /unction in Hilbert  space which corre- 

sponds to a closed screw line of t ha t  space. We refer to  yon  Neumann  and  Schoen- 

berg [5] for fur ther  information on this subject; we, however,  need none whatever,  

because what  we need is perfectly e lementary and explained in a few words: We mean 

t h a t  there is in the Hflbert  space H a dosed  curve 

C : x = / (t), (0 ~< t ~< 2 z ;  / (t) of period 2 z~), (4.9) 

such t h a t  for all real t and t' 

.F (t - t') = [I/(t) - / (t')[1- (4.10) 

This curve is immediate ly  constructed, for (4.8) gives 

1 
F 2 (t - t') = ~ 4a~ sin 2 ~ v (t - t') 

= ~ {(a~ cos v t - a ~  cos v t ' )2+ (a~ sin v t --a~ sin v t')2}. (4.11) 

Now (4.6) gives 

and in particular,  for t =  0 

the last integral being positive, because - h '  (t) is positive and  decreasing. (Compare 

Bochner  [1], 76-77.) 

We m a y  therefore write the expression (4.7) as 

h( t )=~2a~ c o s v t ,  (a~>0), 
0 
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I n  the space H o~ real sequences {xn}y with ~ x~ < ~ and  the usual  norm tl xll = (~  X~n) �89 

we indeed see b y  (4.11) t h a t  the closed curve C t raced out  b y  

/ ( t ) = { a  l c o s t , a  l s i n t , a  2 c o s 2 t , a  n s i n 2 t , . . . }  ( 0 ~ < t < 2 ~ )  

enjoys the p rope r ty  (4.10). 

Along the J o r d a n  arc 

we now define the funct ion 

F : x = / ( t  ) (O~<t~<~), (4.12) 

g (t) = t. (4.13) 

For  a n y  two values t, t' such t h a t  0 ~< t < t '  ~ 

g (t') - g (t) 

r (It/(t ,)  - /(t)II) 

t' - - t  
and  b y  (4.3) this is < A, 

w ( F~ it' - t)) 

the  last  equal i ty  relat ion 

We have  therefore shown t h a t  

t t - -  t 

r (F  (t' - t)) 

holding because the relat ion (4.5) is the inverse of (4.4). 

g(t')-g(t)<Ar ( 0 < t < t ' < ~ ) .  

Return ing  to our old no ta t ion  v =/(t) ,  G (v)=g (t), this is precisely the relat ion 

] G (v') - G (v)] < A r (If v' - v It) 

which was to be established and  which shows t h a t  G(v)EU Lipl r  

G(v) =g (t)=t ist no t  a cons tant  our  Theorem 8 is t he reby  established. 

Since 
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