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In troduct ion  (1) 

T h i s  p a p e r  is a c o n t i n u a t i o n  of  t h e  ser ies  b e g u n  in  [9]. H e r e ,  as  in  t h e  p r e v i o u s  

p a p e r ,  we a r e  c o n c e r n e d  w i t h  t h e  fo l l owing  p r o b l e m :  T o  e x t e n d ,  a s  f a r  as  poss ib l e  t o  

t h e  g e n e r a l  case  of s e v e r a l  v a r i a b l e s ,  p r o p e r t i e s  of h a r m o n i c  f u n c t i o n s  in  t w o  v a r i a b l e s  

w h i c h  r e s u l t  f r o m  t h e i r  close c o n n e c t i o n  t o  a n a l y t i c  f u n c t i o n s  in  one  v a r i a b l e .  

(1) The main results of this paper were announced in abstracts  no. 566-35 and  566-36, Notices 
of the A.M.S., 1960. 

1 0 -  61173060. Acta mathematica. 106. Imprim6 le 20 ddeembre 1961. 
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We shall be concerned with the local behavior  of harmonic functions near the 

boundary .  To explain the main  ideas of this paper  we begin by  recalling some results 

f rom the classical case. 

There we deal with a function u (x, y) harmonic  in the upper-half  plane y > 0 .  

We are concerned with the behavior  of u (x, y) near the x-axis, or more precisely, 

near a general measurable set E located on the x-axis. The s tudy  of this behavior 

is in t imately related with tha t  of the conjugate funct ion v (x, y), and thus the analyt ic  

funct ion F (z) = u + i v, z = x + i y. A basic concept in this connection is t ha t  of a "non-  

tangent ia l"  limit at  a point  (x, 0) located on the x-axis. The results of the "local 

theory"  in the classical setup which concern us are then: (1) 

(A) u (x, y) has a non-tangential limit /or a.e. x E E i/ u (x, y) is non-tangentially 

bounded /or a.e. x E E. 

(B) I /  u (x, y) has a non-tangential limit /or a.e. x E E then the same is true /or 

v (x, y), and conversely. (~) 

The proper ty  of having a non-tangent ial  limit (or more generally of being non- 

tangential ly bounded) is of an  elusive nature  and  thus difficult to  pin down analyt-  

ically. I t  is therefore desirable to reexpress this proper ty  in a more t ractable  but  

logically equivalent  form. This res ta tement  m a y  be accomplished from results of 

Marcinkiewicz and Z ygm und  and Spencer. We shall use the following definition. 

F (x0) will denote a s tandard  tr iangular neighborhood which lies in the upper  half 

plane and whose vertex is a t  the point  (x0, 0). More precisely, 

r (x0)  ={(x,  y): Ix-x0l<~y, 0 < y < h }  

for two fixed constants  ~ and h. We then define the so-called area integral 

~ u  2 

I \ a y ]  
I ~ ( x o )  

with represents the area (points counted according to  their multiplicity) of the image 

of F (x0) under  F (z) = u § i v. The theorem of Marcinkiewicz, Zygmund  and Spencer 

can be stated, in this context,  as follows: 

(C) u (x, y) has a non-tangential limit /or a.e. x E E i/ and only i/ the area integral 

A (x) is /inite /or a.e. x E E. 

(1) We use the abbreviat ion a.e. th roughou t  to m e a n  "a lmos t  every"  or " a l m o s t  everywhere"  

wi th  respect  to Lebesgue measure.  

(2) These and other  results  of the classical theory  m a y  be found in [12, Chap. 14], where  refer- 

ences to the other  original works  m a y  also be found.  
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I t  should be noted that in this form, the proposition (C) implies (B), because 

8 y] \8 x/ \~ y] \8 x/ 

by the Cauchy-Riemann equations. We add here that the concept of "non-tangential" 

limits and the corresponding notion of non-tangential boundedness are basic for the 

conclusions (A), (B), and (C). For example, the approach to the boundary by the 

normal direction only would not do as a substitute notion. (1) 

We now turn to the situation in any number of variables. The generalization of 

(A) to harmonic functions of several variables has been known for some time, see [1]. 

I t  is the purpose of this paper to obtain the extension of theorems (B) and 

(C) to several variables. 

We begin by considering the extension of (C). If u(X,  y), X =  (xl, x 5 . . . .  , Xn) is 

harmonic in the upper half space y > 0 ,  as a function of the n §  variables (X,y),  

then we set 

A(Xo)= ffy ~ ' V u , ~ d X d y ,  (*) 
F(x0) 

n 

where ] V u ]e = ]~ u/~ y ]5 § k~l] 8 u/8 x k ]5 and F (Z0) is the truncated "cone" 

((X,y):  IX -Xo l<ocy ,  0 < y < h } ,  

for fixed a and h. In  the folloving theorem E denotes an arbitrary measurable subset 

of E~, where En is considered as the boundary hyper-plane of our half-space. 

THWO~EM 1. In  order that u(X,  y) have a non-tangential limit /or a.e. X EE, it 

is necessary and su//icient that the generalized area integral, A (X), be/inite/or a.e. X E E. 

The proof of the theorem, which is contained in section 4, is based on the ele- 

mentary lemmas of Section 3. The necessity of the finiteness of the integral in (*) 

was previously known, see [2]. The method we use leads to a simplification of the 

proof of that  part of the theorem. The sufficiency, which is our principal object, 

makes use of some similar ideas, but is more difficult. We add two remarks: (a) A 

different approach leading to the proof of Theorem 1 was found independently by 

Calderon (b). The generalized area integral was considered in a different context by 

us in [8]. 

By the use of Theorem 1 we can obtain a generalization of proposition (B) to 

(1) See in particular the example in [I1], Chap. 14, p. 204. 
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a n y  number  of variables. For  this purpose let us recall the sys tem of harmonic  func- 

t ions considered in Chapter  I. The so-called Riesz system is made up of n § 1 func- 

tions, u, Vl, v2, ..., vn, satisfying 

~u_ ~ ~v~ ~u ~vk ~v k ~vj 
~Y ~- = 0 ,  , - - =  . k=l ~ ~x k ~y ~x~ ~xk 

I t  can be characterized al ternatively as arising as the gradient  of a harmonic 

func t ion  H ( x ;  y); t ha t  is 

( u , v  1 ,v  2, vn)= ~ H  ~ H  . . . ~  - , ~ , . . ,  . 

' ~x 1 ~x2 

Our generalization of Chapter  I I  can then be s tated as follows (see Section 7). 

THEOREM 4. I /  U has a non-tangential l imit  /or a.e. X CE,  then so do the conjugates 

~1, v2, . . . ,  Vn, and conversely. 

I t  mus t  be remarked tha t  this theorem does not follow directly from Theorem 1, 

a s  in the case n = l .  This is due to the fact  t ha t  if n > l  then  there is no simple 

appropr ia te  relation between ~ IV vk [2 and IV u [3. 
k - 1  

Thus an extra step is needed to deduce Theorem 4. This step is given in Sec- 

t i o n  5, and it allows us to obtain a wide generalization of Theorem 4. The nature  

.of this generalization m a y  be unders tood as follows. The system of harmonic functions 

.satisfying the M. Riesz equations above represents one possible extension of the 

Cauchy-Riemann  equations to several variables. There are other  general izat ions--al-  

t h o u g h  less direct---which are of importance.  Some of these systems are discussed in Sec- 

t ions 7 and 8. A systematic discussion of these extensions cannot  be given here, bu t  will 

be  the subject of a future paper in this series. Wi thout  discussing the general problem 

�9 exhaust ively,  we can give a definition of con jugacy- -which  a l though tenta t ive  in 

n a t u r e - - i s  significant technically in view of its inclusiveness and its applicability. 

We shall say the harmonic function u (X,  y) is conjugate to v (X, y) if there exists 

positive integer r and a differential polynomial  P (D) homogeneous of degree r in 

~ / ~ y ,  ~ / ~ x  1 . . . .  , ~/~x~ (with constant  coefficients) so tha t  u and  v are related by  

~ru 
- -  = P ( D ) v .  ~ yr 

This definition can be extended to the case when u and v are respectively vec- 

to r s  of harmonic functions with /c and m components,  and P ( D ) i s  then  a k •  

m a t r i x  whose entries are differential operators of the type  described. Our generaliza- 

t i on  of Theorem 4 is then (see Section 6). 



ON T H E  T H E O R Y  OF HARMONIC FUNCTIO:NS OF SEVERAL VARIABLES 141 

THEOREM 3. I /  v ( X , y )  has a non-tangential limit /or a.e. X E E  then so doe~ 

u ( i ,  y). 

Examples illustrating this notion of conjugacy and Theorem 3, are given in Sec- 

tion 7. In Section 8 the meaning of this conjugacy is further examined in terms of  

harmonic functions which are Poisson integrals. I t  then turns out that  this notion is~ 

equivalent with that arising from singular integrals (i.e., generalization of the Hilbert  

transform) whose "symbols", when restricted to the unit sphere, are (harmonic) poly- 

nomials. This fact is summarized in Theorem 7 of Section 8 below. 

We wish now to discuss briefly the possibility of further extensions of the above. 

The first generalization is immediate: we need not assume that our functions are de- 

fined and harmonic in the entire upper-half space, but only in an appropriate region 

about our set E. For example, we could restrict our consideration to the "cylinder'" 

{X, y): X E El, 0 <  y <  he} where E 1 is the set of all points at distance not greater 

than hi from E, and h v h e are two fixed positive constants. In all our proofs below 

we actually do not go outside such a cylinder, and we shall therefore assume once 

and for all that  all our theorems are considered with this slight unstated generalization 

in mind. 

Our sets E lie on the boundary, which is a hyper-plane (y=0) .  I t  would be 

desirable to extend these results by considering non-tangential behavior for sets lying 

on more general hyper-surfaces. Presumably this could be done without too much 

difficulty if the bounding hyper-surface were smooth enough. I t  would be of definite 

interest, however, to allow the most general bounding hyper-surface for which non- 

tangential behavior is meaningful. Hence, extension of these results to the case when 

the bounding surfaces are, for example, of class C 1 would have genuine merit. Whether  

this can be done is an open problem. 

Chapter I 

The main purpose of this chapter is the proof of Theorem 1 in Section 4. Section I 

contains various definitions and statements of known facts. Section 2 deals with a 

technical device useful for the proof of Theorem 1. Section 3 contains several lemmas 

needed in the proof of the theorem. 

1. Preliminaries 

We shall follows as far as possible the notation of the previous paper in this 

series, which we now summarize. 
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E~ will denote  the  Euc l idean  space of n dimensions.  Po in t s  in th is  space will 

be deno ted  b y  capi ta l  le t te rs  X,  X0, Y, Z, and  in coordina te  no t a t i on  we will  set  

X = (x 1, x2, . . . ,  xn) ... etc. E~+I+ will denote  the  Euc l idean  n + l  d imensional  upper  

half  space: I t s  po in ts  will be deno ted  b y  the  pa i r  (X , y ) ,  where X EEn and  0 < y <  co. 

F o r  X E En, we have  (X, 0 ) E E n + I ,  thus  we consider  E n as e m b e d d e d  in E~+I as  the  

b o u n d a r y  hyper -p lane  of + En+l. 

W e  shall  also use the  following convention.  In tegra l s  over  a n  (n + 1) d imensional  

subspace  of E~++x will be deno ted  b y  double  integrals ,  such as j'~ ( . ) d x d y .  I f  we inte-  

g ra te  over  an  n-d imens iona l  subset,  such as over  E~, we shall  indica te  th is  b y  a single 

in tegra l  l ike ~ ( . )  d X.  

m (E) will denote  the  n-d imensional  measure  of a set in E~ (all sets occurr ing 

will  be assumed to be measurable) ,  a and  a '  will denote  poin ts  in  E~+I, and  ~ will 

denote  a sphere whose center  is ~. 

Le t  X o denote  a po in t  in E~. We denote  b y  F (X0) the  in ter ior  of a t r u n c a t e d  

cone in E~++I wi th  ver tex  a t  X 0. Thus 

r(Xo) ={(x, y): ]x--Xo]<~y, O<y<h}, 

for  some f ixed  ~ and  h. W h e n  we wish to  indicate  the  pa rame te r s  zr and  h we shall  

wri te  

P (X 0) = P (X0; ~, h). 

I n  wha t  follows we shall  refer to the  in ter ior  of t r u n c a t e d  cones s imply  as cones. 

F o r  a n y  set  E c E ~ ,  and  ~ and  h f ixed  we shall  associate  a region R in En++l. 

The  region R is the  union  of all cones F (X0; ~j h) where X 0 ranges over  the  poin ts  

of E .  Thus 

R =  LI F(X0;  ~, h). 
XveE 

The following two lemmas  are  known  and  we t ake  t h e m  for granted .  The  first  

is of an  e l emen ta ry  character ;  the  second, however,  is deep. (1) 

E~ + I. we are bounded LEMMA 1. Let u ( X , y )  be continuous in + Suppose given a 

set E o c E~ with the /ollowing property. Whenever X o E Eo, u (X, y) is bounded as (X, y) 

ranges in some cone F (Xo). (The shape o/ the cone and bound may depend on Xo. ) For 

any ~ > O, then there exists a closed subset E, E c E o. so that 

(1) The first lemma is contained, although not stated explicitly, in [1]. The second lemma, in a 
more general form, is the main result of that paper. 
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(1) m ( E o - E ) < r  

(2) I /  o: and h are /ixed, u (X, y) is uni/ormly bounded in R = [J F (Xo; o~, h). 
Xoe E 

For the statement of the next lemma we shall need the following definition. If  

u ( X , y )  is defined in + E~+~, we shall say that  it has a non-tangential limit l at the 

point Xo, (X 06En), if for every fixed ~, u ( X , y ) - + l ,  as y - + 0 ,  w i t h l X - X  ol < ~ y .  

LEMMA 2. Suppose that u ( X ,  y) is harmonic (as a /unction o/ the n § 1 variables) 

in E +~+1, and that /or every point X o belonging to a set E ~ E ~ ,  u (x~ y) is bounded in 

a cone F (Xo) whose vertex is at X o. Then u ( X ,  y) has a non-tangential limit /or a.e. 

point X o E E. 

2. Regularization of the region R 

Given a closed bounded subset E of En and fixed positive quantities ~ and h 

we associate with it, as before, the open region R = U F (X0; ~, h). I t  is to be noted 
XoE E 

that  the region R is not necessarily connected. (1) 

We add a marginal comment. This type of region has been considered for some 

time in the study of non-tangential behavior of harmonic functions, especially when 

n = 1. In that  case the boundary of R is a rectifiable curve and thus the study of 

harmonic functions in R is greatly facilitated by the use of conformal transformations 

of R. (2) Needless to say, these considerations are rLot applicable ill the general case. 

The boundary B of R consists o~ two pieces, B =B~U B 2. To describe them we 

introduce ~ the distance function d(X ,  E ) =  distance of X from E. Then B 1 is the 

"surface" y = a - l . d ( X , E ) ,  lying over those points X so that  d ( X , E ) < o : h .  B 2 is 

that  portion of the hyperplane, y = h ,  lying over those X for which d(X ,  E)<~o:h. 

A basic step in the argument that  follows is the application of Green's Theorem 

to certain integrals extended over the region R. This requires that  we approximate 

our given regior~ by a family of smooth regions for which Green's Theorem is appli- 

cable. This is accomplished in the lemma below. 

LEMMA 3. There exists a /amily o/ regions R~, e > 0 ,  with the/ollowing properties. 

(1) R ~ c R  

(2) R ~ c R ~ ,  i/ e~<el 

(3) Re --> R as e --> 0 (i.e., U R~ = R) 

1 E v e n  t hough  i t  m a y  be m a d e  connec ted  b y  a n  inessen t ia l  modi f ica t ion .  

See foo tnote  (1) on p. 138. 



144 : E L I A S  M .  S T E I N  

(4) the boundary B, o/ R, is at a positive distance /tom E~ (y = 0), and consists o/ 

two pieces B~ and B~ so that 
~ (X) 

(5) B~ is a portion o/ the sur/ace y = o~-l.(~(X), where ~ <~ 1, e > O, 

k = l  . . . . .  n, and (~,(X) 6C ~. 

(6) B~ is a portion o/ the hyperplane y =h. 

Proo/. Let  (5 (X) = d (X, E) when d (X, E) ~< h, otherwise let (~ (X) = h. Then (~ (X) 

is defined on all of En, and as is easily seen satisfies the Lipschitz condition 

I ~ ( x ) - ~ ( y > l < l x -  yl.  

Let q,  (X) be a C ~ "approximation to the identi ty".  I t  may  be constructed as follows. 

Take q~(X) 6C :r q~(X)>~O, q~(X)-O if [X[>~I,  and 

f ~(XldX=l. 
En 

Set q~(X)=u-~q~(X/u) .  Let / v (X)=  f ( ~ ( X - Y )  q~,(Y)dY.  Then by  the usual argu- 
. 2  

En  

ments, /~ (X) 6 C ~, and ]~ (X) --> ~ (X) uniformly as ~1 -+ 0. Let  U = U (e) be so small 

so that  

I ], (X) - ~ (X)] < s, and set ~ (X) = f~ (X) + 2 s. 

Taking a subset of the collection {~(X)} (with possible reindexing of the sub- 

script e) we obtain 

(a) ~ (X) > ,~ (X) 

(b) (~ (X) ~> (~ (X), if % > sl 

(c) ~ (x) -+ ~ (x). 

Define now the regions R, to be 

R~={(X,y) :  5~(X)<~y ,  0 < y < h } .  

In  view of the fact tha t  6 ( X ) = m i n  {d(X, E), h}, (a), (b) and (c) imply conclusions 

(1), (2) and (3) of the lemma. 

The boundary B~ of Re is the union of two sets, B~ and B~: 

and 

1 B ~ = ( ( X , y ) :  ~ y = ~ ( X ) ,  0 < y < h }  

2 B , = { ( X , y ) :  y=h ,  (5,(X)<~h}.  
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Clearly B~] is a portion of the smooth surface =y=8~(X) ,  while By is a portion of 

the hyper-plane y =h.  In fact, the region R~ consists exactly in the set of points 

lying above B~ and below B~. 

In order to conclude the proof of the lemma it remains to be shown that  

~ ( X )  
~ - x k  ~<1" 

In view of the definition of ~ (X) it is sufficient to prove a similar inequality for 

/7 (X)= f d ( x -  Y ) ~ % ( Y ) d Y .  
En 

I7 (x1)  - l~ (x2)  = f [8 ( x  1 - y )  - ~ (x2  - Y)] ~ (Y) Now, d r .  

(Xl) - 17 (X2) [ ~< [ X~ - X 2 [ f ~ (Y) d Y = [ X~ - X 21 owing to the fact that  ~ (X) Hence 117 
satisfies the above discussed Lipsehitz condition. Therefore 

~ l T ( x )  < 1, 
x k 

~ (x) 
and hence ~ ~<1 q.e.d. 

3. Basic l emmas  

In all that  follows IV u l will denote 

We let fl, ~, k, and h be given positive quantities with /~ > ~, and k > h. 

L]~MMA 4:. Let ze(X,y)  be harmonic in the cone F(X0; fi, k) and suppose that 

l u (X, y) ] 4 1 there. Then 

y l V u I < ~ A  in the cone F(X0;~ ,h) ,  

where A = A (fl, ~, k, h) depends only on the indicated parameters but not on X o or u. (1) 

(i) The constants A, a, c , . . .  need to be the same in different contexts. 
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Proo/. We shall need the following fact: If  u is harmonic in a sphere ~ of radius 

one in En+l, and its absolute value is bounded by one there, then the value of IVu I 

at the center ~ of :E is bounded by fixed constant A, which does not depend on u. 

This may be read off from the familiar Poisson integral representation of harmonic 

functions in a sphere in terms of their boundary values. Alternatively, we may use 

the following indirect argument. Assuming the contrary, there would then exist a 

sequence un of functions harmonic in ~ and bounded by one in absolute value so that  

]Vun(a) l-+ co. By a well-known property of harmonic functions, we can select a 

subsequence of the u= which converge together with all derivatives uniformly on every 

closed set interior to ~. This is a contradiction and proves the existence of the re- 

quired A. 

If now :E is the sphere of radius @ and l u] is still bounded by one there, then 

I Vu(~)I~<A/@. This follows from our previous observation by making a change of 

scale which expands each coordinate by a factor of @. 

We now consider u(X,  y) which is harmonic in the cone 

F(fi, k )={(X,y) :  I i - X o l < f l y ,  0 < y < h } .  

Let (X, y) be any point in the smaller cone P (~, h). Notice that  since ~ < fi, and h < k, 

there exists a fixed constant c >0,  so that  the sphere of radius c y whose center is 

(X, y) lies entirely in P (fl, It). 

We now apply the previous fact to the case where ~ is the sphere of radius c y 

whose center a is (X, y), and obtain 

IV u (X, y) [ < A /c  y, (X, y) e F (~, h) 

that  is, y lVu(X ,Y)]<~A/c ,  for (X,y) eF(~ ,h ) ,  q.e.d. 

LEM~A 5. Suppose that u(X,  y) is harmonic in the cone P(X0; fi, k) and 

f f  Y I -~ 'Vu '  2dXdy<~l" 
F (X0; fl, k) 

Then y l v u ( X , Y )  I<-A in F(X0;~ ,h) ,  

< fi, h < k. The constant A depends only on ~, fl, h and k and not on u or X o. 

Proo/. Let ~ denote a sphere located in E~+I,+ and let a denote its center. Then 

by the mean-value theorem 

ax-~ = [ ~  d X d y ,  /c=O, 1 . . . .  , n, 
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where y = x0, and  I EI denotes  the  n + 1 d imensional  volume of ~ .  Hence,  b y  Schwarz ' s  

inequa l i ty  

~ u ( ~ ) 1 2 < ~  f f l ~ x  ~u ~ d X d y .  
E 

Adding,  we ob ta in  l f f  [v u lVnl dXdy. 
2; 

Arguing as in the  proof  of the  previous  lemma,  we t ake  a = ( X , y )  to  be a n y  

po in t  in F(X0;  a, h); t hen  if Z is the  sphere of rad ius  cy whose center  is a, 

~ F (X0; fi, k). Not ice  t h a t  [ ~ [ =  cy ~+1. We therefore  have  

, . if/  I V u ( ~ ) l  2 = l V u ( X , y ) 1 2 < ~  cl IVul  2 d x d y  
2; 

<-.c y ffy-n+llVul"dXdy c y- ffy- +'lVuI dXdy, 
2; F 

where F = F (X0; fi, Ic). This proves  the  lemma.  

4. The generalized area theorem 

The theorem which we shall  prove  can be fo rmula t ed  as follows. 

TH]~OR]~M 1. Let u (X ,  y) be harmonic in E ~ n + l .  

(a) Suppose that /or every point X o belonging to a set E, u (X, y) is bounded in a 

cone F (Xo) whose vertex is X o. Then the generalized area integral (1) 

f f  y l - n [ V u l 2 d X d y  (4.1) 
17 (X0) 

is /inite for a.e. X o C E 

(b) Conversely, suppose that /or every X o EE, the integral (4.1) is finite, then u (X ,  y) 

has a non-tangential limit /or a.e. X o E E. 

Proof. We consider  f irst  p a r t  (a). 

We  m a y  assume, wi thou t  loss of general i ty ,  t h a t  the  set  E has  f inite measure ,  

and  b y  the use of L e m m a  1, neglect ing a set of a rb i t r a r i l y  small  measure ,  we m a y  

(1) We use the terminology of "generalized area integral" although (4.1) when n> 1, no longer 
can be interpreted as an actual area or volume. 
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also 

the region. 
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assume tha t  E is closed and bounded on tha t  u (X, y) is uniformly bounded in 

/~ = U r (Xo; fi, k) (4.2) 
Xoe E 

whatever  fixed fi and k we choose. 

We shall show tha t  

A(Xo)= ff  yl-~lVulXdXd 
Y ( X  ~ 

y is finite for a.e. X o EE,  

f A (Xo) dXo< ~. 
E 

Let  ~ (Xo; X, y) be the characteristic function of F(Xo; cr h). Tha t  is, 

K~(Xo; X,  y) = 1 if 

otherwise tF (X0; X, y) = 0. 

We must,  therefore, show tha t  

is finite However  f / F ( X o ;  X, y) 

E 

Thus it suffices to show tha t  

jJ , 
R 

where R is as in (4.3). 

IX-Xol<Zcy and O<y<h, 

f f  {f  W(Xo; X,y) dXo}yl-nIvu(X,Y)]XdXdy 
R~ E 

dXo <~ f dXo=cyL 
I x o - x l < ~ y  

V u(X, y)]2dXdy< oo, (4.4} 

and thus R c / ~ ,  and hence u is uniformly bounded in R also. I n  order to show t h a t  

A (Xo)< ~ ,  for a.e. X 0 E E, it suffices to show tha t  

where F (X0)= F (Xo; a, h) and h are fixed quantities chosen once and for all, and taken  

so tha t  f l > a ,  k>h. 
Let  R = U F ( X  0 ~, h) (4.3) 

Xoe E 
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We shall transform the integral (4.4) by  Green's theorem. In  order to do this 

we shall use the approximating smooth regions R~ discussed in Section 2. By the 

properties listed in Lemma 3 i t  m a y  be seen tha t  (4.4) is equivalent with 

f f yIVu(x, y) 12 d X  dy<~c < ~ ,  
R .  

(4.5) 

where the constant c is independent of e. 

Since the region Re has a sufficiently smooth 

Green's theorem in the form 

boundary B~ we apply to it 

B e B e 

Here 8/8~1e indicates the directional derivative along the outward normal to BE. 

dye is the element of "area"  of Be. 

In  the above formula we take F = u  ~, and G=y.  A simple calculation shows 

tha t  A(u e) = 2 1 V u r ,  since u is harmonic, white i~ is clear tha t  A ( y ) = 0 .  Therefore, 

we obtain 

B e R e 

I t  is therefore sufficient to prove tha t  

f [ ~u ~ u 2 aY'~ 
Be 

(4.6) 

Notice tha t  Be c R c / ~ .  Hence, u and therefore u 2 is bounded uniformly there. 

Moreover I ~ Y/~ ne I ~< I; notice also tha t  8 u2/8 n = 2 u 8 u /8  n. Thus 

8u Ivul; <21 I'Y" "Y" 

therefore by  Lemma 3 y 8u2/~ne is uniformly bounded in Be c R = [3 F (X0; r162 h), be- 
X~e E 

cause u is bounded in R =  [3 F (Xo; •, k). 
Xoc: E 

Hence the integral in (4.6) is uniformly bounded by  a constant multiple of fdve. 
B~ 
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However,  

1 2 Be B e B~ 

Now B~ is a por t ion of the surface y = g - 1 .  ~e(X).  Therefore 

there  However,  I ~ , ( X ) h x ~ l < l .  Thus d ~ < ( l §  Also B~ is a portion of 

the hyper-plane y = h .  Since bo th  B~ and B~ are included in a fixed sphere, it follows 

t h a t  [ d ~  is uniformly hounded.  This proves (4.5), and hence pa r t  (a) of the theorem. 

B~ 

We now pass to  the proof of pa r t  (b). We temporar i ly  relable the set on which 

the integral (4.1) is finite by  calling it E 0. By  simple arguments  we m a y  reduce the 

hypotheses to: 

(1) I f  y~-~lVupdXdy is uniformly hounded as X0 ranges over E0, where 
p (X,: 3, k) 

and k are some fixed positive quantities, 

(2) the set E 0 is bounded. 

Given now any  ~/> 0, we m a y  pick a closed set E, E c E 0 which satisfies 

the following two addit ional properties 

(3)  m ( E  0 - E )  < 

(4) there exists a fixed ~,, so tha t  

m ( { y :  IX-Yl<<o}nEo)>~�89 I / - r l < e } ,  if XeE, 0 < ~ < ~ ) , .  

This can be done as follows. Almost  every X 6 E  0 is a point  of densi ty of Eo; 

then for such X we have 

lim ~ ({ r :  I x - Y I < ~o} n E0) = 1. 
o+0 ~ ( { r : l x - r l < e )  

Hence a simple a rgument  shows tha t  for any  ~/ we can find an appropriate  

subset E of E 0 to satisfy (3) and (4). 

We now fix the set E found in this way. I t  will suffice to show t h a t  u ( X ,  y) 

has a non-tangential  limit for a.e. X 6 E. (Thus at  the conclusion of the proof we 

let m ( E o -  E) --~ 0.) 
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First step 

We consider the region 

R = U F (X0; ~, h), 
XoeE 

where ~</3,  h < k ,  and B is the boundary. The first step in the proof of par t  (b) 

will be to show, in effect, 

f l ~ , l ~ d ~ <  ~ .  (4.7) 
B 

Of course, (4.7) as it stands is not meaningful, because u is not defined for all 

of B and neither is the element of "area"  d~. 

To bypass these technical difficulties we consider again the approximating regions 

Re with their boundaries B~ discussed in section 2, and we show tha t  

f lul2 d ~,<<_c < ~, (4.7") 
Be 

where the constant c is independent of e. 

The proof of (4.7*) is in some ways a reversal of the argument used to prove 

par t  (a). We begin by showing tha t  

f f ylVul2 dX dy< ~. (4.8) 
R 

This is done as follows. By (1) we have 

f f  Y ~ - ~ I V u I ~ d X d y  < ~ A < ~ ,  X o E E  o. 
I ~ (xo; fl, k) 

Integrating over E o we obtain 

fffz .(Xo) ~ ( X o ; X , y ) y l - n , V u ( X , y ) [ 2 d X d y d X o <  ~ .  (4.9) 

Here Zz. is the characteristic function of Eo, and ~F is the characteristic function of 

the cone F (X0;/3, k). We shall show tha t  

f ~I z (X0; X,  y) d X  o >~ c y~, 
Eo 

(4.]0) 

where (X, y) E R, c > O. 
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Recall tha t  R =  [J F(Z; :c ,h ) .  Thus (X,y) ER means tha t  there exists a Z E E  
zE~ 

so tha t  ]X-Z]<o~y, 0 < y < h .  Since ~F is the characteristic function of the set 

where I X - X  0]</~y, 0 < y < k ,  we see tha t  

f ~F(X0; X, y)dXo>~ f dX o. 
E0 E0 n (IXo- Zl <(fl-~)y} 

Since Z E E, an application of (4) shows tha t  the second integral exceeds c y n, 

(if 0 < y < h ) ,  for some appropriate constant c, c > 0 .  This proves (4.10). Applying 

(4.10) in (4.9) proves (4.8). We now replace (4.8) by  an equivalent s tatement  

f f  ylVul~dXdy<~c< ~ .  
R e 

(4.11) 

R~ are the approximating regions of R, and c is independent of r 

We now transform (4.11) by Green's theorem--as  in the proof (a) of the theorem. 

We obtain 

f [ ~u~ 2 ~Y~ 0<~ [Y~n~ - u  ~n-~) dT:~<~c< ~.  (4.12) 
B e 

Now the boundary B~ is the union of two parts B~ and B~. However, B~ is a portion 

of the hyperplane y = h (and thus at  a positive distance from the boundary hyper- 

plane y = 0). 

Moreover, B2~ is contained in a fixed sphere. Thus the total  contribution of the 

integral (4.12) over B~ is uniformly bounded. We therefore have 

(4.13) 

We claim tha t  ~y/~n,<~ -o~ (r162 +n)-�89 In  fact, ~/~n~ is the (outward)normal  deriva- 

tive to the surface whose equation is F~ (X: y ) = c c y - ~ ( X ) = 0 .  A set of (unnormal- 

ized) direction numbers for this direction is 

~y ' ~x 1'  ~x 2 . . . . .  ~x~/ - ~ '  ax  1 ' ~x 2 . . . . .  ~x~ /"  

However, I ~ ~ (X)/~ x k ] ~< 1. This shows tha t  ~ y / a  ne ~< - ~ ( ~  § n)-  �89 
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t au~l= 2 au But  y ~ u .  y . ~  ~< 2 1 u l" Y" I V u I. Moreover by  Lemma 4 y IV u I is bounded 

in U F (Xo; a, h) and hence in BI~. Combining these facts in (4,13) we obtain 
Xoc E 

We have seen in the proof of par t  (a) t ha t  ~ d r ~  is uniformly bounded. Let t ing  
. 1  

J~ = u 12 d re, 

we obtain J~ ~< c 3 J~ + c 2. 

Since c a and c 2 are independent  of e, we then have tha t  J~ is uniformly bounded 

hence 

f l~l~dv~<c< ~ .  (4.14) 

.1o 
Second step 

We next  seek to majorize the funct ion u(X, y) by  another,  v(X, y), whose non- 

tangential  behavior is known to us. We proceed as follows. The "surface" B~ is a 

port ion of the surface 
y = ~-1.  ~ (X). 

Let  /~(X) be the funct ion defined on y = 0, whose values are the projection on 

y = 0 of the value of u (X, y) on B~, and otherwise zero. That  is, 

l~ ( x )  = u ( x ,  ~-1 ~ (x) ) ,  

for those (X, 0) lying below B~, otherwise / (X)= 0. We claim 

f l/~(x) l~ dX <c < ~. 
En 

(4.15) 

I n  fact, since d T~ >~ d X,  we have 

f ll~(X)l~dXV fl.l"d~-<c 
1 En B~ 

by  (4.14). 

1 1 -  61173060. Acta  mathematica.  106. I m p r i m 6  lo 20 d4cembro 1961. 

< c o  
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We now let v, (X, y) be the harmonic function which is the Poisson integral of 

the function ]]~(X)]. Thus 

v,(X, y ) =  [ P ( X -  Z, y)Jh(Z)JdZ, 
E n 

where P (X, y) is the Poisson kernel 

P (X, y) = c; 1 
(d + Ix 

(For the needed properties of Poisson integrals, see the previous paper in this 

series, Section 3.) 

We shall show tha t  there exists two constants cx and c 2 so tha t  

]U (X, Y)] < Cl ve (X, y) + % (X, y) e R,. (4.16) 

By the maximum principle for harmonic functions it is sufficient to show tha t  

the inequality (4.16) holds for (X, y) belonging to the boundary B,. Now B~=B~ O B~, 
where B~ is a subset of the hyperplane y = h, lying in a fixed sphere. Since 

v,(X,y)>~O, we can satisfy (4.16) on B~ by  choosing % large enough (and independ- 

ent of e). 

I t  remains to consider (X, y)E B1,. Let  us call a = (X, y). Since 

B1, c R =  [J F (X0 ;~ ,h ) ,  
X o e  E 

we can find a constant c > 0 ,  with the following property: The sphere ~ whose 

center is ~ = (X, y), and whose radius to cy lies entirely in [J F (X0;/~*, k*), where 
X~r E 

< fi* < fi, and h < It* </c. Recall that  the cones F (Xo; fi, ~) have ~the property tha t  

f Y~ nlVu]2dXdy<~A<oo , XoEE. 
:P (Xo; ~, k) 

Making use of Lemma 5, it follows tha t  

yIVulKAl<c~ for (X,y) E U P(Xo;fl*,k*). (4.17) 
Xoe  E 

Let now a '  be another point in the sphere ~,  and let 1 be the line segment joining 

~' with o. Then 
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Since, however, l a ' - ~ l  ~< radius of ~ = c y ,  it follows from (4.17) tha t  

lu(cr')-u(c;)l<~A, if a ' E ~ .  (4.18) 

Let  S = tha t  portion of the surface B~ which lies in the sphere ~.  

Let  IS[ denote its area 

Nn B~ 

Since d ~  >~ d X, and ~ is a sphere of radius c y, we obtain after a simple geometric 

argument,  

Isl> ay =, 

where a is an appropriate constant, a > 0 .  Using (4.18) we obtain 

1 
lu(o)l 

s 

In  view of our definition of /~(X), our estimate for I S I, and the fact tha t  

dv~<~(l+n~ 2)�89 (see the proof of par t  (a)), we then get 

I ~ ( ~ ) l < b y  -n f I/~(Z)IdZ+A. 
IX- Zl<cy 

The Poisson kernel has the property tha t  

P(Z,y)>~(b/cx)y -~ for IX l<cy ,  

where c 1 is an appropriate constant. We therefore obtain 

lu(cr)l=lu(X, yll<cl f P(x-Z, yll/~(z)ldZ+A for (X,y) e B  1. 

This proves our desired estimate (4.16) on B 1. We have already remarked that~ 

on B~ it is semi-trivial. Hence, we have the estimate on B~ and therefore on R~. 

Thus (4.16) is completely proved. 

:Because of the uniform estimate (4.15) on the norms of /~(X), we can select a 

subsequenee (x ) I )  of the functions {[/~ (X)I} which converge to I/(x) l e L 2 (En), 

weakly in L 2. 
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f 
Let  v ( X , y ) =  J R ( X - Z , y )  i / ( Z ) l a Z  be the Poisson integral of If i. 

each (X, y), y >0 ,  v~k(X, y)-->v (X, y). Since R~--~R, we then have 

lu(X, y ) i<clv(X,  y ) + c  2, (X, y) ER. 

This is the decisive majorization of u (X, y). 

Then for 

(4.19) 

Final step 

Because of the known behavior of Poisson integrals near the boundary, we can 

assert  that  v (X, y) is bounded non-tangentially for almost every X 0 in En. More 

precisely, for a.e. X o E E~, (X, y) is bounded in the cone P (X0)= F (X0; a, h). (For 

these facts see I, Section 3.) 

Because R =  (J F(X0; ~, h), and (4.19), it follows tha t  for a.e. XoEE, u(X,  y) 
XoE E 

is bounded in F(X0; ~, h). In  view of Lemma 2, this shows tha t  u has a non- 

tangential  limit for a.e. X 0 E E. This concludes the proof of the theorem. 

Chapter II 

The main purpose of this chapter will be the proof of Theorem 3 in Section 6. 

Actually this will be an easy result of Theorem 1 proved in the previous chapter and 

an  auxiliary result, Theorem 2, which is contained in Section 5. 

5. An Auxiliary theorem 

Theorem 1 we have just proved is useful because--disregarding sets of measure 

zero- - i t  shows tha t  the existence of non-tangential limits for harmonic functions is 

equivalent with the finiteness of certain integrals. In  many  cases these integrals are 

easier to deal with. We shall see that  this is the case in the following theorem 

which is of particular interest in terms of its applications considered in the following 

paragraphs.  

In  what  follows u ( X ,  y) will denote a vector of k components 

(u 1 (X, y), u 2 (X, y) . . . .  uk (X, y)), 

where each component is harmonic. Similarly v (X, y) will denote a vector of m 

components (/c4m, in general), each component being harmonic. We shall set 
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similarly for v. When we say tha t  u (X, y) has a non-tangential limit at  a given 

point X0, we shall mean tha t  each component has, etc. 

T~EOREM 2. Let u (X, y), v (X, y) be harmonic in the cone F (2(o; fl, k). Let P (D} 

be a k x m  matrix, each o/ whose entries is a homogeneous di//erential operator in ~/~y~ 

~/~xl, . . . ,  ~/~xn o/ degree r, with constant coe//icients. Assume that u and v are re- 

lated by 

~r u X -~y~ ( , y) = P (D) v. (5.1) 

Assume also that f f yl-~ lvi2 d X  d y <  oo. 

F(X,; fl, k) 

Then i/ ~ < fl, h < k, we can conclude that 

f f  y l - n l u l ~ d X d y <  oo. 
r(Xo; ~, h) 

The equation (5.1) may  be viewed as a relation between a harmonic function 

and its conjugates, in its most general form. Examples and interpretations of (5.1} 

will be discussed in Sections 7 and 8. 

Before proving the theorem we derive from it a particular consequence of in- 

terest. 

COROLLARY. Let the cones F (Xo;/7, k) and F (Xo; 0% h) be as in the above theorem. 

Suppose that H (X, y) is harmonic in the cone F (Xo;/~, It). 

( a ) .  ff yl -n  OH dXdy<oo. ay  
I~(Xo; fl. k) 

then Y ~xs d X d y <  0% ]=1,  2 . . . . .  n. 
f(Xo; ~, h) 

then, 

(b) I /  each o/ the integrals 

~ f  yl-n O H ~ d X d y <  oo, ]=1,  2 . . . . .  ~,, 

F(XD; fl. k) 

f f 1-n O H i ~ d X  y ~-~y[ dy  < ~r 
F(X.: r162 h) 
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P a r t  (a) of the  corol lary  is p roved  by  t ak ing  u = O H / O x s ,  v = O H / O y ;  then  (5.1) 

fly1 ~yy d y <  ~ ,  for a.e. X o E E  , 
I ' (X.)  

or  f f  y l - n ( ~  ~U 2 1 d X d y < ~  ' for a.e. X o E E .  
j=l ~Xj J 

F(X.)  

This is a def ini te  s t rengthening  of Theorem ], p a r t  (b). 

F o r  the  case n = 1 th is  fact  has a l r eady  found app l ica t ion  in cer ta in  p rob lems  

in one real  var iable ,  see Ste in  and  Z y g m u n d  [10]. I n  t h a t  case ( n =  1) the  corol lary  

follows from a theorem of Fr iedr ichs ,  see [4]. As far  as the  case of genera l  n is 

concerned,  Fr iedr ichs  has p roved  in [5] a genera l iza t ion  of his previous  resul t .  B u t  

th is  does not  over lap  wi th  our resul t  for general  n. 

The proof  of Theorem 2 will require  two p re l imina ry  lemmas  of an  e l e me n ta ry  

character .  

LEMMA 6. Let �9 (s) = "|el (t) dt. Then 
. . !  t 

8 

0 0 

This  is a wel l -known inequa l i ty  of H a r d y ,  see [6]. 

p rove  t h a t  e i ther  

b 

F(8)= f /(t)dt. 
as 

b b 

Yhe,  f lF f ll(t) 3 dt (5.2) 
0 0 

LEMMA 7. Let O ~ a o ~ a <  ~ ,  and 

becomes ~ u / ~ y = a v / a x j .  To prove  (b) we t ake  

u = ~ H / ~  y, and  v = (v~, v 2 . . . .  , Vn) = (~ H /~  xj, . . . ,  ~ U / ~  x~). 

Then  (5.1) becomes ~ u / ~ y =  - ( ~ v ~ / ~ x  1 + ~v~/~x~ ... + ~v,,/~x,~). 

The meaning  of this  corol lary  in connect ion wi th  Theorem 1 is clear. I n  order  

to  prove  t h a t  u (X, y) has a non- tangen t i a l  l imi t  a.e. in a set E E E~, i t  suffices to  
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Proo/. First, if qP (s)= J ~ -  
a s  0 0 

from Lemma 6 by the change of variable s-+as. Next  

b b b 

t 
a s  a s  a s  

Applying the previous inequality proves the lemma. 

We now come to the proof of Theorem 2. We shall assume for simplicity tha t  

the vertex is X 0 = 0; this involves no loss of generality. We then relable the cones 

P (X0; fi, k) and F (X0; ~, h) as P (/~, k) and P (~, h) respectively. 

Now let @ denote tha t  segment of a ray passing through the origin and lying 

in the cone P (~, h). Let  s be the parametrization of the segment @ according to its 

length, with s = 0  corresponding to the origin. With u (X, y) given, we shall define 

% (s) by, % (s) = restriction of u (X,  y) to the ray  segment @. 

We shall show tha t  
h 
P 

J sl%(s) 12ds<A<~, (5.3) 
0 

where the bound is independent of the ray @ lying in F (~, h). If  we prove this in- 

equality, then an integration of it over all Q of the type specified will then prove 

our theorem. We therefore turn to the proof of (5.3). 

By (5.1) we obtain 
h 

- 1  1)! f T ) r - 1  (X, T ) ] d T + R .  (5.4) u(X, Y)~(r (Y- [P(D)v 
Y 

Since R involves only the values of u (X, y), au(X, y)/ay . . . . .  ar 1 (u(X, y))/ayr-1 
at  y=h, this term is uniformly bounded. 

We now examine the term P(D)v(X, ~) in (5.4). We use again a fact used 

several times before: We can find a constant c, c > 0, so that  if Z (X, ~) is the sphere 

whose center is (X, ~), with (X, T) E P (~, h) and whose radius is c ~, then Z c F (/3, k). 

We fix this constant c in the rest of this proof. We also need the following fact. 

Let  P (D) be a fixed matr ix  of differential polynomials, homogeneous of degree r, and 

let ~ be the sphere whose center is a and radius in & Then (if v (X, y) is harmonic) 

IP(D) (5.5) 
Z 
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This may  be seen as follows. First consider the case when Z is of radius one. 

Notice tha t  the class of harmonic functions which satisfy I'['[vl2dXdy<~l, are uni- 

Z 

formly bounded on interior compact subsets, by  the mean value property. I t  then 

follows by an indirect argument  (of the type used in the proof of Lemma 4) tha t  

there exist a constant A so that  [P(D)v((~)[~A, for this class of functions. The 

general inequality (5.5) then follows by  a homogeneity argument  which involves stretching 

each component by  the factor 5. Alternatively, (5.5) can be proved directly from the 

Poisson integral representation for spheres. 

We then take (5.5) with ~ being the sphere • (X, ~) whose center is (X, T) and 

whose radius is c v, and substitute this estimate in (5.4). This gives 

h 

lu(X, y)l<B f z_~(n+8){ f f lvl2dXdy)~dT+A. (5.6) 
y Z(X,~) 

We now call S~ the " layer"  in the cone P(fl, k) contained between "~-cv and 

T+c~ ;  i.e., 

Then clearly, since ~ (X, T ) c  1 ~ (/~, It) we have ~ (X, T ) c  ST, and therefore 

ff, 
Next,  call 0 the angle tha t  the ray ~ makes with the y-axis. Since the ray  is 

contained in the cone IXl<~y, 0 < y ,  it follows tha t  1/> cos 0>~ao=(1+~2)-�89 
Notice tha t  y = s  cos 0, where s is the parameter  of arc-length along ~. Recalling the 

definition of ue (s), (5.6) gives 

h 

lu~(s)l<~B J T-�89 (5.7) 
s cos 0 

We now invoke (5.2) of Lemma 7. We therefore obtain 

h h 

0 0 

However, 
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h h 

o o s~ r(~, k) 

d X d Y ,  

where Z (T, X, y) is the characteristic function of the layer S~ in F (fi, It). 

y / ] - c  

But fT-nZ(T,  X, y)dT= f T-ndT~ f T-nd-T=cly -n+l. 
T--cT<y<T+CT; 0 < y < k  Y l I + r  

This shows tha t  

h 

0 F(fl, k) 

which proves (5.3). 

Integrat ing (5.3) over all ray 's  • lying in F (~, h) shows the finiteness of the 

integral 

f f yl . ]ul2 d X  dy. 

Here 15 is tha t  portion of the cone IX I< ~y, in the upper half-space, which is 

t runcated by  the sphere I X ]2 + y2 = h 2. This "cone" differs from our original cone 

F (a, h) by  a set which lies a t  a positive distance from the exterior of F (fl, It). Since 

u was assumed harmonic in F (fl, k) it is certainly bounded in F (~, h ) - 1  ~. Thus the 

integral over 1 ~ (~, h) is also finite. This concludes the proof of theorem. 

6. General theorems about non-tangential  limits of  conjugate functions 

We now come to the principal result of this paper. 

u and v will denote, as in the previous section, vectors of harmonic functions of 

k and m components respectively. 

THEOREM 3. Let u (X, y) and v (X, y) be harmonic in E+n+~. Suppose that they 
satis/y the relation 

Dr u 
- -  = P  (D) v, (6.1) ~y~ 

where P (D) is a k•  matrix whose entries are di]]erential polynomials (with constant 

coe]/icients) homogeneous o] degree r, r >1 1. Suppose that/or a given set E, E c  E,, v (X, y) 
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has a non-tangential limit /or every X EE. Then u (X, y)has a non-tangential limit 

/or a.e. X 6E. 

Proo/. In  order to show tha t  u (X ,  y) has a non-tangential limit a.e. in E it 

suffices, by  par t  (b) of Theorem 1, to show tha t  

f f  y l - '~ lVu l2dXdy<oo  for a . e .  Xo6E. 
F(X0; ~. h) 

However, by par t  (a) of tha t  theorem is follows tha t  

f f  y~-'~lVv[2dXdy< ~ for a.e. XoEE. 
F(Xo: 3, k) 

Let now U denote the vector whose components are (0 u/0  y, D u/0  x 1 . . . . .  0 u/aXn). 

Actually since u itself is a vector of k components, then U is a vector of / c ( n + l )  

components, suitable arranged. Similarly let V = (~ v/O y, ~ v/~ xl, ..., 0 v/O xn) be the 

indicated vector, of m ( n + l )  components. I f  we differentiate the relation (6.1) suc- 

cessively with respect to O/Oy, O/Ox 1 . . . . .  O/axn then we obtain the relation 

0 r U _ / 5  (D) V. (6.2) 
~yr 

Here /5(D) is a I c (n+l )xm(n+l )  matrix which consists of n + l  copies of P (D)  

arranged down the diagonal. Or put  in another way, the matr ix  ]3 (D) is the tensor 

product of P (D)  by In+l, where In+l is the (n + 1)x (n + 1) identity matrix. 

Notice tha t  by  our definitions I V I = I V v ]  and I U I = ] V u ] "  We are thus in a 

position to apply Theorem 2, with (6.2) in place of (5.1). From the finiteness of 

F(x , ;  3. k) F(X0; 3. k) 

follows the finiteness of 

f/ Yl-nlVul2dXdy=ffYl nlUI2dXdy; 
l~(X0; ar h) 

and thus by what  has been said above, we obtain the proof of the theorem. 



ON T H E  T H E O R Y  OF H A R M O N I C  F U N C T I O N S  OF  S E V E R A L  V A R I A B L E S  163 

Chapter lII 

7. Various examples 

W e  consider f irst  the  genera l iza t ion  of the  Cauchy-Riemann  equat ions  s tud ied  in 

pape r  I,  and  also discussed in the  in t roduc t ion  of the  present  paper .  Le t  us change 

the  no ta t ion  s l ight ly  (making i t  symmet r i c  in all  var iables)  b y  calling y = x  o. Thus  

the  under ly ing  var iables  arc x 0, x 1 . . . .  , x~. S imi lar ly  le t  us call u 0 = u, and  u 1 = vl, 

uz =v2, . . . ,  u~ =v~. Then the equat ions  become 

W e  then  have  

• ~ u k = 0  
k=o ~ X k  ' 

~u  k ~uj  
~xj  Oxk' o<~j, k ~ n .  

(7.1) 

THEOREM 4. Let  u0, ul,  . . . ,  u~ the system o/ /,unctions sat is /y ing (7.1). 

(a) Suppose  that u o has a non-tangential  l imi t  /or each point  (xl, x2, . . . ,  x~) be- 

longing to a set E c E~ ( = the hyperplane x o = 0). T h e n / o r  a.e. (xl, x 2 . . . . .  x~) CE,  

the same is true /or each uk, k =  1, 2 . . . .  , n.  

(b) Conversely, suppose that ul,  u 2 . . . .  , u~ each have non-tangential  l imi ts  in  a se 

E c E ~ .  Then  /or a.e. point  in  E the same is true /or %.  

Proo/ .  To prove  (a) we use a u ~ / a y = a u o / a x  k. F o r  (b) use 

u o / a y  = - (a Ul /a  xi  + a u2/a x2 + . . .  + x=). 

Thus  an  app l ica t ion  of Theorem 3 proves the  theorem immedia te ly .  

I t  is ev ident  t h a t  th is  theorem general izes the  corresponding classical resul t  for 

ana ly t i c  funct ions  of P r iva lov  and  Plessner.  

I t  m a y  be seen t h a t  th is  theorem is t  bes t  possible in the  following sense. 

(a) I f  we wan t  we existence of non- t angen t i a l  l imi ts  for the  n + 1 components  

% ,  u 1 . . . . .  u~ (a.e. on a set E)  b y  assuming i t  for only  one of them,  then  this  one 

m u s t  be %. 

(b) However ,  if we do no t  make  a n y  assumpt ions  on u0, we mus t  assume t h a t  

the  remain ing  n components ,  ul,  u2, . . . ,  u~, have  non- t angen t i a l  a.e. in E in order  

to  ob ta in  the  conclusion for al l  the  n + l  components .  To show this  consider  an  

F (z) = u 0 (x 1 + i y) + i u 1 @1 + i y) which is ana ly t i c  for y > 0, b u t  does no t  have  b o u n d a r y  
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values for y = 0 .  Then the set (u0, ux, 0, 0 . . . . .  0) satisfies (7.1) but  does not have 

non-tangential limits. 

I t  is to be recalled tha t  the system (7.1) is locally equivalent with one arising 

out of a single harmonic function H (X, y) via 

~H 
u j = - - ,  Xo=Y,  O ~ ] < ~ n .  (7.1") 

The system (7.1) (or alternatively (7.1")) may  be thought of as the most direct 

generalization of the Cauchy-Riemann equations. However, there are notions of "con- 

jugacy" which have no direct analogue to the classical case but  which are never- 

theless of interest in higher dimensions. A systematic approach to the possible no- 

tions of conjugacy (i.e., appropriate generalizations of the Cauchy-Riemann equations) 

involves the study of how these systems transforms under ro ta t ions- -and thus is in- 

t imately  connected with the theory of representations of the group of rotations in 

n + 1 variables. This problem will be treated in a future paper of Guido Weiss and 

the author. Here we shall consider only briefly some of the possible systems which arise. 

For every integer r we shall consider the "gradient of order r " - - t h a t  is, the 

system of harmonic functions obtained from a single harmonic function H (xl, x 2 . . . . .  xn, y) 

as follows: 

{ ~:H (Xl, _x~, :::, y) ) 
0 y~" ~ x~' . . .  ~ x~" ' (i~ + i l  -~ "'" -~ in : r) . (7.2) 

This system may  also be characterized by  a set of equations like (7.1. We now 

state the following theorem which generalizes Theorem 4. 

T H E O ~ E ~  5. Suppose  that /or each po in t  (xl,  x 2 . . . .  , xn) belonging to a set E c  En, 

the ]unction ~ r H / a y r  has a non-tangent ial  l imit .  Then  the same is true a.e. in  E /or 

each other derivative o/ order r (i.e., other component  o] (7.2)), and conversely. 

This theorem, like Theorem 4, is an immediate consequence of the general Theo- 

rem 3. 

RemarIc. While this theorem is clearly a generalization of Theorem 4, it has only 

a secondary interest relative to Theorem 4. This is because the assumptions of the 

converse are to a large measure redundant. This may  already be seen in the case 

r =2 ,  n =2 .  The existence of the non-tangential limits of each of the following three 

sets of components implies tha t  a.e. all the other second order components have non- 

tangential limits: 
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~ H { a s H ~ H~ 
(1) ~y~  \ ~x~ ~x~ ~ ] 

~ H ~ H 
(2) - -  and - -  

Oy ~xl ~y ~x 2 

~2 H ~2 H ~2 H 
- -  and 

(3) ~xl~x2 ~x~ ~x~" 

That  (1) does is of course contained in Theorem 5. From Theorem 4 it may  be 

shown that  the existence of non-tangential limits of (2) also implies the other second- 

order components. (3) may  be proved by  similar arguments. 

This leads us to the following general question. Suppose P1 (D), P2 (D) ... Pk (D) 

are k given differential polynomials in a/~ y, ~/~ x~ . . . . .  a/~ x~, homogeneous of degree r. 

Question: What  conditions must  be imposed on P1, Pz . . . . .  Pk, so tha t  they are 

determining in the following sense: I f  H is harmonic in @1, x2, x3, " " ,  x~, y ) a n d  

/)1 (D)H, P2 (D)H, . . . ,  Pk (D)H have non-tangential limits in E, then a.e. in E so does 

any derivative of order r of H. 

We shall now a t tempt  to answer this question. 

Suppose tha t  P(D) is a homogeneous polynomial of degree r in ~/~y, ~/~x 1, 

.. . .  ~/~x=, we shall consider with in the associated polynomial, p(X), which is a 

polynomial of the n variables xl, x 2 . . . . .  x~ of degree ~<r. 

First, there exists a homogeneous polynomial of degree r in ~/~y, ~/~x 1 . . . . .  

~/~x,~, P* (D), so tha t  

(a) P* (D) H = P (D) H, whenever H is harmonic, 

(b) P*(D) is of degree ~<1 in ~/ay. 

P* (D) is obtained from P (D) by replacing aJ/a yJ by  ( - )�89 (a2/a x~ + a~/a x~...  + a2/a x~)}J 

if j is even; and replacing ~J/~x j by ~/~y(-)�89 1)(~2/~x~+ ... +~2/~x~)�89 ' if j is 

odd. Thus 

( ~ + ~ t  

where s and t are respectively homogeneous polynomials of degrees r and r - 1 ,  and 

~/~ z = (a/~ xl, ~/~ x~ . . . . .  ~/~ x.). 
We then define p (X) by 

p ( x )  = s ( x )  + t ( x ) .  

Examples of this definition are as follows: 
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(a) If P (D)= ~r/~x~, then the associated polynomial, p (X),  is x~-. 

(b) If  P ( D ) = ~ / ~ y  ~, then p ( X ) = ( - ) � 8 9 2 4 7  . . .+x~)  �89 if r is even; 

p ( X )  = ( - -  ) � 8 9  § x 2 2 . . .  + X2n) � 8 9  

if r is odd. 

We can now obtain the following result which is a refinement of Theorem 5. 

THEOREM 6. A su//icient condition that the lc di//erential polynomials PI (D) ,  

P2 (D) . . . .  , Pk (D) are determining is that the common complex zeroes o/ the k associated 

polynomials Pl (X), P2 (X),  . . . ,  Pk (X) satis/y x~ § x~ § x~. . .  § x~ = O. 

We list two immediate consequences of interest. 

COROLLAI~Y 1. The existence o/ the non-tangential limits in a set E o/ the com- 

ponents 

~ H  ~ H  ~ H  

~x~' ~x~' " '  ~x~' 

implies the existence o/ non-tangential limits a.e. in E o/ all the other derivatives o/ 

order r o/ H.  

COrOLLArY 2. Let H (x I, x 2, y) be harmonic in E~ .  Suppose that the two /unc- 

tions v 1 and v2, de/ined by 

~r H ~r H r ~ ~�89 C r - , . 
vl= ~ (-)~J C~ ~x~_J~xj, v~ ~ (-~ ~X~l ~X~' 

] even 1 t/  2 ] odd 

have non-tangential limits the in E.  (C~ are binomial coe//icients.) Then a.e. in E the same 

is true o/ all the other r-th derivatives o/ H.  

The significance of the type of conjugaey arising in Corollary 2 will be discussed 

further in Section 8. 

We shall need the following lemma. 

LEMMA 8. ;Let I be an ideal in the ring o/ all polynomials in xl, x 2 . . . .  , xn. 

Suppose that / ( X )  is a given polynomial. Then a su//icient condition that there exists 

an integer N so that ( / ( x ) ) N E I  is that the (complex) zeroes o/ / be contained in the 

common zeroes o/ I .  

The condition is evidently necessary. This is the Hilbert "Nul ls te l tensatz"  for 

the complex number field. See e.g. [12], w 79. 

Proo/ o/ the theorem. Let I be the ideal generated by Pl (X), P2 (X) ... p~ (X). 

Take / ( X ) = x ~ + x ~  ... +x~ in the above lemma. Because of our assumptions on the 
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pj (X) it follows that  there exists an integer N, and polynomials ql (X), q2 (X) . . . . .  qk (X) 

so that  
k 

qj (x)  pj (x)  = (xi ~ + x~... ~ N +x~) . (7.3) 
Y=l 

Recall that  pj (x)  = sj (x )  + 6 (x) ,  

where the sj are homogeneous of degree r, and tj are homogeneous of degree r -  1. 

I t  should be noted from this that  2N~> r -  1 and that  we may assume the degrees 

of the qj(X) are ~ < 2 N - r + l .  Write now 

qj (x)  = 2 qj.~ (x),  
e 

where qj.e (X)  is homogeneous of degree e. Thus we have 

, 2 - x 2 . . . + x ~ )  N. Z ( z  qj,~ ( x ) )  (sj ( x )  + tj ( x ) )  = t X l .  
j e 

Making the substitution {xj}-+{~ 1x j}, we get 

X (Z  q],e (X )  ~ e) (8 i ( X )  ~-r + tj (X )  ~ - r + l )  = ~-2N (Z 2 + X 2 .. .  +Xn)2 N, 
j e 

and hence Z (X qs, e (X) ~ZN-e) (Sj (X)  + tj (X)  ~e) ~ e 2 = ~ (xl + x~ ... + x2) N. 
I e 

(7.4) 

Since the degree of qj(X) is ~ 2 N - r + l ,  it follows that  e ~ 2 N - r + l  (and 

since r~>l, then 2 N - e / > 0 .  

Now in the above polynomial identity, substitute for X = ( x l ,  x 2 . . . . .  x,), (~/~x 1, 

O/~x 2 . . . .  , ~/~xn); and for ~ substitute O/~y. (7.4) so transformed and applied to a 

harmonic function H, gives 

NO ey+r H 
(E J Qj (D) P7 (D)) H = ( - ) ~ 4 7 ,  (7.5) 

where 

and 

This shows that  the 

gree 2 N. 

Let now u = ~ ' H / O y  v and vj = P j  (D) H. Then (7.5) becomes 

~2Nu _ )N  +Q2(D)  v2 + Q , ( D )  v,]. = ( [Q1 ( n )  v l  . . .  

- o  

Qj (D) are homogeneous in e/O y, 0/0 x 1, . . . ,  0/0 x~ of de- 

(7.6) 
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This is exactly of the form (6.1) appearing in Theorem 3 (here 2 N = r ) .  By our 

assumption (vl, v 2 . . . .  , v~) = (P1 (D) H, P2 (D) H, Pk (D) H) have non-tangential limits in 

E. Thus by Theorem 3 so has u=arH/~yr a.e. in E. The proof of the theorem is 

completed by  appealing to Theorem 5. 

We add one final remark. I t  is possible tha t  the condition tha t  the associated 

polynomials vanish jointly only on the set x~ § x~ ... + x~ = 0, is not the best possible. 

In  fact, it may  be conjectured tha t  a necessary and sufficient condition tha t  the 

polynomials P1 (D) . . . .  , Pk(D) are determining (in the sense defined above) is tha t  

the only real common zero of the associated polynomials be the origin. The proof 

of this latter assertion, if true, would seem to be beyond the methods of this section. 

8. Relations with generalized Hilbert transforms 

Up to now we have considered harmonic functions defined in E +n+l (or smaller sub- 

sets) and have studied relations of eonjugaey given by  differential equations like (6.1). 

We want now to investigate further this meaning of conjugacy in terms of harmonic 

functions which are Poisson integrals (of their boundary values in En). This will allow 

us to understand relation (6.1) in terms of (a) the boundary values of the harmonic 

functions, and (b) the Fourier transforms of these boundary values. 

Let  us consider first the classical ease (n = 1). See, e.g., [11], Chap. 5. Let  u (x, y) 

be the Poisson integral of a function [ (x) belonging to, say, L 2 ( -  oo, ~ ) .  (1) Then 

+ 0 0  

u (x, y) = ~ y~ + ( x -  z) ~ ! (z) d z. 

Moreover, the conjugate function v (x, y) (which is determined up to an additive 

constant) is again the Poisson integral of a function, 9' (x), belonging to L ~ ( -  oo, co). 

9' (x) and [ (x) are related by  the Hilbert  transform 

1 f /(z)dz, (8.1) 9' ( x )  = - -  - -  
7g Z - -  X 

- o o  

the integral existing a.e. in the principal value sense. I f  we denote by [ and # re- 

spectively the Fourier transforms of [ and 9', then we have 

(x) = - i sign (x) ] (x). (8.2) 

(1) The l imita t ion to funct ions  in L~ is made  only for the sake of convenience and is not  ne- 
cessary. Many other  classes of funct ions would do. 
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We can take  (8.1) (or a l te rna t ive ly  (8.2)), which expresses the classical relation of 

conjugacy in te rms  of bounda ry  values, as our s tar t ing  point .  

The  t r ans fo rmat ion  (8.1) has a well-known generalizat ion to n dimensions. I f  we 

use the no ta t ion  X = (xl, x2, . . . ,  x~), Z = (zl, z 2 . . . . .  z~), t hen  we consider t rans forma-  

t ion /--->T (/) defined b y  

( (x - z) T(/) (X)~g(X)=a/(X)+ j ]X--~]~ [(Z)dZ. (8.1") 

En 

Here  ~ (Z) is a funct ion which is homogeneous of degree zero ( that  is, depends only 

on the direction of the vec tor  Z) and  has  the fur ther  p rope r ty  t h a t  its mean-va lue  on 

the uni t  sphere vanishes; a is a constant .  The integral  exists a.c. in the principal  value 

sense, if we restr ict  g2 and  / appropr ia te ly ;  moreover ,  if [2 satisfies certain min imal  

restr ict ions (e.g., ~ is bounded),  the t rans format ion  is a bounded opera tor  on L 2 (En). 
For  those [2, the Fourier  t rans form 

+ l im ~ ~ (Z) e_~X.Z d S = ($ (x) 
J Jzp 

< [Z[ < lie 

exists for every  X,  is bounded and  is homogeneous  of degree zero. 1Y[oreover, if ] and  

denote the  Fourier  t ransforms of / and  g respectively,  then  

d (Z) = ~ (X) ](X). (8.2*) 

Thus  (8.1") and  (8.2*) are clearly the generalizations of (8.1) and  (8.2). The func- 

t ion ~ (X) is somet imes  referred to as the  symbol of the  t rans format ion  (8.1"). 

Since ~ (X) is a funct ion which is complete ly  de te rmined  b y  its values  on the  

uni t  sphere, we expand  it  in spherical harmonics .  T h a t  is, we have  

(X)  = ~'~1 ( X )  ~- ~'~2 ( X )  -~- . . .  ~- ~ N  (X)  ~- . . .  , (8 .3)  

where s has the  following properties:  

(a) I X  IN~N (X) is a homogeneous  po lynomia l  of degree I .  

(b) ]XIN~N(X) is harmonic ,  in the n var iables  X = (x 1, x~ . . . .  , x~). 

(c) The expansion (8.3) converges to  ~ in L ~ norm of the uni t  sphere. 

We now define ~N (Z) as the  Fourier  t r ans fo rm of ~N (X)/I  X I ~ (as in the  for- 

mula  defining ~ (X) above,  wi th  a =0) ,  then  we have  

h, ,  (x )  = ~,(~) ~ (x) .  (8.4) 
12-- 61173060. A t t a  ma thema t i ca .  106. Imprim6 le 20 d6cembre 1961. 
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Here 7(N) is a non-zero constant  depending only on the degree N and the dimension. 

I t  does not  otherwise depend on ~N. F rom this we can easily conclude the kernel 

of the t ransformat ion (8.1") is a (spherical harmonic) polynomial  if and only if ~2 

has the same property.  The results in the foregoing paragraphs related to the trans- 

format ion (8.1") m a y  be found in, e.g. [3], where there are other  references. 

Let  us now return to harmonic functions in E,+I,+ more properly those which 

are Poisson integrals. 

Let  u (X, y) be the Poisson integral a function / (X) E L ~ (En). Since u (X, y)--->/(X) 
in the L 2 norm as y--->O, we shall denote by  u (X, 0 ) = / ( X ) .  Similarly let v (X, y) be 

the Poisson integral of v (X, O) E L 2 (En). We let ~ (X), ~ (X, y), b (X), and b (X) denote 

the Fourier t ransforms of u (X, 0), u (X, y), v (X, O), and v (X, y) respectively (as func- 

tions of X, for each fixed y). Then, as is well known, 

(X,  y) = e ~Ixt ~ (X); ~ (X,  y) = e ylxl ~ (X).  (8.5) 

We now assume t h a t  u(X,  0) and v(X, 0) are related by  (8.1"); t ha t  is 

[ ~ ( X - Z )  
u(X, O)=av(X, 0)+ j ~ - - z p p  v(z, O)dz. (8.6) 

En 

This means tha t  the Poisson integrals are related similarly, 

u ( X , y ) = a v ( X , y ) +  f ~ ( X - Z )  I X _ Z I ,  ~ v(Z, y)dZ, (8.7) 
En 

and their Fourier  t ransforms are related by  

(X, y) = h (X) ~ (X, y). (8.8) 

B y  what  has been said above it is not  difficult to  see t h a t  indeed (8.6), (8.7), 

and (8.8) are fully equivalent.  

F rom now on it will be convenient to adopt  the following notation,  j will s tand 

for a multi- index of n components.  Thus j = (Jl, ~'2 . . . .  , in). The symbol X j will s tand 

for the monomial  x~ ~, x~ ~ ... x~ ~, and [j[ will s tand for its degree, [j] =]~ +72 §  +in.  

Similarly ~H/~ XJ will s tand for the differential monomial  (~/~x2) jl (~/~x2) j~ ... (~/~Xn) j~. 

Revert ing to our discussion, let us take the case where g2 (X) = ~N (X), and a = O. 

Then  I X I N ~ ( X )  is a homogeneous polynomial  of degree N,  and  hence in our nota-  

t ion we write 
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and then ,% (X, y) = {l X l -N ~ a jXJ}~(X ,y ) .  (8.9} 
l u l=N 

Let  us now reea]l that  the Fourier transform of ~lJl v (X, y)/~ X j is (i)~ X ~ ~ (X, y), 

IJ] = N .  
Moreover, in view of (8.5) the :Fourier transform of ~Nu (X, y)/~ yN is 

( - Ix IV~(x ,  y). 

This shows that  the relation (8.9) is equivalent with 

WVu(X, y) 
~yN --PN(D) v (X, y), (8.10) 

where PN (D) = i-  N ~ aj 

More generally, suppose that  on the unit sphere ~ is a spherical harmonic poly- 

nomial of degree r. Then 

h (x) =~+ hl(X) + ... + h~ (x). 

I t  then follows by the same argument tha t  the relation (8.7) or (8.6) (for this ~ )  

is the equivalent with 

~ru(X'  Y) - P ( D )  v (X, y), (8.11) ~yr 

where P ( D ) = a ( ~ ) r + S _ I { i - N ~ N a  j 0 [ ] [ ~ { ~  r-N ~ ]  \ ~ y !  . (8.12)  

We thus see that  whenever f2 is a spherical harmonic polynomial (or what amounts 

to the same thing, ~ is a spherical harmonic polynomial), then the transformation 

(8.1") when expressed in terms of Poisson integrals can be written in the form (8.11). 

Let  us now consider the converse. We thus have two harmonic functions u (X, y) 

and v (X, y) which are Poisson integrals of u (X, 0), (X, 0) respectively (both being 

in L 2 (E~) and are related by (8.11). (Notice that  (8.12) represents the most general 

differential polynomial homogeneous of degree r in ~/~y, ~ x 1 . . . . .  ~/ax,~.) We then have 

~ ( X , y ) = { a +  Z I i [ - ~  Z ~ , X ' } b ( i , y ) .  
N=I IjI=N 

Now it is known that  any polynomial, e.g., 

Z a jX  j 
I]I=N 
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is equal on the unit sphere to a harmonic polynomial. Thus 

~2[. z Ix l -~{  x a y X ' } = a ' § 2 4 7 2 4 7  ) 
N=I I]t=N 

(for appropriate ~N'S) on the unit sphere. Since both sides are homogeneous of degree 

~ero, the above identity holds everywhere. We therefore have 

(X)  = {a t 2[- f i l  (X) 2[, ... 2[_ f i r  (X)}  v (X) 

u (X, O) = a' v (X, O) + f 
~2 (x Z) 

.and hence ix_sin ,(z, 0)dZ, 
En 

where ~ restricted to the unit sphere in a harmonic polynomial. This proves the 

converse. 

A similar situation holds if we replace the relation (8.11) by  one among vectors, 

as  we have done in the above sections. 

We discuss briefly two exemples. 

(a) The notion of M. Riesz conjugacy, contained in equations (7.1) leads to the 

generalization of the Hilbert  transform whose "symbol"  is the vector - i ( x l / ] X I ,  
x2/IX I, ..., xn/[XI). The n component transformations (corresponding to (8.1") with 

a =0)  are then the so-called Riesz transforms. These transformations were discussed 

in  paper I. For more details, see also [7]. 

(b) We next consider the notion of conjugacy implicit in Corollary 2 of Theo- 

r em 6. Since X=(xl ,  x~) it is convenient to use polar coordinates, x12§ i~ 

:Because ~ (X) is a function homogeneous of degree zero, we can consider it as a 

funct ion of 0, and write it as ~ (0), 0 ~< 0 ~ 2~.  Of special interest is the case 

~(O)=e ~r~ or e -~r~ r a positive integer. 

Since 

we  have 

Xl X2 ~ r 
e * r~  r =  / X / 2 [ ' i l x l ]  ' 

e~"O=lXi-r ( z (-)~O~x~x~-J § Z (--)�89 
3 ev en  ] odd. 

Thus  for ~ (0 )=e  it~ we have 
~r u 
~yr 

where P ( D ) =  [ 

-P (D)r ,  

r 
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However ,  if H is ha rmonic  in (xi, x~, y) and  u = ~ r H / ~ y  ~, t hen  

 y-ay  = ( -  j . .  

But  i H = v l - i v  2, 

~ r H  
where v l =  Z ( - ) �89  x~_S~x~. 

]even ~ 1 tJ 2 

~ r H  
v~ = Z ( - )�89 C;  

;odd a X~ -]  ~ x~/" 

Thus if v = - i ( v  1- iv2)  , u = ~ H / ~ y ~  we have  

above.  

Also u and  v are r e l a t ed  b y  

[" ~2 (x Z) 
u (X, y) = | i i_z l2  v(Z, y)dZ 

E~ 

with  y~l gl (Q e ~~ = e ~r~ 

I t  should  be no ted  t h a t  the  t r ans fo rma t ion  T wi th  th is  kernel  is u n i t a r y  (o~ 

L 2 (E2)) and  i ts  inverse  is ob ta ined  b y  replac ing r wi th  - r .  

We  now summar i ze  the  discussion in th is  sect ion in the  following theorem.  

En + 1, are TH]~0]C~,M 7. Let u (X ,  y), v (X, y) be two harmonic ]unctions in + which 

Poisson integrals o] u (X, 0), v (X, O) 6 L 2 (E~), respectively. (1) Then the /ollowing three 

statements are equivalent 

(1) u (X, y) and v (X, y) are related by 

~r u (X, y) p (D) v (X, y), 
yr 

where P(D) is a di//erential polynomial in ~/~y, ~/~x~, . . . ,  O/~x~ homogeneous of 

degree r. 

(2) u ( X ,  O)=av(X,  0)+ I " ~ ( X - Z )  [ i_z[n v(Z, O)dZ, 
~J 

E n  

where ~ is homogeneous o] degree O, and coincides on the unit sphere with a harmonic 

Tolynomial. 

(1) See the footnote on p. 168. 
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(3) (x, 0) = {h (x)} ~ (x,  0), 

where ~ is homogeneous o/ degree zero and coincides on the uni t  sphere with a harmonic 

polynomial,  and d (X, 0), @ (X, 0) denote respectively the Fourier trans/orms o/ u (X ,  0), 

v ( x ,  0). 
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