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1. Introduction

This second paper on Prediction Theory, like our first one [10], is divided into two
parts: the first, consisting of the first eight sections, treats complex-valued functions defined
on rather general groups, and the second part deals with matrix-valued functions defined
on the unit circle. In both parts we are concerned with degeneracies which were excluded
by our hypotheses before, but which turn out to be interesting from both the function-
theoretic and the prediction-theoretic points of view.

Unlike the first paper, this one has to do with difficulties which do not exist at all for
the classical case of scalar functions defined on the circle group. Both parts of the paper
leave interesting problems unsolved. In this introduction we shall try to present the
questions of this paper and our contribution to their solution in broad terms.

Let f =f(e*) be a summable function defined on the circle whose Fourier series has
the form

FED)~S a, e,
n=0

It is important and well-known that

[log |f]de(®)

(1) The authors acknowledge the support of the National Science Foundation, and in the case of the
second-named author, of the United States Air Force.

(2} d o always denotes normalized invariant measure on the compact group being considered. Here it
is dz/27 on (0, 27).
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is finite, unless f is the null-function. In particular, f cannot vanish on a set of positive
measure.

In our first paper we obtained a generalization of this theorem to the class of compact
abelian groups whose duals are linearly ordered, but under the hypothesis that a,, the mean
value of f, is different from 0. For the circle group this is no restriction at all, because we
can consider e=?f (where p is a positive integer chosen appropriately) in place of f, but
this device fails if the ordered group which generalizes the integer group has no least positive
element. Indeed, trivial examples show that if @, =0 the function may vanish on a non-
empty open set without vanishing identically.

Under the hypothesis that the order relation is archimedean the counter-examples just
referred to are defeated, and Arens [3] has proved that the finiteness of the integral follows
from the continuity of f. We shall prove in the same direction that f cannot vanish on a set
of positive measure unless it vanishes identically, without assuming that @, =0 or that
{ is continuous. It may be unexpected therefore that even bounded functions exist for which
the logarithmic integral diverges. (This negative result is a corollary of a prediction theorem
of different character.) We have additional information, but no definitive result, on the
question which non-negative functions are the modulus of some function f of the class
considered.

In the second part of the paper we reconsider the problems of [10] for positive semi-
definite matrix functions W = W (e*) of less than full rank. In prediction-theoretic terms,
we study a process of less than full rank whose covariance matrix is absolutely continuous.
For a process with covariance matrix W (of full rank or not) these conditions are known
to be equivalent: the process has no remote past; the process is a moving average; W has
the form 4 A*, where 4 is an analytic matrix function. For processes of full rank, these

properties are equivalent to this analytic condition on W:

flog det W do> —oo.

But this integral always diverges if W is singular, for example if W is A A* for a singular
analytic function 4; in this form the integral is thus too crude to give information about
processes of less than full rank.

At almost every point W (e¥) is a positive semi-definite matrix which operates as a
non-singular transformation on its range §)(e¥). Denote the determinant of this trans-
formation by AW (). If we replace the determinant function in the integral by A, then
the finiteness of the integral is the first condition for the process to be a moving average.

There is an obvious second necessary condition. If W = 4 A* for some analytic func-
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tion A, then §(e”) coincides at almost every point with the range of A (¢). In order for
W to have this form it is evidently necessary for £ (e**) to be the range of some analytic
function. ‘

We prove that these conditions together are sufficient as well as necessary for the
process to be a moving average, or for W to have the form 4 A* for some analytic function
A. Of course in application it may be difficult to decide whether the range of W coincides
with the range of an analytic function, and the criterion found by Masani and Wiener
[17] for W to be a square when it is of order two therefore has independent interest.

The theorem on the factoring of W depends on structure theorems for analytic matrix
functions which are proved first. We follow Lax [14] in taking Beurling’s notions of inner
function and outer function as fundamental, but we offer our own definition for matrix
functions which leads to a new description of singular analytic functions.

In connection with the first part of the paper, we draw attention to the related work
of Arens, Hoffman, and Singer [2, 3, 4, 5, 12]. At a crucial stage of our research we had
the good fortune to talk at length with Professor P. Malliavin, and we are grateful for his
permission to incorporate his ideas in this paper. As far as possible we shall identify his
contributions in context.

As with our first paper, this one overlaps the work of Masani and Wiener [16] to some
extent. Following several notes, a third paper has been published recently by Masani [15].
These authors refer in their various papers to Russian work of which we have taken no ac-

count.

2. Mise en scéne

In this section we lay down notation and recount known results which will be used
throughout the first part of the paper.

R denotes the real line, and R, the same group in the discrete topology. The elements

of R, will always be called 4 or 7. The character group of R, is a compact abelian group B

also obtained as the Bohr compactification of R, with elements z, y, ..., and Haar measure

do (normalized to have unit total mass). For each 4 in B, let X; be the character of B defined

by
Zix)==x(l) (all z€B). (1)

The correspondence of 4 to y; is an isomorphism of R, with the character group of B, and

we have for example

Lo@) =1, %i(@) % (2) =% (@) (2)
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We shall nevertheless preserve the notational distinction between elements of E, and
characters on B, for convenience rather than for purity.

The Fourier series of a function f which is defined and summable on B has the form
f (x) ~§a(l)x1 (@), 3)

with coefficients defined by
a() =1 =[ @)} @) do (). @

The Fourier-Stieltjes series of a finite complex measure y is given by similar formulas.

It is known that every discrete abelian group with an archimedean order relation is
isomorphic (with preservation of order) to a subgroup of E,. All the results of the first part
of the paper could be stated and proved for arbitrary archimedean-ordered discrete groups
and their duals, which means for subgroups of R, and the dual quotient groups of B.
Indeed the archimedean hypothesis is not used until section five, so that our first theorems
are true in the more general conditions of [10]. We prefer, however, to write explicitly
about B, and B in order to avoid notational difficulty.

Among the characters of R, are some having the form
eu(l) zeiul (5)

for some real number «. The mapping from u to e, carries real numbers into B. It is known
that this mapping is a one-one continuous isomorphism of B onto a dense subgroup B,
of B. Sometimes it is convenient to identify » with e, and think of R as a subset of B. We
shall be concerned later with the ergodic properties of B, in B.

As generalizations of the Hardy spaces of analytic functions defined in the circle, we
consider the spaces H? (1 <p <oo) of functions defined on B, belonging to LP?, whose
Fourier coefficients (4) vanish for all 1 < 0. When the value of p is unimportant we may call
such a function analytic. In particular an analytic trigonometric polynomial is a finite sum

of the form
a(4) 11 (x). (6)

0

~
Vv

For each p, Hf is the subspace of H? consisting of those functions whose mean value
a(0) vanishes.

A function f in some H” is called outer [6] if

[log|fldo=log|[fdo|> — oo. (7)
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Beurling proved the fundamental result that f in H? is outer if and only if the set of functions
Pf, where P ranges over all analytic irigonometric polynomials, is dense in H2. (Beurling’s
Theorem, originally proved for the circle group, was extended in [10] to compact groups
with ordered duals.)

From (7) it follows that every function w of the form |f|2 for some outer function f in

H? must satisty
flogwda> — oo, (8)

Conversely, every non-negative summable function w satisfying (8) is such a square, and
moreover | is unique wp to a constant factor of modulus 1. This theorem was also proved (not
quite explicitly) in [10]; the unicity of f will be reconsidered in section seven, where the
notion of outer function is further developed.

If f is in H' and has mean value different from 0, then [10] there is an outer function ¢
such that || =[g| almost everywhere. If we write f = g-h, then the function A is analytic
also. An analytic function with modulus 1 almost everywhere is called an inner function
by Beurling.

This notation and these results will be used in the first part of the paper without further

reference.

3. The Wold decomposition

Let u be a non-negative finite measure defined on the Borel subsets of B. We form

the Hilbert space L2 with inner product
(f.9) =[igdp. ()

The functions %; (—co <1 < co) belong to L}, and form a complete set. Moreover they form

a stationary stochastic process in the sense that the inner products
(%, X)) =2, %, dp = (x — ) (10)

depend only on the difference v — A. We know that any stationary process depending on a
real parameter (without any continuity hypothesis) is isomorphic, with respect to all
Hilbert space properties, to the process of characters in L? for a suitable measure u.

For each 1 in R, we define a unitary operator S; in L}, by setting
81f =%3-f. (11)

A closed subspace M of L2 is called invariant if it is carried onto itself by each S;.
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Lemma 1. Let M be a closed invariant subspace of LY. The orthogonal projection P on
M has the form
Pi=cf (12)

for a function e in LY, taking the values O and 1. Moreover e = P y,.
The proof, which offers no difficulty, is omitted.
For each real 7, let M, be the smallest closed subspace of L2 containing the functions

%, with 1 > 7. The subspaces M, are nested, and decrease as T increases; we set

Ds=NM.. (13)

T< o0

Then §,, which is clearly closed and invariant, is called the remote past of the process
{X,}. Denote the corresponding projection function of the lemma by e,.

If ¥, does not belong to M, let y, be the part of y, orthogonal to M,, so that

Zo=Yo T2 (YoL Mg, 2 €My). (14)
It is easy to see that

y‘t’ = Sﬂ/o (15)

is the part of y, orthogonal to M,. Evidently the y, form an orthogonal set in L2, and
their linear combinations span a closed subspace §); which is invariant and orthogonal to
$;. Let ¢, be the function realizing the orthogonal projection on §,. (If T, contains y,,
then §, is defined to be {0} and e; the null function.)

The linear sum $,@ §, may not be all of LZ; its orthogonal complement is a third
closed invariant subspace §), with projecting function e,. Then by definition L} is the

orthogonal sum of §,, §,, and §,, and
e, te,te, =1, ee=0ae (k). (16)

If only one summand §); is different from {0}, the process is said to be pure, and of
type 1, 2, or 3 depending on whether §,, §,, or 9, is non-trivial. More descriptive names
have been invented: a process purely of type 1 is an innovation process, with y, its innovation
at time 7; one of type 3 is deterministic; and we suggest the adjective evanescent for a process

of type 2.
Set duy=e;dp (G=1,2,3); 7

these measures are mutually singular and their sum is . We have obviously

(efxb efxr) =J’~x12‘r eidlu'z fxlir d/,Lj, (18)
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from which we see that {e;,} is a stationary stochastic process in L2, isomorphic with
the canonical process {4} in L, for j =1, 2, 3. Each process {¢,X;} lies in ;. These compo-
nent processes have the following fundamental propérty.

THEOREM 1. The process {e,X;} in L. is purely of type j, for j =1, 2, 3.

This theorem is a generalization of the well-known result of Wold [21] for the circle
group (where only processes of types 1 and 3 occur). A generalization of Wold’s Theorem,
for processes depending continuously on. a real parameter, was given by Hanner [8], and
his method of proof will be adapted to prove our theorem, but in reality his result is quite
different from ours and lies deeper.

The theorem contains three statements, which we prove in order.

Statement 1: j =1.—The functions y; are an orthogonal set fundamental in §,, and
so we have the decomposition

Yo=20Mytw (wl§. (19)

Unless §, is trivial, it is clear that (1) =0 for 2 <0, but (0) ==0. First projecting (19)
into §, and then applying S, gives

€1 x‘t = Z a (A) Yasz- (20)
Az0

This shows that the linear subspace spanned by {e,X;};-0 is contained in the subspace
spanned by {¥; }1z0.

The converse holds also. For y, can be approximated by linear combinations of
%, (A>0), and since y,€§,;, by the same linear combinations of e;%; (1> 0). The same
argument applies to ¥, if 7 > 0.

Combining these results, and translating by 7, we see that {eX;}>, and {y;}is,
span the same subspace of L2, and indeed of §,, for each 7. The y; are orthogonal and so
form an innovation process with innovation y, at time 7; therefore {e,¥,} is an innovation
process with the same innovation y,. This proves the first part of the theorem.

Statement 2: § =2.—We have to prove that the process {e,X;} has neither innovation
nor remote past. As to innovation, we can form finite sums

%o +§0 b(A)Xa (21)
approximating y,, which belongs to $,, and so the corresponding sums

e (%o + 2 b(4) 23) (22)
approximate e, y,=0. In other words, e, ¥, is the limit of sums of the form

—Ag)b (A)yey Xa. (23)
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This is exactly the statement that {e,X;} has no innovation.
To consider the remote past we need a result which will be referred to again, and

which is therefore stated formally.

LeMMA 2. e; M, is a closed subspace of M, for =1, 2, 3.
Let f be an analytic trigonometric polynomial with mean value zero. Writing f as the

sum of its projections and using (20) we have

f=goa Ay twtz (wWEH, z€H,). (24)

Since y; belongs to M, for A > 0, the first sum, equal to e, f, lies in I,. Now z =e¢,f is in
$; which is entirely contained in 7M,. Hence the remaining term w = e,f is in M, as well.
This set of functions f is dense in M, and so e, M, is contained in I, for j =1, 2, 3.

Now in the decomposition
My = e, M@, Mo@es My (25)

the summands are mutually orthogonal and contained in M,; it follows that each one is
closed, as we had to show.
We return to the remote past of {e,%;}. Translating (25),

M. =e,M.De, M. Des M. (26)

We have to show that the projection of e,y, on e,M, has norm as small as we please, if 7
is large enough. From (26), this projection is the same as its projection on M, itself. But
the intersection of all M. is §, to which e,y, is orthogonal, and it is a simple exercise in
geometry to verify then that e,y, has small projection in M, for large 7. This completes
the proof for j = 2.

Statement 3: j =3.—We are to show that {e,x;} is deterministic. It suffices to prove
that linear combinations of e,X; (4 > 0) are dense in the manifold spanned by e,X; (all 1),
since by translation the same will hold for the span of e,; (1 > 7), no matter how large 7.

In other words, if
[He)du =0 (27)

for all A>0, then the same relation is to hold for all . But (27) can be written
[esHadp =0, 28)

and this for 1 >0 means that e,f is orthogonal to M, in L;. Then e,f is orthogonal to £,
contained in M,; but e,f itself belongs to £, and therefore must be zero. Hence (28) holds
for all 4.
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This completes the proof of Theorem 1.

‘We mention here a problem about processes of type 2, whose solution would contribute
a good deal to our knowledge about function theory on B. Let x4 be absolutely continuous
with respect to o, so that du = wdo for some summable function w. Assume the canonical
process in L2, is evanescent. We know from definition that

um, (29)

>0
is dense in M, but it is conceivable that the subspace

N, = Q(;mz (30)

is larger than M,. If N, is larger than M,, let R, be the complement of M, in H,. The same
definition at 7 gives a subspace R, at each 7, and it is easy to see that R, =S, R,. These
subspaces are mutually orthogonal. We can prove, using theorems presented later in
this paper, that each subspace R, is one-dimensional, and that together they span L. If
{ is a representative of Ry, then #.f is in R,, and the set {y,f} is a complete orthonormal
system in L2. Furthermore 1), is exactly the closed linear span of the elements x;f (4 > 0).
So in a new sense the canonical process in L% is an innovation process with innovation f
at time 0.

The problem is to decide whether ¥, is sometimes or always larger than M, and
what properties of w decide between the two cases if they can both occur. If ¥, is larger
than M,, then w has the form ]g | 2, where g belongs to H? and is oufer in a generalized sense,
although the logarithmic integral of (7) evidently diverges. As we shall show, there are
functions ¢ in H? for which that integral diverges; for w =|g|?, the canonical process in
L2 is clearly evanescent, but we do not know whether it can be or must be an innovation
process in the new sense.

In the case of a general measure p, the evanescent part of the Wold decomposition
divides further into a part which is continuous from the left as well as from the right, in
the sense that (29) is dense in (30), and a part which is an innovation process in the new

sense. We shall not be interested in this refinement.

4. Analysis of the decomposition

The decomposition theorem itself does not tell how to find the component measures
Uy> Pas Mg, OF equivalently the subspaces §);, ,, $; from knowledge of u. The purpose of

this section is to set down what we can from known results or standard arguments.
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In the case of the circle group (with its dual, the integers) only £, and §, appear

([7], Chapter XII). Write u (now a measure on the circle) as a sum
du =wdo +du, (31)

of absolutely continuous and singular parts. The main result is this: ¢f f log wdo > — o0,

then du, =wdo and du, = du,; otherwise du, =0 and du, = du.
We shall prove a natural generalization of this theorem to the group B; but whereas

the result is complete on the circle, it cannot differentiate between u, and y, on B.

TaeorREM 2. If du =wdo + du,, where w is a non-negative summable function on B

and pg 18 singular with respect to o, and if
[ log wdo > — oo, (32)

then du, =wdo. If (32) is false, du, = 0.

Proof. The part of ¥, orthogonal to M, was called 1 -+ H in [10], and was shown not
to be the null function under the hypothesis (32). Indeed 1 + H was different from zero
almost everywhere for ¢, but vanished for u,. Therefore ¢, is the function equal to 1 almost
everywhere for ¢ and zero almost everywhere for y,. This proves that du, = wdo.

If (32) fails, then g, can be approximated by linear combinations of X; with 1 >0,
and the process has no innovation. Therefore du; = 0.

By Theorem 2, if 4 has absolutely continuous component satisfying (32) then this
part of u is exactly the summand g, of the Wold decomposition. Moreover §), is naturally
identified with the Hilbert space L3, and the process {e,X;} in L is isomorphic with the
canonical process {¥;} in L%, The orthogonality and invariance of the spaces §; can be
expressed informally by saying that second-order questions about the prediction of the
canonical process in L7 decompose under the Wold decomposition into the analogous ques-
tions for the orthogonal subprocesses; in the case we are discussing, this means that the
absolutely continuous and the singular parts of u can be treated separately, provided that
(32) is true.

The next theorem shows that this simplification does not depend on (32), and that it
suffices to study wdo and dy, separately even when (32) fails.

TurorEM 3. Let e and ¢’ be functions in L}, satisfying
e=1ae. (do); e =1a.e. (du); ee=0. (33)

Then eM, and &' M, are closed subspaces of M, for each 1.
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Proof. For simplicity consider v =0. Suppose that f belongs to L} and is orthogonal
to My:

[%fdu =0 (all 1>0). (34)

This expresses the fact that fdu has Fourier-Stieltjes series of analytic type. By Theorem
16 of [10], the same is true separately of fwdyu and fdpu,, so that ef and ¢'f are separately
orthogonal to M,. This is the same as to say that f is orthogonal to e, and to ¢ M.
Since f was an arbitrary function orthogonal to 7, it follows that e, and ¢’ M, are con-
tained in M,.

In the decomposition

My =eMyDe’ My, (35)

which is analogous to (25) in the proof of the Wold decomposition, the summands are
mutually orthogonal and contained in M, and it is obvious that each must be closed.

The archimedean property of R, has not been used to this point, but it is involved in
the discussion which follows and in succeeding sections.

Suppose now that the process {X;} in L7 depends continuously on A, or what is equi-
valent, merely that the inner product (X,, X;) is a continuous function of 1 in the ordinary
sense. This is the kind of process treated by Hanner [8], Karhunen [13], Wiener [19], and
others, and complete results have been obtained for the questions we are considering [7].
In order that the process be of this type it is necessary and sufficient (as one proves without
difficulty) that u be supported by B, so that in particular u is singular with respect to o.
If ¢, denotes linear measure on B, then u has a decomposition

du =wdo, + du,, (36)
“ 1 tou

where now w is summable for do; and dyu, is singular with respect to ¢, but carried on B,.

The process is deterministic if and only if

o0

log w (x) o
f1+x2 doy (x)= . (37)

— 0

If the integral in (37) is finite, the remote past is the subspace of L2 consisting of functions
which vanish almost everywhere for do,.

This result can be proved from the corresponding theorem about discrete processes
by a change of variable ([1], p. 263), or it can be obtained with a certain complication by
the methods of [10]. The analogy with discrete processes is pressed further and more deeply

by Hanner. But we shall not be concerned with processes of this type, whose innovation
13 — 61173060. Acta mathematica. 106. Imprimé le 20 décembre 1961.
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components always vanish in the Wold decomposition. Instead we consider the other
extreme type: processes with absolutely continuous spectral measures, which cannot

possibly be continuous.

5. Cauchy measures

A certain family of measures on B is intimately connected with the problems we are
studying, as Malliavin pointed out to us, and this section sets down their definition and
relevant properties.

For each r (0 <r < 1) consider the measure u, on B whose Fourier-Stieltjes transform
is

fur(A) =1, (38)
The function on the right side is positive definite on R, so u, exists on B and is non-negative,
with total mass one. But the transform is continuous in the ordinary topology of the line,
and one proves easily that this is the case if and only if the measure is carried on B,.
Therefore each yu, is carried on B, and hence is singular with respect to ¢. These properties

are also easy to verify:

U3 lls = ey 1M =03 lim u, =94, (39)
r—>0 r->1

where in the last relations the limit refers to the weak star-topology of measures, and
4 is the unit mass at the identity of B.

The explicit form of u, is easy to give, although it is not necessary to our work; du,
is the measure
7Z(i/—2ii::y7), (r=e™"), (40)
where £ is the linear coordinate on B,. This is the classical Cauchy kernel, and therefore we
call the u, Cauchy measures.

Every segment of B, carries part of the mass of u,, and since B, is dense in B, it
follows that u, assigns positive measure to every non-empty open set in B. Much more
than this simple statement is true, and the next three lemmas give further essential in-

formation.

Lemma 3. If g is the characteristic funclion of a set of positive measure in B, then

B ¥g > 0 almost everywhere for a.
This result is surely not new, but we have found it with Malliavin. If it were false,

then for a certain value of r and a certain function ¢ we should have g,%g =0 on a set of

positive measure, whose characteristic function we call A. Let &' (x) = h(— 2); then
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0 = [h(@)u,*g () do () = u,Xg*h (0). (41)

Now g*PF’ is a continuous non-negative function, and we know that . has positive mass in

every non-empty open set. Therefore (41) is only possible if g%A’ vanishes identically. But
Jgxt' do = [gdo- [N do +0. (42)

This contradiction proves that pu, g is positive almost everywhere.

LeMma 4. There exists a set F having positive measure in B with characteristic function
g such that p, g 1is not essentially bounded from zero.

Since B, has measure zero, there is an open set G of small measure containing B,.
Moreover a translate G of G by the element x of B still contains virtually all the mass of
44, provided z is close to the identity, because nearly all the mass of u, is carried on a com-
pact segment of B which remains in @ under small translations. Therefore the characteristic

function g of F, the negative of the complement of @, has the required property.

LeMMA 5. There is a non-negative function w defined on B such that
fudo' =o0; p¥u<oo ae. (0<r<l) 43y
Let ¢, , and s satisfy the relations
0<t<r<l; t=rs. (44)

We require the set F and the function ¢ of Lemma 4, with the observation that they were
constructed independent of . Since py;%g¢ is not bounded from zero we can find a non-

negative function » which is not summable but which satisfies
[u*g (@) u(— w)da (x) =pH*g*u(0) <oo. (45)
Using the associativity of the convolution operation a second time, this is equivalent to
Juu(— z)ydo(z) < oo, (46)
F

so that u,*wu(— ) is finite almost everywhere on F. We conclude that g,*%wu is finite almost

everywhere on B from the representation,
U FU = p (g, %u), (47)

because by Lemma 3 convolution with yu, would detect the set where u,%u is infinite with

probability one. Since r was arbitrary, the lemma is proved.
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Actually the relation
P XU < oo a.e. (48)

for a non-negative function w is true or false simultaneously for all values of r, and it is
impossible for the convolution to converge on a set of positive measure unless it converges
almost everywhere. These facts can be derived from (40), but they are contained in our later
results, and we shall not prove them here.

The importance of the Cauchy measures lies in this property:

MarrLiaviN's TusorREM. For any function f of H* we have
log |u.*f| <u,*log|f| a.e. (49)

Of course this is a generalization of the classical fact that a subharmonic function in the
unit circle is dominated by the Poisson integral of its boundary values. In our general
context, however, the functions u,%f do not need to be continuous, and they exist only as
summable functions almost everywhere. The theorem of Malliavin is closely related to this
result which we shall use as well, and which was found independently for the class of

double power series by M. Rosenblum:

THEOREM 4. If f is an ouler function in H', then (49) is almost everywhere equality.
The proof of these theorems belongs to the function-theoretic part of this work, and
is postponed until section seven. We proceed meanwhile to the solution of the prediction

problem which is the main result of these sections.

6. The prediction problem
THEOREM 5. For every summable non-negative weight function w the process {¥} in
I3, is pure. It is of type one if
flog wdo > —o0; (50)
of type two if (50) fails but
tr¥logw>—o0 ae (0<r<l); (51)
and of type three if (51) fails, when necessarily
U, ¥logw=—ocoae. (0<r<l). (52)

The proof will take the rest of this section, and for the sake of clarity we shall break
it into a number of simple lemmas.

Let d(t) denote the distance in L% from X, to M,, the manifold spanned by linear
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combinations of ¥; with 4 >7. For &> 0, d,(z) is the corresponding distance in L3, , where
w, = max {w, ). These distances of course are zero for v < 0; and we know [10] that {0) >0
if and only if (50) holds.

The condition d(0) >0 evidently means that the process has non-trivial innovation
component, but it is easy to go further and show that the process is purely of type one.
Consider §,, the invariant subspace spanned by the innovation elements y, in L%, Since:

these elements are mutually orthogonal, we have from (15)
[hlyo|Pwda =0 (2+0), (53)

so that y, has constant modulus different from zero. Therefore in the decomposition (16}
only e; can be different from the null function, and the process is pure as we asserted.
Now in the rest of the proof we may assume that (50) fails, and the process has no

innovation component.

Levma 6. If d(z) =0 for some 1 > 0, then the same is true for every 7.
For if X, belongs to M, for some 7 > 0, then more generally X; belongs to ;. for
every A. It follows that all the subspaces M, are identical, and so X, is in M, for every 7.

Lemma 7. d(7) =lim d,(t) for each v > 0.
e>0

We have for each ¢

d (v =int[[1 + 2, PPwd o <inf[[1 + 1, P[*w.do, (54)
P P

where P ranges over all analytic trigonometric polynomials (6) with mean value zero.
Taking the limit in ¢ we find d(7) < lim d, (7).
Conversely, for each fixed P

N+ 2. PPwdo=lim[|1+1, PPw.do>limd, (v)°. (55)

Taking the infimum over P gives d (1) > lim d,(7), as we had to show.

For each ¢, let g, be the outer function in H? such that
l9:|2=w., [g.da>0. (56)

(This is the representation obtained in Theorem 3 of [10].) We have

ge@)~Za.Wh@; 2laWf=flgfdo=[wdo. (57)
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Lemma 8. In order for the process to be of type three it is necessary and sufficient that

lim 3 |a, (1)]?=0 (58)

e=>0 0Ly

for every positive 1. This is the case if the condition holds for a single value of 7.

It is obvious that the process is of type three just if d(7) = 0 for all 7, or by Lemma 6,
even for a single 7. We shall show that the sum in (58) is exactly d,(7)2 Therefore, using
Lemma 7, the limit is d(r), and (58) is necessary and sufficient for the process to be deter-
ministie.

Since g, is outer, functions of the form Pg, where P is an analytic trigonometric poly-
nomial are dense in H2. We conclude easily that functions ¥, Pg., where now P is analytic
‘with mean value zero and 7 is fixed, can approximate any function in H? whose coefficients

vanish for indices less than or equal to 7. In particular, if we approximate the function
—]Z e (A) 23 (59)
then in the expansion

(1+2,P)g. ~ 2 a. (Z)Xﬁ-leg (M) X (60)

0A<y

the second sum has norm as small as we please. Therefore

ds(r)2=ir113ff]1+Z,P|2|g512d0= la. (2) 2 (61)

0<ALT

as we had to prove.

LeMmMa 9. In order for (58) to hold it is necessary and sufficient that p, %y, tend to zero
in the norm of H? as ¢ tends to 0, for each r (0 <r < 1). It suffices that this be true for a single
value of r.

The lemma is obvious from the equality
et gl P =2 | e (2) |, (62)
together with the fact that 2la.(2)]? (63)
is uniformly bounded as ¢ tends to 0.

LemMma 10. u,*g, tends to zero in H? if and only if p,*log w = — oo almost everywhere.

From Theorem 4 we have almost everywhere
log [u,*g.|* = p,*log w,, (64)

and so “,ur*gs|2d0 =fexp (u,*log wy)do. (65)
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The left side is finite, so the integrand on the right is at any rate summable; since 1w,
decreases to w the lemma follows.

From Lemmas 8, 9 and 10 we see that the process is deterministic if and only if (52)
holds; and (52) is true for every r if it holds for o single one. Therefore the process has non-
trivial evanescent component just if (52) fails. We assert that in this case (51) holds. Indeed,
suppose for some 7 there is a set of positive measure on which u,*log w is finite. We know,
from (47) as before, that if this convolution is infinite on a set of positive measure, then
ui*log w= —oco almost everywhere for each t<r, and hence for all ¢, contrary to hypo-
thesis. Therefore (51) is the only alternative to (52).

If (51) holds, the process has some evanescent component. We complete the proof of
the theorem by showing that the canonical process in L3, is pure, so that it must be purely

evanescent.

Levma 11. If w vanishes on a set of positive measure, the process is deterministic.

Indeed, if w vanishes on a set of positive measure, then by Lemma 3 (52) holds.

(This result was proved in a direct way in our conversation with Malliavin, before we
knew the criterion (52) for determinacy.)

Now suppose the canonical process in I3, has both remote past and evanescent compo- '

nent. By the decomposition theorem we have
W =Wy +wy, Wy wy=0, (66)

where the process {¥;} in L, is purely evanescent, and that in L3, is deterministic. But
according to (66), w, must vanish on a set of positive measure. Lemma 11 asserts that this
is impossible. Therefore one or the other component in (66) must have been null. This
shows that the canonical process in L2 is pure, and the theorem is completely proved.

It is important to remark, finally, that conditions (50) and (51) really are different,
or in other words that the canonical process in L2, can be evanescent. If log w is summable,
s0 that (50) holds, then indeed (51) is true. To show that the converse implication is false,
let w = e—* where u is the function of Lemma 5. Then w is summable and satisfies (51) but
not (50).

Now we leave prediction theory and turn to the study of analytic functions on 5.

7. Outer functions

In order to prove Malliavin’s Theorem and Theorem 4, the most natural method (and
the one followed by Malliavin) is to refer the problem to the complex plane by means of

the canonical image B, of the line in B. This technique (which has been conspicuously
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exploited by Bochner) gives complete results about B at least in principle, because B can
be constructed directly out of R so that R becomes B,. But the details of proof by this
method are often formidable, and we prefer to present an intrinsic function theory on
B which furnishes proofs which seem to us closer to the subject matter. In this section we
offer proofs of Malliavin’s Theorem and Theorem 4 in this spirit. First we have to extend
Beurling’s notion of outer function further than we did in [10], of which the results were
summarized in section two.

Let » and v be real functions defined on B. We say that v is conjugate to u if u + v
is analytic in some suitably general sense, and » has mean value zero. If u is in L2, there is
exactly one function » in L? having mean value zero such that -+ v belongs to H2; but if
% is merely summable, there may be no summable function v such that « +iv is in H".
We do have this weaker result [9]: for 0 <p <1 there exists a constant K, such that

([|v]?do)” < K,[|u|do (67)

for every trigonometric polynomial « with conjugate v. If a sequence {u,} of trigonometric
polynomials converges to a function # in the metric of L, then the conjugate functions
form a fundamental sequence in the metric space L” for each p <1 and so converge in
measure to a unique limit function ». By definition v is the function conjugate to «. It will
be important in the proofs to follow that v is besides the poinfwise limit almost everywhere
of a suitably chosen subsequence of {v,}.

The next theorem gives a characterization of outer functions which is really an abstract

version of the integral representation formula of Beurling.

THEOREM 6. If u is a real function such that u and ¢* are summable, then ¢*** (where
v is conjugate to u) is an outer funciion in H'. Conversely, if a summable outer function f
has the representation e*** with w and v real, then u is summable with e* and v is equal to its
conjugate modulo 27, aside from an additive constant.

Proof. Suppose that % and e¢* are summable and » is conjugate to 4. We have to show
that f =e**" belongs to H!, and then that it is outer. First suppose that » (and so also v)
are trigonometric polynomials. The power series expansion for the exponential is uniformly
convergent, and the analyticity of f is therefore obvious. The power series also shows
that (7) holds:

Jrao=3 [l g SLI [ i) o] =efcrmer— fomiee  (gg)

More generally, if both « and v are bounded, % + ¢v can be approximated boundedly by

trigonometric polynomials, and the two properties of f persist in the limit.
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Two more limit processes are required to treat the general case, and they use the
result about conjugate functions just stated. Suppose % is bounded, but not necessarily ».
Choose trigonometric polynomials %, converging boundedly to » and such that the conjugate

trigonometric polynomials v, tend to v almost everywhere. Then
,“ g4t g “n'*'“’nldo- (69)

tends to zero by the theorem on dominated convergence. As the limit in norm of elements

of H1, f itself belongs to H'. Moreover in the equation
fundcr—logfe”"””n do (70)

which expresses the fact that each function e¥* = is outer, we can pass to the limit on both
sides to obtain the same result for f.

Finally, for an unbounded function u define

% where —n<u<n
Uy = 7 where u>n (71)
—n  where U< —n.

Once more we can assume that the conjugate functions v, tend to v pointwise, and the theorem
on dominated convergence shows that the norm in (69) tends to zero, and that the equation
(70) is valid in the limit.

Conversely, let f = ¢*** be an outer function in H'. We know from (7) that » is sum-
mable; let v’ be its conjugate function. The part of our theorem already proved states that
g =e“*"" is analytic and outer. We have to show that outer functions with the same
modulus can differ only by a constant factor.

Set w=|f| =|g|. In Lj, the trigonometric polynomials 1+ P, where P is analytic
with mean value zero, form a convex subset in whose closure there is a unique element

1 + H of minimal norm. We have shown [10] that 1 + H is not the null function, and further

that |1+ H|?w is almost everywhere equal to w = exp (flog wdo). Hence (1 + H)?f and
(1 + H)2g have modulus constant and equal to w.

On the other hand (1 + H)2f is the limit in H! of functions of the form (1 + P)2f, each
of which has mean value equal to the mean value of f. Therefore, using (7), we have the

two relations

L+ H? fl=w; |[1+HPfdo|=|[fdo|=w. (72)

It follows that (1 + H)?f is almost everywhere equal to a constant.
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The same reasoning applies to g, and the new function 1 + H is the same as the old,
because it depends only on w. Therefore (1 + H)2g is almost everywhere constant as well,
and since 1 + H almost never vanishes, f and ¢ differ at most by a constant factor. This
completes the proof of the theorem.

Proof of Theorem 4. The Cauchy measures yu, have the characteristic property
p,%e" = exp (u,*h) (73)

if kb is analytic and suitably restricted. From this formula, (49) with equality follows in a

formal way for the function f = e™:
log | u,*€"| = Re (u,%h) = pu,* Re (h)h = y,*log |e"|. (74)

Unfortunately (73) is not easy to prove as generally as it is true, and it is not generally
enough true to prove our theorem because the right side is not defined when 4 is not sum-
mable, even if e* belongs to H.

Suppose however that % is a trigonometric polynomial. If P and ¢ are any analytic

trigonometric polynomials, then
pr ¥ (PQ) = (1 *P) (4, %Q), (75)

as one sees by comparing coefficients in the Fourier expansions of left and right sides. In
particular, u,%P? = (u,%P)?, with the same equation for higher exponents by induection.

Hence

E:,uﬁeh"= % (Iu,%h)”’

) n! 0 n!

(76)

and this is exactly (73). By (74), then, Theorem 4 holds for outer functions f = e* where A
is any analytic trigonometric polynomial. ‘

According to the characterization of outer functions given by Theorem 6, we have
to prove that

u+iv | _

log | ur%e = ur*logu (77)

for each real function «, summable together with ¥, with conjugate function ». We have
just established this fact if « is a trigonometric polynomial. Now we imitate the approxima-
tion argument used in the proof of Theorem 6 to establish (77) for larger classes of functions.
The details are neither novel nor very tedious, and so we shall not reproduce them.

The relation (77) is a kind of generalization of the defining property (7) of outer func-
tions. If f =e“+® is continuous and bounded from zero, we can let » tend to 0 in (77) and

obtain,

log | fdo| =[log |f|da. (78)
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In the funection theory of the unit circle, where g, is simply the Poisson kernel, the general
form (77) can be obtained from its special case (78) by appropriate conformal transformations
of the interior of the circle. But on B, u, is singular with respect to Haar measure, and the
limiting case » =0 is distinguished from the regular ones r > 0. Therefore some more
complicated device, such as the one used in our proof, must be used to derive (77) from (78).

Proof of Malliavin’s Theorem. Let f belong to HY, and suppose its mean value is different
from zero. Then [10, p. 178] f =gk, where ¢ is outer and % is an analytic function with

constant modulus equal to 1. The result to be proved takes the form
log | u,%(g-h)| <p.*log|g]. (79)

Now (75) is still true, by a standard limit process, if P and @ are replaced by ¢ and %; and

since u, has unit total mass we have
|@®h| <1 ae. (80)
Therefore using Theorem 4 for the outer function g,
log |u,%f| =log |, *g| +log |u,%h| <log|u,*g| =pu,*log|g|. (81)

Thus (79) is proved, under the assumption that the mean value of f is not zero.
If the integral of f does vanish, we have (49) anyway for f + ¢ in place of f. Fatou’s

Lemma shows that the inequality is preserved in the limit.

8. Analytic functions

TaEOREM 7. If o function f in H' vanishes on a set of positive measure wn B, or indeed
if merely
pr¥log |f| =—o ae., (82)

then f vanishes identically. Otherwise under either condition

[tdo =0 (83)
or 1 18 continuous (84)
we have flog |fldo > —oo. (85)

Nevertheless there are non-null functions in H” for which (85) is false. More generally, if w

45 @ non-negative summable function such that

B X¥log w > —co  a.e. (86)
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then there is some f in H satisfying

0<[f|<w ae. (87)

This theorem contains most of what we know about analytic functions on B. The
proof may be clearer if we comment on its various statements before we begin. On the
circle group (85) holds for non-null analytic functions subject to very mild growth condi-
tions inside the circle. The fact that (85) follows from (83) in general is an elementary
result from [10]; the same conclusion from (84) was proved by Arens [3] in two ways, but
neither one is easy. We shall give a new proof of Arens’ Theorem which relates it to the
other statements of Theorem 7. '

In spite of these positive results, (85) is not true in general even for analytic functions
which are bounded. This fact follows from the last assertion of the theorem if we take w
to be bounded, and satisfy (86) but not

Jlog wdo > — eo. (88)

The existence of such weight functions is asserted by Lemma 5.

If we ask only that the counterexample belong to H2, then the existence of functions
violating (85) follows easily from Theorem 5, and this simple proof is given before the
more complicated discussion of (87).

Proof of Theorem 7. Suppose f belongs to H! but satisfies (82); this will be the case in
particular if f vanishes on a set of positive measure, by Lemma 3. From Malliavin’s Ine-
quality

— oo =p,*log |f| > log |p,*f]. (89)

Therefore p,>f vanishes identically. But the Fourier-Stieltjes coefficients (38) of u, vanish
nowhere, so that f must itself be the null function, as we had to prove.

To prove Arens’ Theorem, let f be a continuous analytic function which is not every-
where zero. Then u,%f is continuous and not identically zero. Find an open set £ on which
U, %f is bounded from zero, and construct a continuous function % such that A (— z) is non-

negative everywhere, positive somewhere on E, and zero outside £. Then we have
hxlog | u,%f|(0) > — oo, (90)
Using Malliavin’s Inequality and the associativity of convolution,
(h*u,)*log | ](0) = kxlog | u,%f|(0) > — oo. (91)

But h*p, is a continuous non-negative function, which moreover can never vanish, because

h is non-negative and y, has mass in every open set. Hence Ay, =27 >0 on B, and (91)
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implies
nflog |[f|do > —co. (92)

Our proof to this point was found in conversation with Malliavin, The rest of the
proof depends on Theorem 35, and has a different character.

We are to construct an analytic function f not identically zero but such that (85) is
false. For this purpose find a weight function w such that (86) holds but not (88); w can
moreover be taken bounded. By Theorem 5 there is a non-null element g orthogonal to
m, in L2:

[tigwde =0 (all 2>0), (93)

so that f =gw is summable and analytic. Define
W =|g|2w, (94)
an element of L!; then

lg| = (W/w)™  [f|=|g|w=(Ww)" (95)

From (95) we see that f is square-summable (because w is bounded), and so belongs to H?,

and we have
1

Jloglf|do=§‘flog Wdo—l—%flog wdo. (96)

The first term on the right side is finite or negatively infinite, and by the choice of w the

second term is — oo. Hence the left side diverges also, and f has the properties sought.

We come to the final assertion of the theorem. Suppose that w satisfies (86); once more

by Theorem 5 we can find ¢ in L% not identically zero such that (93) holds. Then |g|w"
is in 12, and so

U =min (1, |g|~tw") (97)

satisfies [log Ude > — co. (98)

Using Theorem 6, find % in H* so that U =|h| almost everywhere. (We do not need the
fact that A can be chosen to be outer.) Now gw belongs to H! and & to H*, so the product
hgw belongs to H!, and evidently

|[hw| =min (|g|w, w')<w". (99)
Neither analytic factor of hgw vanishes on a set of positive measure, and so this function

is a non-null element of H2, Therefore f = (hgw)? belongs to H! and satisfies (87). All parts

of the theorem have now been proved.
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We do not know whether (87) can be improved to
[fl=w ae.,; (100)

this question is related to interesting problems with prediction-theoretic import which lie
deeper than Theorem 5. A result we are publishing elsewhere {11] can be mentioned in

this connection, although it does not directly extend our knowledge about analytic functions.

9. Moving averages

We come now to the second part of the paper, having to do with multivariate stochastic
processes and the related theory of matrix-valued functions. This section is devoted to
the notion of moving average, and more generally to the prediction-theoretic point of view.
The results and proofs are not new, and we shall only sketch the development; a complete
exposition has been given by Masani and Wiener [16]. Beginning with the next section it
will be essential that we study the group of integers, rather than ordered groups of more
general type to which the matrix theory of our first paper applied.

First we set down the basic definitions. Functions are defined now on the unit circle,
or more rarely inside it. The measure da/2x on (0, 27) is denoted by do. An integer N is
given and fixed, and reference is usually made to complex Euclidean space of N dimensions.
Matrices with NV columns operate on the column vectors of this space by multiplication
on the left. The trace function is normalized so that I, the identity matrix of any order,
has trace 1. We say that two matrices have the same shape if they have the same number
of rows and the same number of columns.

We consider functions F defined on the circle and taking matrices of various shapes
as values:

F(e") = (F(€7)). (101)
The entries F;, are always measurable complex scalar functions. If F and @ are constant

matrices, their inner product is by definition
(F, Q) =1tr (FG*), (102)

meaningful whenever F and G have the same shape. This definition is extended to matrix
functions by integration:
(F, G) = [tr (FG*)do. (103)

If ¥ and G have p rows, then evidently

(F,6)=p'> [FyGudo. (104)
Js
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By the range of ¥ we mean the linear set of column vectors F X, where X ranges
over the constant column vectors. The range of F(e®®) generally depends on e“, and so
F determines a mapping from the circle to the class of subspaces of the given Euclidean
space. Such a mapping will be called a range function, and much is to be said about range
functions hereafter.

If the range of F is orthogonal to the range of G at each point, then (F, G) = 0. Indeed, for

any constant vectors X and Y we have
0=(FX,GY)=(G*FX, Y) (105)
therefore G* F = 0, and
0 = N[tr (G* F)do = p[tr (FG*)do = p(F, G). (106)

From (104) we see that (F, F) = || F[? is finite if and only if each entry Fy; is square-
summable. The functions F with || F | = 0 form a subspace of those with finite norm, and the
Hilbert space L2 is obtained as for scalar functions by identifying F and G if F —G is a
null funetion.

Actually we have a space L2 for matrices of each shape, and the number of rows and
columns must be given in each context.

For functions of any shape belonging to L? (or merely having summable entries) we

have the notions of Fourier coefficient and Fourier series:
F, =fF(e”) e " do(x); F()~3 F e, (107)

A function and its coefficients are related by the Parseval equality:

P[P =2tr (F, F7). (108)

Each space L2 contains a distinguished subspace H2? consisting of those functions F
such that F, =0 for n =—1, —2.... A function F in H2 admits an analytic extension to

the interior of the circle:

F @) =n§; P2 (109)

Our method systematically avoids mention of such extensions, but we shall apply the word
analytic to functions in H? without misunderstanding.

Now let M be a square matrix of order N whose entries are complex Borel measures
My, and suppose that M is positive semi-definite in the sense that M (F) is a positive semi-
definite matrix for each Borel set E. For continuous functions, at least, we can define a

new inner product
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(F,G)u=[tr (F d M G¥) (110)

and associated norm || ¥|[,,. We identify funections differing by a null function, and complete
the space so obtained. Then we have a Hilbert space L?(M) whose elements indeed can be
represented as matrix functions; but F and G may represent the same element of L2 (M)
even if their entries are quite different, unless M is a measure of particular type. In general
the elements of the space have no Fourier series. It is necessary to specify the number of
rows in the matrix of a function in L2(M), but the number of columns can only be N if
(110) is to have meaning.

A multivariate stationary process is a family of N stationary processes {X3}, ..., {X7}
in the same Hilbert space, depending (for our purposes) on the integer parameter n, and

mutually stationarily correlated:

(Xh, X¥) =0 (m—n) (G, k=1,...,N). (111)

(The mner product refers to the Hilbert space of the processes.) There is a positive semi-
definite matrix-valued measure M with component measures My (5, k=1, ..., N) such
that

o (n) = [ e ™ d My, (). (112)

We shall construct an isomorphic process in L2(M). Let I’ be the jth row of the
identity matrix I of order N (=1, ..., N). Then X, =e ™* I’ is a function belonging
to L2 (M) formed with row vectors, and for each §, k, m, and » we have the inner product

relations

(X, XY= [P DA M I** = [ ™™ d My () = o (m — n) = (X, X5).  (113)

If we map X/, onto X7, and extend the correspondence in a linear way, we obtain by (113)
a unitary operator which carries the smallest subspace containing all the X%, onto L2 (M),
formed with row vectors. Obviously every inner product relation among the X7, holds as
well for the X7,. Therefore we abandon the distinction between X and X , and study the
process in L2(M). This process is called the canonical process in that space, to distinguish
it from other processes going on in the same space.

The canonical process in L2 (M) consists of the N row vectors
™[ (j=1,...,N) (114)

depending on the variable ¢’ and further on the integer parameter m. If we write the row

vectors together we obtain the matrix function
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X, (%) =e "], (115)

In some problems it is convenient to study this single matrix function in place of the N
vector functions (114).

Conversely, suppose that X, is a square matrix function belonging to L2 (M) for each
integer m, whose rows are X}, (=1, ..., N). In order for its rows to form a multivariate
stationary process in the space L2 (M) of row vectors, it is necessary and sufficient according
to (111) that

(X, XE)32 = 031 (m, 1) (116)

should depend on m and n only through their difference m — n. Of course the isomorphic
canonical process may lie in a different measure space.

If the correlation matrix g is the identity matrix for » =0 and zero otherwise, the
process is said to be orthonormal. Then every pair of vectors X7, and X} is orthogonal unless
j =k and m = n.

Suppose X = {X7,} (j =1, ..., N) is a multivariate process, and 4 is a matrix function
of p rows and N columns in L2 Denote the Fourier coefficients of 4 by 4,, = (4%). Then
we can define a new process ¥ = {Y},} (j=1, ..., p) by the formula (convergence being
assumed)

Yip=SA*Xt , (=0,+1,...; k=1,...,N). (117)

i,k
If X is given as a matrix function in L? (M), this can be written more concisely as

where 4; and X,,_; are combined by ordinary matrix multiplication, or still more briefly
as
Y=4%X. (119)
Y is called a moving average of X.
If A and B are two functions of proper shapes in 12, it is easy to see (convergence
questions aside) that
A*(B*X)=(AB)*X. (120)

The case when X is orthonormal is particularly important. Then (117) is always con-
vergent in norm, and the covariance matrix M of ¥ = 4% X is the square matrix of order
p given by

dM =AA*do = Wdo. (121)

If A belongs to H? instead of merely to 12, we call Y a one-sided moving average of X,

and then W has the special form A4 4* for an analytic function 4. Conversely, if a process
14 — 61173060. Acta mathematica. 106. Imprimé le 20 décembre 1961.
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Y has covariance measure (121), then Y and A%X (where X is any orthonormal process)
are both isomorphic to the canonical process in L2(W), and hence to each other.

We should like to say more exactly that Y is a moving average in its own Hilbert
space, but for that we have to choose a particular function A4 satisfying (121) and use a
more complicated argument. For each integer », let M, be the smallest closed manifold

containing all the elements Y}, (m <n;j=1,..., p). M, is known familiarly as the past,
and m.=Nm, (122)

as the remote past. (The manifolds M, now increase with n, whereas in the first part of the
paper they decreased. The change results from the choice of sign in (114). The convention
now adopted is better from the prediction-theoretic point of view.)

We say that ¥ has no remote past if, more accurately, the remote past consists of
the null element alone. It is almost immediate that Y has no remote past if its covariance
measure has the form (121), with A in H2 having any number of columns. We shall show
conversely that Y is a moving average, and of a particular type, if it has no remote past.

For each = let R, be the orthogonal complement of M, ; in M,. The subspaces R,

are mutually perpendicular, and satisfy
Rut1=€¢ "Ry (123)
Moreover since Y has no remote past, they span together the same manifold as all the 7,.

The dimension ¢ of R, is the rank of the process, evidently at most equal to p. We choose
an orthonormal basis {X{} (j =1, ..., ¢) for R,, and associated bases

X =e "X} (124)
for the other spaces R,. Then {XJ,} is an orthonormal process having the same past, and
the same innovation manifolds R,, as Y itself. Writing Y/, as a sum of the vectors X7
we obtain the representation (117), where the coefficients 4}* are independent of m because
Y is stationary, and because X satisfies (124). The sum contains only terms with ¢ = 0, so
that Y is a one-sided moving average of X.

The result whose proof has been outlined is that these conditions are egquivalent: the
process Y 1is a moving average of an orthonormal process; the covariance measure of Y has the
form (121), where A is in H? with (necessarily) p rows but any number of columns; the remote
past of Y is null.

This interesting function-theoretic corollary can be mentioned: ¢f W has the form A A*
for some A in H2 with any number of columns, then A can be replaced by an analytic function
B having at most as many columns as rows.

It will be profitable now to leave the prediction model and study analytic functions

directly.
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10. Outer functions

DEFiNiTION. 4 function A in H? (with p rows and N columns) is a left-outer function
if the convex set of functions
(I+P)4 (125)

where I is the identity matrix of order p and P ranges over all trigonometric polynomials of
order p having the form
P(¢")=3 Py (126)

n>0

contains a constant matriz in its closure.
Evidently the constant matrix can only be the constant term of 4.

A right-outer function is defined in the same way, replacing the functions (125) by

A(I+P), (127)

where I and P are square of order N. The properties of one kind of outer function can be
deduced from those of the other by this observation, whose proof is very simple: a function
A in H? with coefficients A, is left-outer if and only if A is right-outer, where A is the analytic
function defined by

A=A (e =~ AL ™", (128)

[

In the last section we obtained a representation for a process ¥ without remote past
as a one-sided moving average 4 %X in a particular way, with the result that the innovation
spaces R, for the process ¥ are identical with the corresponding spaces for X. This property
implies that the analytic function 4 whose coefficients are the matrices 4, of the moving
average is left-outer. We pause to show why this fact is so. Let Y be a canonical process of
N vectors with rank ¢; then X is an orthonormal process of ¢ vectors, and 4 belongs to
H? with N rows and ¢ columns. For any square analytic trigonometric polynomial @ of
order N, we have by (120)

(@%Y), = [(Q4)%X],. (129)

The matrix functions which appear on the left, as @ varies, are exactly the matrices whose
rows are linear combinations of vectors Y7, (m <0; j=1, ..., N). Since the past of Y is
the same as the past of X, the matrices on the right are dense in the set of all matrices
whose rows belong to the past of X. But this implies, because X is orthonormal, that the
functions @ 4 are dense in H2. It follows immediately that functions of the form (125) are
dense in the subset of H? containing all functions with the same constant term as A, and

so A is outer.
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TuroREM 8. Suppose A is a square matriz in H2 with non-singular constant coefficient
A,. Then A is left-outer if and only if

flog|detA|da:10g[det 4,]. (130)

It follows that a function A is right-outer if and only if it is left-outer, if 4, is non-
singular, because 4 and A satisfy (130) at the same time.

Proof. The theorem is closely related to Theorem 8 of our first paper, and we shall use
the method developed there. For a fixed matrix B, with determinant 1, and any summable
function W with positive semi-definite values, we consider the convex set in L?(W) obtained
by closing the set of functions B, + P, where P ranges over the trigonometric polynomials
of the form (126). If we denote the unique element of smallest norm in the set by B, + H,

then (B, +~ H) W (B, + H)* is a constant positive semi-definite matrix C. We have moreover
det C =exp f log det Wdo, from (44) of the first paper and the elementary equality

(det C)Y¥ = inf tr [ D C D*], where D varies over constant matrices of determinant 1.

Now take W = AA*, B,= 1. From the definition it follows directly that A is left-
outer if and only if (I + H) A = A,. If this is the case, obviously C = 4,4%; and if (I + H) A4
= A,+ ... is not constant, then € — 4,A§ is positive semi-definite and not 0. Therefore
4 is left-outer if and only if ¢ = 4,4%, and in any case 4,45 < C.

From these facts we have

[ log det (4 A*)do = det €' > det (4,47) (131)

with equality if and only if ' = 4,4%, which is to say if A4 is left-outer. This is equivalent
to the statement of the theorem.

The argument shows incidentally that the generalization of Szegé’s Theorem proved
by Masani and Wiener ([16], I, p. 145) is essentially the same as ours.

Our method of proof suggests that it is possible to view the minimum problem in the
partially ordered system of Hermitian matrix functions, even though this system is not
a lattice, instead of using the trace function to define a norm with scalar values. The proof
just given can be modified to carry out this idea, or one can appeal more directly to the
orthogonality relations (49, 50, 51) of our first paper.

The next two theorems express properties of outer functions which are essential for

our purpose. We state only the version pertaining to left-outer functions.

THEOREM 9. Let A be a left-outer function. Almost everywhere the null-space (')
of A(e'") is equal to the null-space of A, and so in particular is independent of x and has con-

stant dimension.
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Proof. Suppose that B®™ = (I +P™)4 is a sequence of functions of the form (125)
converging to 4, in the norm of L2. The entries of B™ are square-summable scalar functions
which converge to the corresponding constant entries of 4, in the scalar space L2, Choose
a subsequence converging pointwise at each entry for almost all z. If Y is a constant column
vector such that 4 () ¥ = 0 for some ¢’* in the set of convergence, then also B™ (¢*) Y =0
for each % of the subsequence, and so in the limit also 4, Y = 0. Therefore, with the excep-
tion of a set of points having measure zero, N (') is contained in the null-space of 4.

In the other direction, we must show that A4 (¢*) Y = 0 almost everywhere if ¥ is any
constant vector such that 4,Y = 0. Let Z(e'®) be the analytic vector function 4 () Y.
Evidently B™Z will converge in the space L2 of column-vector functions to 4,Y =0;
or what is the same, —P™Z will tend to Z. Assuming that Z is not identically zero, let
p be the smallest positive integer (certainly greater than one) such that e~ ?*Z is not analytic.
(The existence of p depends on the fact that we are dealing with the group of integers.)
By the argument just given, e ***Z is the limit of functions — e ?** P™Z, each of which is
analytic because the analytic trigonometric polynomials P have no constant term. The
limit function must itself be analytic, contrary to assumption, and the contradiction shows
that Z was the null function, as we had to prove. ;

If the left-outer function A4 has non-trivial null-space M, we can restrict A to the
complement of 1 and so obtain a left-outer function with the same range as A but trivial
null-space. It is nearly always convenient to perform this reduction in applications, so that
the outer function maps a fixed domain space onto a variable range space of the same
dimension.

TueorREM 10. Let A be a left-outer function with null-space N. Denote by S the subspace
of H2 obtained by closing the linear set of funclions Q A, where () ranges over all analytic trigono-
metric polynomials. Then S consists exactly of those functions in H2 which vanish on .

Proof. We shall prove the theorem for the case where M is trivial, and the general case
follows easily. By definition, S contains the constant function 4,. Since also § is invariant
under multiplication on the left by analytic trigonometric polynomials, § contains each
function @ 4,. Using the fact that 4, has full rank, it is easy to see that every analytic
trigonometric polynomial of proper shape has this form, so that indeed S coincides with
H2.

CoROLLARY. Let A be a left-outer function in H2, with coefficients 4,. For any non-
negative integer n,

B™ (€)= 4, + 4,6 + ...+ A4, (132)

can be approximated by functions (I +e™+V*Q) A, where Q ranges over all analytic trigono-

metric polynomials.
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For n =0 this is exactly the definition of outer function. In general, each coefficient

A; of A vanishes on H, the null-space of 4, because it is an average of values 4 (¢'¥), each

of which vanishes on #1. Hence both B™ and A — B® vanish on H. The analytic function

etV (4 — B™) can be approximated by functions @ A4, according to the theorem, so
that

A— e T 4 (133)

approximates B®, and this is equivalent to the statement of the corollary.
A scalar outer function is determined by its modulus, up to multiplication by a

eonstant of modulus 1. Our next theorem generalizes this resnlt to matrix functions.

TarEOREM 11. If A and B are left-outer functions in H2 such that A A¥ = B B* almost
everywhere, then there exists a constant unitary matriz U such that B=AU.

Proof. Let S, and Sp denote the subspaces of H? spanned by 4 and B, respectively,
in the manner of Theorem 10. It follows from the hypothesis of this theorem that the map-
ping which carries @ 4 onto @ B establishes a unitary transformation of S 4 onto S 5. Further-
more, A, corresponds to B, under this transformation; for 4, and B, are characterized
by the fact that their norm is minimal in S, and Sp respectively. It follows that @4, and
Q B, correspond, and in particular C' 4, and C B,, if C is any constant matrix. From the

relation

1C Aol =110 Byl (134)

valid for every constant matrix C, the definition (102) implies that 4,45 = By By. I
D is the positive semi-definite square root of this product, we can find constant unitary
matrices T and U such that 4;=DT and B,=DU, or

By = A,(T*T). (135)

Now T*U is a unitary matrix, and 4 (7™ U) is an outer function whose leading coefficient
is the same as that of B. Changing the notation, we shall complete the proof by showing
that left-outer functions 4 and B are identical if they satisfy the hypothesis of the theorem
and have the same constant term.

Let W =AA* = BB*. Find a sequence of trigonometric polynomials P™ of the
form (126) such that (I +P™)A4 converges to A, in H? A standard convexity argument
{10] shows that I + P™ converges in L2(W) to a limit function / + H such that (I + H)4 =
A,. Since A and A4, have the same null-space, this equality implies that I + H is non-
singular on the range of 4. Now the correspondence between S, and Sz which has been
defined carries (I +P™)A onto (I +P%™)B, which therefore converges to (I + H)B =
B, =A4,. As before (I + H) is non-singular on the range of B, and so these two results
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show that 4 = B on the complement of the null-space of 4,. But 4 and B vanish themselves
on the null-space of A4,, so the proof is complete.

Our left-outer functions are identical with the optimal factors of Masani and Wiener,
and their properties are therefore not entirely new. The class of outer functions we introduce

now has not, so far as we know, been considered before.

DEFINITION. 4 function V in 12 (of any shape) is a partial isometry if it preserves
norm as a mapping of the complement of its null-space onto its range.

In order for ¥ to be a partial isometry it is necessary and sufficient that V*V be the
orthogonal projection on the complement of the null-space of V (in the domain space),
and that V V* be the projection on the range of V (in the range space).

To a matrix function 4 we associate the range function § whose value at ™ is the
range of the transformation A4 (). If A belongs to H? (of any shape) we say that $) is
analytic. The principal result of this development, from which the matrix factorization

theorems will be derived, is

TrEOREM 12. Bvery analytic range function is the range of a left-outer partial isometry.

Proof. Let A belong to H? with p rows and N columns, and let §) be its range function.
Then W = A A* is a positive semi-definite matrix function of order p with the same range
function §), and W (¢') maps § (™) onto itself for each ¢’*. We have shown that there is a
left-outer function B such that W = BB*, and B can be chosen to have ¢ columns, where
¢ is the rank of the canonical process in L2(W). The range of B is the same range function
£, and so every analytic range function is the range of a left-outer function. Now we have
to find an outer partial isometry with the same range.

B is of rank ¢ at each point. For otherwise we could restrict B to the complement of
its null-space (which is constant because B is outer) and find an analytic function C with
fewer than ¢ columns such that CC* = W. Then the canonical process in L2(W) would
have rank smaller than ¢, which is false.

Consider now W’ = B*B, a positive semi-definite function of order ¢ and full rank.
We have

W' = BB* =(C(C*, (136)

where C' = B belongs to H? with ¢ rows and p columns. Applying previous results once

more, we can find D with at most ¢ columns so that W’ = D D*; and D can be chosen to

be left-outer. Since W’ has full rank D must have exactly ¢ columns and be of full rank.

Passing backwards,

W' = D*D = B*B. (137)
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Define V =BD, (138)
a transformation from the g-dimensional domain space of B to §. From (137) it is obvious
that V*V is the identity matrix of order ¢. Therefore V V* is the identity when it acts on

the variable subspace §; in the complement of §), where B* is zero, V* = (ﬁ—l)*B* and
so also ¥ V* vanishes. Therefore V is a partial isometry whose range at €' is § (e™®).

Moreover V is analytic. Indeed, V D = B, where D is right-outer (and left-outer by
Theorem 8, but we do not need that fact) and B is analytic. By Theorem 10, rephrased
for right-outer functions, DQ ranges over a dense subset of H? as @ varies over the analytic
trigonometric polynomials. If D@ approximates I, then B approximates ¥, which
consequently must be analytie.

It is not quite easy to prove that V is left-outer, although that is true, but the difficulty
can be avoided. Since V is analytic, we can write V V* as UU*, where U is left-outer
with ¢ columns (because the range of U U* has dimension ¢); and obviously U* U is the
identity of order g. Therefore U is a left-outer partial isometry whose range is §, and

this completes the proof of the theorem.

11. Factorization theorems

There are two kinds of factorization theorems in prediction theory. The first kind
expresses a positive function (or a positive definite matrix function) as a product |4 |2
or A A* (for scalar and matrix functions, respectively), where A is analytic. The definitive
theorem of this type for scalar functions was proved by Szegé [18]. Much later Wiener
called attention in his writings on prediction theory to the importance of this factorization
for the subject [19], and he began the search for extensions to matrix functions [20].

The second kind of factorization theorem has its origin in a representation theorem of
Nevanlinna, but really took shape in the well-known paper of Beurling [6]. Now an analytic
function 4 is given and is to be written as a product of simpler factors, which since Beurling
are called inner factors and outer factors. Lax [14] has extended Beurling’s Theorem to
matrix funetions, giving suitable generalizations of inner and outer functions.

In our first paper we derived again the Wiener Theorem of first kind, and showed
how it leads to a theorem of the second kind, although the opposite deduction has not been
made. Our method was limited to functions of full rank. Now we shall apply the function-
theoretic results obtained in the last pages to reduce the first factorization problem to the
same problem for functions of full rank. Our result, Theorem 13, is new. We shall also
obtain Lax’s factorization of the second kind in a more precise form made possible by

our analysis of outer functions.
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TaEOREM 13. Let W be a positive semi-definite matriz function with summable entries.
In order for W to have the form A A* for some function A in H2 it is necessary and sufficient

that the range § of W be an analytic range function, and that

[log AWdo > — oo, (139)

where AW 1s the determinant of W as a transformation on its range.

Proof. The necessity of the first condition is obvious. Suppose then that W = .4 4%;
we have shown that 4 can be chosen to be left-outer with trivial null-space, and further
to have the special form V B, where V is a left-outer partial isometry mapping a fixed space
of q dimensions onto the range $ of W, and B (previously called D) is an outer function
of order ¢ and full rank. We have then

log AW =log det (B B*), (140)

whose integral is finite by Theorem 8. (We use the fact that B, is non-singular if B is outer
and of full rank.) Therefore the necessity of (139) is established.

Now assume the conditions of the theorem are satisfied. Let V be the left-outer partial
isometry which maps a fixed space of ¢ dimensions onto the range of W. Then VWV

is a positive semi-definite operator in g-space, and by (139)
[log det (V*W V)do > — oo, (141)

Therefore the factorization theorem for functions of full rank [10, 20] shows that V* WV
has the form B B*, for some analytic (in fact outer) function B of order ¢ and full rank.
We conclude that W = (V B)(V B)*, as we had to prove.

Our factorization theorem of the second kind is this:

TurorEM 14. Each function A in H2 (with N rows and p columns) has a representation
VBU, where V is a left-outer partial isometry, U is a right-outer partial isometry, and B is
a non-singular square analytic function of order q equal to the rank of A. Every other such
factorization has the form (V T)(T* BR)(R*U) for some constant unitary matrices T and R.

Proof. Find left-outer partial isometries V and U having the same range as 4 and 4,
respectively. These functions can be chosen to have ¢ columns, but not fewer. Then U
isright-outer, and it annijhilates the same subspace as 4 at each point. If we set B = V* 4 U*,
then V BU = 4. Indeed, this fact is obvious on the null-space of 4, where U vanishes as
well; and on the complement of that space it follows from the definition of B. We have to

show now that B is analytic.
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Because V and U are outer in their respective senses it follows that VB U, is analytic,
and so also (Vg V) B(U,Ug). Now V has trivial null-space, so that Theorem 9 implies that
VsV, is non-singular. The same holds for U,U§. Therefore we can cancel the constant
factors to conclude that B is analytic.

The unicity of the representation is a consequence of Theorem 11.

The theorem just proved exhibits an arbitrary function 4 in H? as a product of outer
functions with a kernel B, which is an arbitrary square analytic function of full rank. The ‘
structure of kernels has been studied before. We can, however, write down the main

result ([10, p. 195; 14] easily, and we include it for completeness.

DEFINITION. An inner function is an analytic function whose values are unitary
matrices.
By definition, an inner function is square and of full rank. Theorem 11 implies that a

function which is both inner and outer is constant.

THEOREM 15. Each function A which is square and of full rank in H? has the form
C D, where C is outer and D is inner.

Proof. There is an outer function € such that CC* = A4 A* Let D=C-14. Then
A = C D as required, and we only have to prove that D is inner. Evidently

DD*=C144%(C*1=1, (142)

so that D is unitary. Each function Q4 =QC D (where @ is an analytic trigonometric
polynomial} is analytic; if QC approximates the identity, which is possible because C is
outer, then @4 approximates D at least in the norm of H', so that D is analytic. This

completes the proof.

12. Analytic range functions

Theorem 13 suggests the importance of characterizing in some independent way
those range functions § which are analytic. We have no such characterization, but in
this section we present further results on left-outer partial isometries and their range fune-

tions.

THEOREM 16. Let 4 belong to H2 with N rows and p columns, and have rank p. Let V

be the left-outer partial isometry with p columns onto the range of A. Then we have
[ log det (4* A)do > log det (A5 A,) —log det (V3 V) (143)

with equality if and only if A is left-outer.
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Proof. The null-space of A is trivial, and therefore the factor U does not appear in
the representation for 4 given by Theorem 14. We have then 4 = V B, where B is square,
with order p and full rank. Since V is a partial isometry, 4* 4 = B* B, and

log det (4* A)do =| log det (B* B)do > log det (B B,)
(
=log det (4§ A,) —log det (V5 V,). (144)

(The inequality is valid for square analytic functions of full rank [10], and the last equality
holds because A, = VB,.) Now 4 is outer if and only if B is outer; and the inequality of
(144) becomes equality precisely in that case, by Theorem 8. This proves the theorem.
Theorem 16 is a generalization of Theorem 8 to singular analytic functions. The

quantity
—d =logdet (V§V,) (145)

is negative unless V is constant, because
1=[tr (V*V)do =3 tr (Vi V,), (146)
and by the inequality for the geometric and arithmetic means
[det (VEV)]™ <tr (VEV,). (147)

Thus perhaps d measures the deviation of the range of V from constancy. This idea
finds content in the following result, in which however the trace function appears instead

of the determinant:
TarorEM 17. Let § be an analytic range function. Then

inf|[I—A|2=1—tr (V,V3), (148)
A

where I is the identity of order N, V is the left-outer partial isometry with range § and trivial
null-space, and A ranges over the square functions of H? of order N having range in §).
Proof. Suppose the dimension of § is p, so that ¥ has p columns. Then every function
A with range in §) has the form V B, where B belongs to H2 with p rows and N columns.
Let us write I = V V* +J, where ¥ V* is the orthogonal projection on §, and J the pro-
jection on the orthogonal complement of §. Since the range of V V* — 4 is orthogonal to
that of J,
|I—A)R=VV*—VBJ+|J|2 (149)

Now J is a projection on a subspace with dimension N — p, and it follows that ||J|]2 =
(N —p)/N. For the other term we have
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[ e[V (V¥ = B)(V — B*)V¥]do — [ tr [(V — B*)(V* — B)]do, (150)

where the factors have been permuted in the bracket on the left, and V*V omitted as
redundant, in order to obtain the right side. From the Parseval equality (108) iv is obvious
that the analytic function B approximates the conjugate-analytic function 7* best when
B = V¥, a constant function. Therefore the minimal function 4 in (148) is V V§. Evaluating
(150) with this choice of B gives p/N — tr (V,V§). We add this to [[J |2 = (N —p)/N to
obtain the right side of (148).

Theorem 17 presents the outer partial isometries as solutions of a minimal prob-
lem. It is possible that one could obtain them by this property in the first place, and
thus develop the subject from a different point of view.

In the statement of Theorem 17 it is not necessary to assume that §) is an analytic
range function. There is still a minimal function 4 = V V§, where the range of V is con-
tained in §), and deviates least from it in the metric sense described by the theorem.

Even obvious questions about analytic range functions lead to difficult function-
theoretic problems. For example, we do not know which analytic range functions have

complements of the same type. We believe that more is to be said in this subject.
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