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1. Introduction 

This second p a p e r  on Pred ic t ion  Theory,  l ike our  f irst  one [10], is d iv ided  into  two 

par ts :  the  first,  consist ing of the  first  e ight  sections, t r ea t s  complex-va lued  funct ions  def ined 

on r a the r  general  groups,  and  the  second p a r t  deals  wi th  m a t r i x - v a l u e d  funct ions  def ined 

on the  un i t  circle. I n  bo th  pa r t s  we are  concerned wi th  degeneracies  which  were exc luded  

b y  our hypotheses  before,  b u t  which t u r n  out  to be in teres t ing  from bo th  the  funct ion-  

theore t ic  and  the  pred ic t ion- theore t ic  poin ts  of view. 

Unl ike  the  f irst  paper ,  th is  one has  to  do wi th  difficulties which do no t  exis t  a t  a l l  for 

the  classical  case of scalar  funct ions def ined on the  circle group.  Bo th  pa r t s  of the  p a p e r  

leave  in teres t ing  p rob lems  unsolved.  I n  th is  i n t roduc t ion  we shall  t r y  to  presen t  the  

quest ions of this  p a p e r  and  our con t r ibu t ion  to  the i r  solut ion in b road  terms.  

Le t  / = / ( e  ~x) be a summable  funct ion  def ined on the  circle whose 1%urier series has  

the  form 
/ (dO ~ Y ~ ~x. 

n~>O 

I t  is i m p o r t a n t  and  wel l -known t h a t  

f log  I / 1 ~ ( ' )  

(:) The authors acknowledge the support of the National Science Foundation, and in the case of the 
second-named author, of the United States Air Force. 

(2) d a always denotes normalized invariant measure on the compact group being considered, ttere i t  
is dx/2zc on (0, 2~z). 
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is finite, unless ] is the null-function. I n  particular,  [ cannot  vanish on a set of positive 

measure. 

I n  our first paper  we obtained a generalization of this theorem to the class of compact  

abelian groups whose duals are linearly ordered, bu t  under  the hypothesis  t ha t  a0, the  mean  

value of f, is different f rom 0. For  the circle group this is no restriction a t  all, because we 

can consider e -v~x] (where p is a positive integer chosen appropriately)  in place of [, bu t  

this device fails if the ordered group which generalizes the integer group has no least positive 

element. Indeed,  trivial examples show t h a t  if a 0 = 0 the funct ion m a y  vanish on a non- 

e m p t y  open set wi thout  vanishing identically. 

Under  the hypothesis  t h a t  the order relation is archimedean the counter-examples just  

referred to are defeated, and Arens [3] has proved t h a t  the finiteness of the integral follows 

from the continuity of ]. We shall prove in the same direction t h a t  ] cannot  vanish on a set 

of positive measure unless it vanishes identically, wi thout  assuming tha t  a 0 # 0 or t ha t  

] is continuous. I t  m a y  be unexpected therefore tha t  even bounded functions exist for which 

the logarithmic integral diverges. (This negative result  is a corollary of a prediction theorem 

of different character.) We have additional information, bu t  no definitive result, on the  

question which non-negat ive functions are the modulus  of some funct ion ] of the  class 

considered. 

I n  the second par t  of the paper we reconsider the problems of [10] for positive semi- 

definite matr ix  functions W = W (e *x) of less than  full rank.  I n  prediction-theoretic terms, 

we s tudy  a process of less than  full rank whose covariance matr ix  is absolutely continuous. 

For  a process with co~r matr ix  W (of full rank  or not) these conditions are known 

to  be equivalent: the process has no remote  past; the process is a moving average; W has 

the form AA*,  where A is an analytic matr ix  function. For  processes of full rank,  these 

properties are equivalent  to this analyt ic  condition on W: 

f l o g  det  W d a > - ~ .  

But  this integral always diverges if W is singular, for example if W is A A *  for a singular 

analyt ic  funct ion A; in this form the integral is thus  too crude to give information about  

processes of less t han  full rank. 

A t  almost  every point  W(e ~x) is a positive semi-definite matr ix  which operates as a 

non-singular t ransformat ion on its range ~ (e*X). Denote the de terminant  of this trans- 

format ion by  A W (e'x). I f  we replace the determinant  funct ion in the integral by  A, then 

the finiteness of the integral is the first condition for the process to be a moving average. 

There is an obvious second necessary condition. I f  W = A A* for some analyt ic  rune- 
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tion A, then ,~ (e ~x) coincides at almost every point with the range of A (e~X). In  order for 

W to have this form it is evidently necessary for ~ (e ~x) to be the range of some analytic 

function. 

We prove that these conditions together are sufficient as well as necessary for the 

process to be a moving average, or for W to have the form A A *  for some analytic function 

A. Of course in application it may be difficult to decide whether the range of W coincides 

with the range of an analytic function, and the criterion found by Masani and Wiener 

[17] for W to be a square when it is of order two therefore has independent interest. 

The theorem on the factoring of W depends on structure theorems for analytic matrix 

functions which are proved first. We follow Lax [14] in taking Beurling's notions of inner 

function and outer function as fundamental, but  we offer our own definition for matrix 

functions which leads to a new description of singular analytic functions. 

In  connection with the first part of the paper, we draw attention to the related work 

of Arens, Hoffman, and Singer [2, 3, 4, 5, 12]. At a crucial stage of our research we had 

the good fortune to talk at ]ength with Professor P. Malliavin, and we are grateful for his 

permission to incorporate his ideas in this paper. As far as possible we shall identify his 

contributions in context. 

As with our first paper, this one overlaps the work of Masani and Wiener [16] to some 

extent. Following several notes, a third paper has been published recently by Masani [15]. 

These authors refer in their various papers to Russian work of which we have taken no ac- 

count. 

2. NIise e n  se~ne  

In  this section we lay down notation and recount known results which will be used 

throughout the first part of the paper. 

R denotes the real line, and Ra the same group in the discrete topology. The elements 

of R~ will always be called A or ~. The character group of R a is a compact abelian group B 

also obtained as the Bohr compactffication of R,  with elements x, y . . . .  , and ]-Iaar measure 

da (normalized to have unit total mass). For each A in R a let Z~ be the character of B defined 

by 

z~(x) =x(~) (all xCB). (1) 

The correspondence of ~ to )/~ is an isomorphism of R d with the character group of B, and 

we have for example 

Z0(x ) = 1, z~(x) .Z~(x)-Z~+~(x) .  (2) 
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We shall nevertheless preserve the notat ional  distinction between elements of Ra and 

characters on B, for convenience ra ther  t han  for puri ty.  

The Fourier  series of a funct ion / which is defined and summable  on B has the form 

/ (x) -~ ~ a (2) Z~ (x), (3) 
2 

with coefficients defined b y  

a (2) = f (2) = f Zx (x) / (x) d (r (x). (4) 

The Fourier-Stieltjes series of a finite complex measure /z  is given by  similar formulas. 

I t  is known tha t  every discrete abelian group with art archimedean order relation is 

isomorphic (with preservation of order) to a subgroup of R a. All the results of the first par t  

of the paper could be stated and proved for arbi t rary  archimedean-ordered discrete groups 

and their duals, which means for subgroups of Rd and the dual quotient  groups of B. 

Indeed  the archimedean hypothesis  is no t  used until  section five, so tha t  our first theorems 

are true in the more general conditions of [10]. We prefer, however, to  write explicitly 

about  Rd and B in order to avoid notat ional  difficulty. 

Among the characters of Ra are some having the form 

eu (2) = e ~u~ (5) 

for some real number  u. The mapping from u to e~ carries real numbers  into B. I t  is known 

tha t  this mapping  is a one-one continuous isomorphism of R onto a dense subgroup B 0 

of B. Sometimes it is convenient  to identify u with % and think of R as a subset of B. We 

shall be concerned later with the ergodic properties of B 0 in B. 

As generalizations of the H a r d y  spaces of analyt ic  functions defined in the circle, we 

consider the spaces H p (1 ~< p ~< oo) of functions defined on B, belonging to L p, whose 

Fourier  coefficients (4) vanish for all 2 < 0. When  the value of p is un impor tan t  we m a y  call 

such a function analytic. I n  part icular  an analytic trigonometric polynomial is a finite sum 

of the form 

a (2) Za (x). (6) 
2~>0 

For  each p, H~ is the subspace of H " consisting of those functions whose mean  value 

a (0) vanishes. 

A function / in some H " is called outer [6] if 

f log  I / I d  (r = log  l f  / &r  I > - ~ -  (7) 
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Beurling proved the fundamental  result tha t  / in H e is outer i/  and only i / the  set o/ /unctions 

P/,  where P ranges over all analytic trigonometric polynomials, is dense in H a. (Beurling's 

Theorem, originally proved for the circle group, was extended in [10] to compact groups 

with ordered duals.) 

From (7) it follows tha t  every function w of the form I/I 2 for some outer function / in 

H~ must  satisfy 

f l o g w d a >  - ~ .  (8) 

Conversely, every non-negative summable /unction w satis/ying (8) is such a square, and 

moreover ] is unique up to a constant/actor o/ modulus 1. This theorem was also proved (not 

quite explicitly) in [10]; the unicity of / will be reconsidered in section seven, where the 

notion of outer function is further developed. 

If  / is in H 1 and has mean value di / /erent / tom O, then [10] there is an outer function g 

such tha t  ]/] = [gl almost everywhere. I f  we write / = g. h, then the function h is analytic 

also. An analytic function with modulus 1 almost everywhere is called an inner/unct ion 

b y  Bcurling. 

This notation and these results will be used in the first par t  of the paper  without further 

reference. 

3. The Wold decomposition 

Let # be a non-negative finite measure defined on the Borel subsets of B. We form 

the Hilbert  space L~ with inner product 

(/, g) = f / ~ d # .  (9) 

The functions Z~ ( - ~ < 2 < co ) belong to L~ and form a complete set. Moreover they form 

a stationary stochastic process in the sense tha t  the inner products 

(Z~, Z )  =fV~Z_~ d~ = @ (T - A) (lO) 

depend only on the difference T - 2 .  We know tha t  any stat ionary process depending on a 

real parameter  (without any continuity hypothesis) is isomorphic, with respect to all 

g i lbe r t  space properties, to the process of characters in L~ for a suitable measure #. 

For each ~ in R~ we define a unitary operator S~ in L~ by  setting 

S~/ =Z~./.  (11) 

A closed subspace ~ of L~ is called invariant if it is carried onto itself by  each S~. 
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L]~MMA 1. Let ~ be a closed invariant subspace o/ L~. The orthogonal projection P on 

has the/orm 

r / = e . /  (12) 

/or a/unction e in L~ taking the values 0 and 1. Moreover e = P Xo. 

The proof, which offers no difficulty, is omitted. 

For each real 3, let ~ be the smallest closed subspace of L~ containing the functions 

Zx with ~ > v. The subspaces 7~/~ are nested, and decrease as ~ increases; we set 

~8 = [q ~/~. (13) 

Then @3, which is clearly closed and invariant, is called the remote past of the process 

{Z~}. Denote the corresponding projection function of the lemma by  ea. 

I f  Z0 does not belong to ~0 ,  let Y0 be the part  of Z0 orthogonal to ~0 ,  so tha t  

Z0 =Y0 + Zo (YoL~lo, Zoe~lo). (14) 
I t  is easy to see tha t  

y~ = S~y e (15) 

is the par t  of Z~ orthogonal to ~ .  Evidently the y~ form an orthogonal set in L~, and 

their linear combinations span a closed subspace 5~1 which is invariant and orthogonal to 

~a. Let  e 1 be the function realizing the orthogonal projection on ~1. (If ~ 0  contains Z0, 

then ~ is defined to be {0} and el the null function.) 

The linear sum ~ 1 0 ~ 3  m a y  not be all of L~; its orthogonal complement is a third 

closed invariant subspace ~2 with projecting function e~. Then by  definition L~ is the 

orthogonal sum of ~1, ~2, and ~a, and 

e l + e  2 + e  a = 1 ,  e j e k = 0 a . e .  (]~:/c). (16) 

If  only one summand ~j  is different from {0}, the process is said to be pure, and of 

type 1, 2, or 3 depending on whether ~1, ~2, or ~ is non-trivial. More descriptive names 

have been invented: a process purely of type 1 is an innovation process, with y~ its innovation 

at  t ime 3; one of type 3 is deterministic; and we suggest the adjective evanescent for a process 

of type 2. 

Set d/~j = ej d# (j = 1, 2, 3); (17) 

these measures are mutual ly  singular and their sum is #. We have obviously 

(e, X,, e, = f e, d = d , , ,  ( lS )  
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from which we see that  (ejX~} is a stationary stochastic process in L~, isomorphic with 

the canonical process (S~} in L ~  for ] = 1, 2, 3. Each process (ejZ~) lies in ~j. These compo- 

nent processes have the following fundamental  property.  

T ~ o , ~ E ~  1. The process (ejY,~) in L~ is purely o] type ] , /or j = 1, 2, 3. 

This theorem is a generalization of the well-known result of Wold [21] for the circle 

group (where only processes of types 1 and 3 occur). A generalization of Wold's Theorem, 

for processes depending continuously on a real parameter,  was given by Harmer [8], and 

his method of proof will be adapted to prove our theorem, but  in reality his result is quite 

different from ours and lies deeper. 

The theorem contains three statements, which we prove in order. 

Statement 1: ] = 1.--The functions y~ are an orthogonal set fundamental  in ~1, and 

so we have the decomposition 

So = F_a(4)y~ + w  (w•  ~ ) .  (19) 

Unless @, is trivia], it is clear that a(~) = 0 for 4 < O, but a(O) :~0. First projecting (19) 

into @i and then applying S~ gives 

el S~ = ~ a (A) y~+~. (20) 
~ 0  

This shows that  the linear subspace spanned by  (elZ~}~>o is contained in the subspace 

spanned by  (Y~}~>o. 

The converse holds also. For Y0 can be approximated by linear combinations of 

Z~ (4 i> 0), and since yOE~l, by the same linear combinations of elS ~ (A/> 0). The same 

argument  applies to y~ if ~ > 0. 

Combining these results, and translating by  T, we see tha t  (elS~}~> v and {y~}~>~ 

span the same subspace of L~, and indeed of ~1, for each v. The y~ are orthogonal and so 

form an innovation process with innovation y~ at  t ime T; therefore (elSe} is an innovation 

process with the same innovation y~. This proves the first par t  of the theorem. 

Statement 2: 7" = 2 . - -We have to prove tha t  the process (e~S~ } has neither innovation 

nor remote past. As to innovation, we can form finite sums 

S0 + ~ b (~) S~ (21) 
2>0 

approximating Y0, which belongs to ~i, and so the corresponding sums 

e~ (S0 +~>b (~) S~) (22) 

approximate e~y o =0.  In  other words, e2Z o is the limit of sums of the form 

- ~ b ().) e~S~. (23) 
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This is exactly the s tatement  tha t  {e2Z~} has no innovation. 

To consider the remote past  we need a result which will be referred to again, and 

which is therefore stated formally. 

L~MMA 2. ej ~ 0  is a closed subspace o / ~ o / o r  j = 1, 2, 3. 

Let / be an analytic trigonometric polynomial with mean value zero. Writing / as the 

sum of its projections and using (20) we have 

/=~a(2)y~+w+z ( w e ~ , z e ~ ) .  (24) 
A>0 

Since y~ belongs to ~ 0  for 2 > 0, the first sum, equal to ell, lies in ~0 .  Now z = % / i s  in 

~3 which is entirely contained i~ ~0 .  Hence the remaining term w = e J  is in ~ 0  as wel l  

This set of functions / is dense in 7~/0, and so e ~  0 is contained in ~ 0  for j = 1, 2, 3. 

Now in the decomposition 

~ o  = el ~ o  | e~ ~ o  | e3 ~ o  (25) 

the summands are mutual ly orthogonal and contained in ~0;  it follows tha t  each one is 

closed, as we had to show. 

We return to the remote past  of {e2Z~ }. Translating (25), 

:/~/~ = el"/~/~Oe2~4~eaT/~. (26) 

We have to show tha t  the projection of e2z 0 on e 2 ~  ~ has norm as small as we please, if z 

is large enough. From (26), this projection is the same as its projection on ~ itself. But  

the intersection of all ~ is ~3, to which %Zo is orthogonal, and it is a simple exercise ia 

geometry to verify then tha t  e2z o has small projection in ~ for large T. This completes 

the proof for j = 2. 

Statement 3: j = 3 . - -We are to show tha t  {e~Z~} is deterministic. I t  suffices to prove 

tha t  linear combinations of %Zz (2 > 0) are dense in the manifold spanned by  %Z~ (all 2), 

since by  translation the same will hold for the span of e~Zz (2 > T), no mat ter  how large ~. 

In  other words, if 

f/(%Zx) d# = 0 (27) 

for all 2 > 0, then the same relation is to hold for all 2. But  (27) can be writ ten 

f(e3/)Ld~ = 0, (2s) 

and this for 2 > 0 means tha t  es / is  orthogonal to :/~0 in L~. Then % / i s  orthogonal to ~3 

contained in ~0;  but  e J  itself belongs to ~3, and therefore must  be zero. Hence (28) holds 

for all 2. 
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This completes the proof of Theorem 1. 

We mention here a problem about  processes of type 2, whose solution would contribute 

a good deal to our knowledge about  function theory on B. Let /z  be absolutely continuous 

with respect to o, so tha t  d/z = wdc; for some summable function w. Assume the canonical 

process in L~ is evanescent. We know from definition tha t  

U ~  (29) 
1>0 

is dense in ~0 ,  but  it is conceivable tha t  the subspace 

Uo= 
),<0 

(30) 

is larger than :t/t0. I f  T/0 is larger than  ://t0, let R0 be the complement of ~ 0  in 7/o- The same 

definition a t  ~ gives a subspace ~ a t  each T, and it is easy to see tha t  ~ = S~ ~o. These 

subspaees are mutual ly  orthogonal. We can prove, using theorems presented later in 

this paper, tha t  each subspace R~ is one-dimensional, and tha t  together they span L~. I f  

/ is a representative of R0, then Z~/is in ~ ,  and the set {Z J }  is a complete orthonormal 

system in L~. Furthermore ~ 0  is exactly the closed linear span of the elements X~/(4 > 0). 

So in a new sense the canonical process in L~ is an innovation process with innovation / 

at  t ime 0. 

The problem is to decide whether 7/o is sometimes or always larger than  7?/0, and 

what properties of w decide between the two cases if they can both occur. I f  7/o is larger 

than  ~0 ,  then w has the form ] g [ 2, where g belongs to H 2 and is outer in a generalized sense, 

although the logarithmic integral of (7) evidently diverges. As we shall show, there are 

functions g in H 2 for which tha t  integral diverges; for w = ]g]2, the canonical process in 

L2w is clearly evanescent, but  we do not know whether it can be or must  be an innovation 

process in the new sense. 

In  the case of a general measure #, the evanescent par t  of the Wold decomposition 

divides further into a par t  which is continuous from the left as well as from the right, in 

the sense that  (29) is dense in (30), and a part  which is an innovation process in the new 

sense. We shall not be interested in this refinement. 

4. Analysis of the decomposition 

The decomposition theorem itself does not tell how to find the component measures 

/~1, ~u2,/~3, or equivalently the subspaces ~1, ~2, ~a from knowledge of/x. The purpose of 

this section is to set down what  we can from known results or standard arguments. 
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In  the case of the circle group (with its dual, the integers) only ~1 and :~3 appear 

([7], Chapter XII ) .  Write/~ (now a measure on the circle) as a sum 

d#  = wd(~ + d#~ (31) 

of absolutely continuous and singular parts. The main result is this: i / f  log wd(~ > - ~ ,  

then d/~ 1 = wd(r and d#a = d/~s; otherwise d# l  = 0 and d/~ a = d[~. 

We shall prove a natural  generalization of this theorem to the group ~;  but  whereas 

the result is complete on the circle, it cannot differentiate between/z 2 and #a on B. 

THEORE~ 2. I f  d~ = w d ~  + df~s, where w is a non-negative summable /unction on B 

and/~s is singular with respect to cr, and i/ 

/ log w d ~  > - ~ ,  (32) 

then d[~ 1 = w d c f .  I / ( 3 2 )  is/alse,  d/~ 1 = O. 

Proo/. The par t  of Z 0 orthogonal to 7~0 was called 1 + H in [10], and was shown not 

to be the null function under the hypothesis (32). Indeed 1 + H was different from zero 

almost everywhere for a, but  vanished for/~s. Therefore e I is the function equal to 1 almost 

everywhere for g and zero almost everywhere for/~s. This proves tha t  d/~ 1 = wdc;. 

I f  (32) fails, then Z0 can be approximated by linear combinations of Za with 2 > 0, 

and the process has no innovation. Therefore d#l  = 0. 

By  Theorem 2, if # has absolutely continuous component satisfying (32) then this 

par t  of # is exactly the summand/~l  of the Wold decomposition. Moreover ~1 is natural ly 

identified with the Hilbert space L~, and the process {elZz ) in L~ is isomorphic with the 

canonical process {Z~} in L~. The orthogonality and invariance of the spaces ~j  can be 

expressed informally by saying tha t  second-order questions about  the prediction of the 

canonical process in L~ decompose under the Wold decomposition into the analogous ques- 

tions for the orthogonal subprocesses; in the case we are discussing, this means tha t  the 

absolutely continuous and the singular parts  of # can be treated separately, provided tha t  

(32) is true. 

The next theorem shows tha t  this simplification does not depend on (32), and tha t  it 

suffices to study w d a  and d#s separately even when (32) fails. 

T H ~ O R ] ~  3. Let e and e' be/unctions in L~ eatis/ying 

e = l a . e .  (da); e ' = l a . e .  (dins); e . e ' - 0 .  

Then eT~T and e ' 7 ~  are closed subspaces o / 7 ~ / o r  each ~. 

(33) 
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Proo/. For  simplicity consider T = 0. Suppose tha t  / belongs to  L~ and is orthogolzal 

to ~0: 
fZ~fd/x = 0 (all A > 0). (34) 

This expresses the fact  t ha t  [dju has Fourier-Stieltjes series of analytic type.  By  Theorem 

16 of [10], the same is t rue separately of [wd# and [d/zz, so tha t  e /and  e ' /are separately 

orthogonal  to ~/0. This is the same as to say tha t  / is or thogonal  to e ~  0 and to e'~/~. 

Since / was an arb i t rary  funct ion orthogonal  to ~0 ,  it follows tha t  e ~ 0  and e' ~ 0  are con- 

tained in ~0 .  

I n  the decomposit ion 

~tl0 = eTt/0@e':~t/0, (35) 

which is analogous to (25) in the proof of the Wold  decomposition, the summands  are 

mutua l ly  orthogonal  and contained in ~0 ,  and it is obvious tha t  each must  be closed. 

The archimedean proper ty  of Rd has not  been used to this point, bu t  it is involved in 

the discussion which follows and in succeeding sections. 

Suppose now tha t  the process {Z~} ill L~ depends continuously on 2, or what  is equi- 

valent,  merely tha t  the inner p roduc t  (Z0, Z~) is a continuous funct ion of ~ in the ordinary 

sense. This is the kind of process t reated by  Hanner  [8], Ka rhunen  [13], Wiener [19], and 

others, and complete results have been obtained for the questions we are considering [7]. 

I n  order t ha t  the process be of this type  it is necessary and sufficient (as one proves wi thout  

difficulty) tha t /x  be supported by  B0, so tha t  in particular/~ is singular with respect to a. 

I f  a I denotes linear measure on B0, then ju has a decomposit ion 

d~ = wda 1 + d~ts, (36) 

where now w is summable for da 1 and d/4 is singular with respect to a 1 bu t  carried on B 0. 

The process is deterministic i/ and only i/ 

o o  

(log w (x) d 
J 1 + x 2 31 (x) = - oo. (37) 

- - o O  

I / t he  integral in (37) is/inite, the remote past is the subspace o/L~ consisting o/ /unctions 

which vanish almost everywhere/or da r 

This result can be proved from the corresponding theorem about  discrete processes 

by  a change of variable ([1], p. 263), or it can be obtained with a certain complication by  

the methods of [10]. The analogy with discrete processes is pressed further  and more deeply 

by  Halmer.  But  we shall not  be concerned with processes of this type,  whose innovat ion 

13 - 61173060. Acts mathematica. 106. Imprim6 le 20 d6cembre 1961. 
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components  a lways  van i sh  in  the  W o l d  decomposi t ion.  I n s t e a d  we consider the  o the r  

ex t reme  type :  processes wi th  abso lu te ly  cont inuous  spect ra l  measures,  which cannot  

poss ib ly  be continuous.  

5. Cauchy  m e a s u r e s  

A cer ta in  fami ly  of measures  on B is i n t ima t e ly  connected  wi th  the  problems  we are  

s tudying ,  as Mal l iavin  po in t ed  out  to  us, and  this  sect ion sets down the i r  def ini t ion and  

r e l evan t  proper t ies .  

F o r  each  r (0 < r < 1) consider  the  measure  #r  on B whose Four ie r -S t ie l t j e s  t r ans fo rm 

is 
hr(~) = rill- (38) 

The funct ion on the  r ight  side is pos i t ive  defini te  on Rd, so/~r exists  on B and  is non-negat ive ,  

wi th  t o t a l  mass  one. Bu t  the  t r ans fo rm is cont inuous  in the  o rd ina ry  topo logy  of the  line, 

and  one proves  easi ly t h a t  this  is the  case if and  only  if the  measure  is carr ied on B 0. 

Therefore  each #r is carr ied on B0, and  hence is s ingular  wi th  respec t  to  o. These p roper t i e s  

are  also easy  to  verify:  

/~r-x-/~ =/~rs; l im #r = a; l im/~r  = 8, (39) 
r-->0 r-->l 

where  in the  Iast  re la t ions  t he  l imi t  refers to  the  weak  s t a r - topo logy  of measures ,  and  

5 is the  uni t  mass  a t  the  i d e n t i t y  of B. 

The expl ic i t  form of/~r is easy  to  give, a l though i t  is no t  necessary  to  our  work; d/z~ 

is the  measure  

y dt (r=e_y), (40) 
z (t 2 + y2) ,  

where t is the  l inear  coordina te  on B 0. This is the  classical Cauchy kernel ,  and  therefore  we 

call  t h e / ~  Cauchy measures. 

E v e r y  segment  of B o carries p a r t  of the  mass  o f / ~ ,  and  since B 0 is dense in B, i t  

follows t ha t /~ r  assigns pos i t ive  measure  to  every  n o n - e m p t y  open set in B. Much more  

t h a n  this s imple s t a t emen t  is t rue,  and  the  nex t  three  l emmas  give fur ther  essential  in- 

format ion.  

L EM~A 3. I /  g is the characteristic ]unction o/ a set o/ positive measure in B, then 

#r+g > 0 almost everywhere/or (~. 

This resul t  is sure ly  no t  new, b u t  we have  found  i t  wi th  Mall iavin.  I f  i t  were false, 

t hen  for a cer ta in  value  of r and  a cer ta in  funct ion  g we should have/~r44g = 0 on a set of 

posi t ive  measure ,  whose character is t ic  funct ion  we call  h. Le t  h' (x) = h ( -  x); t hen  



PREDICTIO:N TiHEOI{Y A:ND FOURYEIr SEI:{IES I N  S:EVEI~AL VA/~IABLES.  I I  187 

o = fh (x)~eeg (x) da (x) = ~ . g . h '  (0). (41) 

Now geeh' is a continuous non-negative function, and we know tha t /~  has positive mass i~ 

every non-empty open set. Therefore (41) is only possible if geeh' vanishes identically. Bub 

fgeeh'd(r =fgda.fh'dcr 4=0. (42) 

This contradiction proves that/~reeg is positive almost everywhere. 

L]~MMA 4. There exists a set _F having positive measure in B with characteristic/unctiou 

g such that/~reeg is not essentially bounded/rom zero. 

Since B 0 has measure zero, there is an open set G of small measure containing B 0- 

Moreover a translate Gx of G by the element x of B still contains virtually all the mass of 

/~r provided x is close to the identity, because nearly all the mass of ~u, is carried on a com- 

pact segment of B 0 which remains in G under small translations. Therefore the characteristic 

function g of/v,  the negative of the complement of G, has the required property. 

L]~MMA 5. There is a non-negative/unction u defined on B such that 

f u d a = ~ ;  p r e e n < ~  a.e. ( 0 < r < l ) .  (43) 

Let t, r, and s satisfy the relations 

0 < t < r < l ;  t = r s .  (44) 

We require the set F and the function g of Lemma 4, with the observation that  they were 

constructed independent of r. Since #teeg is not bounded from zero we can find a non- 

negative function u which is not summable but which satisfies 

f~eeg (x) u ( - x) d(~ (x) =/~t~geeu (0) < ~ .  (45) 

Using the associativity of the convolution operation a second time, this is equivalent t(> 

f # t ~ u ( -  x)d~(x) < ~ ,  (46} 
F 

so that/~teeu ( - x) is finite almost everywhere on F. We conclude that/~r%u is finite almosl~ 

everywhere on B from the representation 

/~teeu = ~u~ee(#reeU), (47) 

because by Lemma 3 convolution with #~ would detect the set where/~r~u is infinite with 

probability one. Since r was arbitrary, the lemma is proved. 
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Actually the relation 

~u~u < oo a.e. (48) 

for a non-negative function u is true or false simultaneously for all values of r, and it is 

impossible for the convolution to converge on a set of positive measure unless it converges 

almost everywhere. These facts can be derived from (40), but they are contained in our later 

results, and we shall not prove them here. 

The importance of the Cauchy measures lies in this property: 

MALLIAVIN'S TIIEOREM. For any/unction / o] H 1 we have 

log I/I a.e. (49) 

Of course this is a generalization of the classical fact that  a subharmonic function in the 

uni t  circle is dominated by the Poisson integral of its boundary values. In  our general 

context, however, the functions #r~-/do not need to be continuous, and they exist only as 

summable functions almost everywhere. The theorem of Malliavin is closely related to this 

result which we shall use as well, and which was found independently for the class of 

double power series by M. l~osenblum: 

TI~EOl~E~ 4. / /  / is an outer /unction in H 1, then (49) is almost everywhere equality. 

The proof of these theorems belongs to the function-theoretic part of this work, and 

is postponed until section seven. We proceed meanwhile to the solution of the prediction 

problem which is the main result of these sections. 

6. The prediction problem 

THEOREM 5. For every summable non-negative weight/unction w the process {)~) in 

L~  is pure. I t  is o] type one i] 

flog w d ~  > - ~ ; (50) 

o/ type  two i / (50) /ai ls  but 

# r ~ l o g w > - ~  a.e. ( 0 < r < l ) ;  (51) 

and o] type three i] (51)/ails, when necessarily 

/ ~ r % l o g w = - c ~  a.e. ( 0 < r < l ) .  (52) 

The proof will take the rest of this section, and for the sake of clarity we shall break 

i t  into a number of simple lemmas. 

Let d (T) denote the distance in L~ from Z 0 to ~ ,  the manifold spanned by linear 
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�9 2 combinations of Z~ with 2 > r. For  s > 0, d~(r) is the corresponding distance m L ~ ,  where 

w~ = max  (w, e). These distances of course are zero for ~ < 0; ~nd we know [10] t ha t  d(0) > 0 

if and only if (50) holds. 

The condition d ( 0 ) >  0 evidently means t h a t  the process has non-trivial  innova t ion  

component ,  bu t  it is easy to go fur ther  and show tha t  the process is purely of type  one. 

Consider @1, the invariant  subspace spanned by  the innovat ion elements y~ in L~. Since 

these elements are mutua l ly  orthogonal,  we have from (15) 

fZ~lyol~wd,r = 0 (2 # o), (53) 

so t h a t  go has constant  modulus different f rom zero�9 Therefore in the decomposit ion (16) 

only e~ can be different f rom the null function, and the process is pure as we asserted.  

Now in the rest of the proof we m a y  assume t h a t  (50) fails, and the  process has nc~ 

innovat ion component .  

LEMMA 6. I] d(v) = 0 / o r  some ~ > O, then the same is true/or  every 7:. 

For  if Z 0 belongs to ~ for some ~ > O, then  more generally Z~ belongs to ~/~+~ fo r  

every 2. I t  follows tha t  all the subspaces ~l~ are identical, and so Z o is in ~/~ for every v. 

LE~IMA 7. d(~) = lira d~@)/or each ~ > O. 
e--~0 

We have for each s 

d (~)~ =i~ff l l  + z Pl wd  i  fl + z Pl w d , (54) 

where P ranges over all analyt ic  t r igonometric  polynomials  (6) with mean  value zero. 

Taking the limit in e we find d (T) ~< lim d~ (z). 

Conversely, for each fixed P 

f] 1 + X, el~wd~=limfl  l + X, P l~w~d~  limd~(~)~. (55) 

Taking the inf imum over P gives d (z) ~> lira d~ @), as we had to show. 
e 

For  each e, let g~ be the outer  function in H 2 such tha t  

= > 0 .  

(This is the representat ion obtained in Theorem 3 of [10].) We have 

g~(x)" ,Sa~(2)Z~(x);  51a~(2)1 ~= f lg~]~d~=fw~dcr.  
2~0 

(56) 

(57) 
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LEMMA 8. I n  order ]or the process to be o/type three it is necessary and su//icient that 

lim ~ l a~ (~)I ~ = 0 (58) 
e-->0 0~<A~<~ 

]or every positive ~. This is the ease i / the  condition holds/or a single value o/ 3. 

I t  is obvious tha t  the process is of type  three just if d (3) = O for all 3, or by  L e m m a  6, 

even  for a single T. We shall show tha t  the sum in (58) is exact ly d~ (3) 2. Therefore, using 

L e m m a  7, the limit is d(3), and (58) is necessary a~d sufficient for the process to be deter- 

Ininistie. 

Since g~ is outer, functions of the form Pg~ where P is an analyt ic  t r igonometric  poly- 

nomia l  are dense in H e. We conclude easily t ha t  functions Z~Pg~, where now P is analyt ic  

w i th  mean  value zero and 3 is fixed, can approximate  any  function in H ~ whose coefficients 

van ish  for indices less than or equal to 3. I n  particular,  if we approximate  the funct ion 

- Za~ (~)Z~ (59) 
).>~: 

t h e n  in the expansion 

the  second sum has norm as small as we please. Therefore 

(60) 

as  we had to prove. 

P - 0~<.~<~ 
(61)  

LEMi~IA 9. I n  order/or (58) to hold it is necessary and su//iclent that i~r+g~ tend to zero 

i n  the norm o / H  2 as s tends to O,/or each r (0 < r < 1). I t  su//ices that this be true/or a single 

value o /r .  

The lemma is obvious from the equali ty 

/J#~+g~ II ~ = 5 1 <  (~)l er2~, (62) 

toge ther  with the fact  t ha t  5 [ < ( 2 )  l e (63) 

is uniformly bounded as e tends to 0. 

L E M ~ A  10. #r+g~ tends to zero in H 2 i / a n d  only i] #r+log  w = - ~ almost everywhere. 

F r o m  Theorem 4 we have almost  everywhere 

log [jur+g~ [~ =/~r%lOg We, (64) 

so f I 'r+g:l:d  = fe: p (fir+log w~)da. (65) 
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The left side is finite, so the integrand on the r ight is at  any  rate summable;  since w~ 

decreases to w the lemma follows. 

F rom Lemmas  8, 9 and 10 we see tha t  the process is deterministic i / a n d  only i/ (52) 

holds; and (52) is t rue/or  every r i / i t  holds/or a single one. Therefore the process has non- 

trivial evanescent component  just if (52) fails. We assert tha t  in this case (51) holds. Indeed,  

suppose for some r there is a set of positive measure on which/~r%log w is finite. We know, 

from (47) as before, t ha t  if this convolut ion is infinite on a set of positive measure, then 

/~t-~log w =  - o o  almost  everywhere for each t<r ,  and hence for all t, contrary  to hypo- 

thesis. Therefore (51) is the only al ternative to (52). 

I f  (51) holds, the process has some evanescent component .  We complete the proof of 

the theorem by  showing tha t  the canonical process in L~ is pure, so tha t  it mus t  be purely 

evanescent.  

LEMMA 11. I /  W vanishes on a set o/positive measure, the process is deterministic. 

Indeed,  if w vanishes on a set of positive measure, then by  Lemma 3 (52) holds. 

(This result  was proved in a direct way  in our conversation with Malliavin, before we 

knew the criterion (52) for determinacy.)  

m Lw has bo th  remote past  and evanescent  compo- Now suppose the canonical process " ~ 

nent. By  the decomposit ion theorem we have 

w = w 2 + w 3 ,  w 2.w a ~ 0 ,  (66) 

where the process {Za} in L~, is purely  evanescent,  and tha t  in L ~  is deterministic. But  

according to (66), w~ mus t  vanish on a set of positive measure. Lemma l l  asserts t ha t  this 

is impossible. Therefore one or the other component  in (66) mus t  have been null. This 

shows tha t  the canonical process in L~ is pure, and the theorem is completely proved. 

I t  is impor tan t  to remark,  finally, t ha t  conditions (50) and (51) really are different, 

or in other words tha t  the canonical process in L~ can be evanescent.  I f  log w is summable,  

so tha t  (50) holds, then  indeed (51) is true. To show tha t  the converse implication is false, 

let w = e -~ where u is the funct ion of Lemma 5. Then w is summable and satisfies (51) bu t  

not  (50). 

Now we leave prediction theory  and turn  to the s tudy  of analyt ic  functions on B. 

7. Outer functions 

I n  order to prove Malliavin's Theorem and Theorem 4, the most  natura l  method  (and 

the one followed by  Malliavin) is to refer the problem to the complex plane by  means of 

the canonical image B 0 of the line in B. This technique (which has been conspicuously 



192 ] : IE~I~Y J=IELSON A N D  D i V I D  LOWDE~TSLAG]gR 

explo i ted  b y  Bochner)  gives complete  resul ts  abou t  B a t  leas t  in pr inciple ,  because B can 

be cons t ruc ted  d i rec t ly  ou t  of R so t h a t  R becomes B 0. B u t  t he  deta i l s  of proof  b y  this  

m e t h o d  are of ten formidable ,  and  we prefer  to  presen t  an  int r ins ic  funct ion  t heo ry  on 

B which furnishes proofs which seem to us closer to  the  subjec t  ma t t e r .  I n  th is  sect ion we 

offer proofs  of Mal l iavin ' s  Theorem and  Theorem 4 in th is  spir i t .  F i r s t  we have  to  ex tend  

Beur l ing ' s  no t ion  of outer/unction fur ther  t h a n  we d id  in [10], of which the  resul ts  were 

summar ized  in sect ion two. 

Le t  u and  v be real  funct ions defined on B. W e  say  t h a t  v is conjugate to  u if u § iv  

is ana ly t i c  in  some su i t ab ly  genera l  sense, and  v has  mean  va lue  zero. I f  u is in  L 2, there  is 

exac t ly  one funct ion  v in L 2 having  mean  value  zero such t h a t  u + iv  belongs to  H2; b u t  if 

u is mere ly  summable ,  there  m a y  be no summable  funct ion  v such t h a t  u § iv  is in H 1. 

W e  do have  this  weaker  resul t  [9]: for 0 < p < 1 there  exists  a cons tan t  Kv such t h a t  

(f lvl do) <K fluld  (67) 

for every  t r igonomet r ic  po lynomia l  u wi th  conjugate  v. I f  a sequence (u~) of t r igonomet r i c  

po lynomia l s  converges to  a funct ion u in the  met r ic  of L 1, t hen  the  conjugate  funct ions  

form a f u n d a m e n t a l  sequence in the  metr ic  space L p for each p < 1 and  so converge in 

measure  to  a unique  l imi t  funct ion  v. B y  def ini t ion v is the  funct ion  conjugate  to  u. I t  will  

be i m p o r t a n t  in the  proofs  to  follow t h a t  v is besides the  pointwise l imi t  a lmos t  everywhere  

of a su i t ab ly  chosen subsequence of (vn). 

The nex t  theorem gives a charac te r iza t ion  of ou te r  funct ions  which is r ea l ly  an  a b s t r a c t  

vers ion of the  in tegra l  r ep resen ta t ion  formula  of Beurl ing.  

TH~O~]~M 6. I /  u is a real /unction such that u and e u are summable, then e u+i" (where 

v is conjugate to u) is an outer/unction in H 1. Conversely, i / a  summable outer/unct ion / 

has the representation e ~+~" with u and v real, then u is summable with e ~ and v is equal to its 

conjugate modulo 2~, aside/rom an additive constant. 

Proo/. Suppose t h a t  u and  e u are summable  and  v is conjugate  to  u. W e  have  to  show 

t h a t  / = e u+~v belongs to  H I, and  then  t h a t  i t  is outer .  F i r s t  suppose t h a t  u (and so also v) 

are  t r igonomet r ic  polynomials .  The power  series expans ion  for the  exponen t ia l  is un i fo rmly  

convergent ,  and  the  a n a l y t i c i t y  of / is therefore  obvious.  The power  series also shows 

t h a t  (7) holds:  

More general ly,  if bo th  u and  v are  bounded,  u + iv  can be a p p r o x i m a t e d  boundedly b y  

t r igonomet r ic  polynomials ,  and  the  two proper t ies  of / pers is t  in the  l imit .  
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Two more  l imi t  processes are  requi red  to  t r e a t  the  genera l  case, and  t h e y  use the  

resul t  abou t  conjugate  funct ions jus t  s ta ted .  Suppose  u is bounded ,  b u t  no t  necessar i ly  v. 

Choose t r igonomet r ic  po lynomia l s  u~ converging bounded ly  to  u and  such t h a t  the  conjuga te  

t r igonometr ic  po lynomia l s  v n t end  to  v a lmos t  everywhere .  Then  

(69) 

t ends  to  zero b y  the  theorem on domina t ed  convergence.  As the  l imi t  in no rm of e lements  

of H 1, / i tself  belongs to  H 1. Moreover  in the  equa t ion  

fu,, d a = logfe u-+~'- d a (70) 

which expresses the  fact  t h a t  each funct ion  eUn+% is outer ,  we can pass  to  the  l imi t  on bo th  

sides to  ob t a in  the  same resul t  for ]. 

F ina l ly ,  for an  u n b o u n d e d  funct ion u define 

u where  - n < u < n  

u ~ =  n where u > n  (71) 

- n  where  u < - n .  

Once more  we can assume t h a t  the  conjuga te  funct ions  vn t e n d  to  v pointwise,  and  the  theorem 

on d o m i n a t e d  convergence shows t h a t  the  no rm in (69) t ends  to  zero, and  t h a t  the  equa t ion  

(70) is va l id  in the  l imit .  

Conversely,  le t  / = e u+~v b e  an  outer  func t ion  in H 1. W e  know f rom (7) t h a t  u is sum- 

mable;  le t  v' be i ts  conjuga te  funct ion.  The p a r t  of our theorem a l r e a dy  p roved  s ta tes  t h a t  

g = e u+~v" is ana ly t i c  and  outer .  W e  have  to  show t h a t  ou te r  funct ions  wi th  the  same 

modulus  can differ on ly  b y  a cons tan t  factor .  

Set  w = I/[ = [g]" I n  L~ the  t r igonomet r ic  po lynomia l s  1 + P ,  where P is ana ly t i c  

wi th  mean  va lue  zero, form a convex subse t  in whose closure there  is a unique  e lement  

1 + H of min ima l  norm.  W e  have  shown [10] t h a t  1 + H is no t  the  nul l  funct ion,  and  fur ther  

t h a t  [ 1 + H [ ~ w  is a lmos t  everywhere  equal  to  ~o = exp (flog wda) .  Hence  (1 + H ) 2 / a n d  

(1 + H)2g have  modulus  cons tan t  and  equal  to  o). 

On the  o ther  h a n d  (1 + H ) 2 / i s  the  l imi t  in  H 1 of funct ions  of the  form (1 + P)~/,  each 

of which  has  mean  va lue  equal  to  the  mean  va lue  o f / .  Therefore,  using (7), we have  the  

two re la t ions  

1(1 +H)~ / l=o~ ;  If(l+H)~/d(rl=lf/d,rl=~o. (72) 

I t  follows t h a t  (1 + H)2/is a lmos t  everywhere  equal  to  a cons tant .  
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The same reasoning applies to g, and the new function 1 + H is the same as the old, 

because it depends only on w. Therefore (1 § H)2g is a lmost  everywhere constant  as well, 

and since 1 + H almost  never vanishes, / and g differ at  most  by  a constant  factor. This 

completes the proof of the theorem. 

Proo/ o/ Theorem 4. The Cauchy measures/~r have the characteristic proper ty  

/~r-)ee h = exp (~r-)6h) (73) 

if h is analytic and sui tably restricted. F r o m  this formula, (49) with equali ty follows in a 

formal way  for the funct ion ] = e~: 

log I ~ e ~  I = Re (~r~h) = ~ r~  Re (h) h = / ~ + l o g  ] eh]. (74) 

Unfor tuna te ly  (73) is no t  easy to prove as generally as it is true, and it is not  generally 

enough true to prove our theorem because the r ight side is no t  defined when h is no t  sum- 

mable, even if e h belongs to H i. 

Suppose however t ha t  h is a t r igonometric polynomial.  I f  P and Q are any  analyt ic  

tr igonometric polynomials,  then  

lu~(PQ) = (#~+P) (/~r~eQ), (75) 

as one sees by  comparing coefficients in the Fourier  expansions of left and right sides. I n  

particular,  /ur~P ~= (kt~-)eP)~, with the same equation for higher exponents by  induction. 

Hence 

o n!  0 n ~ '  (76) 

and this is exact ly (73). By  (74), then, Theorem 4 holds for outer functions ] = e h where h 

is any  analytic tr igonometric polynomial.  

According to the characterization of outer  functions given by  Theorem 6, we have 

to prove tha t  

l~ I/~r ~+e=+~ I =/~,.~+log u (77) 

for each real funct ion u, summable  together  with e u, with conjugate funct ion v. We have 

just  established this fact  if u is a t r igonometric  polynomial.  Now we imitate  the approxima-  

t ion a rgument  used in the proof of Theorem 6 to establish (77) for larger classes of functions. 

The details are neither novel nor  very  tedious, and so we shall no t  reproduce them. 

The relation (77) is a kind of generalization of the defining proper ty  (7) of outer  func- 

tions. I f  / = e =+~" is continuous and bounded from zero, we can let r tend to 0 in (77) and  

obtain 

log if Idol = f l o g  I/Id . (7s) 
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I n  the funct ion theory  of the uni t  circle, w h e r e / ~  is s imply  the  Poisson kernel, the  general  

form (77) can be obta ined  f rom its special case (78) b y  appropr ia te  conformal  t ransformat ions  

of the  interior of the circle. Bu t  on B, #r is singular wi th  respect  to t t a a r  measure,  and  the 

l imiting case r = 0 is dist inguished f rom the regular  ones r > 0. Therefore  some more  

compl ica ted device, such as the one used in our proof, mus t  be used to derive (77) f rom (78). 

Proo/o /Mal l iav in ' s  Theorem. Let  ] belong to H 1, and suppose its mean  value is different 

f rom zero. Then  [10, p. 178] / =  g'h,  where g is outer  and h is an analyt ic  funct ion with  

cons tan t  modulus  equal  to 1. The  result  to be p roved  takes  the  form 

log [~trV~-(g'h)[ <~tr-~log [g[. (79) 

NOW (75) is still true,  by  a s t andard  l imit  process, if P and  Q are replaced b y  g and h; and 

s ince /4  has uni t  to ta l  mass  we have  

< 1 a .e .  (80)  

Therefore  using Theorem 4 for the  outer  funct ion g, 

log I#r-)/v/] = l o g  [/~r~eg] + log ]/~r~+h] ~< log [/Ur-)eg ] =/~r-)+log [g]. (81) 

Thus  (79) is proved,  under  the  assumpt ion  t h a t  the  m e a n  value of / is no t  zero. 

I f  the  integral  of / does vanish,  we have  (49) a n y w a y  for / + e in place o f / .  Fa tou ' s  

L e m m a  shows t h a t  the inequal i ty  is preserved in the limit. 

8. Analytic functions 

THEOREZ~ 7. I /  a /unc t ion  / in H 1 vanishes on a set o/ positive measure in B,  or indeed 

i /mere l y  

  *log I/I = - a .e . ,  (82)  

then / vanishes identically. Otherwise under either condition 

f / d ~  + 0 (83) 

or / is continuous (84) 

w e  h a v e  f l o g  I/Ida > - co .  (85)  

Nevertheless there are non-nun/unct ions  in H ~ /or which (85) i s /a lse .  More generally, i /  w 

is a non-negative summable /unction such that 

ff~-)elog w > - c~ a.e. (86) 
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then there is some ] in H 1 satis/ying 

0 < [ /[  < w a.e.  (87) 

This theorem contains mos t  of wha t  we know about  analytic functions on B. The 

proof m a y  be clearer if we comment  on its various s ta tements  before we begin. On the 

circle group (85) holds for non-null  analyt ic  functions subject to ve ry  mild growth condi- 

tions inside the circle. The fact  t ha t  (85) follows from (83) in general is an e lementary  

result  f rom [10]; the same conclusion from (84) was proved by  Arens [3] in two ways, bu t  

neither one is easy. We shall give a new proof of Arens'  Theorem which relates it to  the 

other  s ta tements  of Theorem 7. 

I n  spite of these positive results, (85) is no t  t rue in general even for analyt ic  functions 

which are bounded. This fact  follows from the last assertion of the theorem if we take w 

to be bounded, and satisfy (86) bu t  not  

f log wda > - ~ .  (88) 

The existence of such weight functions is asserted by  Lemma 5. 

I f  we ask only tha t  the counterexample belong to H ~, then the existence of functions 

violating (85) follows easily f rom Theorem 5, and this simple proof is given before the 

more complicated discussion of (87). 

Proo/o/  Theorem 7. Suppose / belongs to H 1 but  satisfies (82); this will be the case in 

part icular  if / vanishes on a set of positive measure, by  Lemma 3. F r o m  Malliavin's Ine- 

qual i ty  

- ~ =/~-~log ]/[ >~ log I/zr-x-[[. (89) 

Therefore/~r-X-[ vanishes identically. But  the Fourier-Stieltjes coefficients (38) of/~r vanish 

nowhere, so tha t  ] mus t  itself be the null function, as we had to prove. 

To prove Arens '  Theorem, let / be a continuous analyt ic  funct ion which is no t  every- 

where zero. Then/~r-~/is  continuous and no t  identically zero. Find an  open set E on which 

/ ~ + / i s  bounded from zero, and construct  a continuous funct ion h such tha t  h ( - x) is non- 

negative everywhere, positive somewhere on E, and zero outside E.  Then we have 

h log I r /I (0) > - (90) 

Using Malliavin's Inequal i ty  and the associativity of convolution, 

(h~e#~)~log 111 (0)/> h~ log  [ttr-~[[ (0) > -- c~. (91) 

Bu t  h-)e#r is a continuous non-negat ive function, which moreover  can never vanish, because 

h is non-negative and ~u r has mass in every open set. Hence h-)e/zr > ~  > 0 on B, and  (91) 
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implies 
@og]llda > - oo. (92) 

Our proof to  this point  was found in conversat ion with Malliavin. The rest of the 

proof depends on Theorem 5, and has a different character.  

We are to construct  an analytic funct ion / not  identically zero bu t  such tha t  (85) is 

false. For  this purpose find a weight  funct ion w such t h a t  (86) holds bu t  no t  (88); w can 

moreover  be taken bounded. B y  Theorem 5 there is a non-null  element g orthogonal  to 
�9 2 . '~0 in Lw. 

fX~ywda = 0 (all 2 > O), (93) 

so tha t  / = ~w is summable and analytic.  Define 

an element of L1; then 

(94) 

I g l  = (W/w)% I / I  = Igl  = (Ww)',,. ( 9 5 )  

From (95) we see tha t  / is square-summable (because w is bounded),  and so belongs to  H 2, 

and we have 

1 ~'l ~ + ~ f l o g  wda. flogl/I, , = )oo 1 (96) 

The first te rm on the r ight  side is finite or negat ively infinite, and by  the choice of w the 

second term is - o o .  Hence the left side diverges also, and / has the properties sought. 

We come to the final assertion of the theorem�9 Suppose tha t  w satisfies (86); once more 

by  Theorem 5 we can find g in L~ not  identically zero such tha t  (93) holds�9 Then I glw '~ 
is in L 2, and  so 

U = rain (1, Igl-lw -'z*) (97) 

satisfies f log Uda > - oo. (98) 

Using Theorem 6, find h in H a so tha t  U = ]h I a lmost  everywhere. (We do no t  need the 

fact  t ha t  h can be chosen to be outer.) Now ~w belongs to H 1 and h to H ~, so the produc t  

h~w belongs to H 1, and evidently 

[h~w[ = r a i n  (Iff[w, w '/') < w  '/'. (99) 

Neither analyt ic  factor  of h~w vanishes on a set of positive measure, and so this funct ion 

is a non-null  element of H ~. Therefore / = (hyw) 2 belongs to H i and satisfies (87). All par ts  

of the theorem have now been proved�9 
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We do not know whether (87) can be improved to 

I11=~ ~.e.; (100) 

this question is related to interesting problems with prediction-theoretic import  which lie 

deeper than  Theorem 5. A result we are publishing elsewhere [11] can be mentioned in 

this connection, although it does not directly extend our knowledge about  analytic functions. 

9. Moving averages 

We come now to the second par t  of the paper, having to do with multivariate stochastic 

processes and the related theory of matrix-valued functions. This section is devoted to 

the notion of moving average, and more generally to the prediction-theoretic point of view. 

The results and proofs are not  new, and we shall only sketch the development; a complete 

exposition has been given by  Masani and Wiener [16]. Beginning with the next  section it 

will be essential tha t  we s tudy the group of integers, rather  than  ordered groups of more 

general type to which the matr ix  theory of our first paper  applied. 

First we set down the basic definitions. Functions are defined now on the unit circle, 

or more rarely inside it. The measure dx/2~ on (0, 2~) is denoted by  da. An integer N is 

given and fixed, and reference is usually made to complex Euclidean space of N dimensions. 

Matrices with N columns operate on the column vectors of this space by multiplication 

on the left. The trace function is normalized so tha t  I ,  the identity matr ix  of any  order, 

has trace 1. We say tha t  two matrices have the same shape if they have the same number 

of rows and the same number  of columns. 

We consider functions F defined on the circle and taking matrices of various shapes 

as values:  

F(e ~x) = (~'j~ (e~)). (101) 

The entries Fjk are always measurable complex scalar functions. I f  F and G are constant 

matrices, their immr product is by  definition 

(F, G) = tr  (FG*), (102) 

meaningful whenever F and G have the same shape. This definition is extended to matr ix  

functions by  integration: 

(F, G) = f tr  (FG*)d~. (103) 

I f  F and G have p rows, then evidently 

(F, G) : p-1 ~ f Fjk Gjk d G. (104) 
j.k 



r l ~ E D I C T I O ~ I  T H E O R Y  2~ND FOUI~IEI% S E R I E S  II~ SEVEI: tAL "VAI:CIABLES. I I  199 

B y  the  range of F we mean  the  l inear  set of co lumn vectors  2,X, where  X ranges  

over  the  cons tan t  column vectors .  The  range  of 2 , (d  x) genera l ly  depends  on d x, and  so 

F de te rmines  a m a p p i n g  from the  circle to  t he  class of subspaces  of t he  g iven  Euc l idean  

space. Such a mapp ing  will be called a range/unction, and  much  is to  be sa id  a b o u t  range  

funct ions  hereafter .  

I / the  range o/2,  is orthogonal to the range o/G at each point, then (2,, G) = O. Indeed ,  for 

a n y  cons tan t  vec tors  X and  Y we have  

0 = (FX,  GY)  = (G*2,X, Y); (105) 

therefore  G* 2, = 0, and  

o = N f t r  (G* 2,)da = p f i r  (2,a*)~ =p(2,, G). (106) 

F r o m  (104) we see t h a t  (2,, 2,) = K]FI] 2 is f ini te  if and  only  if each e n t r y  2,jk is square-  

summable .  The funct ions  2 '  wi th  II F El = 0 form a subspace  of those  wi th  f ini te  norm,  and  the  

H i lbe r t  space L 2 is ob ta ined  as for scalar  funct ions  b y  ident i fy ing  2, and  G if F - G is a 

nul l  funct ion.  

A c t u a l l y  we have  a space L 2 for mat r ices  of each shape,  and  the  n u m b e r  of rows and  

columns m u s t  be g iven  ill  each context .  

F o r  funct ions  of a n y  shape belonging to  L 2 (or mere ly  having  summab le  entries) we 

have  the  not ions  of Four i e r  coefficient and  Four i e r  series: 

co 

2,~= f F(e'X)e-~*Xd(l(x); 2,(e'X)~ ~2,~e ~ .  (107) 
- o o  

A funct ion  and  i ts  coefficients are  r e l a t ed  b y  the  l%rseva l  equal i ty :  

If2,11 ~ = S t r  (2,~2,*). (10s) 

E a c h  space L ~ conta ins  a d i s t inguished  subspace  H 2 consist ing of those  funct ions  F 

such t h a t  2 , n  = 0 for n = -- 1, -- 2 . . . .  A funct ion  F in H a admi t s  an  ana ly t i c  ex tens ion  to  

the  in te r io r  of the  circle: 

F (z) = ~ 2, .  z ~. (109) 

Our  m e t h o d  sys t ema t i ca l ly  avoids  men t ion  of such extensions,  b u t  we shal l  a p p l y  the  word  

analytic to  funct ions  in H 2 wi thou t  misunders tand ing .  

Now let  M be a square  m a t r i x  of order  N whose entr ies are complex  Borel  measures  

Mj~, and  suppose t h a t  M is posi t ive  semi-def ini te  in the  sense t h a t  M (E) is a pos i t ive  semi- 

defini te  m a t r i x  for each Borel  set  E.  F o r  cont inuous  functions,  a t  least ,  we can define a 

new inner  p roduc t  
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(F, G)~ = f t r  (F d M  G*) (110) 

and associated norm II F IIM- We identify functions differing by  a null function, and complete 

the space so obtained. Then  we have a Hilbert  space L 2 (M) whose elements indeed can be 

represented as matr ix  functions; bu t  F and G m a y  represent the same element of L ~ (M) 

even if their entries are quite different, unless M is a measure of part icular  type.  I n  general 

the elements of the space have no Fourier  series. I t  is necessary to specify the number  of 

rows in the matr ix  of a funct ion in L 2 (M), bu t  the number  of columns can only be N if 

(110) is to have meaning. 

A multivariate stationary process is a family of N s ta t ionary  processes {Z 1} . . . .  , {X~} 

in the same Hflbert  space, depending (for our purposes) on the integer parameter  n, and 

mutua l ly  stat ionari ly correlated: 

] k ( X m , X n ) = ~ t ~ c ( m - n )  (/ ,k = 1 , . . . , N ) .  (111) 

(The inner p roduc t  refers to the Hilbert  space of the processes.) There is a positive semi- 

definite matr ix-valued measure M with component  measures Mjk (], k = 1 . . . . .  N) such 

tha t  

es~ (n) = f e- ~'~ d Ms~ (x). (112) 

We shall construct  an isomorphic process in L 2 (M). Let  I j be the ] th  row of the 

ident i ty  matr ix  I of order N (?" = 1 . . . . .  ~V). Then X~ = e-m~xI j is a funct ion belonging 

to L ~ (M) formed with row vectors, and for each j, k, m, and n we have the inner p roduc t  

relations 

- ( X m ,  X~).  (113) (2~,Xn)M-k = f e  ( m - ' ) ~ X l S d M I k * = / e - ( m - n ) ~ X d M j k ( x ) = p , k ( m - n )  - J k 

I f  we map X~ onto X~ and extend the correspondence in a linear way, we obtain  by  (113) 

a un i ta ry  operator  which carries the smallest subspace containing all the X~ onto L ~ (M), 

formed with row vectors. Obviously every inner p roduc t  relation among the X~ holds as 

well for the X~.  Therefore we abandon the distinction between X and )~, and  s tudy  the  

process in L 2 (M). This process is called the  canonical process in t h a t  space, to distinguish 

it f rom other processes going on in the same space. 

The canonical process in L 2 (M) consists of the N row vectors 

e-m~xI j (] = 1 . . . . .  N) (114) 

depending on the variable e ~x and fur ther  on the integer parameter  m. I f  we write the row 

vectors together  we obtain the matr ix  funct ion 
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X m  (e ~x) = e-m~x I .  (115) 

I n  some prob lems  i t  is convenient  to  s t u d y  this  single m a t r i x  funct ion  in p]ace of the  N 

vec to r  funct ions  (114). 

Conversely,  suppose  t h a t  Xm is a square m a t r i x  funct ion  belonging to L 2 (M) for each 

integer  m, whose rows are  X ~  (] = 1 . . . . .  N).  I n  order  for i ts rows to form a m u l t i v a r i a t e  

s t a t i ona ry  process in the  space L 2 (M) of row vectors ,  i t  is necessary  and  sufficient according 

to  (111) t h a t  

(x~, X n ) M  = ~jk (?n,  ?~) (116) 

should  depend  on m and  n only  th rough  thei r  difference m - n .  Of course the  i somorphic  

canonical  process m a y  lie in a di f ferent  measure  space. 

I f  the  corre la t ion m a t r i x  ~ is the  i d e n t i t y  m a t r i x  for n - 0  and  zero otherwise,  the  

process is said to be orthonormal. Then  every  pa i r  of vec tors  X ~  and  X~ is o r thogona l  unless 

j = k  and  m = n .  

Suppose  X = {X~ } (] = 1, . . , ,  N)  is a m u l t i v a r i a t e  process,  and  A is a m a t r i x  func t ion  

of p rows and  N columns in L 2. Denote  the  Four i e r  coefficients of A b y  A~ = (A~k). Then  

we can define a new process Y = {Y~} (j = 1 . . . . .  p) b y  the  formula  (convergence being 

assumed)  

Y ~ - ~ A J k X  ~ m ~ ( i = 0 , + 1 , _  . . . ,"  k = l , . . . , N ) .  ( l l 7 )  
i,k 

I f  X is g iven  as a m a t r i x  funct ion  in L 2 (M), this  call  be wr i t t en  more  concisely as 

Y,~ =~a~xm_. (118) 
i 

where eli and  Xm-i  are  combined  b y  o rd ina ry  m a t r i x  mul t ip l ica t ion ,  or st i l l  more  br ief ly  

a s  

Y = A -~ X .  (119) 

Y is cal led a moving  average of X.  

I f  A and  B are  two funct ions  of p roper  shapes in L 2, i t  is easy  to  see (convergence 

quest ions aside) t h a t  

A ~ ( B ~ - X )  = (A B ) - ~ X .  (120) 

The case when X is o r t hono rma l  is pa r t i c u l a r l y  impor t an t .  Then  (117) is a lways  con- 

vergent  in norm,  and  the  covar iance m a t r i x  M of Y - A ~-X is the  square  m a t r i x  of o rder  

p given b y  

d M  = A A * d ( ~  = W d ( z  (121) 

I f  A belongs to H 2 ins t ead  of mere ly  to  L 2, w e  call  Y a one-sided moving average of X ,  

and  then  W has the  special  form A A *  for an  ana ly t i c  funct ion A.  Conversely,  if a process  

1 4 - 6 1 1 7 3 0 6 0 .  Acta matheraatica. 106. I l np r im6  le 20 d6ce lnbre  1961. 
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Y has covariance measure (121), then Y and A - ~ X  (where X is any orthonormal process) 

are both isomorphic to the canonical process in L~(W), and hence to each other. 

We should like to say more exactly that  Y is a moving average in its own Hilbert 

space, but for that  we have to choose a particular function A satisfying (121) and use a 

more complicated argument. For each integer n, let ~?~ be the smallest closed manifold 

containing all the elements Y~ (m ~< n; ] = 1, ..., p). ~ 0  is known familiarly as the past, 

and 7/l_= = [7 ~ n  (122) 

as the remote past. (The manifolds ~ now increase with n, whereas in the first part of the 

paper they decreased. The change results from the choice of sign in (114). The convention 

now adopted is better from the prediction-theoretic point of view.) 

We say that  Y has no remote past if, more accurately, the remote past consists of 

the null element alone. I t  is almost immediate that  Y has no remote past if its covariance 

measure has the form (121), with A in II  2 having any number of columns. We shall show 

conversely that  Y is a moving average, and of a particular type, if it has no remote past. 

For each n tet ~= be the orthogonal complement of ~ n  1 in ~ .  The subspaces ~ 

are mutually perpendicular, and satisfy 

~ + 1  = e -~x ~n. (123) 

Moreover since Y has no remote past, they span together the same manifold as all the ~n .  

The dimension q of n0 is the rank of the process, evidently at most equal to p. We choose 

an orthonormal basis {Xg} (] = 1 . . . . .  q) for ~0, and associated bases 

x ~  = e-"~x xJo (124) 

for the other spaces ~,.  Then {X~) is an orthonormal process having the same past, and 

the same innovation manifolds ~ ,  as Y itself. Writing :Y~ as a sum of the vectors X~ 

we obtain the representation (117), where the coefficients A~ ~ are independent of m because 

Y is stationary, and because X satisfies (124). The sum contains only terms with i ~> 0, so 

that  Y is a one-sided moving average of X. 

The result whose proof has been outlined is that  these conditions are equivalent: the 

process Y is a moving average o/ an orthonormal process; the covariance measure o/ Y has the 

/orm (121), where A is in  II  2 with (necessarily) p rows but any number o/ columns; the remote 

past o/ Y is null. 

This interesting function-theoretic corollary can be mentioned: i / W  has the /orm A A*  

/or some A in H 2 with any number o/ columns, then A can be replaced by an analy t ic /unct ion  

B having at most as many  columns as rows. 

I t  will be profitable now to leave the prediction model and study analytic functions 

directly. 



P R E D I C T I O N  T H E O R Y  A N D  F O U R I E R  SEI~IES I N  S E V E R A L  V A R I A B L E S .  I I  203 

10. Outer functions 

DEFINITION. A/unct ion A in H 2 (with p rows and N columns) is a left-outer function 

i / the convex set o//unctions 

(I  + P ) A  (125) 

where I is the identity matrix o/order p and P ranges over all trigonometric polynomials o/ 

order p having the ]orm 

P (e ix) = ~ P~ e nix (126) 
n > 0  

contains a constant matrix in its closure. 

Evidently the constant matrix can only be the constant term of A. 

A right-outer /unction is defined in the same way, replacing the functions (125) by 

A ( I  + P), (127) 

where I and P are square of order N. The properties of one kind of outer function can be 

deduced from those of the other by this observation, whose proof is very simple: a ]unction 

A in It  2 with coe/]icients A n is felt-outer i /and  only i / ~  is right-outer, where ~ is the analytic 

]unction de]ined by 

~I (e ~) = A (e-~)  * ~ ~ A* en% (12S) 
0 

In  the last section we obtained a representation for a process Y without remote past 

as a one-sided moving average A ~+X in a particular way, with the result that  the innovation 

spaces Rn for the process Y are identical with the corresponding spaces for X. This property 

implies that  the analytic function A whose coefficients are the matrices A~ of the moving 

average is left-outer. We pause to show why this fact is so. Let Y be a canonical process of 

N vectors with rank q; then X is an orthonormal process of q vectors, and A belongs to 

I t  ~ with N rows and q columns. For any square analytic trigonometric polynomial Q of 

order 2V, we have by (120) 

(Q~ Y)o = [(QA)~eX]o. (129) 

The matrix functions which appear on the left, as Q varies, are exactly the matrices whose 

rows are linear combinations of vectors Y~ (m ~< 0; ] = 1 . . . . .  N). Since the past of Y is 

the same as the past of X, the matrices on the right are dense in the set of all matrices 

whose rows belong to the past of X. But this implies, because X is orthonormal, that  the 

functions QA are dense in H e. I t  follows immediately that  functions of the form (125) are 

dense in the subset of t I  2 containing all functions with the same constant term as A, and 

so A is outer. 
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T H E o R ]~ M 8. Suppose A is a square matrix in H 2 with non-singular constant coe]]icient 

A o. Then A is felt-outer i / a n d  only i/ 

f log I det A ida = Jog I det A01. (130/ 

I t  follows t h a t  a funct ion  A is r igh t -ou te r  if and  on ly  if i t  is lef t-outer ,  if A 0 is non- 

singular,  because A and  .~ sa t is fy  (130) a t  the  same t ime.  

Proo]. The theorem is closely re la ted  to  Theorem 8 of our  first  paper ,  and  we shal l  use 

the  m e t h o d  deve loped  there.  F o r  a f ixed m a t r i x  B 0 wi th  d e t e r m i n a n t  1, and  a n y  summable  

funct ion  W wi th  posi t ive  semi-def ini te  values,  we consider the  convex set in L 2 (W) ob ta ined  

b y  closing the  set of funct ions  B 0 + P ,  where P ranges over  the  t r igonomet r ic  po lynomia l s  

of the  form (126). I f  we denote  the  unique e lement  of smal les t  no rm in the  set b y  B 0 § H,  

then  (B 0 + H) W (B 0 + H)* is a cons tan t  posi t ive  semi-def ini te  m a t r i x  C. W e  have  moreover  

de t  C = exp f log de t  W d a ,  f rom (44) of the  first  pape r  and  the  e l e me n ta ry  equa l i t y  

(det C) 11N = inf t r  [DCD*],  where D var ies  over  cons tan t  mat r ices  of d e t e r m i n a n t  1. 

Now t ake  W = A A*, B 0 = I .  F r o m  the  def ini t ion i t  follows d i rec t ly  t h a t  A is left- 

outer  if and  only  if ( I  § H ) A  = A o. If  th is  is the  case, obv ious ly  C = AoA~; and  if ( I  + H ) A  

= A 0 + . . .  is no t  cons tant ,  t hen  C - A o A  ~ is posi t ive  semi-def ini te  and  no t  0. Therefore  

A is le f t -outer  if and  only  if C = AoA~, and  in any  case A0A ~ ~< C. 

F r o m  these facts  we have  

f log de t  ( A A * ) d a  = de t  C ~> de t  (AoA~) (131) 

wi th  equa l i t y  if and  only  if C = AoA~, which is to  say  if A is lef t -outer .  This is equ iva len t  

to  the  s t a t emen t  of the  theorem.  

The a rgumen t  shows inc iden ta l ly  t h a t  the  genera l iza t ion  of SzegS's Theorem proved  

b y  Masani  and  Wiener  ([16], I ,  p. 145) is essent ia l ly  the  same as ours. 

Our me thod  of proof  suggests  t h a t  i t  is possible to  view the  m i n i m u m  prob lem in the  

p a r t i a l l y  ordered  sys tem of H e r m i t i a n  m a t r i x  functions,  even t hough  this  sys tem is no t  

a ]att ice,  ins tead  of using the  t race  func t ion  to  define a no rm wi th  scalar  values.  The proof  

ju s t  given can be modif ied  to  ca r ry  out  th is  idea,  or one can appea l  more  d i rec t ly  to  the  

o r thogona l i t y  re la t ions  (49, 50, 51) of our  f irst  paper .  

The nex t  two theorems  express  p roper t ies  of outer  funct ions  which are essent ia l  for 

our  purpose.  W e  s t a t e  only  the  version pe r ta in ing  to  lef t -outer  funct ions.  

T~]~OREM 9. Let A be a le/t-outer ]unction. Almost everywhere the null-space ~ ( e  *x) 

o / A  (e ix) is equal to the null-space o/A0,  and so in particular is independent o] x and has con- 

stant dimension. 
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Proo/. Suppose  t h a t  JB (n) = ( I  +P(~))A is a sequence of funct ions of the  form (125) 

converging to A 0 in the  no rm of L 2. The entr ies  of B (n) are squa re - summable  scalar  funct ions  

which converge to  the  corresponding cons tan t  entr ies  of A 0 in the  scalar  space L 2. Choose 

a subsequence converging pointwise  a t  each e n t r y  for a lmos t  all  x. I f  Y is a cons tan t  co lumn 

vec tor  such t h a t  A (e ix) Y = 0 for some e ix in the  set of convergence,  t hen  also B (n) (e ~x) Y = 0 

for each n of the  subsequence,  and  so in the  l imi t  also A 0 Y = 0. Therefore,  wi th  the  excep- 

t ion of a set of po in ts  having  measure  zero, ~ (e ~x) is conta ined  in the  nul l -space of A 0. 

I n  the  o ther  direct ion,  we mus t  show t h a t  A (e ~) Y - 0 a lmos t  everywhere  if Y is a n y  

cons tan t  vec tor  such t h a t  A 0 Y = 0 .  L e t  Z(e ~) be the  ana ly t i c  vec tor  funct ion  A(e  ~) Y. 

E v i d e n t l y  B(n)Z will converge in the  space L 2 of co lumn-vec tor  funct ions to  A 0 Y = 0; 

or w h a t  is t he  same, - P ( n ) Z  will t end  to  Z. Assuming  t h a t  Z is no t  iden t ica l ly  zero, le t  

p be the  smal les t  pos i t ive  integer  (cer ta in ly  grea te r  t h a n  one) such t h a t  e P~zZ is not analy t ic .  

(The exis tence of p depends  on the  fact  t h a t  we are deal ing wi th  the  group of integers.)  

B y  the  a rgumen t  jus t  given, e- '~xz is the  l imi t  of funct ions  - e PixP(~)Z, each of which is 

ana ly t ic  because the  ana ly t i c  t r igonomet r ic  po lynomia l s  p(n) have  no cons tan t  te rm.  The  

l imi t  funct ion  mus t  i tself  be ana ly t ic ,  con t r a ry  to assumpt ion ,  and  the  con t rad ic t ion  shows 

t h a t  Z was the  nul l  funct ion,  as we h a d  to  prove.  

I f  the  le f t -outer  funct ion  A has  non- t r iv ia l  nul l -space ~ ,  we can res t r ic t  A to the  

complement  of ~ and  so ob ta in  a le f t -outer  funct ion  wi th  the  same range  as A b u t  t r iv ia l  

null-space.  I t  is nea r ly  a lways  convenient  to pe r fo rm this reduc t ion  in appl ica t ions ,  so t h a t  

the  ou te r  funct ion  maps  a f ixed doma in  space onto  a var iab le  range space of the  same 

dimension.  

THEOREM 10. Let A be a left-outer/unction with null-space ~.  Denote by S the subs~ace 

o/ H ~ obtained by closing the linear set o] ]unctions Q A,  where Q ranges over all analytic trigono- 

metric polynomials. Then S consists exactly o] those/unctions in It  2 which vanish on ~.  

Proo/. W e  shah prove  the  theorem for the  case where ~ / i s  t r iv ia l ,  and  the  general  case 

follows easily.  B y  defini t ion,  S conta ins  the  cons tan t  funct ion A 0. Since also S is i nva r i an t  

under  mul t ip l i ca t ion  on the  left  b y  ana ly t i c  t r igonomet r ic  polynomials ,  S contains  each 

func t ion  QA o. Using the  fact  t h a t  A 0 has  full  rank ,  i t  is easy  to  see t h a t  eve ry  ana ly t i c  

t r igonomet r i c  po lynomia l  of p roper  shape has  th is  form, so t h a t  indeed S coincides wi th  

H 2 . 

COROLLARY. Let A be a left-outer/unction in H 2, with coe//ieients A n. For any non- 

negative integer n, 

B (n) (e ~) = A o + A~e r + . . .  + Ane n~ (132) 

can be approximated by ]unctions ( I  + e(n+l)~XQ)A, where Q ranges over all analytic trigono- 

metric polynomials. 
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F o r  n = 0 th is  is exac t l y  the  def ini t ion of outer  funct ion.  I n  general ,  each coefficient 

A j  of A vanishes on ~ ,  the  nul l -space of A,  because i t  is an  average  of values  A (eiX), each 

of which vanishes  on ~ .  Hence  bo th  B (n) and  A - B (n) van ish  on ~ .  The  ana ly t i c  funct ion 

e -(~+l)~z (A - B  (~)) can be a p p r o x i m a t e d  b y  funct ions QA,  according to  the  theorem,  so 

t h a t  

A - e (~+~)~ Q A  (133) 

approximates B (n), and this is equivalent to the statement of the corollary. 

A scalar outer function is determined by its modulus, up to multiplication by a 

eonstamt of modulus I. Our next theorem generalizes this result to matrix functions. 

T/ tEORE•  11. I / A  and B are left-outer/unctions in I t  2 such that A A *  = B B *  almost 

everywhere, then there exists a constant unitary matrix U such that B = A U. 

Proo/. Le t  SA and  SB denote  the  subspaces  of H 2 spanned  b y  A and  B, respect ively ,  

in the  manner  of Theorem 10. I t  follows f rom the  hypothes is  of th is  theorem t h a t  the  map-  

ping which carries Q A onto Q B establ ishes a u n i t a r y  t r ans fo rma t ion  of S A onto S~. F u r t h e r -  

more,  A 0 corresponds to  B 0 under  this  t rans format ion ;  for A 0 and  B 0 are charac te r ized  

b y  the  fact  t h a t  the i r  norm is min ima l  in SA and  SB respect ively .  I t  follows t h a t  Q A  o and  

Q B  o correspond,  and  in pa r t i cu l a r  C A  o and  C B  o, if C is any  cons tan t  ma t r ix .  F r o m  the  

re la t ion  

HCA0[ I = ][CB0] I (134) 

va l id  for every  cons tan t  m a t r i x  C, the  def ini t ion (102) implies  t h a t  AoA*  = BOB*. I f  

D is the  pos i t ive  semi-def ini te  square roo t  of this  p roduc t ,  we can f ind cons tan t  u n i t a r y  

matr ices  T and  U such t h a t  A 0 = D T and  B o = D U, or 

B o = A o (T* U). (135) 

Now T* U is a u n i t a r y  ma t r ix ,  and  A (T* U) is an ou te r  funct ion whose leading coefficient 

is the  same as t h a t  of B. Changing the  nota t ion ,  we shal l  comple te  the  proof  b y  showing 

t h a t  le f t -outer  funct ions  A a n d  B are ident ica l  if t h e y  sa t is fy  the  hypothes i s  of the  theorem 

and  have  the  same cons tan t  term.  

Le t  W = A A * -  B B * .  F i n d  a sequence of t r igonomet r ic  po lynomia l s  p(n) of the  

form (126) such t h a t  ( I  +P(n))A converges to  A 0 in I t  2. A s t a n d a r d  convex i ty  a rgumen t  

[10] shows t h a t  I + P(n) converges in L 2 (W) to a l imi t  funct ion  I + H such t h a t  ( I  + H ) A  = 

A 0. Since A and  A o have  the  same null-space,  th is  equa l i ty  implies  t h a t  I + H is non- 

s ingular  on the  range  of A.  Now the  correspondence be tween  SA and  SB which has  been 

def ined carries ( I  + P(~))A onto  ( I  + P(n))B, which therefore  converges to  (I  + H ) B  = 

B o = A 0. As before ( I  + H)  is non-s ingular  on the  range  of B, and  so these two resul ts  
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show tha t  A = B on the  complement  of the null-space of A0. Bu t  A and B vanish themselves 

on the null-space of Ao, so the proof is complete. 

Our left-outer functions are identical with the optimal/actors of Masani and Wiener, 

and their properties are therefore no t  entirely new. The class of outer functions we introduce 

now has not,  so far as we know, been considered before. 

D E F I n I T I O n .  A /unction V in L 2 (o /any  shape) is a partial  i sometry i / i t  preserves 

norm as a mapping o/ the complement o / i t s  null-space onto its range. 

I n  order for V to be a part ial  isometry it is necessary and sufficient t ha t  V* V be the 

orthogonal  project ion on the complement  of the null-space of V (in the domain space), 

and tha t  V V* be the projection on the range of V (in the range space). 

To a matr ix  funct ion A we associate the range/unct ion ~ whose value at  e ~x is the 

range of the t ransformat ion A (e~X). If  A belongs to H 2 (of any  shape) we say tha t  ~ is 

analytic. The principal result of this development,  from which the matr ix  factorization 

theorems will be derived, is 

THEOREM 12. Every analytic range/unction is the range o/ a le/t-outer partial isometry. 

Proo/. Let  A belong to H 2 with p rows and N columns, and let ~ be its range function. 

Then W = A A* is a positive semi-definite matr ix  funct ion of order p with the same range 

funct ion ~,  and W(e  ~z) maps ~(e  ~x) onto itself for each e ~z. We have shown tha t  there is a 

left-outer funct ion B such tha t  W = B B * ,  and B can be chosen to have q columns, where 

q is the  rank  of the canonical process in L 2 (W). The range of B is the same range funct ion 

~,  and so every analyt ic  range funct ion is the range of a left-outer function. Now we have 

to find an  outer  part ial  isometry with the same range. 

B is of rank q at  each point. For  otherwise we could restrict B to the complement  of 

its null-space (which is constant  because B is outer) and find an analyt ic  funct ion C with 

fewer t h a n  q columns such t h a t  CC* = W. Then the  canonical process ir~ L2(W) would 

have rank smaller than  q, which is false. 

Consider now W' = B* B, a positive semi-definite funct ion of order q and full rank.  

We have 

VV' = B B* = CO*, (136) 

where C = / ~  belongs to I t  2 with q rows and p columns. Applying previous results once 

more, we can find D with at  most  q columns so tha t  I~'  = DD*;  and D can be chosen to 

be left-outer. Since W' has full railk D must  have exact ly  q columns and  be of full rank.  

Passing backwards,  

W' = .D* I)  = B* B.  (137) 
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Define V = B ~-1, (138) 

a transformation from the if-dimensional domain space of B to @. From (137) it is obvious 

tha t  V* V is the identity matr ix  of order q. Therefore V V* is the identity when it acts on 

the variable subspace @; in the complement of ~, where B* is zero, V* = (/~-1), B* and 

so also V V* vanishes. Therefore V is a partial  isometry whose range at  e ~x is ~ (eiX). 

Moreover V is analytic. Indeed, V/ )  = B, where 1) is right-outer (and left-outer by  

Theorem 8, but we do not need tha t  fact) and B is analytic. By Theorem 10, rephrased 

for right-outer functions, DQ ranges over a dense subset of I t  2 as Q varies over the analytic 

trigonometric polynomials. I f  / )Q approximates I ,  then B Q  approximates V, which 

consequently must  be analytic. 

I t  is not quite easy to prove tha t  V is left-outer, although tha t  is true, but  the difficulty 

can be avoided. Since V is analytic, we can write V V* as U U*, where U is left-outer 

with q columns (because the range of U U* has dimension q); and obviously U* U is the 

identity of order q. Therefore U is a left-outer partial  isometry whose range is ~,  and 

this completes the proof of the theorem. 

l l .  Factorizat ion theorems 

There are two kinds of factorization theorems in prediction theory. The first kind 

expresses a positive function (or a positive definite matr ix  function) as a product ]A] 2 

or A A* (for scalar and matr ix  functions, respectively), where A is analytic. The definitive 

theorem of this type for scalar functions was proved by  Szeg6 [18]. Much later Wiener 

called attention in his writings on prediction theory to the importance of this factorization 

for the subject [19], and he began the search for extensions to matr ix  functions [20]. 

The second kind of factorization theorem has its origin in a representation theorem of 

Nevanlinna, but  really took shape in the well-known paper of Beurling [6]. Now an analytic 

function A is given and is to be ~Titten as a product of simpler factors, which since Beurling 

are called inner factors and outer factors. Lax  [14] has extended Beurling's Theorem to 

matr ix  functions, giving suitable generalizations of inner and outer functions. 

In  our first paper we derived again the Wiener Theorem of first kind, and showed 

how it leads to a theorem of the second kind, although the opposite deduction has not been 

made. Our method was limited to functions of full rank. Now we shall apply the function- 

theoretic results obtained in the last pages to reduce the first factorization problem to the 

same problem for functions of full ran~. Our result, Theorem 13, is new. We shall also 

obtain Lax's  factorization of the second kind in a more precise form made possible by  

our analysis of outer functions. 
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THEOREM 13. Let W be a positive semi-definite matrix ]unction with summable entries. 

In  order/or W to have the ]orm A A * / o r  some ]unction A in tI  ~ it is necessary and su]]icient 

that the range ~ o/ W be an analytic range/unction, and that 

f log A Wd(~ > - ~ ,  (139) 

where A W is the determinant o/ W as a trans/ormation on its range. 

Proof. The necessity of the first condition is obvious. Suppose then that  W = AA*;  

we have shown that  A can be chosen to be left-outer with trivial null-space, and further 

to have the special form VB,  where V is a left-outer partial isometry mapping a fixed space 

of q dimensions onto the range ~ of W, and B (previously called /)) is an outer function 

of order q and full rank. We have then 

log A W  =log  det (BB*),  (140) 

whose integral is finite by Theorem 8. (We use the fact that  B 0 is non-singular if B is outer 

and of full rank.) Therefore the necessity of (139) is established. 

Now assume the conditions of the theorem are satisfied. Let V be the left-outer partial 

isometry which maps a fixed space of q dimensions onto the range of W. Then V* W V 

is a positive semi-definite operator in q-space, and by (139) 

f log det (V* W V)d(~ > - ~ .  (141) 

Therefore the factorization theorem for functions of full rank [10, 20] shows that  V* W V 

has the form B B*, for some analytic (in fact outer) function B of order q and full rank. 

We conclude that W = ( V B ) ( V B ) * ,  as we had to prove. 

Our factorization theorem of the second kind is this: 

THEOREM 14. Each ]unction A in t l  2 (with N rows and 19 columns) has a representation 

V B U, where V is a left-outer partial isometry, U is a right-outer partial isometrY , and B is 

a non-singular square analytic ]unction o/order q equal to the rank o / A .  Every other such 

]actorization has the ]orm ( V T) (T*  B R)(R* U)/or  some constant unitary matrices T and R. 

Proof. Find left-outer partial isometries V and U having the same range as A and A ~, 

respectively. These functions can be chosen to have q columns, but not fewer. Then U 

is right-outer, and it annihilates the same subspace as A at each point. If  we set B = V*A U*, 

then V B  U = A. Indeed, this fact is obvious on the null-space of A, where U vanishes as 

well; and on the complement of that  space it follows from the definition of B. We have to 

show now that  B is analytic. 
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Because V and U are outer in their respective senses it follows that  VoB U o is analytic, 

and so also ( V~ Vo) B (U o U~). Now V has trivial null-space, so that  Theorem 9 implies that  

V~ V 0 is non-singular. The same holds for U 0 U~. Therefore we can cancel the constant 

factors to conclude that  B is analytic. 

The unicity of the representation is a consequence of Theorem 11. 

The theorem just proved exhibits an arbitrary function A in H 2 as a product of outer 

functions with a kernel B, which is an arbitrary square analytic function of full rank. The 

structure of kernels has been studied before. We can, however, write down the main 

result ([10, p. 195; 14] easily, and we include it for completeness. 

DEFIn ITI On .  An inner function is an analytic /unction whose values are unitary 

matrices. 

By definition, an inner function is square and of full rank. Theorem 11 implies that  a 

function which is both inner and outer is constant. 

THEORnM 15. Each /unction A which is square and o/ /ull rank in tI  2 has the /orm 

C D, where C is outer and D is inner. 

Proo/. There is an outer function C such that CC* = A A * .  Let D =C-1A .  Then 

A = C D as required, and we only have to prove that D is inner. Evidently 

DD* = C 1AA*(C*)-I  = I,  (142) 

so that  D is unitary. Each function QA = Q C D  (where Q is an analytic trigonometric 

polynomial) is analytic; if QC approximates the identity, which is possible because C is 

outer, then QA approximates D at least in the norm of H 1, so that  D is analytic. This 

completes the proof. 

12. Analytic range functions 

Theorem 13 suggests the importance of characterizing in some independent way 

those range functions ~ which are analytic. We have no such characterization, but in 

this section we present further results on left-outer partial isometries and their range func- 

tions. 

THEOI~EM 16. Let A belong to H ~ with N rows and p columns, and have rank p. Let V 

be the felt-outer partial isometry with p columns onto the range o/ A.  Then we have 

f log det (A*A)da  >~ log det (A~Ao) - log det (V~ V0) (143) 

with equality i/ and only i/ A is left-outer. 
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Proo/. The null-space of A is trivial, and therefore the factor U does not appear in 

the representation for A given by Theorem 14. We have then A = V B ,  where B is square, 

with order p and full rank. Since V is a partial isometry, A * A  = B ' B ,  and 

f log det ( A * A ) d a  = f  log det (B*B)da  >~ log det (B~Bo) 

= log det (A~Ao) - log det (V~ V0). (144) 

(The iuequality is valid for square analytic functions of full rank [10], and the last equality 

holds because A o = VoBo. ) Now A is outer if and only if B is outer; and the inequality of 

(144) becomes equality precisely in that  case, by Theorem 8. This proves the theorem. 

Theorem 16 is a generalization of Theorem 8 to singular analytic functions. The 

quantity 

- d = log det (V* V0) (145) 

is negative unless V is constant, because 

1 = f t r  (V* V)da = ~  tr (V~* Vn), (146) 

and by the inequality for the geometric and arithmetic means 

[det (V~ V0)] ~Ip • tr (V~ V0). (147) 

Thus perhaps d measures the deviation of the range of V from constancy. This idea 

finds content in the following result, in which however the trace function appears instead 

of the determinant: 

THEOREM 17. Let ~ be an analytic range/unction. Then 

inf [[I - A [[~ = 1 - tr  (V 0 V~), (148) 
A 

where I is the identity o/ order N,  V is the le/t-outer partial isometry with range ~ and trivial 

null-space, and A ranges over the square/unctions o/ It  ~ o/ order N having range in ~. 

Proo]. Suppose the dimension of ~ is p, so that  V has p columns. Then every function 

A with range in ~ has the form V B, where B belongs to I t  2 with p rows and N columns. 

Let us write I = V V* + J, where V V* is the orthogonal projection on ~, and J the pro- 

jection on the orthogonal complement of ~. Since the range of V V* - A is orthogonal to 

that of J,  

]] I - A [[~ = [] V V* - VBII u + []g]] 2. (149) 

Now J is a projection on a subspace with dimension N -  p, and it follows that  ]]J]]~ = 

(N - p ) /N .  For the other term we have 
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f t r  [V(V* - B)( V - B*) V*]da = f t r  [(V - B*)(V*  - B)]da, (150) 

where  the  factors  have  been  p e r m u t e d  in the  b racke t  on the  left,  and  V* V o m i t t e d  as 

r edundan t ,  in order  to  ob ta in  the  r igh t  side. F r o m  the  Pa r seva l  equa l i t y  (108) i~ is obvious  

t h a t  the  ana ly t i c  funct ion  B a p p r o x i m a t e s  the  con juga te -ana ly t i c  funct ion  V* bes t  when 

B = V*, a cons tan t  funct ion.  Therefore  the  min ima l  funct ion  A in (148) is V V*. E va lua t i ng  

(150) wi th  this  choice of B gives P I N -  t r  (V0 V*). W e  a d d  this  to  []J[I e =  ( N -  p ) / N  to 

ob ta in  the  r ight  side of (148). 

Theorem 17 presents  the  outer  pa r t i a l  isometr ics  as solut ions of a min ima l  prob-  

lem. I t  is possible  t h a t  one could ob ta in  t hem b y  this  p r o p e r t y  in the  first  place,  and  

thus  develop the  subjec t  f rom a different  po in t  of view. 

I n  the  s t a t e m e n t  of Theorem 17 i t  is no t  necessary  to  assume t h a t  ~ is an  analytic 

range  funct ion.  There  is st i l l  a min ima l  funct ion  A = V V*, where the  range of V is con- 

t a ined  in ~ ,  and  devia tes  least  f rom i t  in the  metr ic  sense descr ibed b y  the  theorem.  

E v e n  obvious  quest ions a b o u t  ana ly t i c  range  funct ions  lead  to  diff icult  funct ion-  

theore t ic  problems.  F o r  example ,  we do no t  know which ana ly t i c  range  funct ions have  

complements  of the  same type .  W e  believe t h a t  more is to be said in th is  subject .  

References 

[1]. N. I.  AeHtESE~, Vorlesungen i~ber Approximationstheorie. Berlin, 1953. 
[2]. t~. ARENS, A Banach algebra generalization of conformM mappings of the disc. Trans. 

Amer. Math. Soc. 81 (1956), 501-513. 
[3]. - - ,  The boundary  integral  of log I(I) [ for generalized analytic functions. Trans. Amer. 

Math. Soc. 86 (1957), 57-69. 
[4]. R. ARENS & I. M. SINGER, Funct ion values as boundary  integrals. Proc. Amer. Math. Soc. 

5 (1954), 735 745. 
[5]. - - ,  Generalized analyt ic  functions. Trans. Amer. Math. Soc. 81 (1956), 379-393. 
[6]. A. BE~UtH~G, On two problems concerning linear t ransformations in Hi lber t  space. 

Acta Math. 81 (1949), 239-255. 
[7]. J .  L. DOOB, Stochastic Processes. New York, 1953. 
[8]. O. HANNE~, Deterministic and non-deterministic s ta t ionary  random processes. Ark. 

Mat. 1 (1950), 161-177. 
[9]. H. HELSON, Conjugate series and a theorem of Paley. PaciJie J. Math. 8 (1958), 437-446. 

[i0]. H. NELSON & D. LOWDENSLAGE~, Predict ion theory and Fourier  series in several variables.  
Acta Math. 99 (1958), 165-202. 

[11]. - - ,  Invar ian t  subspaces. Proc. International Symposium on Linear Spaces, Jerusalem, 
1960 (to appear).  

[12]. K.  HOFFMAN, Boundary  behavior  of generalized analyt ic  functions. Trans. Amer. Math. 
Soc. 87 (1958), 447-466. 

[13]. K. KARNUNEN, ~ b e r  die St ruktur  station~rer zuf~lliger Funkt ionen.  Ark. Mat. 1 
(1950), 141-160. 



PI~EDICTION THEORY AND FOURIEI~ SERIES IN SEVERAL VARIABLES. II 213 

[14]. P. D. LAx, Trans la t ion  invar ian t  subspaces.  Acta Math. 101 (1959), 163-178. 
[15]. P. MASA~I, The predic t ion  theory  of mu l t i va r i a t e  s tochast ic  processes, I I I .  Acta Math. 

104 (1960), 141-162. 
[16]. P. MASANI & N. WIENER, The predict ion t heo ry  of mul t iva r i a t e  s tochast ic  processes. 

Acta Math. 98 (1957), 111-150; idem, I I ,  Acta Math. 99 (1958), 93-137. 
~17]. - - ,  On b ivar ia te  s t a t ionary  processes and the  fac tor iza t ion  of ma t r ix -va lued  functions.  

Teoria veroyatnosti i ee primenenie (Moscow) 4 (1959), 322-33i .  
[18]. G. SZEG6, Uber  die R a n d w e r t e  einer analy t i schen F tmkt ion .  Math. Ann. 84 (1921), 232-  

244. 
[19]. N.  WIENEI~, Extrapolation, Interpolation, and Smoothing o/ Stationary Time Series. N e w  

York,  1949. 
[20]. - - ,  On the  fae tor iza t ion  of matr ices.  Comment. Math. Helv. 29 (1955), 97-111. 
[21]. H .  WOLD, A Study in the Analysis o] Stationary Time Series. Uppsala ,  1938. 

Received .February 10, 1961 


