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2 K. E. AUBERT

Introduction

Since Kummer and Dedekind introduced ideals in connection with the problem of
unique factorization of algebraic integers, numerous other notions of ideal have made
their appearance in various branches of mathematics. In ring theory alone van der Waerden,
Artin and especially Krull have introduced a whole series of new notions of ideal devised
for different arithmetical purposes. These notions in ring theory can all be subsumed under
a basic idea of Priifer which has later been successfully applied in greater generality by
Lorenzen and others to the arithmetics of semi-groups and ordered groups.

However, outside ring theory one finds that a considerable role is played by objects
having a strong formal resemblance to ideals in rings. Many of these objects have therefore
also appropriately been termed ideals. We have ideals (and filters) in Boolean algebras
and more general lattices. We have radical (perfect) differential ideals in differential rings
and various notions of ideal in semi-groups, m-lattices, ordered groups and ordered rings.
Also, normal subgroups, the monadic ideals of Halmos and differential ideals in differential
rings are pertinent to an axiomatic slightly more general than the one adopted in this paper.
(See the lemma of section 19.)

These notions of ideal have been used for many different purposes. If we were to
mention one group of questions outside the domain of general arithmetics for which
various notions of ideal have played a decisive part, it would above all be the questions
related to functional representation of various types of ordered and topological algebraic
systems such as Boolean algebras, ordered groups, ordered rings and Banach algebras.
It is sufficient to refer to the fundamental work of Stone, Gelfand and Kadison on the
maximal ideal method and its numerous applications in connection with functional re-
presentation, compactification, ete.

The formal analogies between the existing notions of ideal suggest at once that a
great number of results in the special ideal theories may be derived from a common source.
The purpose of the present paper is to exhibit such a common axiomatic source and to lay
the foundation of a general ideal theory based on it. The basic idea of the present approach
which is to axiomatize the passage from a set to the ideal generated by that set, goes back
to Priifer [27]. This idea was generalized and used systematically by Krull and Lorenzen.
But their investigations had a purpose entirely different from ours and were in fact directed
exclusively towards the arithmetic of integral domains and ordered groups. The axioms
of Lorenzen are, as they stand, so restrictive that they exclude application to a great
number of the special concepts of ideal we have mentioned above. However, by an appro-

priate generalization these axioms become relevant for the general purposes we have in
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mind. One of the pleasent features of our axioms is that, in a precise sense, they represent
the most general form of a reasonable ideal theory. In fact any weakening of the crucial
axiom 1.3" (at least beyond the condition given in the lemma of section 19) will imply
that most of the basic rules of calculation, valid in the particular cases, will be lost.

The contents of the present paper are entirely elementary. In fact, only results which
cover the most classical parts of the ordinary ideal theory of rings is given here. We shall
in particular show that most of the results of the ideal theory of Krull [16] of rings without
chain condition and the theory of Noetherian and Dedekindian rings carry over to this
general setting. However, certain crucial results will require additional hypotheses. It is
for instance not true for the general type of ideals considered here—called z-ideals—that
an irreducible z-ideal is always primary in the presence of the ascending chain condition
for z-ideals. Since the additive operation in ring theory is no longer present in our axioms
it also seems difficult to carry over certain results from the ideal theory of rings which
make strong use of additive properties. Still, certain arguments which appear to have
an additive character can easily be reformulated so as to fit in the present theory. Examples
of this are the results on relatively prime z-ideals, generalizing the exposition of van der
Waerden [33; pp. 80-83]. One essential feature of ordinary ideals in rings is that they
give rise to quotient rings or equivalently that they form kernels of ring homomorphisms.
To give an entirely satisfactory imitation of this for general z-ideals seems difficult, but we
can attach a notion of congruence to each x-ideal which, when specialized to rings, comes
close to the usual congruence modulo an ideal.

In the last two chapters of the paper we have gathered some applications of the general
theory. In the chapter on structure spaces we obtain a general characterization of a com-
pact space X in terms of 2-systems defined on semi-groups of continuous functions on X.
This theorem contains well-known C(X)-theorems of Gelfand-Kolmogoroff, Stone and
others. In the last chapter we have preferred to emphasize the variety of the possible
applications rather than going into any detail. We prove in particuiar a representation
theorem which shows that the most developed part of the theory of m-lattices is subsumed
under the present theory. On the other hand, we prove that the crucial axiom 1.3” cannot
be formulated within the theory of m-lattices. This together with other facts seems to

indicate clearly that the theory of 2-ideals has considerable advantages over the ideal
theory based on m-lattices.

We wish to thank Dr. Isidore Fleischer for a great number of valuable suggestions given

during numerous conversations on the subject matter of the present paper.
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CHAPTER 1

General x-systems in commutative semi-groups

1. The definition of an z-system. By & semi-group we understand a set S in which there
is defined a binary associative operation. We shall denote the operation multiplicatively
and say that S is commutative if ab=ba for all a, b€ 8. For the sake of simplicity we shall
here suppose S to be commutative. There is no difficulty in extending the following basic
definitions and results to the non-commutative case. Indications concerning this extension
will be given at the end of Chapter 4.

We shall say that there is defined a sysfem of z-ideals or shortly an z-system in S if
to every subset A of § there corresponds a subset A4, of § such that

11 A<Ad,,

12 A< B,»>A4,<B,,

1.3 AB,= B,N (4B),.

A - B here denotes the set of all products a-b with a€A and b€ B. The condition 1.3 is

equivalent to the conjunction of the following two conditions
13" AB,c B,
13" AB,=(AB),.

In 1.3 we get an equivalent formulation if we replace A by a single element. We shall also
refer to the passage from A to A4, as an z-operation. We remark that the conditions 1.1
and 1.2 just express that an z-operation is a closure operation. Condition 1.3’ is the multi-
plicative ideal property and the crucial axiom 1.3” says that the multiplication in § is
continuous with respect to the z-operation. We shall therefore also refer to this axiom as
the continuity axiom. If A =A_ we shall say that 4 is an z-ideal. In general A4, is the z-
ideal generated by A. An r-system is said to be of finste character if for N finite
4.= U N, (1
NCA
i.e. the z-ideal generated by 4 equals the set-theoretic union of all the z-ideals generated
by finite subsets of 4. If we have defined only a finite x-system, i.e. supposing only that
1.1, 1.2, and 1.3 are satisfied for finite sets A and B we can use (1) to extend it to an
x-system.
Examples. The above definition of an z-system includes as special cases nearly all the
ideal concepts we have been able to find in the literature—for example all the ideal concepts

in rings (see especially [18]), semi.groups, distributive lattices and m-lattices, perfect
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differential ideals in differential rings, closed ideals in topological rings, convex lattice-
closed subgroups in lattice ordered groups, normal subgroups, monadic and polyadic ideals
in Boolean algebras and numerous other more or less familiar instances. In most of these
examples it is clear which semi-group is going to play the role of S. Let us just mention
that in the case of convex subgroups the multiplication is | @ | n || and in case of normal
subgroups it is the (non-commutative and non-associative) commutator multiplication
aba—1b-1. For a closer examination of the above examples and their relationship to the
general theory we can refer the reader to Chapter 5.

As to the term “z-ideal” this seems to be an appropriate name since various special
cases bear names such as v-ideal, r-ideal, l-ideal, ete. The specialization is thus obtained
by putting special letters in place of the indeterminate letter .

2. Comparison with the axiom system of Lorenzen. The z-systems defined above should
more precisely be termed integral x-systems in contradistinction to the fractional z-systems
to be defined in Chapter 3. When comparing with the earlier “fractional” definitions of
Priifer, Krull and Lorenzen we should therefore rather have this latter definition in mind.

If we formulate Lorenzen’s definition in the case of integral r-ideals his axioms are as follows

21 AcA,
22 A<B,~A,<B,
23 {a},=a8,

24 a-A,=(ad),

where § is now supposed to be a commutative semi-group with cancellation law (ab=
ac=b=c) and an identity element e(ea =a for all a€S). The condition 2.3 expresses that
the r-ideal generated by a single element @ consists of all the multiples of a. We shall also
denote the set aS by (). We note that the axioms 1.1 and 1.2 are the same as Lorenzen’s
axioms 2.1 and 2.2. Apart from the fact that we remove the condition that S shall satisfy
the cancellation law and have an identity, the range of applications of the theory is also
essentially broadened by our weakening of the conditions 2.3 and 2.4. 1.3’ is & consequence
of 2.3 and 1.3 is a consequence of 2.4. What we have retained of 2.3 is only the fact that
any z-ideal is closed with respect to multiplication with an arbitrary element of S. We
remark, however, that in the axiom system of Lorenzen we can replace 2.3 by the weaker
form 1.3’ because of 2.4 and the presence of an identity element. Indeed, by 2.4 a{e), =(a),
and by 1.3’ (e), =8 which together give 2.3.

Among important z-systems which generally do not satisfy either 2.3 or 2.4, and where
8 both satisfies the cancellation law and has an identity, are the z-systems defined by the
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perfect differential ideals of a differential ring, the convex lattice-closed subgroups of a
lattice ordered group and the closed ideals of a topological ring. Take for instance the
differential polynomial ring Z[x] in one variable over the rational integers and let deriva-
tion have its ordinary meaning. Denoting the passage from A to the perfect(?) differential
ideal generated by 4 as the d-operation, 2.3 is not satisfied since {x}s=+ xS =x-Z[x]. From
the above remark on the implication 2.4 and 1.3’ = 2.3 in the presence of an identity we
conclude that 2.4 is not satisfied. We have, for instance, x{1}s =+ {z}s. In a topological ring,
with an identity, 2.3 and 2.4 fail to hold if there exist principal ideals which are not closed.

3. Operations on z-ideals. Equivalent forms of the continuity axiom. The basic operations
in usual ideal theory are the operations of intersection, union, multiplication and residua-
tion. We shall, in this section, state some of the most fundamental properties of these
operations in the case of general z-ideals. It will turn out that these properties depend
entirely on the validity of the continuity axiom 1.3".

It follows trivially from 1.1 and 1.2 that the (set-theoretic) intersection of any family

of z-ideals is again an z-ideal and since § is an z-ideal we obtain

ProprosiTioN 1. The family of all x-ideals of S forms a complete lattice LY with
respect to set-inclusion.

In contradistinction to intersection, the set-theoretic union of two z-ideals is in general
not an z-ideal. Thus the set-theoretic union is generally different from the union within
the lattice L®. We shall, therefore, term this latter operation z-union and denote it by
U ;. Thus

U.4°=(U 4°),

iel ierl

In ring theory the product of two ideals a and b is defined as the ideal generated by a-b.
Similarly the z-product of two subsets A and B of S is defined as the set (4.B),. We denote
this product by Ao, B or more briefly by Ao.B and call it 2-multiplication.

TrEOREM 1. The following statements are equivalent under the hypothesis that the
passage A—>A, is a closure operation:

A. The continuity axiom AB,< (AB),.

B. AoB=AoB, (or AoB=A4,0B,).

C. The one-sided distributive law A-(BU ,C)S ABU  AC.

D. The x-multiplication s distributive with respect to z-union, ie. 4o(BU,C)=
AoBU _ 40C.

(1) A set B is perfect if a” € B implies a € B.
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Proof. 1t is sufficient to establish, for instance, the following sequence of implications
C=D=B=A=C. This is a routine check and can be left to the reader.
Under the additional hypothesis that S has an identity we have the following slightly

more astonishing equivalence.

TEEOREM 2. If 8 contains an identity e and the passage A—A, is a closure operation,
then the continuity axiom is equivalent to the associativity of the x-multiplication.

Proof. Using the continuity axiom we obtain Ao(Bo()=(A4(BC),),<(4A(BC)),=
((4B)C), S ((4B),C),=(A0oB)o(. In the same way (AoB)oC < Ao(Bo(). Conversely,
putting C'={e} in Ao(Bo()=(A40B)oC we get Ao B,=Ao B which according to Theorem
1 is equivalent to the continuity axiom.

We now pass to the operation of residuation. If 4 and B are subsets of § we denote
by A: B the set of all ¢c€ S such that cB< 4 and call 4: B the quotient of A by B. If B={b}
consists of a single element, we write 4:b instead of 4:{b}. From the definition it follows
that (4: B) BS A and, therefore, also that (A,: B)o BS A4,. Because of 3’ we always have
A,S A,:B. The identities

(N 4°):B=N (4°:B), 2)
{fel iel
and A:UB®=N (4:B%). (3)
iel iel

are essentially set-theoretical and are readily seen to be valid. As shown by the following
theorem, other essential properties of the operation of residuation are only valid under
the assumption of the continuity axiom.

TaEOREM 3. The following statements are equivalent under the hypothesis that A—A,
18 a closure operation:

A. The continuity axiom AB,< (AB),.

B. (4,:B).,=A4,:B.

C. (A4,:b),=A4,:b.

D. A,: B,=A,:B.

E. (4:B),< A4,:B.

F. The dual distributive law A,: U, B® =‘r) (4.:B®). If 8 contains an identity we

iel

may also add the equality
G. (4,:B):C=4,:(Bo0).
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Proof. To show the equivalence of the first six properties we may, for instance, establish

the following sequence of implications

C:B:A::»F$ D=E=C.

C= B: Using (3) and the fact that an intersection of x-ideals is again an z-ideal we find that
A,:B= ) A,:b is an z-ideal if C is satisfied.

deB

B= A: Since BS(4B),:4 we conclude from B. that B,< (4 B),:4, which is A.
A =F: Obviously
4,:U,BY<4,:B%,

iel

for all + and therefore

4,:U.BY<= N (4,:B".
iel fel

Conversely, if c€ N (4,:B"), we have ¢BY< A4, for all i. Hence,

tel

¢ U;B?=c(U B"),<(c U B),=(U cB®), <= 4..
iel fel ie’

fel

F= D: D follows by putting B” =B for all  in F.

D = E: Condition D is equivalent to the implication CB< A,= CB, < 4_. Interchanging
B and C we obtain the condition E.

E=C: We obtain C by putting 4, instead of A and {b} instead of B in E. Using the con-
tinuity axiom we can easily prove G: If d€(4,: B):C this means that d(BC)<S 4,
and, therefore, d(BC),< (d(BC)), S A, showing that d€A,:(Bo(). The inclusion
4;:(BoC0)<(A;:B):C is equally obvious. Conversely, putting C'={e} in G. we
obtain D.

We shall refer to a set A:a as a residual of 4. For a fixed element a €S the mapping
f. which maps b€S into ¢b will be called a translation and the set ad is a translate of 4.
The following two propositions give a further clarification of the continuity axiom and its
stronger counterpart in the Lorenzen theory.

ProrosiTioN 2. The condition (aB), < aB, is equivalent to the fact that the translates
aB_ of an z-ideal B, are all z-ideals.

Proof. Assuming that B, is an z-ideal and applying the inclusion in the proposition
we get (aB,), < a(B,),=aB,, showing that the translate aB, is also an z-ideal. Conversely,

if aB, is an z-ideal we have (eB),< (aB,),=aB,.
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PRroOPOSITION 3. In a group the equality aB,=(aB), is equivalent to either of the two
inclusions a B, < (aB), and aB, =2 (aB), and in this case the x-system will also be an (infegral)
r-system in the sense of Lorenzen.

Proof. Assuming, for instance, aB,< (aB), and replacing B by aB and a by a! we
get a~'(aB), < B,. Multiplication on both sides by a gives (¢ B), < a.B, as desired. The latter
half of the proposition follows from the implication 2.4 and 1.3'=2.3 mentioned in 2.

4. An alternative definition of the x-systems. Just as the notion of a topological space
may be defined in various ways—for instance, by a closure operation or by a family of
closed sets—the z-systems also permit similar alternative definitions. To the definition of
a topological space by closed sets corresponds here the definition of an z-system by a
family of x-ideals. The precise connection between the two definitions is given by the
following:

THEOREM 4. Let S be a commutative semi-group and let X be a non-void family of subsets
of 8, called z-ideals, which satisfy the following two conditions:

4.1 The intersection of any non-void family of x-ideals is again an x-ideal.

4.2 Any residual of an z-ideal A, is an z-ideal containing A,.

Let A be a subset of S and put
A:= n Bz

Bzex
AC B:

then the correspondence A->A, defines an x-operation with respect to which the family of
z-ideals coincides with X. This establishes a one-to-one correspondence between the x-systems
tn 8 and the families X satisfying 4.1 and 4.2.

Proof. It is well known that there is a one-to-one correspondence between the general
closure operations on S satisfying 1.1 and 1.2 in § 1 and the families of closed sets satisfying
4.1 and the condition that the entire set S is closed. This latter condition is satisfied in
our case. For by the second half of 4.2 SA4,< A_ which implies that 4,:a=S8 whenever
a€A,. The first half of 4.2, therefore, assures that S€X. The theorem now follows from
Theorem 3 which shows that 1.3 and 4.2 are equivalent conditions.

The analogue of Theorem 4 for r-systems in the sense of Lorenzen can be formulated
as follows:

THEOREM 5. Let 8 be a commutative semi-group with an identity element. Then there is
a one-to-one correspondence (defined in the same way as in Theorem 4) between the (integral)
r-systems of Lorenzen satisfying 2.1, 2.2, 2.3 and 2.4 and the families R consisting of subsets
of 8 such that the following conditions are satisfied.
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4.1* R is closed under arbitrary (non-votd) tntersections.

4.2* R is closed under the operations of taking residuals and translates. The translate of
a set AER 1is conlained in A.

Proof. From Theorem 3 and Proposition 2 it follows immediately that 4.1* and 4.2*
are satisfied by the family of r-ideals defined by 2.1-2.4. Conversely, 4.2* implies SER
and the mapping

A— N B,
e
is because of 4.1* a closure operation. Using 4.2*, Theorem 3 and Proposition 2 it is clear
that this closure operation satisfies 2.4. By the second half of 4.2* Sa < {a},. On the other
hand, S€R implies by 4.2* that Sa€R. Since § is assumed to have an identity a € Sa and
2.3 follows.

Remark. The presence of an identity element is essential in the above argument.
However, in the original paper of Lorenzen, where only semi-groups with cancellation law
are considered, it is not necessary to postulate the existence of an identity since this follows
from the axiom 2.3. For in a semi-group with cancellation law the existence of an equation
of the form b=ab implies the existence of a unique identity.

Returning to general z-systems we shall now see how the condition that an z-system
be of finite character is expressed in terms of the family X of all z-ideais in S. By a chain
of z-ideals we understand a family of z-ideals such that for any two of its members 4,
and B, we have either 4, < B_or B,S 4,.

TEEOREM 6. An x-system is of finite character if and only if the set-theoretic union of
any chain of x-ideals is an z-ideal.

Proof: Let = be of finite character and let {A‘,”}f., be a chain of z-ideals. Since x
is of finite character we only need to show that

N.c U 49
tel
whenever N is a finite set contained in the above union. This is obvious since N being a
finite set is contained in one of the 4¥. The converse can be shown in the following way.
Let A be an arbitrary subset of S and let B be a subset of 4 such that any z-ideal of the
form (BU N),, where N is a finite subset of 4, is of finite character. The subsets B of 4
having this property form an inductive family B. For if {B"};; forms a chain in B, the
union U B® will again belong to B since for any finite set N < 4

iel
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(¥U U B%.=(U (B°UN)).= U (B°U M),
iel tel tel

using here the condition that the union of a chain of x-ideals is an z-ideal. Any element in
the latter union is contained in some (B® U N),; hence in some N; where N’ is a finite set
contained in B U N. This shows that B is inductive. By Zorn’s lemma B contains a
maximal member B'. If B'’+ A4 we would have B’ U N € B for all finite N < .4 — B’ contra-
dicting the maximality of B’. Thus B'=4 and x is of finite character.

Calling a family F of subsets of S chain-closed if the set-theoretic union of the members
of any chain in F itself belongs to F, we get by combining Theorems 4 and 6.

THEOREM 7. There is a one-to-one correspondence between the x-systems of finite charac-
ter and the chain-closed families satisfying the conditions of Theorem 4.

S. (y,2)-homomorphisms and congruence modulo an z-ideal. The usual congruence modulo
an ideal in & ring is defined by a purely additive property and it seems therefore difficult
to give a general definition of a congruence modulo an z-ideal which yields the usual
notion of congruence when specialized to rings. We shall show, however, that it is possible
to define a general notion of congruence which comes close to the usual one in the case of
rings and which has similar properties.

Let us first state a simple lemma which will be used below.

LeEMMaA 1. Let ¢ be a homomorphism of a semi-group S onto a semi-group T and let A
and B be two subsets of T. We then have p=(4)-¢g~(B) S ¢~(A B) and ¢~1(4: B)=¢(4):
¢~(B).

Proof. Let a€A and b€B. Then ¢(p~i(a)-p~1(b))=a b since ¢ is a homomorphism.
This means that ¢~(a)p~1(b) S ¢p~(ab) S ¢~ (A B). Therefore

¢ (A4) 9 (B)= alEJAcp“ @- U b)) = }e{"’_l (@) ¢~ (B)S ¢~ (AB).

beB

To prove the second half of the lemma let first c € p~1(4): p~1(B),i.e. cp~(B) S ¢~ 4).
Applying @ on both sides of this inclusion we get g(c)- B< 4 by using the fact that ¢ isa
homomorphism onto 7'. Thus @(c)€A:B and c€g1(4:B). This last argument works
equally well when applied backwards, showing that we have the desired equality.

Let now S and T each be equipped with an z-system denoted respectively by v and z.
We shall say that a multiplicative homomorphism ¢ of 8 into 7 is a (y,z)-homomorphism
if p(4,) S (p(4)), for all subsets 4 of S, This means that if 4 is mapped into B by @ then
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4, is mapped into B,. It is also clear that a homomorphism of § into 7' is a (y,z)-homo-

morphism if and only if the inverse image of a z-ideal in 7' is a y-ideal in 8.

TrEOREM 8. Let @ be a multiplicative homomorphism of S onto T and let y be an x-system
tn 8. Then the family of all sets B< T such that p—Y(B) i3 a y-ideal in S defines an x-system
tn T denoted by y,. Relative to this x-system @ 13 a (y,y,)-homomorphism and y, is the finest
x-system z in T such that @ is a {y,z)-homomorphism.

Proof. 1t is clear that B—B,, defines a closure operation in 7' since the family of all
B< T such that ¢—1(B) is a y-ideal contains 7' and is closed under arbitrary intersections.
Assume next that B is a y,-ideal, i.e. p~1(B)=4, is a y-ideal in S. Then ap~1(B) = ¢~1(B)
and applying ¢ on both sides we get p(a) B< B. Since @ is supposed to be ‘onto’ this shows
that axiom 1.3’ is satisfied for y,. Finally by Lemma 1 and the continuity axiom for ¥
we get by using the same notations that ¢=1(B:C)=¢~Y(B): ¢~ Y(C)=A4,: ¢~Y(C) is a y-ideal
for each C < T. Hence B:C is a y,-ideal whenever B is a y,-ideal and this is the continuity
axiom for y,. That ¢ is a (y, yp)-homomorphism follows from the definition of the
yo-system. The maximality of y, is also clear.

We now define

b=c(mod A4,)

if and only if (4,,b), =(4,,¢),, and we shall say that b and ¢ are x-congruent mod 4,. (Here
(4,a) means the set obtained by adjoining the element @ to the set 4.) Let us see what this
means in the case of ordinary ideals in commutative rings. We shall refer to ordinary ideals
in rings as d-ideals. From (A4,b);=(A44c)y follows, in particular, that b€(4,c); and
¢€(Ay,b)g and this amounts to the following two congruences now understood in the usual

sense
b=rc+n,c(mod 4,),

c=ryb+ny,b(mod 4,),

where r,, and r, are elements of the given ring R and n, and n, are integers. The terms
n,c and nyb disappear if R has an identity element and we may write down the following

immediate

ProrosiTION 4. In a commulative ring R with an identity two elements b and ¢ are
d-congruent mod A, if and only if the ordinary residue classes of b and c represent assoctate
elements in the quotient ring R|A,.

That the residue classes b and ¢ of b and ¢ respectively are associate elements of

R[A, means as usual that b |¢ and ¢ |b.
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THEOREM 9. The relation b=c(mod A,) is a congruence relation in S. The x-ideal
A, forms an equivalence class such that the quotient semigroup S|4, is a semi-group with zero
element. The canonical homomorphism @ of S onto S|A, establishes a one-to-one correspondence
between the x-ideals of S containing A, and the x,-ideals of S[A,.

Proof. That the given relation is an equivalence relation is clear. Suppose that
b=c(mod 4,), i.e. (4,,0),=(4,,c),. By the continuity axiom

db e d(AI’ b)l‘ = d(AI’ c)1‘ g (AI’dG)I’
and therefore (A,,db), = (4,,dc),.

Similarly (4, db)= (4,,dc), and db=dc (mod 4,). Two elements in 4, are clearly congruent
mod A4,. On the other hand, if a€A4, and b¢ 4, then (4,,a),%+ (4,,b), and a £b (mod 4,).
Thus A4, forms one of the equivalence classes and this class will be the zero element of
8/4.. For the last part of the theorem we only need to verify that ¢—(¢(B;)) = B, whenever
B,=2A,. The equality ¢—'(p(B,))= B, means that B, is a union of residue classes modulo
A,. If this were not the case there would exist elements b,¢ € S with b € B, and ¢ ¢ B, such that
b=c (mod A4,). But this is impossible since (4,,b), < B, and (4,,c), 4 B,. We thus see that
a subset of of /A4, is an x,-ideal if and only if it is a direct image of an z-ideal in S.

In the case of groups and rings we have certain fundamental facts concerning homo-
morphisms which are no longer valid for the general case considered here. We have, for
ingtance, no complete counterpart to the general homomorphism theorem for rings saying
that any homomorphic image of a ring R is isomorphic to a certain quotient ring Bja. We
can, however, get quite close to such a statement by making a couple of additional hypo-
theses.

TrEOREM 10. Let ¢ be a (y,z)-homomorphism of S onto T. We suppose that ¢ satisfies
the identity ¢~ (@(B,)) =B, for any y-ideal B, in S and that T has a zero element 0 such that
{0} forms a z-ideal O,. Then Ker o =¢~1(0,) is a y-ideal A, in S such that b=c (mod 4,) if
and only if (b)=p(c)(mod 0,).

Proof. Assume first that b=c(mod 4,), i.e. (4,,b),=(4,,c), and @(4,,b),=@(4,,¢),.
Since ¢ is a (y,z)-homomorphism this gives @(b) E@(4,,¢), S (0., ¢(c)), and consequently
(0;, (). < (0,, plc)),. Similarly, (0, ¢(b)).2 (0, ¢(c)), showing that ¢(b)=g(c) (mod O,).
Conversely, if b%c (mod 4,) we can, for instance, suppose that b¢(4,,c),. Applying
¢ and remembering the condition ¢g—'(¢(B))= B, we obtain ¢(b) ¢(0,, (c)), showing that
@(b) £ ¢(c) (mod 0,).

As in ring theory various properties of an z-ideal A, are equivalent to corresponding

properties of the quotient S/4,. It is, for instance, obvious that an z-ideal P, is prime if
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and only if S/P, is without divisors of zero. Among other statements of this kind let us

just mention the following theorem. The residue class containing @ will be denoted by 4.

THEOREM 11. The non-zero elements of S|A, form a group if and only if the following
two conditions are satisfied: (1) A, is a maximal z-ideal in S; (2) €4, impliesa€A,. In
general A, 138 maximal if and only if 8] A, has two elements.

Proof. Suppose first that S/4,— {0} =S* is a group. (!) Then 8* is in particular closed
under multiplication and @+ 0 implies G2+ 0 and this is equivalent to 2). If a¢4,, i.e.
a+0 the group-property assures the existence of a solution §, of @7 =>5. This means that
ay,=b(mod 4.), .e. (4,,ay,), = (4,,b);. Thisgivesb€(A,,ay,), < (A4.,a),. Since bis arbitrary
(4;,a),=8 and 4, is maximal. Assuming conversely that (1) and (2) are satisfied we have
to show that @7 =5 is solvable in § whenever G 0. Now @40 means that a¢ 4, and thus
at¢ A, by (2). A, being maximal, this gives (4,,a?),=8=(4,,b),. Thus a*=b (mod 4,)
and §=a gives a solution of @j=>5. The last statement of the theorem is obvious.

6. Construction of x-systems from systems which do not salisfy the continuily axiom.
A system which satisfies 1.1, 1.2 and 1.3’ but not the continuity axiom 1.3” will in this
paragraph be termed an xz*-system. We shall now describe two general procedures which
in a natural way permit us to associate an z-system to & given z*-system. The first method
is based on a retraction of the basic semi-group § while the second one is based on a
retraction of the family of “z*-ideals” in S. If S, is a subsemigroup of S and z* is an
z*-gystem in S then the family of all intersections A,. N §, obviously defines an xz*-system
in 8. This z*-system will be called the trace of x* on S,.

PrOPOSITION 5. Let S be a semi-group with a given x*-system. The set of all elements
a€l such that A;e:a is an x*-ideal for all x*-ideals A+ tn 8 forms a subsemigroup S* of
S and the trace of z* on S* is an x-system in S*.

Proof. If A;e:a and A;.:b are x*-ideals for all A+ then A +:ab=(A4;+:a):b is also an
z*.ideal for all 4;. and S* forms a subsemigroup of S. The traces 4.« N S* obviously form
an z*-system in S*. That these traces also satisfy the continuity axiom and thus define
an z-gystem follows from

S* N ((Aze N S*):a) = 8* (A,..:a) N (S*:a) = 8* N (4;e:0).

We note that we can also define S* as the set of all elements a €S such that aB,+< (aB);s
for all subsets B of S.

(1) O denotes the residue class containing the elements of A,.
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The following proposition describes a dual procedure to obtain an z-system from a
given z*-gystem.

ProrosiTION 6. Let X* denote the family of x*-ideals in a given x*-system. The
subfamily X of X* consisting of all A.+€X* such that A.+:a€X* for all a€S defines an
x-system in S.

Proof. We have to verify that the conditions 4.1 and 4.2 are satisfied for ¥. That X
is closed under arbitrary intersections is a consequence of

(N AL):a=( (A2:a)
iel iel
and the fact that X* is closed under arbitrary intersections. Assume that A,+€X. The

definition of X gives A;.:a€X* for all a€S. Further (4,.:a):b=A,+:ab€X* for all b
showing that A;«:a€ X for all a€8.

7. The lattice of x-systems in S. Let Ly denote the family of z-systems in S. We introduce
a natural ordering in Cg by the following definition: The z,-system is said to be finer than
the x,-system if every x,-ideal is an z,-ideal. Denoting the family of z,ideals by X, this
means that X, < X;. We shall also denote this situation by z, >x,. It is clear that we have
x; >z, if and only if 4. S A, for all 4= 8. L is a partially ordered set with respect to
> and has a greatest element s>z for all x € L and a smallest element u satisfying « > u for
all x€ L. These two z-systems are explicitly defined by

A,=8 forall A<S and A,=84UA.

ProrositioN 7. Every mnon-void subset {z}ier of Cs has a least upper bound
2=V in Ly and A,= Az
iel

iel

Proof. It z= Vaz, exists it is clear that 4,< ) 4, so that we only have to
tel tel

verify that A— (1 4. defines an z-system in 8. The properties 1.1, 1.2 and 1.3’ are

iel

obvious. Moreover, AB; < (AB); for all 1€I implies

AB.=A N B4< N AB;< N (4B)y;=(4B)..

iel iel iel

CoROLLARY. Ly forms a complete lattice with respect to the ordering >.

ProrosiTioN 8. The family Fs of all z-systems of finite character in S forms
a complete sublattice of Cg, .. when {x}ier is a family of x-systems of finite character

then A z; and Y x; are both x-systems of finite character.
iel ier
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Proof. That A z; is of finite character follows from Theorem 6 since an inter-

iel

section of chain-closed families is again chain-closed. Moreover, if z= V z; we have
terl

Ad:=N4s=N U Ny=U NN;=U N,
tel teI NCA NCA tel NCA
where N denotes a finite set. This shows that x€JFs. Proposition 7 gave an explicit

expression for A, with =V z, in terms of the family {As}ic;. Within Fg we can
iel

do something similar also in the case of a finite intersection A z;. To this end we
iel

introduce the following notations. We write A,z for the set

(((4).,),)

where z; and z, are each repeated n times and put

Ax,t I, = U A(:, EALE
n>1

It is now easy to see that z; Az,=2,%z,.

CHAPTER 2
The Krull theory for x-systems of finite character
8. The Krull-Stone theorem. The purpose of the present chapter is to generalize Krull’s

ideal theory of commutative rings without finiteness assumptions, as developed in [16],
t0 general commutative x-systems of finite character. We start with a proof of the funda-
mental Krull-Stone theorem concerning the representation of half-prime z-ideals as inter-
sections of (minimal) prime z-ideals. This theorem was first proved by Krull in [16] in the
case of ordinary ideals in commutative rings. The fundamental application of this theorem
made by Stone in the case of Boolean algebras justifies the association of his name with
the theorem.

We shall give two different proofs of the Krull-Stone theorem. The first one is identical
whit Krull’s original proof and the second one is modelled after the proof given by Ritt
and Raudenbush in the case of perfect differential ideals.

Let S be a commutative semi-group in which we have fixed a certain z-system of
finite character. An z-ideal P, in 8 is said to be a prime z-ideal if a-b€ P, and a ¢ P, imply
bEP,. The (nilpotent) radical of A,, denoted by rad A, consists of all elements €S such
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that b"€4, for some integer n. We shall say that A4 is half-primeif rad 4,=A4,. A subse-
migroup of S will be called an m-set. In the following it will be convenient to consider the

void set as an m-set.

ProrosiTioON 9. The x-ideal P, is prime if and only if A,oB.<P, and A, ¢ P,
imply B,= P,.

Proof. Suppose that A,0cB, <P, A,¢ P, and B,4+ P,  We can then find elements
a€A4, and b€ B, which do not belong to P, such that a-b€ A,- B,< 4,0 B, < P,. Conversely
if P, is not prime we have elements a,b ¢ P, such that a-b€P,. Then (P, U {a}).o(P, U {b}), <
P, by Theorem 1 and the implication in the proposition is not satisfied.

CoRrROLLARY. The z-ideal A, s non-prime if and only if there exist z-ideals B, and C,
both properly containing A, such that BoC,< A,.

The following proposition is proved in exactly the same way as in ring theory.

ProrosiTiON 10. If M is a maximal m-set contained in S—A, and P, 18 a maximal
z-ideal containing A, and being contained in 8 — M then P, is a minimal prime z-ideal con-
taining A..

COROLLARY 1. Any prime z-ideal containing A, condains al least one minimal prime
x-ideal containing A..

COROLLARY 2. The complement of any mazximal m-set contained in 8 — A, is a mini-
mal prime x-ideal containing A..

TueEoREM 12. (The Krull-Stone theorem for z-systems of finite character.) The
nilpotent radical of the x-ideal A, is equal to the intersection of all the minimal prime z-ideals
containing A..

Proof. According to Corollary 1 we ouly have to prove the equality

rad A,= N P,

AzC Py

the intersection being extended over all prime z-ideals containing A,. It is clear that the
left hand side is contained in the right hand side. Let us suppose that this inclusion
were a proper one. Then there would exist an element a ¢ rad A4, such that a€P, for all
P.=2A4,. The powers of a form an m-set M, which does not meet rad A,. We, therefore,
have a maximal z-ideal P, containing 4, and contained in S — M. This P must be prime,
contradicting the fact that P; does not coincide with any of the P, occurring in the inter-
section (1).

CoroOLLARY. For an x-system of finite character the nilpotent radical of an z-ideal is
agawn an z-ideal.
2 — 62173087 Acta mathematica. 107. Imprimé le 26.mars 1962
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We shall now give some simple properties of half-prime z-ideals which together with
a direct proof of the above corollary will give a second proof of the Krull-Stone theorem.
The above corollary may be proved directly in the following way. Let 4, be an z-ideal and
let b,,...,b, be a finite subset of rad 4,. Since 2 is supposed to be of finite character, it is
sufficient to show that {b,,...,b,}, S rad 4,. If bj€ 4, fori=1,2,...,n we put m =m, +m,+
... +m, and get {b,...,b,}7 < ({by,....0,}"). S 4..

ProrosiTION 11. The z-ideal A, is half-prime if and only if a®’€ A, implies a€A,.
Proof. Suppose that a"€ A4, with n>1. Then also a?" =a®"~"-a"€4, for 2">n. By
repeated application of the condition a?€4,=>a€A, we get a€A,.

ProPoSITION 12. The z-ideal A, is half-prime if and only if B,0C,c A, implies
B,nC,=4,.

Proof. Suppose that A, is half-prime and B,0C, S A4,. If a€ B, N C, thena?€ B,0C, S 4,
and ¢ €A, by Proposition 11. Conversely if 4, is not half-prime there exists an element
such that a¢4, and a?€4,. This gives (4,U {a}),o(4.V {a}),S 4, while (4,U {a}).Nn
(4,U {a}). £ 4..

We shall say that an z-system is half-prime if every z-ideal is half-prime. Ideals in
distributive lattices and radical differential ideals form half-prime z-systems.

ProPoSITION 13. For any half-prime x-system we have the identity (AU B), N (AU 0), =
(4 VU BC),.

Proof. The inclusion (4 U BC),=(4AU B).N(AUC), is obvious by observing that
the operations of intersection and z-multiplication coincide within the family of z-ideals
of a half-prime z-system. Conversely (4 U BC), being half-prime and (4 U B),0(4 U (), =
((4.U By(4,U C)),=(4,U BC),=(4AU BO), we get (AUB),N{4U0),=(4VUBC), by
using Proposition 12.

COROLLARY. For a half-prime z-system we have (AU {b}), N (AU {c}).=(4 VU {bc}),.
An z-ideal A is said to be irreducible if 4,=B_ N C, implies A,=B, or 4,=C,.

ProPOSITION 14. In a half-prime x-system an z-ideal is irreducible if and only if it is
prime. -

Proof. That a prime z-ideal is irreducible is obvious. Suppose conversely that 4, is
not prime. Then there exist elements b and ¢ not contained in A, such that b-c€4, and we
get the proper decomposition A, =(A4 U {bc}),=(4 U {b}), N (4 U {c}), by the above corollary.

Proposition 14, together with the following two propositions, give a second proof of
the general Krull-Stone theorem.
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ProPoSITION 15. If x is of finite character. then any z-ideal is equal to the intersection
of all the irreducible x-ideals containing it.

Proof. Let A, be an z-ideal=+ 8 and let b be an element not in 4,. We consider the
family of x-ideals which contain 4, but do not contain b. This family is inductive and hence
contains at least one maximal member, say B,. Then B, is irreducible since any x-ideal

which contains B, properly also contains b.

ProrosiTioN 16. For a given z-system the family of half-prime z-ideals will also form
an z-system.

Proof. We only need to verify the continuity axiom, i.e. to show that A4,:b is half-
prime whenever 4, is half-prime. From ¢*€4,:b we obtain c"b € 4, and (cb)" =(c"b)-b"1€A4,,
showing that c€4,:b.

9. A converse of the Krull-Stone theorem and other converses. Though certain scattered
results of ideal theory may be independent of one or more of the axioms 1, 2 and 3’ it is
quite inconceivable that any larger and important parts of ideal theory may be developed
without assuming at least these three conditions. As to the necessity of the fourth condition
—the continuity axiom—this is perhaps a less transparent question. However, the equiva-
lent forms of the continuity axiom, which were derived in Chapter 1, already give strong
evidence for the necessity of this axiom in a large number of situations. In the present
section we shall prove a few more converse results which strengthen the conviction that
the continuity axiom is indispensable and that the present setting for a general ideal theory
is the appropriate one.

We shall use the notation of Chapter 1 and refer to a generalized z-system which satis-
fies 1, 2 and 3’ but not necessarily 3", as an x*-system. By considering the passage 4—rad 4,
instead of 4—A4, it is clear that there is no loss of generality in formulating the Krull-

Stone theorem for half-prime x-systems only. We now have the following converse result.

THEOREM 13. Let 2* be a half-prime x*-system of finite character in S. Then the neces-
sary and sufficient condition for the validity of the Krull-Stone theorem for x* (i.e. that any
x*-ideal in 8 is equal to the intersection of all the prime x*-ideals containing it) is that x*
satisfies the continuity axiom and hence defines an x-system in S.

Proof. If x* satisfies the continuity axiom we have already proved that the Krull-
Stone theorem holds. Suppose conversely that the Krull-Stone theorem holds for x*,
ie. that any z*-ideal 4.+ in § may be written as an intersection of prime x*-ideals

Axi= n Pg;t

Az%C Py
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For an arbitrary element b€S we have
Az:b=( N Pu):b= N (P:zs:b).

Az *C Py* Az*C Py
Because of 3’ and the fact that the P.+’s are prime, P,+:b is equal to § or P;« according to
whether b€P,. or not. Since S and P,. are z*-ideals and any intersection of z*-ideals is
an z*.ideal we conclude that A..:b is an z*-ideal and the continuity axiom is satisfied.

We now prove another converse of Proposition 13.

TaEOREM 14. If the identity

(AU B)ra N (AU C)yx = (AU BC)z» (2)
holds for x* then x* is half-prime and satisfies the continuity axiom.

Proof. We first show that z* is half-prime. Putting B=C={b} and 4 =4« we get
(Aze U {b})zs=(Az+ U {b2});+. Thus if b2€ A, then (A« U {b});«=A:+ and bEA,.. By Propo-
sition 11 (which is independent of the continuity axiom) we conclude that x* is half-prime.
Since intersection and z*-multiplication coincide for half-prime z*-ideals (2) is equivalent to

(A U B)I-O(A U C);t = (A U BC)It.

Taking 4 to be the empty set we get B;«0C:+ = Bo( which is one of the equivalent forms

of the continuity axiom.

PROPOSITION 17. Given a half-prime x*-system, the family of x*-ideals which can be
written as an intersection of prime x*-ideals will define an x-system and will form a distributive
lattice under inclusion. In particular the family of all z-ideals in a half-prime x-system will
form a distributive lattice under inclusion.

Proof. If A, is an intersection of prime x*-ideals, 4;+:b will be of the same form
according to the proof of Theorem 13. These intersections, therefore, define a half-prime
z-system and will form a distributive lattice with respect to inclusion since the z-multi-
plication here coincides with the intersection. The second half of the proposition follows
from this together with the Krull-Stone theorem.

ProPoSITION 18. The identities of Proposition 13 and its corollary are equivalent for an
x-system.

Proof. As in the proof of Theorem 14 the identity (4 U {b}).N (4 U {c}),=(4 VU {b¢});
implies that z is half-prime (1) and the lattice of z-ideals is hence distributive. We, there-

fore, have’

(AUB),n(4VU ()= (bgz (4 U {b}h).) n (CLGJCI (4 U{ch).) = o cl)JE;xC((A U {8}): N (AU {c}).).

(*) Added in proof. By Proposition 13 we thus immediately infer that the general identity is
valid and the rest of the present proof can be discarded.
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Now, using the identity of the corollary, the right hand side is equal to

U. (4U {be}),

(b,c)eBxC

which, in turn, is equal to (4 U BC),.

We shall say that the x*-ideal P+ is weakly prime if A,«0 B;+< P, is impossible when-
ever 4;+« and B:. both contain P« properly. The following theorem gives some new pro-
perties which are also equivalent to the continuity axiom in the case of half-prime z*-

systems.

THEOREM 15. If z* is a half-prime x*-system of finite character, then the following
properties are equivalent:

A. x¥ satisfies the continuity axiom.

B. The Krull-Stone theorem is valid for x*.

C. Every trreducible x*-ideal is prime.

D. Every weakly prime xz*-ideal is prime.

Proof. The theorem is proved by verifying the following sequence of implications:
A=D=C=>B=A. Since a weakly prime z*-ideal is irreducible, everything follows from
what we have already proved.

10. The non-associative case. We shall here establish an easy non-associative generali-
zation of the Krull-Stone theorem. When trying to extend a theory to the non-associative
case, one needs only to worry about those results which involve considerations of products
containing more than two factors. Thus in our case the whole first chapter carries over to
the non-associative case. In the present chapter, however, one needs a non-associative
generalization of the notion of the nilpotent radical. In the commutative, but non-associa-
tive case, a™ does no longer represent a unique element of S when n>4. In this case we
shall let a” denote the set of all elements obtained from the expression a-a...a (n times)
by putting parentheses in all possible ways. This suggests two natural non-associative
generalizations of the radical: By the strong radical of A,, denoted by rad,A4,, we shall
understand the set of all elements 5€S such that 5" N A4, is non-void for some integer n.
The weak radical of A,, denoted by rad, 4., consists of all b€S such that b” < 4, for some
integer n. The following theorem, as well ag other facts, show that the former definition
should be adopted. The x*-ideal 4.+ is called strongly half-prime if rad, 4;« =4, and z*
is called strongly half-prime if every x*-ideal is strongly half-prime.

THEOREM 16. Let 8 be a commutative, but not necessarily associative, semi-group in
which there is defined an x*-system of finite character. The necessary and sufficient condition



22 K. E. AUBERT

that any x*-ideal can be wrilten as an infersection of prime x*-ideals is that x* is strongly
half-prime and satisfies the continuity axiom.

The proof of this theorem is almost identical with the proof of the associative Krull-
Stone theorem and its converse and can, therefore, be left to the reader. Denoting by
@,'ay...a, the set of all products obtained from this expression by putting parentheses
in all possible ways we shall call a subset A of S associatively closed if a, ...a, N A + ¢ implies
@y...6,< A. Since a prime z-ideal is associatively closed we get the following corollaries:

CoROLLARY 1. Any strongly half-prime x-ideal is associatively closed.

COROLLARY 2. A weakly half-prime z-system is strongly half-prime if and only if
every x-ideal is associatively closed.

11. Isolated primary components. In the remaining sections of this chapter we shall
show that almost all of the other results of the Krull theory carry over to general z-systems
of finite character. There is one result, however, which is no longer valid in the general
setting. It is not generally true that if a prime z-ideal is contained in a finite set-theoretic
union of prime z-ideals it is contained in one of the given prime z-ideals. In fact a counter-
example is given by the s-system defined by the mapping A—+S4 U A. Here the set-
theoretic union of a family of prime s-ideals is again a prime s-ideal, and this clearly con-
tradicts the given assertion. Apart from this result (which at one place will be used in a
weakened form as a postulate) all the basic results carry over to general z-ideals. Most of
the proofs in the case of ordinary ideals carry over almost verbatim to the general case.
A detailed checking of all the proofs is, of course, necessary, but since this checking is a
routine matter and, in general, is of no interest, we shall mostly leave this to the reader.
We give, however, a couple of samples of typical proofs which again will show the crucial
role played by the continuity axiom. Besides Krull’s paper [16] the reader can use [24]
as a standard reference.

The z-ideal @, is said to be primaryif ab €Q, and a ¢Q, imply that b" € Q, for some positive

integer n.

THEEOREM 17. To every minimal prime z-ideal P, containing the x-ideal A, there cor-
responds a uniquely determined minimal primary z-ideal Q,, which contains A, and which
has P, as its radical. This z-ideal Q, is called the isolated primary x-component of A, which
belongs to P,.

Proof. As in the case of rings we prove this by explicit construction of @,. In fact
@, will be identical with the set B of all elements q for which there exists an element s€S —P,
such that gs€A4,. We first show that B is an z-ideal. Since z is of finite character, it is
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sufficient to show that {q,,...,¢,}. < B whenever ¢,,...,¢,€ B. By the definition of B we
have ¢,;8,€4, for suitable s,€S —~P,. Putting s=s,...s, we obtain ¢,s€ A, with s€S—P,
This gives

8{q1s - €n}s S ({01 -0 }): S 4,

showing that {q,,...,¢,},< B and B is an z-ideal. The rest of the proof is of a purely multi-
plicative character and therefore identical with the proof in the case of rings.

12. Maximal prime x-ideals belonging to an z-ideal. Let A, be an z-ideal which can be
represented as a finite intersection of primary xz-ideals:

4,=09Pn ... n QM. (1)

We shall always suppose that the decomposition (1) is irredundant in the sense that
QPPN ... NP NQEPN...NQY for i=1,2,...,n. Let P® denote the radical of
P, PP is clearly the unique minimal prime z-ideal containing Q¥. If M is an m-set we put
AM)={c; cMNA,+0}. If M =8—P, where P, is a prime z-ideal we shall denote 4(S —P,)
by A(P,). An element bES is said to be non-prime to A, if there exists an element c¢ A4,
such that bc€A4,. An z-ideal B, is called non-prime to A4, if every element of B, is non-
prime to A,. The elements which are prime to A, form an m-set which does not meet 4,.
Hence there will exist maximal z-ideals among the z-ideals which are non-prime to 4,
and which contain 4,. The continuity axiom implies that these maximal z-ideals are prime.
These maximal z-ideals are called maximal prime x-ideals belonging to A.. It is easy to see
that any minimal prime z-ideal containing A4, is non-prime to A, and hence contained in
at least one maximal prime 2-ideal belonging to 4,.
The following proposition, which is valid for z-systems of finite character without

further restrictions, already shows a part of the unicity we are aiming at.

ProprosiTioN 19. The set of elements non-prime to the x-ideal A, represented in (1)
8 equal to the set-theoretic union of the maximal prime x-ideals belonging to A, and is also
equal to the set-theoretic union of the prime xz-ideals PP attached to A, by the decomposi-
tion (1). The lalter union is, therefore, in particular independent of the given primary de-
composition.

Proof. The proof is the same as in the case of rings (see [24], p. 186). The continuity
axiom is used when proving that if a is non-prime to A, then a is contained in some maximal
prime z-ideal belonging to 4,. Forif ab€ 4, withb¢ 4,, then (4, U {a}),-b< (4, U {ab}), S 4,
and (4, V {a}), is non-prime to A,. The assertion then follows from Zorn’s lemma.

We now generally say that a prime z-ideal P_ belongs to A, if P, is a maximal prime
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z-ideal belonging to A(P,). The following proposition is also valid for general z-systems of

finite character and the proof is identical with the one in case of ordinary ideals.

ProrosiTION 20. Let M be an m-set in S and suppose that the decomposition (1) of
A, s such that MOPP =@ for i=1,2,....k and(!) MNPP+0 for i=k+1,..,n. Then
AM)=@Pn...nQY.

In order to be able to prove the next theorem which is the main result of the Krull

theory we must assume that the given z-system is a P-system in the sense of the following:

DEFINITION. An z-system is said to be a P-system if an irredundant set-theoretic union
of a finite number of at least two prime z-ideals is never a prime z-ideal. A union is ir-
redundant if no term in the union is contained in the union of the remaining terms. Most
of the z-systems occurring in the literature are P-systems. In fact the s-system is the only

natural z-system which is not a P-system, that comes to mind readily.

THEOREM 18. Let  be a P-system of finite character and let A, be an z-ideal admitting
the finite primary decomposition (1). Then a prime z-ideal P, is identical to one of the prime
z-ideals PP attached to this decomposition if and only if P, is a maximal prime z-ideal
belonging to A(P,). In particular the family PP,...,P{" is uniquely determined by A,, and
this is valid for any x-system of finite character.

Proof. We shall establish one half of the theorem by showing that P{ is the
unique maximal prime z-ideal belonging to 4 (P{). Assume that the numbering is
chosen in such a way that PP2PY for j=1,2, , iand PP PP for j=i+1, ..., n.
Proposition 20 then gives A (PP)=Q®P n ... N QY. It is clearly sufficient to show that
PY just consists of all the elements of § which are non-prime to 4 (PP). Any ele-
ment outside PP is obviously prime to A (PP). Suppose that a € P{ and, therefore,
that a™€QY for some integer m. Since the decomposition (1) is irredundant there is
an element bEQP N ... N QL¢P such that b¢@QP. This gives a™b€A(PY). If m, is
chosen to be such that a™b€A (PYP) and a™ 'b¢ A (P¥) then we put c=>b if my=1
and c=a™'b if my>1. In either case ac€A(PY) with c¢ A(PP) and a is non-
prime to A (PY).

Suppose conversely that P, is a maximal prime z-ideal belonging to 4 (P;). We
must show that P,=PY for some i. Certainly P2 P for at least one i. Assume
now that the numbering in (1) is such that P,2P{ for j=1,2, ...,k and P, PY
for j=k+1, ...,n. Then 4(P,)=QPn ... N Q¥ by Proposition 20.

() There are two obvious conventions to be made when one of these two possibilities does
not occur.
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Suppose that PY were properly contained in P, for j=1,2, ...,k Since z is a
P-gystem this would imply the existence of an element p€ P, such that p¢ PY for
7=1,2, ...,k Since P, is a maximal prime z-ideal belonging to A (P,) we would
have an element b¢ A (P,) such that bp€ A4 (P,). By (1) b¢ QY for some ¢ and this
together with p¢ PP contradicts the fact that Q¥ is primary.

The fact that the family P, ..., P{® is uniquely determined by 4, can also be
proved in the same way as in [33, p. 76-77]. This proof is valid for any z-system
of finite character and thus establishes the last statement of the theorem.

CHAPTER 3
x-Noetherian and x-Dedekindian semi-groups

13. z-Noetherian semi-groups. Let S be a commutative semi-group in which there is
defined an x-system of finite character. We shall say that 8 is z- Noetherian if the following
two conditions are satisfied:

I. S satisfies the ascending chain condition for z-ideals,

11I. Every irreducible z-ideal is primary.

Since « is supposed to be of finite character, we can give various equivalent formulations of
I which are well known from ordinary ideal theory in rings. In particular, I is equivalent
to the fact that any z-ideal is finitely generated. By means of I one concludes that any
z-ideal in S can be represented as a finite intersection of irreducible z-ideals—and hence
by II as a finite intersection of primary z-ideals. Such a primary decomposition can be
given a normal form called a shortest representation by first omitting any primary compo-
nent containing the intersection of the other components and then grouping together
primary z-ideals having one and the same radical. Indeed, as in ordinary ideal theory, one
proves that a finite intersection of primary z-ideals is a primary z-ideal if and only if all
the components have the same radical. From this and the last statement of Theorem 18

we obtain immediately the following:

TrEOREM 19. Every z-ideal A, in an x-Noetherian semi-group has a shortest representa-
tion as an intersection of primary x-ideals. The family of the prime z-ideals consisting of the
radicals of the primary z-ideals occurring tn one such decomposition is independent of the
given decomposition and hence is uniquely determined by the given x-ideal A,.

We know that for ordinary ideals in rings—here called d-ideals—assumption II is a

consequence of I. It is clear, however, from the examples of half-prime z-systems that IT
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may be satisfied also in cases where I fails to hold. We shall now show that IT is, in general,
not a consequence of I.

TrEEOREM 20. There exists a semi-group S and an x-system of finite character in S such
that the ascending chain condition for x-ideals is satisfied but S is not x-Noetherian.

Proof. In order to prove this we shall use the m-system in a quasi-integral m-lattice
L. By an m-lattice we mean a lattice with a binary multiplication satisfying a(b U ¢)=ab U ac.
The multiplication is here supposed commutative. That L is quasi-integral means that ab<b
for all @ and b€ L. Consider now a subset A of L and the mapping A—A,, where 4, consists
of all elements ¢ such that ¢<a,U...Ua, with a,,...,a,€4. It is easy to verify that the
mapping A—A4,, defines an z-system of finite character in L considered as a semi-group
under the given multiplication. This z-system is called the m-system in L. (For more
details see Chapter 5.) We now consider the following finite m-lattice (see [6], pp. 350-51),

U

I
b.<>]§

z

where the multiplication is defined according to the following table:

u a b ¢ d =z
u|lv a b ¢ d 2
ala b b 2 z =z
bbb b b z 2z 2
clc 2z z 2 2z z
did 2z 2 z z =z
z zZ z z z 2

One verifies easily that this defines a quasi-integral m-lattice in which the ascending chain
condition for m-ideals is satisfied. In fact, every m-ideal is principal in this case. The
m-ideal {d},, is clearly irreducible. But it is not primary since bc € {d},,, c¢ {d},, and b" ¢ {d},,
for all n.

We have not been able to find any simple and natural sufficient condition to impose
on the given z-system such that I would imply II. To have such a condition is, however,
not very essential since the verification of II is in most cases very simple and follows the
lines of the proof in the classical case z =d. This is, for instance, the case for x=s.
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Before proceeding with the discussion of the other decomposition theorems of E. Noether
we ought to give some comments on the expression ‘“prime z-ideal belonging to 4,”.
According to Theorem 18 it is possible that for a general z-system the family of prime
z-ideals PP, ...,P{ attached to 4, by any primary decomposition 4,=@% N ...N QY with
rad @ =PP might be different from the family of prime z-ideals belonging to 4,. What
we have shown is that the two families coincide in the case of a P-gystem, but we have been
unable to decide whether this is the case or not for general z-systems of finite character.
From now on we shall have no more occasion to speak of “prime z-ideals belonging to 4,”
in the intrinsic sense of Krull and we shall now by this expression always mean one of the
PY attached to a shortest decomposition of 4.

We shall say that the z-ideals 4, and B, in the z-Noetherian semi-group 8 are relatively
primeif A,:B,=A,and B,;:A,= B,. One proves that 4, and B, are relatively prime if and
only if there exists no inclusion relation between a prime z-ideal belonging to 4, and a
prime x-ideal belonging to B,. From a shortest primary decomposition we therefore obtain
a decomposition by mutually relatively prime z-ideals by grouping together primary
x-ideals whose corresponding prime z-ideals are related by an inclusion relation. It follows
as in ordinary ideal theory that this decomposition is unique.

We shall now treat a stronger form of relative primeness which will lead to another
decomposition theorem of E. Noether. In van der Waerden’s book [33, pp. 80-83] this
theory is developed in terms of the elements of the given ring and makes constant use of
the property that the d-ideal generated by the two d-ideals 4; and B, is the whole ring R
if and only if there exist elements a € 4, and b € B, such that a +b=1. (Rissupposed to have
an identity.) We shall here show that this theory may be freed from these special arguments
and is valid for general z-systems of finite character.

We now suppose that § is an z-Noetherian semi-group with an identity element e.
The z-ideals 4, and B, are said to be coprime if A,U  B,=(4,U B,).=8.

ProrositioN 21. Let QP and QP be two primary z-ideals such that PP = rad QP
and PP =r1ad QP. If PP and PP are coprime then QP and QP are also coprime.

Proof. Since S is z-Noetherian we have (PP)" < QP and (PP)™ < QP for suitable

integers n, and »,. Using the continuity axiom we obtain
S =M= (PP U, PE)™ ™= (PP U, (PO PR U, .. U (PR,
The right-hand side is contained in QP U, QP and we get QP U,QP =3 as desired.
Prorosirion 22. If A, and B, are coprime then they are also relatively prime.

Proof. Assume that c€4,: B, and that 4, and B, are coprime. Then ¢8 =¢(4.U B,), <
(c(A.U B,)), < A, and c€4, since S has an identity. In the same way B,:4,=B,.
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ProrosiTioN 23. (4.N B,)o(4,U,B,)S4,0B,.

Proof. (4,1 B;)o(4,U,B,)=((4,N B,)oA,)U,((4:N B,)o B,)S 4,°B..

CorROLLARY 1. If A and B, are coprime then 4,0B,=A.N B,.

ProrosiTION 24. If A, and B, as well as A, and C, are coprime then also A, and
B,oC, as well as A, and B, 0 C, are coprime.

Proof. From A, U ,.B,=A4,U_C,=8 we obtain

8§ =8%=(4,;U;B,)o(4,U,C;) = (4:U.(B;°C,)),

showing that A, U ,(B,0(C,)=8S=A4_U (B, nC,).

CoROLLARY 2. If A, and BY are coprime for eachi=1,2,...,n, then A, and BPo...0o B
are also coprime.

ProrosiTION 25. The intersection of a finite number of mutually coprime x-ideals 1is
equal to their x-product.

Proof. We use induction. In the case of two components the proposition is true by
Corollary 1. Suppose, therefore, that AP,..., A are n, (n>3) mutually coprime z-ideals
such that

APNA®PN...nAS YV =A4APoAPo...047D,

By Corollaries 1 and 2 we obtain

AP N . NAP =(A4P0...04" V)N AP =APo...0 AP,

showing that the proposition is valid for all » > 2.
In the following theorem we use the term indecomposable to mean that an z-ideal

cannot be written as an intersection of two coprime z-ideals.

THREOREM 21. Ahy z-tdeal in an z-Noetherian semi-group with an identity element
can be written uniquely as an z-product of a finite number of indecomposable and mutually
coprime z-ideals.

With the above preparations, the proof of this theorem goes exactly as in the case

z=d; see [33, pp. 82-83]. The following theorem is now also an immediate consequence.

TusorEM 22. Let S be an x-Noetherian semi-group with an identity element such that
any prime x-ideal is maximal. Then any z-ideal in S can be written uniquely as an x-product
of a finite number of primary x-ideals which are mutually coprime.

14. Fractionary z-ideals. In order to generalize the theory of Dedekindian rings to
z-systems we shall need the notion of a fractionary xz-ideal.
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Let S be a commutative semi-group with identity element e. The element a€S is
said to be regular if ab=ac implies b =c. The regular elements of S form a subsemigroup
8, of 8 which contains e and in which the cancellation law holds. A subset of S is called
regular if it contains at least one regular element. We now consider the set S’ of formal
quotients a/b where b€ 8, and we define an equivalence relation ~ in 8’ by putting a/b~ c¢/d
whenever ad =bc. The relation ~ is a congruence relation with respect to the multiplication
@, /by ay[by =a,a,/b, b, and the quotient S* =8’/ ~ is a semi-group under the corresponding
multiplication of equivalence classes. The semi-group S* is called the semi-group of quotients
of § and it contains a subsemigroup isomorphic with S. We note that a/b is regular in S*
if and only if both a and b are regular in S.

A subset A of 8* is called fractionary (or bounded) if there exists a regular element m
such that mA = 8. Such an element m is called a multiplier for 4. If A< 8 we call A integral.
Any integral set is fractionary. We now say that there is defined a fractionary z-system in
& (or in 8*) if there corresponds to any fractionary subset 4 of §* a subset 4, of S* such that

1. A4,

2. ASB,~A,<B,.
3. 8B,< B,.

3". aB,< (aB),.

4. 8,.=8.

It is easy to verify that the operations we are going to perform within the family of frac-
tionary regular sets, namely the closure operation 44, the multiplications 4-B and
Ao B, and the residuation 4 : B do not lead out of this family.

In Paragraph 6 we introduced the notion of trace of an integral z*-system. If we have
an (integral) z-system in S then its trace on a subsemigroup 7' will be an z-system z, in 7.

In the case of fractionary z-systems we have the following:

THEOREM 23. Let S, denote the semi-group of reqular elements of S and let Sg and S*
denote the semi-group of quotients of S, and S respectively. For a given fractionary x-system
x in S* (relative to S) the family of all traces A, N Sy defines a fractionary x-system in Sg
(relative to 8;). This x-system, which will be denoted by z, is called the regular fractionary
z-system induced by x. The xy-operation is given explicitly by (A N S3)z,=(4 N 83). N S.

Proof. We first note that the fractionary sets of S§ with respect to S, are just the sets
of the form A4 N 8§ where A is a fractionary set of S* with respect to S. Indeed, if mAS S
then m(A4 N Sg) S mA NmS; <8 N Sg =8, The explicit formula in the proposition is obvious
and we use this formula in order to verify that x, defines a fractionary z-system in S§

relative to 8,. It is sufficient to verify the axioms 3’, 3" and 4.
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3. 8 (AN8H),=81(4Nn8Y:NSFISS(ANSH), NSy S =(4 N Sy)s,
3. (ANSH)z:c=[(ANSY),NSFT:c=((ANSH).:c)N (S5:¢)

=B, N 8¢ =(B, N 85)a,
4. (Sg)z,=(Sy): NS5 <=8, NSF=8nS§=5,.

We shall later see that this notion of induced regular z-system will give the link be-

tween the present theory and the more special one considered by Priifer—Krull-Lorenzen.

15. z-Dedekindian semi-groups. We use the notations of the preceding paragraph.
In particular S will denote a commutative semi-group with an identity element. We shall
also suppose that all the z-ideals considered in this paragraph are regular, i.e. contain at
least one regular element. An 2-ideal is said to be proper if it is different from S. § is called
x- Dedekindian if there is defined a fractionary z-system in S which satisfies the following
conditions:

I. 8 satisfies the ascending chain condition for integral z-ideals
II. Every integral and proper prime z-ideal is maximal
IIT. 8 is integrally wx-closed in the sense that 4.:4.=S8 for any integral xz-ideal A,.
It was shown by Priifer [27] that III. coincides with the ordinary notion of integral

closure in the case z=d.

We shall now prove the unique factorization theorem for x-ideals in x-Dedekindian
semi-groups following closely the classical development of van der Waerden ([33], pp.
125-130). We note that assuming only the ascending chain condition for integral z-ideals
and not that § is z-Noetherian we have to give a direct development independent of the
theory of z-Noetherian semi-groups. We obtain, however, as a corollary, that an z-Dede-
kindian semi-group is 2-Noetherian. From now on, all z-ideals which are not explicitly
specified as fractionary will all be integral 2-ideals, i.e. contained in S.

LeMMA 1. To any z-ideal A, in S we can find prime z-ideals PP, ..., PP such
that A, PP for i=1,2,...,n and PPo...oPP < A4,.

Proof. We here use the divisor induction which is one of the equivalent forms of the
ascending chain condition (see [33, p. 63]). S obviously has the property announced in the
lemma. Let therefore 4,4 8. If A, is prime there is nothing to prove. If 4, is not prime
there exist, according to the corollary of Proposition 9, two z-ideals B, and C, containing
A, properly and such that B,oC,< 4,. We now use the divisior induction in order to com-

plete the proof of the lemma.
LeMMA 2. If P, is a prime z-ideal properly contained in 8 then P;'=8:P, & 8.
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Proof. Let ¢ be a regular element in P,. By Lemma 1 there exists a product of prime
z-ideals such that

PPo.. o PMc{c},SP, (1)

and we assume that this product is a shortest one, i.e. that no product of » —1 prime
z-ideals is contained in {c¢},. (1) implies by a suitable numbering that P°<S P, and
therefore PP =P, because of II. Hence

P,oPPo...0oPP<{c},
and PPo...0oPP & {c,}.

There exists, therefore, an element b€ PPo...oP{™ such that b¢{c}, and P,-b<{c},.

Since ¢ is regular, we can here multiply on both sides with ¢! and obtain
P, blcc{e},=8,=8.

This means that b/c€S:P,. If b/cES then b€Sc< {c}, contrary to the choice of b. Thus
bjc¢S and S:P. & S.

LremMma 3. For any prime z-ideal P, in S we have P,oP;'=S8.

Proof. Since S(8:8)=S we can suppose that P,+ 8. We have S<P;! and therefore
P,=8-P,<P,oP;'. By II this gives two possibilities, either P,oP;'=P, or P,oP;'=S8.
The former possibility is, however, excluded since P,oP;* =P, is in contradiction with the
conjunction of Lemma 2 and Axiom III.

From this point on, the proof of van der Waerden carries over verbatim to the case of
z-ideals. We have thus established the first half of the following

THEOREM 24. In an x-Dedekindian semi-group any regular x-ideal can be written as
a finite x-product of regular prime z-ideals. If A,< B, and A,=PPo...0P{’, B,=@QPo...0
¢ are two such decompositions of A, and B, respectively then any prime z-ideal QP+ S
occurring in the factorization of B, will occur ot least as many times in the factorization of
A, as it does in that of B,. Conversely such an existence and unicity statement implies that
S satisfies I and 11 and the following weakened form of III: (A,:A,) N Sy =8, (which reduces
to III in case S is regular).
For the proof of the second half of Theorem 24 it is convenient to use the following
immediate result.

ProrosiTioN 26. Let S be a semi-group satisfying the existence and unicity statement
of Theorem 24. Then the following properties hold in S.
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A. Any regular x-ideal in an x- Dedekindian semi-group S can be written uniguely as a
finite product of prime z-ideals.

B. The regular z-ideals in 8 form a semi-group with cancellation law with respect to
z-multiplication.

C. The inclusion A,< B, <8 implies the existence of an x-ideal C.< S such that A,=
B,oC,.

Proof of the second half of Theorem 24. This proof is the same as in [33, pp. 129-130]
except for the weakened condition III which here may be proved as follows: Suppose that
a/b€A,: A, where a and b are regular and A, is integral. Thus a/b-4,< 4, or

ad, S bA,. (2)
Using the continuity axiom (Theorem 1) we obtain
{a}:04; ={a}od, = (ad,).
which combined with (2) gives
{a},04, = (ad,), S (b4,), ={b};04..
By Proposition 26 C we therefore have an z-ideal C, < 8 such that
{a}04, = {b},04,0C,
and we conclude according to Proposition 26 B that
{a}, ={b},0C,. (3)
z-multiplication on both sides of (3) by the fractionary ideal {e/b}, gives
{afb}; ={e};0C. =C, = 8.

This proves that a/b €8 and § satisfies the weakened form of III.

We have above been able to prove the equivalence of the conjunction of the three
classical Noetherian conditions and the strong unicity statement of Theorem 24 under
assumptions which are somewhat weaker than those of the Priifer—Krull-Lorenzen theory.

In fact we have not assumed that their axiom 2.3 (Paragraph 2)
{a},=Sa

is satisfied. If x satisfies 2.3 for any regular element a we shall say that x is principal.
Though we did not assume this property at the outset, we shall sce that it is actually a
consequence of z being fractionary. We shall say that « has the group property if the regular

fractionary z-ideals form a group under z-multiplication.
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ProrosiTioN 27. If S is a semi-group which satisfies the group-property for x, then
the following statements are valid

A. 4,<B,c8=A4,:B,<=8.
B. 4,:4,=8.

Proof. Since A.< B, implies that A,:B,S A4,:4, it is sufficient to prove B. Put
A,:A,=C,. Then A,0C,< A, which together with S§<C, and

A,0S8=A4, (1)
imply that A 0C, =A4,. (2)

Using the group property on (1) and (2) we infer that §=C, and hence A4,:4,=S8.
For the proof of the next theorem we shall also need the following simple generali-

zation of a well-known theorem of Krull.

ProrosiTioN 28. If x is of finite character, then any invertible fractionary x-tdeal is
finitely generated.

Proof. Let A, be an invertible z-ideal, i.e. A,0B,=S8 for some fractionary x-ideal
B,. Thus e € (A4 B), and since x is of finite character we can find two finite subsets ¥ and
M of A and B respectively such that e€(N-M),. Hence N_oB,=8 and A,=N, by the

uniqueness of the inverse, showing that A, is finitely generated.

TaHEOREM 25. 4 semi-group ts z-Dedekindian if and only if x has the group property.

Proof. Suppose that § is z-Dedekindian and let A, be a fractionary xz-ideal of S such
that b4, < S with b €. This gives {b},04,=(b4,),< S and {b},04,=C,is thus an integral
a-ideal. If C,=PPo...oP{® we conclude by Lemma 3 that the fractionary z-ideal
{b}.0(PP)to...o(P{) is the inverse of A,. Assume conversely that x has the group
property. We shall prove that S has the three properties which define an z-Dedekindian
semi-group. Condition I is a consequence of Proposition 28. Suppose next that P, is a
prime z-ideal and P,< A,< S where the first inclusion is supposed to be proper. By the
group property we have a fractional z-ideal C, such that P,=A4_,0C, where C, is integral
according to Proposition 27 A. The primeness of P, then implies that C,=P_ and 4,=8
which shows that P, is maximal. That S is integrally x-closed is an immediate consequence
of Proposition 27 B.

As promised at the end of section 14 we shall now prove a simple theorem which gives
the link between the present theory and the more special one considered by Priifer-Krull-

Lorenzen.
3 — 62173067. Acta mathematica. 107. Imprimé le 27 mars 1962
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THEOREM 26. The regular fractionary x-system induced on the group Sg by a fractionary
x-system tn 8 is an r-system in the sense of Lorenzen.

Proof. Since S§ is a group it follows from Proposition 3 that Lorenzen’s axiom 2.4 is
satisfied for the induced z-system in Sy (see also Theorem 23). Suppose next that b € {a},
where a is a regular element of S*,i.e.a €Sg. Then {b}, < {a},and {b},0{a1}, < {a},0{a1},=
{e}.,=S. This implies ba—1€S or b€Sa which means that « is principal and this proves the
theorem.

CHAPTER 4
Structure spaces of x-ideals

16. The Stone topology for maximal x-ideals. It is rather remarkable that ideals in
rings were not first studied as kernels of ring homomorphisms. This property, however,
is as one should expect, fundamental in most of the applications of ideal theory, and
accounts in particular for the success of various concepts of ideal in functional analysis.
In fact the use of maximal ideals of various types in problems concerning functional
representation stems from the fact that the quotient algebra modulo different kinds of
maximal ideals takes on simple forms, such as the additive group of the reals, the algebra
of complex numbers, the two-element Boolean algebra, ete. Because of the difficulty in
defining a congruence and a quotient modulo a general x-ideal, it does not seem to be easy
to develop a general representation theory based on z-ideals. There are, however, various
basic questions in this domain which have been treated separately for several types of
ideals, where the theory of z-ideals admits a simple unified treatment. We shall here content
ourselves with illustrating this in connection with certain facts in the theory of structure
spaces.

We suppose in this section that S is a commutative semi-group equipped with an
x-system of finite character such that 8 has an z-identity satisfying the two conditions

(1)e€S? and (2) {e},=8.

These two conditions are satisfied for a multiplicative identity in a ring or semi-group
(z=d and x=s respectively) and for a positive order unit (archimedian element) in a lattice
ordered algebraic system with respect to the semi-group operation aob=|a| N |b| (see the
c-systems treated in section 22). In the family M of maximal z-ideals in S we can introduce
a closure operation by defining the closure 1 of H< M by H= {M M .2 M[('i])E i MPY. We

write ker = N M and hull M={M, M> M3}, so that N =hull (ker H).

(
M en
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THEOREM 27. The closure operation N—>hull (ker N) =N defines a topology in M.

Proof. The fact that we really have a closure operation is clear and so is the inclusion
7!1 U ﬁzgm. It is therefore enough to show that 'an'an ﬁl U 7'?2 Suppose that
Mle 'an'I’lz, but M2 ¢ ‘ﬁl U 7!2. Then we would have elements a,b € S such that a ¢ M2,b ¢ M2
and a €ker H,, b €ker N,. Since M2 is maximal and S has an z-identity, we infer from the
corollary of Proposition 9 that M, is prime; hence ab ¢ M3. But, on the other hand, ab € ker
(M, U N,), showing that ab belongs to every M, in H, U H,. Thus also ab € M2, and this gives
the desired contradication.

The above topology is called the Stone topology, and M equipped with the Stone topo-
logy is called the a-structure space of S.

THEOREM 28. The x-structure space of S is a compact T,-space.

Proof. That M is a T,-space is obvious. In order to show compactness, let
{F}1er be a family of closed sets in M with the finite intersection property. We must
show that N F,+@. Let us assume that N F, =9, and put

tel ierl

A4;=U ker . (1)

tel

If A,+8 we must have 4.S M? for a suitable M2€M, ker F;= 4, < M? for all 1€,
and therefore M2€F, =3F, for all i, a contradiction of our assumption. Therefore
A,=8 and the z-identity e belongs to 4,. Since z is of finite character we deduce
from (1) that e€ U, ker F; where J is a finite subset of I, say J ={3,, ..., 3,}. This

ieJ

n n —
implies ’:01 Fu=0. For if M,€ k01 Fu, then M. €F,=F, for k=1,2, ..., n, ie.

M.2ker Fy for k=1, ...,n and S ={e},< U, ker F, < M,, which establishes the desired
k=1

contradiction.

17, Characteristic function semi—groups. It is well-known that the topology of a compact
Hausdorff space X can be characterized in various ways up to a homeomorphism by the
algebraic structure of subfamilies of the family C(X) of all complex-valued continuous
functions on X. Let us cite just two examples. Gelfand and Kolmogoroff [9] proved that
if for two compact Hausdorff spaces X and ¥ the rings C(X) and C(Y) are isomorphic,
then X and Y are homeomorphic. Stone [32} proved that if C*(X ) and C%(Y ) are isomorphic
as lattice-ordered additive groups where C%(X) is the set of all real-valued functions in

C(X), then X and Y are homeomorphic. The operations and order referred to here are



36 K. E. AUBERT

all the pointwise ones. We shall now show how these two theorems as well as other special
cases can be derived from a general theorem by using the Stone topology for z-ideals.

Let X be a topological space and let S(X) be a semi-group of complex-valued con-
tinuous functions on X, equipped with an z-system of finite character, such that S(X)
has an z-identity. For the moment the semi-group operation in S(X) is completely un-
specified. In special cases it can, for instance, be pointwise multiplication, pointwise
addition, or the operation fog=|f| N |g|. We now make the following additional as-
sumptions about S(X):

I. 8(X) separates points in X.
II. S(X) separates points and closed sets in X.
111 The set {f|f{(a)=0} is a maximal x-ideal M in S(X) for a given point a€X,
and there are no other maximal x-ideals in 8(X) if X is compact.

I means that for a + b there exists an f € S(X) such that f(a) =0 and f(b) +0. The meaning
of II is that for every closed set F = X and every point a not in F, there exists f €S(X)
such that f=0 on F and f(a) #+0. If S(X) satisfies all the conditions mentioned so far, we
shall call it a characteristic function semi-group for the space X. Condition I implies im-
mediately that X is Hausdorff, and this latter property could have been used as an as-
sumption instead of I. In fact it is sufficient to assume that X is a Ty-space in order that
IT imply I. But I is the relevant formulation for our purposes because of the following

obvious

ProrosiTION 29. The condition I is necessary and sufficient in order that the mapping
a—MP of X into M be injective.

The two other conditions have a similar purpose with respect to the mapping a—M
namely, to assure that it be a homeomorphism and surjective in case X is compact. Indeed,

we have the following theorem where M denotes the z-structure space of S(X).

(a)
z

THEOREM 29. A necessary and sufficient condition that the mapping a—M$ be a
homeomorphism of X onto M is that X be a compact Hausdorff space.

Proof. Assume first that X is a compact Hausdorff space. From the above proposition
and condition III we know that a—~M$” is a bijection. The proof that we actually have a
homeomorphism is identical with the proof of Theorem 19F, p. 57 in [20]. Conversely if
a—M{ is a homeomorphism of X onto M, it follows from Theorem 28 that X is compact,
and that it is Hausdorff is a consequence of 1.

If S and T are two semi-groups each equipped with an z-system denoted respectively

by y and z, we defined in section 5 a multiplicative homomorphism ¢ of S into 7' to be a
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(y,2)-homomorphism if ¢(4,) S (pA),, or equivalently, if the inverse image of a z-ideal in 7'

is a y-ideal in 8. A (y,z)-isomorphism is therefore a bijection of § onto 7' such that
@(ad) = p(a) @(b) 1)
and ¢(4,) = (p4), and ¢(B,) = (¢p~'B), (@)

This means that there is really no difference between the y-system in § and the z-system in
T, so that we can put y =z =x and call the given mapping an z-isomorphism. In the following
theorem z; denotes the z-system defined in S,(X,), t=1,2.

THEOREM 30. Let X, and X, be two compact Hausdorff spaces and let S,(X,) and
8,(X,) be two characteristic function semi-groups for the spaces X, and X, respectively. Then
X, and X, are homeomorphic if S;(X,) and Sy(X,) are (x,,%,)-isomorphic.

Proof. If the z,-structure space of X, is M,, (i=1,2), then M, and M, are homeo-
morphic since 8,(X;) and 8,(X,) are (x,,2,)-isomorphic, and the theorem follows from
Theorem 29.

In order to derive the above-mentioned theorems of Kolmogoroff-Gelfand and Stone
from Theorem 30, we only have to verify that the function semi-groups involved in these
two cases—namely O(X) with respect to multiplication and C*X) with respect to the
operation fog=|f| N |g|—have the properties of a characteristic function semi-group
with respect to the d-system and the c-system respectively. The d-system is the system of
ordinary ideals in a ring, while the c-system is the system of convex, lattice-closed subgroups

in a lattice-ordered abelian group (see scction 22).

Concluding remarks. It goes without saying that the results of the preceding chapters
should be considered just as samples of results which can be generalized to z-ideals and
do not in this sense aim at any completeness. We believe, however, that the results derived
so far should clearly indicate the possibilities of this general approach to ideal theory.
There would be no point in trying to generalize blindly as many as possible of the existing
results on special z-systems to general z-ideals. But we think that such a generalization
could, in many cases, lead to interesting results. In fact, it seems often a fruitful procedure
to try to generalize a special result to z-ideals and then apply the general theorem to other
particular x-systems. In [3] we have, following the idea of [32], applied this procedure
in order to derive a general embedding theorem for lattice-ordered algebraic structures.
We there applied the general Krull-Stone theorem for z-ideals to a particular kind of
z-gystems consisting of certain types of convex subalgebras with respect to the semi-group
operation aob=|a| N |b]|.
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As to further generalizations of the present theory we here mention two possibilities:
Generalization to the non-commutative case and generalization to what we could call
x-modules. The formulation of the axioms in the non-commutative case does not offer any
difficulty although one must be careful about the order of the factors. The axioms 1.3’

and 1.3" for a left z-system should, for instance, read

1.3’ AB,SB,.
1.3" B,AC<(BA),.

We here observe that the order of A and B are reversed in 1.3” with respect to that in 1.3".
Much of non-commutative ideal theory of rings carries over to this general setting. As an
example see, for instance [2], Chapter 2. Grundy [10] has generalized the ideal theory of
Noetherian rings to modules. Something similar might be done in the case of general
z-ideals to arrive at a notion of an z-module. We should remark that a similar general

concept has been introduced for arithmetical purposes by Lorenzen in [23].

CHAPTER 5
Applications to particular x-systems

We shall in this chapter go into some more detail with respect to a few of the special
ideal theories which are subsumed under the theory of z-ideals. Since the process of getting
special results by putting x=d, s, m, J, etc. in the general theorems on z-ideals is in most
cases a trivial matter, we shall here consider only certain samples of this kind. We shall
in particular choose examples where the theory of z-ideals throws new light on well-known

special results—or where we actually can obtain new results by the specialization process.

18. Lattices. As developed thus far, the ideal theory of lattices constitutes a very
elementary subject with few—if any—really deep results. The standard reference [4] is
not very complete as far as ideal theory is concerned and contains only a few simple results.
More details can be found in [13] and [25]. The essential results on the ideal theory of
distributive lattices are nearly all easy consequences of theorems on z-ideals and appear to
be best understood in this connection. In fact the theory of z-ideals clarifies completely
the crucial role played by distributivity and gives incidentally various new characteriza-
tions of this property. .

Let L be a lattice under the operations U and N. A subset A of L is called a lattice
ideal or simply an I-ideal in L if a Ub€A whenever a and b€ 4 and a N b€.4 whenevera€ A4
and bEL. It is easily verified that the family of l-ideals in L will define an z-system in L
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if L is distributive and is considered as a semi-group under intersection (see below). This
shows that the ideal theory of distributive lattices is subsumed under the theory of z-ideals.
Our main objective in this paragraph is to establish a converse of this result which will
give the full explanation why most of the important results on Il-ideals hold just for distri-
butive lattices.

THEOREM 31. The l-ideals in L define an z-system in L if and only if L is distributive.

Proof. Assume first that L is distributive. We must show that the continuity axiom
aN B,< (an B), (1)

is satisfied. An element ¢ belongs to B; if and only if ¢<b,; U ... Ub, for a finite number of
b, belonging to B. Thus

aNc<aN(dU..Ub,)=(aNnb)U..U(anb,) €(an B),

so that (1) is satisfied. Assume conversely that the continuity axiom is satisfied. Then by
Theorem 1 (or more directly by Proposition 17) the family C(L) of l-ideals will form a
distributive lattice under inclusion. L is isomorphic to the sublattice of (L) which consists
of all the principal l-ideals of L and hence is distributive.

A direct proof of the fact that the continuity axziom implies distributivity can be
given as follows. The continuity axiom states that

an{by,...b}ics{anb,,..,anb,};. (2)

The left-hand side of (2) consists of all elements d such that d<a N (b, U ... Ub,), while the
right hand side of (2) consists of all the elements f such that f<(anb)U..U(anb,).

The inclusion (2) is therefore equivalent to the implication
d<an(d,U..Ub,)=>d<(aNb)V..U(anb,.
Putting here n=2, b, =b, by=c and d=a N (b U c) we obtain
afN(BUe)<(eand)U(anc)

which shows that L is distributive because the reverse inclusion is satisfied in any lattice.
Theorem 31 combined with general theorems on z-systems like Theorems 1, 2, 3, 13, 14
and 15 gives a great number of different characterizations of distributive lattices among
which several do not seem to have been observed earlier. We collect some of these in the
following corollary. We recall that in a lattice L AN B is the set of all intersections
anb with a€4 and bEB, and 4:b={c,cNbEA}.
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COROLLARY. The following conditions are equivalent for a lattice L:

. L s distributive.

. The lattice of l-tdeals in L is distributive.

. Every l-ideal in L can be written as an intersection of prime l-ideals.
. Every srreducible l-ideal is prime.

. (AnB),=A,nB,.

. A;:b ¢s an l-ideal in L for all bEL.

.A,;:B,=A,:B.

. (AN B),nCl;=[AN(BNC)] (in case L has a greatest element).

0 1 & Gt W N e

In section 5 we defined a general notion of z-congruence modulo an z-ideal 4, by
putting b=c (mod A;) whenever (4,,b),=(4,,¢c),. By using the continuity axiom we
showed that this relation was a congruence relation with respect to the multiplication of
the underlying semi-group, i.e. b=¢ (mod A4,)=bd=cd (mod 4,). We did not there treat
the converse problem, i.e. to what extent the continuity axiom is implied by this congruence
property. We shall now see that this problem admits a simple solution in the case x=I.

In the case of l-ideals, (4,b),=(4,c), is equivalent to the existence of two elements

a, and a, in A, such that

b<a,Uc¢ and c¢<a,Ub. (3)

In case 4, is a principal l-ideal (a), it is clear that b=c(mod (a),) if and only if b<aUc
and ¢<aUb. The conjunction of these two inequalities is equivalent to the equation

aUb=aUc. We therefore have the following:

ProrosiTioN 30. The elements b and ¢ are l-congruent modulo the principal l-tdeal
(@), if and only if aUb=a Uec.

Since a Ub=a Uc is equivalent to (a);Ub=(a),Uc (using the convention succeeding
the axiom 1.3 of section 1) we see that the [-congruence in this case can be defined formally
in exactly the same way as the ordinary congruence in rings substituting U for +.

The next theorem again ties up the connection between distributivity and the general
theory of #-ideals. The notion of I-congruence can be defined in any lattice but the following
theorem shows that the name l-congruence is really appropriate only in distributive lattices.

We remark that it is really only the congruence property with respect to the inter-
section operation which matters here, but since the relation a=b(mod 4,) is always a
congruence with respect to union, our terminology coincides with the one used in lattice

theory where a congruence is an equivalence relation satisfying

[a=b]=>[aVUc=bUc and aNc=bNc].
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TrEOREM 32. The following properties are equivalent in a lattice L.

1. L s distributive.
2. a=b(mod A4)) is a congruence relation for all l-ideals A, in L.
3. a=b(mod (c),) is a congruence relation for all principal l-ideals (c), in L.

Proof. We prove the theorem by establishing the following sequence of implications:
3=1=2=3. According to Proposition 30, 3. asserts that

[@aUb=aUc]=[aU@®Nd)=al(cnd). )

If L were non-distributive it would contain either of the two lattices

c c
a-/ l;\d b./ .\[d
N7 NS

e €
as sublattices.

Both these two lattices violate (4) and hence 3= 1, 1= 2 follows from Theorems 9 and
31, and 2= 3 is obvious.

The decomposition theorems derived for general z-ideals in Chapters 2 and 3 take on a
particularly simple form in the case of I-ideals in a distributive lattice. This is due to the
fact that we have irreducible =primary =prime in the case x=1I. In addition the family
L(L) of l-ideals satisfies the ascending chain condition (i.e. L is I-Noetherian) if and only if
L itself satisfies the ascending chain condition. In this case every l-ideal in L is principal
and L is isomorphic to the lattice C(L) of all l-ideals in L by the mapping a—(a);. Indeed
if L is I-Noetherian, every l-ideal 4, is finitely generated. Thus A,={a,,...,a,},=
(@, U ...Ua,);, and A4, is principal. Conversely if L satisfies the ascending chain condition,
it is clear that every l-ideal in L is finitely generated. In the case of a distributive lattice
L with ascending chain condition for its elements Theorem 19 therefore only gives the
simple fact that any element in L can be written uniquely as an irredundant intersection

of a finite number of irreducible elements.

19. Multiplicative lattices and semi-lattices. The observation first made by Krull in
[17], that many results of the ideal theory of rings can be formulated in terms of ideals
alone without any reference to the elements of the underlying ring has led to the introduc-
tion of lattices and semi-lattices over which a multiplication is defined. Among the main
contributions to the subject we can mention [5], [6], [7], [8] and [19]. Apart from being

an axiomatic study developing ideal theory without reference to elements these papers
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also have an objective similar to the present one, namely, to subsume other ideal theories as
well as that of ordinary d-ideals. We believe, however, that the theory of z-ideals has
several advantages over the theory of multiplicative lattices and semi-lattices. Because of
the presence of “‘elements’, the theory of z-ideals leads to a richer and more flexible calculus.
In fact, we shall show below that there are important ideal-theoretic notions which never
can be formulated purely in terms of multiplicative lattices. This is for instance the case
with the continuity aziom itself. The following representation theorem also shows that the
part of the theory of m-lattices which has been developed most extensively, is subsumed
under the theory of z-ideals.

We have already defined the notion of a quasi-integral m-lattice. By a groupoid we
mean a set G with a binary operation @ X @—@ which will be denoted multiplicatively.
G is said to be a U-groupoid if there is also defined an associative, commutative and
idempotent operation U in @ such that a(d Uc)=abUac. If the groupoid-operation is
associative we shall speak of a U-semi-group. We here only consider U-semi-groups which
are commutative. The definition of the m-system given in section 13 carries immediately

over to a U-semi-group.

THEOREM 33. To every quasi-integral U-semi-group L satisfying the ascending chain
condition we can find a semi-group S and an z-system of finite character in S such that L is
isomorphic to the U-semi-group of all z-ideals in S wunder the operations of z-union and
z-multiplication.

Proof. We shall actually show that we can choose § =L with the multiplication in L
as semi-group operation and put x=m. Let us first verify that the m-system really is an
x-gystem, i.e. satisfies the continuity axiom 4B, < (AB),. The m-ideal generated by B
consists of all elements ¢ such that ¢<b,U...Ub, with b,,...,b,€ B. If a€ 4, we therefore
have

ac<a(d,V..Ub,)=ab,U..Uab,€(AB),,
and the continuity axiom is satisfied. If L satisfies the ascending chain condition every
m-ideal in L will be principal, and it is obvious that the mapping a—{a},, is an isomorphism
carrying products into m-products and union into m-union. This proves the theorem.

COROLLARY. As far as properties which can be expressed entirely in terms of x-ideals
and the operations of x-union and x-multiplication are concerned, the following theories are
equivalent under the assumption of the ascending chain condition.

. The theory of x-ideals.

. The theory of m-ideals.

. The theory of quasi-integral m-lattices.

. The theory of quasi-integral U -semi-groups.

B W N e
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Any result on quasi-integral U-semi-groups with ascending chain condition gives
trivially a result on x-ideals. Conversely the above representation theorem shows that all
theorems on quasi-integral U-semigroups with ascending chain condition can be derived
from similar theorems on z-ideals. For the proof of the next theorem it will be convenient

to have the following

LeEMMA. For a given x*-system the following conditions, which all represent a weakening
of the continuity axiom, are equivalent.

I Age-B;aS (s Blon.
II. A,«0B;«=A4,.0B.
III. (Ai«:B:e)re=A,s: B;a.
IV. A;0(BU;+C)=(A,+0B) U +(A0C).

We can leave the simple proof of this lemma to the reader.

THEOREM 34. The continuity axiom cannot be expressed by x-ideals alone, i.e. it cannot
be formulated as a property of the m-lattice of all x-ideals.

Remark. In fact all the equivalent forms of the continuity axiom given in Theorems
1, 2 and 3 involve elements or subsets of S which are not z-ideals. We shall now show that
this must be the case for any formulation of the continuity axiom. For certain special
2-gystems like the l-system we know, however, that the continuity axiom is just equivalent

to the fact that the l-ideals form an m-lattice under l-union and l-product.
Proof. We shall prove the theorem by exhibiting two semi-groups S; and 8, equipped

with z*.systems 2] and x5 respectively such that the m-lattice of all z3-ideals of 8, is
isomorphie to the m-lattice of all z,-ideals of S, and such that x3 satisfies the continuity
axiom but zf does not. Let S, be the multiplicative semi-group of the polynomial ring
Z[x] and let 2} denote the z*-system consisting of all the differential ideals in Z[z]. An ideal
(=d-ideal) A in Z[x] is said to be a differential ideal if it contains the derivative da of any
of its poly;nomials a. Let us refer to this z*-system as the d*-system. We first observe that
the ¢*-system does not satisfy the continuity axiom. In fact z-{x}s+ & {#*}s« since the
polynomial z is contained in the left-hand side but not in the right-hand side. Nevertheless
the family of 0*-ideals forms an m-lattice under inclusion and 6 *-multiplication. This follows
from the above lemma (IV) together with the fact that As«: Bs« is always a d*-ideal (III).
Indeed if ch€Ass for all b€ Bss, then d(ch)=0¢-b+c-6bE Ass and de-bE A+« for all bE Bs»
showing that dc€4s+: Bs». We have therefore established that the family of all §*-ideals

in Z[z] forms an m-lattice L with ascending chain condition. Now, choose S, =L with the
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multiplication in L as the semi-group operation of S, and put 23 =m. Since the ascending
chain condition is satisfied in L, L is isomorphic to the m-lattice of all m-ideals in L under
the mapping a—{a},, and the theorem is thereby proved since the m-system satisfies the
continuity axiom.

In view of the fundamental role which is played by the continuity axiom in ideal
theory, the above theorem indicates anew that several more refined ideal-theoretic facts
cannot be expressed in terms of m-lattices alone.

Another example of an z-system which has been considered in a quasi-integral U-
semi-group is the following. We shall call a subset 4, of a U-semi-group L a u-ideal if
the following two conditions are satisfied: (1)a,b€A,>ab€A,. (2)a€A,andbEL=>aUbEA,,.
The u-ideal generated by A consists of all elements a>a,-a,,...,a, where a,,...,a,€4
and the u-ideals form an 2-system in L considered as a semi-group with respect to union.

Indeed,
bUa>bUa,-a,,...a,20BUa) (bUa,)...(0Ua,)ED U 4),,

for any element a € 4,. For this concept of ideal see [8].

20. Radical differential ideals and perfect difference ideals. In the case of ordinary
d-ideals in (commutative) rings the continuity axiom is essentially a consequence of the

distributivity of multiplication with respect to addition. In fact, any element b€ B, is of

the form
Py byt bt by by
k k k k
and ab=a > r;bj+a > nb,= > rab,+ > n,ab, € (aB)g,
1 i-1 151 i=1

showing that the continuity axiom holds. In case of lattices we had that even the reverse
implication holds. The distributivity was there a consequence of the continuity axiom.
In these two cases where the distributivity essentially accounts for the properties which in
the general case follow from the continuity axiom, the importance of the continuity axiom
has naturally not been clearly recognized. In various cases of rings with operators which
we are now going to discuss it is interesting to note that a much more crucial role is played
by a direct use of the continuity axiom in one or the other of its many disguises. In [15]
for instance Lemma 1.4 and Lemma 1.5 are nothing but two of the most familiar formula-
tions of the continuity axiom for d-ideals, and in [28] and [30] an essential role is played by
particular cases of the corollary of Proposition 13.
A differential ring R is a commutative ring with a derivation satisfying

d(a +b) = ba +6b.



THEORY OF Z-IDEALS 45
o(ab) =da-b+a-6b.

A d-ideal As«in R is called a differential ideal if da € 45« whenever a € As«. These differential
ideals define the x*-system 6* which was used in the preceding paragraph. We saw there
that the continuity axiom was not satisfied for the d*.system, and this is the main reason
for restricting our attention to the following class of §*-ideals: A differential ideal A5« is
called a radical differential ideal if rad As«=As.. In this case we put 6*=¢ and speak of
the §-system.

ProrostiTIiON 3l. The radical differential ideals of a differential ring R define an
x-system in the multiplicative semi-group of R.

Proof. Obviously we need only verify that the set 44:b is closed under derivation.
Assume therefore that chb€A;s. This implies that §(ch)=dc-b+c-db€As. Multiplying by
dc-b we obtain (dc-b)2+cbh-dc - 8b€ As, showing that (dc-b)2€ 4s and thus dc-bEA,;. From
this and the general Krull-Stone theorem on z-ideals we obtain the following

COROLLARY. Any radical differential ideal in a differential ring can be written as an
indersection of prime differential ideals.

This result was first proved by Raudenbush in [28] in the special case of a so-called
Ritt algebra (see [15, p. 12]). A Ritt algebra is a differential ring which contains the field
of rational numbers and hence can be regarded as an algebra over the rational numbers.
In a Ritt algebra the radical of a differential ideal is again a differential ideal, and it was
the use of this fact which led Raudenbush to suppose that the given differential ring is a
Ritt algebra. What is exactly needed in order to carry through Raudenbush’s argument to
show that d(rad 4;+) Srad As« is that the additive group R/As» is without torsion. It is
for instance not enough to suppose that R is of characteristic zero, i.e. contains a copy of
Z. Indeed, in Z[x] the radical of the differential ideal (22, 2) is the d-ideal (z, 2) which is not
differential.

Another type of rings with operators with an ideal concept which nicely falls into the
pattern of x-ideals is the difference rings with their perfect difference ideals. This ideal
theory was considered by Ritt and Raudenbush in [30]. We here content ourselves with
showing that their ideals really define an z-system.

A difference ring is a commutative ring' R together with an operator A satisfying
A(a+b) = Aa + Ab.
A(ab) = A(a)-A(D).

In [30] it is assumed that R contains a unity e such that Ae=e. As defined here a difference

ring is nothing more than a commutative ring with a distinguished endomorphism. We
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shall write A(Aa)=A2a, A%a=A(A%) and generally A"z when the operator is repeated
n times. Ritt and Raudenbush [30] call a d-ideal 4, in R a difference ideal if

a€A,=>Na€A; and Aa€Ad;=a€A, 1)
A difference ideal A 5« is said to be a perfect difference ideal or a A-ideal if
(A”’a)al (A”: a)a. eee (An" a,)""‘GAA*»aEAA. (2)

Here n,,...,n, are distinct integers >0 and «, ..., o, are integers >1. 4, denotes as usual

the unique minimal A-ideal containing A4.

ProrositioN 32. The family of A-ideals defines an z-system with respect to the
multiplicative semi-group of R.

Proof. We need only verify the continuity axiom, i.e. that 4,:b is a A-ideal. Let us
first verify that 4,:b has the property (2). If

(AMc)y™ ... (A™c)*®-bE€A,,
we obtain by multiplication with ¢ (A™b)* ... (A" b)* that
(A™ (ch)Y*™ ... (A™ (cb))™ - ch € A .

Since A, satisfies (2) this means that cb €4 3 and c€ 4, :b. We then show that A4 4 :b satisfies
(1). Assume first that c€A4,:b, i.e. cb€EA,. Then A(ch)=Ac-Ab€EA,, and multiplication
by A%-b gives Ac-Ab-A%-b=Ac-b-A(Ac-b)€ A, which implies Ac-b€ A4, according to (2).
If conversely Ac-b€A4,, then also cAb-Ac-b=cbA(ch)€A, and chE€EA, by (2).

COROLLARY. All theorems valid for general x-systems of finite character are valid for
A-ideals.

21. Rings with operators and monadic ideals. Differential rings and difference rings
are both examples of rings with operators and so are, for instance, algebras over a field.
In the latter case the operators satisfy a(a-+b)=a(a)+x(b) and a(ab)=a(a)-b(=a-a(d)),
and an algebra ideal or a-ideal in the algebra R is a d-ideal in R which is closed under scalar
multiplication. The continuity axiom is again satisfied since ¢€ 4,:b implies that «(cb)=
(xc)-b€A, and ac€4,:b. Many other types of rings with operators have been considered
in particular in connection with Boolean algebras as, for instance, closure algebras, projec-
tive algebras and relation algebras. We shall here content ourselves with discussing one
example of a Bolean algebra with operators which is basic in the investigations of Halmos

on the algebra of the quantification calculus. This example is also of interest because it
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shows that certain useful results on ideals can be derived also in cases where the continuity
axiom is not satisfied.

A monadic algebra is a Boolean algebra B together with an operator I satisfying
the following axioms

30=0. @)
a<3a. 2)
I(@nIb)=3anIb. (3)

Due to its interpretation in logic 3 is called a quantifier. Denoting the complement
by a dash, one readily verifies the following relations 33=3, a<b=3Ia<3},
3(3a) =(3a) and I(@Ub)=3FaU3Ib. The quantifier I is called discrete if 3a=a for
all a €B. This amounts to saying that the range of 3 is B. An ideal 4,in B, ie. an
l-ideal, is called a monadic ideal or 3-ideal and is denoted by A, if a €4, implies
Ja€A,. We consider the monadic ideals as an z*-system with intersection as the
semi-group operation.

ProprosiTioN 33. A;:b is an I-ideal for all A, if and only if Ab=0.

Proof. If Ib=>b, then A,;:b=A;:3b, and cNb€EA; implies ¢cNIbEA; and
I(cnIbyed,. TUsing (3) we obtain the desired result 3c€4,:b. If conversely 4;:b
is always an 3-ideal, 0:b=(b'), is in particular an 3-ideal, and this implies 35" =b".
According to the first half of the proposition 0:5'=(b), must therefore be an 3-ideal
and 3b=0.

We have here a particular case of the general situation described in the first
balf of paragraph 6. The subsemi-group S* is here the range 3B of 3 and the
family of traces 4;N3B forms an z-system, namely the l-system, on the Boolean
sub-algebra 3B. In fact we have a one-to-one inclusion-preserving correspondence
A;—>3 4, between the 3J-ideals in B and the l-ideals in 3B. It is essentially this
correspondence which enables one to prove certain useful results about the J-system
by reducing the problem to the I-system where the continuity axiom is available. In this

way one can, for instance, prove the following

ProrosiTioN 34 (Halmos). Every 3-ideal A, is equal to the intersection of all
the mazximal 3-ideals contatning A,.

Remark. It is clear from Proposition 33 that Proposition 34 is not a Krull-Stone
theorem for 3-ideals since a maximal 3-ideal need not be maximal considered as an

l-ideal and hence need not be prime. In order to clarify this point we give the
following.
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TeEOREM 35. In a monadic Boolean algebra the following statements are equivalent:

1. The 3-ideals verify the continuity axiom.
2. The quantifier I is discrete.
3. Every l-ideal ts an 3-ideal.
4. A maximal A-ideal is a maximal l-ideal.

5. A maximal -ideal is prime.

Proof. 1= 2 follows directly from Proposition 33; 2= 3, 34 and 4= 5 are all obvious.
Finally 5=1 follows from Proposition 34 and the converse of the Krull-Stone theorem

for half-prime z*.systems (Theorem 13).

22, Conmvex subgroups of lattice-ordered groups and rings. The application of the theory
of z-ideals to lattice-ordered algebraic systems is among the more interesting applications.
But since we have treated this matter in more detail in a separate paper [3] we shall here
content ourselves with treating the case of lattice-ordered rings and refer the reader to
[3] for & more general treatment. Let @ be a lattice-ordered group, i.e. there is defined an
order relation > in G such that @ is a lattice and a>b=a+c¢>b+c¢ for all c. Putting
at=aU0 and a—=—aUO0, we define a semi-group operation o in G by acdb=|a| N |b]|.
An additive subgroup H of the group @ is said to be absolutely convex if |a| < |b| fora€@
and b€ H implies a € H. This definition gives a link with ideal theory because it just expresses
that H has the multiplicative ideal property 1.3’ with respect to the semi-group operation
aob=|a| N |b|. The absolutely convex subgroups are the natural distinguished subsets
of a lattice-ordered group since they just form the kernels of the structure preserving
maps, i.e. the homomorphisms with respect to the addition and the lattice operations. In
order that this basic property is maintained in case @ also has a multiplication making it
into a ring R it is necessary and sufficient that H also is a d-ideal in R. This family F of
absolutely convex d-ideals in R is, however, not satisfactory from the point of view of the
theory of x-ideals since it does not satisfy the continuity axiom with respect to the opera-
tion aob. In order to get an z-system we must single out a subfamily F. which has the
property that A€F, = A:b€F, for all b€ R. We get the unique maximal subfamily F. of
this type by using the general procedure described in Section 6. More explicitly we have the

DEFINITION. An absolutely convex d-ideal 4 of R belongs to F, and is called a
c-ideal if |a| N |b| €A =|a| N |cb|€A for all cER.

One of the basic problems concerning ordered algebraic structures is their representa-
tion by real-valued functions and more generally their embedding in a direct product of
linearly ordered algebraie structures of the same type. The following theorem shows that
the theory of z-ideals has a fundamental bearing on the latter more general question.
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THEOREM 36. The family of c-ideals defines a half-prime z-system in the semi-group
R(o0). The necessary and sufficient condition that R can be embedded in a direct product of
linearly ordered rings is that {0} constitutes a c-ideal in R, i.e. that aNb=0=an |cb| =0 for
all c€ R. It is also necessary and sufficient for such an embedding that there exists an x-system
in R(o) consisting of a family of convex d-ideals such that {0} is an x-ideal.

For the proof of this theorem we refer the reader to [3]. In [3] one also finds a more
general statement which gives necessary and sufficient conditions for similar embeddings
of lattice-ordered groups and lattice-ordered vector-spaces and algebras over a linearly
ordered field. An absolutely convex subgroup of a lattice-ordered abelian group will also
be called a c-ideal. In fact a lattice-ordered abelian group @ can always be considered as a
lattice-ordered ring with respect to the trivial multiplication ab=0. Furthermore, an abso-
Iutely convex subgroup of @ is evidently the same as a c-ideal in this ring.

We then show that Theorem 30 applies to the c-system of a lattice-ordered group and
thus gives us the following theorem of Stone.

THEOREM 37 (Stone). Let X, and X, be two compact Hausdorff spaces. Then X, and
X, are homeomorphic if C¥(X,) and C*(X,) are isomorphic as lattice-ordered additive groups.

Proof. We only need to verify that the conditions of Theorem 30 are satisfied for the
c-system in C?*(X) when X is a compact Hausdorff space. The c-system is of finite character
and f=1 is a c-identity. The three conditions 1, 2 and 3 just express simple and well-known
facts concerning C*(X).

In connection with the c-structure space of a lattice-ordered abelian group we could
also mention that it yields a topological characterization of the important arithmetical
notion of complete integral closure. Consider a lattice-ordered group @ with an archimedian
element ¢, i.e. a positive element e such that for every a there exists an n>0 with ne >a.
Evidently such an archimedian element (sometimes called an order unit) is the same thing
as & positive c-identity. @ is said to be completely integrally closed if na=b for a fixed
b€G@ and all n>0 implies a > 0. This gives the usual notion of complete integral closure in

case ( is the divisibility group of an integral domain.

THEOREM 38. A4 lattice-ordered abelian group G with an archimedian element is com-
pletely integrally closed if and only if the set of maximal c-ideals is dense in the c-structure
space of prime c-ideals.

Remark. The proof of the fact that the hull-kernel procedure defines a topology in the
space of prime z-ideals is exactly the same as in Theorem 27.

Proof. A theorem in the theory of lattice-ordered groups says that a lattice-ordered

abelian group G with an archimedian element e is completely integrally closed if and only
4 - 62173067. Acta mathematica. 107. Imprimé le 27 mars 1962
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if the intersection of all the maximal c-ideals of @ is equal to {0}. By the Krull-Stone
theorem for c-ideals, the intersection of all the prime c-ideals of G is equal to {0} for arbi-

trary (. The theorem follows by combining these two results.

23. Another characteristic function semi-group. We should like to give one more appli-
cation of Theorem 30 showing that this theorem can also be used to produce some special
results which are less familiar than those obtained by Gelfand-Kolmogoroff and Stone.

Let us consider the family C%(X) of all real-valued, non-negative continuous functions
on the compact Hausdorff space X. We shall here consider C¥(X ) as a lattice-ordered semi-
group with respect to pointwise multiplication and pointwise ordering. We shall say that
a subset 4, of C%(X) is a ¢-ideal if the following two conditions are satisfied:

f€A, and g€C(X)=f-g€A, 1)
f€EA, and g€Ad,=>fUg€EA,. (2)

ProrosiTioN 35. The o-ideals form an x-system of finite character with mulli-
plication as semi-group operation and C% (X) is a characteristic function semi-group for
X with respect to the o-system.

Proof. Using the fact that we have the distributive law f-(gUh)=fgU fh it is
easily seen that the continuity axiom is satisfied. The function f=1 is a ¢-identity
in C% (X), and we need only to check the condition IIT of a characteristic function
semi-group. That M ={f, f€CF(X) and f(a)=0} is a o-ideal in C%(X) is clear.
That it is maximal can be seen as follows: Assume that f¢ M(”, ie. f(a)=+0. This
implies that f(z)+0 for a certain open set O, containing a. To every b+a we can
find a g€M” such that g(b)=0 and hence g(z)+0 in an open set O, containing b.
Because of the compactness we have a finite number of points by, ..., b, with corre-
sponding functions g, ..., ¢, such that O, U0, U ...U Op,=X and h=fUg,U...Ug,
is bounded away from zero on X. This shows that 1=1/k-h€(MS, f); and M is
a maximal g-ideal in OF(x). The same type of argument shows also that there are
no other maximal o-ideals in OF (X) than those of the form M.

The above proposition immediately implies the following

TuvorEM 39. Let X, and X, be two compact Hausdorff spaces. Then X, and
X, are homeomorphic if C%(X,) and C%(X,) are isomorphic as lattice-ordered multiplica-
tive semsi-groups.



(1]

[21-
[3].

(4]
[5).
(6.
[71.
(8}
[9J.
[10}.
[11].
[12].
[13].
[14].
[15].
[16].
[17]).
[18].
[19].

[20].
[21].

[22].
[23].
[24].
[25].
[26].
[27].

[28].

[29).
[30].

THEORY OF Z-IDEALS b1

References

K. E. AuBERT, Généralisation de la théorie des r-idéaux de Priifer—Lorenzen. C. R. Acad.
Sci. Paris, 238 (1954), 214-216.

—— Contribution a la theorie des idéaux et @ la théorie des valuations. Thése, Paris 1957.

—— Un théoréme d’immersion pour une classe étendue de structures algébriques réti-
culées. An. Acad. Brasil. Ci. , 31 (1959), 321-329.

G. BIRKHOFF, Lattice theory. New York 1948.

R. Crorsor & L. LESIEUR, Théorie noethérienne des anneaux, des demi-groupes et des
modules dans le cas non-commentatif I. Colloque d’Algébre supérieure, Bruxelles
1956, 79-121.

R. P. DicworTH & M. WarDp, Residuated lattices. Trans. Amer. Math. Soc., 45 (1939),
335-354.

R. P. DinworTtH, Non-commutative residuated lattices. Trans. Amer. Math. Soc., 46
(1939), 426-444.

M. L. DuBremL-JacoTiN, L. LESIEUR & R. Croisor, Legons sur la théorie des treillis ...
Paris 1953.

I. GELFaND & A. N. KoLMOGOROFF, On rings of continuous functions on topological
spaces. Dokl. Akad. Nauk SSSR 22 (1939), 11-15.

P. M. GrunNDY, A generalization of additive ideal theory. Proc. Cambridge Philos. Soc.,
38 (1942), 241-279.

P. R. Haumos, Algebraic logic I. Compositio Math., 12 (1956), 217-249.

—— Algebraic logic I1. Fund. Math., 43 (1956), 255-325.

J. Hasaimoro, Ideal theory for lattices. Math. Japon. 2 (1952), 149-186.

P. JarrarD, Les systémes d’idéaux. Dunod, Paris 1960.

I. KAPLANSKY, An introduction to differential algebra. Hermann, Paris 1957.

W. KruLL, Idealtheorie in Ringen ohne Endlichkeitsbedingung. Math. Ann., 101 (1929),
729-744.

—— Axiomatische Begriindung der allgemeinen Idealtheorie. Sitzungsberichie der physika-
lisch-medicinischen Soctetit zu Erlangen, 56 (1924), 47-63.

—— Beitrage zur Arithmetik kommutativer Integrititsbereiche. Math. Z., 41 (1936),
545-577.

L. LESIEUR, Sur les demi-groupes réticulés satisfaisant a une condition de chaine. Bull.
Soc. Math. France, 83 (1955), 161-193.

L. H. Loomis, An introduction to abstract harmonic analysis. New York 1953.

P. LorenzEN, Abstrakte Begrimdung der multiplikativen Idealtheorie. Math. Z., 45
(1939), 533-553.

——— Uber halbgeordnete Gruppen. Math. Z., 52 (1949), 483-526.

—— Teilbarkeitstheorie in Bereichen. Math. Z. 55 (1952), 269-275.

N. H. McCovy, Rings and ideals. Carus Monograph Series No. 8, 1948.

A. Mo~TEIRO, Filtros e ideais I, II. Notas de Mat., 2 & 5, Rio de Janeiro 1959.

D. C. MurpocH & O. ORE, On generalized rings. Amer. J. Math., 63 (1941), 73-86.

H. PrUFER, Untersuchungen tiber Teilbarkeitseigenschaften in Kérpern. J. Reine Angew.
Math., 168 (1932), 1-36.

H. W. RauvpensusH, Ideal theory and algebraic differential equations. Trans. Amer.
Math. Soc., 36 (1934), 361-368.

J. F. Rrrr, Differential Algebra. Colloquium Publications No. 33. New York 1950.

J. F. Rrrr & H. W. RaupENBUSH, Ideal theory and algebraic difference equations. T'rans.
Amer. Math. Soc., 46 (1939), 445-452.



52 K. E. AUBERT

[31]. E. ScuENkMAN, The similarity between the properties of ideals in commutative rings

and the properties of normal subgroups in groups. Proc. Amer. Math. Soc., 9 (1958),
375-381.

[32]. M. H. SToNE, A general theory of spectra I & II. Proc. Nat. Acad. Sci. U.S.A., 26-27
(1940-1941), 280-283 and 83-87.
[33]. B. L. vaN DER WAERDEN, Algebra 11, vierte Auflage 1959.

Received Dec. 7, 1960



