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K .  E. AUBEET 

Introduction 

Since Kummer  and Dedekind introduced ideals in connection with the problem of 

unique factorization of algebraic integers, numerous other notions of ideal have made 

their appearance in various branches of mathematics.  In  ring theory alone van der Waerden, 

Artin and especially Krull have introduced a whole series of new notions of ideal devised 

for different arithmetical purposes. These notions in ring theory can all be subsumed under 

a basic idea of Priifer which has later been successfully applied in greater generality by  

Lorenzen and others to the arithmetics of semi-groups and ordered groups. 

However, outside ring theory one finds tha t  a considerable role is played by  objects 

having a strong formal resemblance to ideals in rings. Many of these objects have therefore 

also appropriately been termed ideals. We have ideals (and filters) in Boolean algebras 

and more general lattices. We have radical (perfect) differential ideals in differential rings 

and various notions of ideal in semi-groups, m-lattices, ordered groups and ordered rings. 

Also, normal subgroups, the monadie ideals of Halmos and differential ideals in differential 

rings are pertinent to an axiomatic slightly more general than the one adopted in this paper. 

(See the lemma of section 19.) 

These notions of ideal have been used for many  different purposes. I f  we were to 

mention one group of questions outside the domain of general arithmetics for which 

various notions of ideal have played a decisive part,  it would above all be the questions 

related to functional representation of various types of ordered and topological algebraic 

systems such as Boolean algebras, ordered groups, ordered rings and Banach algebras. 

I t  is sufficient to refer to the fundamental  work of Stone, Gelfand and Kadison on the 

maximal ideal method and its numerous applications in connection with functional re- 

presentation, compactification, etc. 

The formal analogies between the existing notions of ideal suggest a t  once tha t  a 

great number  of results in the special ideal theories may  be derived from a common source. 

The purpose of the present paper  is to exhibit such a common axiomatic source and to lay 

the foundation of a general ideal theory based on it. The basic idea of the present approach 

which is to axiomatize the passage from a set to the ideal generated by  tha t  set, goes back 

to Priifer [27]. This idea was generalized and used systematically by  Krull and Lorenzen. 

But  their investigations had a purpose entirely different from ours and were in fact directed 

exclusively towards the arithmetic of integral domains and ordered groups. The axioms 

of Lorenzen are, as they stand, so restrictive tha t  they exclude application to a great 

number  of the special concepts of ideal we have mentioned above. However, by  an appro- 

priate generalization these axioms become relevant for the general purposes we have in 
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mind. One of the pleasent features of our axioms is that,  in a precise sense, they represent 

the most general form of a reasonable ideal theory. In fact any weakening of the crucial 

axiom 1.3 u (at least beyond the condition given in the lemma of section 19) will imply 

that  most of the basic rules of calculation, valid in the particular eases, will be lost. 

The contents of the present paper are entirely elementary. In fact, only results which 

cover the most classical parts of the ordinary ideal theory of rings is given here. We shall 

in particular show tha t  most of the results of the ideal theory of Krull [16] of rings without 

chain condition and the theory of Noetherian and Dedekindian rings carry over to this 

general setting. However, certain crucial reslflts will require additional hypotheses. I t  is 

for instance not true for the general type of ideals considered here--called x-ideals--that 

an irreducible x-ideal is always primary in the presence of the ascending chain condition 

for x-ideals. Since the additive operation in ring theory is no longer present in our axioms 

it also seems difficult to carry over certain results from the ideal theory of rings which 

make strong use of additive properties. Still, certain arguments which appear to have 

an additive character can easily be reformulated so as to fit in the present theory. Examples 

of this are the results on relatively prime x-ideals, generalizing the exposition of van der 

Waerden [33; pp. 80-83]. One essential feature of ordinary ideals in rings is that  they 

give rise to quotient rings or equivalently tha t  they form kernels of ring homomorphisms. 

To give an entirely satisfactory imitation of this for general x-ideals seems difficult, but  we 

can at tach a notion of congruence to each x-ideal which, when specialized to rings, comes 

close to the usual congruence modulo an ideal. 

In the last two chapters of the paper we have gathered some applications of the general 

theory. In the chapter on structure spaces we obtain a general characterization of a com- 

pact space X in terms of x-systems defined on semi-groups of continuous functions on X. 

This theorem contains well-known C(X)-theorems of Gelfand-Kolmogoroff, Stone and 

others. In the last chapter we have preferred to emphasize the variety of the possible 

applications rather than going into any detail. We prove in particular a representation 

theorem which shows that  the most developed part  of the theory of m-lattices is subsumed 

under the present theory. On the other hand, we prove tha t  the crucial axiom 1.3~ cannot 

be formulated within the theory of m-lattices. This together with other facts seems to 

indicate clearly that  the theory of z-ideals has considerable advantages over the ideal 

theory based on m-lattices. 

We wish to thank Dr. Isidore Fleischer for a great number of valuable suggestions given 

during numerous conversations on the subject matter  of the present paper. 
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C H A P T E R  1 

General  x-sys tems in commuta t ive  semi-groups 

1. The de/inition o[ an x-system. By a semi-group we understand a set S in which there 

is defined a binary associative operation. We shall denote the operation multiplicatively 

and say tha t  S is commutat ive if ab = ba for all a, b E S. For the sake of simplicity ~ve shall 

here suppose S to be commutative.  There is no difficulty in extending the following basic 

definitions and results to the non-commutat ive case. Indications concerning this extension 

will be given at  the end of Chapter 4. 

We shall say tha t  there is defined a system o/x-ideals or shortly an x-system in S if 

to  every subset A of S there corresponds a subset Az of S such tha t  

1.1 A ~ Ax, 

1.2 A ~_ Bx:~ Ax ~_ Bx, 

1.3 ABx~_B~ N (AB)~. 

A . B  here denotes the set of all products a.b with aEA and bEB. The condition 1.3 is 

equivalent to the conjunction of the following two conditions 

1.3' AB~_~ B~, 

1.3" A B , ~  (AB)~. 

I n  1.3 we get an equivalent formulation if we replace A by  a single element. We shall also 

refer to the passage from A to Ax as an x-operation. We remark tha t  the conditions 1.1 

and  1.2 just express tha t  an x-operation is a closure operation. Condition 1.3' is the multi- 

plicative ideal property and the crucial axiom 1.3 ~ says tha t  the multiplication in S is 

continuous with respect to the x-operation. We shall therefore also refer to this axiom as 

the  continuity axiom. I f  A =A z we shall say tha t  A is an x-ideal. In  general Az is the x- 

ideal generated by A. An x-system is said to be of finite character if for N finite 

A~= tJ N~ (1) 
NC_A 

i.e. the x-ideal generated by  A equals the set-theoretic union of all the x-ideals generated 

b y  finite subsets of A. I f  we have defined only a / in i te  x-system, i.e. supposing only tha t  

1.1, 1.2, and 1.3 are satisfied for finite sets A and B we can use (1) to extend it to an 

x-system. 

Examples. The above definition of an x-system includes as special cases nearly all the 

ideal concepts we have been able to find in the l i terature--for  example all the ideal concepts 

in rings (see especially [18]), semi-groups, distributive lattices and m-lattices, perfect 
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differential ideals in differential rings, closed ideals in topological rings, convex lattice- 

closed subgroups in lattice ordered groups, normal subgroups, monadic and polyadic ideals 

in Boolean algebras and numerous other more or less familiar instances. In  most  of these 

examples it is clear which semi-group is going to play the role of S. Let  us just mention 

tha t  in the case of convex subgroups the multiplication is l a I n [ b I and in case of normal 

subgroups it is the (non-commutative and non-associative) commutator  multiplication 

aba-lb -1. For a closer examination of the above examples and their relationship to the 

general theory we can refer the reader to Chapter 5. 

As to the term "x.ideal" this seems to be an appropriate name since various special 

cases bear names such as v-ideal, r-ideal,/-ideal, etc. The specialization is thus obtained 

by  putt ing special letters in place of the indeterminate letter x. 

2. Comparison with the axiom system o/Lorenzen. The x-systems defined above should 

more precisely be termed integral x-systems in contradistinction to the fractional x-systems 

to be defined in Chapter 3. When comparing with the earlier "fractional" definitions of 

Priifer, Krull and Lorenzen we should therefore rather  have this latter definition in mind. 

I f  we formulate I~renzen 's  definition in the case of integral r-ideals his axioms are as follows 

2.1 A ~ A~, 

2.2 A ~- B, :~ A~ ~ B ,  

2.3 {a)r=aS, 

2.4 a .Ar=(aA) ,  

where S is now supposed to be a commutat ive semi-group with cancellation law (ab = 

ac=~b =c) and an identity element e(ea =a for all afiS). The condition 2.3 expresses tha t  

the r-ideal generated b y  a single element a consists of all the multiples of a. We shall also 

denote the set aS by (a). We note tha t  the axioms 1.1 and 1.2 are the same as Lorenzen's 

axioms 2.1 and 2.2. Apart  from the fact tha t  we remove the condition tha t  S shall satisfy 

the cancellation law and have an identity, the range of applications of the theory is also 

essentially broadened by  our weakening of the conditions 2.3 and 2.4. 1.3' is a consequence 

of 2.3 and 1.3 M is a consequence of 2.4. What  we have retained of 2.3 is only the fact  t ha t  

any x-ideal is closed with respect to multiplication with an arbi trary element of S. We 

remark,  however, tha t  in the axiom system of Lorenzen we can replace 2.3 by  the weaker 

form 1.3' because of 2.4 and the presence of an identity element. Indeed, by 2.4 a(e)r = (a)r 

and by 1.3' (e)r =S which together give 2.3. 

Among important  x-systems which generally do not satisfy either 2.3 or 2.4, and where 

S both satisfies the cancellation law and has an identity, are the x-systems defined by  tho 
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perfect differential ideals of a differential ring, the convex lattice-closed subgroups of a 

lattice ordered group and the closed ideals of a topological ring. Take for instance the 

differential polynomial ring Z[xJ in one variable over the rational integers and let deriva- 

tion have its ordinary meaning. Denoting the passage from A to the perfect (1) differential 

ideal generated by A as the ~-operation, 2.3 is not satisfied since (x}# ~ xS =x.Z[x]. From 

the above remark on the implication 2.4 and 1.3 '~ 2.3 in the presence of an identity we 

conclude that  2.4 is not satisfied. We have, for instance, x(1}~ :V {x}~. In a topological ring, 

with an identity, 2.3 and 2.4 fail to hold if there exist principal ideals which are not closed. 

3. Operations on x-ideals. Equivalent/orms o] the continuity axiom. The basic operations 

in usual ideal theory are the operations of intersection, union, multiplication and residua- 

tion. We shall, in this section, state some of the most fundamental properties of these 

operations in the case of general x-ideals. I t  will turn out that  these properties depend 

entirely on the validity of the continuity axiom 1.3". 

I t  follows trivially from 1.1 and 1.2 that  the (set-theoretic) intersection of any family 

of x-ideals is again an x-ideal and since S is an x-ideal we obtain 

PROPOSITION 1. The /amily o/ all x-ideals o/ S /orms a complete lattice L(x s) with 

respect to set-inclusion. 

In  contradistinction to intersection, the set-theoretic union of two x-ideals is in general 

not an x-ideal. Thus the set-theoretic union is generally different from the union within 

the lattice L~ ). We shall, therefore, term this latter operation x-union and denote it by 

U x. Thus 

U ~ A (0 = ( O A(f))x 

In  ring theory the product of two ideals a and b is defined as the ideal generated by a.b. 

Similarly the x-prodnct of two subsets A and B of S is defined as the set (A B)x. We denote 

this product by A o z B  or more briefly by A o B  and call it x-multiplication. 

THEOREM 1. The /oUowinq statements are equivalent under the hypothesis that the 

passage A--->A= is a closure operation: 

A. The continuity axiom ABx ~_ (AB)z. 

B. A o B = A o B ~  (or AoB=AxoB, ) .  

C. The one-sided distributive law A.  (B U ~C) ~ A B  U zAC. 

D. The x-multiplication is distributive with respect to x-union, i.e. Ao(BOxC)= 

AoBUxAoC.  

(x) A set  B is porfoc~ if a n E B implies a E B.  
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Proo/. I t  is sufficient to establish, for instance, the following sequence of implications 

0 =~ D =~ B =~ A ~ C. This is a routine check and can be left to the reader. 

Under the additional hypothesis tha t  S has an identity we have the following slightly 

more astonishing equivalence. 

THEOREM 2. I] S contai~v an identity e and the passage A--->Ax i8 a closure operation, 

then the continuity axiom is equivalent to the associativity o/the x-multiplication. 

Proo/. Using the continuity axiom we obtain Ao(BoC)=(A(BC)z)~_(A(BC))~= 

((AB)C)z~((AB)zC)~=(AoB)oC.  In  the same way (AoB)oC~_Ao(BoC).  Conversely, 

putting C = (e} in A o (Bo C) = (A o B) o C we get A o B~ = A o B which according to Theorem 

1 is equivalent to the continuity axiom. 

We now pass to the operation of residuation. If  A and B are subsets of S we denote 

by  A : B the set of all c E S such tha t  cB ~_ A and call A : B the quotient of A by  B. I f  B = (b} 

consists of a single element, we write A :b instead of A :{b}. From the definition it follows 

tha t  ( A : B ) B _  A and, therefore, also tha t  (Ax: B)oB  ~_ Az. Because of 3' we always have 

Ax--- Ax: B. The identities 

( N A (t)) : B = N (A (~ : B) ,  (2) 
~el  iE I  

and A : O/~t)  = N (A : B(~)). (3) 
i ~ I  IGl  

are essentially set-theoretical and are readily seen to be valid. As shown by  the following 

theorem, other essential properties of the operation of residuation are only valid under 

the assumption of the continuity axiom. 

THEOREM 3. The ]ollowing statements are equivalent under the hypothesis that A-->A~ 

is a closure operation: 

A. The continuity axiom ABzc_ (AB)z. 

B. (A~:B)~=A~:B. 

C. (Az: b)~ =A~: b. 

D. Az: B~=Az:B.  

E. ( A : B ) ~ A ~ : B .  

F. The dual distributive law A~ : U ~ B (t~ = N (A~ :/~)). I / S  contains an identity we 
| E l  t e l  

may also add the equality 

G. (A~:B):C=A~:(BoC) .  
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Proo/. To show the equivalence of the first six properties we may, for instance, establish 

the following sequence of implications 

C=~ B =- A = - F ~  D ~ E ~ C .  

C ~ B: Using (3) and the fact tha t  an intersection of x-ideals is again an x-ideal we find that, 

A z : B - -  n A , : b  is an x-ideal if C is satisfied. 
b t B  

B ~ A: Since B ~  (AB) , :A  we conclude from B. tha t  B ~  (AB) , :A,  which is A. 

A = F: Obviously 

for all i and therefore 

A~: UxB~')~_A~:B ~), 
t r  

m: o n (A ,  : JB(~ 
l e l  fs  

Conversely, if c 6 I"1 (A~:/~~ we have cBe)C_A, for all i. Hence, 

c U, B (~ = c ( U B(~ -~ (c U/~')), = ( U c/~)), - A,. 
f e z  IE I  t G l  f~ I 

F ~  D: D follows by putt ing J ~ ) = B  for all i in F. 

D ~ E: Condition D is equivalent to the implication CB ~_ A z ~ CB, ~_ A,.  Interchanging 

B and O we obtain the condition E. 

E ~ C :  We obtain C by putt ing Ax instead of A and {b} instead of B in E. Using the con- 

t inuity axiom we can easily prove G: I f  dE(Ax:B):C this means tha t  d(BC) ~_A~ 

and, therefore, d(BC)x~(d(BC))~_A~ showing tha t  dEA~:(BoC). The inclusion 

A~: (BoC)~(Az :B) :C  is equally obvious. Conversely, putt ing C={e} in G. we 

obtain D. 

We shall refer to a set A : a as a res/dua/of A. For a fixed element a E S the mapping 

[a which maps b E 8 into ab will be called a transla2ion and the set aA is a translate of A. 

The following two propositions give a further clarification of the continuity axiom and its 

stronger counterpart  in the Lorenzen theory. 

P~OPOSlTION 2. The condition (aB)~_aBx is equivalent to the/act that the translates 

aB z of an x-ideal B: are all x.id, eals. 

Proo/. Assuming tha t  B x is an x-ideal and applying the inclusion in the proposition 

we get (aBz):C_a(Bx)z=aBz, showing tha t  the translate aB z is also an x-ideal. Conversely, 

if aB x is an x-ideal we have (aB)x ~_ (aBx)z = aB:. 
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PROPOSITION 3. In  a group the equality aBz=(aB)t  is equivalent to either o] the two 

inclusions aBzC_ (aB)x and aBxD_ (aB)x and in this case the x.system will also be an (integral) 

r.system in the sense o/Lorenzen. 

Proo]. Assuming, for instance, aBx ~-(aB)x and replacing B by aB and a by a -1 we 

get a-l(aB)~ ~_ Bz. Multiplication on both sides by  a gives (aB)x ~- aBx as desired. The lat ter  

half of the proposition follows from the implication 2.4 and 1 .3 '~2.3  mentioned in 2. 

4. An alternative de/inition o/the x-systems. Jus t  as the notion of a topological space 

may  be defined in various ways for instance, by  a closure operation or by a family of 

closed se ts- - the  x-systems also permit  similar alternative definitions. To the definition of 

a topological space by  closed sets corresponds here the definition of an x-system by  a 

family of x-ideals. The precise connection between the two definitions is given by  the 

following: 

THEOREM 4. Let S be a commutative semi-group and let ~ be a non.void /amily o/ subsets 

o /S ,  called x-ideals, which satis/y the/ollowing two conditions: 

4.1 The intersection o] any non.void/amily o/x.ideals is again an x.ideal. 

4.2 Any residual o /an  x.ideal A~ is an x.ideal containing Az. 

Let A be a subset o / S  and put 

A , =  f'l B~ 
B:c ~ X 

A__C Bx  

then the correspondence A-->A~ de/incs an x.operation with respect to which the /amily of 

x-ideals coincides with ~.  This establishes a one-to-one correspondence between the x-systems 

in S and the/amilies ~ satis/ying 4.1 and 4.2. 

Proo]. I t  is well known tha t  there is a one-to-one correspondence between the general 

closure operations on S satisfying 1.1 and 1.2 in w 1 and the families of closed sets satisfying 

4.1 and the condition tha t  the entire set S is closed. This latter condition is satisfied in 

our case. For by  the second half of 4.2 SAx~_A ~ which implies tha t  Ax:a=S  whenever 

aEA x. The first half of 4.2, therefore, assures tha t  SE :~. The theorem now follows from 

Theorem 3 which shows tha t  1.3 and 4.2 are equivalent conditions. 

The analogue of Theorem 4 for r-systems in the sense of Lorenzen can be formulated 

as follows: 

THV, OREM 5. Let S be a commutative semi-group with an identity element. Then there is 

a one.to-one correspondence (de/incd in the same way as in Theorem 4) between the (integral) 

r-systems o/Lorenzen satis/ying 2.1, 2.2, 2.3 and 2.4 and the/amilies ~ consisting o/subsets 

of S such that the following conditions are satisfied. 
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4.1" R is closed under arbitrary (non.void) intersections. 

4.2* ~ is closed under the operations o/taking residuals and translates. The translate o/ 

a set A E ~ is contained in A.  

Proo/. From Theorem 3 and Proposition 2 it follows immediately tha t  4.1" and 4.2* 

are satisfied b y  the family of r-ideals defined by  2.1-2.4. Conversely, 4.2* implies S E R  

and the mapping 

A--> n BT 
A C_Br 
Br r 

is because of 4.1" a closure operation. Using 4.2*, Theorem 3 and Proposition 2 it is clear 

tha t  this closure operation satisfies 2.4. By the second half of 4.2* Sa ~ _ {a}T. On the other 

hand, S E ~  implies by  4.2* tha t  SaER. Since S is assumed to have an identity aESa and 

2.3 follows. 

Remark. The presence of an identity element is essential in the above argument.  

However, in the original paper of Lorenzen, where only semi-groups with cancellation law 

are considered, i t  is not necessary to postulate the existence of an identi ty since this follows 

from the axiom 2.3. For in a semi-group with cancellation law the existence of an equation 

of the form b =ab  implies the existence of a unique identity. 

Returning to general x-systems we shall now see how the condition tha t  an x-system 

be of finite character is expressed in terms of the family ~ of all x-ideals in S. By a chain 

of x-ideals we understand a family of x-ideals such tha t  for any two of its members A~ 

and Bx we have either Ax - Bz or B~ _ A z. 

T H E O ~ . M  6. An  x-system is o] ]inite character i~ and only it the set-theoretic union o] 

any chain o/x-ideals is an x-ideal. 

Proo/: Let  x be of finite character and let (A~)}~,~ be a chain of x-ideals. Since x 

is of finite character we only need to show tha t  

t e l  

whenever N is a finite set contained in the above union. This is obvious since N being a 

finite set is contained in one of the A~ ). The converse can be shown in the following way. 

Let  A be an arbi t rary subset of S and let B be a subset of A such tha t  any  x-ideal of the 

form (B U N)~, where N is a finite subset of A, is of finite character. The subsets B of A 

having this property form an inductive family B. For if (B(t)}~el forms a chain in B, the 

union U / ~ t )  will again belong to B since for any  finite set N c A 
t e l  
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U .5'<'))x = ( U (B (') U .N))~ = U (~') U -,Y),, 

11 

using here the condition tha t  the union of a chain of x-ideals is an x-ideal. Any element in 

the latter union is contained in some (/~) U N)z; hence in some N~ where N '  is a finite set 

contained in ~ ~  N. This shows tha t  B is inductive. By Zorn's lemma B contains a 

maximal member  B' .  If  B '  # A we would have B '  U ~V E B for all finite ~V ~ A - B '  contra- 

dicting the maximali ty  of B'.  Thus B ' =  A and x is of finite character. 

Calling a family :~ of subsets of S chain.closed if the set-theoretic union of the members 

of any chain in :~ itself belongs to :~, we get by  combining Theorems 4 and 6. 

THEOREM 7. There is a one.to-one correspondence between the x.systems of finite charac- 

ter and the chain.closed families satisfying the conditions of Theorem 4. 

5. (y, z).homomorphisms and congruence modulo an x-ideal. The usual congruence modulo 

an ideal in a ring is defined by  a purely additive property and it seems therefore difficult 

to give a general definition of a congruence modulo an x-ideal which yields the usual 

notion of congruence when specialized to rings. We shall show, however, tha t  it is possible 

to define a general notion of congruence which comes close to the usual one in the case of 

rings and which has similar properties. 

Let  us first state a simple lemma which will be used below. 

LlcMMA 1. Let q~ be a homomorphism o /a  semi.group S onto a semi.group T and let A 

and B be two subsets of T. We then have q)-I(A).qTI(B)c_~-I(AB) and q - I ( A : B ) = ~ - I ( A ) :  

~-'(B). 
Proof. Let aEA and bEB. Then q~@-l(a).~-l(b))=a.b since ~ is a homomorphism. 

This means tha t  qJ-l(a)q~-~(b) ~_ q~-l(ab) ~ ~-I(A. B). Therefore 

~-1 (A). ~-1 (B) = U ~0 -1 (a). U q-1 (b)= U r (a) ~-1 (b)_ ~-1 (AB). 
a e A  bEB aGA 

b ~ B  

To prove the second half of the lemma let first c e ~-I(A) : ~-I(B),  i.e. c~-l(B) _ ~-I(A). 

Applying ~ on both sides of this inclusion we get q(c). B_c A by  using the fact  tha t  r is a 

homomorphism onto T. Thus q~(e)EA:B and cEqTI(A:B). This last argument  works 

equally well when applied backwards, showing tha t  we have the desired equality. 

Let  now S and T each be equipped with an x-system denoted respectively by  y and z. 

We shall say tha t  a multiplieative homomorphism q of S into T is a (y, z)-homomarphism 

if ~(A~) _c (~(A))~ for all subsets A of S, This means tha t  if A is mapped into B by  ~ then 
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A~ is mapped into B~. I t  is also clear tha t  a homomorphism of S into T is a (y,z)-homo- 

morphism if and only if the inverse image of a z-ideal in T is a y-ideal in S. 

TH ~.O~ ~,M 8. Let q~ be a multiplicative homomorphism o /S  onto T and let y be an x-system 

in S. Then the/amily o/all sets B ~ T such that qJ-l( B) is a y-ideal in S defines an x-system 

in T denoted by y~. Relative to this x-system q~ is a (y, y ~ ) - ~ p h i s m  and y~ is the/ines~ 

x-system z in T such that q) is a (y, z)-homomorphism. 

Proo/. I t  is clear tha t  B--->B~ defines a closure operation in T since the family  of a]t 

B _  T such tha t  99-~(B) is a y-ideal contains T and is closed under arbi trary intersections. 

Assume next  tha t  B is a y~-ideal, i.e. ~0-~(B)=Ay is a y-ideal in S. Then aep-l( B) =_ q)-l( B) 

and applying ~0 on both sides we get ~0(a) B_C B. Since ~ is supposed to be 'onto '  this shows 

tha t  axiom 1.3' is satisfied for y~. Finally by Lemma 1 and the continuity axiom for y 

we get by  using the same notations tha t  ~ - I (B:  C)=q?-l(B):q~-l(C)=A~: ~-1(C) is a y-ideaI 

for each C _  T. Hence B: G is a y~-ideal whenever B is a yr and this is the continuity 

axiom for y~. That  q9 is a (y, yr follows from the definition of the 

y~-system. The maximal i ty  of y~ is also clear. 

We now define 

b = c (rood Ax) 

if and only if (A,, b), = (A t, c),, and we shall say tha t  b and c are x.congruent mod A,. (Here 

(A,a) means the set obtained by adjoflfing the element a to the set A.) Let  us see what this 

means in the case of ordinary ideals in commutat ive rings. We shall refer to ordinary ideals 

in rings as d-ideals. From (A~,b)a=(Aa, c)a follows, in particular, tha t  bE(A~,c)a and 

c E (Aa, b)d and this amounts to the following two congruences now understood in the usual 

sense 

b -- rlc-4-nlc (mod Ad), 

c--= r 2 b + n~b (rood A d), 

where rl, and r 2 are elements of the given ring R and n 1 and n 2 are integers. The terms 

nlc and n2b disappear if R has an identity element and we may  write down the following 

immediate 

PROPOSITION 4. In  a commutative ring R with an identity two elements b and c are 

d-congruent mod Ad if and only i / the ordinary residue classes o/b  and c represent azsociate 

dements in the quotient ring R/A a. 

That  the residue classes $ and 5 of b and c respectively are associate elements of 

R/A~ means as usual tha t  $15 and 5 I$. 
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THEOR~.~ 9. The relation b~c(modA~)  is a congruence relation in S. The x.ideal 

A~ /orms an equivalence class such that the quotient semigroup S/A~ is a semi-group with zero 

element. The canonical homomorphism q) o / S  onto S / A x establishes a one-to-one correspondence 

between the x-ideals o / S  containing A~ and the x~-ideals o/S/A~. 

Proof. That  the given relation is an equivalence relation is clear. Suppose tha~ 

b-= c (mod Ax) , i.e. (Ax, b)z = (A,,c)x. By the continuity axiom 

db ~ d(A,, b), = d(A,, c), ~_ (Ax, dc),, 

and therefore (Ax, db)x ~_ (Ax, dc)x. 

Similarly (A x, db) D_ (Ax, dc)x and db - dc (mod A~). Two elements in A~ are clearly congruent 

rood A z. On the other hand, if a G A x and b ~A x then (Ax, a)x ~= (A~, b)x and a ~ b (mod Ax). 

Thus A z forms one of the equivalence classes and this class will be the zero element of 

S/Ax. For the last part  of the theorem we only need to verify that  ~0-1(~(B~)) = B x whenever 

Bx-~ Ax. The equality ~-l(~(Bz) ) = Bz means that  Bx is a union of residue classes modulo 

Ax. If this were not the case there would exist elements b, c E S with b G B x and c ~ Bz such that  

b - c (mod Ax). But this is impossible since (Az, b)~ ~_ Bx and (Ax, c)x~: B x. We thus see that. 

a subset of of S/A x is an x~-ideal if and only if it is a direct image of an x-ideal in S. 

In the case of groups and rings we have certain fundamental facts concerning homo- 

morphisms which are no longer valid for the general case considered here. We have, for 

instance, no complete counterpart to t he  general homomorphism theorem for rings saying 

tha t  any homomorphic image of a ring R is isomorphic to a certain quotient ring R/a. We 

can, however, get quite close to such a statement by making a couple of additional hypo- 

theses. 

TH~.ORV.~ 10. Let q~ be a (y,z)-homomorphism o / S  onto T. We suppose that q~ satisfies 

the identity ~0-1(~0(B~))=B~/or any y.ideal By in S and that T has a zero element 0 s uchthat 

(0}/orme a z-ideal Oz. Then Ker T =~-l(Oz) is a y-ideal Ay in S such that b - c  (modAy) i/ 

and only i/qJ(b) =- q~(c) (mod Oz). 

Proof. Assume first that  b=c(mod A~), i.e. (A~,b)~=(Av,c)y and ~(A~,b)y=q~(Ay,c)~. 

Since ~ is a (y,z)-homomorphism this gives q~(b)Eq~(A~,c)~_ (0~, ~(c))z and consequently 

(Oz, ~(b))z-~ (O~, ~(c))~. Similarly, (0, ~(b))z-~ (0, ~(c))z showing that  ~(b) -- ~(c) (mod 0~). 

Conversely, if b ~ c  (rood A~) we can, for instance, suppose that  b~(A~,c)~. Applying 

and remembering the condition ~-I(~(B))=B~ we obtain ~(b)~(Oz, ~(c))z showing that  

~(b) ~0(c) (mod Oz). 

As in ring theory various properties of an x-ideal A, are equivalent to corresponding 

properties of the quotient S/A,.  I t  is, for instance, obvious that  an x-ideal P ,  is prime if 
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and only if S/P~ is without divisors of zero. Among other statements of this kind let us 

just mention tim following theorem. The residue class containing a will be denoted by  5. 

T:~,OR~,M 11. The non-zero elements o/ S/As /orm a group i /and  only i / the following 

two conditions are satis/ied: (1) A z is a maximal x-ideal in S; (2)a2EAz implies aEA z. In  

general A~ is maximal i /and only ij 8/A~ has two elements. 

Proo/. Suppose first, tha t  S/A z -  (0} =S* is a group. (~) Then S* is in particular closed 

under multiplication and 5 4 0  implies 52~i3 and this is equivalent to 2). I f  a~A z, i.e. 

5 ~ (i the group-property assures the existence of a solution Y0 of 5~ = $. This means tha t  

ay o =- b (mod A~), i.e. (Az, ayo) ~ = (A~, b)~. This gives b e (Ax, ayo)z ~- (A~, a)~. Since b is arbi t rary 

(A~,a)~ =S and A~ is maximal. Assuming conversely tha t  (1) and (2) are satisfied we have 

to show tha t  5 ~ $  is solvable in ~ whenever 5 4  ~. Now 5~=0 means tha t  a~A~ and thus 

a2~Az by (2). A~ being maximal,  this gives (Az, a~)x~S=(Ax, b)x. Thus a2 - -b (mod  Az) 

and g = 5  gives a solution of 5~=$.  The last s tatement  of the theorem is obvious. 

6. Construction o/ z-systems /rom systems which do not satis/y the continuity axiom. 

A system which satisfies 1.1, 1.2 and 1.3' but not the continuity axiom 1.3" will in this 

paragraph be termed an x*-system. We shall now describe two general procedures which 

in a natural way permit  us to associate an x-system to a given x*-system. The first method 

is based on a retraction of the basic semi-group S while the second one is based on a 

retraction of the family of "x*-ideals" in S. I f  S o is a subsemigroup of S and x* is an 

x*-system in S then the family of all intersections Az, N S 0 obviously defines an x*-system 

in S 0. This x*-system will be called the trace of x* on So. 

PROPOSITION 5. Le$S be a semi-group with a given x*-system. The set o/all elements 

a e S  ~'uch that Az , :a  is an x*-ideal /or all x*-ideals Az ,  in S /orms a subsemigronp S* o/ 

S and the trace o /x*  on S* is an z-system in S*. 

Proo/. I f  Ax,:a and Az,:b are x*-ideals for all As~ then A~,:ab=(A~~ is also an 

x*-ideal for all Az~ and S* forms a subsemigroup of S. The traces Az, N S* obviously form 

an x*-system in S*. That  these traces also satisfy the continuity axiom and thus define 

an x-system follows from 

S* N ((Az* N S*):a) =S* fl (Ax,:a) N (S*:a) =S* N (Az,:a). 

We note tha t  we can also define S* as the set of all elements aES such tha t  aBx.c_ (aB)z. 

for all subsets B of S. 

(~) ~J denotes the residue class containing the elements of Az. 
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The following proposition describes a dual procedure to obtain an x-system from a 

given x*-system. 

PROPOSITION 6. Let :~* denote the /amily o/ x*.ideals in a given x*-system. The 

subfamily :~ of :~* consisting o! all A~ .E~*  such that A z . : a E ~ * / o r  all aES defines an 

x.system in S. 

Proof. We have to verify that  the conditions 4.1 and 4.2 are satisfied for :~. That  

is closed under arbitrary intersections is a consequence of 

( n A~ ).) :a = A (A~)* : a) 
| e l  | e l  

and the fact that  X* is closed under arbitrary intersections. Assume that  Az.E X. The 

definition of ~ gives Az.:aE:~* for all aES. Further (Az . :a ) :b=Az . :abE~ * for all b 

showing that  A ~ . : a E ~  for all aES. 

7. The lattice of x.systems in S. Let I s  denote the family of x-systems in S. We introduce 

a natural ordering in I s  by the following definition: The Xl-System is said to be finer than 

the x2-system if every x2-ideal is an xl-ideal. Denoting the family of xt-ideals by ~t  this 

means that  ~ 2 -  ~1. We shall also denote this situation by xl >-x 2. I t  is clear tha t  we have 

Xl>-X 2 if and only if A~,~A~, for all A~_S. I s  is a partially ordered set with respect to 

>- and has a greatest element s>-x for all xE I s  and a smallest element u satisfying x>-u for 

all x E Is .  These two x-systems are explicitly defined by 

Au = S f o r a l l A _ ~ S  and A~ = SA U A. 

PROPOSITION 7. Every non-void subset {xt}tel o/ I s  has a least upper bound 

x =  V xi in I s  and A t = f 7  Axt. 
t e l  t e l  

Proof. If x =  Vx~ exists it is clear that  A~c  n A~ so that  we only have to 
| e l  i l l  

verify that  A-> N A~ defines an x-system in S. The properties 1.1, 1.2 and 1.3' are 
t e I  

obvious. Moreover, AB~,~(AB)~, for all i e I  implies 

AB~ = A N B~, c_ N AB~,_~ N ( A B ) ~ ,  = (AB)~. 
t e l  t e I  t e l  

COROLLARY. IS form8 a complete lattice with respect to the ordering >-. 

PROPOSITION 8. The family ~s o/ all x-systems o/ finite character in S forms 

a complete sublattice of Is ,  i.e. when (xt}tel is a family o/ x.systems of finite character 

then A xl and V xt are both x-systems of finite character. 
lel lel 
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Proo/. That  A xi is of finite character follows from Theorem 6 since an inter- 

section of chain-closed families is again chain-closed. Moreover, if x = V x~ we have 
i s l  

A~=NA~,=N U Nz,=U NN~,=U~V~, 
i s /  i s l  N CA  N_CA t e l  NC__A 

where N denotes a finite set. This shows tha t  x E:~s. Proposition 7 gave an explicit 

expression for A~ with x =  V x, in terms of the family (A~)~sl. Within ~s we can 
I s I  

do something similar also in the case of a finite intersection A x~. To this end we 

introduce the following notations. We write A(~. ) ,  for the set 

where x 1 and x z are each repeated n times and put  

A , , . z ,  = [,J Ac,,z,)~. 
n>~l 

I t  is now easy to see tha t  xlAx2=xl-~x, .  

CHAPTER 2 

The Krull theory for x-systems of  finite character 

8. The Krull.Stone theorem. The purpose of the present chapter is to generalize Krull 's  

ideal theory of commutat ive rings without finiteness assumptions, as developed in [16], 

to  general commutat ive x-systems of finite character. We star t  with a proof of the funda- 

mental  Krull-Stone theorem concerning the representation of halLprime x-ideals as inter- 

sections of (minimal) prime x-ideals. This theorem was first proved by  Krull in [16] in the 

case of ordinary ideals in commutat ive rings. The fundamental  application of this theorem 

made by Stone in the ease of Boolean algebras justifies the association of his name with 

the  theorem. 

We shall give two different proofs of the Krull-Stone theorem. The first one is identical 

whir Krull 's  original proof and the second one is modelled after the proof given by  Ri t t  

and  Raudenbush in the case of perfect differential ideals. 

Let  S be a commutat ive semi-group in which we have fixed a certain x-system of 

finite character. An x-ideal P~ in S is said to be a prime x-ideal if a.bEP~ and a~P~ imply 

/)EP~. The (nilpoSent) radical of A~, denoted by rad A~, consists of all elements b e S  such 
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t h a t  bnEAx for some integer n. We shall say tha t  Ax is bali-prime if rad A~ =A~. A subse- 

migroup of S will be called an m-set. In  the following it will be convenient to consider the 

void set as an m-set. 

PROPOSITION 9. The x.ideal Px is prime i/ and only i/ AxoBx~Px and Ax~=Px 

imply B~ c p,. 

Proo/. Suppose tha t  A z o B ~ P x ,  A~=Pz and B,~=P~. We can then find elements 

a E A~ and b e B~ which do not belong to P~ such tha t  a.  b e Ax. B~_~ A~o B~_  P~. Conversely 

if Pz is not prime we have elements a, b lPz  such tha t  a.  b eP~. Then (P~ U {a})zo (Px U {b})x - 

Px by  Theorem 1 and the implication in the proposition is not satisfied. 

COROLLARY. The x.idea~ A x is no~ .pr ime  i f  and only i/there exist x.ideals Bx and Cx 

bosh properly containing A~ such that BxoC~ ~_ A=. 

The following proposition is proved in exactly the same way as in ring theory. 

PROPOSITION 10. I / M  is a maximal m-set contained in S - A  z and Pz is a maximal 

x-ideal containing Ax and being contained in S - M  then Px is a minimal prime x-ideal con. 

~aining A= 

COROLLARY 1. Any prime x.ideal containing A~ contains at leazt one minimal prime 

x.ideal containing A~. 

COROLLARY 2. The complement o/any maximal m-set contained in S - A ~  is a mini- 

real prime x-ideal containing Ax. 

THEOREM 12. (The Krnll-Stone theorem for x-systems of finite character.) The 

nilpot~nt radical o/the x.ideai A z is equal to the intersection o/all the minimal prime x-ideals 

vontaining A~. 

Proof. According to Corollary 1 we only have to prove the equality 

r a d A r =  f l  P~, 
AzCPz 

~he intersection being extended over a / /p r ime  x-ideals containing A x. I t  is clear tha t  the 

left hand side is contained in the right hand side. Let  us suppose tha t  this inclusion 

were a proper one. Then there would exist an  element a~  rad Az such tha t  aEP~ for all 

P = _  A~. The powers of a form an m-set Ma which does not meet rad A~. We, therefore, 

have a maximal x-ideal P~ containing Az and contained in S -MR. This P~ must  be prime, 

contradicting the fact tha t  P~ does not coincide with any of the Px occurring in the inter- 

section (1). 

COROLLARY. For an x.system o/]inite character the nilpotent radical o /an x-ideal is 

again an x.ideal. 

2 - 62173067.  Acta mathematica. 107. I m p r i m 6  le 2 6 . m a r s  1962 



18 x . E .  A ~ " B ~ ' r  

We shall now give some simple properties of half-prime x-ideals which together with 

a direct proof of the above corollary will give a second proof of the Krull-Stone theorem. 

The above corollary may be proved directly in the following way. Let  Az be an x-ideal and 

let b 1 ..... bn be a finite subset of tad A~. Since x is supposed to be of finite character, it is 

sufficient to show that  {b I .... , bn}~ c rad A~. If  b~ "~ EAx for i = 1,2 ..... n we put  m =m 1 +mn + 

�9 .. +ms and get {bl ..... b.}~_~ ({b, ..... b~}~)z~_A~. 

PgOPOSlTIO~ 11. The x.ideal A x is half-prime if and only if aSEAx implies aEA x. 

Proof. Suppose that  a'EA~ with n~> 1. Then also an'~=an'-'.a'EA~ for 2 ~>n .  By 

repeated application of the condition a n E Ax* a E A x we get a E Ax. 

PBoPosITIo~r  12. The x-Meal Az is halbprime i/ and amy if BzoC~c A~ implies 

Proo/. Suppose that  Az is half-prime and B~o Cz-~ A~. If  a E Bz fl C~ then a n E B~o C~_c Az 

and aEAx by Proposition 11. Conversely if Ax is not half-prime there exists an element a 

such that  aCAz and aSEA~. This gives (A~U{a})~o(A~U{a})~_A~ while (AzU{a})zN 

(a, u {a}),, A,. 
We shall say that  an x-system is ha//-pr/me if every x.ideal is half-prime. Ideals in 

distributive lattices and radical differential ideals form half-prime x.systems. 

PB oPo SITIOl~ 13. For  any half-prime x-system we have the identity (A U B)x (1 (A U C)x = 

(A u Be),. 

Proof. The inclusion (A U BG)zc_ (A U B), n (A u C), is obvious by  observing that  

the operations of intersection and x-multiplication coincide within the family of x-ideals 

of a half-prime x-system. Conversely (A U BC), being half-prime and (A U B)~o (A U C), = 

((A, U B)(A~ U C))z C_ (A~ U BC),=(A U BC)~ we get (A U B)~ n (A U C)z c- (A U BC)~ by 

using Proposition 12. 

COROT.T.aaY. For a hall-prime x-system we have (A U {b})~ N (A U {c})~--(A U {be}) z. 

An x-ideal A x is said to be irreducible if A~--Bz fl C~ implies A~=B~ or A~=C~. 

1 ) a o r o s i T i o ~  14. In  a hall-prime x.system an x-ideal is irreducible i/and amy i / i t  is 

prime. 

Proof. That  a prime x-ideal is irreducible is obvious. Suppose conversely that  A~ is 

not  prime. Then there exist elements b and c not contained in Az such that  b-c E A~ and we 

get the proper decomposition Ax = (A O {bc})~ = (A O {b})~ N (A U {c})~ by the above corollary. 

Proposition 14, together with the following two propositions, give a second proof of 

the general Krull-Stone theorem. 
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PROPOSITION 15. 1/X iS 01 finite character, then any x-ideal is equal to the intersection 

of all the irreducible x-ideals containing it. 

Proof. Let  Ax be an x-ideal 4 S and let b be an element not in A~. We consider the 

family of x-ideals which contain Ax but  do not contain b. This family is inductive and hence 

contains at  least one maximal member, say B~. Then B~ is irreducible since any x-ideal 

which contains B~ properly also contains b. 

PROPOSITION 16. For a given x-system the family o/half-prime x-ideals will also/orm 

an x-system. 

Proof. We only need to verify the continuity axiom, i.e. to show that  A~:b is half- 

prime whenever A x is half-prime. From a n e Az: b we obtain cab E Ax and (cb) n = (cab) �9 b ~-1 e Az, 

showing that  ceA~:b. 

9. A converse of the KruU--Stonc theorem and other converses. Though certain scattered 

results of ideal theory may be independent of one or more of the axioms 1, 2 and 3' it is 

quite inconceivable tha t  any larger and important parts of ideal theory may be developed 

without assuming at least these three conditions. As to the necessity of the fourth condition 

- - t h e  continuity axiom this is perhaps a less transparent question. However, the equiva- 

lent forms of the continuity axiom, which were derived in Chapter 1, already give strong 

evidence for the necessity of this axiom in a large number of situations. In  the present 

section we shall prove a few more converse results which strengthen the conviction tha t  

the continuity axiom is indispensable and that  the present setting for a general ideal theory 

is the appropriate one. 

We shall use the notation of Chapter 1 and refer to a generalized x-system which satis- 

fies 1, 2 and 3' but  not necessarily Y', as an x*-system. By considering the passage A-->rad A z 

instead of A--->Ax it is clear tha t  there is no loss of generality in formulating the Krul l -  

Stone theorem for half-prime x-systems only. We now have the following converse result. 

THEOREM 13. Let x* be a half-prime x*-system ol finite character in S. Then the neces- 

sary and sufficient condition for the validity o/the Krull-Stone theorem for x* (i.e. that any 

x*-ideal in S is equal to the intersection of all the prime x*-ideals containing it) is that x* 

satisfies the continuity axiom and hence defines an x-system in S. 

Proof. If x* satisfies the continuity axiom we have already proved that  the Krull- 

Stone theorem holds. Suppose conversely that  the Krull-Stone theorem holds for x*, 

i.e. tha t  any x*-ideal Ax, in S may be written as an intersection of prime x*-ideals 

A~ .=  N P~. 
Ax*_C P~* 
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For  an arbi trary element b E S we have 

A x . : b = (  [7 P x . ) : b =  [') (Px,:b). 
A z * C p z ~  A z ~ C P z *  

Because of 3' and the fact tha t  the P~, 's  are prime, Px.:b is equal to S or P~, according to 

whether b EPx. or not. Since S and Px* are x*-ideals and any intersection of x*-ideMs is 

an x*-ideM we conclude tha t  Ax. :b is an x*-ideal and the continuity axiom is satisfied. 

We now prove another converse of Proposition 13. 

THEOREM 14. I / the  identity 

(A U B)~. n (A U C)~. = (A U BC)~. (2) 

holds/or x* then x* is hal/-prime and saris/ice the continuity axiom. 

Pro@ We first show tha t  x* is half-prime. Putt ing B= C= { b }  and A =Ax,  we get 

(A, ,  U {b})z, =(A , ,  U {b2})x.. Thus if bnEAx, then (Az. t3 {b})x, = A , ,  and bEAx,. By Propo- 

sition 11 (which is independent of the continuity axiom) we conclude tha t  x* is half-prime. 

Since intersection and x*-multiplication coincide for half-prime x*-ideals (2) is equivalent to 

(A tJ B) , .o (A U C),. = (A U BC)x.. 

Taking A to be the empty  set we get Bx~ = BoC which is one of the equivalent forms 

of the continuity axiom. 

PROPOSITIO~ 17. Given a hall-prime x*-system, the/amily o/x*.ideals which can be 

written as an intersection o/prime x*-ideals will define an x-system and will/orm a distributive 

lattice under inclusion. In  particular the family o/all  z-ideals in a hall-prime x-system will 

/orm a distributive lattice under inclusion. 

Proof. I f  Ax* is an intersection of prime x*-ideals, A~,:b will be of the same form 

according to the proof of Theorem 13. These intersections, therefore, define a half-prime 

x-system and will form a distributive lattice with respect to inclusion since the z-multi- 

plication here coincides with the intersection. The second half of the proposition follows 

from this together with the Krull-Stone theorem. 

PROPOSITION 18. The identities o/Proposition 13 and its corollary are equivalent/or an 

x-system. 

Proof. As in the proof of Theorem 14 the identity (A U {b})x N (A 0 {c})~ = (A 0 {bc})~ 

implies tha t  x is half-prime (1) and the lattice of x-ideals is hence distributive. We, there- 

fore, h a v e  

(A U B), (I (A (J C)~ = ( [ J ,  (A tJ {b}),) N ( U ,  (A U {c}),) = I.] x ((A t) {b}), fl (A U {c}),). 
beB  c e C  ( b . c ) e B •  

(1) Added in proo/. By Proposition 13 we thus immediately infer that the generM identity is 
valid and the rest of the present proof can be discarded. 
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Now, using the identity of the corollary, the right hand side is equal to 

tJx (A U {bc})x, 
(b ,c)EBxC 

which, in turn, is equal to (A U BC)~. 

We shall say tha t  the x*-ideal P~, is weakly prime if A ~, o B~,-~ P~, is impossible when- 

ever Ax, and Bx, both contain P~, properly. The following theorem gives some new pro- 

perties which are also equivalent to the continuity axiom in the case of half-prime x*- 

systems. 

THeOReM 15. I /  X* is a hall-prime x*-system o/ ]inite character, then the /ollowing 

properties are equivalent: 

A. x* satisfies the continuity axiom. 

B. The KruU-Stone theorem is valid/or x*. 

C. Every irreducible x * . ~ a l  is prime. 

D. Every weakly prime x*-ideal is prime. 

Proo]. The theorem is proved by verifying the following sequence of implications: 

A ~  D ~  ( ~  B ~  A. Since a weakly prime x*-ideal is irreducible, everything follows from 

what we have already proved. 

10. The non-associative case. We shall here establish an easy non-associative generali- 

zation of the Krull-Stone theorem. When trying to extend a theory to the non-associative 

ease, one needs only to worry about  those results which involve considerations of products 

containing more than two factors. Thus in our case the whole first chapter carries over to 

the non-associative case. In  the present chapter, however, one needs a non-associative 

generalization of the notion of the nilpotent radical. In  the eommutative,  but  non-associa- 

tive case, a ~ does no longer represent a unique element of S when n >~ 4. In  this ease we 

shall let a n denote the set of all elements obtained from the expression a . a . . . a  (n times) 

by  putt ing parentheses in all possible ways. This suggests two natural  non-associative 

generalizations of the radical: By  the strong radical of Az, denoted by  rad~A x, we shall 

understand the set of all elements b E S such tha t  b ~ N A x is non-void for some integer n. 

The weak radical of Az, denoted by  radwAx, consists of all b E S such tha t  bn_ ~ Ax for some 

integer n. The following theorem, as well as other facts, show tha t  the former definition 

should be adopted. The x*-ideal Az, is called strongly half-prime if rad s Ax, =Ax, and x* 

is called strongly half-prime if every  x*-ideal is strongly half-prime. 

THEORE~ 16. Let S be a commutative, but not necessarily associative, semi-group in 

which there is de/ined an x*-system o/]inite character. The necessary and su//icient condition 
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that any x*-idcal can be written as an intersection o/prime x*-ideals is that x* is strongly 

hall.prime and satis/ies the continuity az'iom. 

The proof of this theorem is almost identical with the proof of the associative Kru l l -  

Stone theorem and its converse and can, therefore, be left to the reader. Denoting by  

a t.a~...an the set of all products obtained from this expression by  putting parentheses 

in all possible ways we shall call a subset A of S associatively closed if at... an n A :~ r implies 

at...anC_A. Since a prime x-ideal is associatively closed we get the following corollaries: 

COROLLARY 1. Any strongly bali-prime x-ideal is associatively closed. 

COROLLARY 2. A weakly bali.prime x-system is strongly bali.prime i/ and only i/ 

every x-ideal is asso~iatively closed. 

l l .  Isolated primary components. In  the remaining sections of this chapter we shall 

show tha t  almost all of the other results of the Krull theory carry over to general x-systems 

of finite character. There is one result, however, which is no longer valid in the general 

setting. I t  is not generally true tha t  if a prime x-ideal is contained in a finite set-theoretic 

union of prime x-ideals it is contained in one of the given prime x-ideals. In  fact a counter- 

example is given by  the s-system defined by  the mapping A-+SA U A. Here the set- 

theoretic union of a family of prime s-ideals is again a prime s-ideal, and this clearly con- 

tradicts the given assertion. Apart  from this result (which a t  one place will be used in a 

weakened form as a postulate) all the basic results carry over to general x-ideals. Most of 

the proofs in the ease of ordinary ideals carry over almost verbat im to the general case. 

A detailed checking of all the proofs is, of course, necessary, but  since this checking is a 

routine mat ter  and, in general, is of no interest, we shall mostly leave this to the reader. 

We give, however, a couple of samples of typical proofs which again will show the crucial 

role played by the continuity axiom. Besides Krnll 's  paper [16] the reader can use [24] 

as a standard reference. 

The x-ideal Qz is said to be primary if ab E Qz and a ~ Qx imply tha t  b n E Qz for some positive 

integer n. 

THEOREM 17. To every minimal prime x.ideai Px containing the x-ideal Ax there cor- 

responds a uniquely determined minimal primary x-ideal Q~, which contains A z and which 

has P~ as its radical. This x.ideal Qz is called the isolated primary x.component o/ A~ which 

belongs to P~. 

Proo[. As in the case of rings we prove this by  explicit construction of Q~. In  fact 

Qx will be identical with the set B of all elements q for which there exists an element s E S - P ~  

such tha t  qsEA~. We first show tha t  B is an x-ideal. Since x is of finite character, it is 
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sufficient to show tha t  {ql ..... q.}~_ B whenever ql ..... q, EB. By the definition of B we 

have qtslEA~ for suitablc s~ES-Pz. Putt ing s=sl. . .s  ~ we obtain q~sEA~ with s E S - P t  

This gives 
s { q ,  . . . . .  . . . .  

showing tha t  (qx ..... qn}z_ ~ B and B is an x-ideal. The rest of the proof is of a purely multi- 

plieative character and therefore identical with the proof in the case of rings. 

12. Maximal prime x-ideals belonging to an x.ideal. Let Az be an x-ideal which can be 

represented as a finite intersection of pr imary x-ideals: 

At =Q~) t) ... N Q(~). (1) 

We shall always suppose tha t  the decomposition (1) is irredundant in the sense tha t  
Q(,) -h tl(1) N ... Q~-I) Q~I)  : ~  f) fl N ... f)Q(~) for i =1 , 2 ,  . . . ,  n. Let /~)  denote the radical of 

Q(~). /~x ~) is clearly the unique minimal prime x-ideal containing Q~). I f  M is an m-set we put  

A(M) = (c; cM f~ Az+ 0). If  M -~S - P t  where P~ is a prime x-ideal we shall denote A(S -Px)  

by A(Pt). An element bES is said to be non-prime to A~ if there exists an element c~A z 

such tha t  bcEA t. An x-ideal B x is called non-prime to A t if every element of Bt is non- 

prime to A z. The elements which are prime to A x form an m-set which does not meet Az. 

Hence there will exist maximal x-ideals among the x-ideals which are non-prime to A~ 

and which contain At. The continuity axiom implies that  these maximal x-ideals are prime. 

These maximal x-ideals are called maximal prime x-ideals belonging to Ax. I t  is easy to see 

tha t  any  minimal prime x-ideal containing At  is non-prime to A t and hence contained in 

a t  least one maximal  prime x-ideal belonging to A~. 

The following proposition, which is valid for x-systems of finite character without 

further restrictions, already shows a par t  of the unicity we are aiming at. 

PROPOSlTIO~ 19. The set o/ elements non-prime to the x.ideal At  represented in (1) 

is equal to the set.theoretic union o/the maximal prime x-ideals belonging to Az and is also 

equal to the set.theoretic union o/ the prime x-ideals t ~  ) attached to Az by the decomposi. 

tion (1). The latter union is, there~ore, in particular independent o/the given primary de- 

composition. 

Proo/. The proof is the same as in the case of rings (see [24], p. 186). The continuity 

axiom is used when proving tha t  if a is non-prime to At then a is contained in some maximal  

prime x-ideal belonging to A~. For if ab E At with b ~At, then (A~ U {a})~. b _ (At 0 {ab})~ ~_ A t 

and {A z U {a))z is non-prime to Ax. The assertion then follows from Zorn's lemma. 

We now generally say tha t  a prime x-ideal Pt belongs to A~ if P~ is a maximal prime 
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x-ideal belonging to A(Pz). The following proposit ion is also valid for general x-systems of  

finite character  and the proof is identical with the one in case of ordinary ideals. 

PROPOSITION 20. Let M be an m-set in S and suppose that the decomposition (1) of 

A~ is such that MNP(~)=O for i=1 ,2  ..... k andQ) Mf lP(~)#O /or i = k + l  ..... n. Then 

A(M)  =Q(~) N ... N Q(k). 

I n  order to be able to prove the next  theorem which is the main result of the Krnl!  

theory  we mus t  assume tha t  the given x-system is a P-sys tem in the sense of the following= 

D E F I N I T I O ~. An x-system is said to be a P-system if an i r redundant  set-theoretic un ion  

of a finite number  of at  least two prime x-ideals is never a prime x-ideal. A union is ir- 

r edundan t  if no term in the union is contained in the union of the remaining terms. Most, 

of the x-systems occurring in the li terature are P-systems.  I n  fact  the s-system is the only  

natura l  x-system which is not  a P-sys tem,  tha t  comes to  mind readily. 

THEOREM 18. Let x be a P-system of finite character and let A z be an x.ideal admitting 

the/inite primary decomposition (1). Then a prime x-ideal Pz is identical to one o/the prime 

x.ideals P~) attached to this decomposition i/ and only i / P z  is a maximal prime x-ideal 

belonginq to A(Pz). In  particular the family P(~) ..... P(:) is uniquely determined by Ax, and 

this is valid/or any x-system o//inite character. 

Proo/. We shall establish one half of the theorem by  showing tha t  / ~  is the  

unique maximal  prime x-ideal belonging to  A (/~)). Assume tha t  the number ing is 

chosen in such a way  tha t  P ~  _ T~I ) for j = 1, 2 . . . . .  i and P(~) ~ P(I ) for j = i + 1 . . . . .  n. 

Proposi t ion 20 then gives A ( / ~ ) ) =  Q(I~ fl ... N Q~). I t  is clcarly sufficient to show thab 

/~ )  just  consists of all the elements of S which are non-prime to A (p(t~). A n y  ele- 

men t  outside /~)  is obviously prime to A (/~)). Suppose tha t  a E / ~  ) and, therefore, 

t ha t  am EQ(xt) for some integer m. Since the decomposit ion (1) is i r redundant  there is 

an element beQ~)N ... AQ~ -1~ such tha t  b~Q~ ~. This gives a'~beA(t~)) .  I f  m 0 is 

chosen to be such tha t  a~'bEA(P(~ )) and  a m ' - l b ~ A ( I ~  ~) then we put  c=b  if m o = l  

and  c=am'- lb  if m 0 > l .  I n  either case a c E A ( / ~  ~) with c~A(P(~ )) and a is non-  

prime to A (P~)). 

Suppose conversely tha t  P~ is a maximal  prime x-ideal belonging to A (P~). W e  

mus t  show tha t  P~ = P ~  for some i. Certainly P~___ P~) for at  least one i. Assume 

now tha t  the number ing in (1) is such t h a t  P~___/~I) for ~" = 1, 2 . . . . .  k and P ~ / ~ >  

for ~" = k + 1 . . . . .  n. Then A (P~) = Q(1) N ... ~ Q(k) by  Proposit ion 20. 

(1) There are two obvious conventions to be made when one of these two possibilities doe~ 
n o t  o c c u r .  
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Suppose tha t  P~) were properly contained in P= for j = l ,  2 . . . . .  k. Since x is a 

P-system this would imply the existence of an element p E Px such tha t  p {~P<~) for 

= 1, 2 . . . . .  k. Since P~ is a maximal  prime x-ideal belonging to A (P~) we would 

have an element b~A(P~) such tha t  bpEA(P~). By (1) b~Q~ ) for some i and this 

together with p r contradicts the fact tha t  Q~) is primary.  

The fact tha t  the family /~1~ . . . . .  P~) is uniquely determined by Ax can also be 

proved in the same way as in [33, p. 76-77]. This proof is valid for any  x-system 

of finite character and thus establishes the last s tatement  of the theorem. 

C H A P T E R  3 

x.Noetherian and x-Dedekindian semi-groups 

13. x.Noetherian semi-groups. I ~ t  S be a commutat ive semi-group in which there is 

defined an x-system of finite character. We shall say tha t  S is x.Noetherian if the following 

two conditions are satisfied: 

I. S satisfies the ascending chain condition for x-ideals, 

I I .  Every  irreducible x-ideal is primary.  

Since x is supposed to be of finite character, we can give various equivalent formulations of 

I which are well known from ordinary ideal theory in rings. In  particular, I is equivalent 

to the fact that  any  x-ideal is finitely generated. By means of I one concludes tha t  any 

x-ideal in S can be represented as a finite intersection of irreducible x-ideals--and hence 

by I I  as a finite intersection of pr imary x-ideals. Such a pr imary decomposition can be 

given a normal form called a shortest representation by  first omitting any pr imary compo- 

nent containing the intersection of the other components and then grouping together 

pr imary x-ideals having one and the same radical. Indeed, as in ordinary ideal theory, one 

proves tha t  a finite intersection of pr imary x-ideals is a pr imary x-ideal if and only if all 

the components have the same radical. From this and the last s tatement  of Theorem 18 

we obtain immediately the following: 

THEOREM 19. Every x-ideal Az in an x-Noetherian semi-group has a shortest representa- 

tion as an intersection o/primary x-ideals. The/amily of the prime x-ideals consisting o/the 

radivxds of the primary x.ideals occurring in one such decomposition is independent o/the 

given decomposition and hence is uniquely determined by the given x-ideal A x. 

We know tha t  for ordinary ideals in r ings--here called d-ideals--assumption I I  is a 

consequence of I.  I t  is clear, however, from the examples of half-prime x-systems tha t  I I  
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may be satisfied also in cases where I fails to hold. We shall now show that  I I  is, in general, 

not  a consequence of I. 

T:Hv.OR~M 20. There exists a semi.group S and an x-system o/]inite character in S such 

that the ascending chain condition/or x.ideals is saris/fed but S is not x-Noetherian. 

Proo/. In  order to prove this we shall use the m-system in a quasi-integral m-lattice 

L. By an m-lattice we mean a lattice with a binary multiplication satisfying a(b U c) = ab U ac. 

The multiplication is here supposed commutative. That L is quasi-integral means that  ab ~< b 

for all a and b eL. Consider now a subset A of 15 and the mapping A->A,,  where Am consists 

of all elements c such that  c < a  1U ... U a~ with a I ..... a, EA. I t  is easy to verify that  the 

mapping A->Am defines an x-system of finite character in L considered as a semi-group 

under the given multiplication. This x-system is called the m-system in L. (For more 

details see Chapter 5.) We now consider the following finite m-lattice (see [6], pp. 350-51), 

z 

where the multiplication is defined according to the following table: 

u a b c d 

u u a b c d 

a a b b 2: z 

b b b b z z 

C C Z Z 2: Z 

d d z z z z 

2: Z Z 2: 2: 2: 

2: 

Z 

Z 

Z 

2: 

Z 

One verifies easily that  this defines a quasi-integral m-lattice in which the ascending chain 

condition for m-ideals is satisfied. In  fact, every m-ideal is principal in this case. The 

m-ideal (d}"* is clearly irreducible. But  it is not primary since bc E (d}"*, c ~ (d}m and b ~ ~ {d}"* 

for all n. 

We have not been able to find any simple and natural sufficient condition to impose 

on the given x-system such that  I would imply II .  To have such a condition is, however, 

not very essential since the verification of I I  is in most cases very simple and follows the 

lines of the proof in the classical case x = d .  This is, for instance, the case for x = s .  
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Before proceeding with the discussion of the other decomposition theorems of E. Noether 

we ought to give some comments on the expression "prime z-ideal belonging to Ax". 

Aceording to Theorem 18 it is possible tha t  for a general x-system the family of prime 

x-ideals P(~) ..... /~2) attached to Ax by any primary decomposition A~ = ~ I  ~ N ... n Q(n) with 

tad Q(~)=/~) might be different from the family of prime x-ideals belonging to Ax. What  

we have shown is tha t  the two families coincide in the case of a P-system, but  we have been 

unable to decide whether this is the case or not for general x-systems of finite character. 

From now on we shall have no more occasion to speak of "prime x-ideals belonging to A=" 

in the intrinsic sense of Krull and we shall now by this expression always mean one of the 

/~) attached to a shortest decomposition of A~. 

We shall say that  the x-ideals Ax and B~ in the x-Noethcrian semi-group S are relatively 

prime if Az :B~ = A~ and B= :A x = Bx. One proves that  A~ and B~ are relatively prime if and 

only if there exists no inclusion relation between a prime x-ideal belonging to A~ and a 

prime x-ideal belonging to B~. From a shortest primary decomposition we therefore obtain 

a decomposition by mutually relatively prime x-ideais by grouping together primary 

x-ideals whose corresponding prime x-ideals are related by an inclusion relation. I t  follows 

as in ordinary ideal theory that  this decomposition is unique. 

We shall now treat  a stronger form of relative primeness which will lead to another 

decomposition theorem of E. Noether. In van der Waerden's book [33, pp. 80-83] this 

theory is developed in terms of the elements of the given ring and makes constant use of 

the property that  the d-ideal generated by the two d-ideals Ad and Bd is the whole ring R 

if and only if there exist elements a E A~ and b E Bd such that  a + b = 1. (R is supposed to have 

an identity.) We shall here show that  this theory may be freed from these special arguments 

and is valid for general x-systems of finite character. 

We now suppose that  S is an x-Noetherian semi-group with an identity element e. 

The x-ideals A~ and B~ are said to be coprime if Az U ~B~=(A~ U Bz)~=S. 

PROPOSITION 21. Let Q~) and Q~) be two primary x-ideals such that P~)=  rad Q(x 1) 

and P~)= rad Q~). I / 1  )(1) and P(~) are coprime then Q(1) and Q(x 2) are also coprime. 

Proo/. Since S is x-Noetherian we have (/~))"___ Q(~) and ( /~))~ '_  Q(Z ) for suitable 

integers n 1 and n 2. Using the continuity axiom we obtain 

8 = ~ , + ~ .  = (~1) u, ~ ) ) ~ ' §  = (~ I ) )  n ' + ' '  u, ( ~ ' ) " + " - ~  �9 ~ )  u,...  u~ ( ~ ' ) ~ ' + n ' .  

The right-hand side is contained in Q~)Ux Q~) and we get Q(x 1) Uz Q~)=S as desired. 

PROPOSITIO~ 22. I f  A= and B, are coprime then they are also relatively prime. 

Proo/. Assume that  c E Ax :B~ and that  A z and Bz are coprime. Then c8 ~-c(A= U Bz)z c_ 

(e(A~ U B~))= ~ A~ and c E A~ since S has an identity. In the same way B~:Ax = B~. 
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PROPOSlTIOS 23. (A, N B~)o(A~ O ~Bx) c_A,oB, .  

Proo/. (A~ N B,)o (A x U ~B,) = ((A x N Bx)oA,) O x((Az fi B x ) o B , ) ~  A~oB x. 

COROLLARY 1. I / A  z and Bz are coprime then A x o B x = A x  ~ B x. 

PROPOSITION 24. I /  A~ and B~ as well as A~ and Cx are coprime then also Ax and 

B~oC~ as well as A ,  and Bx N C~ are coprime. 

Proo/. From A~ U , B ,  =Ax O ,C,  = S  we obtain 

S = S ~ = (A, O ~B,)o(A,  O ,Cx) ~_ (A~ O ,(BxoC~)), 

showing that Ax U x ( Bx oCx) = S = A~ U x ( B~ N C~). 

C o R o L L A R ~: 2. I / A ~  and B~ ~ are coprime/or each i = 1,2 ..... n, then Ax and B~ ~o... o j~n) 

are also coprime. 

PROPOSITION 25. The intersection o /a / in i t e  number o/mutually coprime x-ideals is 

equal to their x.product. 

Proo/. We use induction. In the case of two components the proposition is true by 

Corollary 1. Suppose, therefore, that  AC~ ) ..... A(~ ) are n, (n ~> 3) mutually coprime x-ideals 

such that  

A(n-1) ~ A(1) oA(~)o  A ~  ) fl A(~ ~) N . . .  N .*z  . . . . .  o A ~  a - i ) .  

By Corollaries 1 and 2 we obtain 

A(n) _A(1)o  .oA(') A~ ) n . . .  n A(~ n) = ( A ( x i ) o . . .  o A  ( n - l ) )  n - ~  - ~ . . . .  

showing that the proposition is valid for all n >~ 2. 

In the following theorem we use the term indecomposable to mean that an x-ideal 

cannot be written as an intersection of two coprime x-ideals. 

TH~ORV, M 21. Any  x-ideal in an x-Noetherian semi-group with an identity element 

can be written uniquely as an x-product o / a  finite number o[ indecomposable and mutually 

coprime x.ideals. 

With the above preparations, the proof of this theorem goes exactly as in the case 

x =d; see [33, pp. 82-83]. The following theorem is now also an immediate consequence. 

THEOREM 22. Let S be an x-Noetherian semi-group with an identity element such that 

any prime x.ideal is maximal. Then any x.ideal in S can be written uniquely as an x.product 

o[ a finite number o/primary x.ideals which are mutually coprime. 

14. Fract/onary x-ideals. In  order to generalize the theory of Dedekindian rings to 

x-systems we shall need the notion of a fractionary x-ideal. 
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Let S be a commutative semi-group with identity element e. The element a ES is 

said to be regular if ab =ac  implies b =c. The regular elements of S form a subsemigroup 

S 0 of S which contains e and in which the cancellation law holds. A subset of S is called 

regular if it contains at least one regular element. We now consider the set S' of formal 

quotients a/b where b E S o and we define an equivalence relation -~ in S'  by putting a/b ,,, c/d 

whenever ad = be. The relation N is a congruence relation with respect to the multiplication 

al/b 1 .a2/b~ =alaJblbg. and the quotient S* =S'/,, ,  is a semi-group under the corresponding 

multiplication of equivalence classes. The semi-group S* is called the semi-group of quotients 

of S and it contains a subsemigroup isomorphic with S. We note that  a/b is regular in S* 

if and only if both a and b are regular in S. 

A subset A of S* is called/ractionary (or bounded) if there exists a; regular element m 

such that  mA ~_ S. Such an element m is called a multiplier for A. If A _  S we call A integral. 

Any integral set is fraetionary. We now say that  there is defined a/ract/onary x-system in 

S (or in S*) if there corresponds to any fraetionary subset A of S* a subset Az of S* such that  

1. A~_Az. 

2. A C _ B z ~ A ~ _ B  ~. 

3'. SB,~_B~. 

3". aB~:~_ (aB)~. 

4. S~=S. 

I t  is easy to verify that  the operations we are going to perform within the family of frae- 

tionary regular sets, namely the closure operation A--~A x, the multiplications A .B and 

A o B, and the residuation A : B do not lead out of this family. 

In  Paragraph 6 we introduced the notion of trace of an integral x*-system. If  we have 

an (integral) x-system in S then its trace on a subsemigroup T will be an x-system Xr in T. 

In  the ease of fraetionary x-systems we have the following: 

T~EOR~.M 23. Let S o denote the semi-group o/regular elements o / S  and let S~ and S* 

denote the semi.group o/quotients o / S  o and S respectively. For a given/ractionary x-system 

x in S* (relative to S) the [amily of all traces A x N S~ de/ines a [ractionary x-system in S~ 

(relative to So). This x-system, which will be denoted by x o is called the regular ]ractionary 

x-system induced by x. The xo-operation is given explicitly by (A N S~)z. = (Afl S~)~ N S~. 

Proo/. We first note that  the fractionary sets of S~ with respect to S 0 are just the sets 

of the form A n S~ where A is a fraetionary set of S* with respect to S. Indeed, if mA ~_ S 

then m(A N S~) c_ mA N mS~ ~_ S N S~ = S o. The explicit formula in the proposition is obvious 

and we use this formula in order to verify that  x 0 defines a fraetionary x.system in S~ 

relative to S 0. I t  is sufficient to verify the axioms 3', 3 # and 4. 
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~o(A S* [~ o),. =So[(A [1S~), n S~]___ S(A N Sg), N SoS* =(A N So),.. 

(A N S~),. : c = [(A N S~), N S~] : c = ((A N S~), : c) N (S~ : c) 

n n = s  n =So. 

We shall later see that  this notion of induced regular x-system will give the link be- 

tween the present theory and the more special one considered by Priifer-Krull-Lorenzen. 

15. x-Dedekindian semi-groups. We use the notations of the preceding paragraph. 

In  particular S will denote a commutative semi-group with an identity element. We shall 

also suppose that  all the x-ideals considered in this paragraph are regular, i.e. contain at 

least one regular element. An x-ideal is said to be proper if it is different from S. S is called 

x.Dedekindian if there is defined a fraetionary x-system in S which satisfies the following 

conditions: 

I. S satisfies the ascending chain condition for integral x-idcais 

II.  Every  integral and proper prime x-ideal is maximal 

III .  S is integrally x-closed in the sense that  A , : A z = S  for any integral x-ideal A z. 

I t  was shown by Priifer [27] tha t  I I I .  coincides with the ordinary notion of integral 

closure in the case x = d. 

We shall now prove the unique factorization theorem for z-ideals in x-Dedekindian 

semi-groups following closely the classical development of van der Waerden ([33], pp. 

125-130). We note that  assuming only the ascending chain condition for integral x-ideals 

and not tha t  S is x-Noetherian we have to give a direct development independent of the 

theory of x-Noetherian semi-groups. We obtain, however, as a corollary, that  an x-Dede- 

kindian semi-group is x-Noetherian. From now on, all x-ideals which are not explicitly 

specified as fractionary wiU aU be integral x-ideals, i.e. contained in S. 

L~,MMA 1. To any x-ideal Ax in S we can /ind prime x-ideals P(~) . . . . .  P(~") such 

that Ax___/~ ) /or i = 1 , 2 ,  . . . , n  and /~1)o ... o/~2) __ A,. 

Proo/. We here use the divisor induction which is one of the equivalent forms of the 

ascending chain condition (see [33, p. 63]). S obviously has the property announced in the 

lemma. I~ t  therefore Az~=S. If A, is prime there is nothing to prove. If Az is not prime 

there exist, according to the corollary of Proposition 9, two x-ideals B,  and Cz containing 

A z properly and such that  B~o C, ~ Az. We now use the divisior induction in order to com- 

plete the proof of the lemma. 

LEMMX 2. I /  P~ is a prime x.idcal properly contained in S then p ; l = S:P x~ :S .  
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Proo/. Let c be a regular element in Pz. By Lemma 1 there exists a product  of prime 

x-ideals such tha t  

p(xl)o . , .  op (x  n) _cc {C}= C= p :  (1) 

and we assume tha t  this product is a shortest one, i.e. tha t  no product  of n -  1 prime 

x-ideals is contained in {c}z. (1) implies by a suitable numbering tha t  / ~ ) - c P  x and 

therefore / ~ ) = P =  because of I I .  Hence 

P o 2o... {c}= 

and P(])o ... oP(~n) ~ {c,}. 

There exists, therefore, an element b e P ~ ) o . . . o / ~  n' such tha t  b{~(c)~ and P~.b~_{c}~. 

Since c is regular, we can here multiply on both sides with c -1 and obtain 

This means tha t  b]cES:P z. If b/cES then bESc~ {c}z contrary to the choice of b. Thus 

b/cqS and S : P z ~ S .  

LEMMA 3. For any prime x-ideal Pz in S we have P~oP; I =S. 

Proo/. Since S ( S : S ) = S  we can suppose tha t  P~=~S. We have Sc_P; 1 and therefore 

P~=S.P~_PzoP;  1. By I I  this gives two possibilities, either PzoP~I=P~ or PzoP;I=S.  

The former possibility is, however, excluded since P~oP; 1 =P~ is in contradiction with the 

conjunction of Lemma 2 and Axiom I I I .  

From this point on, the proof of van  der Waerdcn carries over verbat im to the case of 

x-ideals. We have thus established the first half of the following 

THEOREM 24. In  an x-Dedeldndian semi-group any regular x-ideal can be written as 

a [inite x-produa o/regular prime x.idea2s. I / A ~ _  Bz and Ax=p(zl)o...oP(x n), Bx~-(~l)o...o 
Q(x ~) are two such decomlmsitions o /Ax  and Bx res2aectively then any prime x-ideal (~) 4= S 

occurring in the/actorization o/ B~ will occur at least as many times in the/actoriza$ion o/ 

Az as it does in that o / B  z. Conversely such an exiaenee and uniciSy statement implies that 

S sat/s//es I and I I  and the ]ollowing weakened/orm o/III:  (Az:Az) N S~ =S o (which reduces 

to I I I  in case S is regular). 

For the proof of the second half of Theorem 24 it is convenient to use the following 

immediate result. 

PROPOSITION 26. Let S be a semi-group satis/ying the existence and unicity staSemen~ 

o[ Theorem 24. Then the/oUowing properties hold in S. 
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A. Any  regular x-ideal in an x-Dedekindian semi.grou T S can be written uniquely as a 

finite product o/ prime x.ideals. 

B. The regular x-ideals in S /orm a semi-group with cancellation law with respect to 

x.multiplication. 

C. The inclusion A x ~_ Bx ~_ S implies the existence o / a n  x-ideal C~ ~ S such that A~ = 

B~oC~. 

Proo/o/ the  second hal /o/  Theorem 24. This proof is the same as in [33, pp. 129-130] 

except for the weakened condition I I I  which here may  be proved as follows: Suppose tha t  

a/b EAx:A x where a and b are regular and A x is integral. Thus a/b .Axe_ A x or 

aAx ~ bA~. (2) 

Using the continuity axiom (Theorem 1) we obtain 

{a}~oAz = {a}oA~ = ( a A x )  z 

which combined with (2) gives 

{a}xo A~ = (aA~)~ ~_ (bA~)x = {b}~o Az. 

By Proposition 26 (] we therefore have an x-ideal C~ ~ S such that  

{a}xoAz = {b}xoA~oC~ 

and we conclude according to Proposition 26 B that  

{a}~ ={b}~oC x. (3) 

x-multiplication on both sides of (3) by  the fractionary ideal {e/b}x gives 

= = S .  

This proves tha t  a/b E S and S satisfies the weakened form of I I I .  

We have above been able to prove the equivalence of the conjunction of the three 

classical Noetherian conditions and the strong unicity s tatement  of Theorem 24 under 

assumptions which are somewhat weaker than those of the Pri ifer-Krull-Lorenzen theory. 

In  fact we have not assumed tha t  their axiom 2.3 (Paragraph 2) 

{a}x = Sa 

is satisfied. I f  x satisfies 2.3 for any regular element a we shall say tha t  x is principal. 

Though we did not assume this property at  the outset, we shall see tha t  it is actually a 

consequence of x being fractionary. We shall say tha t  x has the group property if the regular 

fract ionary x-ideals form a group under x-multiplication. 
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PROPOSlTIO~ 27. I /  S is a semi-group which satisfies the group.property/or x, then 

the /ollowing statements are valid 

A. A~_ B~_S:~ A~:B~_S. 

B. Ax:Az=S. 

Proo[. Since A~_B~ implies tha t  A ~ : B ~ A z : A ~  it is sufficient to prove B. Pu t  

Ax:A~=C~. Then A ~ o C ~  A~ which together with S ~  C~ and 

A , o S  = A~ (1) 

imply  tha t  A~oC, = Ax. (2) 

Using the group property on (1) and (2) we infer tha t  S=C,  and hence A,:A~=S. 

For the proof of the next  theorem we shall also need the following simple generali- 

zation of a well-known theorem of Krull. 

PROPOSITION 28. I / x  is o/finite character, then any invertible /ractionary x-ideal is 

finitely generated. 

Proo/. Let Az be an invertible x-ideal, i.e. AxoBz=S for some fraetionary x-ideal 

B x. Thus e E (A. B)x and since x is of finite character we can find two finite subsets N and 

M of A and B respectively such tha t  e E (N.M)~. Hence N~oBz=S and A~=N~ by  the 

uniqueness of the inverse, showing tha t  A x is finitely generated. 

THEOREM 25. A semi-group is x-Dedekindian i/and only i[ x has the group property. 

Proo/. Suppose tha t  S is x-Dedekindian and let A~ be a fraetionary x-ideal of S such 

t ha t  bA~ ~ S with b E S. This gives {b}xoA~ = (bA~)~ ~_ S and {b}~o A~ = C~ is thus an integral 

~ l ) o . . . o P ( x  n) w e  conclude by  Lemma 3 tha t  the fraet ionary x-ideal x-ideal. I f  Cz = ,  

{b}~o(P(~))-lo...o(P(xn)) -1 is the inverse of A~. Assume conversely tha t  x has the group 

property.  We shall prove tha t  S has the three properties which define an x-Dedekindian 

semi-group. Condition I is a consequence of Proposition 28. Suppose next  tha t  P~ is a 

prime x-ideal and P~ c A x ~ S where the first inclusion is supposed to be proper. By  the 

group property we have a fractional x-ideal C~ such tha t  Pz =A~oCx where Cx is integral 

according to Proposition 27 A. The primeness of Px then implies tha t  C~=Pz and A~=S 

which shows tha t  Px is maximal. That  S is integrally x-closed is an immediate consequence 

of Proposition 27 B. 

As promised at  the end of section 14 we shall now prove a simple theorem which gives 

the link between the present theory and the more special one considered by Pri i fer-Krul l -  

Lorenzen. 

3 - 62173067.  A c t a  mathema$iea. 107. I m p r i m 6  le 27 m a r s  1962 
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THEOREM 26. The regular/ractionary x.system induced on the group S~ by a/ractionary 

x-system in S is an r-system in the sense o/Lorenzen. 

Proo/. Since S~ is a group it follows from Proposition 3 that  Lorenzen's axiom 2.4 is 

satisfied for the induced x-system in S~ (see also Theorem 23). Suppose next  tha t  b E (a}z 

where a is a regular element of S*, i.e. a e S~. Then (b}x_~ (a}~ and (b)xo (a-1)x_~ (a}xo (a- ')x = 

(e}~=S. This implies ba- lES or bESa which means that  x is principal and this proves the 

theorem. 

C H A P T E R  4 

Structure spaces  o f  x - idea l s  

16. The Stone topology /or maximal x-ideals. I t  is rather remarkable tha t  ideals in 

rings were not first studied as kernels of ring homomorphisms. This property, however, 

is as one should expect, fundamental in most of the applications of ideal theory, and 

accounts in particular for the success of various concepts of ideal in functional analysis. 

In  fact the use of maximal ideals of various types in problems concerning functional 

representation stems from the fact that  the quotient algebra modulo different kinds of 

maximal ideals takes on simple forms, such as the additive group of the reals, the algebra 

of complex numbers, the two-element Boolean algebra, etc. Because of the difficulty in 

defining a congruence and a quotient modulo a general x-ideal, it does not seem to be easy 

to develop a general representation theory based on x-ideals. There are, however, various 

basic questions in this domain which have been treated separately for several types of 

ideals, where the theory of x-ideals admits a simple unified treatment.  We shall here content 

ourselves with illustrating this in connection with certain facts in the theory of structure 

spaces. 

We suppose in this section that  S is a commutative semi-group equipped with an 

x-system of finite character such that  S has an x-identity satisfying the two conditions 

(1) e e S  2 and (2) (e}x=S.  

These two conditions are satisfied for a multiplicative identity in a ring or semi-group 

(x =d and x =s respectively) and for a positive order unit (arehimedian element) in a lattice 

ordered algebraic system with respect to the semi-group operation aob = lal N Ib[ (see the 

c-systems treated in section 22). In the family 7~ of maximal x-ideals in S we can introduce 

a closure operation by defining the closure ~ o f  7~---~ by ~={Mz,  Mz~  n M~)). We 

write k e r n =  [') M~ ) and hull M~ M~_M~}, so that  ~ = h u l l  (ker ~). 
M~ ) e 
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THEOREM 27. The closure operation ~--->hull ( k e r ~ ) = ~  de/ines a topology in ~ .  

Proo/. The fact tha t  we really have a closure operation is clear and so is the inclusion 

~1 0 ~2- ~1 U ~2. I t  is therefore enough to show that  ~ U ~ ___ ~1 0 ~ .  Suppose that  

M~ E ~ U ~2, but  M~ ~ ~ U ~ .  Then we would have elements a, b E S such that  a ~ M~ b ~M~ 

and a E ker ~1, b E ker ~ .  Since M ~ is maximal and S has an x-identity, we infer from the 

corollary of Proposition 9 that  Mx is prime; hence ab ~ M~. But, on the other hand, ab E ker 

( ~1 (J ~2), showing that  ab belongs to every Mx in ~1 U ~2. Thus also ab E M~ and this gives 

the desired contradication. 

The above topology is called the Stone topology, and ~ equipped with the Stone topo- 

logy is called the x-structure space of S. 

THv, OR~.M 28. The x-structure space o/ S is a compact T1.space. 

Proo/. That ~ is a Tl-space is obvious. In order to show compactness, let 

(:~}~z be a family of closed sets in ~ with the finite intersection property. We must 

show that  n :~ �9 o. Let  us assume that  n :~ = O, and put  

A, = U~ ker :~t. (1) 

If A~=~S we must have A~__M~ for a suitable M ~ E ~ ,  ker:~_~A~c_M~ for all iEI ,  

and therefore M~ = :~  for all i, a contradiction of our assumption. Therefore 

A~ =S and the x-identity e belongs to A~. Since x is of finite character we deduce 

from (1) tha t  e E U x k e r : ~  where J is a finite subset of I ,  say J={ /~  . . . . .  i~}. This 

implies I1 :~,,=o. For if M~E N :~,, then M ~ E ~ , = : ~ , ,  for / r  . . . . .  n, i.e. 
k - 1  k--1 

M~_~ ker : ~  for k = 1 . . . . .  n and S = (e}~ ~ b x ker :~ ,_  M~, which establishes the desired 
k ~ l  

contradiction. 

17. Characteristic/unction semi-groups. I t  is well-known that  the topology of a compact 

Hausdorff space X can be characterized in various ways up to a homeomorphism by the 

algebraic structure of subfamilies of the family C(X) of all complex-valued continuous 

functions on X. Let  us cite just two examples. Gelfand and Kolmogoroff [9] proved tha t  

if for two compact Hausdorff spaces X and Y the rings C(X) and C(Y) are isomorphic, 

then X and Y are homeomorphic. Stone [32] proved that  if CR(X ) and CR(Y) are isomorphic 

as lattice-ordered additive groups where OR(X) is the set of all real-valued functions in 

C(X), then X and Y are homeomorphic. The operations and order referred to here are 
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all the pointwise ones. We shall now show how these two theorems as well as other special 

cases can be derived from a general theorem by using the Stone topology for x-ideals. 

Let X be a topological space and let S(X)  be a semi-group of complex-valued con- 

tinuous functions on X, equipped with an x-system of finite character, such that  S(X) 

has an x-identity. For the moment the semi-group operation in S(X)  is completely un- 

specified. In  special cases it can, for instance, be pointwise multiplication, pointwise 

addition, or the operation ]og= I/I n Igl. We now make the following additional as- 

sumptions about S(X): 

I. S (X)  separates points in X.  

II .  S(X ) separates points and closed sets in X.  

I I I .  The set ([I](a)=O} is a maximal x-ideal M(x a) in S (X)  /or a given point a E X ,  

and there are no other maximal x-ideals in S(X ) i / X  is compact. 

I means that for a + b there exists an [ e S (X)  such that / (a)  = 0 and [(b)4= O. The meaning 

of I I  is that  for every closed set F _~ X and every point a not in F, there exists [ E S(X)  

such that  [ --  0 on F and [(a) 4= O. If S(X)  satisfies all the conditions mentioned so far, we 

shall call it a characteristic/unction semi-group for the space X. Condition I implies im- 

mediately that  X is Hausdorff, and this latter property could have been used as an as- 

sumption instead of I. In  fact it is sufficient to assume that  X is a T0-space in order that  

I I  imply I. But I is the relevant formulation for our purposes because of the following 

obvious 

PROPOSITION 29. The condition I is necessary and su//icient in order that the mapping 

a--->M(x ~) o / X  into M be in~ective. 

The two other conditions have a similar purpose with respect to the mapping a-->M(~ ~), 

namely, to assure that  it be a homeomorphism and surjective in case X is compact. Indeed, 

we have the following theorem where ~ denotes the x-structure space of S(X). 

THEOREM 29. A necessary and su//icicnt condition that the mapping a-+M(~ ~) be a 

homeomorphism o / X  onto ~1 is that X be a compac$ Hausdor]~ space. 

Proo/. Assume first that  X is a compact Hausdorff space. From the above proposition 

and condition I I I  we know that  a-->M(2 ) is a bijeetion. The proof that  we actually have a 

homeomorphism is identical with the proof of Theorem 19F, p. 57 in [20]. Conversely if 

a--,M(~ a) is a homeomorphism of X onto ~ ,  it follows from Theorem 28 that  X is compact, 

and that  it is Hausdorff is a consequence of I. 

I f  S and T are two semi-groups each equipped with an x-system denoted respectively 

by  y and z, we defined in section 5 a multiplicative homomorphism ~0 of S into T to be a 
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(y,z)-homomorphism if ~(A~) c (~A)~, or equivalently, if the inverse image of a z-ideal in T 

is a y-ideal in S. A (y,z)-isomorphism is therefore a bijeetion of S onto T such that  

~(ab) = ~(a).q(b) (1) 

and ~(Ay) = (~0A)z and r = ( ~ - I B ) ~ .  (2) 

This means that  there is really no difference between the y-system in S and the z-system in 

T, so that  we can put  y =z =x and call the given mapping an x-isomorphism. In the following 

theorem x~ denotes the x-system defined in St(X~), i = 1,2. 

TH:EO~M 30. Let X 1 and X~ be two compact Hausdor// spaces and let SI(X1) and 

S~(X~) be two characteristic/unction semi-groups/or the spaces X 1 and X 2 respectively. Ther~ 

X 1 and Xg. are homeomorphic i/SI(X1) and S~(X~) are (Xl,X~)-isomorphic. 

Proo]. If the xi-strueture space of X~ is ~ t ,  ( i=1,2) ,  then ~ffll and ~ 2  are homeo- 

morphie since SI(X1) and S~(X2) are (Xl,X~)-isomorphic, and the theorem follows from 

Theorem 29. 

In order to derive the above-mentioned theorems of Kolmogoroff-Gelfand and Stone 

from Theorem 30, we only have to verify that  the function semi-groups involved in these 

two cases--namely C(X) with respect to multiplication and CR(X) with respect to the 

operation / o g =  [/[ N Ig[ have the properties of a characteristic function semi-group 

with respect to the d-system and the c-system respectively. The d-system is the system of 

ordinary ideals in a ring, while the c-system is the system of convex, lattice-closed subgroups 

in a lattice-ordered abelian group (see section 22). 

Concluding remarks. I t  goes without saying that  the results of the preceding chapters 

should be considered just as samples of results which can be generalized to x-ideals and 

do not in this sense aim at  any completeness. We believe, however, that  the results derived 

so far should clearly indicate the possibilities of this general approach to ideal theory. 

There would be no point in trying to generalize blindly as many as possible of the existing 

results on special x-systems to general x-ideals. But  we think that  such a generalization 

could, in many eases, lead to interesting results. In fact, it seems often a fruitful procedure 

to t ry  to generalize a special result to x.ideals and then apply the general theorem to other 

particular x-systems. In [3] we have, following the idea of [32], applied this procedure 

in order to derive a general embedding theorem for lattice-ordered algebraic structures. 

We there applied the general Krull-Stone theorem for x-ideals to a particular kind of 

x-systems consisting of certain types of convex subalgebras with respect to the semi-group 

operation ao b -- ] a [ N [ b [. 
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As to further generalizations of the present theory we here mention two possibilities: 

Generalization to the non-commutat ive case and generalization to what  we could call 

x-modules. The formulation of the axioms in the non-commutat ive ease does not offer any 

difficulty although one must  be careful about  the order of the factors. The axioms 1.3' 

and 1.3" for a le]t x-system should, for instance, read 

1.3' ` 4 B ~  B~. 

1.3 ~ BxA ~_ (BA)~. 

We here observe that  the order of A and B are reversed in 1.3" with respect to tha t  in 1.3'. 

Much of non-commutat ive ideal theory of rings carries over to this general setting. As an 

example see, for instance [2], Chapter 2. Grundy [10] has generalized the ideal theory of 

Noetherian rings to modules. Something similar might be done in the case of general 

x-ideals to arrive at  a notion of an x-module. We should remark tha t  a similar general 

concept has been introduced for arithmetical purposes by Lorenzen in [23]. 

CHAPTER 5 

Applications to particular x-systems 

We shall in this chapter go into some more detail with respect to a few of the special 

ideal theories which are subsumed under the theory of x-ideals. Since the process of getting 

special results by  putt ing x = d, s, m, ~, etc. in the general theorems on x-ideals is in most 

eases a trivial matter ,  we shall here consider only certain samples of this kind. We shall 

in particular choose examples where the theory of x-ideals throws new light on welt-known 

special resul ts--or  where we actually can obtain new results by the specialization process. 

18. Lattices. As developed thus far, the ideal theory of lattices constitutes a very 

elementary subject with few if any-- rea l ly  deep results. The standard reference [4] is 

not  very complete as far as ideal theory is concerned and contains only a few simple results. 

More details can be found in [13] and [25]. The essential results on the ideal theory of 

distributive lattices are nearly all easy consequences of theorems on x-ideals and appear to 

be best understood in this connection. In  fact the theory of x-ideals clarifies completely 

the crucial role played by  distributivity and gives incidentally various new characteriza- 

tions of this property.  

Let  L be a lattice under the operations U and N. A subset A of L is called a lattice 

ideal or simply an 1-ideal in L if a U b E.4 whenever a and b E A and a N b E A whenever a E A 

and b EL. I t  is easily verified tha t  the family of/-ideals in L will define an x-system in L 
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if L is distributive and is considered as a semi-group under intersection (see below). This 

shows tha t  the ideal theory of distributive lattices is subsumed under the theory of x-ideals. 

Our main objective in this paragraph is to establish a converse of this result which will 

give the full explanation why most of the important  results on 1-ideals hold just for distri- 

butive lattices. 

TH~.OREM 31. The l-ideals in L de/ine an x.system in L i / and  only i / L  is distributive. 

Proo[. Assume first tha t  L is distributive. We must  show tha t  the continuity axiom 

a fl B l ~  (a N B)~ (1) 

is satisfied. An element c belongs to Bz if and only if c ~< bt U ... U b~ for a finite number  of 

b~ belonging to B. Thus 

a Nc<~aN (b 1U ... U b~) = (a N b~) U ... U (a N bn) E (a N B)~ 

so tha t  (1) is satisfied. Assume conversely tha t  the continuity axiom is satisfied. Then by  

Theorem 1 (or more directly by  Proposition 17) the family I:(L) of /-ideals will form a 

distributive lattice under inclusion. L is isomorphic to the sublattice of s which consists 

of all the principal/-ideals of L and hence is distributive. 

A direct proof of the fact tha t  the continuity axiom implies distributivity can be 

given as follows. The continuity axiom states tha t  

aN(b 1 .... ,bn)z-(aNb I ..... aNbn)~. (2) 

The left-hand side of (2) consists of all elements d such tha t  d ~< a N (b t U ... U bn), while the 

right hand side of (2) consists of all the elements / such tha t  [~< (an bl)U ... U (a N bn). 

The inclusion (2) is therefore equivalent to the implication 

d ~ a N  (b t U... Ubn) ~ d <  (a A bl) U... U (aN bn). 

Putt ing here n =2,  b 1 =b, b~ =c  and d = a  N (b U c) we obtain 

aN(bUc)<~(anb)U(aAc)  

which shows tha t  L is distributive because the reverse inclusion is satisfied in any lattice. 

Theorem 31 combined with general theorems on x-systems like Theorems 1, 2, 3, 13, 14 

and 15 gives a great number of different characterizations of distributive lattices among 

which several do not seem to have been observed earlier. We collect some of these in the 

following corollary. We recall tha t  in a lattice L A A B is the set of all intersections 

a flb with aEA  and bEB, and A :b ~{c,c N bEA}. 
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COROLLARY. The/oUowing conditions are equivalent/or a lattice L: 

1. L is distributive. 

2. The lattice o/1-ideals in JL is distributive. 

3. Every l-idcal in L can be written as an intersection o/prime l-ideals. 

4. Every irreducible 1-ideal is prime. 

5. (A N B) I=AzN Bl. 

6. Al:b is an l-ideal in L /or aU bEL. 

7. A ~ : B I = A I : B .  

8. [(A N B)l N C~ =[A N (B n C)z]z (in case L has a greatest element). 

In  section 5 we defined a general notion of x-congruence modulo an x-ideal Ax by  

putt ing b - c ( m o d  Ax) whenever (A~,b)~=(A~,c),. By using the continuity axiom we 

showed tha t  this relation was a congruence relation with respect to the multiplication of 

the underlying semi-group, i.e. b - c (rood As )*  bd-- cd (rood Ax). We did not there t rea t  

the converse problem, i.e. to what  extent  the continuity axiom is implied by  this congruence 

property.  We shall now see tha t  this problem admits a simple solution in the case x =l. 

In  the case of/-ideals,  (A, b)z = (A,c)z is equivalent to the existence of two elements 

a I and a 2 in A l such tha t  

b<~alUC and c<a2Ub.  (3) 

In  case Az is a principal/- ideal  (a)z it is clear tha t  b - c ( m o d  (a),) if and only if b ~<a U c 

and c<~a U b. The conjunction of these two inequalities is equivalent to the equation 

a U b-~a U c. We therefore have the following: 

PROI 'OSITtO~ 30. The elements b and c are 1-congruent modulo the Trincipal 1-ideal 

(a)z if and only i / a  U b =a U c. 

Since a U b =a U c is equivalent to (a)z U b =(a)z U c (using the convention succeeding 

the axiom 1.3 of section 1) we see tha t  the 1-congruence in this case can be defined formally 

in exactly the same way as the ordinary congruence in rings substituting U for + .  

The next  theorem again ties up the connection between distributivity and the generaI 

theory of x-ideals. The notion of 1-congruence can be defined in any  lattice but  the following 

theorem shows tha t  the name 1-congruence is really appropriate only in distributive lattices. 

We remark tha t  it is really only the congruence property with respect to the inter- 

section operation which mat ters  here, but  since the relation a ~ b ( m o d A z )  is always 

congruence with respect to union, our terminology coincides with the one used in lattice 

theory where a congruence is an equivalence relation satisfying 

[ a ~ b ] ~ [ a U c ~ b U c  and a N c ~ b n c ] .  
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THEOREM 32. The ]oUowing properties are equivalent in a lattice L. 

1. L is distributive. 

2. a = b (rood A z) is a congruence relation/or all 1-ideals A ~ in L. 

3. a = b ( m o d  (c)l) is a congruence relation/or all principal l.ideals (c)l in L. 

Proo/. We prove the theorem by establishing the following sequence of implications: 

3 * 1 * 2 * 3. According to Proposition 30, 3. asserts tha t  

[aU b = a U  c] => [a U (b Nd) = a  U (c N d)]. (4) 

If  L were non-distributive it would contain either of the two lattices 

as sublattices. 

C C 

\ iV \ . /  

Both these two lattices violate (4) and hence 3 ~ 1, 1 * 2 follows from Theorems 9 and 

31, and 2 ~ 3 is obvious. 

The decomposition theorems derived for general x-ideals in Chapters 2 and 3 take on a 

particularly simple form in the case of l-ideals in a distributive lattice. This is due to the 

fact tha t  we have irreducible =p r imary  =pr ime  in the case x = 1. In  addition the family 

s of/-ideals satisfies the ascending chain condition (i.e. L is l-Noetherian) ff and only if 

L itself satisfies the ascending chain condition. In  this case every/- ideal  in L is principal 

and L is isomorphic to the lattice s of all 1-ideals in L by the mapping a--->(a)l. Indeed 

if L is l-Noetherian, every /-ideal Al is finitely generated. Thus A z = { a  1 ..... an}s = 

(a I L; ... U an)z, and At is principal. Conversely if L satisfies the ascending chain condition, 

it is clear tha t  every/- ideal  in L is finitely generated. In  the case of a distributive lattice 

L with ascending chain condition for its elements Theorem 19 therefore only gives the 

simple fact tha t  any element in L can be written uniquely as an irredundant intersection 

of a finite number of irreducible elements. 

19. Multiplicative lattices and semi-lattices. The observation first made by  Krull in 

[17], tha t  many  results of the ideal theory of rings can be formulated in terms of ideals 

alone without any reference to the elements of the underlying ring has led to the introduc- 

tion of lattices and semi-lattices over which a multiplication is defined. Among the main 

contributions to the subject we can mention [5], [6], [7], [8] and [19]. Apar t  from being 

an axiomatic study developing ideal theory without reference to elements these papers 
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also have an objective similar to the present one, namely, to subsume other ideal theories as 

well as tha t  of ordinary d-ideals. We believe, however, tha t  the theory of x-ideals has 

several advantages over the theory of multiplicative lattices and semi-lattices. Because of 

the presence of "elements",  the theory of x-ideals leads to a richer and more flexible calculus. 

In  fact, we shall show below tha t  there are important  ideal.theoretic notions which never 

can be formulated purely in terms of multiplicative lattices. This is for instance the ease 

with the continuity axiom itself. The following representation theorem also shows tha t  the 

par t  of the theory of m-lattices which has been developed most extensively, is subsumed 

under the theory of x-ideals. 

We have already defined the notion of a quasi-integral m-lattice. By a groupoid we 

mean a set G with a binary operation G • G-->G which will be denoted multiplicatively. 

G is said to be a U-groupoid if there is also defined an associative, commutat ive and 

idempotent operation U in G such tha t  a(b U c)=ab  U ac. If  the groupoid-operation is 

associative we shall speak of a U-semi-group. We here only consider 0-semi-groups which 

are commutative.  The definition of the m-system given in section 13 carries immediately 

over to a U-semi-group. 

THEOREM 33. To every quasi-integral U.semi.group L satis/yinq the ascending chain 

condition we can/ind a semi-group S and an x-system o//inite character in S such that L is 

isomorphic to the U.semi-group o/ all x-ideals in S under the operations o/ x-union and 

x-multiplication. 

Proo/. We shall actually show tha t  we can choose S =L with the multiplication in L 

as semi-group operation and put  x =m. Let us first verify tha t  the m-system really is an 

x-system, i.e. satisfies the continuity axiom ABram_ (AB)m. The m-ideal generated by  B 

consists of all elements c such tha t  c<.b 1 U ... U bn with bl ..... bnEB. I f  aEA, we therefore 

have 
ac <. a(bl U ... U b~) = abl U ... U ab le  (AB)m, 

and the continuity axiom is satisfied. If  L satisfies the ascending chain condition every 

m-ideal in L will be principal, and it is obvious tha t  the mapping a-->(a}m is an isomorphism 

carrying products into m-products and union into m-union. This proves the theorem. 

COROLLARY. A s / a r  as properties which can be expressed entirely in terms o/x-ideals 

and the operations o/x-union and x.multiplication are concerned, the [oUowing theories are 

equivalent under the assumption o~ the ascending chain condition. 

1. The theory o/x-ideals. 

2. The theory o/m-idcals. 

3. The theory o/quasi-integral m-lattiz~es. 

4. The theory o/quasi.integral U -semi-groups. 



T H E O R Y  OF X-I ' I )EAT~ 43 

Any result on quasi-integral O-semi-groups with ascending chain condition gives 

trivially a result on x-ideals. Conversely the above representation theorem shows that  all 

theorems on quasi-integral U-semigroups with ascending chain condition can be derived 

from similar theorems on x-ideals. For the proof of the next  theorem it will be convenient 

to have the following 

LI~MMA. For a given x*-system the/oUowing conditions, which all represent a weakening 

o/the continuity axiom, are equivalent. 

I. A~,. B,,___ (A~,. B)~,. 

II .  A ~ , o B , , = A ~ . o B .  

III .  (A~. :B~:.),:.--A~. :B , . .  

IV. A~.o(B O ~. C) = (A~.oB) O ~. (A~.oC). 

We can leave the simple proof of this lemma to the reader. 

THEOREM 34. The continuity axiom cannot be expressed by x-ideals alone, i.e. it cannot 

be/ormulated as a property o/the re.lattice o/all x-ideals. 

Remark. In fact all the equivalent forms of the continuity axiom given in Theorems 

1, 2 and 3 involve elements or subsets of S which are not x-ideals. We shall now show that  

this must be the case for any formulation of the continuity axiom. For certain special 

z-systems like the 1-system we know, however, that  the continuity axiom is just equivalent 

to the fact that  the/-ideals form an m-lattice under/-union and 1-product. 

Pro@ We shall prove the theorem by exhibiting two semi-groups S 1 and S 2 equipped 

with x*-systems x~ and x*2 respectively such that  the m-lattice of all x*-ideals of S~ is 

isomorphic to the m-lattice of all x~-ideals of $2 and such that  x~ satisfies the continuity 

axiom but x~ does not. Let  $1 be the multiplicative semi-group of the polynomial ring 

Z[x] and let x~ denote the x*-system consisting of all the differential ideals in Z[x]. An ideal 

( = d-ideal) A in Z[x] is said to be a differential ideal if it contains the derivative ha of any 

of its polynomials a. I~ t  us refer to this x*-system as the 5*-system. We first observe that  

the ~*-system does not satisfy the continuity axiom. In fact x.{x}~,~ {x~}~, since the 

polynomial x is contained in the left-hand side but  not in the right-hand side. Nevertheless 

the family of ~*-ideals forms an m-lattice under inclusion and ~*-multiplieation. This follows 

from the above lemma (IV) together with the fact that  A~, :Bo. is always a 5*-ideal (III). 

Indeed if cbeA~, for all bEBa,, then 5(cb)=&.b+c.SbEAo. and &.bEAo,  for all bEBo. 

showing that  ~c E A6, :B~.. We have therefore established that  the family of all ~*-ideals 

in Z[x] forms an m-lattice L with ascending chain condition. Now, choose S 2 =L with the 
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multiplication in L as the semi-group operation of Ss and put  x~ =m.  Since the ascending 

chain condition is satisfied in L, L is isomorphic to the m-lattice of all m-ideals in L under 

the mapping a--~{a}m, and the theorem is thereby proved since the m-system satisfies the 

continuity axiom. 

In  view of the fundamental  role which is played by the continuity axiom in ideal 

theory, the above theorem indicates anew tha t  several more refined ideal-theoretic facts 

cannot be expressed in terms of m-lattices alone. 

Another example of an x-system which has been considered in a quasi-integral U- 

semi-group is the following. We shall call a subset Au of a U-semi-group L a u.ideal if 

the following two conditions are satisfied: (1) a, b E A ~ ~ ab E A=. (2) a E A ~ and b EL ~ a U b E A =. 

The u-ideal generated by  A consists of all elements a >/a 1 .a s . . . . .  a n where a 1 . . . . .  a=EA 

and the u-ideals form an x-system in L considered as a semi-group with respect to union. 

Indeed, 
b (1 a >1 b U a 1 .a s ..... a, >~ (b U al). (b U a~)... (b U an)E(b U A)=, 

for any element aEAu. For this concept of ideal see [8]. 

20. Radical di//erential ideals and per/ect di//erence ideals. In  the case of ordinary 

d-ideals in (commutative) rings the continuity axiom is essentially a consequence of the 

distributivity of multiplication with respect to addition. In  fact, any element b E B~ is of 

the form 

rib1+ ... + rk b~ § nl bl + ... § nk bk 

k k k k 

and ab =a ~. r ,b ,+a ~ n~b,= Z r~ab~+ ~ n~ab~E(aB)d, 
I - 1  t - 1  | - 1  t = l  

showing that  the continuity axiom holds. In  case of lattices we had that  even the reverse 

implication holds. The distributivity was there a consequence of the continuity axiom. 

In  these two cases where the distributivity essentially accounts for the properties which in 

the general case follow from the continuity axiom, the importance of the continuity axiom 

has naturally not been clearly recognized. In  various cases of rings with operators which 

we are now going to discuss it is interesting to note tha t  a much more crucial role is played 

by  a direct use of the continuity axiom in one or the other of its many  disguises. In  [15] 

for instance Lemma 1.4 and Lemma 1.5 are nothing but  two of the most familiar formula- 

tions of the continuity axiom for D-ideals, and in [28] and [30] an essential role is played by  

particular cases of the corollary of Proposition 13. 

A differential ring R is a commutat ive ring with a derivation satisfying 

~(a § =&t +r 
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6(ab) = 6a.b +a.6b. 

�9 A d-ideal A~, in R is called a differential ideal if ~a E A** whenever a E A6,. These differential 

ideals define the x*-system 6" which was used in the preceding paragraph. We saw there 

tha t  the continuity axiom was not satisfied for the 6*-system, and this is the main reason 

for restricting our at tention to the following class of 6*-ideals: A differential ideal A~. is 

called a radical di[/erential ideal if rad A6, =A,, .  In  this case we put  6" =~ and speak of 

the 6-system. 

PROPOSITZO~ 31. The radical di//erential ideals of a di//erential ring R define an 

x-system in the multiplicative semi.group o /R .  

Proo/. Obviously we need only verify that  the set A~ :b is closed under derivation. 

Assume therefore tha t  cbEA~. This implies that  8(cb)=&.b+c.6bEAo. Multiplying by  

Oc.b we obtain (&.b)*+cb.Oc.SbEA~, showing tha t  (&.b)2EA~ and thus ~c.bEA~. From 

this and the general Krull-Stone theorem on x-ideals we obtain the following 

COROLLARY:. Any radical di//erential ideal in a di//erential ring can be written as an 

intersection o/prime di//erential ideals. 

This result was first proved by Raudenbush in [28] in the special case of a so-called 

Ri t t  algebra (see [15, p. 12]). A Rift algebra is a differential ring which contains the field 

of rational numbers and hence can be regarded as an algebra over the rational numbers. 

In  a Ri t t  algebra the radical of a differential ideal is again a differential ideal, and it was 

the use of this fact which led Raudenbush to suppose tha t  the given differential ring is a 

Ri t t  algebra. What  is exactly needed in order to carry through Raudenbush's  argument  to 

show tha t  ~ (tad A~.)~ rad A~, is tha t  the additive group R/A~, is without torsion. I t  is 

for instance not enough to suppose tha t  R is of characteristic zero, i.e. contains a copy of 

Z. Indeed, in Z[x] the radical of the differential ideal (x 9, 2) is the d-ideal (x, 2) which is not 

differential. 

Another type of rings with operators with an ideal concept which nicely falls into the 

pat tern  of x-ideals is the difference rings with their perfect difference ideals. This ideal 

theory was considered by Ri t t  and Raudenbush in [30]. We here content ourselves with 

showing tha t  their ideals really define an x-system. 

A di//erence ring is a commutat ive r ing R together with an operator A satisfying 

A(a +b) = Aa +Ab. 

h(ab) = A(a).A(b). 

I n  [30] it is assumed tha t  R contains a unity e such that  Ae = e. As defined here a difference 

ring is nothing more than a commutat ive ring with a distinguished endomorphism. We 
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shall write A(Aa)=A~a, ASa=A(A~a) and generally A ' a  when the operator is repeated 

n times. Ri t t  and Raudenbnsh [30] call a d-ideal Ad in R a di//erence ideal if 

aEAe=> AaEAe and AaEAe=>aEAe (1) 

A difference ideal A a ,  is said to be a per/ect di//erence ideal or a A-ideal if 

(A ' ,a )  ~, (A ' ,a )  ~ ... (An~a)~kEAa.~aEAa, (2) 

Here n 1 ..... n k are distinct integers ~> 0 and ~1 ..... ~ are integers i> 1. Aa  denotes as usual 

the unique minimal A-ideal containing A. 

PROPOSITIO~ 32. The /amily o/ A.ideals defines an x.system with respect to the 

multiplic~ive semi.group o/ R. 

Proo/. We need only verify the continuity axiom, i.e. tha t  AA:b is a A-ideaL Let  us 

first verify tha t  Aa:b has the property (2). I f  

(A "1 c)~' ... (A "~ c) ~*. b E Aa,  

we obtain by  multiplication with c (An' b) ~' ... (A nk b) ~ tha t  

(h ' ,  (cb)) ~' ... (A'~ (cb))~. cb e A a .  

Since A ~ satisfies (2) this means tha t  cb E A a and c E A a :b. We then show tha t  A a :b satisfies 

(1). Assume first tha t  cEA:,:b, i.e. cbEA~. Then A(cb)=Ac.AbEA:,, and multiplication 

by  A~c �9 b gives Ac-Ab- A2c �9 b = Ac. b. A(Ac. b) E Aa which implies Ac. b E A a according to (2). 

I f  conversely Ac. b E Aa, then also cab. Ac. b = cbA(cb) E Aa and cb E A a by (2). 

COROLLARY. All theorems valid/or general x-systems o/finite character are valid/or 

A-ideals. 

21. Rings with operators and monadic ideals. Differential rings and difference rings 

are both examples of rings with operators and so are, for instance, algebras over a field. 

In  the latter case the operators satisfy a(a + b) = a(a) + a(b) and a(ab) = a(a). b( = a.  a(b)), 

and an algebra ideal or a-ideal in the algebra R is a d-ideal in R which is closed under scalar 

multiplication. The continuity axiom is again satisfied since c E A~ :b implies tha t  ~(cb)= 

(ac).bEA~ and acEAa:b. Many other types of rings with operators have been considered 

in particular in connection with Boolean algebras as, for instance, closure algebras, projec- 

t ive algebras and relation algebras. We shall here content ourselves with discussing one 

example of a Bolean algebra with operators which is basic in the investigations of Halmos 

on the algebra of the quantification calculus. This example is also of interest because it 
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shows that  certain useful results on ideals can be derived also in cases where the continuity 

axiom is not satisfied. 

A monadic a~ebra is a Boolean algebra B together with an operator 3 satisfying 

the following axioms 
3 0 = 0 .  (1) 

a<~3a. (2) 

3 (a N 3b) = 3 a  N 3b. (3) 

Due to its interpretation in logic 3 is called a quanti/ier. Denoting the complement 

by a dash, one readily verifies the following relations 3 3 = 3 ,  a<~b:~3a<~3b, 

3(3a)'=(3a)' and 3(aU b)=3aU 3b. The quantifier 3 is called discrete if 3a=a for 

all a E B. This amounts to saying that  the range of 3 is B. An ideal Az in B, i.e. an 

/-ideal, is called a monad/c ideal or 3-ideal and is denoted by A~ if a E A~ implies 

3aEA~. We consider the monadic ideals as an x*-system with intersection as the 

semi-group operation. 

PROPOSITION 33. A~:b is an 3.ideal /or all A~ i/ and only i/ 3b=b. 

Proo/. If 3 b = b ,  then A ~ : b = A ~ : 3 b ,  and ef lbEA~ implies cN3bEA~ and 

3 (c N 3 b) E A~. Using (3) we obtain the desired result 3 c E A 3 : b. If conversely A~ : b 

is always an 3-ideal, 0 : b  = (b')z is in particular an 3-idcal, and this implies 3 b' =b'. 

According to the first half of the proposition O:b'= (b)~ must therefore be an 3-ideal 

and 3b=b. 

We have here a particular case of the general situation described in the first 

half of paragraph 6. The subsemi-group S* is here the range 3 B  of 3 and the 

family of traces A~ n 3 B forms an x-system, namely the /-system, on the Boolean 

sub-algebra 3B. In fact we have a one-to-one inclusion-preserving correspondence 

A~-->3 A~ between the 3-ideals in B and the /-ideals in 3B.  I t  is essentially this 

correspondence which enables one to prove certain useful results about the 3-system 

by reducing the problem to the / -sys tem where the continuity axiom is available. In this 

way one can, for instance, prove the following 

PROPOSITION 34 (ttalmos). Every 3-ideal A~ is equal to the intersection o/ all 

the maximal 3-~ea~8 containing A~. 

Remark. I t  is clear from Proposition 33 that  Proposition 34 is not a Krull-Stone 

theorem for 3-ideals since a maximal 3-ideal need not be maximal considered as an 

/-ideal and hence need not be prime. In order to clarify this point we give the 

following. 
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1. 

2. 

3. 

4. 

5. 

In  a monadic Boolean algebra the/ollowing statements are equivalent: 

The 3-ideals veri/y the continuity axiom. 

The quanti/ier 3 is discrete. 

Every 1-ideal is an 3-ideal. 

A maximal 3-ideal is a maximal l-ideal. 

A maximal 3-ideal is prime. 

Proo[. 1 ~ 2 follows directly from Proposition 33; 2 ~ 3, 3 ~ 4 and 4 ~ 5 are all obvious. 

Finally 5 ~ 1 follows from Proposition 34 and the converse of the Krull-Stone theorem 

for half-prime x*-systems (Theorem 13). 

22. Convex subgroups o~ la~ice-ordered groups and rings. The application of the theory 

of x-ideals to lattice-ordered algebraic systems is among the more interesting applications. 

But  since we have treated this mat ter  in more detail in a separate paper  [3] we shall here 

content ourselves with treating the case of lattice-ordered rings and refer the reader to 

[3] for a more general t reatment.  Let  G be a lattice-ordered group, i.e. there is defined an 

order relation ~> in G such tha t  G is a lattice and a >i b ~ a §  >1 b §  for all c. Putt ing 

a+=a U 0 and a - =  - a  U 0, we define a semi-group operation o in G by  aob= real N Ibl. 

An additive subgroup H of the group G is said to be absolutely convex if l a I <~ I b I for a e G 

and b E H implies a E H. This definition gives a link with ideal theory because it just expresses 

tha t  H has the multiplieative ideal property 1.3' with respect to the semi-group operation 

aob= ]a I A Ib]. The absolutely convex subgroups are the natural  distinguished subsets 

of a lattice-ordered group since they just form the kernels of the structure preserving 

maps, i.e. the homomorphisms with respect to the addition and the lattice operations. In  

order tha t  this basic property is maintained in case G also has a multiplication making it 

into a ring R it is necessary and sufficient tha t  H also is a d-ideal in R. This family :~ of 

absolutely convex d-ideals in R is, however, not satisfactory from the point of view of the 

theory of x-ideals since it does not satisfy the continuity axiom with respect to the opera- 

t ion aob. In  order to get an x-system we must  single out a subfamily :~c which has the 

proper ty  tha t  A E :~c ~ A : b E :~c for all b E R. We get the unique maximal  subfamily :~c of 

this type by  using the general procedure described in Section 6. More explicitly we have the 

D~.FINITIO~. An absolutely convex d-ideal A of R belongs to :~c and is called a 

e.ideal lf laI n lbi e A : ~  ia I N IcbieA for all cOB. 

One of the basic problems concerning ordered algebraic structures is their representa- 

t ion by  real-valued functions and more generally their embedding in a direct product of 

linearly ordered algebraic structures of the same type. The following theorem shows tha t  

the theory of x-ideals has a fundamental  bearing on the latter more general question. 
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THEOI~EM 36. The/ami ly  o/c-ideals de/ines a bali.prime x,system in the semi-group 

R( o ). The necessary and sufficient condition that R can be embedded in a direct product o/ 

linearly ordered rings is that (0) constitutes a c-ideal in R, i.e. that a fib = 0 ~ a  fi [cb[ = 0 / o r  

all c e R. It  is also necessary and su//icient /or such an embedding that there exists an x.system 

in R(o) con,~isting o /a /ami ly  o/convex d.ideals such that (0} is an x.ideal. 

For the proof of this theorem we refer the reader to [3]. In  [3] one also finds a more 

general s tatement  which gives necessary and sufficient conditions for similar embeddings 

of lattice-ordered groups and lattice-ordered vector-spaces and algebras over a linearly 

ordered field. An absolutely convex subgroup of a lattice-ordered abelian group will also 

be called a c-ideal. In  fact a lattice-ordered abelian group G can always be considered as a 

lattice-ordered ring with respect to the trivial multiplication ab = 0. Furthermore,  an abso- 

lutely convex subgroup of G is evidently the same as a c-ideal in this ring. 

We then show tha t  Theorem 30 applies to the c-system of a lattice-ordered group and 

~hus gives us the following theorem of Stone. 

THEOREM 37 (Stone). Let X 1 and X~ be two comI~ct Hansdor/] spaces. Then X 1 and 

X 2 are homeomorphic i/Ca(X1) and CR(X2) are isomorphic as lattice.ordered additive groups. 

Proo/. We only need to verify tha t  the conditions of Theorem 30 are satisfied for the 

v-system in Cn(X) when X is a compact Hansdorff space. The c-system is of finite character 

a n d / - =  1 is a c-identity. The three conditions 1, 2 and 3 just express simple and well-known 

facts  concerning Cn(X). 

In  connection with the c-structure space of a lattice-ordered abelian group we could 

also mention tha t  it yields a topological characterization of the important  arithmetical 

notion of complete integral closure. Consider a lattice-ordered group G with an archimedian 

element e, i.e. a positive element e such tha t  for every a there exists an n > 0 with ne >1 a. 

Evidently such an archimedian element (sometimes called an order unit) is the same thing 

as a positive c-identity. G is said to be completely inteqrally closed if na/> b for a fixed 

b E G and all n > 0 implies a >i 0. This gives the usual notion of complete integral closure in 

case G is the divisibility group of an integral domain. 

THEOREM 38. A lattice-ordered abelian group G with an archimedian element is com- 

pletely integrally closed if and only if the set of maximal c.ideale is dense in the c-structure 

space of prime c.ideale. 

Remark. The proof of the fact tha t  the hull-kernel procedure defines a topology in the 

apace of prime x-ideals is exactly the same as in Theorem 27. 

Proof. A theorem in the theory of lattice-ordered groups says tha t  a lattice-ordered 

abelian group G with an archimedian element e is completely integrally closed if and only 

4 - - 6 2 1 7 3 0 6 7 .  Acta mathematica. 107. I rnp r im~  ]e 27 m a r s  1962 
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if the intersection of all the maximal c-ideals of G is equal to {0}. By the Krull-Stone 

theorem for c-ideals, the intersection of all the prime c-ideals of G is equal to {0} for arbi- 

t ra ry  G. The theorem follows by  combining these two results. 

23. Another characteristic/unction semi-group. We should like to give one more appli- 

cation of Theorem 30 showing tha t  this theorem can also be used to produce some special 

results which are less familiar than those obtained by  Gelfand-Kolmogoroff and Stone. 

Let  us consider the family Ca+(X) of all real-valued, non-negative continuous functions 

on the compact Hausdorff space X. We shall here consider C~+(X) as a lattice-ordered semi- 

group with respect to pointwise multiplication and pointwise ordering. We shall say tha t  

a subset Ao of C~(X) is a a.ideal if the following two conditions are satisfied: 

/ E A ,  and g E C ~ ( X ) ~ / . g E A o  (1) 

/ E A ,  and gEAoo/UgEAa.  (2) 

PROPOSITION 35. The a-ideals /orm an x-system o/ /inite character with multi. 

plication as semi-group operation and Ca+ (X) is a characteristic /unction semi-group /or 

X with respect to the a-system. 

Proof. Using the fact tha t  we have the distributive law /" (g U h)=/g U/h it is 

easily seen tha t  the continuity axiom is satisfied. The function /---1 is a a-identity 

in Ca+ (X), and we need only to check the condition I I I  of a characteristic function 

semi-group. That  M(~a)={f, feVR+(X) and / ( a ) = 0 }  is a a-ideal in CR+(X)is clear. 

Tha t  it is maximal  can be seen as follows: Assume tha t  /~M(~ ~), i.e. /(a)~:0. This 

implies tha t  / ( x ) 4 0  for a certain open set Oa containing a. To every b:~a we can 

find a g E M(, ") such tha t  g (b)~=0 and hence g ( x ) 4 0  in an open set O~ containing b. 

:Because of the compactness we have a finite number  of points b I . . . . .  bn with torte- 

spending functions gx . . . . .  gn such tha t  O~ 0 Oh, U ... 0 Oh, = X and h = / ( J  gx U ... U g, 

is bounded away from zero on X. This shows tha t  1 = 1/h. h E (M(, ~),/), and M(, ~) is 

a maximal a-ideal in C+ ~ (x). The same type of argument  shows also tha t  there are 

no other maximal  a-ideals in C+ R (X) than  those of the form M(~ a). 

The above proposition immediately implies the following 

THEOREM 39. Let X x and X~. be two compact Hausdor// spaces. Then X x and 

X 2 are homeomorphic i/ Cn+ (X1) and Ca+ (X2) are isomorphic as lattice-ordered multiplica. 

rive semi-groups. 
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