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Introduction 

The central subject of classical spectral theory has been the spectral representation 

of self-adjoint and normal operators in Hilbert space; after Hilbert had given a complete 

treatment of the bounded case, the spectra] theory of unbounded self-adjoint and normal 

operators was developed by yon Neumann and others. (An excellent account can be found 

in [23].) Abstractions of algebras of Hermitian and normal operators were considered by 

various authors, notably Stone [22] who characterized such algebras as algebras of conti- 

nuous functions on a compact (Hausdorff) space. Investigations by Freudenthal [9] and 

Nakano [15] (especially papers 1 and 2), also leading to spectral theories, went in a different 

direction. Generalizations of unitary operators to reflexive Banach spaces were considered 

by Lorch [13]; Lorch also developed an operational calculus for those operators in reflexive 

Banach spaces that  can be represented by a spectral measure [12]. (Taylor [24] developed 

such a calculus for closed operators on a Banach space whose spectrum does not cover the 

plane, but  necessarily restricted to functions locally holomorphic on the spectrum. There 

are some recent results in this direction for operators on a locally convex space [26], [16].) 

The most extensive work on bounded and unbounded operators in a Banach space is due to 

Dunford, Schwartz, Bade and others (for a detailed bibliography, see [6] and [8]). Dunford 

considers operators that  have a countably additive resolution of the identity, but  may 

differ from a spectral operator (in the sense of Definition 4, Section 4 of this paper) by a 

quasi-nilpotent. A survey of this work is given in [6]. Other contributions were made by 

Bishop [3], and most recently results on spectral operators (in Dunford's sense) in locally 

convex spaces were announced by Tulcea [25]. 

Since the time when the spectral theory of bounded and unbounded normal operators 

in Hilbert space took definite shape, the theory of topological, in particular, of locally 

(x) Research sponsored in part by the U.S. Army Research Office. 



126 H E L M U T  H.  S C H A E F E R  

convex vector spaces has made enormous progress; a presentation of this theory can be 

found in [4] and [11]. But  in spite of this development, and in spite of the vast  diversifica- 

tion of spectral theory some of the results of which have been mentioned, Hilbert  space 

is still absolutely dominant when it comes to exhibiting reasonably large classes of linear 

mappings tha t  can, with respect to their spectral behavior, be properly viewed as generaliza- 

tions of finite matrices with linear elementary divisors. The theory presented in this paper  

is intended to show tha t  spectral theory, in the sense presently discussed: is not intrinsically 

connected with orthogonality (and hence with the existence of an inner product), and 

can be developed for general locally convex spaces. On the other hand, it is not sm]~rising 

tha t  the concept of (partial) order plays a key role. To apply this tool one needs a study of 

the relations between order and topology in a topological vector space, such as was made 

in [14] and [18-20]. We establish in this paper, in terms of partial ordering, simple neces- 

sary and sufficient conditions for a closed (not necessarily continuous) operator on a locally 

convex space to be spectral (Definitions 3, 4, 5), tha t  is, for it to be considered as a strict 

analogue of a self-adjoint (or normal) operator in Hilbert space. A few of the results con- 

tained in this paper, specialized to Banach algebras and spaces, have been announced in 

[21]. We proceed to give a brief survey of the five sections of the paper. 

The central notion of this paper  is tha t  of spectral measure (Definition 2, Section 2). 

Spectral measures are certain vector-valued measures with values in a locally convex 

algebra A,(1) positive for a suitable ordering of A (Proposition 7). Thus we develop, in 

Section 1, some basic results on positive vector measures. The t rea tment  is pursued only 

as far as its applications in subsequent sections require. A presentation of the general 

present-day theory of vector-valued measures can be found in [5], Chapter VI. I t  is ap- 

parent,  though, tha t  the notion of positivity, applied to vector measures, yields much 

richer results than the general theory. 

Section 2 defines and discusses spectral measures on an arbi trary locally compact 

(Hausdorff) space X, with values in a locally convex algebra A. I t  is an important  fact 

(Proposition 7) tha t  every spectral measure is positive for a suitable ordering of A (in 

other words, tha t  the range of a spectral measure is necessarily contained in a convex, 

weakly normal cone of A), since thus for the construction of spectral measures one may  

restrict at tention to positive vector measures. The principal result is Theorem 2 which 

gives necessary and sufficient conditions for the existence of the Cartesian product  of an 

arbi t rary family of spectral measures. 

Section 3 discusses the integration of spectral measures with respect to scalar-valued 

(x) Formal definitions are given later. For locally convex algebras, see the beginning of Section 2. 



S P E C T R A L  M E A S U R E S  I N  L O C A L L Y  C O N V E X  A L G E B R A S  127 

(real or complex) bounded Baire functions on X; the integrals are called spectral elements 

of A (Definition 3). These are exactly the generalizations of operators similar to bounded 

normal operators when A is the algebra of operators on Hilbert space. However, since in 

a large part  of the theory the assumption that  A be the algebra of continuous endomor- 

phisms of a topological vector space is entirely unessential, we have given the results in 

this section for arbitrary locally convex algebras. Each spectral element a can be represented 

by a unique spectral measure v, defined on the Borel sets of the complex plane (respectively 

the real line) into A (Theorem 3); its support is the spectrum of a (Theorem 4). A simple 

necessary and sufficient condition is obtained for an a E A to be a real spectral element 

(Proposition 14), and for the elements of a subset F c  A to be presentable by a single spectral 

measure (Theorem 5). The algebra of  all elements in A that  are "functions" of a fixed 

spectral measure is, under a certain natural norm, isomorphic-isometric with the space 

of all complex-valued continuous functions on a compact Hausdorff space (Theorem 6, 

Corollary). 

Section 4 discusses a number of special aspects when A is the algebra of continuous 

endomorphisms of a locally convex space E, in particular, the spectral behavior of spectral 

operators with compact spectrum (Definition 4), and shows that  T is spectral in E if and 

only if its adjoint T '  in E '  is spectral (with respect to any topology on E '  consistent with 

the dual system <E, E'>) (Proposition 19). Here the adjoint T '  and the map T* (conjugate 

of a spectral T, ef. p.'157) can no longer be identified as is usually done in Hilbert space. 

Further,  Theorem 7 exhibits quite general conditions under which certain subalgebras of 

the endomorphism algebra s  can be represented simultaneously by a spectral measure 

(and hence are commutative). The existence of spectral operators, in particular, of compact 

spectral operators with infinite dimensional range, is closely related to the presence of 

absolute bases (in the sense of [10]), as Proposition 20 shows. 

The final section studies the integration of spectral measures ~u, with values in the 

algebra of weakly continuous endomorphisms of a locally convex space E, with respect 

to unbounded, complex-valued, Baire functions / on X. Every triple (X , / , / z )  defines, in 

a natural way, a linear mapping T in E which is closed (Proposition 22) with dense domain 

D r. (For Banach spaces and a more general class of mappings, an essentially equivalent 

definition of D r is given by Bade [1].) The adjoint T'  (Lemma 4) of a spectral operator 

T,~ (X, ],/z) is again spectral (Theorem 8), at  least if E' is weakly semi-complete. As in 

the case of bounded spectrum, T can be represented by a spectral measure ~ on the complex 

plane (Theorem 9) in to / : (E) ;  if, moreover, the resolvent set is non-empty then v is unique 

and every SE E(E) commuting with T also commutes with v. Theorem I0 gives necessary 

and sufficient conditions, in terms of order structures on l:(E), that  a closed operator T 
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in E with dense domain and real spectrum be spectral. These conditions can be translated 

to the slightly more general ease of spectral operators with complex spectrum. 

The author is indebted to Professor L. J .  Savage for several stimulating conversations 

on the subject of this paper. 

Auxiliary Results on Ordered Vector Slmees 

For the convenience of the reader, we collect in this section a number  of basic defini- 

tions and theorems, without proofs, from the theory of ordered topological vector spaces. 

A vector space E over the real field R is ordered (=par t i a l ly  ordered) if for some pairs in 

E • E, a reflexive and transitive relation "<~" is defined such tha t  x ~< y (also denoted by  

y>~x) implies x+z<y+z for each zEE and Ax~<2y for all 4>0 .  The set K = { x :  x~>0}, 

which is a convex cone in E containing its vertex 0, is called the positive cone of the ordered 

vector space E. I t  is well known and immediate tha t  conversely, every such cone deter- 

mines an ordering of E. An ordering of E induces, for every vector subspaee F c  E, an 

ordering of F and of ElF; similarly, if {E~: aEA} is an arbi trary non-empty family of 

ordered vector spaces, an ordering is induced on their product YLE~ and direct vector 

sum O~ E~ [18, p. 119]. Further,  let E 1 and E~. be ordered vector spaces with positive cones 

K 1, K 2, and L a vector space of linear mappings on E1 into E2; L becomes an ordered vector 

space with respect to K={TEL: TKlc Ks} as its positive cone. In  particular, if <E, F> 

is a dual system [4, Chapter IV], E ordered with positive cone K, then F is ordered as a 

space L(E, R) (R ordered as usual). The positive cone H={yEF: <x, y>~>0 if xEK} is 

called the dual (or conjugate) cone of K. An ordering of E is proper i f "  <~" is anti-symmetric; 

the positive cone of a proper ordering of E is called a proper cone. A convex cone K (of 

vertex 0) in ~ is proper if and only if K N - K = {0}. The order structures of vector spaces 

considered in this paper will be proper unless the contrary is explicitly stated. 

The preceding coneepts carry over to vector spaces over the complex field r without 

difficulty. A vector space E over C is ordered if its underlying real space E 0 is ordered; all 

s tatements on E involving order concepts refer to E 0. As a consequence, if <E, F> is a 

complex dual system and E is ordered with positive cone K, the dual cone H of K will 

be identified with / ~ = { y E F :  Re <x, y> >~0 for xEK}. We point out tha t  the subset {z: 

Rez >~0} of C is not a proper cone in r (hence the corresponding ordering of C is not proper). 

For further details, see [19, Section 6]. Therefore, we shall henceforth assume a vector 

space to be defined over the complex field unless the contrary is stated, and by  "cone" 

we shall understand a convex cone in E, containing its vertex 0. I f  a cone K and an order 

structure on E are mentioned in the same context, K will be the positive cone of the order- 

ing in question. 
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Let E be an ordered vector space and a topological vector space. The positive cone 

K of E is normal [18, 20] if for some neighborhood base U of 0, the relations x E U E l~ and 

0 ~< y ~< x imply y E U. Equivalently, K is normal if the family of all full neighborhoods of 0 

form a base, where A ~ E is full [14] whenever x, y E A imply that  the order interval [x, y] = 

(z: x<~z~y} is contained in A. Let ~ denote a filter in E, then [r = ( [F ] :  FE ~ is a filter 

base where [F] = U ([x,y]: x,yEF}. Then K is normal in E if and only if l i m e = 0  implies 

l i r a [ t ]=0  for every filter r on E [20, (1.a)]. I f  E is an ordered locally convex space,(1) 

it is easily seen that  K is a normal cone in E if and only if there exists a family (p~: sEA} 

of semi-norms, generating the topology of E, such that  

p~(x+y)>~p~(x) (x, yEK; ~EA). 

In a Hausdorff space, every normal cone is proper. 

Let E be an ordered topological vector space, and let ~ be a family of bounded subsets 

of E such that  E= U (S: SE~} .  K is said to be an Q-cone (strict ~-cone) in E if for each 

S E ~ ,  there exists an S ' E ~  such that  S c  S' fl K - S '  N K ( S c  (S' N K " S' N K)). If  E is 

locally convex, this property can be expressed by saying that  the mapping 

~ ' ~ { F ( S  N K): S E ~ ' }  ( ~ ' ~ { F ( S  N K): SE~ '} )  

leaves the totali ty of fundamental systems (~ ' }  of G invariant. (Here FA denotes the 

symmetric convex hull of A c  E.) I t  is immediate that  if K is a strict Q-cone, then K is 

generating, i.e., E = K - K .  Conversely, if E = K - K  is a (reflexive) Banach space, then 

K is a (strict) ~-cone, ~ the family of all bounded sets in E. 

I t  is well known that  if (E,  F )  is a dual system and ~ is a family of weakly bounded 

subsets of F whose union is F, then the topology of uniform convergence on the sets of 

is a locally convex topology ~: on E which is finer than the weak topology a(E, F). 

is called consistent with (E,  F> if E[~]' =F, i.e., if the closed convex hull of each S E ~  

is compact for a(F, E). The notions of normal cone and Q-cone are dual as the following 

theorem shows whose proof may be found in [18, (1.5)]. We assume that  E is ordered with 

positive cone K, H is the dual cone in F, and | is a family of bounded subsets of F as 

above. 

THEOREM A. I / H  is an Q-cone, then K is normal/or the Q-topology on E. Conversely, 

i / K  is normal/or an ~-topology consistent with ( E, F), then H is a strict Q.cone in F. 

(1) Notation and terminology will, with respect to locally convex vector spaces, in general follow 
Bourbaki [4]. However, the topologies considered in this paper will be Hausdofff topologies unless other 
wise stated. 

~}- 62173067 Acts mathematics. 107. Im p r im d  le 29 mars  1962. 
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The application of Theorem A to the system <E, E'> where E is locally convex, E' 

the (topological) dual of E, yields this corollary. We denote the dual cone of K now by  K'. 

COROLLARY. 1] K is normal in E, then E' = K ' - K ' .  Also, E' = K ' - K '  i /and  only i/  

K is weakly normal. 

Remark. I f  E is a normed space, then E' = K ' - K '  if and only if K is normal for the 

norm topology ol E [20, (1.c)]. 

Let  E be an ordered locally convex space with positive cone K, and let M be a subset 

directed (filtering) for "~<". The family of sections Mx= { yEM:  y>~x} (xEM) forms a 

filter base. The corresponding filter r is called the filter of sections of M. 

THEOREM B. Let K be normal in E, and let M be a non.empty directed subset o/ E. 

I / r  converges to x o E E weakly, then it converges to x o/or the given topology on E. 

For the proof, see [19, (7.2)]. I t  can be shown tha t  Theorem B is equivalent to the 

well-known theorem of Dini concerning the convergence of directed sets of continuous 

functions on a locally compact space. 

Let  El, E 2 be ordered locally convex spaces with respective positive cones KI,  K2; 

assume tha t  ~ is a family of bounded subsets of E 1 whose union is E 1. Le t  I:(E1, E~) be 

the space of continuous linear mappings on E1 into E2, ordered with positive cone :~ = 

{TEs T K I c  K2}. We shall need the following result. 

THEOREM C. I] K 1 iX an ~-cone in El,  and i / K  S is normal in E~, then ~K is a normal 

cone ]or the @.topology on s E~). 

The proof can be found in [19, (8.3)]. Finally, we list the following result concerning 

the continuity of positive linear forms on an ordered topological vector space E. 

THEOREM D. Let E be an ordered topologiced vector space with positive cone K. Each 

o/the/ollowing assumptions implies that every positive linear/orm on E is continuous: 

(a) K has non-empty interior 

(b) E is metrizable and complete, K is closed and generating 

(c) E is a bornological locally convex space, K is a semi-complete(1) strict ~-cone 

While (a) is almost obvious, the proof of (b) can be found in [14, 5.5], and the proof of (c) 

in [18, (2.8)]. We note tha t  each of the three assumptions in Theorem D implies tha t  the 

dual cone K' of K is complete for the weak topology a(E', E). 

(:) A c E is semi-complete if every Cauchy sequence (for the uniformity on A induced by that of 
E) converges to a limit in A. For non-metrizable uniformities, semi-completeness is considerably weaker 
than completeness. 
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COROLLARY. I~t J~, F be ordered locally convex spaces, such that the positive cane in 

F is weakly normal, and E satis]ies any on~ o] the conditions (a), (b), (c) o] Theorem D. 

Then every positive linear mapping on E into F is continuous. 

Proo]. Since every positive linear form on E is continuous, it follows tha t  every positive 

linear map T is continuous for ~(E, E')  and a(F, F'). If, under condition (a), x 0 is interior 

to K in E, it follows tha t  the set [ - % ,  Xo]={zEE: -xo<~Z<Xo} is mapped into [ - T x 0 ,  

Txo] which is a bounded set in F since the positive cone in F is weakly normal. Hence T 

is continuous under (a). Under condition (b) or (c), we observe tha t  the topology of E is 

necessarily the Mackey topology v(E, E') .  Hence since T is weakly continuous, it is con- 

tinuous for the given topologies on E and F. 

1. Positive Vector Measures 

Let X be a locally compact Hausdorff space, and denote by  C(X) (Ca(X))the vector 

space over C(R)(1) of all complex-valued (real-valued) continuous functions on X with 

compact support. With respect to the subset of all real-valued non-negative functions as 

the positive cone, C(X) is an ordered vector space. When E is an ordered locally convex 

vector space with a weakly normal positive cone K, we shall show tha t  every positive linear 

mapping ~o on C(X) into E generates a positive vector measure on X (Definition 1, below). 

For every compact subset T c  X, let C(X; T) be the subspace of those elements in 

C(X) whose support  is in T, endowed with the uniform topology. When C(X) is given 

the finest locally convex topology for which each of the injections C(X; T)-+C(X)  is 

continuous (equivalently, the topology of the inductive limit with respect to the directed 

family {C(X); T)}), it follows from Theorem D, Corollary tha t  every positive linear map 

on C(X) into E is continuous. In  fact, each CR(X; T) satisfies condition (c) of Theorem D, 

and the underlying real space of C(X) is isomorphic with CR(X) • CR(X) where CR(X) is 

also endowed with the topology of the inductive limit. 

Let X = R  and assume tha t  K is semi-complete and weakly normal in E. For  every 

monotonic function t-+x(t) on R into E, the Riemann-Stielt jes integral 

f fdx= lim ~[{T,)[x(t,)-x(t,_~)] 

exists provided tha t  for all n, t o ~<T1 ~< tl ~< ... <Tn < tn and [to, tn] contains the support  of ], 

and that  max~ I t, - t~_ 11 ~ 0  as n-+ ~ .  Thus x gives rise to a positive mapping 

I-~(I) =f tdx 

(1) We denote the natural ,  real, complex numbers  by  1~, R, C respectively. 



132 H E L M U T  H.  S C H A E F E R  

on C(R) into E, and it can be shown that  when K is weakly semi-complete, every positive 

linear mapping on C(R) into E is of this form. 

Let  A 0 denote the a-ring of subsets of X generated by all compact subsets of type G~, 

and A the a-algebra generated by all closed subsets of X. If X and Y are locally compact 

Hausdorff spaces and / is a mapping on X into Y, then / is Ao-measurable (A-measurable) 

if /-1 maps the ring Ao(Y) into the ring A0(X ) (the algebra A(Y) into A(X)). A A0-measurable 

function will also be called Baire measurable, and A 0 the ring of Baire sets in X. By contrast, 

a Baire function on X is a member of the smallest subclass of yx which contains every 

continuous function and is closed under the formation of (simple) sequential limits. When 

Y = (~ and X is countable at infinity, every Baire function is both Baire measurable and 

A-measurable. 

If ~ is a positive linear map on C(X) into E and w is a continuous linear form on E, 

then 

/-~(~(/),w~ 

is a complex measure #~ on X in the sense of [5]. Denote by s the vector subspace of 

C x of all A-measurable, ~tw-integrable [5] complex-valued functions on X, and set 

74 = N {s  w e E'} .  

Again, we consider ~/ as ordered with positive cone { / e~ / : /  is real-valued and /(t)>~O 
for t e X t .  

We denote by W the space of all linear forms 

h-~ 5 hd~: (weE') 

on ~/, and consider ~ / a s  equipped with the weak topology a(~/, W), which is in general 

not  a Hausdorff topology. I t  is clear that  C(X) is dense in ~/for  this topology, and that  

is continuous on C(X) into E for a(C(X), W) and a(E, E'). Hence there exists a unique 

continuous extension/~, of % to ~/wi th  values in the algebraic dual F of E' .  I t  is natural 

to call ~ the space of all (A-measurable) ~u-integrable functions, and to denote the value 

of ~ at h E ~/by/z(h), or Shdla, or Sh(t) dt~(t). I t  is also clear that  if ~ E A is relatively compact, 

then X~ E ~/(i~ the characteristic function of ~), and that  the restriction of ~u to these charac- 

teristic functions determines a set function, with values in H, on the ring of relatively 

compact A-sets which is countably additive with respect to the weak topology a(F, E'). 
(Here H denotes the weak closure of K in F.) The sets 5 e A for which Z~ e ~/will be called 

/~-integrable; we note that  the ju-integrable sets form a subring of A. Without danger of 

confusion, we shall denote the set function ~-->~ z~d/~ again by ~u and call it a (positive) 
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vector measure. ~EA is a null set (/~) if f )~ad/~ =0, and a statement (on points rEX) will 

be said, as usual, to hold almost everywhere if it holds in X N N where N is a null set (~). 

Finally, p is bounded if X is an integrable set, i.e., if t-->l is in ~/. 

Our primary objective in this section is to determine conditions under which/~ is 

K-valued (where E is considered as a subspace of F), on the ring of bounded (i.e., relatively 

compact) Baire sets and under which # is countably additive on this ring for the given 

topology on E. The answer will be that  these assertions are true when K is weakly semi- 

complete, and normal for the given topology on E. If, in addition, p is bounded then it is 

K-valued and countably additive on the a-ring A 0 of all Baire sets in X. We begin the proof 

by establishing a relevant generalization of B, Levi's monotone convergence theorem. 

In Propositions 1-4 it will be assumed that  K is normal in E and weakly semi-complete. 

PROPOSITION 1. Let {fn} be a monotone sequence in ~t such that {~([~)} is a bounded 

sequence in E. There exists an ]EI~-I(E) such that limf~(t)=f(t) a.e. (1~) in X, and 

lim/~(/~) =,u(f) 

holds/or the given topology on E. 

Proof. Let ~oc X denote the set in which the sequence (f , )  fails to converge properly. 

Since (p(f~)) is bounded, it follows that  (#([~), u~ =S [nd/~u forms a bounded monotone 

sequence of real numbers for every real, continuous positive linear form u on E. The 

functions f~ are A-measurable whence it follows that  (~0 E A, and 50 is a null set for every pu 

by the classical monotone convergence theorem. Since, by the normality of K, every real 

continuous linear form is the difference of two non-negative ones (Theorem A, Corollary), 

it follows that  50 is a null set (#). Defining f E ~ /by  setting f(t)= 0 if t E~ 0 and f(t)= lim~ [~ (t) 

in X ,~ (~0, one obtains f~-->f a.e. (/~). On the other hand, (l~(f,)) is a weak Cauchy sequence 

in E, hence I~(/~)-->zEE for a(E, E') since K is weakly semi-complete. I t  is obvious that  

z =~u(f), and the convergence #(]~)-->p(f) for the given topology of E follows from Theorem B. 

PROPOSITION 2. (Fatou's Lemma). Let {/n}c ~/be a sequence o] non-negative/unctions 

such Shat the lower envelope o[ every non.empty ]inite subset o/(In} is in ~-I( E), and such that 

liminf (p([~), u) < § c~ 
n--~oo 

/or every real, continuous positive linear [orm on E. There exists an h e~t such that 

h(t) =liminf  [n (t) a.e. (l~), ~(h)E E and 
~---~ o o  

p[p(h)] < lira inf p[p(]~)] 
~---~ OO 

for every continuous semi-norm p (on E) which is monotone on K. 
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Proo[. For any pair (n, k) of positive integers with k>~n, let h~,k=inf{/v: n<~<<.k}. 

Since h.,k~la-l(E) by assumption, Proposition 1 implies that  h.E#-I(E)  where h. =limkho.k. 

The sequence {ho} is monotone, and the hypothesis implies that  {#(h~)} is bounded. Thus, 

by Proposition 1, there exists h Ep-I(E) such that  h(t)=lim~h.(t) (and hence h(t)=liminf  
n---~ oo 

[~ (t)) a.e. (p). Now 0 ~< h, ~</k, and consequently 0 ~<p(ho) ~</~(]k), for all k >~ n; ff/9 is mono- 

tone on K, then 

p[#(h,)] <l im inf p[#(/k)] (heN). 
k--~ oo 

By Proposition 1, we have p(h=)--->it(h) for the given topology on E whence the assertion 

follows by the continuity of p. 

An immediate consequence of the preceding propositions is the dominated convergence 

theorem of Lebesgue. 

PROPOStTIO)r 3. Let {/~} be a sequence belonging to a sublattice o/ 71t contained in 

p-l(E), such that I/n] <~g /or some gE:It and all heN.  1/ / is a /unction (in 7H) such that 

/(t) =l imjo ( t  ) a.e. (#), then/e/. t-l(E) and lim~p(/,)=/x(/) in E. 

Proo/. I t  follows from Proposition 2 that  [ /~ - / [ eg - l (E )  and /e#- l (E) .  Let g , =  

sup{I /v- / I  : v>~n}, then g, etx-~(E) by Proposition 1. Since {g~} is non-increasing and 

go(t)--->O a.c. (p), Proposition 1 implies that/~(g,)->0 in E. By the assumed normality of 

g and the positivity of #, 0<  1/ , - /1  <g,  implies that  #(1/~-/[)--~0 in E, whence from 

O< I/o- /]  + ( / ~ - / ) < 2 1 / , - / 1  it follows that/x(/ ,- /)-->0 in E. 

For any subset A = ~/, denote by X the family of functions in ~/which are limits a.e. 

of some sequence in A which is dominated in :/L From Proposition 3, we obtain this corol- 

lary. 

C o R O L L A R V. I / A  is a sublattice o / ~  contained in #-I(E),  then .~ has the same property. 

PROPOSITION 4. For arbitrary positive T, the restriction o/ ~--~[a((~) to the ring o[ bounded 

Baire set8 is a K-valued set/unction which is countably additive/or the given topology on E; 

i/q~ is continuous/or the uni/orm topology on C(X), then the same result holds/or the a-ring 

A o, and i~ is bounded. 

Proo/. Let ~{ denote the class of all vector sublattices of 74 contained in #-I(E); clearly, 

is inductive when ordered by inclusion. Denote by A a maximal element of ~[ containing 

C(X); from the corollary of Proposition 3, it follows that  A is closed under the formation 

of simple limits of sequences dominated in ~ .  Since the characteristic function of every 

relatively compact Baire set is dominated by a member of C(X), it is clear that  A contains 
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every such function. The assertion tha t /z  is eountably additive is immediate from Proposi- 

tion 1. Finally, the assumption tha t  ~ is continuous for the uniform topology on C(X) 

means tha t  {~0(]~)} is bounded in E for an arbi trary subset {/~}c C(X) of uniformly bounded 

functions, hence t-->l (t e X) is a member  of ~ .  Thus, in this case, the characteristic function 

of every Baire set is in A which completes the proof. 

We observe tha t  even when ~0 is not continuous for the uniform topology on C(X), 

the measure (~-->#(~) can be extended to the a-ring A 0 of all Baire sets. One has to adjoin 

an improper element oo to K and set #((~)= ~ for every ~eA 0 which is the union of an 

increasing sequence {~} such tha t  {#(~)} is unbounded. 

I t  is sometimes convenient to consider the measure ~-~/z(~}), rather  than ~ (i.e., the 

integrals with respect to/z of the functions in C(X)), as given. Assume tha t  # is a set func- 

tion, defined on the ring of relatively compact Baire sets into a locally convex space E, 

and eountably additive for a(E, E'). The integral S hd# may then be obtained as follows. 

I f  s is a simple Baire function of compact support, s = ~=~ ~%~, define ~ sd# =Y~ '_~#(~) .  

When :H denotes, as above, the space of complex-valued functions on X that  are A-mea- 

surable and integrable (in the sense of [5]) for each of the scalar measures h--->S hd(#, w> 

(weE')---call  this set W-- then  s-+[. sd# has a unique continuous extension to ~/ with 

respect to a(:H, W) and a(F,  E') .  This extension, which is completely determined by its 

values for all simple Baire functions of compact support  (equivalently, by its values for 

all / e  C(X)), we shall call canonical. Let  us agree on the following definition. 

DEFINITION l. Let l~cA denote a ring o] subsets o] X containing all bounded Baire 

sets. A mapping (~--->#(~) on P, with values in a locally convex space E and countably additive 

]or a(E, E'), is a vector measure i / #  agrees on P with the canonical extension o] its restriction 

to the bounded Baire sets. 

As a consequence of this definition, we shall not distinguish between two vector 

measures with values in E if they agree on the intersection of their respective domains. 

As in the scalar case, by the support of a vector measure/z on X we understand the 

complement  of the largest open set U c  X such tha t  ?z([) = 0  whenever U contains the sup- 

por t  of l e  C(X). 

I f  E is ordered with weakly normal positive cone K, a K-valued vector measure on 

X will be called positive. For positive vector measures, we obtain the following criterion of 

/~-integrability. 

PROPOSITION 5. Let /z be a positive vector measure and ~eA.  Denote by ~ ((~) 

the lamily o I all comTact (open) subsets o I X contained in ~ (containing ~), directed/or 

c (D). In order that ~ be lz-integrable, it is necessary and sullicient that ~ contains an 
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integrable set. I] this is the case, the limits lim/~(~) and lim/~(~) exist/or a(F, E') and their 

common value is equal to lz((~). 

Proof. The proof is immediate from [5, Chapter IV, w 4, Theorem 4], and the corollary 

of Theorem A. 

COROLLARY. If K is normal in E and complete/or (r(E, E'), then/or every #-integrable 

set the limits in Proposition 5 exist/or the given topology on E. 

This is an immediate consequence of Proposition 5 and Theorem B. We summarize 

the main results of this section in the following theorem. 

TH~.OREM 1. Let X be a locally compact Hausdor/f space, and let E denote an ordered 

locally convex vector space whose positive cone is normal and semi.complete /or a(E, E'). 

For each positive linear map q~ on C(X) into E, there exists a unique positive vector measure 

! ~ on X such that 

c#)  = f / 

/or f6 C(X), and conversely. I ~ is countably additive with respect to every consistent topology 

on E / o r  which K is normal, and i ~ is bounded if and only if 9~ is continuous/or the uniform 

topology on C(X). 

A vector lattice is countably order-complete if every countable, majorized subset has 

an upper bound; we note tha t  for every vector measure on X, the space ://is a countably 

order-complete vector lattice. Under the assumption of Theorem 1, the same is true of 

every maximal sublattice A c : / /  such tha t  A c # - I ( E ) ,  as follows from Proposition 1. 

I f  we denote by  ~/N the space of all null functions (i.e., of all h e : / / s u c h  tha t /z ( [h[ )=O) ,  

it is easily seen tha t  A/~tN is a vector lattice which is a t  least countably order complete. 

I t  is then clear tha t  the mapping f-->S fd# induces a homomorphism of A/~tN onto a subspace 

of E which is a countably order-complete vector lattice for an order finer than t ha t  

induced by E; thus, if E is a vector lattice, this subspace is in general not a sublattice of E. 

Let /~ be a vector measure on X, defined on a domain r(/~) with values in a locally 

convex space E. Let  f denote a Baire measurable function on X with values in a locally 

compact  space Y. Denote by F 1 the family of sets {ec  Y:/-l(e) e F(/~)}, then if P 1 contains 

the bounded Baire sets, 
~..+~(~) = ~[/-l(~)] (~6F~) 

defines a vector measure ~ on Y into E; we shall denote it by  v =/(#)  and write F1 =F(~). 

(I t  is clear tha t  F(~) is a ring, a-ring or a-algebra respectively, whenever F(#) has this pro- 

perry.) v is positive (or bounded) if # is positive (or bounded). Concerning the supports S ,  

and Sv of/~ and v respectively, we have the following result; ~ is assumed to be positive. 
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PROPOSITION 6. I /V  =/(/~) where ~ is bounded and / A-meazurable, then 

S, = N {/(O) : ()CA and ~(~}) = ~(X)}.(1) 

In  particular, when / is continuous and Sg compact, then S,. =/(S~). 

Proo/. When/~',(l) =/~(X) and (~1 =/(~), then ~((~1) = ~(X) = ~(Y) and, since 61 is closed, 

~1D Sv. On the other hand, let e = 1-1(S~). Then v(S~) = v(Y) = ~(X) = ~(e) and S, = [(e) = [(e) 

which completes the proof. 

2. Spectral Measures 

By a locally convex algebra we shall understand an algebra A (over C, unless otherwise 

stated) with unit e, such tha t  the underlying vector space A 0 is a (Hausdorff) locally convex 

space, and multiplication is separately continuous; tha t  is, for each fixed b EA, a->ab 

and a-->ba are continuous endomorphisms of A 0. We write a~b when ab =bet. 

A locally convex algebra A is ordered if A 0 is ordered with closed,(2) weakly normal 

positive cone K, and it multiplication in A is related to this ordering of A 0 by  the condition: 

(M) eEK; a, b E K  and a~b imply abEK. 

As in the case of a vector space, K is called the positive cone of A. 

DEFINITION 2..Let A denote a locally convex algebra, X a locally compact Hausdor/f 

space. A spectral measure on X into A is a vector measure i~ on X into A o such that: 

(i) F(/~) is a a-algebra, and ~(X)  =e. 

(ii) g(~} N ~)=~((~)#(e)/or all 8, ~EF(g). 

Condition (i) implies tha t  every spectral measure is bounded (in the sense of Section 1); 

condition (i i))may be expressed by  saying tha t  a spectral measure is a weak a-homo- 

morphism of a Boolean a-algebra of subsets of X, onto a Boolean a-algebra of idempotents 

in A. The support  S(#) of a spectral measure will be called its spectrum. I f  X is the real 

(complex) number  field under the usual topology, a spectral measure on X is called a 

real (complex) spectral measure. 

PROrOSITION 7. For every spectral measure tz on X into A,  there exists an ordering o/ 

A with respect to which i~ is positive. 

Proo/. By the definition of positivity for vector measures (see page 135), we have to 

show tha t  the range/~(F) of/~ is contained in a weakly normal cone K c  A tha t  satisfies 

(1) /~ denotes  t he  canonical  ex tens ion  of p to  A. 
(2) The  closure of a weakly  normal  cone is weakly  normal  (Theorem A, Corollary). 
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condition (M) above. Denote by  A the smallest subalgebra of A containing/~(P); it is clear 

tha t  _~ is commutative.  H K is the convex conical extension of/~(F) (i.e., the intersection 

of all (convex) cones in A containing #(F)), then eEK and obviously a b e K  if a, bEK. 

Thus there remains to show tha t  K is weakly normal in A or, what amounts to the same, 

tha t  K is normal in ~ for the weak topology, i.e., for the topology induced on A by a(A,A') .  

By the corollary of Theorem A, it suffices to show tha t  each real continuous linear form 

w on A may  be represented as the difference of two real continuous linear forms tha t  are 

non-negative on K. Let  w be fixed; 

is a bounded, real-valued measure on X. By the Hahn- Jo rdan  decomposition theorem, 

there exists two sets ~,EF(#) ( i=1 ,  2) such tha t  ~, N &=~b, ~1U & = X  and (#(~), w>>0  

(or<0)  whenever OEF(/~) is contained in St (or ~a). Let  e,=lz(~,) ( i= l ,  2), then (since/x 

is a spectral measure) ele 2 = 0  and e 1 +e2 =e. Since A is commutative,  

A = A 1 0 A  2 

where A,=Ae , ,  is the direct sum of the subalgebras A m and A~. This sum is topological, 

because the projections a->a, =aet(i = 1,2) are continuous. (Moreover, K =K,  O K  ~ where 

K , = K  n A,.) Let  us define the linear forms u, on A by  

a-->(a, ul> = <al, w> 

a-->(a, u2> = - (a~, w). 

Then the u~(i = 1,2) are continuous and non-negative on K. Hence w has the decomposi- 

tion w = u ~ -  u2 and the proposition is proved. 

COROLLARY. The range o/every spectral measure is bounded. 

Proo/. Let  K be the positive cone of an ordering of A for which the spectral measure 

~t is positive. Thus 0 ~/~(~)~<e for every ~ EF(#), hence g ( F ) c  [0, e]. Since (K being weakly 

normal) [0,e] is bounded the corollary is proved. 

Let  X, Y be locally compact  Hausdorff spaces. A function t on X into Y is Baire 

measurable (Section 1) when ]-1 maps A0(Y) into A0(X); however, when Y is a vector space, 

i t  is convenient (and standard) to define as the Baire measurable functions those ]E y x  

for which ]-1(6) 13 N(]) is a Baire set whenever d} is a Baire set in Y, where N(]) = {t: ](t) # 0}. 

We follow this usage. 

PROPOSITION 8. I~ ~ is a Baire measurable ]unction on X into Y and/x is a spectral 

measure on X,  then v =/(/x) is a spectral measure on Y. I !  l is continuous and ~ has compact 

spectrum, then v also has compact spectrum and S(v)=][ S(/x) ]. 
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Proo/. I~ t  F(~) denote the domain of/~ which is a a-algebra of subsets of X; it is im- 

mediate that  the family (e} of subsets of Y such that /- l (e)  EF(~u), is a a-algebra of subsets 

of Y. I t  is now clear that  u =/(/~) (cf. Section 1), when defined on F(v)= (e}, is a spectral 

measure. The second assertion, which is a spectral mapping theorem, follows from Proposi- 

tion 6. 

Let (X,: ~EI} be an arbitrary (non-empty) collection of locally compact Hausdorff 

spaces, such that  X = l-[ X, is locally compact, and let F, be a a-algebra of subsets of X, 

(tEI). A set ~=H(~, in x = H  x ,  is elementary (with respect to (F,}) if ~,eF,(~eI), and 

(~, = X, for all but finitely many ~ E I. A spectral measure/z into A, with domain F(#), on 

X is the (Cartesian) product of the family of spectral measures (~,: LEI} on X, into A, 

with domains F,=F(/~,), if for each set 5 c X ,  elementary with respect to (F,}, one has 

~EF(#) and 

~(~) = H~,(~,). 

When/~ is the product of [#,}, we write/z = (~),~H~,. 

PROPOSITION 9. Let X=FLEIX, be a locally compact Hausdor// space, countable at 

in/inity. Every spectral measure ~ on X into A is the product o /a /ami l y  (~,},~i o/uniquely 

determined spectral measures on X, into A. 

Proo/. Denote by /, the projection mapping of X onto X, (rE I). Since /, is clearly 

a Baire measurable function, it follows from Proposition 8 that/~,=/,(/~) is a spectra] 

measure, with domain F, =F(/~,), on X, into A. Since/z is multiplicative on its domain F, 

it follows that  for each set (~ which is elementary with respect to {F,}, one has/~(5) = 

1-L,ig,(~},)- The uniqueness (el. Definition 1) is clear since for each Baire set ~ , c X ,  

(t fixed), ~ =~, x H~., x~ is an elementary set contained in F(/~), and hence/~, (5,) =/~(5). 

COROLLARY. Each complex spectral meazure is the product o/ two uniquely determined 

real spectral measures. 

When (X,},e, is a collection of locally compact spaces and {/~,~,ez a family of spectral 

measures with domains F ,~  A(X,) (5 E I) and ranges/~, (F,) c A where A is a locally convex 

algebra, we say that  {/~,} is commutative (or abelian) when a,vb~ for arbitrary elements 

a,E#,(F,), b~E/~(F~)(~,uEI). Equivalently, (/~,} is an abelian family if U,~I/~,(F,) is 

contained in a commutative subalgebra of A. By the product of the ranges/~, (F,), we shall 

understand the set of all products a,l ... a,~ where {h ..... Ln} is an arbitrary, finite (ordered) 

subset of I .  
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THEOREM 2. Let X =l-I,~z X, denote a locally compact space, A a weakly semi-complete 

locally convex algebra, {#,},ez a/amily  of spectral measures with respective domains 1~,~ A( X,} 

(t E I)  and values in A.  I n  order that there exist a (necessarily unique) spectral measure ~ on 

X into A such that ~ = | it is necessary and su//icient that {~t,} be abelian and that the 

product o/the ranges #, (F,) be contciined in a weakly normal cone in A.  

Proo]. The condition is necessary. If g is a spectral measure on X into A there exists, 

by Proposition 7, a closed weakly normal cone K ~ A  such that  j u (F )cK  where F is the 

domain of /x. Hence, if # =  (~),~, /x,, it follows t ha t / a , (F , ) cK(F ,  the domain of/~,, tEI) .  

Further,  since ~t is a spectral measure, from the definition of Q ,~  #~ it is clear that  {/~,} 

is an abelian family, and that  the product of all ranges is in K. 

Su]/iciency. Let {/x,} be an abelian family of spectral measures, with respective domains 

1~,~ A(X,), and with the product of their ranges contained in a weakly normal cone K 

which we assume as closed. Suppose first tha t  X is compact. Let  V denote the smallesV 

vector subspace of C(X) containing all 9 such that  

g(t)=g,,(t,,)...g,.(t,~) (tEX), (*) 

where t= ( t , )  and {q ..... t=} is an arbitrary, non-empty finite subset of I,  and where 

g,k EC(X,~)(k = 1 ..... n); it is well known (and a consequence of the Stone-Weierstrass theo- 

rem) that  V is uniformly dense in C(X). Denote by lsR the subspace of 11 containing all 

real-valued functions g E V. Let  ~ denote the unique linear mapping on V into A satisfying. 

~(g) = g,, (g, ,) . . .g, .  (g,.) 

for all g of type (*), ~0 the conical extension of the set of functions g of type (*) with 

g,~>~0(k=I ..... n), and S the subset {h: 0<h(t)~<l} of V. Then :~0 N S is dense in S for 

that  normed topology on Vn whose unit ball is ~0 N S- :K0 N S (cf. [5, Chapter III ,  w 5, 

Lemma 1]), ~0 is bounded on ~0 N S and hence ~ (S)c  K; since for the uniform topology Lq 

has interior points in VR, it follows that  ~o is continuous on VR, and hence on V, into A. 

Therefore, yJ has a continuous extension, ~0, to C(X) which is positive for the ordering of A a 

whose positive cone is K. By Theorem 1, q generates a unique vector measure # on X into 

A 0 whose domain can be assumed as the a-algebra generated by all subsets of X elementary 

with respect to {F,}; if ~ = ~, • 1-I~., Xk, one has#(~) =~t, ((~), (t E I). Thus since'clearly#(X) = e, 

the proof for compact X will be complete when we show that  ~t is multiplicative on F. 

From the extension process (given in Section 1) and the separate continuity of multiplica- 

tion in A for a(A,A')  it follows first that  #(~)=I-I,~lg,(~) for every elementary set 

(with respect to {F,}). Thus if ~, e are two elementary sets,/~(5 n e) =#(5)g(e) since each 
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/t, is a spectral measure. Let Z be a maximal family of members of F, containing all ele- 

mentary sets, such that  ~ E Z, e E Y, imply #(6 N e)=/~(5)#(e). I t  follows from Proposition 3 

that  • is closed under countable unions and intersections, hence that  )2 =F.  This com- 

pletes the proof when X is compact. 

For the general case, recall that  if X =1-[,E1 X, is locally compact, at  most a finite 

number of the X are not compact. Thus X = Y • Z where Z is compact and Y = X 1 • ... • X,,  Xk 

locally compact ( k = l  ..... n). Since the density considerations above apply to any finite 

product of locally compact spaces, and since the uniqueness of/~ is clear, the theorem is 

proved. 

COROLLARY. Let E be a Hilbert space, {#,} a ]amily o/spectral measures with compact 

spectra X,  (t E I), and values in the /amily o/ orthogonal projections on E. Then Q,el/~t 

exists q and only if {/~,} is commutative. 

The corollary is immediate from Theorem 2 since the cone ~ of positive Hermitian 

endomorphisms of E is normal and weakly semi-complete for the topology of simple con- 

vergence, and since the product of any finite number of commuting elements of 

is i n K .  

If/~ is a spectral measure on X with domain F and values in a (semi-complete) locally 

convex algebra A, it follows from Proposition 7, Corollary that  f /d /~EA for every Baire 

measurable function which is bounded on the spectrum S(/z) of ~u (for, by definition, F 

contains the a-algebra generated by all Baire sets in X). By Proposition 7, there exists an 

ordering of A for which/~ is positive; we assume A to be endowed with an order structure 

satisfying this condition, and we denote by B(~u) the smallest subalgebra of C s(~) containing 

all constant and all bounded Baire measurable functions. 

PaOPOSITION 10. The mapping/--->f/d/~ is an order preserving homomorphism o/the 

algebra B(/~) into A, continuous/or the uni/orm topology on B(/~). 

Proo/. Denote by $ the family of simple Baire measurable (complex) functions on S(ju), 

augmented by the constant functions. $ is dense in B(g) for the uniform topology, and 

from the multiplieativity of # it follows that  

f/gV =f/V f gV 
for all ], gE$. Since ~t is K-valued (where K is the positive cone in A) t h e n / E S ,  0~</~1 

implies 

hence /~({/: 0~</~<1}) is contained in [0, e] and therefore bounded in A. Thus /--~f/d/~ 
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is continuous on $ into A; its continuous extension to B(g) obviously coincides with the g(/) 

defined in Section 1. This implies that  (1, g)-->~ fgd# is jointly continuous for the uniform 

topology on ]B(ff). I t  is clear tha t  f--->~ ]d]~ is order preserving (el. the remarks subsequent 

to Theorem 1). 

Remark. The preceding proof shows that  in order to obtain the conclusion of Proposi- 

tion 10, it is sufficient tha t  # is a spectral measure with values in a locally convex algebra 

A which is semi-complete for its given topology. 

Let  X denote a locally compact space, A a Banach algebra, # a vector measure on X 

into the underlying B-space of A. We say a mapping / on X into A is a step function if 

/=~.7=i a,z,  where a t E A  and g, is the characteristic function of a Baire set 8 , = X  

(i = 1 ..... n). If the mapping 

~ 1  

is continuous for the uniform topology, it may be extended to a continuous map/-~#(f )  = 

/ d#  on C~(X) into A.(') 

The preceding remarks apply to the present situation as follows. Let  X be locally 

compact, ff a spectral measure on X into A. Under the uniform topology, ~(ff) is a Banach 

algebra. Clearly the subset of null functions H = {/: # ( ] / ] )=0 }  is a closed, two-sided ideal 

in B(ff); hence ~(ff) /~ is a Banach algebra. Since ~ is the kernel of the homomorphism 

of:/-+S ldff (by Prop. 10, S ld, u =0 implies ~ / f / d # = 0 ) ,  B(ff)/T/is algebraically isomorphic 

to ~ =cf(B(ff)). Let  us consider A under the norm carried over from ~(ff)/~; by  the remarks 

above, S ]dff is well defined, and a member of .~, for e v e r y / E  CJ (X). Thus, in particular, 

when X = X  1 x X~ and/u =ffl| (Proposition 9), the iterated integral 

f djaI (ti) f / ( t l ,  t2) d#2 (t$) 

is well defined, We shall need a Fubini theorem of the following type. 

P R 0 P 0 S I T I 0 ~ 11. Let X = X 1 x ... x X~ be locally compact, ff a spectral measure on X into 

A with i~ =l~l|174 (Prop. 9), and let ~ denote any permutation of {1,2 ..... n}. For every 

complex-valued continuous/unction t-->/(t)=/(t I ..... t~) o/compact support in X ,  one has 

f/dff= fdff~(1) . . ,  f / d ~ ( n ) .  

Proo]. I t  will be sufficient to give the proof for n ~2;  let X = X  1 x X 2 and ].~ = f i l |  

I t  is clear tha t  the assertion holds for every function / in the tensor product C(X1)| C(X,) .  

(1) CA(X) denotes the space of continuous functions with compact support in X and values in A. 
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On the other hand, this space is uniformly dense in C(X). Let  ]nE C(X1)| C(X~)(nEN) 

and ]~---~] uniformly. Now, for the norm topology on ~ introduced in the preceding para- 

graph, ~ ]~ (tl, t2) d/.t2 (t2)--> ~/(tl ,  t~) d/x~ (t) uniformly on X~; hence 

since 9-+#1 (g) is continuous on C~ (X1) into _~. This proves the assertion. 

In  the remainder of this paper, we shall use the term "Baire /unct ion  on X "  for every 

complex function which is in the algebra generated by  functions either Baire measurable 

or constant on X; this usage disagrees with the usual meaning only when X is a locally 

compact space not countable a t  infinity. 

3. Spectral Elements 

We assume throughout this section tha t  A is a semi-complete locally convex algebra in 

the sense explained a t  the beginning of Section 2. When/x is a spectral measure on a locally 

compact space X into .4, let B(/~)(BR(#)) denote the algebra of complex-valued (real- 

valued) Baire functions on X tha t  are bounded on the spectrum of #. We recall (Proposition 

10) that/-->/x(/) -- S/d/x is a homomorphism on B(#) into .4 which induces a homomorphism 

of BR (#) onto a real subalgebra of A. 

DEI~INITION 3. A n  element a E A is spectral ( a real spectral element) i / there exists a 

locally compact space X ,  a spectral measure # on X into A,  and /EB( / x )  (/EBR(~)) such that 

a = S  /d  #. 
I t  is clear from this definition tha t  every spectral element a E A can be represented 

as a = a  1 +ia  2 where al, a 2 are real spectral elements which commute; the lat ter  is a conse- 

quence of Proposition 10. I f  a = ~ / d # ,  let v=/(l~) (Proposition 6). By  Proposition 8, v 

is a spectral measure on the complex plane with compact spectrum (since ] is bounded). 

Using the continuous linear forms on A, we conclude from a standard formula of measure 

theory tha t  

f / d ~  = f zd~(z). 

We call v the complex spectral measure associated with the representation a =#(/)  of a. 

Our next  objective is to show tha t  this associated complex spectral measure is unique 

(i.e., independent of the given representation of a as a spectral integral); the proof which 

is essentially an adaptat ion to the present situation of a method due to Dunford [7], 

depends on several auxiliary results one of which is the assertion tha t  if a E.4 commutes 

with a spectral element c E.4, then a commutes with every complex spectral measure as- 
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soeiated with a representation of c. Let  c, from now on through Theorem 3, denote a 

fixed spectral element; let v be the complex spectral measure associated with an arbi trary 

(but fixed) representation of c. Hence c = ~ zdv(z); let us write 

(dv(~) R(~) = j ~L- ~ (;tr 

fo"~ ;t not in the support  of v. Clearly ;t-->R(;t) is a locally holomorphic function on C ,~ S(v) 

into A. We shall see later (Theorem 4) tha t  C ~ S(v) is the exact domain of (local) analyticity 

of this function. For each a E A, ;t-+R(;t)a is again locally holomorphic in the complement 

of  S(v), but  if a ~= e, it may  well be the case tha t  2-->R(:t) a can be extended to a larger domain 

(e.g., to all of C if a=O). We shall say that  ]~ is an extension of 2-->R(;t)a if ],(;t) =R(2)a 

for all 2 EC,~ S(v) and if for all 2 in its (open)'domain D/,,/~ is locally holomorphic and satis- 

fies the relation (;te- c)/a (2)=a. Further,  2-+R(;t)a is said to have the single-valued exten- 

sion property when for every two extensions/~ and g,, we have ]~ (2) = g~ (;t) for all ;t e D/N D o. 

I t  is clear tha t  when ;t-~R(~)a has the single-valued extension property,  there exists a 

unique maximal domain D(a) to which Ra can be extended under preservation of the 

required properties. 

LEMMA 1. For every aEA, 2-->R(;t)a has the single-valued extension proTerty. 

Proo/. Let bEA satisfy the relation (;to e - c ) b  = O. We shall show tha t  v(~)b=0 for 

every  Baire set in C ~  {20}, and tha t  v{20}b =b. Denote by  ~ a closed Baire set in C not 

~ontaining ;t 0. Then 

( d v ( ~ )  

exists and j(20e-c)=S~dv($)=v(e ) by Proposition l0 which implies tha t  v(e)b=0. I t  

follows now from the countable addit ivity of v tha t  v(5')b = 0  where 5' = C N  (;to}. Hence, 

Mince ~(C)=e, v{20}b =b. 

Assume now t ha t / a  and ga are extensions of 2-->R(2)a, and consider an arbi t rary point 

2 0 e D : n  D o. Let {;tn} denote a sequence in D:N D a, such tha t  2n->20 and 2~=20 for all 

neN.  Since, by  definition of an extension, (;t~e-c)h(;t~)=O where h(2)=/~(2)-g,(;t) 

(2 G D: N Dg), it follows from our previous observations tha t  v{20} h(:t~)= 0. This implies (by 

the continuity of h) tha t  v{20} h(20) = 0. On the other hand, we must  have (since (2oe - c) h(20) = 

9) v{20}h(20)=h(;t0); hence h(20)=0 as was to be shown. 

If  ~(a) temporari ly denotes the unique maximal domain to which ;t-~R(2)a can be 

extended in the sense specified above, let us denote by  a(a) the complement of Q(a). I t  can 

easily be shown, using Liouville's theorem, tha t  a(a)=r if and only if a =0.  
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LEMMX 2. For every closed (~cC, r((~)A ={a~A:  6(a)cO}. 

Proof. Let  a~v(5)A, i.e., let a=r((~)b for some b~A.  Clearly a=v(5)a since v(J) is an 

idempotent.  Set R~ (2) a =v(~) R(2) a; since v commutes with R(2), we' have R(2) v(O) a = 

Ro (4)a for all 2 ~ S(v) Clearly Ro(. ) a extends to ~(a), and since for 2 ~ S(v) (Proposition 10} 

r dv(~) 

it follows tha t  ~(a) contains the complement of 5 whence a(a)~O. Assume, conversely, 

tha t  a(a)~(~. Let  e be closed and e ~ ~ =r Denoting by  e' the complement of e in C, we 

obtain 
R(2)a = R~. (2)a + R~ (2)a. 

2--->R~(2)a is holomorphic in a neighborhood of 5. On the other hand, 2--->R(2)a and a 

fortiori 2-->R~.(2)a have unique locally holomorphic extensions (Lemma 1) to a neighbor- 

hood of e since a(a) ~ ~ by assumption. Because ~' = C ~ ~t is the union of a countable number  

of closed sets e~, it follows tha t  R~.{ . )a=R( . )p ( (Y)a  has a unique extension to all of C 

which approaches 0 as 2-~ o~; thus, by  the remark preceding this Lemma,  p(5 ' )a  = 0 which 

implies p(~)a =a and hence a ~#((~)A which completes the proof. 

PROPOSiTiON 12. I /  C is a spectral element in A and a~.~c, then a commutes with the 

complex spectral measure associated with any representation o/c.  

Proof. From b~c  it follows tha t  b~R(2),  2 r S(u), where c = ~ zd~(z). Hence R(2) b~(~) 

= bR(2)v(5)= bR~ (2) and we eoncludc tha t  a(br(O))c ~ whenever ~ is closed. By Lemma 2, 

this implies tha t  v(~)b~(O)=b~(5). If  ~1 is a closed set with 5N5~=r then v(~)b~(~l)= 

�9 (5) V(~l)bV(~l) = 0 since r(~)v(51) = 0. Since v is countably additive, it follows tha t  v(~)b~(5') = O 

where ~ is closed and (~'= C ,~ ~. Now one has 

v(O) b =~(~) b[v(5) + v(5')] = v(O) bv(~) 

for every closed ~, hence v((~)b =bv(5) for closed and, by  the countable addit ivity of v, for  

all Baire sets in C. 

T H ~. 0 R V.M 3. For each spec2ral element c E A,  there is one and only one complex spectral 

measure ~ such that c = S zd~(z). 

Proo]. I f  c = ] / d #  is a spectral element (Definition 3) where # is a spectral measure on 

a locally compact space X into A, then e=~ zd~(z) with ~=/(#) as we have noted earlier 

Let  c = ]  Zd~l(Z) =]  zdv2(z) where ~,,~. are comulex spectral measures. Proposition 12 

then implies tha t  Vl and ~ commute, since clearly c commutes with ~1 and ~2. Let ~ be a 

1 0 - -  62173067 Ac ta  ma themat i ca .  107. I m p r i m 6  le 29 m a r s  1962 



14fi H E L M U T  H .  S C H A E F E R  

closed set in C. Set b=vl(O ). Applying I ~ m m a  2 to b and v=v2, we obtain b =v~(~)b, hence 

vl (~) = v2 (~) vl (~). Interchanging vl and v2, we obtain vx (~) ~vl  (~) v2 (~). Hence, since vl and 

~2 commute,  vl (~) =~2 (~) for every closed ~. Since Vl and ~. are countably additive by  hypo- 

thesis, vl =v~. 

Remark. I t  should be noted tha t  for real spectral elements c, the unicity of the representa- 

tion c =  S tdl~(t) where/e  is a real spectral measure, can be obtained in a much simpler 

way. For Proposition 10 implies tha t  c ~= ~ tnd/~(t), thus/x(P) is uniquely determined for 

all polynomials P of one real variable from which the unicity of/~ follows immediately. 

I f  a=~/d~  (Definition 3) is a spectral element in a (semi-complete) locally convex 

algebra, then ~ =/(#)  which by  Theorem 3 is independent of the particular representation 

of a, will be called the complex spectral measure associated with a. By Proposition 9, 

=Vl| where Vl, v2 are uniquely determined real spectral measures. I t  is easy to see tha t  

a is a real spectral element if and only if v~ has spectrum {0}, and in this case we shall call 

Vl the real spectral measure associated with a. 

I t  is now time to connect the notion of "spect rum" for a spectral measure with the 

algebraic meaning of the concept; in an algebra (with unit e) over the complex field (3, 

the spectrum of art element a E A is usually understood to be the set of all ;L E C such tha t  

2 . e -a  has no inverse. In  contrast  with the case of a Banach algebra, in a locally convex 

algebra A this purely algebraic definition is of little use, even when A is assumed as com- 

mutative,  metrizable and complete with (jointly) continuous multiplication. 

For example, let A be the product algebra of eountably many  copies of C, A =I-[~ C~ 

(C~=C, heN).  I f  a=(~l ,~  ~ .... ) where ~ > 0  and lim n ~n =0,  it is easily found tha t  the set 

where ( ; re-a)  -1 does not exist is {;t~: nel l} ,  and hence is not closed. The "resolvent" 

;t-->(2e-a) -x exists for all 2 # +~ (heN), but  it is holomorphic only when 2 # 0. I t  can be 

shown by  examples tha t  if A is a locally convex algebra in the sense used here, the spectrum 

(as defined above) of an a e A may  be empty,  or consist of the entire plane, or consist of 

c ~ ( 0 ) .  

In  view of the pathologies tha t  were pointed out, we shall adopt  this definition. If  A 

is a locally convex algebra, the spectrum a(a) of a is the complement of the largest open 

subset of C in which 2-~(2e - a) -~ is locally holomorphic (i.e., in whose connected components 

~-->()te-a) -x is holomorphic). We write ~(a)= {)~ a(a) and call ~(a) the resolvent set of a. 

The following result justifies the use of the term spectrum for the support  of a spectral 

m e a ~ B r e .  

THEOREM 4. For every spectral element aEA, the spectrum ~(a) is equal to the spectrum 

o/its associated complex (respectively real) spectral measure. 



S P E C T R A L  M E A S U R E S  I N  L O C A L L Y  C O N V E X  A L G E B R A S  147 

Proo/. The assertion claims that  if a=~ zdv(z), then ~(a)=S(v) where S(v) denotes 

the spectrum of r. We show first that  ~(a) ~ S(v). Let ~ ~ S(v); then, since A is semi-complete, 

the integral 

f dv(~)  

exists; by the homomorphism theorem (Proposition 10), it is clearly the resolvent (Roe - a )  -1 

of a at 20. Since 2-->(2e-a) -1 is holomorphic in a neighborhood of 2 o (for S(v) is closed), 

the first part  of the proof is established. To prove the converse, S(v)~ a(a), we proceed as 

follows. Let 20Ca(a); there are closed circular disks K 1 and K 2, center at 20, with radii 

r x, r e such that  0 < r l < r  ~ and K 2 Na(a) =r  Denote by v x the restriction of v to K 1 (more 

precisely, to the family of all Baire sets contained in K1). I t  is clear that  ~'1 is a vector 

measure with values in A, and so is v2 if v2 is the restriction of v to C ~ Kx; we have v =v I +v~ 

in an obvious sense. Further, if we denote by.A~ the smallest closed subalgebra of A that  

contains the range of vl, it is clear that  ~(K1)  -~ e I is the unit of A 1 and v 1 is a spectral measure 

o n  KI, with values in A 1. Let us set a 1 = 5 ZdYl (z), then we have 

R~(2) = (2el- a,) -~ (= (d,,,(z) 
J 2 -  z if 2 ~ 8(~'1) ) 

for all 2Ca(a1). Further, setting R(2)=(2e-a)-X(2r and R(2)-R1(2)=R~.(2)(= 
S dvz (z)/(2-z) if 2 $S(v)), we have R(2)= Rx (2)+ R2(2 ) for all 2 not in either a(a), or a(eh). 

I f  we denote by C 2 the boundary of K S (in C), then R x is holomorphie in a neighborhood of 

C 2. On the other hand, R2 is hotomorphie in the interior of K2 (since the support of v 2 is 

contained in C N Ks) ' and R is holomorphie in K 2 by assumption. Thus R 1 has an analytic 

extension into the interior of K s which implies, by Cauchy's theorem, that  

fc ,  Rx(2) d2 = 0. 

Now if ~ denotes Lebesgue measure on C2, it is not difficult to verify that  the product 

measure Vx| on K 1 • C 2 exists, and is a vector measure with values in A. One proves in 

a manner quite analogous to the proof of Proposition l l  that  a Fubini theorem holds for 

vl |  (which will be needed only for  the continuous function (z,2)-->(2-z) -1 on K 1 x C 2 

into C). From the remark above, we conclude now that  

1 0 "  -- 62173067 
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hence that  v 1 =0.  This implies that  v =v 2 and, consequently, that  the support S(v) is con- 

tained in (~-~ K r Thus ;to ~ a(a) implies that  20 ~ S(v) and the theorem is proved. 

We note from the preceding proof tha t  the restriction of a complex spectral measure 

to a closed set ~ ~ (~, is a spectral measure with respect to a suitably chosen subalgebra of 

A. (If v(5)=0, the process degenerates since the subalgebra {0} has no proper unit.) Such 

a subalgebra may be constructed by taking the closure (in A) of the set of all elements 

S~ ]d~ where leB(~). 

COROLLARY. 1/ ~ c C  is closed and v a complex spectral meavure, then the sloectrum 

a(S~ zdv(z)) is equal to the support o] the restriction o/ v to O, plus {0} i] S(v) dg O. 

We shall now turn to a characterization of real spectral elements in an arbitrary, weakly 

semi-complete locally convex algebra A. We shall say that  a is a positive spectral element 

if a is spectral and its spectrum is a subset of the non-negative reals. I t  is clear from Theorem 

4 that  every positive spectral element is real. 

PROPOSITIO~ 13. Let A be ordered such that the order interval J = [ 0 ,  e] is weakly semi- 

complete. Then every a E J is a positive spectral element o / A  such that a(a)c  [0, 1], and whose 

associated real spectral measure is positive. 

Proo]. Let  a e J ,  i.e., O<.a<~e. Denote by  Pn.m the polynomials 

t--->P~,.,~(t) = W ( 1 - t )  p-m (O~<m~<p, O~<t~<l). 

~0(P~.m) = a ~ ( e - a )  p-'~ for arbitrary pairs (p,m) of integers with p>~m~>0. If  K denotes the 

positive cone in A, it follows from the definition of an ordered locally convex algebra 

(See. 2) tha t  q)(P~.m)s for all p>~m>~0. Since every complex polynomial on [0, 11 is a 

linear combination of Bernstein polynomials, we may consider ~ as defined on the vector 

space V of polynomials on [0, 1] into A. This mapping is continuous for the uniform topo- 

logy on V into A. To see this, we use the well known fact that  every non-negative (real) 

function on [0, 1] can be uniformly app rox im a t~  by linear combinations of Bernstein 

polynomials with non-negative coefficients. This implies that  q)(P)EK for every non- 

negative polynomial P, hence 0 ~<~0(P)--<e for every 0 ~<P ~ 1; since this set has interior 

points in VR and [0, e] is bounded in A, q) is continuous on I r N CR(I) into A and hence on 

V into A. I t  follows that  q0 has a continuous extension to  C(I) (again denoted by  ~o) which 

is positive on C(I) into A. Let  N denote the subspace of C(R)of all functions vanishing 

on [0, 1]; it is clear tha t  C(I) is algebraically isomorphic with C(R)/N and that  the natural 

mapping Z of C(R) onto C(R)/N is positive. Thus, identifying C(I) with C(R)/N, the map 

�9 ~ = ~ o , ~  
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defines a positive linear mapping on C(R) into A. From Theorem 1 it follows now tha t  there 

exists a unique positive vector measure/~ extending ~0, with values in A when A is weakly 

semi-complete. Since, then, for every real Baire set (~ one has 0</z((~)<e, we conclude 

tha t  # takes its values in [0, e] if this interval is weakly semi-complete as we have assumed. 

I t  is also clear tha t  a = S td# (t); the proof will be complete if we can show that/~ is a spectral 

measure. But  it is clear, from the definition of ~ on V, tha t  ~(PIP2)=qJ(P1)q~(P~) for any  

two polynomials on [0, 1] and hence, by  continuity, tha t  ~ is a homomorphism of the algebra 

C(I) into A. Since N is an ideal in C(R), it follows tha t  Z is a homomorphism, and conse- 

quently so is ~; thus, for any /1' /2 E C(R) we have ~/)(/1/2) =V)(/1)~/)(f2)" I f  / is a bounded 

Baire function on R, it is clear tha t  #(/) E A.  Now every algebra ~4 of bounded Baire functions 

on R which contains C(R) and is maximal with respect to the property " I f /~  E~4,/~ E~4 then 

~(]1]~) =/~(/1)/~(/2)", is closed under the formation of simple limits of bounded sequences, 

as may  be concluded from Proposition 3; hence, ~4 contains all bounded Baire functions. 

Thus, # is multiplieative and since ~ dp =~0(1) =e by definition of ~, a positive spectral 

measure with spectrum in I ;  the proof is complete. 

COROLLARY. Let A be weakly semi-complete; in order that a E A be a positive spectral 

element, it is necessary and su//icient that, /or a suitable 7 > 0, the convex conical extension o/ 

the set 

{am(Te-a)  n : m, n~>0) 

be a weakly normal cone in A .  

Proo/. The condition is necessary. For if a is positive, then a =  S td~(t) where v is a 

real spectral measure with non-negative compact support.  Choose 7 > 0 so tha t  S(v) c [0, 7]. 

By Proposition 7, there exists an ordering of A such that  v is positive; it is then clear tha t  

for this ordering, 

hence, by  the definition of an ordered locally convex algebra, we obtain (a'~(~e - a) n) E K for 

all integers m, n >~ 0 which implies the assertion. Conversely, let the condition be satisfied; 

if K is the closed conical hull of the set in question, then K is the positive cone for an 

ordering of A and 0 ~<a --<Te; thus, if a 1 =7-1a, 0 ~<a 1 ~<e and a~ is a positive spectral element 

by  Proposition 13. Clearly then so is a, whence it follows tha t  the condition is sufficient. 

PROPOSITION 14. Let A be weakly semi-complete, a E A  is a real spectral element i / a n d  

only i / there exists an ordering o / A  with respect to which a is in the real linear hull o~ [0, e]. 

Proo/. We note first that ,  given an ordering of A, a E A  is in the linear hull of [0, e] = 

(b: 0 ~< b ~< e) if and only if there exist real constants cl, c~ such tha t  c 1 < c 2 and c 1 e <~ a <~ c2e. 
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(The s imple proof  is left  to  the  reader . )  Assume now t h a t  the  condi t ion  is satisfied.  Then  

we have  c I e ~< a ~< c 2 e wi th  c I < c2; if a I = a - c 1 e, then  0 ~< a I ~< (cz - cl) e. P ropos i t ion  13 now 

implies  t h a t  there  exists  a unique real  spec t ra l  measure  v (Theorem 3) such t h a t  a 1 = S tdv (t); 

since S d r  = e, we ob t a in  

a =f  (t-cl)dv(t) 

which shows t h a t  a is a real  spec t ra l  e lement .  Conversely,  if a is a real  spec t ra l  e lement ,  le t  

v denote  the  associa ted  real  spect ra l  measure  wi th  spec t rum 8(v). Since S(v) is compact ,  

there  exis t  real  numbers  c 1, c 2 wi th  c I < c  2 and  S(v)c [c 1, c2]. B y  Propos i t ion  7, there  exis ts  

an  order ing  of A with  respect  to  which v is posi t ive.  S i n c e / - + ~ / d r  is order  preserv ing  (recall 

t h a t  the  positiw~ cone K in A is closed), i t  is immed ia t e  t h a t  for th is  o rder  

The  theorem is proved.  

Examples 

1. l e t  I # ~ bc an  a r b i t r a r y  index set ,  and  let  A be the  a lgebra ica l  and  topologica l  

p roduc t  yI,,~C,(C,=C, t E I ) .  W i t h  K={a:a,>~O, t e l }  as i ts  posi t ive  cone, A is a weak ly  

comple te  local ly  convex algebra.  Each  e lement  a for which {at} is bounded ,  is spectral ;  

a(a) ={a,}. I n  the  sense of Def ini t ion 5, every  aEA is spectral ;  th is  is in accordance  wi th  

the  fact  t h a t  A is the  a lgebra  of all complex-va lued  funct ions  on I .  

2. Le t  A be a real  Banach  ope ra to r  a lgebra  wi th  un i t  e; le t  us assume t h a t  A is weak ly  

semicomple te  for the  topo logy  of s imple convergence,  and  t h a t  the  ope ra to r  norm is mono- 

tone  on K where K denotes  the  s imple closure of the  set  S whose e lements  are  f ini te  sums 

of squares;  we show t h a t  wi th  K as i ts  pos i t ive  cone, A is an  ordered  (real) Banach  al- 

gebra .  I t  is on ly  neccssary  to  show (since the  assumpt ions  above  imp ly  t h a t  K is normal)  

t h a t  if a, bEK and  a~b, then  a b E K .  Since for all  a wi th  Iie-ai[<~l,a t exis ts  (as the  

pr inc ipa l  va lue  of the  corresponding b inomia l  series), e is in ter ior  to  K.  Thus  to  show 

t h a t  ab E K when a~b and  a, b E K,  we can assume t h a t  0 ~< a < e, 0 ~< b ~< e. Now 0 < e - a ~< e, 

hence [I e - a  [] <~ lie ]1 = 1 so t h a t  a t exists ,  and  l ikewise b t exists.  Clear ly  at~bt;  then  

ab=(atbt)2EK.(l) Hence  every  e lement  of an  a lgebra  sa t i s fy ing  the  a s sumpt ion  made  

above ,  is a real spect ra l  element;  for since e is an in ter ior  po in t  of K,  A is ident ica l  wi th  

the  real  l inear  hull  of [0, el. 

F u r t h e r  examples  will be considered in Sect ion 4. 

(1) The argument shows that in fact every aEK is a square. An example of the present case is 
furnished by each simply closed Banach algebra of Hermitian operators on a Hilber~ space. 
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Information concerning the possible choice of the constants cl, c~ is contained in the 

following proposition. We recall tha t  a partial order 01 on a set Q is finer than another 0~., 

if x <~y(O1) implies x <~y(O2) for all x, y EQ. When Q is a vector space, "01 finer than 03" is 

equivalent with K~ ~ K~ for the respective positive cones; in particular, the coarsest ordering 

0 finer than  all orderings in a family {0~} is determined by K = N ~ K~ as its positive cone. 

PROPOSITION 15. Let a E A be a real spectral element, ~, its associated spectral measure. 

Then S(~)c [cl, c2] i /and  only i/cle<~a<~c~e/or the finest order on A / o r  which ~ is positive. 

Proo/. If  v is positive for an ordering of A, it follows as in the second par t  of the proof 

of Proposition 14 tha t  S(~)= [c 1, c2] implies cle<~a<~c2e for the order in question; hence 

the condition is necessary. Now let cte~a<<.c2e for the finest ordering of A for which 

is positive; if this relation can be satisfied with c I =c~, then a =cle and v, which by  Theorem 3 

is unique, is a one point measure; thus clearly S(v)={cl}. Let  c~e~a<<.c,e where c~<c2; 

a simple argument  reduces this case to c 1 =0,  c2 = 1. Then ~ may  be constructed as in the 

proof of Proposition 13; with the notation adopted there, we have to show that  y~(/)=0 

whenever /E  C(R.) is such that  its support  is contained in the complement (in R) of [0, 1]. 

But  if / is supported by  R ~-[0, 1] t h e n / e N  and hence X(/)=0, and consequently ~( / )=0;  

thus S(v)c  [0, 1] and the proof is complete. 

If  A is a weakly semi-complete locally convex algebra, a = S / d #  a spectral element of 

A, then for every bounded complex Baire function g, the integral S go/dtz defines another 

spectral element b; since 

f ao 

where u is the complex spectral measure associated with a, b is defined unambiguously (i.e., 

independent of any particular representation of a as a spectral integral), and denoted by 

b =g(a). (I t  is clear tha t  it suffices to assume tha t  g is a bounded Baire function on a(a) into 

C.) Briefly but  somewhat imprecisely, we shall say tha t  b "is a function of a"  and tha t  

a= S/d/~ is a "function of /z" ;  obviously b =g(a) is a function of ~. The correspondence 

g~g(a), which by  Proposition 10 is a homomorphism of the algebra of complex Baire 

functions bounded on a(a), into A, is usually referred to as an operational calculus. 

PROPOSITION 16. (Spectral Mapping Theorem.) I] a is a spectral element and g is 

a continuous complex valued function on a(a), then a[g(a)] =g[~(a)]. 

The proof is immediate from Proposition 8 and Theorem 4. By Proposition 6, a cor- 

responding result holds for arbi trary Baire functions bounded on a(a). 

We note in particular tha t  the consideration of functions of a spectral element permits 

us to introduce an operation of conjugation in the class of all spectral elements in A. For 
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if a = ~ zdv(z) where v is the associa~d complex spectral measure of a, one may define a* = 

~dv(z)(z=~+i~, 5=$- i~  I where ~, ~EIt); clearly a-+a* is an involution. Similarly, v is 

the product Vl| of two uniquely determined real spectral measures (Proposition 9, 

Corollary), and by the Fubini theorem (Proposition 11) we obtain 

a = f  zdv(z) = / ( ~  + i~)d(Vl| ~) = f ~dv~(~)+i / ~dv~(~); 

here the first (second) integral may be referred to as the real (imaginary) part  of a. I f  

a = ~ /d#  where /1 + i/~ and /, E BR (#) (i = 1,2) then clearly ~1 =/1 (~) and v2 =/9. (#) in the 

sense of Proposition 8. For a = f / l d #  +i ~/~d# implies that  

a = f t I d21 (t l)  + i f t2d2 2 (t2) 

where ),t =/~ (#) are real spectral measures (Proposition 8). By Proposition 7 and Theorem 2, 

2~| 2 is a complex spectral measure whence, by Proposition 11, 

a = f (t 1 + i ts)  d(~ 1 | (tl, t2). 

By Theorem 3, ~1~22=~)=~1~)2 thus Proposition 9 implies that  2t=v~(i=l,2). Hence, 

if a = ~  /dtt, then a 1 =S/ ld t  t and a~=~/2dtt are the real and imaginary parts of a. One 

denotes by ]a [ the (real) spectral element S [/[dtt and, if a = ~ ]dtt is a real spectral element, 

one can define a+=~/+dt t  and a - = ~ / - d t t  where / is real valued a n d / + = s u p { / , O ) , / - =  

s u p { - / , 0 ) .  Obviously, a+ and a-  are positive spectral elements, and a = a + - a  -, lal = 
a+ +a -. 

If F =  A and all elements of F arc functions of a single spectral measure/t ,  we say 

for briefness that  F is presentable by #. In an ordered algebra we call J = [0, e] the unit  

interval. J spans A if each aEA is a linear combination of elements of J .  The following 

theorem is an extension of Proposition 14. 

T H E O R ] ~  5. I.r F be a non.empty subset o/the weakly semi-complete locally convex 

algebra A. In  order that F be a/amily o/real spectral elements presentable by a single spectral 

measure t t, it is necessary and su//icient that 2' be abelian, and that F be contained in an 

ordered real subalgebra spanned by its unit interval. 

Proo/. Necessity. Let  F={a,: t e I } .  If a , = ] / , d t t ( t e l  ), then it follows, since a, are 

real spectral elements, tha t  each/ ,  is real-valued a.e. (#). Hence it is no essential restriction 

to assume ], as real (t E I). But  then, by Proposition 10, 2' is contained in the image under 

/--->~/d# of BR(tt), which is a real, commutative subalgebra of A with the required pro- 

perties. 
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Su]ficiency. Let  X be a real subalgebra of A which is ordered, and spa~ned by J = 

[0,el. (We assume without loss of generality that  e EX.) Clearly X, by means of the canonical 

imbedding X->A, induces an ordering of A. If a, E F is fixed, it follows from Proposition 

14 that  a, is a (real) spectral element, hence that  a,=] td~,(t) for a (unique) real spectral 

measure ~, that  takes its values in the positive cone K of A. From Proposition 12 it follows, 

since F is abelian, that  (v, : t E I} is an abelian family. Let  X: denote the compact subspace 

of R which is the spectrum a(a,)(eEI). If X=l-itez X, is the topological product of these 

spaces, then by Theorem 2 there exists a unique spectral measure u on X into A such 

tha t  v=(~)tG1 v,. If  [, denotes the projection mapping of X onto X,(~EI), then clearly a, = 

S tdv,(t) =S/,dv.  Hence F is presentable by v and the theorem is proved. 

Remark. Let F denote any non-empty family of spectral elements in A, and F 1 (or 

Fs) the set of real (or imaginary) parts of the elements of F. In order that  F be presentable 

by a spectral measure/z,  it is necessary and sufficient that  F t U 2' s be presentable (or, 

equivalently, that  F t and F s be presentable and the product of two representing spectral 

measures exists). 

COROLLARY 1. Every subalgebra o/ A which is (algebraically) isomorphic with a 

*-algebra B o/bounded complex/unction, containing 1,(1) such that the non-negative/unctions 

in B are mapped onto a weakly normal cone in A, is presentable by a spectral measure (and 

hence consists entirely o/spectral elements). 

In  the discussion following Proposition 16, we have seen that  every spectral element 

a EA may be decomposed (independently of any given representation of a) into a sum 

a t + i% where at, as are real spectral elements. Conversely, given two real spectral elements 

a~ and %, when is it true that  a 1 + / a  s is spectral? A sufficient condition is supplied by the 

following corollary. 

COROLLARY 2. I~t A be an ordered, weakly semi-complete locally convex algebra. I] 

(a I . . . . .  a,} is an abelian /amily contained in the real span o/ [0, e], then q)(a 1 ..... a,) is a 

spectral element o / A / o r  every complex polynomial cp in n indeterminates. 

Proo]. By Theorem 5, there exists a spectral measure ~u and functions h EBR (~u) such 

that  a, =S ],d/aO, = 1 ..... n). I t  is then clear from Proposition 10 that  

~(a~ ..... a.) =]" ~(/1 ..... /~)da 

which proves the assertion. 

(x) B y  a *-algebra we moan an algebra B of complex valued functions on a Seg 8, such that f6B 
implies f E B. 
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The method used in the proof of Theorem 5 enables us to obtain a converse of Corollary 

1, namely to characterize certain subalgebras of a weakly semi-complete locally convex 

algebra as algebras of all continuous functions on a compact Hausdorff space. The result 

obtained is related to Theorems 14, 17, 18 of Dunford [7], but  our construction differs from 

Dunford's which uses the structure spaces (i.e., the spaces of maximal ideals) of the algebras 

involved. Let  V be an Archimedean ordered real vector space with order unit e 0 (ef. [18], 

Section 4), then V is the (real) linear hull of its "unit  interval" [0,%]. The order topology 

on V (1.e.), which is the finest locally convex topology on V for which the positive cone is 

normal, is normable in the presence of an order unit; the gauge function of [ - % ,  %] is a 

generating norm. If A 0 is a real commutative algebra with unit e, such that  the underlying 

vector space is Archimedean ordered, the positive cone K is invariant under multiplication 

and e is an order unit, then it is easily verified that  A 0 is an ordered normed algebra for 

its order norm (the gauge function of [ -e ,e]) .  The complexifieation A =Ao+iA  o, for 

the order whose positive cone is the positive cone in A0, is again an ordered normed algebra, 

the order norm a-~llal[ 0 on A0 being extended to A by 

II a + ib Ilo = sup IIa cos 0 + b sin 0 II0" 

THEOREM 6. Let A be a weakly semi.complete locally convex algebra, .~ a closed commu- 

tative ordered suba~ebra spanned by its unit interval. Then ~ ,  under its order norm, is iso- 

morphic-isometric with the algebra o/all continuous (complex)/unctions on a compact Hausdor/] 

8~tce. 

Proo[. Denote by K the positive cone in ~;  since K is invariant under multiplication, 

A o = K - K  is a real subalgebra of A. By Proposition 14, every aEA o is a real spectral ele- 

ment; denote its associated real spectral measure by vs. Each va takes its values in K, 

and by Proposition 12 {va: aEAo} is an abelian family. Denote by X the compact space 

YI{a(a): aEA0}, by  # the product Q {v~: aEAo} (Theorem 2), and by  S the support of # 

in X. a= S [ad# for all aEA o when [a denotes the projection of S onto a(a). On the other 

hand, S [d# EA o for every continuous real function on S since K is closed in -~ for the in- 

duced topology. T h u s / - ~ S / d #  is a linear mapping on CR(S) onto A0; we show that  this 

mapping is norm-preserving where CR(S) is equipped with the usual sup-norm and A 0 

with its order norm. But  the order norm is determined by Ilal[o={i  : -Xe<~a<~e}; 

hence, by Proposition 15, ][alI0=sup{]2]: 2Ea(a)}. Now if a = y / d l ~  w i t h / E  CR(S), a (a)=  

[(S) by Proposition 8 and Theorem 4. I t  follows that  ]][]1 = Hallo hence CR(S) and A 0 are 

isometric under/-->~/dtz. Since for complex-valued / =/1 § E C(Z), II/ll =sup {[I/lcos 0 + 

/~sin 0]}: o <~0 ~<2~}, the mapping 1 - ~  ]dla is an isometry of C(S) onto ~ which completes 

the proof of the theorem. 
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Remark. In the preceding proof, the condition that  .~ be closed in A can be replaced 

by the weaker assumption that  the positive cone K of ~ be complete for the order topology 

o n  z~. 

If F(~u) is the subalgebra of A consisting of all elements in .4 that  are presentable by 

a fixed spectral measure/~, then the order norm on F(~u), for the order whose positive cone 

is K = (~u(f):/>~ 0,/E BR(/~)}, is simply the spectral radius of a E F(/~): Hallo = r(a). With the 

aid of Proposition 6, it is not difficult to show that  K is complete for the order topology 

on F(~u). Thus, in view of the remark above, the following result holds (A is assumed as 

semi-complete). 

COROLLARY. Every subalgebra F(l~ ) o / A  (l~ a fixed spectral measure), equipped with 

the norm a---~(a), is isomorphic-isometric to C(S) /or a compact Hausdor// space S. 

4. Spectral Operators 

Let E denote a locally convex vector space (over (~) with elements x,y .... ; the set of 

all continuous endomorphisms of E is, with the algebraic operations defined in the natural 

way, an algebra I:(E); we shall denote elements of s  by S, T ..... and the unit of s  

by I .  If  G is a family of bounded subsets of E (cf. Section 0) whose union is E, then s  

(more precisely, the underlying vector space of s becomes a locally convex space for 

the topology of uniform convergence on the sets of G (the G-topology); it is clearly no 

restriction to assume that  G is saturated, i.e., hereditary, and invariant under the forma- 

tion of closed convex circled hulls of finite unions of its elements. I t  is quickly verified 

that,  if G is a saturated family which is left invariant by each TE s then s  is a 

locally convex algebra for the G-topology, in the sense explained in Section 2. s  is a 

locally convex algebra for the G-topologies considered in the sequel. 

Thus the results of the two preceding sections apply, in particular, to endomorphism 

algebras of locally convex spaces. The results in this section are explicitly based on the as- 

sumption that  the elements under consideration are endomorphisms. They are true for 

general algebras to the extent tha t  they do not depend upon the fact that  s  is the al- 

gebra of a// continuous endomorphisms of E, since every locally convex algebra is an 

endomorphism algebra on its own underlying locally convex space. But  it should be noted 

that  spectral properties of an element depend, in general, upon the algebra in which it 

is imbedded. Also, if E is an ordered locally convex space then under certain conditions 

(see below) I::(E), equipped with an G-topology, is an ordered locally convex algebra for 

the order induced on s if A is an ordered locally convex algebra, then the order induced 

10" t -- 62173067 
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on A by its underlying ordered vector space is, in general, distinct from the given order 

4:)n A .  

DEFI~ITIO~ 4. A continuous endomorphism T o/ E is a spectral operator (on E) i/ 

T is a spectral element o /C(E)  under the topology o/simple convergence. 

By Definition 3, T is a spectral operator on E if there exists a spectral measure ~u, 

.on some locally compact space X, with values in A such that  T = ~/d~ where ] is a bounded 

,(complex-valued) Baire measurable function. If F(tu) denotes the domain of #, it follows 

from Definition 1 that  # is countably additive on F(#) with respect to the weak topology 

on s associated with the topology of simple convergence; since the dual of s for 

this latter topology is isomorphic with E|  ([4], Chapter IV, w 2, Proposition 11), it  

~ollows that  the additivity requirement on/~ is expressed by the relation 

<~t(O)x, x'> = ~ <g(~,,) :~, x'> 
r t=l  

where {~n} is a disjoint sequence in 1~(#), ~ = [.J ~ (~n and x (or x') are arbitrary elements in 

E (or E'). We shall also say that  T is a spectral operator for an Q-topology if/t  is countably 

additive for this topology on s A real spectral operator is, in accordance with Defini- 

tion 3 and Theorem 4, a spectral operator with real spectrum. We note that  every spectral 

operator has compact spectrum a(T), hence a non-empty resolvent set ~(T). Thus if E is 

Banach space, a spectral operator on E is a bounded spectral operator of scalar type in 

the sense of Dunford [6]. Unless the contrary is expressly stated, we assume in the sequel 

t ha t  the algebra ~(E) is equipped with the topology of simple convergence and semi- 

.complete for this topology; if an ordering is considered on s we denote by J the unit 

interval [0, I], and by LR(J) (Lc(J)) the real (complex) linear extension of J .  

PROPOSITION 18. I /  T is a spectral operator on E, then T = T I  + i T  ~ where T, and T 2 

4ommute, and are in LR(J) /or a suitable ordering o/ I~( E). When I~( E) is weakly semi.complete, 

$he condition is also su//icient ]or T to be spectral. 

Prooj. If T =  s Jdju, then ~u is positive for some ordering of s (Proposition 7) and 

T =  S/ ld /z+i  ~/2d/~ where /1 (/~) is the real (imaginary) part of /. Clearly T , =  ]/,d/z 

(i = 1,2) commute and are contained in LR(J) for every order on s for which # is positive. 

Conversely, when C(E) is weakly semi-complete and T =  T I + i T  ~ where T 1, T 2 have the 

required properties, if follows from Theorem 5 that  T~, T~ are real spectral operators 

:presentable by a spectral measure/z which implies that  T is spectral. 
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Examples 

1. Let  E denote a complex Hilbert space of arbitrary dimension. The set :K={T: 

<Tx, x> >~0 for x6E} is a convex cone of vertex 0 in I:(E). I t  is well known and easy to 

verify tha t  this cone, which consists of all positive Hermitian elements of I:(E), is normal 

for the topology of simple convergence, and that  T 1 T 2 >/0 if T1, T z are commuting positive 

elements. Further,  LR(J) is identical with the real vector subspace of I:(E) containing all 

Hermitian operators. Also, if T is a normal operator, then T=TI+iT2 where T~, T 2 

commute and are Hermitian; every such operator is normal. Hence every normal operator 

is spectral, for s  is weakly semi-complete. Thus Proposition 18 contains the spectral 

theorem for normal operators in Hilbert space. Among all spectral operators in Hilbert 

space, the normal operators are distinguished by the fact that  they are presentable by a 

spectral measure that  takes its values in ~ .  If T is an arbitrary spectral operator on Hilbert 

space, then by a result due to Mackey (see Wermer [27]) there exists an automorphism S 

of E such that  S-1TS is normal, hence the associated complex spectral measure of T 

takes its values in S~S  -1 which is a cone determining an ordering of I:(E), and which is 

isomorphic with ~ .  Hence all spectral measures with values in I:(E) take their values in 

convex cones isomorphic with ~ .  We note that  each spectral measure is countably additive 

for the strong operator topology. 

2. Let  E =2, where 2 is a perfect space (vollkommener Raum) in the sense of KSthe 

[11], equipped with its normal topology. s is an ordered locally convex algebra for the 

order structure induced by the natural order of 2. I t  follows (since 2 is weakly semi-complete) 

tha t  J is weakly semi-complete in s Hence every element in LR(J) is a spectral operator; 

clearly the elements of LR(J) are the operators representable by diagonal matrices with 

bounded real entries. Obviously, all elements in Lc(J) are spectral; more generally; every 

continuous endomorphism of 2 which is similar to an operator with bounded diagonal 

matrix, is a spectral element of s We remark that  this example includes all spaces 

/r(1 ~<ID< ~ ) ,  and similar remarks are valid for l~. 

If T =  S /d~  is a spectral operator on E and g is a complex function continuous on 

a(T) then, as we have seen in Section 3, g (T)=S go/dla is unambiguously defined. In 

particular, each spectral operator T has a conjugate T * = ~  )td/~ where ] is the complex 

conjugate of/ .  We have noted in the first of the preceding examples tha t  normal (Hermitian) 

operators are a special class of complex (real) spectral operators on Hilbert space, namely 

those whose associated complex (real) spectral measures take their values in the closed 

conical extension Y( of the set of all orthogonal projections. Since the unitary operators in 
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Hilbert space are those normal operators whose spectrum is contained in the unit circle 

{~: [~[ =1}, it appears natural to call an antomorphism U of a locally convex space E 

pseudo-unitary if it  is spectral and ff a(U)c {~: ]~f = 1}. We obtain the following charac- 

terization of pseudo-unitary operators: 

A spectral operator UE I~(E) is pseudo.unitary i/and only i/ UU* =I.  

For let U be pseudo-unitary; then U=~ zd~(z) where, by Theorem 4, the support S(~)of 

is contained in the unit circle. By Proposition 10, UU* = ~ ]~] 2dv = ~ dv = I. Conversely, 

ff UU*=I  and /(~)= I~] 2, we have /(U)=~ I~l~dv=I since /(U)=UU*; hence by the 

spectral mapping theorem (Proposition 16),/Is(U)] =a(1) = {1 }; thus o(V)c  {~: ]~t = 1 } as 

was to be shown. 

One of the important properties of normal operators in Hilbert space is that  they have 

no residual spectrum; that  is, ff T is normal and 2Ea(T), then either 2 is in the point 

spectrum of T, or else the range ( 2 -  T)E is dense in E. In other words, if 2 is any complex 

number, then either ~ is in the point spectrum of both T and its adjoint T', or ( 2 - T )  

and ( t - T ' )  are both one-to-one. Here the adjoint of T is the endomorphism T' of the 

topological dual E' of E which satisfies 

<Tx, x'> = <x, T'x'> 

for all x6 E, x'6 E'. While in Hilbert space, T' and T* may be identified (more precisely, 

T*-+T' is an anti-isomorphism of ]~(E) onto C(E')), we have to distinguish between T* 

and T' when T is a spectral operator on a general locally convex space. We have a (T)=  

a(T') and a(T) =a(T*) as it should be. In the next proposition, the dual E'  of E is equipped 

with any locally convex topology consistent with the dual system <E, E'>. 

PROPOSITION 19. TEE(E) is spectral i /and only i/ T' is a spectral operator on E'. 

When T is spectral, then or(T) = a( T') and every pole o/the resolvent o / T  is simple. I / v  denotes 

the complex spectral measure associated with T, then ~{2}E=(2 - T)-I{0} /or every 2, and 

v(2} ~ 0 it and only i/ (2 -  T) E is not dense in E. 

Proo/. Let T be a spectral operator on E, ~ its associated complex spectral measure. 

Clearly ~-~r'(5), ~ an arbitrary Baire set in C, is a complex spectral measure with values 

in s such that  S(~)=S(~') for the respective spectra of v and v'. Since 

; ~d(u(~)x,x'> =; ~d(x,v'(~)x'> 

for all xE E and x' E E',  it  is clear that  the existence of S~d~(~) E s implies the existence 

of S ~dv'(~) in s From Theorem 4 we obtain ~(T) =a(T'). I t  is clear, since the dual of 

E' is E by assumption, that  T and T' may be interchanged. If T is spectral and 20 a pole 

of the resolvent, then for 2 E~(T) one has 
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where a '=a(T) , , ,  (~} .  Hence )~ is simple, and ~{)~}E=()~-T)-~{0}. We show that  this 

latter relation holds for any complex 2. Let 2 be fixed and N= (2 -T ) -~{ O } .  If  ~{2}x=x 

for some x E E, then 

(2 - T ) x = f  (2  {A}z = 0, 

hence x E N and ~(2} E c N. To prove the reverse inclusion, we note that v(5)N c N for any 

since v commutes with T; hence ~-->~(~), where ~(~) is the restriction of ~((~) to N, is a 

spectral measure with values in I:(N). Now O= S (2- t )d~( t )=S td~(2-t) ,  which shows 

(Theorem 4) that  the spectral measure ~-->~(2-3) has its support equal to {0}, whence 

~{2}N =N.  :But then ~{;t} E ~  N as we wanted to show. 

To prove the final assertion, we note that  (2 - T) E is dense in E if and only if (~ - T') 

is one-to-one in E '  which, by what we have shown, is equivalent to v'{2} =0. :But ~'{2} ~0  

is equivalent with ~{2} =0  and the proposition is proved. 

Let V denote a vector lattice. If V + denotes the vector space of all linear forms on V 

that  are differences of non-negative linear forms (respectively differences of linear forms 

with non-negative real parts), a theorem due to F. Riesz asserts that  F + is an order complete 

vector lattice. More generally, if V is ordered with generating positive cone K such that  

0 ~< w ~< u + v with u, v E K implies w = x + y where 0 ~< x ~ u, 0 ~ y ~< v, the same assertion is 

valid ([20], Section 13). We shall say of such a cone that  K has the decomposition property; 

i t  is well known and easy to verify that  in every vector lattice, the positive cone has the 

decomposition property. If  E is a locally convex space, K a convex cone with compact 

base in E, then K is the closed convex hull of its extremal rays ([11], p. 342). A cone K 

~atisfying this assertion will he said to have the Krein-Milman property. Recently Choquet 

has shown(i) that  every cone which is the projective limit of a sequence of cones with 

compact base, has the Krein-Milman property. We recall that  a ray {2x:2/>0} where 

.O~:xEK, is extremal if x = y + z  with y, z E K  implies that y=Qx, z=(1 -~)x(0~<~ ~< 1). Be- 

fore proving the main result of this section, we establish this lemma. 

L~MMA 3. Let E denote a (properly) ordered locally convex space whose positive cone is 

r and generating, and has either the decomposition or the Krein-Milman property. 1/ 

P~ are continuous projections on E such that 0 <P~ <. I (i = 1,2)/or the induced order on F~( E), 

$hen P1 and 1)2 commute. 

(~) C. R. Acad. Sci. Paris 250 (1960), 2495-2497. 

_11 -62173067 Acts mathemativa. 107. Imprim4 le 29 mars 1962. 
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Proo]. Assume first tha t  K c E has the first of the properties stated. Since K is closed 

and proper, E + is total over E [18, (1.7)]. When Q1, Q2 denote the adjoints of P1, P2 respec- 

t ively for the dual system (E,E+~ (note tha t  P1,P2 are a(E,E+).continuous), it is clear 

tha t  O<<.Q,<~I ( i=1,2)  for the ordering induced on s  +) by  the lattice ordering of E+. 

I f  F = Q1 E+, G = ( I -  Q1) E+, then E + = F + G is a band decomposition of E +. (A band H is 

an order-complete sublattice of E+, such tha t  x e H and [y[ ~<[x [ imply y e H, and which 

contains the upper bound of every subset M c  H tha t  is majorized in E+.) Since 0 <Q2 < 1 

and since F,  G are bands, it follows tha t  Q2F= F and Q2Gc G. From this it follows easily 

tha t  QIQ2=Q2Q1, and hence tha t  P1P2=P~P1. Assume now tha t  K c  E has the Kre in-  

Milman property.  I f  x 4 0  generates an extremal ray of K and P1 is a projection with 

0 ~<P1 ~ I ,  then (since 0 <<.Plx ~x) we must  have either P1 x =x or else Plx  =0. As the same 

argument  applies to P~, we obtain P1P2x =P2PIx for every x on an extremal ray. By as- 

sumption, the convex hull of these rays is dense in K; hence, by  continuity, P~ and P~ 

commute on K. Since K is generating in E, the proof is complete. 

Remark. There are cones which have the Krein-Milman but  not the decomposition 

property.  For example, if K is a closed and proper right circular cone in R 3, K is clearly 

the closed convex hull of its extremal rays but  does not have the decomposition proper ty  

[20, (13.3)]. Since, on the other hand, every generating closed proper cone K = R  n which 

has the decomposition property is the positive cone for a lattice ordering of R n, it is clear 

tha t  K has the Krein-Milman property.  This property is also shared by  the positive cones 

of the lattices l~(1 ~<p < oo), but  in general the positive cone of a locally convex vector 

lattice does not have the Krein-Milman property.  Examples  are furnished by  the spaces 

Lr(p) (p/> 1, p Lebesgue measure on R), and C(X) where X is compact but  contains no 

isolated points. 

We recall tha t  a locally convex vector lattice is a locally convex space and a vector 

lattice, such tha t  the positive cone is normal and the lattice operations are continuous. 

THEOREM 7. Let E denote a locally convex vector lattice, or an ordered locally convex 

space whose positive cone K is weakly normal, generating and has the Krein-Milman property. 

Assume in addition that K is weakly semi-complete, and that every positive linear form on E is 

continuous.(1) 1] s E) denotes the algebra o/weakly continuous endomorphisms o/E, J the unit 

interval in I:(E) /or the induced order, then the vector subspace Lc(J) o/I:(E) is a subalgebra 

that is presentable by a positive spectral measure. 

Proo/. We consider the algebra s  under the topology of simple convergence where 

E is equipped with the weak topology. Since K is weakly normal and generating, it follows 

(1) Cf. Section O, Theorem D. 
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from Theorem C that  the positive cone :~ is normal in /~(E). Since every positive linear 

form on E is continuous, every positive endomorphism of E is weakly continuous which 

implies that  :K is (weakly) semi-complete. Since, by Lemma 3, any two projections in J 

commute, the family of all projections in J forms a Boolean a.algebra ]3. Let  T eLc(J),  

then T= T 1 - T ~ + i ( T  a -  Ta) where a suitable positive multiple of each Tt(i = 1 ..... 4) is 

in J.  By Proposition 13, each T~ is a real spectral operator whose associated real spectral 

measure takes its values in B (note that  K is closed in E, hence ~ and J are closed in I:(E) 

so that  J is semi-complete). Since B is abelian, it follows that  the family F --LR(J) satisfies 

the assumptions of Theorem 5; the hypothesis that  l:(E) be weakly semi-complete is 

dispensable since :~ has that  property. Consequently F is presentable by a spectral measure 

1~ taking its values in ]~; this implies (cf. Theorem 5, Remark) that  Lc(J) is a subalgebra of 

E(E) presentable by/~. 

COROLLARY. Under the assumptions o/the theorem Lc(J), when equipped with the norm 

T->r( T) (r the specCrvd radius o/ T), is isomorphic-isometric with an algebra C(S) /or compact S. 

This is immediate from Theorem 6, Corollary. 

Remarkz and Examples 
1. I t  may, of course, occur that  Lc(J) ={aI :  ae(~}. Thus if K is the cone {x: xa>~0, 

~12{_ S <  2~ x~-~xa) in R s, it turns out that  0 and I are the only projections in J ,  hence Lc(J) is 

trivial. An infinite-dimensional example of this character is furnished by the space E' of 

functions of bounded variation on [0, 1] vanishing at  0; if E' is equipped with its Maekey 

topology ~:(E',E) (as the dual of E=C(0 ,  1)), it is weakly semi-complete and lattice- 

ordered but 0 and I are the only continuous projections in J.  (It should be observed 

that  for v, however, E'  is not a locally convex lattice, and not every positive linear form is 

continuous.) That  there are no other projections in J follows from the fact that  there are 

no such projections on C(0, 1). On the other hand, if E is an order-complete/ocally convex 

lattice and x~>0, there exists a projection P E J  such that  P x = x  and Py=O whenever 

inf(x, [y[)=0.  A wide class of examples where Lc(J) is always of infinite dimension are 

the perfect spaces of K6the [11] (see Ex. 2 after Proposition 18). 

2. If, in addition to the conditions of Theorem 7, E is a Banach space, then the positve 

cone in I:(E) is normal for the topology of simple convergence (the "strong operator 

topology") by Theorem C. Hence it follows from Theorem 1 that  all elements of Le(J) are 

spectral for this topology. More generally, every T EL'c(J) is spectral for every ~-topology 

on s for which :K is normal and weakly semi-complete. 

3. Another class of examples for Theorem 7 is furnished by those weakly semi-complete 

(separable} locally convex spaces that  have an absolute basis; {xn} is an absolute basis of 
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E when each x E E has a unique expansion x = ~  cnx, which converges unconditionally 

to x for the given topology on E. ({xn} is a weak absolute basis if the series converges un- 

conditionally for a(E, E'); for tonneld spaces, the two notions coincide by  the Banach-  

Steinhans theorem.) I t  is easily seen tha t  the cone K = {x: c n >~0, nEN)  determines a lattice 

ordering on E, is weakly normal, generating and has the Krein-Milman property.  Clearly 

each x-->cn(x ) is a continuous linear form on E, hence cn(x)=<x,x'~> where x~ EE'(nEN). 

I f  T E I:(E), then T has a matr ix  representation (tin.,) where tm.~ = < Tx, ,  x~ > (m, n E N). I f  we 

assume in addition tha t  every positive linear form on E (for the order whose positive cone 

is K) is continuous (which, by Theorem D,:is automatically the case when E is a Frdchet 

space), then it follows from Theorem 7 tha t  every T E E ( E )  representable by a diagonal 

matr ix  with bounded entries is spectral; more generally, every operator T such tha t  S-1TS 

has such a matr ix  where S is an automorphism of E, is spectral. (Clearly, then, T has a 

bounded diagonal matrix with respect to the basis {Sxn}.) For compact operators, we 

obtain a partial converse. Recall that  T is compact if T(U) is relatively compact for some 

0-neighborhood U in E; an eigenvalue of T is simple if it has multiplicity one. 

PROPOSITION 20. I_~ T be a compact operator in E urith dense range and simple eigen. 

values. T is a spectral operator i /and only i / E  has a weak absolute basis with respect to which 

T has a diagonal matrix. 

Proo/. When T is compact, it is well known tha t  ~(T) consists of a finite or denumerable 

number  {2,: n = 1,2 .... } of eigenvalues such tha t  l im,2.  = 0  if the sequence is infinite. Also 

0 E~(T) except perhaps when E is finite-dimensional. I f  T satisfies the assumptions made 

and is spectral, then v{0} = 0  and v{~t~} =P~ where P~ are mutual ly orthogonal projections 

of rank 1; here v denotes the associated complex spectral measure of T. Since v is countably 

additive and S.(r) dv = I, it follows tha t  {x.} is a weak absolute basis of E where x~ spans 

the range of P.(nEN).  Clearly the matr ix  of T with respect to {x.} is ( ) ~ . ) .  Conversely, 

if {x,,} is a weak absolute basis of E with respect to which T has the matr ix  (2=~m), then 

for every subset M c  N we define 

/~(M) = ~ P , ,  
hEM 

denoting by P ,  the projection of E for which Pnx,  =x,,  Pnx,~ = 0  (m :V n). Since {x~} is an 

absolute basis, ~ is a spectral measure on the discrete space N into i:(E) (Definition 2) 

such tha t  T = S td/~(t) which proves the assertion. 

COROLLARY. On the 8pa~ C(0, 1), there exists no compact spectral operator with dense 

range and simple eigenvalues. 
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This is an immediate consequence of Proposition 20 and a result of Karlin [10] to 

the effect tha t  the space C(0, 1) possesses no absolute basis. We note tha t  the method of 

proof of Proposition 20 extends a t  once to the case where all but  a Iinite number  of eigen- 

values are simple. 

5. Spectral Operators with Unbounded Slmetrum 

Let  E be a locally convex vector space (over C), I:(E) the algebra of weakly continuous 

endomorphisms of E, equipped with the topology of simple convergence. Unless otherwise 

stated, we assume in this section tha t  E is weakly semi-complete, and tha t  I:(E) is weakly 

semi-complete. By a linear mapping in E, we understand a linear mapping T defined on 

a vector subspace D r c  E, with values in E. Such a mapping is closed if the graph {(x, Tx): 

xEDT} is closed in E • E; it is said to commute with an SEs  if S T ~  TS, i.e. if TS 

(defined on S-1 (DT)) is an extension of S T  (defined on DT). The resolvent set 0(T)is defined 

as the largest open set in (~ such tha t  ( ) l -  T) -1 exists, is continuous with dense domain, 

and is such that  its continuous extension R(2) is holomorphie in a neighborhood of ~t" 

The spectrum a(T) then is the complement of Q(T) in (~. We shall extend, in this section, 

the concept of spectral operator to a class of mappings with non-compact spectrum. The 

members of this class are, consequently, in general not elements of I:(E). 

Let  (X,/,/a) be given, where X is a locally compact Hausdorff space,/a a spectral mea- 

sure on X into I:(E), and / an arbi t rary complex valued Baire function on X.  The triple 

(X,/,/a) defines a linear mapping in E as follows. If  x E E  is fixed, (~->/a(6)x=/ax(~) is a 

vector measure on X (Definition 1); denote by D r the subset of E such tha t  for xEDf,  / 

is /ax-integrable (Section 1) and [az(/) = f/d/ax E E. Clearly D I is non-empty (since 0 E DI) 

and a vector subspaee of E; thus x-->/az(/) defines a linear mapping T in E with domain 

Dr=D/.  We shall write, to denote this association, T-~ (X,/,/a) or T = f  /d/a, or T =  

f /(t)d/a(t). 

DEFINITION 5. A linear mapping T in E is spectral (or a spectral operator) i/there 

exists (X,/,/a) such that T ~ (X,/./a). 

We note tha t  every spectral operator in the sense of Definition 4 is spectral in the 

present sense; if we want to refer specifically to a member  T of the subclass singled out by  

Definition 4, we shall say that  T is a spectral operator on E with bounded spectrum. When 

{Pn} is a sequence of mutual ly orthogonal projections in s  such tha t  I = ~ Pn weakly, 

we shall say tha t  {Pn} decomposes E continuously and write E = ~  E~, where E ~ =  

PnE(nEN). 
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PROPOSITION 21. I /  T is a spectral mapping in E, then D r is dense, and there exists 

a continuous decomposition E = ~  E n such that the restriction Tn o/ T to E~ is a spectral 

operator on E,  with bounded spectrum (hEN), and such that Tx = ~ F  T~P~x, the series being 

weakly convergent i /and only i / x  E Dr. 

Proo/. Let T ~  (X, / , f ) ,  O~=/-~[n-1 ~< I~I <n],P~=f(~n)(nEN).  Since/t  is a spectral 

measure, {P~} decomposes E continuously. If x E E~, then f(~n) x = x and fx((~) =f(~)f(r x = 

f(~ N (~n)x for every Baire set 5 in X; hence / is integrable with respect to fix which implies 

tha t  x E Dr; thus En c D r for every n. Hence O F E n  (the algebraic direct sum) is contained 

in D r whence it follows that  Dr is dense in E. If f ,  denotes the spectral measure whose 

values are the restrictions to E n of the values of f ,  then clearly Tn=~/~dfn where ]n= 

]g~ (g~ the characteristic function of ~) .  Hence each T~ is a spectral operator with bounded 

spectrum on E~ (nEN). Finally, when xEnr ,  it follows that  limp ~ ~/ndfx=~/dfx for 

a(E,E'), thus T x = ~  T~Pnx. Conversely, since ~r  everywhere in X, the con- 

vergence of ~ T  ~/~df~ for a(E, E') implies that  / is f~-integrable with ~/d#x E E.(~) Therefore 

xEDr. 

PROPOSITION 22. Every spectral operator in E is closed. 

Proo/. Let T ~ (X,/ , f ) ,  let (Pn} denote a decomposition of E satisfying the assertions 

of Proposition 21, and let Sn = TP~ (hEN). We show first that  each Pn commutes with T, 

tha t  is, P~ T ~_ TP~. If x E D r, then 

where we have used the notation of the preceding proof. To show that  T is closed, let x - ~  

where x is restricted to DT; i.e., let x converge to $ E E along the trace o n  D T of the neigh- 

borhood filter of $. Further assume that  T x - ~ .  Since P~ is continuous, it follows that  

x, =P~x-->Pn$ =xn, and Yn =P~ Tx--->P~,~ =~,. Since P~ and T commute, we obtain Pn Tx = 

S , x  and, S~ being continuous, S ~  =?]~. I t  follows that  

1 1 

which, by Proposition 21, shows that  �9 E D r and T~ =~. Hence T is closed. 

Our next  objective is to show tha t  every spectral mapping T has an adjoint T '  which 

is spectral in E'. We have to discuss the notion of adjoint of mappings not necessarily 

continuous on E since it appears tha t  for general locally convex spaces, this concept has 

(1) Cf. the proof of Lemma 5 below. 
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not been considered in the literature. Let  T be a linear map, with values in a locally convex 

space E, and defined on a vector subspace D r of E. One considers the subset E~, of E '  

for whose elements x', 

x---> < Tx, x'> 

is continuous on D r. I f  Dr  is dense in E (as we shall henceforth assume), then x'  determines 

uniquely a y'EE" such tha t  <Tx, x'> =<x,y '> for xEDr. Since E~ is a vector subspace of 

E '  and since x'-->y' is obviously linear, x'-->y' determines a linear mapping T '  with domain 

Dr. = E'r and values in E ' .  T '  is called the adjoint of T. We collect a number  of facts needed 

later in the following lemma, whose proof is a straightforward generalization of a method 

designed by  yon Neumann (see [23]). E '  is considered under any  locally convex topology 

consistent with <E, E'>. 

LEMMA 4. Let T be linear in E with dense domain Dr. The adjoint T' is closed; in order 

that D T ,be dense in E', it is necessary and su//icient that T has a closed extension. In  this 

case, T" is the smallest closed extension o/ T; hence T = T" when T is closed. I / T  1 ~ T2, 

then T~ ~_ T'I. 

Proo]. When E • E denotes the (algebraical and topological) product of E with itself, 

then the dual of E • E can be identified with E'•  E', the canonical bilinear form on 

(E x E) • (E'  • E ')  being 

(z,z')-+<z,z'> = <x,x'> + <y,y'> 

where z=(x , y )EE  • z '=(x ' ,y ' )EE'•  E'. The mapping r (x',y')-->(y',-x') is an auto- 

morphism of E' • E' such tha t  ~b ~ = - I .  From this and the relation 

<Tx, x '>-<x,T 'x '>=O (xEDr, x'EDr. ) 

one concludes tha t  the graph Gr" which satisfies the relation ~[Gr,] =G~ is closed. Hence 

T '  is a closed map. I t  is further clear tha t  T 1 ~ T 2 implies T~_~ T;. 

When xE(DT,) 0, then (x,0)E(Gr,)0 and (0,-x)E[~b(Gr.)0] = G~r ~ I f  T is closed, Gr is 

closed hence G~176 by the bipolar theorem. I t  follows tha t  ( 0 , - x ) E G r  which implies 

x =0,  hence tha t  Dr~ is dense. Thus if T is not closed but  has a closed extension S, then 

S '  ~ T '  and it follows tha t  D r, is dense in E ' .  Conversely, if Dr,  is dense for some T, then 

T" is defined by  y--->-x for every pair (x,y)EG~ and the graph of T" is the closure of Gr 

in E • E. Clearly T" is an extension of T, and the smallest closed extension possible. Thus 

T = T" when T is closed. 
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LEMMA 5. Let T,,,(X,/,[~). I /  x'EDT,, then / is #'~,-integrable, where #'  denotes the 

adjoint spectral measure o/~,  and S f d]~'~: e E' when E'  is (~( E', E).semi-complete. 

Proof. Without  loss of generality, we assume tha t  / is real-valued and / ~> 0. Let  Xo ~ DT, 

be fixed. By definition of Dr,, the linear form x-->S/d<l~X, Xo) is continuous on DT. Denote 

by  ~0 the real par t  of the continuous extension of this linear form to E. 

We show first tha t  the set {g'(5)x0 : (~ a set in the domain F(#)} is contained in a weakly 

normal cone in E'. For this, it is sufficient (Theorem A, Corollary) to show tha t  each x E E 

is the difference, x = x l - x 2 ,  of two elements such tha t  Re<x~,#'((~)x0> >10 ( i=1,2;  ~EF(#)). 

By  the t t a h n ~ o r d a n  decomposition theorem, there exists r EF(tu ) such tha t  Re<#(~)x, 

x0> ~ 0 for all ~ c el , and ~< 0 for all (3 c e~ = X ~ el, since O-~Re <#((~) x, x0> is a (totally finite) 

real-valued measure on the a-algebra F(#). Since ~u is a spectral measure, xl=/~(el)x and 

x 2 = -~u(e~)x furnish a decomposition x = x  I - x  2 of the required type. (Note tha t  ex and ez 

depend on x.) 

We show next  tha t  ~ is positive on K, where K is the dual cone in E of the convex 

conical extension of {#'(~)x0 :~ eP(/x)}. As we have shown, E = K - K .  I t  is also true t ha f  

DT=DT N K - D  r N K since if / is/x,-integrable, / is/x~ -integrable where x 1 =lU(el)X. Now 

is positive on DT f3 K, hence on K since ~ is continuous and, by  the bipolar theorem, K 

is the weak closure of K f3 DT in E. 

Finally, let {/m} be an increasing sequence of bounded Baire functions, such that, 

]m>~O (mEN) and limm/m=/.  I f  we set ~ (x )=Re~/md<#x ,  xo>, then clearly 0~<~(x)~<~(x) 

on K. This implies tha t  {qz} is a bounded monotone sequence whence it follows (Proposi- 
t . I ~  i tion 1) tha t  I is tu~.~ Since ~lmd#~.~ E E ,  the weak semi-completeness of E '  implies 

tha t  ~/d#'~., e E'. 

THEOREM 8. I /  T is a spectral operator in E and E' is weakly semi.complete, then 

T' is a spectral operator in E'. 

Proo/. Let T ~  (X,/,~u). Since the domain Dr is dense in E (Proposition 21), it follows 

from Proposition 22 and Lemma 4 tha t  the adjoint T' of T in E' exists, and is a closed 

linear mapping with dense domain Dr'. When x'E DT. , it follows from Lemma 5 tha t  / is 

tu~,-integrable, hence in view of 

< Tx, x'> = <~Idl~, x'> = <x,fldl~'~, > = <x, T'x') 

(X 6 DT, X' E DT,), it follows tha t  

T'x'=f/d i. (x'eDrO. 
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Conversely, if / is ju'~,-integrable with ~ / d/~, E E '  for some x' E E', then clearly x--->(x, ~ / d~'~ .~ = 

/d(#x,x'~ is continuous on Dr, hence x'EDr,. I t  follows now that  T',, ,(X,/,/s 

by Definition 5 shows that  T' is a spectral operator. 

When T,,~ (X,/,#), t hen / (# )  is a complex spectral measure (Proposition 8). If by 

we denote the identical mapping on the complex plane C and let v =/(1~), it is not difficult~ 

to verify that  T ~  (C, 1,v). We are not able to show that  ~ is uniquely determined by T 

unless the resolvent set Q(T) is non-empty; in this case, ~ will be called the complex spectral 

measure associated with T. 

T~EOREM 9. I] T,,, (C,l,v) is a representation o/ T by means o /a  complex spectral 

measure ~, then the support S(v) is equal to a( T). I / T  is spectral and ~( T) ~r then ~, is unique 

and commutes with every Q E ~( E) that commutes with T. 

Proo/. If T is spectral but  a(T) is not the entire plane, an inspection of the proof of 

Theorem 4 shows that  the conclusion a(T)=S(v) remains valid. If S(v) is the entire plane 

then the second part  of that  proof still applies while the inclusion a(T)~ S(v) is trivial. 

We assume now that  ~(T) is non-empty. Let 20E~(T); since T is closed, (40- T) -1 =R(20} 

is closed, hence defined and continuous on E with range D r. With the aid of Proposition 21, 

it is easily verified that  

R(2~ = J 2 o  - ~" 

Hence R(20)E s is a spectral operator (Definition 4) with bounded spectrum; when f 

denotes the bounded continuous function ~-->(20-~) -1 on S(v), then R(2o)= S ~d~(~) 

where Q =/(v) is the associated complex spectral measure of R(2o). If T ~ (C, 1,v) is a second 

representation of T, then also R(~o)=] ~d~(~) where ~ =/(~). By Theorem 3, Q =~; if ~ is 

a bounded Baire set, then so is e =/(~) and it follows that  v(~)=~(e)=~(e)=~(~) whence i t  

follows that  ~=~. Similarly, if QEF~(E) commutes with T, then Q~R(2o) and hence, by  

Proposition 12, Q commutes with ~ and, therefore, also with v. The proof is complete. 

COROLLARY. 1/ T is the limit o /a  sequence {Tn} o/spectral operators wish bounded 

spectrum in the sense o/Proposition 21, then a( T) = U na( Tn). 

The corollary is clear from the preceding theorem and the corollary of Theorem 4. 

Remark. If a(T) covers the complex plane, the unicity of ~ in T=~ ~dv(~) can be 

proved, for example, when it is known that  for every projection P E s P T  ~_ TP implies 

that  P commutes with S ~dv(~). From this it follows that  in Hilbert space, every representa- 

tion T ~  (C,l,v) is unique. 
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If/~ is a spectral measure on a locally compact space X, with values in s then 

the class of all spectral operators T in E such that  T ~  (X,/,#) for some complex Baire 

function on X is, in general, not an algebra under the usual definition of addition and 

multiplication. However, by a consideration similar to the proof of Proposition 21, one 

concludes that  if T~=S/ldl~, T~=;/2d~, then o~T~=; O:/ld/~ and T~+T2c_;(h+/~)d #, 

T 1Tz c_ ~ ]l]~d/~. Thus, in place of Proposition 10, we obtain the following result. 

PROPOSITION 23. Let T , = ;  ~dv,(~)(i=l ..... n) be spectral operators in E such that 

= Q'~=I ~ exists (Theorem 2). I / ~  is any complex polynomial in n indeterminates, then 

T = ~(T1, Tz ..... T~) 

has a closed extension which is a spectral operator in E. 

The definition of bounded functions of spectral operators with bounded spectrum 

(Section 3) can be extended to define g(T) where T is any spectral operator in E and g 

an arbitrary complex-valued Baire function on (~. When T ~ (X,/,#), the natural definition 

of g(T) is g(T)= S go/d#=S g(~)dv(~) where v=/(/~) (Proposition 8). However, unless 

is uniquely determined by T, we cannot be certain that  this definition is unambiguous. 

(It is, to be sure, unambiguous for entire analytic functions even when ~(T)=r  Thus, 

except when g is an entire function, we consider g(T) as defined when ~(T) is non-empty; 

then g(T) = ~ g(~)dv(~) where v is the associated complex spectral measure of T (Theorem 9). 

Let  Gc denote the algebra of complex Baire functions that  are bounded on bounded subsets 

of a(T); if ~ denotes the associated complex spectral measure of T, and (~n} a sequence of 

disjoint bounded Baire sets in C whose union is (~, then P~ =v{(~n) (neN) defines a continuous 

decomposition of E such that  for each n, the restriction of g(T) to En =PnE is a spectral 

operator with bounded spectrum for every g 6 Gc. From this it follows by Proposition 21 

that  g(T)h(T) = (gh)(T) for every pair g, h6Ge, and thus that  g--->g(T) preserves multiplica- 

tion on Gc. 

If T is a spectral operator in E, T,~ ((~, 1,v), then T = T 1 +iT~ where T 1 = ~ Re (~)du(~) 

and T~=~ Im(~)dv(~). Clearly T1, T 2 are spectral operators with real spectrum. 

When ~(T)4: r this decomposition is unique in the following sense: If T =S 1 +iS~ where 

$1, S 2 are real spectral operators such that  the product vl| of their associated real spectral 

measures exists, then S~ = T~ and S~ = T~. The proof follows from Theorem 9 and a con- 

sideration entirely analogous to that  preceding Theorem 5. 

I t  follows from Definition 5 that,  roughly speaking, there exist as many spectral 

opera~rs  in E as there are spectral measures with values in JC(E); thus the conditions of 
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Theorem 7, in conjunction with the subsequent examples, give a means to construct spectral 

operators with unbounded spectrum. We shall, however, in analogy to Section 3 characterize 

spectral operators directly with the aid of order structures on i:(E); to avoid clumsy for- 

mulations, we restrict ourselves to real spectral operators (that is, to spectral operators 

with real spectrum). 

THEOREM 10. Let T be a closed operator in E with dense domain D T. In  order that 

T be a real spectral operator, it is necessary and su//icient that ( I  + T2) -1 exists, and that there 

is an ordering o/F~(E)/or which 0 <~ (I  + T2) -1 ~ I and - I ~ T ( I  + T2) -1 ~< 1. 

Proo/. The condition is necessary. Let  T = S tdv(t) where v is the associated real spectral 

measure of T. T is closed and so is T 2 = ] t2dv(t) by Proposition 22 and the remarks follow- 

ing Proposition 23 (these will repeatedly be used in this proof). I t  follows immediately 

that  (I  + T~) -1 exists and that  

( I+ 1-- 

Further,  since (1+ T~)-lfi E(E), we have T(1 + T~) -1 = S (t][1 + t2])dv(t). By Proposition 7, 

there exists an ordering of s  for which v is positive. I t  is clear that  for any such ordering 

T satisfies the inequalities listed in the theorem. 

The condition is sufficient. Set R = ( I + T 2 )  -1, S = T ( I + T ~ )  -1. We show first tha t  

RT~_ T R  (i.e., that  R and T commute). If xEDr, y = R x ,  then x = y + T 2 y  which'shows 

tha t  yGD T. Since R -1 exists, R T x =  T R x  for xEDT is equivalent with T x = R - 1 T R x ;  if 

R x = y ,  then from x = y +  T~y it follows that  y E D T 3  when x E D  T. :Now T x = T y +  TSy = 

R-1Ty  = R-~TRx  which proves the assertion. From this it follows that  R and S commute. 

By Proposition 14, R = ~ tldVl(tl) and S = ~ t~dv2(t~) and the associated spectral measures 

~1 and v2 commute by Proposition 12. Since Vl,V~ take their values in the positive cone of 

s  for a certain ordering of s  by assumption, Theorem 2 shows that  the complex 

spectral measure v=vl| exists. Also, since R -1 exists, vl{0 } =0,  and, integrating over 

{3 ~ {0}, R -1 = ~ 2~Idv~(2x)= ~ 2~dv(21,2~) in the sense of Definition 5. As S = ~ 22dv(,~,22), 

i t  follows from Proposition 23 that  

z = sR-l  f 

where we have set/(~1,~2) =~11~2 for ~1 =~= 0,/(0,~2) : 0 .  Since S is in s it follows that  in 

the last inclusion equality must hold. This shows that  T = S / d r  where / is real-valued; 

by  Definition 5 the proof is complete. 
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Remark.  Instead of using the method of reduction adopted above, we could have 

proved an analogous theorem utilizing the Cayley transform 2-->()l- i)/(~ + i) to characterize 

real spectral operators. (This method is the original one, due to yon Neumann (see [17]).) 

The result would have been that  a closed linear map T is a real spectral operator if and 

only if its Cayley transform ( T - i I ) ( T  + i l )  -1 is pseudo-unitary (Section 4, p. 158). 

Examples  

1. The theorem clearly includes the case of arbitrary self-adjoint operators in t t i lbert  

space, after which it is shaped. Since every normal operator in Hilbert space has a canonical 

decomposition T = T 1 + i T  2 where T1, T 2 are its self-adjoint real components, which com- 

mute, the spectral representation of normal operators in Hilbert space is contained in the 

combination of Theorem 10 and Proposition 23. Every spectral operator in Hilbert space 

is similar to a normal operator (cf. Example 1, following Proposition 18). Regarding the 

unicity of the representation T ~ (C,~,v), cf. the remark after Theorem 9. 

2. If )~ is a perfect space (Example 2, following Proposition 18), then every diagonal 

matrix with arbitrary complex (real) entries defines a spectral (real spectral) operator; the 

property of being spectral is, of course, invariant under similarity. We should like to 

point out, however, a contrast of the case of operators on a Banach space with the general 

situation. Every operator T on a Banach space with a(T) unbounded is necessarily disconti- 

nuous (hence, when closed, not defined everywhere). If we denote by r and ~,  respectively, 

the space of all complex functions on a countable respectively uncountable set, equipped 

with the product topology, then every diagonal matrix defines a continuous endomorphism 

T of (o (or ~). If A is any non-empty subset of C, then clearly we may choose T such that, 

the point spectrum of T is dense in A (for co) respectively contains A (for ~).  

3. Let E denote a weakly semi-complete space with absolute basis {xn}; denote by 

[x,,,x',,] thc corresponding biorthogonal system in E • E'. If {).n} is an arbitrary sequence 

of complex (rcal) numbers, then 
oo i 

1 

defined on the set D T for whose elements the series converges, is a spectral (real spectral) 

operator on E. 

A spectral operator T in E with real spectrum will, in accordance with the case where 

a(T) is compact, be called positive if a ( T ) c  R+; it is clear that  if T is a real spectral operator 

with a(T)  bounded below, then a I +  T is positive for suitable a~>0. (If a(T)  is bounded 

above, then a I -  T is positive for some ~/>0.) Thus semi-bounded self-adjoint operators 
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are special cases of spectral operators with semi-bounded real spectrum; they are distin- 

guished by the fact that their associated spectral measures have values that are orthogonal 

projections in Hilbert space. Positive spectral operators are characterized by a condition 

which is simpler than that of Theorem 10. 

PROPOSITION 24. A closed operator T in E with dense domain DT is a positive spectral 

operator i/ and only i/ (I + T) -i exists as a member o/ F~(E), and O<~(I+ T)-I <~I /or a 

suitable order on •( E). 

Proo/. If T =  ~ tdv(t) where a(T)cR+, then (14  T)-~ c_ ~ dv(t)/(1 +t) since the support 

S(~)=~(T) by Theorem 9. Since ~(l+t)- id~(t)Es and T, hence ( I + T )  -1, is closed, 

equality must hold. By Proposition 7, there exists an order on I:(E) for which v is positive; 

hence (since S(v)c R+)0 ~< (I + T)-i~< I for this ordering. Thus the condition is necessary. 

To prove its sufficiency, we note that ( I + T ) - I = ;  tdv(t) by Proposition 13, and 

S(~)c [0,1]. Let/(t) =t- i (1 - t )  for t>0, /( t )  =0 for t~0. Then clearly T _  S/dr  and again 

equality must hold since T is closed. By Definition 5, T is spectral and, since/(R) c R+, 

it follows that a(T)~R+ (Theorem 9, Proposition 6) which completes the proof. 

COROLLARY. Let E be an ordered locally convex space satis/ying the assumptions o/ 

Theorem 7. Let T be a closed operator on E with dense domain D such that D = D n K -  D N K. 

I / D  N K is mapped into K by T and (1, 1) onto K by I + T, then T is a positive spectral 

operator in E. 

Proo/. I t  follows from the assumptions that R = ( 1 4  T) -i  exists. Moreover, R K c  K 

hence R is weakly continuous in E. Thus if E is equipped with the weak topology, R E I:(E) 

and, since ( I + T ) x = x + T x > ~ x  for all x e D  N K, O<~R<I for the induced order on F~(E). 

I t  follows now from Proposition 24 that T is a positive spectral operator in E. 

We note that if E' is weakly semi-complete (E being assumed as weakly semi-complete 

throughout this section), then by Theorem 8 the assertions of Proposition 19 remain in 

force for all spectral operators in E. For operators with non-empty resolvent set we obtain, 

in addition, the following result. 

PROeOSITION 25. Let T be a closed operator in E with dense domain and~(T)#:r 

T is spectral i] and only i] /or  each ,~E~(T), ( ,~-T)  -~ is spectral with compact spectrum. 

Moreover, if T is spectral, then T has no closed proper extension which is a spectral operator. 

Proo/. If T,~ (C,i,v) then clearly ( 2 - T ) - i = ~  (2-~)-Idv(~) for each 2eQ(T) so that 

(4 -  T) -1 is spectral (Definition 4). Conversely, if (~ , -  T) -1 =S td~u(~) for some ,~.eQ(T), 
one obviously has 
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; to-  T c  I dju(~) 
- J~,~. ; to -  

(note tha t  ~u(;t0) = 0  since ;t0 - T is one-to-one). Here equality must  hold since T is closed. 

Thus T is a spectral operator (Definition 5), 

whe re / (~ )=0  for ~ =;t0,/(~) =; t0+(~-; t0)  -1 for ~=~20. Let  U _  T where U is a spectral ope- 

rator. Let  20E~(T). If  20E~(U), then it is clear tha t  U = T since U is closed. In  fact i f  U~= T, 

the only remaining possibility is tha t  every 2 E~(T) is in the point spectrum of U. Hence, 

since U is assumed to be spectral, it follows (cf. Proposition 19) tha t  2 o is in the point 

spectrum of U'. Since U' ~_ T '  by Lemma 4, ;to is in the point spectrum of T '  which clearly 

contradicts 20 E~(T). Hence U = T. 

I t  is also clear tha t  if T is spectral with non-empty resolvent set, no proper contraction 

of T can be a spectral operator. 

R e f e r e n c e s  

[1]. BADE, W. G., Unbounded spectral operators. Paci/ie J.  Math., 4 (1954), 373-392. 
[2]. - -  Weak and strong limits of spectral operators. Ibidem, 393-413. 
[3]. BIsHop, E., Spectral theory for operators on a Banaeh space. Trans. Amer. Math. Soc., 

86 (1957), 414-445. 
[4]. BOURBAKI, N., Espaces vectoriels topologiques. Chaps. I - H ,  I I I - I V .  Actualitds scienti]iques 

et industrielles, 1189-1229. Paris 1953, 1955. 
[5]. - -  Integration. Chaps. I - IV,  V, VI. Actualitds scienti]iques et industrielles, 1175, 1244, 

1281. Paris 1952, 1956, 1959. 
[6]. DUNFORD, N., A survey of the theory of spectral operators. Bull. Amer. Math. Hoe., 64 

(1958), 217-274. 
[7]. - -  Spectral operators. Paci]iv J.  Math., 4 (1954), 321-354. 
[8]. D~FO~D, N. and SO~)~TZ, J., Linear Operators. Part  I ,  General Theory. New York, 

1958. Part  II ,  Spectral Theory (to appear). 
[9]. ~E~rDE~Vr~,  H., Teflweise goordnete Moduln. Prec. Akad. Wetenseh. 39 (1936), 641-651. 

[10]. K~CLIN, S., Bases in Banach spaces. Duke Math. J., 15 (1948), 971-985. 
[11]. K 6 T ~ ,  G., Topologische lineare Rdume. Berlin-GSttingen-Heidelberg, 1960. 
[12]. LOReH, E. R., On a calculus of operators in reflexive vector spaces. Trans. Amer. Math. 

Soc., 45 (1939), 217-234. 
[13]. - -  The integral representation of weakly almost periodic transformations in reflexive 

vector spaces. Trans. Amer. Math. See., 49 (1941), 18-40. 
[14]. N A ~ O ~ ,  I., Partially ordered linear topological spaces. Memoirs Amer. Math. See., no. 

24 (1957). 
[15]. NAKANO, H., Semi-Ordered Linear Spaces. (Tokyo 1955). 
[16]. NE~AVER, G., Zur Spe]ctraltheorie in lolcalIconvexen Algebren. Diss., Heidelberg, 1960. 
[17]. N E U ~ ,  J. yoN, Allgemeine Eigenwerttheorie hermitiseher-Ftmktionaloperatoren. 

Math. Ann.,  102 (1929), 49-131. 



SPECTRAL MEASURES IN LOCALLY CONVEX ALGEBRAS 173 

[18]. S C m ~ R ,  H.,  Halbgeordnete lokalkonvexe Vektorr~ume. Math. Ann. ,  135 (1958), 115- 
141. 

[19]. - -  Halbgeordnete lokalkonvexe Vektorr~ume. I I .  Math. Ann. ,  138 (1959), 259-286. 
[20]. - -  Halbgeordimte lokalkonvexe Vektorr~ume. I I I .  Math. Ann. ,  141 (1960), 113-142. 
[21]. - -  A New class of spectral  operators.  Bull. Amer.  Math. Soc., 67 (1961), 154-155. 
[22]. STO~,  M. H.,  A general Sheory of spectra. I, I I .  Proc. Nat.  Acad. Sci. U.S.A. ,  26 (1940), 

280-283; 27 (1941), 83-87. 
[23]. Sz.-NAoY, B., SpektraldarsteUung linearer Trans/ormationen des Hilbertschen Baumes. 

Berlin, 1942. 
[24]. TAYLOR, A. E., Spectral  theory  of closed dis tr ibut ive operators.  Acta Math., 84 (1950), 

189-224. 
[25]. TULCV.A, I . ,  Spectral  operators on locally convex spaces. Bull. Amer.  Math. Soc., 67 (1961), 

125-128. 
[26]. W~LB~O~CK, L., Le ealeul symbolique dans les algebres commutat ives.  J.  Math. Pures 

Appl. ,  33 (1954), 147-186. 
[27]. W~.l~ym~, J.,  Commuting spectral  measures on Hi lber t  space. Paci/ic J .  Math., 4 (1954), 

355-361. 

Receieed M a y  25, 1961 


