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Introduction 

1. In  the theory of conformal mapping and of Riemann surfaces, tile concepts of 

invariance and covariance under change of variable play an important  role. They allow 

the s tudy of functions and differentials on abstract ly given domains and have been exten- 

sively utilized from the early days of the theory. In  this development the complete analogy 

to the tensor calculus, in general differential geometry of surfaces, has been helpful and 

has motivated and guided the investigations. A differential in the theory of Riemann 

surfaces is the analogue of a tensor in differential geometry in so far as both entities are 

transformed by a linear homogeneous operation under change of the coordinate system. 

However, it is well known tha t  differential geometers were soon led to introduce entities 

with more complicated transformation laws than those of tensors. In  particular, the 

Christoffel symbols and connections of a surface became an important  tool in the study of 

the geodesics and the curvature of a surface. A connection is an enti ty which transforms 

under a linear but  non-homogeneous law if the coordinates are changed. I t  is natural to 

inquire whether the analogous concept of a connection should be applied likewise in the 

theory of conformal mapping and Riemann surfaces. The present paper is devoted to an 

exposition of the role of connections in various applications of this kind. Before entering 

into a systematic development of the theory of connections, we wish to give in this intro- 

duction a brief preview of our results. This will enable the reader to judge a t  one glance 

the usefulness and significance of the concept of connection in a systematic s tudy of 

conformal transformations. 

(1) Th i s  work  was  suppo r t ed  in pa r t  b y  t h e  Office of Nava l  Resea r ch  u n d e r  T a s k  Nr  041-086 

a n d  b y  t he  Na t iona l  Science F o u n d a t i o n ,  G r a n t  8199, a t  S t an fo rd  Un ive r s i t y .  Rep roduc t i on  in whole  

or in pa r t  is p e r m i t t e d  for a n y  purpose  of the  U n i t e d  S ta tes  G o v e r n m e n t .  
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2. In  Chapter I we deal with the theory of conformal mappings of planar domains of 

finite connectivity. In  this case, much of the information about the domain is contained 

in the geometry of the boundary curves and it is shown tha t  the curvature of the boundary 

curve transforms by  an affine law (which is similar to the behavior of a connection) under  

conformal mappings of the domain, the coefficients of the transformation formula depending 

upon the mapping function. The transformation law enables us to s tudy the mapping of a 

domain onto canonical domains with specified laws for the curvature of the boundary. 

The simplest canonical domain of this kind is the circular domain where the curvature 

on each boundary component has a constant value. The requirement tha t  an analytic 

function w =/(z) maps a domain in the z-plane onto such a canonical domain in the w-plane 

leads now in a natural  way to an integral equation for the unknown mapping function ](z). 
True, the integral equation is nonlinear and the unknown constant curvatures of the  

canonical domain enter as accessory parameters  into the integral equation. However, the 

integral equation is near enough in type to the well-studied Hammerste in  integral equations 

to suggest an interesting and simple ext remum problem with the same solution. In  this 

way, a new and direct existence proof for canonical mapping on circular domains is obtained, 

and a new functional is introduced which has a remarkable transformation law under  

conformal mapping and which plays an important  role in the later developments of the 

theory of connections. 

While the mapping on circular domains is certainly particularly simple and interesting, 

mappings on domains with different laws for the curvature of the boundary can be t rea ted  

in a similar way. I f  we s tar t  with an arbi trary domain and map it onto a domain bounded 

by  convex curves, we can characterize this particular mapping by an ext remum problem 

for the corresponding mapping function. I f  we map the original domain onto two different 

domains bounded by convex curves, we obtain two inequalities for the corresponding 

mapping functions; namely, the fact tha t  each mapping function gives a lesser value to i ts  

own functional than  its competitor. From these inequalities, we can derive simple distortion 

theorems for conformal mappings between domains with convex boundary curves. 

Finally, we consider the mapping of a domain by 'means  of an analytic function/(z; t) 
which depends on the real parameter  t. The functionals o f / ,  introduced in connection with 

the above existence theorems and based on the curvature of the image domain, become+ 

now functions of t and satisfy useful differential relations and inequalities. 

3. Most canonical domains which have been studied in the theory of conformal map-  

pings are closely related to the theory of the Green's function of the given domain. Fo r  

example, the functions which map onto parallel slit domains, radial and circular slit 
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domains, spiral slit domains, etc., can be expressed in terms of Green's function. Since the  

change of the Green's function under a deformation of its domain of definition is given b y  

Hadamard ' s  variational formula, i t  is easy to compute the change of the corresponding 

canonical domains and to give simple variational formulas for the moduli which characterize 

the various canonical domains of this kind. 

The case of the circular domain, however, is quite different. No variational formula for  

the moduli was known here and the main purpose of Chapter I I  is to provide such formulas.  

For the sake of simplicity and without loss of generality, we may  suppose tha t  the original: 

domain is already a circular domain. We subject  the domain to an interior variat ion and 

ask for the change of its circular moduli. From the general theory of variations of moduli 

we know tha t  such a variation can be expressed in terms of a quadratic differential of t h e  

domain; the problem is to characterize the proper quadratic differential occurring. W e  

single out these quadratic differentials by  extremely simple conditions on the value of t h e  

integral of those differentials around the various boundary curves and solve the problem 

completely. I t  is also shown tha t  the same characterization is valid if the canonical domain 

is bounded by  n similar convex curves instead of n circumferences and if the moduli sought 

are the locations and scale factors of these convex curves. 

The s tudy of the variation of the moduli of a circular domain was naturally m o t i v a t e d  

by  the fact tha t  we had given a new proof for this canonical mapping in Chapter I.  However,. 

there is also an unexpected close relation between the quadratic differentials of a planar- 

domain and the curvature of its boundary curves in which we are interested as a connection. 

In  fact, let w(x,y) be harmonic in a domain and satisfy on its boundary the re la t ion  

~eo/Os 2 =u(aw/~n) where u is the local curvature. Then q(z)= -i@o~/az 2) is a quadratic-. 

differential of the domain. Conversely, a quadratic differential q(z) can be derived from such 

a harmonic function if So, q(z)dz = I m  {So, zq(z)dz)= 0 for each boundary curve C~ of the do -  

main. We arrive thus a t  an interesting boundary value problem for harmonic functions.  

To find harmonic functions in the domain with 

~2eo ~2eo ~ 
a~ ~ as 2 . ~  = o. 

I t  is shown tha t  if the domain is the exterior of n convex curves Cv, no regular harmonic- 

function of this type can exist. However, many  quadratic differentials with singularitie~ 

can be constructed through this boundary value problem for harmonic functions. 

Finally, the.quadrat ic  differentials which occur in the variation of the circular moduli 

are constructed explicitly in terms of proper Robin's  functions of the domain. The va r ia t ion  
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of the moduli is given under interior variation as well as under a Hadamard  type variation 

of the boundary. In  the lat ter  formulas the curvature u plays again the principal role. 

4. The only connection considered so far was the curvature u of the boundary curve 

of a planar domain. Our main interest is naturally the study of analytic functions in the 

domain which transform according to a linear non-homogeneous law under conformal 

mapping. We show in Chapter I I I  tha t  there exist functions F(z) meromorphic in the domain 

such tha t  I m  ( r ~ )  =u  on the boundary of the domain where ~ denotes the tangent  vector 

to the boundary curve a t  the point considered. F(z) has the following tranformation law 

under a conformal mapping z*(z): 

F*dz* = F dz + d log \ dz ] 

i.e., it transforms according to a linear inhomogeneons law. 

The first important  application of each connection F with the above transformation 

law is the process of differentiation of differentials of the domain which is analogous to 

the covariant differentiation of tensors by  means of connections in differential geometry. 

Indeed, let q(z) be meromorphic i n t h e  domain and transform under conformal mapping 

like q*(dz*) n = qdz n, i.e., let q(z) be a differential of order n. Then (dq/dz) + n [' q will be again a 

differential of the domain but  of order n + 1. Thus, connections allow the creation of new 

differentials by  differentiation. 

I t  is easy to see that,  in general, no regular analytic connection F(z) can exist. The 

simplest connection F(z;~) is regular analytic in the domain D considered except for the 

point ~ E D where it has a simple pole with residue - N  (N = number of boundary curves). 

The most general connection can be built up by linear superposition of these elementary 

connections. The question now arises how F(z;~) depends on its pole ~. For this purpose, 

we introduce a generalized Ncumann's  function H(z;~) of the domain D defined by the 

following properties: 

(a) H(z;~) is harmonic for z E D  except at  z = ~  where H(z;~) + N l o g l z - ~ I  is harmonic. 

(b) On the boundary C of D we have ~H/an = - u .  

(c) We normalize by Sc n H d s  = 0. This new Neumann 's  function has the same symmetry  

law as the classical Neumann's  function; namely, H(z;~)=H(~;z).  On the other hand, we 

have F(z; ~)=  2(~/~z)H(z; ~). This identi ty shows tha t  F(z;~) depends harmonically upon its 

parameter  point ~. 

While the classical Neumann's  function of D has a very involved transformation law 

under conformal mapping, the new Neumann's  function satisfies the law: 
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H*(z*; $*) = H(z; ~) + log [dz*~ + log I de* + 1 d ( [  zN  [z*, z] 

where [z*,z] is the functional of the mapping function z*(z) which occurred first in the 

extremum problem of Chapter I. 

In analogy, we may introduce the generalized Green's function G0(z;r ) of the domain 

by the requirements: 

(a) G0(z;~) is harmonic for z e D except at z =~ where q0(z;~ ) + loglz-~1  is harmonic. 

(b) G0(z;~) is constant on each boundary continuum of D. 

(c) Sc, (8/Snz)Go(z;~)dsz =2rein for each boundary continuum C,. 

(d) We have ~c ~(sz) G0(z; ~) ds~ = O. By these four requirements the new Green's function 

Go(Z; ~) is uniquely determined and can be shown to be symmetric in z and $. 

If we complete H(z;~) and G0(z;~) to analytic functions in z, say ,~(z;$) and P0(z;$) 

it is seen that  ~(z;~) and NPo(z;$) have at ~ a simple logarithmic pole with residue N and 

that  they both have periods + 2~i when continued around any boundary contour C,. Their 

exponentials are, therefore, single-valued analytic functions except for an Nth order pole 

at the point $. 

We construct now in Chapter I I I  two kernels ~(z;~) and ~(z;~) with the following 

properties: ~(z;r is symmetric and analytic in both arguments except for z =$ where it has 

a simple logarithmic pole. I t  is determined only up to integer multiples of 2~i. ,fff(z;~) is 

hermitian symmetric in z and $, analytic in z and, therefore, anti-analytic in $. I t  is regular 

and single-valued in D. We then find: 

~(z; ~) = ~N[~(z;  ~) + ~(z; ~)], Pc(z; ~) -- ~[~(z; ~) = ~(z; ~)]. 

These relations throw light on the interrelation between the new Neumann's and the new 

Green's function. 

We make contact with the well-known theory of the kernel functions by the identities: 

~ ( z ;  r 825~(z; ~) K0(z; ~); Lo(z, ~) 
~z ~ ~z ~ 

where K0(z; ~) and L0(z;~ ) are the Bergman kernel and its associated kernel for the class 

of all analytic functions/'(z) in D which have a single-valued integral in D. 

On the other hand, ;~(z;~) itself may be defined as a reproducing kernel in a proper 

class of analytic functions defined in D. In fact, consider all functions /(z) with finite 

norm S~D [/'(z) ] 2 < c~ and normalization j'c ~t/ds = 0. Their kernel function is 
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where the {Iv(z)} are any complete orthonormal set in the class. This leads to an explicit 

construction for the kernels ~ and ~ and thus of the harmonic functions H and G o. 

While the kernels K 0 and L 0 transform under conformal mapping as double differentials, 

their integrated kernels ~ and ~ transform according to the non-homogeneous law 

1 dz* 1 (d~*~-. 1 
log ~ + log [z*, z] 

1 . dz* 1 , d~* . 1 
:and ~*(z*; ~'*) = ~(z; ~) + 2~N log ~-z + 2~N mg ~ -  -t- ~ [z*, z]. 

W e  may  describe 2~rN~ and 2rrN~ as logarithms of multiplicative double differentials of D. 

There appears to exist a close relation between the kernels ~ and ~ on the one hand and 

the expressions logK 0 and logL 0 on the other. All these expressions are logarithms of 

double differentials, and in the case of simply-connected domains we have the identi ty 

Oz e$ log Ko(z; $) = 2• Ko(z; $) = ~ (2~t~(z; $)). 

This  analogy can now be easily explained. All properties of the kernels K 0 and L 0 

can  be developed from the relation on the boundary 

(K0(z ; ~ ) ~ ) - + L 0 ( z ; ~ ) ~ = 0  (zEC,~ED), 

by  means of the method of contour integration. I f  s is the arc length along C, we 

obta in  by differentiation with respect to s the identi ty 

d 
( d  log Ko(z; ~)l- = ~ log Lo(z; ~) + 2ix. 

Thus,  within the class of functions/(z) with the normalization S u/ds = 0  the kernels logK 0 

and  logL 0 have analogous boundary behavior as had the kernels K 0 and L 0 before. Using 

contour integration, we can derive numerous relations between the various kernels. 

The role of non-homogeneous transformation laws under conformal mapping has 

p layed a central role in these formal developments. Even the logarithms of differentials and 

their  derivations can be considered only if non-homogeneous transformations are admitted.  

The importance of the curvature ~ in normalization of the various fundamental  functions 

and of the function class with kernel ,~ is obvious. I t  leads to simple transformation laws 

for the expressions defined. 
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Finally, we show in Chapter I I I  that  all differentials of D can be expressed in an 

elegant and simple way in terms of the connections F(z;~) such that  this term may be 

considered as the fundamental building block for all important  expressions in the domain. 

In Chapter IV we study the dependence of the connections F(z;$) upon their domain 

of definition. For this purpose, we derive at first a variational formula for its harmonic 

potential, that  is the Neumann's function H(z; ~) defined in Chapter III .  While this formula 

is of considerable interest in itself, its main significance seems to be that  it  leads in a 

natural way to the combination ~(z;~,~)=F(z;~)F(z;~7)+F'(z;~)+F'(z;~/) which has the 

simple transformation rule 

\dz ] = ~ + 2 { z * ; z } ,  

where {z*; z} denotes the Schwarz differential parameter. We have also the boundary 

behavior 
d~ 

I m { ~ 2 } = 2 ~  at z=z(s) eC. 

Both properties of the expression ~(z;~,z]) are very similar to those of the kernel 

l(z;z) which plays a role in the theory of the Bergman kernel function and by combination 

of the new and the old domain function, we obtain real quadratic differentials of the 

domain. 

The following application of these formal considerations is made. Let  C be a smooth 

closed curve in the complex plane and consider the Poincar~--Fredholm integral equation 

connected with it. In particular, let D(2) be the Fredholm determinant of this problem. 

I t  is known that  D(2) is not conformally invariant but changes in a rather unforeseeable 

way under mappings. However, we show that  D(1) can be computed if we can map the 

interior and the exterior of C onto circular domains and give an explicit formula for this 

expression. The reason for the identity derived is the variational formula for D(1) which 

happens to coincide with the variational formula of a certain functional which occurs in 

the theory of the connections. 

I t  should be observed that  the existence proof for the canonical mapping of a multiply- 

connected domain onto a circular domain can be derived from an extremum problem 

concerning the Fredholm determinant D(1) [25]. The interrelation between the expression 

D(1) and the connection theory is, therefore, somehow to be expected. 

From the variational formula for H(z; ~) we derive corresponding formulas for various 

other domain functions which arise in the theory of connections. 

The concept of "connection" achieves its full significance when we proceed from 

planar domains to Riemann surfaces. Chapter V deals with the study and classification of 



182 M. SCt i I~ 'FER AND N.  S. H A W L E Y  

connections on closed Riemann surfaces. We show tha t  the sum of residues of every con- 

nection is 2 - 2p if p is the genus of the surface. While it  is easy to see tha t  the logarithmic 

differentiation of each Abelian differential leads to a connection, only a subclass of con- 

nections (the canonical connections) can be obtained in this way. We call a connection 

normal if it has at  all singularities integer residues. Clearly, each canonical connection is 

normal. We study now the integrals of normal connections on the Riemann surface; in 

order to eliminate the multivaluedness due to the various poles, we consider the exponential 

function of these integrals e x p { - S  F~dz~,} and s tudy the cohomology classes connected 

with these expressions. We show tha t  the cohomology class conversely determines the 

connection up to an additive term d log / where / is a function on the surface. The canonical 

connections can be characterized as the normal connections with the trivial cohomology 

class. Finally, we show tha t  to each cohomology class of the surface a corresponding con- 

nection can be found. 

The main application of connections on Riemann surfaces is the operation of covariant 

differentiation with respect to the local uniformizing parameter  [8]. We s tudy also the 

concept of integration by  means of connections; this process is well-defined in the small but  

leads to new problems when considered globally. This question is studied in detail for the 

case of quadratic differentials when integrated by  means of canonical connections. The 

extension of the theory to normal connections as integrators is briefly indicated. 

A connection is called elementary if it possesses only a single pole on the surface. We 

can normalize the elementary connection F(O; q) in such a way tha t  it is uniquely deter- 

mined by its pole p and its cohomology class on the surface. I t  will then depend analytically 

on q. Every  connection can be built up from these normalized elementary connections and 

differentials of the surface. In  Chapter VI  we study the dependence of these connections 

upon the surface and give variational formulas for the normalized elementary connections 

under infinitesimal deformations of the surface. 

The formalism of the variational technique suggests the introduction of the functional 

E(O; q) of the surface with the following properties: E(O; q) is a multiplicative differential in 

p and in q and is symmetric in both variables. I t s  factors with respect to the set A~ of a 

conjugate cross-cut system (A~, B~) are unity. I t  has no poles on the surface and for p =q  

vanishes of order 2p - 2. Then F(p; q) = - (O/~p) log E(O; q) is the normalized elementary con- 

nection. The functional E(O; q) is constructed explicitly in terms of the Abelian differentials 

of the surface. 
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I. The integral equation for circular mapping 

1. We wish to establish in this chapter a new proof for the fact tha t  every finitely 

connected domain in the complex s-plane can be mapped conformally onto a domain 

bounded by cireumferences. This theorem was proved first by Sehottky [27] and has been 

discussed by many authors [3, 12, 15, 17, 25]. The new feature of our proof is the reduction 

of the canonical mapping problem to an extremum problem of the Dirichtet type. 

Since the consideration of punctured domains does not lead to any significant modi- 

fication and since all proper boundary continua can be mapped into analytic curves by 

elementary preparatory mappings, there is no restriction of generality if we assume that  

the domain D considered is bounded by N closed analytic curves C,(v = 1 ..... N) .  

Let z =z(s) be the parametric representation of the boundary curves in terms of the 

arc length s. If  Lv is the length of C,, the variable s will run from 0 to L = ~ L, and z(s) 

will be an analytic function of s, except at LI ,L  1 + L  2 . . . . .  where it will be discontinuous. 

We have the Frenet formula for the curvature 

1 5 dz 
~ ( s ) = 7 ~ '  z=afs" (1) 

The univalent eonformal mapping w=/( z )  of D carries the curve system C, into a 

system of curves F,  in the w-plane. We assume that  /(z) is analytic in D + C(C = Z  C~) 

and have, therefore, again an analytic curve system F = 5  F~ bounding the domain A. 

Let  ~ be the arc length parameter on F. Since 

~-=ll'(z)l (z=z(s)), (2) 

dw _ _ ~ / i  ]-1 we find da (z)~ I/'r (3) 

and hence by logarithmic differentiation with respect to a: 

- 

d a  \ d a ]  L/' ~, ~ log I/'(z)l d~" (4) 

Comparing imaginary parts on both sides and using (1) and its analogue for the 

domain A, we obtain 

u*(a) da = u(s) ds + Im {d log/'(z)}. (5) 

Here u*(a) denotes the curvature of F at w(a). 
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Using (2) and the Cauehy-Riemann equations, we may bring (5) into the form 

log I t'(~) I = ~(~) -  ~*(~) I t'(~)[, (6) 

where the operator O/On denotes differentiation with respect to the interior normal on C. 

2. The identity (6) allows us to deal with problems of conformal mapping in which 

the curvature of the image curves is prescribed. We shall deal with the interesting special 

case, namely, the problem of circular mappings. Here u*(a) must be constant on each F,, 

say, have the value - r ;  1. Hence, we find the condition on the mapping function 

log 17'(~)1 =~(~)+L I/'(~)l. 
On r~ 

(7) 

Clearly, ](z) will not be uniquely determined by the requirement of a circular mapping. 

Every  linear transformation following the mapping by /(z) will preserve the circular 

boundary. We have thus still the freedom to normalize/(z). We assume that  D contains 

the point at  infinity and that  /(cx~)=cx~. One advantage of this assumption is that  all 

circles in A will have a negative curvature relative to the domain and, hence, the numbers 

~, introduced in (7) will all be the positive radii of the circles. 

The condition (7) represents a boundary value problem of the second kind for the 

harmonic function logl/'(z) l. I t  can be solved by means of the Neumann's function N(z;$) 
of the domain D in the form 

1 , ~(sz)] log]/'(:)l=-2 ~ ( N(z;#)[VJ/(z)l+ j~.  (s) 

This equation can be considered as a non-linear integral equation for the unknown function 

1ogli'(z) i on O. 
The identity (7) would allow still an arbitrary additive constant on the right side of 

(8). By Betting it equal to zero, we imply 

cl~ I/'<r ~ 0, (9) 

a normalization which we have the right to make and which will be most convenient 

in the sequel. 

3. We introduce as new unknown function 
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and consider the non-linear integral equation on the curve system C 

- •  I 11 u(~)=F($ )  ~=1 2xr~jc~ 

F(~) = - ~ feN(z;  ~) u(s~) ds~. (12) with 

We observe that  F(~) is harmonic in D, satisfies the condition 

fc$'(~) ds:  = (13) 0 

and has on C the normal derivative 

OF = ~ (s) + 2x 
~n ~ - N .  (13') 

We have in the case of the circular mapping 

/(z(s))=r~e tv(~) on C,. (14) 

Hence, by differentiation with respect to are length, 

/ '(z)~(s) = i~(s)  /(z) .  (15) 

We can apply the argument principle to this equation; if we run through the closed curve 

C~ in the positive sense with respect to D, we obtain 

Aarg/'(z) - 2 ~  = Aarg/(z) = - 2 u .  (16) 

Hence, Aarg/'(z) =0, tha t  is, log/'(z) is a single-valued function in D. We can now integrate 

(7) over each C, and find 

fcJ/'(z)[ds= [ eU ds= 2ztr~. (17) 
J c v 

Let h(~) be an arbitrary harmonic function in D with a finite Dirichlet integral; we 

also suppose that  it is continuously differentiable in D + C. We multiply the identity 

(11) by -(Oh/an), integrate over C and apply Green's identity. Also we may assume 

f ch(r ds~ = (18) 0 

ffD N I [  and obtain [V(u-F)Vh]dr+ ~ -  eU(~)h(z)ds~=O. (19) 
v =  1 'Iv J C  v 
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This condition which is equivalent to the integral equation (11) suggests the following 

minimum problem: 

Let  ~ be the class of all functions u(z) with the following properties: 

(a) u(z) is harmonic in D and has a finite Dirichlct integral 

(b) u(z) belongs to the class ~ on C 

(c) Sc ud~ = 0  

(d) e u belongs to the class ~1 on C. 

We define the functional 

r189176 v , 2 0 )  

which has a finite value for every u E ~.  We pose the problem to find a function u(z) E 
which minimizes the functional. Such an extremum function u(z) would satisfy the minimum 

condition (19). 

4. By the inequality between the geometric and the arithmetic mean [7], [18], we 

have for every real-valued function ](z) defined on C, of class ~ and such that  e1E~ 1 the 

following inequality: 

f l f /(z)•. (21) 1 e rcz) ds>~ ~ c, log ~ c, 

On the other hand, every function u (z )E~  satisfies the estimate 

where ,t 1 is the lowest non-trivial Stekloff eigen value of D [2]. That  is, 41 is the 

lowest eigen value for which a non-constant harmonic function S(z) in D exists such 

that  
aS(z) kS(z) on C. (23) 

On 

Applying the Schwarz inequality and (22), we conclude 

with a properly chosen constant k which depends only on D. Finally, we may combine 

(21}, (24) and the fact tha t  F is regular in D+C to obtain the following estimate 

for the functional (20) 
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Thus, ~ [u]  is bounded from below for all u Ell.  Let  

/~=g. l .b .  q)[u] for all u E ~  (26) 

and consider a minimum sequence vo(z ) in ~ such that  

/ /0= (I) [%1-> # as ~-~c~.  (26') 

Since all (I)[u~] are bounded, we conclude from (25) and (26') 

f f F %) 2 < (27) dv B 

and, consequently, by virtue of (22) 

f cU~ < (27') 2IIB. 

We may assume without loss of generality that  the minimum sequence ue(z ) converges in 

D to a harmonic function u(z) and that  the sequence converges almost everywhere to the 

boundary value u(z) on C. Clearly, u(z)E 9. 2 on C and 

f c u  = O. (2S) ds 

Consider now 

(-), l~ 2~tr('e)L,- = log~l ,eUqcls>lfL, ac ,%ds>~-  L; u~ds >~ - -L,)~ 1 . (29) 

We see that  all r, (o) are bounded from below; hence, because of the boundedness of 

the (X)[%] we can also assert that  the r~ ~) are bounded from above. Thus, there 

exists a constant A such that  

f c euQ <~ ~ all ~. (30) ds A for all and 
Y 

The functions e% E ~i are positive, converge almost everywhere to the limit e u and have 

bounded integrals. Hence, by Fatou's theorem [19], we know that  e~E~ t and that  
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f( eUds~ lim f e~ ds. (31) 
~v Cv 

Inserting this inequality into (26'), we find 

(1)[u] ~< limp0 = p. (32) 

Since we have just shown tha t  the limit function u(z) belongs to the class ~ ,  the very 

definition of p implies 

(I)[u] = ju. (33) 

Thus, the existence of a minimum function u(z)E ~ with respect to the functional (20) is 

proved. I t  must  necessarily satisfy the variational condition 09).  

In  order to utilize the extremum condition (19), we introduce the Green's function 

of the domain D, considered, G(z,$) and the reproducing kernel [2] 

K(z ,  ~) = N(z,  ~) - G(z, ~). (34) 

I t  is well-known tha t  K(z,r is harmonic as a function of z in the closure D + C  as long as 

is kept  fixed in D. We may use K(z, ~) =h(z) in (19). Observe tha t  for z e C we have K(z, ~) = 
N(z,$) and tha t  

ff[V(u--F)VK(z,g)]d,==u(r162 (35) 

Hence, we obtain for arbi trary ~ G D the identity 

u(~) = F(r ,-1 2xr, a c, 

which goes over into our initial integral equation (1I) as ~-+C. The existence of a solution 

u(z) has thus been established for this non-linear integral equation. 

The integral equation (11) is closely related to the non-linear integral equations 

considered by  Hammerstein  [6]. I t  does not entirely fit into the Hammerste in  theory 

since the kernel N(z, ~) is not bounded on C. However, the same solution method has been 

followed as in the classical case, namely the reduction to an ext remum problem in function 

space. 

5. For the sake of completeness we shall now show tha t  u(z) is the real par t  of a 

complex-valued function which is analytic in D + C. We bring condition (19) into the form 

(of. (18)). 
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u - - d s -  N h d s =  0. (19'} 
Oh , -  1 , Lr~ ~ n 

We define on each boundary curve C, the absolutely continuous function 

ds= ~ +  z(s) ds=  ds + _  log (~ i). (37} 

By virtue of (17), we conclude that  ~(s) is single-valued on each C, and we can, there- 

fore, find a single-valued harmonic function v(z) in D which takes the boundary values. 

(37). Identi ty (19') asserts that  

W(z) = u(z) - iv(z) (38) 

is an analytic function in D. So is also V(z) = e w(z) with the boundary values in (7, 

g(z)=eW(Z)=~-i e~ l- exp { - i  f e-u ds} (39), 
i ~ r v  " 

We can state that  dfvdz=r, dexpl-if e" ds}. (40) 
l Jrv 

Hence, the analytic function S vdz satisfies on each C, 

fVdz=const. +r, exp { - i  f ~ds}. (41) 

I t  maps the analytic arc C, onto a circumference of radius r,. Hence, V(z) is analytic on 

6', and so is, consequently, W(z). This proves our assertion. Instead of the assertion that  the 

integral equation (11) has a solution of class ~2 on C we have now the theorem that  u(z)~ 
may be differentiated any number of times with respect to the arc length on the boundary. 

6. I t  is equally simple to prove the uniqueness of the circular mapping. We observe- 

that  

fro f d e 1 eU+~,v~ds_2~_,(2 r,)___~(l e,+~Vvds , d e ~ [ u  +~v]= (Vv)~dv+2g,+l  ~ ~-~r~ c, \ j c~  

(42), 

with 2~r,-- I- e~+'" ds. (42') 
J C v 

But by the Schwarz inequality we have for non-constant v 

( )' 2~r, . e~§ v ~ >  e"+"~ vd~ (43} 
J CI, v 
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We recognize that r  is convex in dependence on e: 

(44) 

Since for the minimum function u(z) holds 

~r [u + ev] = 0 for e = 0  (45) 

d 
we have d~e �9 [u + ev] > 0 for s > 0. (45') 

Hence, ~P[u+v]>r for every choice of v. Furthermore,  no other local minimum can 

occur since the functional r  must  surely decrease in the linear family which connects 

the function considered with the minimum function u(z). 

7. I t  should be observed tha t  the functional (20) can be writ ten in the form 

If f f fro q)[u] = �89 (Vu)~dr + ux(s)ds + 2rt ~ log e u ds + �89 (VF)~dr. (46) 
�9 D C ~=1  C v 

Since the harmonic function F(z) is a fixed function for a given domain D, we may  cha- 

racterize u(z) as tha t  function of the class ~ which minimizes the functional 

v = 1 C~ 

The advantage of this formulation of the minimum principle for circular mapping is 

tha t  the function F(z) has been eliminated. Thus, we do not have to solve an auxiliary 

boundary value problem in the domain D in order to determine F(z) and to set up the 

original ext remum problem. 

We have the identity, valid for arbi trary constant c, 

[u + c] = (~ [u]. (48) 

Thus, the side condition that the contour integral of u over C should vanish can now be 

dropped. We introduce the wider function class ~l* which consists of all functions u(z) 

harmonic in D such that u e ~a and e u 6 ~i on C. The extremum problem for (~[u] may be 

framed best within this class ~*. 

8. The preceding reasoning can be apphed in order to prove more general existence 

theorems for harmonic functions with non-linear boundary conditions. Let, for example, 
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p(s) be a positive and continuous function on the system C of boundary cttrves C,. Consider 

the functional 

fro f ~' [u]  : �89 [ V ( u - F ) ] 2 d v + 2 ~  log eUp(s)ds (49) 

which is well-defined in the class ~ .  In  view of definition (20), we can assert tha t  

~F[u]/> d)[u] + 2 ~ N  log (rain p(s)). (50) 

Thus, the new functional has a finite lower bound within ~ .  We can, therefore, repeat the 

above arguments to show tha t  there exists a unique function u(z) E ~ for which the minimum 

value of yJ[u] with respect to this class is attained. I t  is immediately seen tha t  the minimum 

function satisfies on C, the boundary condition 

au = . (~)+ l p ( s )  e ~ (51) 
mr  

2~m, = I ^  eUp(s) ds. (51') with 
Y 

We conclude from (51) and (51') that  the harmonic function u(z) can be completed 

to an analytic function, say Iog/'(z), which is single valued in the domain D. We can then 

determine the analytic function/(z) which maps the curve 6', onto curves F, such tha t  the 

curvature of F, a t  the image point of z(s) has the value -p(s)/m,. This is an immediate 

consequence of (6) and (51). 

There arises now the question of the behavior of the analytic function/(z) in the large. 

We know tha t / ' ( z )  is non-zero, regular and singlevalued in D; but its integral/(z) might 

have a logarithmic singularity at  infinity and have further periods due to the multiple 

connectivity of the domain. Thus, we cannot assert, in general, tha t  the curves F, are 

closed. 

I t  is a fortunate accident tha t  we can assert for p(s)=constant tha t  ](z) does not 

possess any  additive periods. This follows from the fact tha t  a circle does not allow a trans- 

lation into itself and can also be seen from the following argument.  We have 

t'(~)=~=-'~ v= ~'~--d~ (52) 
Jan 

and, hence, are led to the condition for single-valuedness 

f c,,e u- ~v dz = O . 

13 --62173068. Acta ma~hemat/c~. 107. Imprim~ le 25 juin 1962 

(53) 
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Observe now tha t  by  (51), (1) and (6) we have on C, 

~u d~ - i  ~+lfeup(s)ds; (52') f ~  = log V ~ 

hence (53) takes the form 

, e u exp ~ e~p(a) da ds = 0 ,  (53') 

/ 
t ha t  is : ,p(s) ds exp 1 ~m, J e~'p(a)d~l d~ = 0. (53") 

I n  ease tha t  p(s) is constant  we can infer f rom (51') t ha t  the left-hand integral in (53") 

does indeed vanish and tha t  [(z) is single-valued and henee univalent  in D. I n  every other 

case, the condition for p(s) seems go be ra ther  involved. 

9. We return go the interesting funetional ~ [u ]  defined by  (47). Until  now we have 

considered this functional for a fixed domain D and all admissible functions u(z) E ~. I t  is 

of interest to  s tudy  how this functional  varies if we change our  original domain  D b y  a 

eonformal mapping  or equivalently,  under  change of the uniformizer z. We refer the 

domain D go another  domain D* by  the univalent  conformal mapping  

z = k(z*) (54) 

which we assume to be continuously differentiable in D + C and go have a non-vanishing 

derivative at  infinity. We translate functions u(z) in D into functions u*(z*) in D* by  the 

correspondence rule 

,ogl~ l 155) 

i.e., we t ransplant  the generating funct ion/ (z)  of u(z) into/(k(z*)) =if (z*)  for u*(z*). We 

have therefore 

u *(z*) = u(z )  + log I k'(~*)I. (55') 

Since we have on the corresponding curve system U* 

e ~* ds* = e u ds (56) 

we see tha t  the integrals ff e u ds are unchanged in the transition. 

Nex t  we apply  the ident i ty  (6) to our part icular  mapping  and  find 

t~n--*- ]~ I k'(z*) I = x*(s*) - x(s)]k'(z*)I. (57) 
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Hence, an easy calculation yields 

f f o(Vu)'d  + f j ds = f f dv + f f 
1 - fologlk'(z*)l,~d~+~ f fo,(V loglr(z*)l)~d~*. (58) 

As was to be expected, the difference between the functionals (~*[u*] and (~[u] is in- 

dependent of u and depends only on the domains D and D*. Hence, the minimum function 

in D is referred by our rule (55) into the minimum function of D*. 

The transformation rule (58) can be written in very elegant form if we define the 

expression 

1 V [wz]= ffo( logl~)~dv+fologl~ w -.ds (59) 

connecting the two variables w(z) and z with respect to the domain of the variable z. 

Putt ing w =/(z) where/(z) is the generating function of u(z), we can formulate the identi ty 

(58) as follows: 

[w, z] = [w, z*] + [z*, z]. (60) 

We can now state ~[u]  = (~*[u*] + [z*,z]. (61) 

I t  is easily seen tha t  this transformation law is valid for arbi t rary differentiable functions 

u(z) provided that  they transform according to the law (55'). 

The formal expression (59) will play an essential role in the general theory of connec- 

tions which will be developed in the later chapters. I t  is clear from the very definition tha t  

[z, z] = o. (59') 

We shall use later the same expression for finite and simply-connected domains and show 

tha t  [w, z] = 0  if w(z) is a mapping of such a domain onto itself. 

10. We shall now combine the results of the two preceding sections in order to derive 

an interesting inequality for conformal mappings between domains with convex boundary 

curves. 

Let ]l(Z) and ]2(z) be two univalent analytic functions in the original domain D of the 

z-plane which map the point a t  infinity into itself and carry D into domains A 1 and A 2, 

respectively, with boundaries I~1 and F~ which are composed of convex curves. We denote 

by  -pl(s) and -p2(s) the curvature a t  the image points/l(z(s)) and ]2(z(s)) and, by our 

assumption, the pj(s) are positive. 
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 ffo fo r If we denote ~F~[u]= (Vu)~dv + x u d ~ + 2 ~  log e"pt(s)ds (62) 

and u,(z) = log I/;(z) l, (62') 

<mr results in Section 8 allow us the following conclusions. The function u~(z) belongs to 

the  class ~*  and yields within this class the minimum value for the functional ~Ft [u]. Hence, 

we have 
UI21[Ul] ~ItPl[Uz] , ]tIf2[U2] <1t22[Ul]. (63) 

Adding these two inequalities and using the definition (62) of the functionals, we find 

log [  %as.fo  log 
,=I ~-I ,) Cv J s 

Observe that  e mds = dat, - p~(s) = x~(at). (65) 

Hence f e"~ptds = 2~ (65') 
j e~ 

und (64) can be expressed in the simple form 

,=1\23~ Jcv ] ~ , p~dal >~ 1. (66) 

This is a very interesting inequality connecting the two conformally equivalent curve 

systems F 1 and F2. The intermediate curve system C is quite unimportant and might, for 

example, be chosen as either I~t. 

The result (66) can be better understood and even be generalized by the following 

consideration. I~ t  us denote 

dw p(s)d~ 2(w,p)= 2= ~ log ~ fc, I . (67) 

With wt =/t(z) and the notation (59) and (67), we may express the first inequality (63) in 

t he  form 

[Wl, Z] "~ ~(Wl, Pl) < [W2' Z] -~- ~(W2,pl ), (68) 

B u t  by virtue of (62'), (65') and (67), we have 

~ ( w .  p~) = 0. (68') 

Finally, using the transformation law (60), we can bring (68) into the form: 

[wl, w2] ~< ~(w~, Pl)- (69) 
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Let now wQ(z) be a sequence of conformal mappings of our initial domain D onto  

domains AQ with convex boundary FQ(~ = 1,..., m). Since by  extension of (60) 

r n - I  

[wv wm] = ~ [w v WQ+l], (70, 

we obtain 
m - 1  

[wl, wm]- < ~ ~(w~§ (71) 
Q-1 

In particular, if Wm = w l  we arrive at  the inequality 

rri--1 

o < ~ ~(w~§ (72) 

which reduces for m = 3 to (66). 

11. In  order to understand the close relation between the functionals [w, z] and ~(w, p) 

let us consider the one-parameter family of univalent conformal mappings w = w ( z ,  t)  

which depend differentiably upon the parameter t and which map infinity into infinity. L e t  

~P($) = [w(z,t), w(z, 0)] (73) 

and denote 

dr- = ~ log = ~(z, t). (74) 

From definition (59), we calculate 

r f f v logl~l.V~(z, Od~ + f~d~. (75, 

By the Green's identity, this expression may be reduced to a line integral over C: 

r = f~(z, 0 [~(,) - ~n log I~-I]d,. (76, 

Next we apply the transformation law (6) for the curvature. Let  

ut = - p ( s ,  t) (77), 

be the curvature of the image Ft at  the point w(z(s),t). Then (76) can be brought into th~ 

simple form: 
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We have, on the other hand, 

1~(w(z,t + At), p(s , t ) )= 2:~ 1 log p(s,t)d~ �9 (79) 

We observe that  in analogy to (68') we have 

~(w(z, t), p(s, t)) = 0. (79') 

Hence, developing the right hand side into a Taylor series in powers of At and using (77) 

and (78), we find 

s t + At), p(s, t)) = -~)(t) At + 0(Ate). (80) 

We have thus proved the interesting identity 

d = - lim 1 s (w(z, t + At), p(s, t)) (81) dt [w(z, t), w(z, 0)] ~,-,0 ZXt 

which is by no means restricted to convex mappings only. We have, indeed, for every one- 

parameter  family of univalent mappings 

[w(z, 0), w(z,t)] =lim ~ ~ (w(z, te+l ) p(s, te) ) (82) 
rt --~ oo 070  

provided that  max(te+l-te)  tends to zero with n- - -~ .  The interesting fact in the case of 

convex mappings is expressed by the inequality (71), which states that  in this special case 

each finite approximate sum is always larger than the limit approximated. We learn, on 

the other hand, tha t  the inequality (71) is sharp in the sense that  the difference between 

both sides can be made arbitrarily small for large enough values of m. 

II .  Variational theory for Moduli 

1. Given a domain D bounded by N curves C, and containing the point at  infinity, 

we introduce the class q of all domains A, which can be obtained from D by eonformal 

mapping with a univalent mapping function $ =/(z), which has at infinity a Laurent  devel- 

opment 

=/(z) = z + kA + k-2 + . . . .  (1) 
Z Z 2 

From the results of the preceding chapter it follows that  there exists in ~ a unique domain 

A which is bounded by 2V circumferences. Let  c, =a,+ib~ denote the coordinates of the 



CONNECTIONS AND CONFORMAL M A P P I N G  197 

centers of these circles and let r~ > 0 denote their radii. The 3N real numbers a~, b, and rv 

are characteristic for the equivalence class ~; they are called a set of moduli for the class ~. 

The importance of moduli in the theory of conformal mapping is well known. The 

above definition of moduli is a special case of the following general method for defining' 

moduli. Let ~(z) be an analytic single-valued function defined on the unit circle [z] = 1, 

which maps the circumference in a one-to-one manner onto the closed curve F 0. The 

functions 
~=cv+r~(e~), r~>0, 0~<~<2~z (2) 

will then lead to curves F~, which might be called curves similar to F 0. For many curves 

170 it can be shown that  there exists in each equivalence class (~ precisely one domain A 

whose boundary curves I~ are similar to F 0. This domain A may be called the canonical 

domain in ~ with respect to the curve F 0. I t  is well known that  there exists a canonical 

domain in ~ with respect to every convex curve F 0 [4]. The numbers c~ and r~ are then 

the moduli of the class ~ with respect to F 0. 

An important question arises now: how do the moduli of ~ depend on the original 

domain D ? That is, if the boundary curves C~ are subjected to a specified infinitesimal 

deformation to find the corresponding variation of the moduli under the resulting change 

of equivalence class. This problem has been solved in some special cases, e.g., the parallel-slit 

mapping. This is due to the fact that  many important canonical mappings can be expressed 

in terms of the Green's function of the domain D considered and that  the variation of the 

Green's function with the domain is well known. Previously, no analogous formula had been 

established for the moduli of the circular mapping. Thus, we propose to study in this 

chapter the variational formulas for these moduli. The significance of such variational 

theory in extremum problems of eonformal mapping and in the study of conformal equiva- 

lence is evident. 

2. For the sake of simplicity, we start with a domain D which is already in canonical 

form with respect to a given convex curve F 0. That is, each boundary curve C~ of D admits 

the representation (2) in terms of a parameter v. Let then z 0 be an arbitrary point in D 

and consider the analytic function 

z* = z +-~2el~ (~ > 0). (3) 
Z - -  Z 0 

This function is univalent in the circular region I z -z0[ > Q and hence, for Small enough e, 

we can assume that  all curves Cv lie in the region of univalence of z* and are mapped into 

new simple curves C*. These curves will determine a new domain D* which will be considered 

as the variation of D. In  general, the new domain D* will not belong to the equivalence class 
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of D but  will admit  new moduli c,* and r,*. Our aim is to express these new moduli in 

terms of domain functions and moduli of the original domain D. Specifically, we shall 

derive asymptot ic  formulas for c* and r* in powers of ~2. That  such a development is pos- 

sible in principle follows from the non-linear integral equation (1.11) in the case of circular 

canonical domains. We shall restrict ourselves here to a purely formal derivation of the 

variational formulas; the results will then apply to any canonical domain for which an 

asymptot ic  formula can be obtained a t  all. 

We observe tha t  the varied domain D* will, in general, not be in canonical form. There 

exists, therefore, in D* a univalent function ~=h(z) with the normalization (1) which 

carries D* into canonical form. We have for h(z) the asymptotic  development 

= h(z)  = z + ~ l(z) + o(~ 2) (4) 

since it reduces to the identity mapping for ~ = 0. The function l(z) is regular analytic in 

D* and continuous in D* + C*. 

Setting z*(z) = 7,* (c, + r, ~(e~)) (5) 

we can use for the curves 6'* the same parameter  v as on the curves C,. On the other 

hand, we have by  the definition of h(z) the representation 

= h(z*O:)) = c* + r* ~(e"*). (6) 

We set up the asymptot ic  developments 

c* = c, + e~7,  + o(e2); r* = r, + e~R, + o(e');  v = v* + Q~T(~*) + o(Q'). (7) 

I t  is clear from these definitions tha t  the y, are complex numbers while R, and T(~*) are 

real-valued. 

Inserting (3), (4) and (5) into (6), we obtain 

c* +r* q~(e"*)=z+ e,'~z +e~l(z,) +o(e2) (8) 
7, - -  Z 0 

and thus by  (7) 

e t c h 2  
c, + ~ § (r~ + ~ R , ) ~ ( e  ~*) + 0(~ 2) = c, + r, ~(e ~* + ie~'*02T(~*)) § - -  § ~2 l(z*). (8') 

7,* ~ Z 0 

Comparing the coefficients of ~ on both sides of this asymptot ic  identity, we find 

9/, + R, ~0(e ~'* ) - r, ~0'(e ~'*)/e~'*T(v * ) - + l (z*). 
Z* - -  Z 0 

(9) 
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We have on the left side of this equation a function determined only on the boundary 

curves C*, but  on the right side a meromorphic function defined in D*. Except  for errors 

of higher order in 9~, l(z*) will coincide in the common interior of D and D* with the 

analytic function in D defined by the boundary condition 

eta  
- -  + l(z) = ~/, + R~ q~(e t~) - r, q~'(e ~) iet~T(~) (9') 
Z - -  Z 0 

on C. Hence, we are permitted to use this function l(z) in the asymptotic development for 

h(z) in the interior of D. 

We make use of the fact that  by virtue of (2) the unit tangent vector at  z E G, has the 

form 

�9 t , ,  t ,  d v  (10) ~=sr~e q~(e )'d-s" 

Hence, we can bring condition (9') into the form 

Via 
- - + l ( z ) = y , . + R ' ( z - c , ) - T ( ~ )  .~, ( l l )  
Z - -  Z 0 r v 

on each C,. 

We shall show in the next section that  this boundary value problem for analytic 

functions in D can be solved only for a unique choice of the parameters ~, and R,. We 

shall give the necessary values for these parameters which allow a solution and determine 

in this way the first term in the asymptotic formulas (7) for the c* and r~*. 

3. We bring the boundary condition (11) for l(z) into the form 

Im g l ( Z ) + z _ z ; - 7 , - T ( z  = 

which is a simplification since the unknown function T(v) has been eliminated. The poten- 

tial theoretic character of the boundary value problem (12) can be understood best if we 

introduce the harmonic potential co(x, y) for the analytic function I(z) in D: 

l ( z )  &o i & o  = ~ - -  ~yy. (13) 

Then (12) can be written as 

&o.  ~o~ , ~ [  e '~ R~ 
+~y-~--Xml / - c , ) ] } "  (14) z 

This is an oblique Neumann problem for the domain D considered and the ~,, R, are the 

accessory parameters which must be chosen in a compatible way. 
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In  order to determine the admissible values for the ~, and Rv we proceed as follows. 

We introduce the class q of quadratic differentials Q(z) in D. A function Q(z) belongs to q 

if it is regular analytic in D, vanishes a t  infinity and satisfies on the boundary C of D the 

condition 

Q(z) ~ = real. (15) 

Let  us denote, on the other hand, 

R_ 
q ~ ( z )  = t(z)+ - r~  ---~(z-c~). (16) 

z -- z 0 r, 

Clearly, we have by  (12) and (15) on each C, 

q, (z) Q(z) dz = ~ q, (z) ~2Q(z) ds = real. (17) 

Hence, we can assert the equation 

N 

for each Q(z) Eq. 

Observe further that  the function (4) has the normalisation (1) which implies 1 (c~) = 0. 

Hence, we can apply the residue theorem as follows: 

,_~lfcl(z)Q(z)dz:O, ~ f  Q(Z) dz=2stiQ(zo). (18) wlJV~,z--Z 0 
These two equations allow us to calculate explicitly a large part  of the terms in (17') by 

use of (16). There remains the equivalent equation 

~m{ 2g '  clio(z0' - .=l~['*'ffft, Q(Z')dZ'~R~'r~, .]r (17") 

Thus, every quadratic differential Q(z)eq provides one linear equation for the 3N un- 

knowns ~ = Re {r,}, fl, = I m  {~,} and R, 

Re{e'~Q(zo)}=Im{,_~[~,,.~-~foQ(z)dz+~.2~ov(z-c,)O(z)dz]}. (19) 

Therefore, the question arises how many  linearly independent quadratic differentials are 

in the class q and whether the equations (19) determine the unknowns in a unique manner.  

4. A quadratic differential in the class q is called a regular quadratic differential if 

if vanishes a t  infinity at  least in the fourth order. I t  is well known tha t  a domain D with 

h r boundary continua C, (N > 2) has precisely 32V - 6 regular quadratic differentials which 
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are linearely independent over the field of real numbers [26]. Consider now the following 

analytic functions defined in D: 

(a) p(z) is the analytic completion of the Green's function g(z) with the logarithmic 

pole at  infinity; p'(z) ,,~ 1/z at  infinity and p'(z)~ =imaginary  for z E C. 

(b) /0(z) and/ i (z)  are univalent in D and map this domain onto parallel-slit domains 

in the directoin of the real and imaginary axis, respectively, such tha t  ]0(c~) =/~(c~)= 1. 

Then ]o(z)~ and i/~(z)$ are real for z E C. We construct then i]o(z)p'(z) and/~(z)p'(z) 

which are two quadratic differentials of class q which vanish at  infinity only in the first 

order and which are evidently independent. Next,  given two independent real differentials 

w~(z) and w~(z) of D, tha t  is analytic functions of z which satisfy w:(z)$ =real  for z E C and 

which vanish at  infinity to the second order, we construct/o(z)w~(z) and/o(Z)W~(Z) which 

lie both in the class q and vanish at  infinity in second order. Finally, ip'(z)w~(z), ip'(z)w~(z) 
lie in q and vanish at  infinity in the third order. Clearly, from the six quadratic differentials 

which were constructed explicitly and from the 3 N - 6  regular quadratic differentials all 

elements of the class q can be obtained. We have thus shown that  for N > 2 the class q 

has precisely 3N linearly independent quadratic differentials. 

The same assertion can be made in the cases N = 1 and N = 2. For N = 1 the elements 

i[o(z)p'(z),/~(z)p'(z) and p'(z) 2 are the basis for the class q, and for N =2  we have the basis 

i/o(z)p'(z), /~(z)p'(z), /~(z)w'(z), i/~(z)w'(z), ip'(z)w'(z), w'(z) 2 where w'(z) is the one real dif- 

ferential of D. This shows tha t  q has in every case 3N independent elements. 

We select a basis of 3N quadratic differentials in q and denote them by Q~,(z)(~ = 
1 ..... 3N). We shall have to solve sets of linear equations with respect to various periods of 

the Q~ with respect to the curves C, and the following determinant will play a central role: 

A= Im{ foQA }; Rot• Q ~ , d z t ; I m t l f z Q ~ , d z l  ,20, 

where # = 1,2 ..... 3N is the row index, while v = 1 ..... N determines the respective columns 

in the three vertical sections of A. 

We wish to prove the fundamental  inequality 

A # 0 .  (21) 

Indeed, suppose tha t  for the domain D considered the determinant A did vanish. We could 

then obviously solve an appropriate homogeneous equation system with this determinant 

and construct an element q(z)fi q which does not vanish identically and satisfies the con- 

ditions 



202 M. S U t I I F F E R  A N D  N .  S. H A W L E Y  

This particular element of q must  also satisfy the equation (19), but  now the right side of 

this equation would vanish because of (22). Since e '~ and z 0 are arbitrary,  it follows tha t  

q(z) must  be identically zero, contrary to our assumption. Thus, we derived a contradiction 

from the hypothesis A =0  and the inequality (21) is proved. 

The preceding proof tha t  no quadratic differential q(z)Eq with the properties (22) 

can exist holds only for canonical domains D for which the preceding variational theory 

is valid. I t  is, therefore, of interest to prove the following more general theorem: 

Let D be a domain containing the point at  infinity and bounded by N convex analytic 

curves C,. There does not exist a quadratic differential q(z)Eq which satisfies the equa- 

tions (22). 

Indeed, let us assume there were such a q(z). From the first set of equations (22) we 

could conclude tha t  q(z) would have a single-valued integral F(z) in D. We may  assume 

without loss of generality tha t  F ( ~ ) = 0 .  The second set of equations shows next  tha t  

f ~ f ' ( z ) z d z =  - f ~ f ( z ) d z =  rcal. (23) 

The Cauchy-Riemann equations between the real and imaginary parts  of F(z) can be in- 

terpreted as integrabflity conditions for the existence of a harmonic potential co(x, y) such 

tha t  
1 i' to_  co] iF(z)=~\~z ~/=~" (24) 

Since D is not simply-connected, to(x, y) would not need to be single-valued in D. How- 

ever, (23) takes now the form 

\~x Y / 3 ' ,  

which shows tha t  co(x, y) actually is single-valued in D. 

I t  is possible tha t  F(z) has a residue a t  infinity; if so, we can infer from (23) tha t  i t  

must  be pure imaginary. Hence, co(z, y) may  have a logarithmic pole a t  infinity. In  this 

case we may  assume without loss of generality tha t  co-+ +oo  as we approach the point a t  

infinity and tha t  co(x, y) is bounded from below in D. Since D is analytically bounded, 

q(z) is analytic in the closure of D and co(x, y) is regular harmonic even on C. (As we shall 

see, this remark is important!) 

We star t  with the identities 

~to ~'to 
d~ = iF(z), ~z 2 = iq(z), (26) 
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where q(z) is the hypothet ical  quadratic differential. We have the formal relations 

~_~ = ao~ ~ + a ~  ~ = 2 Re  { iF(z)  ~} 
8s az ~2 

(27) 

and 8s 2 = 2 Re {iF'(z) ~ + iF(z) s = 2 Re {iF(z) 5}, (27') 

since .F'(z)= q(z) is a quadratic differential. B y  the Frenet  formula we have 

= ix~; (28) 

a2r 
as-- ~ = - 2u Re {F(z) ~}. (29) henee 

On the other  hand, 

oo. {7} 
~n ~x ~ +~j-y x = - 2 I m  ~ = - 2  Re {F(z)~}. (30) 

Thus,  co(x, y) is harmonic in D with a possible logari thmic pole at  infinity and satisfies 

the boundary  condition 

a%o ~o~ 
~s ~ - U~n-. (31) 

Having  thus east the problem of the quadrat ic  differential q(z) in the form of a boundary  

value problem for harmonic functions, we can now show tha t  under  our assumptions on 

eo we must  have co-= eonst, in D. 

I n  fact, if eo is not  constant  in D it mus t  have its min imum value on C since it becomes 

positive infinite at  its logarithmic pole in D. We can assume wi thout  loss of generali ty t ha t  

the min imum point  lies at  the origin and tha t  the boundary  curve C has there the x-axis 

as tangent  and tha t  the positive y-axis issues into D. We m a y  also assume tha t  o) (0 ,0)=0 

since ~o is only determined up to an addit ive constant .  Since ~o(x, y) is regular harmonic  

on C we can develop it near the origin in a power series in x and y 

w(x, y) = al x + a2y + aa(x 2 _y2) + a4xy + .... (32) 

where the following terms are harmonic polynomials  of the third  and higher order. Since 

C is convex, we have u < 0  and know tha t  in a sufficiently small neighborhood of the origin 

all points with y > 0  lie in D. Hence, the fact  t ha t  ~o = 0  is the min imum value of ~o implies 

al=O, a2>~0, aa~>0. (33) 

Clearly, at  the origin 0oJ = a 2 >/0 (34) 
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and 82co---- >1 0 (35) 
~s 2 

because of the minimum property.  But  since u < 0 ,  the boundary condition (31) implies 

an equality between a non-negative and a non-positive quantity; whence 

a S = 0 ,  a S = 0 .  (34') 

I f  a t :t: 0, we could find points near the origin with y > 0, but  w < 0 in contradiction to the 

minimum property of co(x, y) at  the origin. Let  then P~(x, y) be the first harmonic polynomial 

in the development (32) of degree 1 which does not vanish. Since 1 >~ 3 and 

P, (x, y) = Air  I cos (l~0 + fit) (36) 

there exist surely points in D near the origin where Pl (x, y) < 0. Since Pz is the decisive term 

in the development (32) for a sufficiently small neighborhood of the origin, co(x, y) could not 

be positive throughout D and hence could not a t ta in its minimum at  the origin. Thus the 

development (32) cannot have non-vanishing terms and our assertion is proved. 

I t  might be interesting to point out the well-known identi ty 

82o~ 8~co 82co 8co 82co 
ax 2 + - ~ + - - -  (37) 8y 2 882 On 2 

valid for all twice differentiable functions of x and y. Thus, we may  also formulate our 

result in the following form: 

Let  D be a domain containing the point at  infinity and bounded by  N convex analytic 

curves C~. The only harmonic functions co(x, y) in D which satisfy the boundary condition 

82s 
- 0  on C (31') 

On ~- 

are the constants. This result remains valid even if we allow a logarithmic pole of co at  

infinity. 

5. We return now to the canonical domain D and apply the inequality (21) in order 

to determine the unknowns yv and R, from the equations (19). For this purpose we introduce 

in q a particular convenient basis {Q(,~)(z), <2> Q, (z), Q(,3>(z)} of 3N quadratic differentials, 

normalized as follows: 

1 1) 
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Re I ~  fc~, Q~)(z)dz} -~0, Im { ~  fc, Q(~'(z)dz)=O,~,, I m / ~  fv,,zQ(~)(z)dz) =0; (38') 

2~ ,] c, ~ z Q~a)(z) dz = 8,0. (38") 

Such a basis can always be constructed and is uniquely determined because of A 4 0. 

Using these particular quadratic differentials of q as test functions in (19), we find 

immediately 
~v ~ r Ia~(3) - - = l ~ e  ~e ~ ,  (Zo) } (39) 
rv 

Re {y,} = Re {e'~Q7 ) (%)} + R, Re {c,} (39') 
r, 

Im {7,} = Re {e'~Q(~ I) (Zo) } + R, Im {c,}. (39") 
r, 

In the notation of the variational calculus we may express our result as follows. If the 

canonical domain D is subjected to the particular variation (3), we have the following 

variation of moduli: 
log r,  = Re  {e"~q~QT,)(zo)} (40) 

{c,} 1 (40') Re ~ = Re {e'~'~QT)(zo)} �9 

l }  ' c, = Re {e'~o2Q,~l)(z.)} �9 r, 0 Im ~ - (40") 

I t  is to be expected from the general theory of moduli that  their variation should be 

described by means of quadratic differentials. The main result of this section is the simple 

and general characterization of the quadratic differentials which belong to the various 

moduli. 

Just  as we did in Section 4, we can express the conditions on the various quadratic 

differentials Q(~~ in a potential theoretic form. For example, starting from (38") we con- 

clude the existence of a regular analytic function F,(z) in D which vanishes at infinity and 

satisfies 
d ~ f ~  (z) = ~)(z).  (41) 

We introduce again a (multivalued) harmonic potential to,(x, y) by the definition 

iF~(z) = 0~____,. (42) 
( T Z  
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1 
But  now we have = 1 dto~ ~ ~ .  

2 3% 

We have again the boundary condition on C: 

~2to V 
~a 2 - O. 

(43) 

{44) 

The periodicity condition (43) and the boundary condition (44) determine the harmonic 

function to,(x, y) in a unique way. The corresponding quadratic differential Q~a)(z) is finally 

determined by means of 

i ~z*" (45) 

Similar formulas can be established for the other quadratic differentials. 

6. We have seen in the preceding sections the close relation between the problem of 

finding harmonic functions to(x, y) in a domain D with the boundary condition 

~to 
8n ~ = 0 (46) 

and the problem of constructing certain quadratic differentials of D. If we know a function 

w(x, y) which satisfies (46) and is harmonic in D except for specified singular points, we can 

assert that  
1 ~to 

Q(z) = ~ ~z~. (46') 

is a quadratic differential of D with known singularities. 

I t  is now quite remarkable that  in the case of a circular domain quadratic differentials 

can be connected with another classical problem of potential theory. We consider the 

harmonic functions toy(x, y) and express the boundary condition (44) by means of (37) as 

follows: 
D2to~ 1 ~to~ ~ + ~-~  : 0 o n  c ~ ,  /47) 

where r~ is the radius of the circle C,. Clearly, (47) implies 

f ato'ds=0 (47') 

since coy(x, y) has in D single-valued derivatives. Equation (47') shows that  to,(x, y) possesses 

in D a single-valued harmonic conjugate function ~(x, y). Clearly, the Cauehy-Riemann 

equations imply 
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co, 0~. 0oJ, aq. (48) 
Os &~ On Os " 

Hence, (47) leads to 02(.Ot, 1 D 7, 082 rp 0S on C, (49) 

and by integration 0to, 1 ~q~ 1 ~/, = 1 k, u on C~ (49') 
0s r. '~ ~- -r -~  r. 

where the k~u are constants. In the case of a circular domain D the determination of 

quadratic differentials thus has been reduced to the solution of the simple Robin boundary 

value problem for harmonic functions: To determine harmonic functions z](x, y) such that  

~q 1 
- ~ n = k .  on G (50) 

with constants k~. 

At first let us show conversely that  ew~ry function ~(x, y) satisfying (50) and being 

harmonic in D except for specified isolated singularities gives rise to quadratic differentials 

of D with known singularities. In fact, let us put  

7 ] ( x , y ) = R e { ~ P ( z ) } ,  z = c ~ + r , e  - ~ .  (51) 

Then (50) takes the form 

Re {r - ' v -  l(I)(z)} =ku on Cu; (51') 
rg 

we differentiate this identity with respect to 

Re { - i r  (z) r~ e - ~ - i~P'e- ~ + i~P'e- ~ }  = O, (52) 

i.e., (I)"(z) ~2 = real on C, (52') 

which shows that  Q(z) 0~(x,  y) (53) 
0z 2 

is a quadratic differential of D. 

7. The reduction of the boundary value problem for the harmonic functions oMx, y) 

to a Robin boundary value problem for their conjugates ~v(x, y) in the case of a circular 

domain allows us to express here the variation of the moduli r, in a particularly explicit 

form. 

14 -62173068. Acta mathematica. 107. Imprim6 le 25 juin 1962. 
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We introduce for this purpose the Robin's function R(z; ~) of D with the following 

satisfies the boundary condition 

0j 1 1 
- ' = -  on C~ (58') 

On r ,  ~ r~ 

which is also fulfilled by the harmonic function ] = - 1. Hence, the uniqueness theorem 

for this boundary value problem implies 

properties [2]: 

(a) R(z; ~) is harmonic in D except at z = ~ where 

1 R(z; ~) = log ~ + harmonic function; (54) 

(b) R(z; ~) satisfies on each C, the boundary condition 

~R(z; ~ ) - R ( z ;  ~) = 0. (55) 
1_ 
rv 

The existence of such a Robin function follows from the general theory of the Green's 

functions of the domain D; it is also well known that  R(z; ~) is symmetric in both arguments. 

If ](x, y) is an arbitrary harmonic function in D, we derive easily from Green's identity the 

representation 

with z=x+iy,  ~=~+i~/ .  

Let  us define now N harmonic functions 

] , (x ,y)= 1 f R(z;:)ds~. (57) 
~7~r~ J c~ 

Each ],(x, y) is regular harmonic in D and, in view of (56), it has to satisfy the boundary 

condition 
c~i, 1 . 1  
0n ~ ' =  (~'~ on C,. (57') 

Thus, the ],(x, y) form a basis for all regular harmonic functions ~/(x, y) which satisfy (50). 

They lead to a set of quadratic differentials of D by means of formula (53). 

Observe that  the N harmonic functions ],(x, y) are not independent. In fact, their sum 

N 
](x, y) = • ],(x, y) (58) 

Y--1 
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N 

j(x, y) = ~. j,(x, y) = - 1. (58") 

Observe also tha t  the harmonic functions ~/,(x, y) needed in our variational theory satisfy 

by (43) and (48) the equation 

fc ~ ' d s =  ~ O~ 2 J c~,~s = ~'~" (59) 

that  is each ~,(x, y) has at  infinity a logarithmic pole of strength ~-1. Hence, the regular 

harmonic functions ],(x, y) will not be sufficient to construet these rl,(x , y). We introduce, 

therefore, the R~bin's function R(z) with pole at infinity 

R(z) = log lz I +regular harmonic function (60) 

and the boundary conditions (55). 

From (49'), (57'), (59') and (60) we derive the representation 

1 N 
~,(x, y) = ~ R(z) + ~ k,~, j~,(x, y). (6I) 

/~-1 

8. We have now expressed the unknown function z/,(x, y) in terms of R(z) and the 

j,(x, y) which depend only on the Robin's function. There remains the final problem to 

determine the constants k~. They have to be adjusted to the period conditions (59). We 

define for this purpose the constants 

and m. . :  l (63) 
~c, ~n r~ j c~ 

- 2  .r,.fc.fc R(z; ~)dszdsr 

We may now express the conditions (59) as a system of linear equations for the k.. 

1 N 

2 ~ = 5 - A . +  ~. k.~,m~ ( a , v = l , 2  ..... N). (64) 
g = l  

I t  is easy to show that  ((m~,))=M is a positive semi-definite matrix. In fact, we can 

write the definition (63) of m~, as follows: 
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0~1 Joe ~n 

= Z r e  f - - - - d s +  V j , ' V j ,  dT. 
~=1 J% an a~ 

Let the x.(~ = 1 ..... 9 )  be N arbi trary real numbers and let 

N 

I(x, y) = ~ x, i,(x, y). 

fc( )" +ffo Clearly ~ mr, x~ x, = ~ rq (VI) 2 dr >10. 
/~,v-I q 

The quadratic form can vanish only for I = eonst., i.e., for 

Indeed, it follows from the identity (58") that 

(63') 

(65) 

(66) 

(67) 

m ~  = 0 (/~ = 1, 2 . . . . .  9 ) .  (68) 
G--1 

But except for the constant vector (67), the quadratic form (66) is positive-definite. In  

particular, we can assert that  the principal submatr ix M~_l=((m,~)),.,_l ..... N-1 is non- 

degenerate. 

We consider now the equation system (64) for fixed v. We see tha t  the N- th  equation is 

a consequence of the preceding N - 1  equations because of (68) and 

N 

f (69) 

On the other hand, the nnknowns k,,  are determined only up to an additive constant 

which may  depend on v. This follows again from (68) and the symmetry  of the matr ix  

m,~; it can also be inferred from the definition (49') of the k,~. In  fact, ~7,(x, y) is only defined 

up to an additive constant which leads to a corresponding indeterminacy for the k,,. 

There is, therefore, no loss in generality if we assume 

k ,N=0 for v = l , 2  . . . . .  9 .  (70) 

We can now use the first N -  1 equations (64) to determine the N - 1  unknowns k,,(g = 

1 ..... X - l ) .  Since the matr ix  M~_ I of this inhomogeneous system of linear equations is 

non-degenerate this system has a unique solution. 

The rather  unusual boundary value problem for the harmonic functions ~o,(x, y) has 

been reduced in the case of a circular domain to a well determined boundary value problem 
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of the Robin type and has been completely solved. For more general canonical domains 

the problem of boundary values for the second normal derivative of a harmonic function 

poses an interesting topic for further research. I t  is important to remember that  the exi- 

stence of a solution for this unconventional boundary value problem is guaranteed in our 

special case by the theory of quadratic differentials of a planar domain. 

9. Until now we considered the very special set of domain variations whose kinematic 

is described by (3). The variation of the moduli was expressed by formulas (40), (40') and 

(40"), which are all built in an analogous fashion, differing only from each other by different 

choice of the quadratic differentials used. 

We proceed now to transform these variational formulas in such a way that  their 

geometrical significance is clearly displayed, which will enable us to generalize them and 

to bring them into the conventional form of the calculus of variations. We start  with the 

Cauchy formula 

I Q(z) (71) 
[ 2 ~ i J c  z - z  0 j 

valid for all Q(z) e q. Observe next that  by (3) the quanti ty 

[ i (z  - Zo) ~J 

measures the normal shift of each point z E C under the variation considered. Because of 

the boundary condition (15) satisfied by every quadratic differential, we can bring (71) 

into the form 

Re {e'~o~Q(zo)} = ~ [Q(z) $~] 5n ds. (73) 

Thus, the variational equations (40)-(40") may be expressed in the standard Hadamard 

variational form 

($ log r , = ~  [Qf)(z)~]Snds, (74) 

Im V, (74") 

Since an application of Runge's theorem shows that  the most general admissible 

&n-variation can be approximated arbitrarily by a superposition of elementary variations 

(3), we have thus derived the variation of the moduli under the (~n-deformations. 



212 M. S C H I F F E R  AND N. S. H A W L E Y  

The preceding variational formulas can be brought into completely real form by 

use of the harmonic potentials to~(x, y) of the quadratic differentials. We shall exemplify 

this for the formulas (74). We introduce the functions o~,(x, y) which lead by (45) to the 

Q~, ~(z). From (42), (27) and (30) we deduce 

0to__y = 2 Re {iF,(z) ~}, 0~o, = 2 Re {F,(z) ~} (75) 
0s On 

and hence by (41) and (28) 

~o~, 2[Q~, ~(z)~ ~-] - 2 Re {F~(z) ~} _ 2[Q~(z)~] ~tov . . . .  ~ - - .  (76) 
OsOn Os 

Thus, (74) can be expressed as 

6 log r, = - + z Os ]  6ads. (77) 

Similar potential-theoretic expressions can also be obtained for the formulas (74 ' )and 

(74"). 

In view of the boundary condition (31) satisfied by the w~(x, y), we can simplify 

(77) to 

[0[10~o~,~ 0r 1 r Ot~ {ld(6a)~+~tOn}ds. (77') 

I lL  Eonaeetions on plane domaina 

1. The transformation formula (I.6) for the curvature of the boundary of a domain 

under conformal mapping suggests the definition of an analytic function F(z) in D such that  

Im {F(z)i} = ~(s) for z = z(s) E C. (1) 

We will show that  the transformation law of u(s) induces a simple transformation formula 

for F(z) under the mapping. But  we have first to discuss in how far F(z) is determined by 

the boundary condition (1). 

This is, indeed, the case if we make the additional assumption that  F possesses a 

single-valued harmonic potential H(z), i.e., a real-valued harmonic function of z such that  

F(z) =2  0~HH!z-) = (H~- iHv)  ( z=x+iy) .  (2) 
~z 

The boundary condition (1) on F(z) takes then the form 

OH(z) = _ ~(s) (z = z(s) e C). (3) 
On 
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Thus, the quest for F(z) satisfying (1) becomes a Neumann type boundary value problem 

for the harmonic potential H(z). On the other hand, the single-valued character of H(z) in 

D implies the integral condition for F(z): 

We add this requirement to the boundary condition (1) for F. 

Observe, however, that  condition (3) leads to the equation 

f c  ~-----Hds = 2ztN. (4) 

This shows that  H(z) cannot be regular harmonic in D. I t  must have at least logarithmic 

poles in D with a total strength N. The simplest assumption we can make on H(z) is that  it 

be regular harmonic everywhere in D with the exception of an arbitrary but  fixed point 

q D where 

H(z) = - N log [z - ~1 + regular harmonic. (5) 

The conditions (3) and (5) determine the harmonic potential H(z) uniquely up to an additive 

constant which may depend on ~. We dispose of this constant by the normalization 

f c x (sz) H (z ) dsz = O. (6) 

To stress the dependence of H(z) upon its point of singularity r we denote it from now 

on by H(z; ~). This function is uniquely determined by the conditions (3), (5) and (6). 

Consequently, its derivative 

F(z; ~)= 2 ~ H ( z ;  ~) (7) 
tTZ 

is uniquely characterized by the conditions (1), (2') and its singularity character at  ~: 

N 
F(z; ~) z - ~ + r(z; $) (7') 

where 7(z; ~) is regular analytic for zED. 
In order to study the dependence of the harmonic function H(z; ~) upon its source 

point ~, we consider the Green's identity 

H { $ ; u ) _ H ( r l ; ~ ) = 2 ~ f c [ H ( z ; ,  ~H(z; ~) �9 71 ~ H(z;$)~H(~] ds (8) 



214 •. S C O F F E R  AND 1~. S. HAWLEY 

valid for any pair of points ~, ~/in D. Using now the conditions (3) and (6), we verify that  

the right hand integral in (8) vanishes and find the symmetry law: 

H(z; ~) = H($; z). (9) 

Thus, we can now assert that  H(z; ~) and F(z; ~) depend harmonically upon their source 

point $. 

2. Having established the existence and uniqueness of the functions H(z; ~) andF(z; ~), 

we shall now derive from (I.6) their transformation law with respect to the conformal 

mapping w =/(z). Let  w =/(~) and H*(w; o~) be the corresponding harmonic potential of the 

image domain A. Consider the difference function 

H*[l(z), 1(~)] - H(z; ~) = ~(z; ~). (10) 

This is a symmetric regular harmonic function in D and it has on C the normal derivative 

(cf. (3) and (L6)) 
a 

e ~  ~ ~(~; ~) = ~ -  ~* I/'(~) I = ~ log I/'(~) 1. (11) 

In view of the symmetry of a(z; ~) in z and ~, we can conclude 

H*(w; r = H(z; r +log ]]'(z) I +log I1'(~) ] +a ,  (12) 

where a is a constant which depends on the mapping function/(z). 

We determine a from the equation (6) applied to H*: 

0 
]/'(z) ]) [H(z; ~) f c  (u(sz)- -~  log + log]/'(z)/ '(:)[+a]dsz=O. (13) 

We find after elementary rearrangements using (3) and (6): 

 ( )log + f f,, (v log 2z~Na = 2 d~. (13') 

Thus, with the notation (I.59) we obtain: 

1 
a = ~-~ [w, z] (14) 

and (12) may be restated in the form: 

H*(w; o~) = H(z; ~) + log [/'(z)I'(~)[ + ~ N  [w, z]. (15) 
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I t  is interesting to have the formal expression [w, z] reappear which played such an important  

role in the theory of circular mappings. The addition law (I.60) is, of course, an immediate 

consequence of the transformation formula (15). 

By differentiating the identity (15) with respect to z and using the definition (2), 

we obtain the transformation law for the meromorphic domain functions F(z; ~): 

F*(w; eo)dw= [F(z; ~)dz +d log ( ? ) ]  . (16) 

We shall call domain functions which transform under eonformal mapping according 

to the linear hut  inhomogeneons law (16) "connections" on the domain considered. This is 

done in analogy to the corresponding quantities in differential geometry. The use of the 

concept of a connection for conformal mapping will become quite apparent in the sequel. 

But  we wish to point out, at this stage, an important  application of the connections to 

differentials of analytic domain functions and to their transformation theory. 

Let qn(z) be an analytic function in the domain and defined in such a way in dependence 

of the domain that  it transforms under conformal mapping according to the rule 

q*(w) dw n = qn(z) dz n. (17) 

Such function q,~(z) is called a differential of the domain of order n. I t  is easily verified that  

each differential of order n can be transformed into a differential of order n + 1 by the 

operation 

q~+l(z) = dq~z)-- + nP(z) q=(z) (18) 

with an arbitrary connection F(z) on D. Thus, the process of differentiation combined with 

a simple operation involving a connection leads to an unending sequence of differentials 

of increasing order. The analogy of (10) to the process of covariant differentiation is obvious. 

The preceding statements will be discussed in greater detail in Chapter V. We have 

anticipated these facts in order to show that  the concept of a connection is suggested from 

very different types of approach, a fact which enhances its significance. 

3. The existence of the harmonic function H(z; ~) was established by a potential theo- 

retic argument. We shall now derive a constructive procedure to obtain this domain 

function and shall find in this way a new insight into the nature of H(z; ~). 
Let G(z; ~) be the Green's function of the domain D and consider the difference function 

1 
d(z; $) = ~ [H(z; ~) - N q ( z ;  ~)]. (19) 
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I t  is regular harmonic in D and symmetric in both arguments. We define the class Z of 

all functions y~(z) which are harmonic in D, have a finite Dirichlet integral, are continuous 

in D-t-C and have the normalization 

f c  ds 0. (20) mp 

Clearly, d(z; ~) lies in Z as a function of z and ~. For an arbitrary ~fl(z) E ]E, we have the 

identity 

f fD Vv/(z)'Vd(z;~)dv=~fc OO ~o~n ds = ~(r (21) 

Thus, d(z; ~) is the reproducing kernel within the class Z under the Dirichlet multiplication. 

Let {~,(z)) be a complete system of harmonic functions in Z, orthonormalized by the 

condition 

(22) 

Then, d(z; ~) can be expressed as the kernel function of this orthonormal system: 

1 
2~N [H(z; ~) - NG(z; ~)] = ~ v2,(z) v2,(~ ). (23) 

This formula may serve to construct H(z; $) explicitly. I t  shows also that  the right- 

hand kernel d(z; ~) is positive-definite, that  is: 

M 

~. d(~,; ~,)x,x~, >~0 
~,~=1 

In particular, 

(x, real, ~, E D). (24) 

d(r ~) = lira 1 [H(z; ~) -NG(z;  ~)] > 0. (24') 

Another simple way to construct the function H(z; ~) is the use of the function F(z) 
defined in Chapter I (see (I.12)). Indeed, 

1 
[H(z; ~) + F(z)  + F(~)] = S(z; ~) (25) 

is symmetric in z and $, harmonic, except for a pole with strength 1 at  z = r and saris- 

ties on C the boundary condition (cf. (I.13')) 

OS(z; ~) 2zr (26) 
i~n~ L"  
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Hence, 
S(z; ~) = N(z; ~) +a, (27) 

where N(z; ~) is the Neumann's function of D and a is an additive constant. We determine 

the constant by multiplying (27) with x and integrating over C. From (6) and (I.12) follows: 

'fro a = 27~N ~1 F(z) x ds 2ztN 2 1  F ~F ds = 2~--N4 (V$') 2 dr. (28) 

Hence, finally: ~ [H(z; ~) + F(z) + F($)] = N(z; ~) + 1 2 ~  (VF)~dv" (29) 

The calculation of H(z; ~) has thus been reduced to the calculation of the ordinary Neu- 

mann's function and the one new function F(~) which depends only on one variable. 

4. We wish to analyze in greater detail the representation (23) for H(z; ~). We define, 

for this purpose, the N harmonic functions 

1 fc CO(z; ~)ds., (30) 

the so-called harmonic measure of C, at  $. Clearly 

eo,(~) = (~,, for $ q C u. (31) 

Consider next the matrix of "induction coefficients": 

P ~ 1 ~  ( OW, cls 412f f O~2dszdsr (32) 
""=  - - - 0  -.- . ,  c , j  o , .  z 

I t  is known that  if we restrict the indices v, ~u to the values from 1 to N -  1, the submatrix 

((P,,)) is positive-definite. Hence, we see that  no o~,(z) can be completed to a single-valued 

analytic function in D. 

Consider, on the other hand, any y~(z) fi Z which is orthogonal to all harmonic measures 

eo~(z). From 

f fD (VY~'Vw,)dv=-  fceo,~-~nds=- fcv--~ds =0,  (33) 

it follows that  such a function ~(z) can be completed to a single-valued analytic function 

in D. Conversely, the real and imaginary part  of every single-valued analytic function in 

D must be orthogonal to all harmonic measures oJ,(z). 

This observation leads to a very useful construction of a complete orthogonal system 

{~(z)} in Z. We introduce the linear space A of all single-valued analytic functions/(z) 

in D which have a finite norm 
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ffolr(z) l < dr (34) 

which are continuous in D + C and satisfy the normalization condition 

fo~(Sz) = 0 .  ( 85 )  l(z) dsz 

Let {/,(z)} be a complete orthonormal system in A, that  is 

ffo  /. 1~. dr = di.,. (36) 

Putting /,(z) = u~ + iv,, (37) 

we obtain pairs of harmonic functions in the class F., and the orthonormalization (36) 

implies by means of the Cauchy-Riemann equations that  all u~ and v, are orthonormal in 

the Dirichlet sense: 

f fDVU," Vul, d'~ = f f ,  Vv," Vv~,d'~ = ~.~. (38) 

f f DVU," Vv~, dv = O. 

Thus. a complete orthonormal set in the space A of analytic functions yields a complete 

orthonormal set of harmonic functions in that  subspace of E which is orthogonal to the 

w.(z). We may then write the formula (23) for the reproducing kernel  of E as follows: 

"[ N - 1  

27tN[H(z;~)-NG(z;~)]= ~ c,~,w,(z)%,(~)+ [u,(z)u,($)+v~(z)v,(~)] 
I,./~= 1 v - I  

= ~ c.,to.(z)c%(r (z)/,(r 
~,/l = I 

We have thus been led to the kernel function 

(39) 

of the linear space A of single-valued analytic functions with normalization (35). This 

linear space has some remarkable properties which will come out clearly from our con- 

siderations in Section 8. We recognize here its role in the construction of the harmonic 

potential H (z; ~). 

~t(z; ~) = ~/,(~)/~(~) (40) 
v - 1  
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We can compute the coefficients %, in (39) by taking the normal derivatives on both 

sides and integrating over Cq. In view of the single-valuedness of the/~(z), and in view of 

(3), (30) and (32), we obtain 

1 N 
coQ(~) - ~, = 2~ ~ c,~,P,qeo~,($). (41) 

Sending ~--+Cu, we find, because of (31), 

1 N 
Ou~ - ~ = 2~r ~ c,~,P~e. (41') 

v = l  

Because of the identity 
/q 

coQ(z) = 1 (42) 
Q-1 

we have the period relation 
hr 

P,o = 0 (42') 
Q-1 

which shows that  the equations (41') for the c, u are not independent. But it is seen that  the 

left-hand side of (41') is compatible with this linear dependence. The system (41') can be 

solved, but  the cv, are only determined up to an additive constant cu. These constants must 

be chosen in such a way that  the harmonic function on the left side of (39) lies in )2. This is 

the case if 
N 

c~uco~(~) = 0 (~ e D), (43) 
m/~- 1 

N 

i.e., if ~c ,  u=O for /~=1 ,2  . . . . .  N. (43') 

These conditions determine the c, u in a unique way and the harmonic potential H(z; ~) is 

completely determined. 

An important aspect of the preceding analysis is the following. Since G(z; ~), the har- 

monic measures co~(z), the coefficients Pu~ and consequently the c,, are all conformal in- 

variants, the transformation law of the kernel function ~(z; $) is entirely determined by the 

transformation law (15) of H(z; ~) and the relation (39). Indeed, let w =](z) be a conformal 

mapping of the domain D into the domain A with ~he corresponding kernel ~*(w; &). 

If co =/(~), we read off from (39) the equation 

R e { ~ , ( w ; h i ) _ [ ~ ( z ; ~ ) +  1 1 , 1 ]} 2 ~  log/ '(z) + ~ log ] (~) + 2 ~  [w, z] -- O. (44) 

The term inside the Re { }-operation is a hermitian kernel analytic in z and anti- 

analytic in r I t  must, therefore, equal an imaginary constant. But  since this term becomes 
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real for z ~ ,  this ima~nary constant must vanish. Thus, we arrive at the transformation 

law for the kernel function: 

1 
2~NR*(w; ~) = 2~zN~ (z; ~) + log ]'(z) + log 1'(r + ~ [w, z]. (45) 

5. We define the harmonic function 

N 
a o (z; ~) = G(z; ~) + 2~. ~_ c , ,  to, (z) tou (r (46) 

where the c,u are defined by (41') and (43'). I t  has a logarithmic pole for z = ~, that  is, 

near ~ we have 

1 
G O (z; ~) = log ~ + regular harmonic, (46') 

but else it is harmonic in z. In view of (39), we may write 

1 
Go(z; ~) = ~ H (z; ~) - 2~Re { ~(z; ~)}. (47) 

From this representation we can infer that  Go(z; ~) is symmetric in z and ~" and satisfies 

the relations 

1 ( __e Oo(Z;r = 1 2~Jc,  Snz ~r (v = 1,2, ... , N). (48) 

On each boundary continuum Cq, Go(Z; ~) takes a constant value: 

Go(Z; ~) = kq(~) (z e Co). (49) 

Finally, from (47), (6) and the normalization (35) of the class A follows: 

f u(sz)Oo(Z; = 0 .  (50) 

I t  is evident that  the conditions (46'), (48), (49) and (50) determine the harmonic 

function Go(z; () in a unique way. 

Let ](z) be any analytic function of the class A; then 

f f DoO~; $) /'(:)dv~=2i f cOo(z; r162 =o (51) 

since G o is constant on each CQ and ](z) is single-valued in D. Observe that  the left.hand 

integral in (51) is an improper integral because of the logarithmic pole of~G0(z; () at  (. But 

the derived function 
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Ko(z; ~) 2 0~Go(Z; ~) (52) 

has lost its singularity at  z =$ and is anaIytic in z, anti-analytic in ~" and hermitian in 

dependence on both variables. From (51) we obtain by differentiation with respect to z 

and by use of the Poisson-Laplaee equation 

f f vKo(z; ~) l' (~)d~r =f(z) .  (53) 

Let then B be the class of all analytic functions ['(z) in D with single-valued integral 

/(z) and with a finite norm (34). We see that  Ko(z; $) belongs to this class since (48) implies 

this together with (49) and (52) guarantees, indeed, tha t  

f c  K~ ~)dz (55} 
, y  

Hence, (53) shows that  K0(z; ~) is the reproducing kernel for the function class B in the 

sense of the operation (53). 

On the other hand, each complete orthonormal system {[,(z)} within the class A leads 

to a complete orthonormal system {[:(z)} for the class B. Thus, we can express the repro- 

ducing kernel Ko(z; $) in the form 

, �9 9 2 

g o (z; ~) =,-1 ~ [v (z)/v (~) = ~ - ~  ~(z; ~). (56) 

We find thus the important identity: 

_2 ~Go(Z;~) o~(z;~) 
~z~-- OzS~ (57) 

From (47) and (57) follows further 

20~H(z; ~) 02~(z; ~) 
~ a~o~ a~o~ (5s) 

In order to study the meaning of the identity (57), it is very helpful to complete the 

harmonic function G0(z; ~) to an analytic function Po(z; ~) of z in D. Because of (48) this 

analytic function will have the periods 2:~i/N with respect to each boundary continuum 

C~ and will have a logarithmic pole for z=~. We can now construct a function S(z; ~), 
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which has the same singularity and periodicity as Po(z; ~), but  is a "geometric" domain 

function. That  is, S(z; ~) can be constructed by simple integrations and does not presuppose 

the solution of a boundary value problem of Laplace's equation in D as P0(z; ~) does. We 

define 

z~t~v j c \z - r~ 

This function is regular analytic for all finite z E D. At infinity we have 

v(z) = logz + regular analytic. (60) 

v(z) has the period 2~i/N with respect to each boundary component Cv. Let  now 

S(z; r = log + ,(z) + ,,(r + f c,(S,) ,(t) (61) 

This function has a logarithmic pole at z=~,  but  it is elsewhere regular analytic in D. 

I t  has the period 2:~i/N with respect to each boundary continuum C~ and the period 2~i 

with respect to the pole ~. We have given S(z; ~) such a constant term that  

We can now assert that  

Q(z; ~) =Po(z; r  ~) (63) 

is regular analytic and single-valued in D. Since Po(z; $) is only defined by  the requirement 

Go(z; ~) = Re {Po(z; $)}, (64) 

we may add to it an arbitrary imaginary term which depends on ~. We make use of this 

arbitrariness in order to fulfill the condition 

f u(sz) Q(z; ~)dsz =0.  (65) 
(2 

This is possible because of (50) and (62); Q(z; ~) is now uniquely determined. 

We have defined S(z; ~) in such a manner tha t  it  depends analytically on z and ~. 

Hence, (57) and (63) yield 

1 ~Q(z; $) ~9~(z;~) (66) 
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We can conclude, therefore, 

1 
-Q(z; ~) + ~(z; ~) =/(z; ~) + ).(~') (67) 
Y/: 

where l(z; $) and 2(~) depend analytically on z and ~. 

l~rom (65) and the fact that  ~(z; ~) E A follows 

fJ( z; ~)u(s~)ds~=2~N2(~). (68) 

The 

2(~) = cons$, and we may assume 2 = 0. This yields: 

f J(z; ~) x(s~)ds~=O, 

i.e., Z(z; $) belongs to the class A. Now, (67) reduces to 

left side term is analytic in $, the right side is anti-analytic. This clearly implies 

(68') 

1 Q(z; ~) + ~(z; ~) =/(z; ~). (69) 
7~ 

We also have the symmetry condition 

~(z; ~) = l(~; z) (70) 

which follows from the fact that  the left side of (69) has a real part which is symmetric in 

z and ~. 

Let finally 

Then, (63) and (69) lead to 

~(z; ~) =1 S(z; ~) + l(z; ~). (71) 
7~ 

P0 (z; ~) = zt[~(z; $) - ~(z; ~)]. 

We deduce also from (47) the identity 

1 
.~H(z; ~) = Re {~t[~(z; ~) + ~(z; ~)]} 

(72) 

(73) 

such that  the analytic function in z given by ~t[~ + ~] represents the analytic completion 

of the harmonic potential H(z; ~). 

6. Because of the central role which the kernels ~(z; $) and ~'(z; ~) play in constructing 

important domain functions, we shall collect in this section their various properties and 

interrelations. 

15 - 62173068. Acta mathematica. 108. I m p r i m 6  Io 25 iu in  1962. 
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We start with the characteristic property of ~(z; $) as kernel function of the linear 

function space A: 

ffD~'(Z; /'(Z) d~ l(~), $) (74) 

where the dash denotes differentiation with respect to the first variable. Applying this 

identity to the particular function R(z; ~)EA we find 

This identity shows the positive-definite character of the hermitian kernel ,~(z; ~). 

From (74), we deduce by means of (75) and the Schwarz inequality: 

]/(~) 12 ~< ~(~; ~)- ~fD]/'(z)12d'r. (76) 

Equali ty in this equation holds for ](z) = a~(z; ~) and only for these functions. Thus, we 

can define ~(~; $) as follows: 

$) =min f f Y (z)'2d  
ii( )1 , (77) 

and the functions which solve this minimum problem are up to a constant factor, precisely 

the kernel ~(z; $). Thus, the determination of this kernel can be reduced to a minimum 

problem in the function space A. 

We observe next that  the identity (51) may be transformed by means of (64) into 

~ f D  e t P0(z; ~) / (z) dv~ = 0, (78) 

valid for every f(z)EA. Hence, (72) leads by means of (74) to 

f fDY~'(Z; ~)/'(Z) dv~ f(~). (79) 

Thus, ~(z; ~) has the same reproducing property as ~(z; $) under the same integral operation. 

But ~(z; ~) is neither regular nor single-valued in D. 

We apply the identity (79) to the particular function ~(z; ~/) EA and find: 

f ~ D  ~! " - 
~'(z; ~) ~ (z, 7) dvz = ~(~; ~). (79') 
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Inserting now into this identity the representation (71) for ~(z; ~) and using the fact 

that  l(z; $) lies in A and that, therefore, (74) applies to it, we conclude: 

 ffo i(r =~(r  ~'(z;~)S'(z;~)d~.. (80) 

Thus, the kernel l(~; ~) and hence also g(r ~) can be obtained from the kernel ~($, {) by 

simple quadratures. 

The complete analogy between our kernels ~, ~ and l and the Bergman kernel K 

with its associate functions L and l [1] is quite evident. Many theorems and methods, 

valid for these well-known functions, can be translated without difficulty into the new 

situation. If Ko(z; ~), L0(z; ~) and lo(z; ~) are the kernel functions for the space B of analytic 

functions l'(z) with single-valued integral, we have 

~ ~(z; ~) ~(z; ~) 
a~(z ;  ~) K0(z; ~), Lo(Z; ~), - -  - lo(z; ~), (81} 

~z ~ ~z at  ~z O~ 

One achievement of our study is therefore to have found a rational way to integrate the  

useful kernel functions of the domain D in both variables. 

The transformation law for ~(z; $) under eonformal mapping has been given by (45). 

We can now derive from this law the corresponding formula (15) for H(z; $) and from 

formula (73): 

Re{~*(w; co)} =Re{~(z;  ~)+ 2~lNlog/'(z) + 2--~Nlog/'(~) + 2~N2  [w,z]}. (82), 

I t  can be shown from the construction of S(z; ~) and from (68'), (71) that  ~(w; co) satis- 

fies the transformation law: 

J_ 1 2~N ~*(w; o~) = 2zN ~(z; ~) + log/'(z) + log/ '($) , ~ [w, z]. (82'} 

7. A very clear understanding of the structure of the kernel ~ and ~ can be obtained 

by means of a special orthonormal system of eigen functions of the domain D. We con- 

sider the integral equation 

w~(z) )~ ( ~ w~($) dv (83} 

and ask for the eigen functions w~(z) of this problem, which belong to positive eigen values 

)~. These eigen values are called the Fredholm eigen values of D [1, 23, 24, 25] and the w~(z) 
are the corresponding Fredholm eigen functions. I t  is known that the derivatives of all 

harmonic measures 
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1 ~o~, (z) (84) 
v;(z) - i Oz 

are eigen functions of (83) belonging to the eigen value ~t = 1. All other eigen functions 

w,(z) belong to eigen values 2, > 1, and we shall only consider these "non-trivial" eigen func- 

tions. They are all orthogonal to the v'j(z), i.e., 

fro , ' (  =o. - w, dz (85) w,(z)v s(z)dv= ~ o~w,(z) dz= - ~  Jcs 

This shows that  all non-trivial Fredholm eigen functions w~(z) belong to the class B of 

functions with single-valued integral. We introduce, therefore, the functions W~(z)E A such 

that  

W : ( z )  =w,(z). (86) 

Observe that  (86) and the normalization in A 

~c~ (s~) W, (z) ds~ = (87) 0. 

determine the W,(z) in unique manner. 

The {w~(z)} being the set of eigen functions of (83) with 2 > 1, we can assume without 

loss of generality: 

fro W: (z) W, (z) dv = (~,. (88) 

and infer tha t  the {W,(z)} form a complete orthonormal set in A. Hence, we have 

~(z; $) - W,(z) W,(~). (89) 

We can bring the integral equation (83) into the form: 

Wr f ~ w,(~) d~ " 

In  order to integrate (90) with respect to z, we make use of the equation 

f c u ( s ~ ) ~ d s z  =O 

which follows from (62). We find from (90) and (87): 

(9o) 

(91) 

L (92) 
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Since all W~ (z)E A, we have by (79) the identity 

w.(c) = f f / , z ;  c) w.(z) dye. 

Integrating by parts, we obtain from this improper integral 

~'(z; ~) W, (z) d~ = 0. 

We replace now ~(z; $) by means of the representation (71) and find 

-1 : ~ w, (c), 2i f c  l'(z; ~) W,(z) dz 

that is 

Since [(z; C)EA, 

real system { W, (z)}: 
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(93) 

(93') 

(94) 

fro ~'(z; C) W; (z)dT, = •  W, (C)- (94') 

we find, therefore, that it has the Fourier development in the or[honor- 

~(z; C)= ~ W,(z) W,(C) (95) 
, = 1  

Let D be the complement of D in the complex z-plane. Observe that the boundary 

values W, (~) on C define a regular analytic function fir*,(z) by means of (92) since 

(0/0~) S(z; ~) is defined everywhere. We have by Plemelj's formula the boundary relations 

fir*,(z) = W,(z)-  2, W,(z) (zeC). (96) 

We see that f c  ~(s~) fir* (z) ds~ = 0 (96') 

holds. Using Cauchy's integral formula, we derive for fir*(z) the integral equation, valid 

in D: 
~, 

where the integration over C is now to be understood as in the positive sence with respect 
to the complement/~. 

Since it is also known [25] that 

f fDlfir*'(z)l~d~- ~ (98) - ) . , -  I, 
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it is preferable to introduce the orthonormal eigen functions 

i 
l~,(z) 1 / ~ -  ]~* (z), (99) 

which form a complete set of eigen functions of the integral equation (92) with respect 

to/~. Every function analytic in each component of/~ and normalized by condition (96') 

can be developed into a Fourier series of the ffr,(z). 

Let now zE/~ and CeD. Then, for r fixed, the function OS(z; r will be regular 

analytic in/~ and may be developed into a Fourier series of the W~(z). Indeed, its integral 

S(z; ~) is single-valued in each component of I3. To calculate the Fourier coefficients of this 

function, we start with the equation 

and its symmetric counterpart 

2, f [l~,(z)]-~dz ($ED). (100') W2~-I W,(~) = ~  

The last equation can be transformed by integration by parts: 

w,(~). (101) 
oz i 2, 

Hence, we have the Fourier series: 

3" -~1/2,~- 1 ~:(z) W,(~) (102) OS(z; ~)_ 
oz ~=1 i 2, 

valid for z E b, z E D. In particular, we have the Parseval identity 

~(r f/) =~1 0S(z; ~).0z d~z= , = 1  ~ 1 - ~  W,(~) W,(~/). (103) 

This relation is very important since I~(~; f/) is a "geometric" quantity which depends 

only on the singularity function S(z; ~) and can be obtained by quadratures. This function 

is now related to the eigen functions W,(z) and the eigen values 2,. 

We derive from (89) and (95) the identity 

f f l(z; ~) ~7) q)- q). l(z; dr ~(~; (104) 
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This result is analogous to a corresponding formula for the Bergman kernel. I t  leads here 

as there to many estimates for the kernel and to a host of inequalities. 

8. Let  D be the exterior of the unit circle ] z [ > 1. We have the complete set of ortho- 

normal functions in the class A: 

1 p 

Indeed, it is easily verified that  

( ~ = 1 , 2  . . . .  ). (105) 

f/,z,>/; " (z)/~,(z) dT = ~,~, 

and f lzl~lg(8)/ ,(z)ds=-f[zl_1/,(z)ds=O. (105") 

Hence, we find that  in this case 

~(z; ~) = - . ~  

Because of (56), we have then 

(105') 

(106) 

1 1 1 
K 0 (z; ~) = ~ i l  - z~) 2 = ~ exp {2~r ~(z; ~)}. (107) 

This leads to the partial differential equation for the kernel function 

03 
az~$ log K0(z; ~) =2jr K0(z; ~) (108) 

We wish to explain now the deeper mason for these relations which can be generalized 

to multiply-connected domains. We start  with the identity (49) valid for z(s)E Cq and dif- 

ferentiate it with respect to s. We find 

OG o (z; ~)~ + OG o (z; ~)~ = 0. (109) 
~z 

Since this equation holds identically in ~ 6 D, we may differentiate it  in turn with respect 

to $. By virtue of (72) and (81), we obtain 

Lo(r for z 6 C , r  (110) 

This boundary relation between the kernels K 0 and L 0 is the main reason for the many 

identities to which these functions give rise. We derive from (110) by  logarithmic dif- 

ferentiation and by use of the symmetry properties of the kernels: 
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log Ko(z; $)+ =ds  log Lo(z; ~)+-'z (111) 

Since ~/5 = i~(8) and because of the normalization (35) of the function class A, we have for 

every/(z)  E A: 

f c/(Z)d log Ko(z; ~)= f c/(z)d log Lo(z; ~). (112) 

The right hand integral can be evaluated by means of the residue theorem. 

I t  is known tha t  the kernel L0(z; r of the class B of analytic functions with single- 

valued integral has a simple geometric meaning. Let/0(z; ~) and/t,,(z; ~) be those univalent 

functions in D which map the domain onto the whole plane slit along rectilinear segments 

parallel to the real and imaginary axis, respectively, and normalized to have a simple pole 

for z = ~ with residue 1. Then 

~'(z; ~)= ~ [to(Z; ~) + l+~(z; ~)] (113) 

is likewise univalent in D and we have [20, 22] 

L o (z; ~) =F ' ( z ;  ~). (113') 

Because of the univalence of F(z; $) its derivative has a double zero at infinity but  is else- 

where different from zero in D. Since L(z; ~) has a double pole for z = ~, we conclude from 

the residue theorem: 

2~ti l(z)d log Lo(z; ~) =2[1(~)  - / ( r  (114) 

We find from (110) by the argument principle and from the knowledge of all zeros 

and poles of Lo(z; ~) that  Ko(z; ~) has 2N zeros in D. One, of course, is a double zero at 

infinity; the others define 2 ( N - 1 )  analytic functions m~(~) by the implicit equation: 

Ko(m,(~ ), ~) = O (k = 1, 2 ..... 2 ( N -  1)). (115) 

We can write the identities (74) and (79) in the form 

/(~) d~(~; ~) =/(~) 

and fc/(z) d ~(z; ~) = 0. (79') 

(74') 

Hence, we conclude from (112) and (114); 
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2-i [(z)d[2~(z; ~)-2~(z; ~ ) ] -  = [(z)d log go(z; ~)+~zY ~(z; m~(~) . 
k = l  

(116) 

Consider now the expression 

2N 

log Ko(z; ~)+zr Y ~(z; m~,(~)j. 
k - 1  

(116') 

I t  is regular analytic for z E D since the logarithmic poles in this combination destroy each 

other. I t  is not necessarily single-valued in D; but the periods of logK0(z; ~) and of ~(z; r 

are integer multiples of 2:diN. Hence, the periods of the expression (116') are pure imaginary 

and independent of r We can, therefore, construct a combination 

2N N 

log K 0 (z; ~) + ~t ~ ~ (z; m~ (r + ~. aj vj (z) + b(r (117) 
k = l  1=1 

which lies in the function space A. The v~(z) are the analytic completions of the harmonic 

measures ogj(z) and make the combination single-valued in D. The term b(~) is an additive 

constant with respect to z which enforces the normahzation (35) for the class A. 

We observe that  

fc/( z) dvr (z) = - fc  [(z) d vj (z) = 0 (118) 

since the real part of each vj (z) is constant on C. Hence, comparing terms on both sides 

of (116), we obtain the identity 

2N /4 

2~t[~(z; ~)-~(z;r =log K0(z; ~)+~z ~, ~:(z; mk(~)) + ~, ajvj(z)+b(~). (119) 
k=l  1=1 

We may express (119) in the more interesting form: 

2N 

2~ ~(z; ~) = log K 0 (z; ~) + zt ~ ~(z; mk (~)) + a(z) + b(~). 
k - 1  

(119') 

This equation generalizes the relation (107), which we found in the case that  D is the 

exterior of the unit circle. We may simplify (119') by differentiating this equation with 

respect to z and ~ and by using the identities (81): 

221 

2zt K o (z; ~) + 7e k=l ~ L~ (z; mk (~)) mk(~) = ~ log K o (z; ~). (120) 

This is the generalization of the identity (108) to the general case of multiply-connected 

domains. 
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The basic boundary relation (110) between the kernels K0(z; ~) and L0(z; ~) leads to the 

further consequence 

fc/(z)dlog Lo(z;ci=fc/(z)dlog Ko(z; ~ ) (121) 

valid for all/(z) E A. Using the residue theorem and the definition (115) on the right hand, 

we find 

1 /(z)d log Lo(z; r  ~. f(mk(r - ~  f(z)d ~(z;mk(r �9 (122) 
C k - 1  

We introduce again a combination 

N 

log L 0 (z; ~) - 2:z[~(z; ~) - ~(z; oo )] + ~ ~j v s (z) + g(~) 
t - 1  

(123) 

which is regular, lies in the function class A and can be used instead of logL0(z; ~) in the left- 

hand term of (122). This is possible because of the identities (79') and (118). We deduce 

now from the altered equation (122) that  

N 2N 

log L0(z; ~)-2~r[~(z; ~ ) -  s + ~d~vj(z) +g(~) = -z r  Y. ~(z; m~(~)). (122') 
1-1  k= l  

We differentiate this relation with respect to z and ~ and use the identities (81); we find 

82 2N 

OzO~ l~ L~ ~) = - 2zr L~ (z; ~) -~k-1 y K~ mk(~)) m~ (~). (124) 

This is the symmetric counterpart to identity (120). The right hand sum of (124) can be 

expressed as a single integral by means of the residue theorem. A simple calculation leads 

to the identity 

~z~ l~176 ~) = - 2zrL~ ~ ) -  2-i 0(z;t) log K0(~;t)dt. (124') 

Analogously, we may express (120) in integral form: 

Ko(z; ~) = | Lo(z; t ) ~ l o g  Ko(t; $)dt. 
4zdJc 

(120') 

We hope that  the elegant formulas obtained show how much the particular normali- 

zation (35) for the function class A is suited to the study of the logarithm of the kernel 

functions Ko(z; ~) and L0(z; ~). Its use gives new insight into the differential equations 

satisfied by these important domain functions. 
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9. We return now to the connections F(z; ~) which led originally to all our preceding 

considerations. From (2) and (73), we derive the representation of r in terms of the kernels 

r(z;  ~) = ~/v[~'(z; r + ~'(z; $)]. (125) 

While not as symmetric as the singular kernel ~(z; ~), the connection F has the great ad- 

vantage of being single-valued in the domain. I t  is the most convenient building element 

in terms of which all important  differentials of the domain can be constructed. 

Let  qn(Z) be a regular analytic function of z E D which satisfies the boundary condition 

qn(z)~ '~>0 for z E C. (126) 

We assume that  under a conformal mapping of the domain the function q~(z) transforms 

according to (17), which guarantees that  the boundary behavior (126) is unchanged under 

such a transformation. We shall call qn(z) a "positive differential" of the domain of order n. 

Because of the argument principle, qn(z) has by (126) precisely m = n N  zeros in D, say 

z~(v = 1 ..... m). Taking the logarithmic derivative of (126) with respect to the arc length, 

we find 

q ' ~ ( z )  . 
- - z  + n _  = rea l .  (127) 
q~ (z) z 

In  view of the definition (I.1) of the curvature, this means 

The function 

Im{ n~(z)lq~(z)~/J= u(s). (128) 

Fn(z) 1 q~(z) (129) 
n q. (z) 

satisfies, therefore, the characteristic boundary condition (1) of a connection. I t  has poles 

at  the zeros z~ of q,~(z) with the residue -(mr/n) ,  where mr is the multiplicity of the zero 

point z~. Furthermore, we have 

Rel l -~F'dz l=-l l - , ,  d l ~  ( v = l  . . . . .  /V), (la0) 

since qn(Z) is single-valued in D. The properties enumerated of Fn(Z) are sufficient to 

characterize it in a unique way, as can be seen from our arguments in Section 1. Hence, 

we find 

m 
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where each zero of z~ of qn (z) enters of summation as often as its multiplicity indicates. 

Thus, finally 

q~ (z) 1 ~ 
~,_~1F (z; z,) (m=nN) .  (132) 

q,(z) 

This elegant representation formula allows us to construct all positive differentials 

of D of arbitrary order in terms of the connection F(z; ~). Conversely, every combination 

of connections which has the form (128) with all poles z, inside of D will define a positive 

differential of the domain of order n. 

In the same way, we may construct meromorphie positive differentials of D of all 

orders. The poles p ,  of such a differential will necessitate summands -F(z ;  p,) in the sum 

analogous to (132). The most important differential of this kind is the derivative of the 

Green's function: 

i P'(z; ~) - ~G(z; ~) ~ i~G(z; ~) (133) 
~x 

I t  has a pole for z = ~  and N + I  zeros z,(~) ( u = l  . . . . .  N + I )  in D. Hence we find in 

analogy to (132) 

P'(z; ~) N P(z; r  ,-1 F(z; z~(r . (134) 

The usefulness of the connection F(z; ~) in the general theory of domain functions of 

plane domains becomes quite evident from these simple formulas. 

IV. Variational theory for connections 

1. We introduced in Chapter I I I  the domain functions H(z; ~), G0(z; ~) and F(z; $) 

as solutions of various boundary value problems with respect to the variable z. We 

normalized them in such a way, that  they were uniquely determined by boundary 

conditions and normalization, and that  their dependence upon the location $ of their 

singularity became harmonic and even, for the first two functions, symmetric. We 

also established how these functions transformed under a conformal mapping of the 

domain. 

I t  is our aim in the present chapter to study the dependence of these important  

domain functions upon their domain of definition and to determine how they change 

under an arbitrary infinitesimal deformation of it. While the question of the character 

of H, G O and F as function of z and ~ belongs to the theory of harmonic functions, 

our new problem lies in the field of functional analysis and the calculus of variations. 
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Its treatment will lead us to new domain functions with useful transformations pro- 

perties under conformal mapping; it also will lay the groundwork for the solution of 

various extremum problems which may be posed for the above domain functions. 

For the infinitesimal deformation of the domain D, we shall use the same kine- 

matics of variation as was used in Chapter II. We put  again 

Q2 era 
z * = z + - - - -  (z0ED, Q>0), (1) 

z - -  z o 

and consider the domain D* which is determined by the boundary C*, the image of 

the boundary C of D under the mapping (1). We shall denote by H*(z; ~), G~(z; ~) 
and F*(z; ~) the corresponding domain functions of D* and wish to express them 

asymptotically in terms of the domain functions of D. 

2. We start with the Neumann type function H(z; ~). Let D O be the domain 

bounded by the boundary C of D and by the circumference Iz-z01 = ~, which we shall 

denote by c. We assume, of course, ~ so small tha t  c lies entirely in D. Next, we 

choose two arbitrary but  fixed points $ and ~7 in D o and can assert in view of Green's 

identity: 

1 )0H(z*; r ds. (2) H*(:*;~7")-H(';~7)=~N fc+c[H'(z*;")OH(-~7) H(z;~7 ~n 

Here, z*(z), ~*(~) and ~7"07) are related to z, $ and ~7 by means of formula (1). We 

use now the fact tha t  the normal derivative of the H-function is given on C in terms 

of the local curvature as indicated by (III.3) Hence: 

1 
H*(,*; ~7") - H( , ;  ~7) 2~Nfc[.(s~)H*(z*;$*)-.*H(z;~)~-Jds (3) 

1 r OH(z; H(z; 7) d~. +2~-~ H*(z*; ~ 

The second integral on the right side of (3) occurs frequently in the calculus of varia- 

tions. I t  is of the following standard form: Let  

/(z) = u(z) + i v(z), g(z) = a(z) + i b(z) (4) 

be two functions of the complex variable z, analytic in a domain A which contains 

the circle c. u, v and a, b, respectively, denote the harmonic real and imaginary parts 

of these functions. We have, then, to evaluate the integral: 

1 
2--~ fc [ u ( z * ) ~ - - - a ( z ) - ~ ]  ds=ReI~l-  ~ ,(z*)dg(z)}. (5) t2~i Jc 
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The right side integral is to be taken in the positive sense over the curve c. Since 

](z*) and g(z) are both analytic in some domain A* which lies in A and which does 

not contain the interior of the c-circumference, we may take on the right side of (5) 

any fixed curve 7 in A* as the curve of integration, as long as it is homologous to 

c in A*. We have on 

](z*) = l(z) + e 2 Z_~o ~ + e* R(z) (6) 

where R(z) is a remainder term analytic in A*. We insert this development into (5) 

and derive from Cauehy's integral theorem: 

~(~*) - a t z ) - ~ - ]  48 = Re  {~'" 021,(z0) a'(z0)} + 0(q') ,  (7) 

where the remainder term O(Q 4) depends only on the behavior of [(z*) and g(z) on 

the fixed (e-independent) curve ~,. 

Applying this general identity to the second integral in (3), we obtain by means 

of (III.2). 

t O n -  0 n j d s = R e [  e e ~ r  (zo;~*)r(z.; 

We come now to the first integral on the right side of (3). We have by the 

transformation law (I.6) of the curvature: 

. 0 log d z  ds. (9) .~ H(z; ~)ds* = H(z;~) g(sz) - -~n 

Using the normalization (III.6) of H and the form (1) of z*(z), we arrive at 

[ ] ds} + L . u "  H (z; Tl)ds* = Re { fcH(z; ~l)~n [(z_zo)2j 0(~4). (lO) 

We now make use of the identity 

ire [ 0 1 ~H(z;~)]ds=H(zo;~?)_Nlog 1 (11) H(z; rl) On log [z - zol - log [z lzol  Izo - r/I" 

Differentiate this identity twice with respect to z o and use the value (III.3) for the 

normal derivative of H. We find: 

1 ) 0  __ 1 ? u(8)d8 N 
F'(Zo; 7/) - Zo ,~ . (7  - ) (12) 
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Finally, we make use of the function v(z) introduced in (III.59) and find from (10) 

and (12): 

N + 

By symmetry, we can conclude: 

uH*(z; $*) d s = R c  -~)2e ~ -.Nv"(zo)+F*'(z0; ~)- (~_z0)  ~ + 0(04). (14) 

Indeed, the transition from z* to z is given by 

, 0 2 e ice 
- -  q- 0(04), (l') 

z = 25 Z* - -  g0 

which explains the opposite sign of Q2et~ in (14). We should also have used v*(z) 
instead of v(z) and ~* instead of $ in the last term of (14); but because of the error 

term 0(0 4 ) our formula remains valid in its present form. 

We collect all terms necessary for (3) and find: 

lt* (~*; Tf ) - H(:; ~l) = Re {e'~ o~ [}F*(Zo; ~*) F(Zo; ~l) + } F'(zo; ~l) 

1__,, 1 1 ]} 
+~V 1" (zo;~-)--2v"(z0)(~_z0) z (~_zo~- , +0(04). (15) 

We see, first of all, that  the difference H * - H  can be estimated uniformly in D O to 

be of order ~2. Hence, the same asymptotic behavior can be asserted for the deriv- 

ative F * - F  in each closed subdomain of D. We may, therefore, replace the term 

F*(z0; $*) on the right-hand side of (15) by F(z0; $) without affecting the validity of 

the asymptotic relation. Finally, in view of the transformation formula (III.15) for 

H under conformal mapping, we shall bring (15) into the more suggestive form 

H*($* ;~*) - [H(~ ; r / )+ log  1 et~Q~ + l o g  1 e~0~ ] 
- J 

In order to understand the significance of the term v"(zo), let us consider the 

case that  the domain D has exterior points. Let z 0 be such an exterior point; there, 

for 0 small enough, the equation (1) will describe a conformal mapping of D into D* 

which preserves the point at  infinity. I t  is a matter of simple calculation to show that  
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[Z*, Z] = -- 2ztN Re {e ~ 02 v"(z0)} + 0(04). (17) 

Thus, in this case we can identify the transformation formula (III.15) with the varia- 

tional formula (16) if it is understood that  all F-terms are to be deleted, if their 

argument lies outside of their domain D. 

3. The variation of H(~; ~/) has introduced the combination of eonneetions 

R(z; ~, q) = F(z; ~) U(z; 7) + F'(z; r + F'(z; ~/). (18) 

This term, which is a combination of products of connections and of their derivatives, 

is very reminiscent in structure to the Riemann tensor of curvature in differential 

geometry and it possesses some remarkable properties. 

We observe that  by (III.1) 

F(z; ~)~.(s)=r(s; ~) +i~(8) (z =z(8) eC), (19) 

where r(8; ~) is a real-valued function of s which depends also on $. Differentiate 

this identity with respect to s and find by (I.1) and (19): 

F'(z; ~) ~ = § ~) + i ~ (8) -- [r(s; ~) + i u(8)] i g(s). (20) 

Hence, {F(z; ~) F(z; 7) + F'(z; ~) + F'(z; ~)} ~ 

=r(s; ~)r(s;~)+~(8; ~)+~(z;~l)+u(8)2+2i~'(8). (21 

I t  is remarkable that  the imaginary part of this expression does not depend on ~ or 7, 

but only on the position of z fi C; that  is: 

d~(s) 
Im {R(z; $, ~7)s 2} = 2 ~  (z =z(8)eV). (22) 

Next, we wish to point out the very simple transformation law of R(z; ~, ~) under 

conformal mapping. Let us suppose that  $ =](z) under a conformal mapping of D 

onto b with corresponding ~($; ~, ~). From the transformation rule (III.16) for the 

connections F, we obtain after some rearrangement 

/~(~; ~" ~) \dzz! = n(z; $, V) + 2 {$; z), (23) 

$'" 3 i ~ " ]  2 
where {~; z} = ~--;- - 2 \ ~ 1  (24) 

is the well-known Sehwarzian differential parameter. 



CONNECTIONS AND CONFORMAL M A P P I N G  239 

The domain function R(z; ~, 7) is regular analytic for z E D, except for z = ~ and 

z =7  where it has a double pole. I t  is, therefore, of interest to point out a function 

of z which is regular analytic throughout D and which also has the transformation 

law (23). This function is 

~l(z; ~) (25) t0(z; z) ~-e~- ~_:" 

Indeed, from the relations (III.71) and (III.81) follows 

1 
/~ ~) = x(z - ~)2 - Lo(Z; ~) (26) 

and the transformation law of s ~) under conformal mapping (III.82') yields by 

differentiation: 
d~ d~ , 

L~ ~') dzz d-~ = L~ ~)" (27) 

] Hence, ~0(}; ~) d~ d~ 1 Idz d~ 1 
d z ~  ;~t~-~)~ (z--~) ~ +to(z;~) 

Passing to the limit ~-->z, we find [1, 3]: 

\-d; / 

We recognize, therefore, from (23) and (29) that  

transforms according to 

R(z; ~, 7) - 12~/o(z; z) = q(z; ~, 7) 

(28) 

(29) 

(30) 

~(~; ~' ~) \d~! =q(~; ~' ~)' (31) 

i.e., as a quadratic differential. 

I t  is known [3, 25] that  for z EC 

1 dx(s) (32) 
Im {/o(z; z) ~} = 6~ ds 

Hence, the quadratic differential (30) satisfies the boundary condition 

q(z;r ~ = r e a l  for zEC. (33) 

16 - 02173068. Acta  ma2hema$ica. 107. I m p r l m 6  le 25 ju in  1962. 
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Thus, in order to construct of expressions R(z; ~, ~) it is sufficient to know all 

real quadratic differentials of D and the one regular function 10(z; z). 

4. We shall now apply the formal relations of the preceding section in order to 

obtain a more general variational formula for the domain function H(z: ~). We ob- 

serve the identity 

if  R(t;$,~)dt=NR(Zo;~,~ ) 
2~iN c t - z o -  

r(~; ~) F(r ~) 1 1 
-Zo ~ - Z o  ( ~ - z o )  ~ (~-Zo)  ~ 

(34) 

which follows from the residue theorem and the known singularities of R(t; ~, ~)in D. 

We can, therefore, compress the variational formula (16) into: 

I fc R(t;c'v) dr}- Re{2e'~2v"(Zo)}+O(o') (35) H*(~; ~7) - H(~; ~/) = Re [ 2 ~  t - z o 

We remark that each boundary point t E C is shifted by the variation (1) by the amount 

f e ~ e 2 11 I (36) 

in the direction of the interior normal at t with respect to D. We have, by virtue 

of (22), for all tEC: 

R(t; ~, ~) ~ = Re (R(t; ~, y) t~} + 2/~(s). (37) 

Hence, using (37) and the definition (III.59) of ~(z), we can expres.~ (35) as follows: 

(3S) 

We can apply integration by parts to the last integral in (38) and remove the term 

~; indeed: 

~(8) ~ d8 = (t - Zo) ~ : ~ t -  Zo 

Using ([.1) and (36), we arrive thus finally at: 

f 1 f u  2 H(~; ~7) = ~.~1 c Re {R(t; $, ~7) t2} 0n ds - ~ c ~)n ds. (39) 

We have expressed the variation of the domain function H($; ~) in a more geo- 

metrically understandable form. Since the expression is linear and homogeneous in 
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On, we can assert the same variational law for the most general variation 6n which 

can be built up from superposition of elementary variations (1). Formula (39) expresses 

the variation of H(~; ~/) in the Hadamard kinematics of deformation which is more 

intuitive and often preferable in applications. 

5. The variation of F(~;~) under a deformation (1 )o f  its domain D can be 

obtained from the corresponding variational formula (16) for H(~; ~}. Indeed, if we 

differentiate this formula with respect to ~ and make use of (III.2), we find: 

+ R e / 2 e  0 ~R(z0;r +0(0 ') .  (40) 

This result may be considerably simplified by the following formal considerations. 

From (III.72) and (III.73), we deduce the identity: 

1 
F(z; ~)= ~r [~'(z; ~)+ ~'(z; $)] = 2i~z Im {Po(~; z)}. (41) 

N 

We may use this identity in order to transform R(z; $, ~/), defined by (18), as 

follows: 

R(z; ~, 7) = - 4N2 ~ Im {Po(~; z)} ~ Im {Po(~/; z)} + 2iN Im {Po(~; z) + Po(~; z)}. (42) 

We insert this representation of R(z; ~, ~/) into the variational formula (40) for the con- 

nections and drop the part which is independent of ~. We thus obtain: 

[ ~ {P0(r F(z; ,i) ~ 

We write out explicitly the real and imaginary parts as sums and differences of con- 

jugate terms. Many of them are anti-analytic functions of ~ and are destroyed by 

the differentiation in ~. Using the symmetry of G0(z; ~), we finally arrive at 

+2i~Im{e'~'o~[Po'(Zo;r (44) 

The variational formula for the connections introduces thus a new domain function 

~r(z; ~, ~/) = Po'(Z; ~) + F(z; ~/) Po(z; ~). (45} 
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Since Po(z; ~) is an imaginary differential of the first order of D, i.e., 

Po(z; ~) ~ = imaginary for z e C, (46) 

it follows from Section I I I .2  tha t  zt(z; ~, ~)) is an imaginary quadratic differential of 

D; in fact, (45) is precisely the operation (III.18) which boosts the order of a differ- 

ential by  one unit. Thus, we can state tha t  under a conformal mapping $(z) 

^ ^  {d~, ] 2= :~(z; ~', ~]), (47) =(z; ~, ~) \dz] 

and we have the boundary condition 

~t(z; $, ~/) ~ = imaginary for z e C. (48) 

Both results can also be verified directly. 

I t  is interesting to observe how the variational formulas for the various domain 

functions lead in a natural way to expressions with a simple transformation law under 

eonformal mapping and with a simple boundary behavior. 

6. Having derived variational formulas for H(z; ~) and F(z; ~) under a deforma- 

tion (1), we shall now give, for the sake of completeness, the corresponding variational 

formula for Go(z; ~). We proceed in precisely the same manner as we did in Section 2. 

We form the difference function 

at(z*;  r - no(Z; ~) = ~ go(z; ~') (49) 

which is regular harmonic in the punched domain D 0. Because of (III.48), (III.49) 

and (III.50), we can assert 

h G0(z; ~) = A k~(~) for z e C~ (50) 

N 

ak~(~)=O (50') 

~-~AGo(z;~)cls~=O (~=1,2 . . . . .  N ) .  (50") .}( 

I t  is, therefore, clear tha t  for any two points ~ and ~/ in D o 

f c lGo(z; ~l) ~-~ A Oo(Z; :) - A Oo(Z; ~) ~n: Oo(z; ~l)} ds~ = O. (51) 
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Applying Green's identity to the integral (51) when extended over the boundary 

C+c of D o and using (7) in order to evaluate the contribution of the integral over c, 

we find after obvious calculations: 

G~(~*; ~*) = Go(~; ~) + Re {e'~2po(zo; ~) Po(zo; y)} + 0(~'). (52) 

This is formally the exact variational law satisfied by the ordinary Green's function 

of the domain [21, 24]. 

7. Let  us define the funetionals of D 

g(~) = lim {Go(z; ~) + log ]z - ~]} (53) 
z-~r 

and h(~) = lim {H(z; ~) + N log Iz - ~1}. (54) 
z--~ 

Under a conformal mapping  $(z), the Green's function Go(z; $) remains invariant. 

Hence, we obtain the transformation law for g($): 

IdOl 
Jog 1 1. 

Similarly, we derive from (54) and the transformation behavior of H(z; ~) (III.15) the 

equation 

J;(~ = h(r + (2 + N) log ~ + ~ [~, z]. (561 

Observe that  the eombination 

~(z; ~) = H(z; ~) ~ g(z) - g(~) - N G0(z; $) (57) 

has the simple transformation law 

+ _ 1  ~(~; ~) = ~(~; ~) ~zr [~' z]. (58) 

is finite everywhere in D, but it is not a harmonic function of its variables. The 

main value of the funetionals g(~), h(~) and ~(z; $) lies in the applications to inter- 

esting extremum problems as we shall illustrate below. 

We deduce from (16) and (52) the variational formulas 

( [ ~  N+2 -2v"(zo)]}+O(94), (59) h*(~*) - h(~) = Re e t~ e ~ (F(Zo; ~)2 + 2 F'(z0; $)) - ( ~  z--o) ~ 
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a n d  

�9 _ 1 + 

$*(~*; r ~(r ~) 

= (P(z~; ~)2 + 2 P'(zo; ~)) - (N + 2) Po(z0; ~)9. _ 2 v"(z o) + O(q4). (61) 

8. I n  order  to  i l lustrate the  above  results and  to  show how they  can be applied,  

we consider now the  ve ry  special case t h a t  the  domain  D, considered, is the  exter ior  

of the  uni t  circle ]z[ > 1. I n  this ease, it is immedia te  t h a t  

1 1 
H(z; ~) = log ~ + log ~ + 2 log I~r 

i z - ~ l  l i - Z ~ l  
(62) 

I 1 - ~$[ (63) and Go(z; ~)= log ( U ~ _  ~ i. 

Hence ,  in par t icular ,  I$l' (62,) h(Q = log Ir 1 

a n d  g(~) = log (]$]~- 1). (63') 

B y  different iat ing (62) and  using (III .2) ,  we find 

1 ~ 2 
r(z; ~) z -  ~ F ~ + z" (~4) 

F r o m  (63), differentiat ion leads to 

1 $ IC} ~-- 1 (65) 
P'o(z; ~) = - z - - - ~  - 1 - -  z~  - ( z  - ~) (1 -z~)" 

F u r t h e r  
1 ~ 2 

F'(z; r (z - r ~ (1 - z~)"-  z -2" (66) 

Hence,  i t  is verif ied b y  direct  calculation t h a t  

4(l~l ~ + l) 
F(z; $)2 + 2 r ' ( z ;  ~) - 3 Po(z; ~)2 = _ z(z - ~) (1 - z$}" (67) 

Observe t h a t  the  left  side expression is suggested by  the  var ia t ional  formula  (61) 

for ~(~; ~)- 

Le t  now Go(z ) = log ]z[, Po(z) = log z (63") 
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be the Green's function and its analytic completion with the source point at infinity. 

Clearly, Go(z ) and Pc(z) may be defined for every domain D and they are conformal 

invariants for all mappings which preserve the point at infinity. We can then com- 

bine (65) and (67) and write 

I&l + 1 = coth Go(~ ) �9 Po(z) Po(z; ~). (68) 
z(z  - ~) (1 - z ~ )  

0 ~ ( z ;  ~) 2 02Go(z; ~) (69) 
Since by (III.72) L~ ~) = Oz 0F ~ 0z 0~ 

has in the case of the domain [z[ > 1 the value 

1 
L0(z; ~)= ~ ( z  - ~)~' 

we conclude from the relation (26) that  in this case 

/o(Z; ~') = 0 

holds. Therefore, we may write (67) in the form: 

(69') 

(70) 

F(z; ~)z + 2F'(z; ~ ) -  12~t lo(Z; z)-3Po(z;  ~)2+ 4 coth Go(~)Po(z)Po(z; ~)=0. (71) 

This equation has been proved for the special domain [z[ > 1. But observe that  

Go(~ ) is a conformal invariant for all mappings which preserve the point at infinity, 

that  the first three terms in (71) form the quadratic differential q(z; ~, ~) defined in 

(30) and that  all other summands are likewise quadratic differentials of D. Since this 

covariant expression vanishes for one special domain, it must be identically zero. 

Thus, the identity (71) is proved for all simply-connected domains which contain the 

point at infinity. 

From the variational equation (52), we find in the limit ~/-~oo 

G~(~*) = Go(~) + Re {e'~0 ~ P'o(z; ~) P~(z)} + O(e* ) (72) 

and, hence, 

log sinh G~(~*) = log sinh Go(~) + Re {e '~ 02 coth Go(~) P'o(Zo) Po(zo; ~)} + 0(04). (72') 

Consider then the functional 

T(~) = ~(~; ~)+4  log sinh Go(~). (73) 
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In  view of the variational formulas (61) and (72') and because of the identi ty (71), 

we have for every simply-connected D which is varied according to (1): 

T*(~*) = T(~) + Re {e '~ p2 [12~t/0(z0; Zo) - 2 v"(z0)]} + O(04). (74) 

In  Section I I I .7 ,  we have defined the Fredholm eigen values 2~ > 1 of a domain D. 

One may  consider the "Fredholm determinant"  

I t  has been shown [25] tha t  under a variation (1) the Fredholm determinant A varies 

aecording to 

log A* = log A - Re {e t~ 02 2~ lo(zo, z0) } + 0(04). (76) 

Combining (74) with (76), we find tha t  under a variation (1) 

(~ [9(r r + 4 log sinh O0(~) - 6 log A] = - 2 Re {e '~ ~)~ v"(z• + 0(04). (77) 

9. We have constructed a combination of various domain functions and fune- 

tionals which have a very simple variational law (77). I t  is now surprising tha t  we 

can construct another simple functional which has precisely the same variational ex- 

pression. 

Let  /~ be the complementary domain of the simply-connected domain D. /~ is 

a finite domain and let w =/(z) be univalent in / )  and map this domain onto the 

unit  circle Iw] < 1. Let  us define 

[w, z]-  = [ v  log Iw'l]'d  - ,, log [w' I ds. (78) 

Observe the change in sign in the second term of (78). The reason is tha t  we as- 

sociate with the value s of the length parameter  on C the curvature value x(s) which 

belongs to the positive orientation relative to D; hence, the proper curvature relative 

to J~ must  be chosen as -~ ( s ) .  

The functional [w, z]" can be defined in ~ for every eonformal mapping w =/(z) 

onto a finite domain in the w-plane. By the same formal reasoning as we used in 

Section 1.9, it can be shown that  in a chain of mappings w($), $(z): 

[w, z]- = [w, r + [~', z]' .  (79) 

The identity (79) can also be explained by  means of the Neumann type func- 

tion -f/(z; ~) of the simply-connected finite domain /) ,  which is characterized by the 

properties: 
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1 
J~(z; ~)= log z ~  § regular harmonic (80) 

~(s), ~=inter ior  normal relative to ~ (80') 

fc~(S~) ~) dsz = (80") //(z; 0. 

As in Section III.2, we can derive the transformation law for this Neumann function: 

B*(w; ~) =/~(z; ~) - log II'(z) l'(~)l +_a [w, z ] .  (81) 
7~ 

The additivity law (79) for the functional [w, z]" follows now directly from the group 

property of conformal mappings. 

In the case that  D is the interior of the unit circle, we have 

1 1 (82) 
/~(z; ~)= log ~ +  log l1 _z~l. 

There exists a three-parameter group of linear transformations 

z *  = a ( z )  = z -  T . el ~ (83) 
1 - -~z  

which carry ~ into itself. We verify that  

/~(z*; ~*) = t ~ ( z ;  ~ ) -  log [a'(z) a'(~)[. (84) 

Hence, under every linear transformation of the unit circle onto itself we have 

[ w ,  z ] "  = 0 ,  w = e t= z - t ( 8 5 )  
1 --Tz" 

Let now J~ be an arbitrary finite simply-connected domain and z*= a(z) be a mapping 

of / )  onto itself. Let ~/= ~(z) be a fixed mapping of 1) onto the unit circle; clearly 

~/*(~/) is a linear mapping of the unit circle into itself. Hence, 

[z*, z]" = [z*, ~*]- + [~*, ~/]- + [~, z]- = [z, ~]- + [~, z]" = o. (86) 

Hence, the symbol [w, z]- referring to the mapping of a domain D in the z-plane to 

a domain D* in the w-plane depends only upon the domains D and D* und is in- 

dependent of the particular way in which this mapping is carried out. Hence, if we 
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understand by w =/(z) the mapping of / )  onto the domain ]w I > 1, the number [w, z]- 

is a functional of /~ only. 

Suppose now that  we vary  the infinite domain D by a deformation (1). This 

induces a corresponding deformation of the complement /3. But  since z 0 E D the corre- 

spondence z*(z) is a regular univalent mapping of /3 into ~*.  In particular, we have 

[w, z*]- = [w, z]" - [z*, z]-.  (87) 

But by definition (78), we have 

[z,,z]-= ff (Vlogll_ e"d ' \ 'dr_  l I1 - e'~'Q2 ' & 

= Re fc  + O(e'). (88, 

Thus, we find that  the functional [w, z]" of /~ satisfies the variational equation under 

the deformation (1): 

(~[w, z]" = - Re (e t 'e '  2gu"(z0)} § 0(~4). (89) 

10. We have now constructed two funetionals of the boundary curve C which 

possess the same variational formula. In order to discuss the meaning of this result, 

we wish to transform the functional (77) into a more suggestive expression. We 

calculate it  first for the case that  D is again the domain Iz] > 1. Then, we have by 

(62'), (63') and (67) 

~(~; ~) + 4 log sinh Oo($) = - 4 log 2. (90) 

Using the conformal invariance of G0($ ) and the transformation law (58) of the func- 

tional ~(~; $), we find that  for an arbitrary simply-connected domain 

~(~; ~) + 4 log sinh G0(~) = - 1 [w, z] - 4 log 2, 
Tb 

(91) 

where w(z) is the mapping function of D onto the exterior of the unit circle such 

that  the point at  infinity is preserved. 

This leads as to the following interesting functional (I) which can be related to 

every simple closed curve C. We define 

(I)[C] = [w, z] + [w, z] ~, (92) 

where [w, z] and [w, z]- are the expressions connected with the mapping of the exterior 
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D and the interior J~ of C onto the exterior and the interior of the unit  circle, re- 

spectively. Now, we can assert in view of (77) and (89): For every variation (1) of C 

~)[C] = 6~t ~ log A (93) 

holds. In  the case tha t  C is the unit circle, we clearly have (I)[C] = 0  and A = 1. 

I t  appears, therefore, that  we have proved the identity: 

~_l(1-~)=exp{~--~([w,z]+[w,z]')}. (94) 

From the knowledge of the mapping functions of the interior and the exterior of a 

curve onto circular domains, we can thus calculate, its Fredholm determinant. 

These considerations show the value of the variational technique, as well as the 

significance of the functionals [w, z], to which we were led by our investigation. I t  

is obvious tha t  we have developed a formalism which is flexible enough to solve 

ext remum problems with respect to the various functionals defined, and the solution 

of such problems will lead, as usual, to interesting existence and distortion theorems 

for the general theory of conformal mappings. 

V. Connections on closed Riemann surfaces 

l .  In  the theory of plane domains, we defined differentials, quadratic differ- 

entials, etc. by boundary behavior. For example, if D is a plane domain with ana- 

lytic boundary C, then an analytic variable w defined on D is called a differential if 

I m  {w~} =0 ,  (~=dz ) on  C (1) 

on C. A plane domain is, of course, a Riemann surface which is provided with a 

global uniformizing parameter.  Since all variables can be referred to the universal 

s tandard of comparison which this uniformizer affords, analysis can go much deeper. 

In shifting our interest to a more general Riemann surface, we are deprived of a 

universal coordinate system, and must  fall back on the weaker device of considering 

transformation laws of sets of variables ra ther  than boundary values. 

For example, if ~ is a Riemarm surface, and 11= {U~} is a covering of ~ such 

tha t  to each U~ E 11 there is associated a unique local uniformizing parameter  z~ : U ~ C  

(where i3 is the additive group of complex numbers, i.e., the complex numbers not 
including co), and z~ and z~ are analytically related on U~ n U~, then a differential 



250 M. S U H I F F ~ R  A N D  N.  S. H A W L E Y  

(also called an Abelian differential) is defined by  a set of variables {w~,}, each w~ 

defined on U~, such tha t  we have 

dz~ 
w ~  = w ~  _ ~  (2) 

dza 

in U~ N U~. More precisely, for each point p E U~ N U~ we have 

(2') w~(z~(p)) = w~(z~(p)) \dz~/~" 

Any set of variables which satisfies these transformation rules is called an Abelian 

differential. 

In  Chapter I I I ,  we defined a domain function which we called a connection. 

The domain function was a variable F(z) whose boundary behavior was characterized 

by  the equation 

Im {F(z) ~} = ~(s) for z = z(s) E C. (3) 

Jus t  as equation (2) represents the transformation laws arising from (1), we wish 

to find an equation representing the transformation laws arising from (3). We can 

do this as follows. Differentiating with respect to arc length in equation (1) we find 

dw 
I m { w ' ~ S + w ~ } = O ,  W ' - d z ,  (4) 

and dividing by w~, which is real, we have 

Since g/~ =Jr, this shows tha t  

= 0 .  (4)  

or tha t  -(d/dz) log w is a connection if w is a differential on D. This is the clue 

we need, for it suggests tha t  we investigate the transformation laws of a set of vari- 

ables {F~} which are defined by 

d 
F~ = - dz-~ log w~, (6) 

where the variables {w~} define an Abelian differential, i.e., satisfy (2). In  fact, using 

equation (2) we find by  a simple calculation tha t  

F~=F~ l~ J in U~NU~. (7) 
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We now make the definition that  any set o/ variables {F~) which obeys the trans/orma- 

t/on rules (7) will be called a connection. The existence of differentials and equation 

(6) assure us of the existence of connections. 

2. An object which follows the transformation rules given by (7) deserves to be 

called a connection from the point of view of differential geometry since it allows 

us to define a covariant process of differentiation. In fact, if the collection {q~} de- 

fines an Abelian differential, then the collection (Q~} where 

Q~=dz~+F~q~,  in U~ (8) 

defines a quadratic differential, i.e., 

Q [dzP~ 2 
Q,= ~[~/~] in U, NU~. (9) 

This is verified by a simple computation using (2) and (7). 

In fact, a collection of variables {~F,} is said to define a differential of dimen- 

sion ~ if they satisfy the transformation laws 

. / d z ~ \ ~  
~F~=~t r~ [~ )  in U ~N U  s. (2') 

(~ .can be any complex number.) 

In this case the collection of variables {~/~} defined by 

d~F~ 
~ = - ~ - + ~ P ~ ,  in U~, (8') 

defines a differential of dimension $+ 1. These rules all correspond to rules for co- 

variant differentiation in differential geometry and have led us to refer to the col- 

lection {F~} as a connection. 

The most general analytic connection is obtained as follows: let {F~)be  any 

analytic connection, then {F~+ ~ )  is also a connection if {~} defines an Abelian 

differential (whatever its singularities). 

We arrive in this way at the most general connection, since any two connections 

{F~} and {F*} define a differential {~} by 

$ 
F, - F.  = ~o~. (lO) 
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Tha t  connections do indeed exist follows from the existence of differentials by  the 

method of (6). But,  of course, not  every connection arises in this manner.  (We shall 

look into this question presently.) 

3. I t  is clear t ha t  connections m a y  have poles; thus  let us define wha t  we mean 

by e[r], the res/due of a connection F={F~} .  Let  p e U~ N U s, and let C c  U~ fi U s 

be a simple closed curve which bounds a ce// D c U~ (1 Up and let p E D. We suppose 

tha t  F is regular on C and  in D except, possibly, a t  p. Then  we have 

for d  =for d= -fodlog[ \dzJ = fcps  d@. 

Thus we m a y  define 

as the residue of F at  p, and  

as the residue of P. 

O[r;  p] = ~ /  P~dz,, 

e[r]= Z o[r; p], 

We can easily see tha t  

O[F] = X(~) = 2 - 2p, 

and Z(~) is its Euler  characteristic. where p is the genus of ~R 

connection defined by  

F* d log o~,, 

where eo~ is an  Abelian differential of the first kind. Then 

1 r e  i, . dz,, = -  (the number  of zeros of ro~ inside C), 

so tha t  ~ [F*] = 2 - 2p. 

B u t  P * - I '  = ~0, an Abelian differential, and 

~ [ r  + ~] = O[r] + eBo] = O[P], 

so ~[P*] = O[P]. 

This shows t h a t  Q[F] = 2 - 2p. 

(11) 

(12) 

(13) 

(14) 

For  let F* be a 

(15) 

(16) 

(17) 

(18) 

(19) 

(14') 
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We now see, therefore,  t h a t  a connect ion m u s t  have  a t  leas t  one pole unless ~ ( ~ ) = 0 ,  

i.e., t h a t  ~ is of genus 1. 

As to  the  general  s t ruc ture  of a connection,  we can, in fact ,  demons t r a t e  the  

following: let Pl . . . . .  Pn be n points on the Riemann sur/ace ~ ,  o/ genus p, let a 1 . . . . .  an 

be any  n complex numbers such that a l + . . . + a n = 2 - 2 p ,  and let k 1 . . . . .  kn be n in- 

tegers such that kj>~ 1, ~ = 1, . . . ,  n, then there exists a connection F which h~s a pole 

o/ order kj and residue aj at pj, j = 1 . . . . .  n, and is otherwise regular on ~ .  I n  order  

to  see th is  le t  F (1) be any  connect ion with s imple  poles a t  ql . . . . .  qm. (We can a lways  

cons t ruc t  such a connect ion f rom a di f ferent ia l  of the  f irst  kind.)  W e  m a y  nex t  as- 

sume t h a t  m = n .  F o r  if m < n  we m a y  increase the  number  of poles b y  adding  

different ia ls  of the  t h i r d  k ind  (having one pole a l r e a dy  in the  set  qx . . . . .  qm and  one 

pole free). I f  n < m  we m a y  " k i l l "  the  poles a t  m - n  of the  po in ts  qx . . . . .  q~ b y  

add ing  dif ferent ia ls  of the  t h i rd  kind.  Le t  F (2) be a connect ion wi th  s imple poles 

ql, . - . ,  qn, and  suppose  the  residues are  b I . . . . .  b,, respect ively .  Then there  exis ts  

a d i f ferent ia l  of the  t h i rd  k ind  ~ which has  s imple poles a t  Pl . . . .  , Pn, ql . . . . .  qn with  

res idues  a 1 . . . . .  an, - bl . . . . .  - bn, respec t ive ly  (since a I + ... + an = bl + ... + bn) Therefore,  

F C~) = F (2) + ~ (20) 

is a connect ion  having  simple poles a t  Pl . . . .  , Pn with residues a 1 . . . . .  an, respect ively .  

Nex t ,  suppose t h a t  ]c t . . . . . .  kj, are  the  integers  g rea te r  t han  1. (Of com'se, there  m a y  

be none! we m a y  have  r = 0 . )  Le t  ~ be a dif ferent ia l  of the  second k ind  wi th  a pole 

of o rder  kj, a t  pj,, s = l  . . . . .  r. Then 

F = F ca) + ~ (21) 

is a connect ion of the  t y p e  asser ted  to  exist .  

4. I n  order  to  in t roduce  some global  considera t ions  concerning connections,  we 

f ind i t  convenient  to  use cer ta in  techniques  of homology  theory .  I n  par t i cu la r ,  the  

~ech eohomology groups  will be of use to  us [5, 11]. 

Corresponding to  the  covering U of ~ ,  there  is associa ted  a complex  N(11), the  

nerve of 11. Since ~ is a compac t  t r i angnlab le  space,  we can choose a 1I such t h a t  

Hq(N(l l ) ,  C ) ~ H q ( ~ ,  C), (22) 

q = 0, 1 . . . . .  I f  to  each pa i r  U~, U s El l ,  such t h a t  U~ (I U~ r 0, we assign a complex  

number  c ~  (so t h a t  c~  = - c ~ ) ,  t hen  we have  def ined a cochain on N(11). 

Le t  {o)~} define an  Abe l i an  di f ferent ia l  of the  f i rs t  k ind  on ~ .  Le t  {/~} be a 

col lect ion of ho lomorph ic  funct ions  def ined on the  {U~} such t h a t  
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dz~- ~ (23) 

then in U~ N U~ we have /~ - / ~  = c~ = const. (24) 

Thus we have assigned a 1-coehain of N(LI) to the collection { ~ } .  This eoehain is 

actually a cocycle, for obviously we have 

c~ + c~ + c~ = 0. (25) 

(Note c~,~,=-c~, etc.) 

Next  suppose {9~} is another collection of holomorphic functions such tha t  

dq~ 
= eo~. (26) 

Then g,~ =/~ + c~, where c~ is a constant. Thus 

g~ - g~ = b~ = c~  + (c~ - c~). 

The cochain {b~} is also a eoeycle, which we see differs from {c~} be a coboundary, 

i.e., is cohomologous to {c~}. Therefore, we have a unique cohomology class associated 

with {o)~}. 

The Abelian differentials of the first kind themselves form a group - -  a T-(complex) 

dimensional vector space over C. Let  us denote this group by DI(~).  The assignment 

of cohomology classes given above defines a homomorphism 

h :DI(~)--+H1(~, C). (27) 

The kernel of this homomorphism is zero, i.e., h{~o~}=0 means w ~ - 0 .  For if {w~}-+0 

then we have holomorphie functions {/~} such tha t  

~Z~=eo,~ in U~ (23') 

/ ~ - / ~ = 0  in U~NU~. (24') 

This means /~ =/~ = [  defined globally. Since ~ is compact, / =  eonst. Therefore 

d/ 
eo~ = ~ = 0. (28) 

Let  the image of DI(~)  under h be denoted by HI (~ ,  C). Then h is an iso- 

morphism of DI(~}~) o n t o  H I ( ~ ,  C). 
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We should note tha t  if we let /~1(~) denote the complex conjugates {eS~} of the 

Abelian differentials, then we may  also define (the definition extends directly and 

naturally as given above) h to map /~1(~) isomorphically into HI(~, C). I f  we denote 

the image of /~1(~) under h by H ] ( ~ ,  C), it can, in fact, be shown that  

HI(~}~, C)=H~(~ ,  C ) O  H~(~,  C), (29) 

so tha t  the direct sum DI(~)  0 ~1(~)  (30) 

is isomorphic to HI(~ ,  C). 

There are other methods of defining homomorphisms of DI(~) into HI(~ ,  C) which 

are interesting, and we shall now describe one of these. 

The collections of functions {s associated with {to~} are functions defined on 

the neighborhoods of the covering 11 = {U~}. 

Since ~ is triangulable, we can associate a covering of ~ with a given triangula- 

tion in a way which is conceptually very convenient. In  particular, this covering 1I 

will be finite and have the property that  

Hq(N(II), G)~Hq(~, G) (31) 

for q = 0, 1 . . . .  and any coefficient group G. In  order to do this, let ,~ be a simplicial 

complex covering ~ ,  i.e., a triangulation of ~ and introduce a distance function on 

so tha t  it becomes a metric space. (Any distance function, compatible with the 

topology of ~ ,  which makes ~ a metric space, will be satisfactory.) I ~ t  ~* be the 

dual cell complex of ~, and let us label the 

vertices (0-simplexes) of ~{ as {a~} = a~, a~, a~ . . . .  etc. Let  s~ denote the dual 2-cell 

of a~, and let U~ be an e-neighborhood of s~. We can choose e so small tha t  U~ and 

U~ do not intersect unless s~ and s~ have a common 1-cell on their boundaries, so 

17 - 62173068. Acta  mathemat/ca.  107. I rapr im6 le 25 ju in  1962. 
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tha t  N(ll) is naturally isomorphic to ~. Such a covering can be termed p r o p e r / i n i t e ,  

and we shall assume tha t  li is such a covering. 

The function {/~} can be extended to the star of U~, i.e., /~ can be continued 

into each U~ such that  U~ N U~@0; for we have 

/~(p) - /~(p)  = c ~  for p E U~ N U~, (32) 

thus we can define /~(P) =/~(O) + c~ for p e U~. (33) 

Having thus extended the function {/~} let us define 

~=~ = 1~(~) - t ~ ( ~ ) .  (34)  

Now let us consider ~ =/~(a~) -/~(a~), (35) 

then v~  - v~ =/p(a~) -/~(a,,) - f,,(a~) +/~,(a,,) 

=/~(a~) - / ~ ( ~ )  - (f~(a~,) - / ~ ( a ~ ) )  (36) 

= c,r - c,~ = 0. 

Thus, if a ~  (the 1-simplex corresponding to (U~, U~) in N( l l ) - -we have ~ a ~ = ( ~ - a , , )  

is a 1-simplex lying in the star of Ur, then 

/v(P) =/B(O) - c~r for p e U~, (37) 

and /r(a~) -/~,(a~,) =/~(a~) - c ~  -/~(a~,)  + c~r = v~, (38) 

thus we have v~ =/r(a~) - / r (a~, ) ,  (39) 

where 7 is such tha t  a ~  lies in the star of U r. 

Now let v be the cochain of ,~ (or equivalently of N(ll)) such that  

~[a~] = v~,  (40) 

then we can easily see from the definition above tha t  ~ is a cocycle. For we have 

�9 =~ + ~ + ~ =/~(a~) -/~(a=) +/~(ap  - l~(a~) +/~(a~) - / ~ ( a p  = 0. (41) 

Again it can be seen tha t  the cohomology class of v depends only on the differ- 

ential w, and not on the particular choice of the functions /~. For suppose that  {g,} 

is another set corresponding to {eo~}, then 

g~ = / ,  + c,, (42) 

so we could have 

v~e = ge(ae) - ge(a~) =/~(ag) + c~ -/~(a=) - c~ = v~, (43) 
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and we see that ,  in fact, the cocyc/e, ~ itself does no t  depend on the system (/~} bu t  

only  on o~. Of course, ~ does depend on the complex ~;  for if we shift the vertices 

of ~,  the numbers  v~# will change. Even  so, v still determines a unique cohomology 

class of H1(,% C), which we shall denote by  z - - t h e  ambigui ty  not  being serious. 

Finally,  let us define 

~ = f # ( ~ )  - 1~(~) .  (44) 

By adding v~  = ]~(~) - ]~(a,,), (45) 

and ~ = / # ( ~ )  - / ~ ( ~ ) ,  (46) 

we get v,r + ~ = [#(a~) - f~,(a#) = - c~,# (47) 

so we see tha t  ~, defined by  ~[(~]  = ~ ,  is also a cocycle. 

We shall show tha t  the homomorphism 

v : Dl(~)-->Hl(3, C), where ~(w) = 3, (48) 

is an isomorphism into. Let  KI(c, z) denote the Kronecker  index of a cocycle c, and 

a cycle z (of the dual dimension to c). Then we can prove tha t  

f zo~ = KI(~(w), z), (49) 

where z is a 1-cycle on 3 .  Since KI( . ,  .) is a topological invariant,  it is sufficient 

to work with cycles and cocycles of ,~. Let  the values of z be defined by  

z[a,r = k~ .  (50) 

l e o =  ~.. k,r f oo= ~k ,c{ /#(a~)- /p(a , )} :  ~k ,c~ ,c=KI(~(w) ,  z). (51) Then 
d z  gaff Ja=# 

If  we let o) 1 . . . . .  o~p be a basis (over C) in D1(3), and z 1 . . . . .  ~p be a one-dimen- 

sional (integral) homology basis of 3 ,  then 

gyk = KI(~(oJy), zk) (52) 

are the elements of a period matr ix  of 3 .  

We can, however, convert  the assertion above into a more interesting statement.  

Let  us define a 0-eochain k by  

k[a~] = l~(a~) = ~ .  (53) 
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The eoboundary of this coehain is given by 

~ k [ ~ ]  = k [ a # -  ~ ]  = t~ (~ )  - 1~(~). (54) 

Therefore, we may conclude that  

b (  ~#) - I~( ~ )  = / : ( ~ )  - b (  ~ )  - c ~  = ~ ~ - c ~ ,  

or T~r = c~ + k~ - k~, 

(55) 

(56) 

i.e., z is eohomologous to c. But this means that  we can now write 

co = KI(h(co), z). (57) 

Now choose a basis (v)= (~o 1 . . . . .  coy) in DI(~). Then we can define an homo- 

morphism 

h~) : HI(~,  Z)--~DI(~) (58) 

p 

by h~)(z) = ~. KI(h(coj), z)coj. (59) 
t=1 

I t  is clear tha t  h~ ) is an isomorphism into, for if h(~)(z)=0, then Kl(h (o ) ,  z ) = 0  for 

all co, i.e., z =0 .  We next form the factor group 

DI(~) 
J ( ~ )  = hg) H~(~{, Z)" (60) 

This group is dear ly  a p complex dimensional torus viz. a p-dimensional Abelian 

variety. J (~ )  is the Jacx~  variety of ~. 

5. In  order to facilitate our further discussion of connections, we introduce some 

terminology. A connection will be called norma/ if each of its singularities has an 

integer residue. We define Dr,  the divisor o/ a connection F, to be the zero-cycle of 

which has the value ~[F; p] at  p (viz., the residue of F at p). Thus, we see that  

r say F is normal 'means that  Dr  is an integral divisor. 

A connection will be called simple if its only singularities are simple poles. Since 

any connect ion can be expressed as the sum of a simple connection and an Abelian 

differential of the second kind, we see, that  the divisor of a connection is determined 

entirely by the "simple part"  of the connection. 

A connection will be called canon/cal if it can be expressed as 

d 
F~ = - dz--~ log oJ~ (60') 
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where to: is an Abelian differential. And a connection will be called elementary if 

it has only one singular point. An elementary connection is clearly normal since 

Q[F] = 2 - 2p. 

We are now going to assign a cohomology class to  each normal connection F; 

this class will be an element of HI(~; C*). We note tha t  the coefficient group used 

is C*, the multiplicative group of non-vanishing complex numbers. When this group 

is used, cochains will be written in a multiplieative notation rather than the usual 

additive notation used when the coefficient group is C. For  example, if {A~} is a 

cochain, the condition for this cochain to be a eocycle is tha t  A ~  A ~  Ar~= 1. 

Let  F be represented by {F~}, and let 

= - f r= d== 

be the indefinite integral of - F ~  in U:,. Also we let 

~F: = e~. (621 

Although ~: may have logarithmic singularities and thus not be single-valued in U:, 

we see that,  since F is normal, ~F: is single-valued in U:. Also we have 

~ - ~ = b ~  + log \dz~,] (63), 

where b=~ is a complex number. Even though b~ is not  determined uniquely, it  is 

determined up to an additive term 2zdn~r so that  the non-zero complex number 

A~  = eb~ (64t 

is uniquely determined. We now have 

= A~ l, dz:/" 

Of course, I t  is easily seen that  {A~} is a cocycle on N(II) with coefficients in •*. 

this eoeycle is not uniquely determined by the connection [~ since the functions ~ 

are determined only up to an additive constant. Thus if ~,*~ is another determination 

of - S F~ dz=, then  

~,* = ~ + b~. (66t 

Let  A~= eb% then if {A~} is the cocycle corresponding to the functions ~*, we see 

that  A~ =A~(A~/A~), so {A~} is cohomologous to {A~}. This shows that  F deter- 

mines a unique cohomology class of HI(N(II), C*). I t  follows from standard techniques 
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of Cech cohomology theory that  this cohomology class in turn determines a unique 

element of HI(~,  C*). We shall let (F) denote this element of HI(~)~, C*), and (F) EHI(~,  C*) 

is called the cohomology class of the connection P. 

Naturally, one will ask the question: given connections F and F*, when is (F) = (F*)? 

We can proceed to answer this as follows. Let  ~=-SF~dz~ and * 

be the indefinite integrals of the connections over the U~, and let ~F~ = e ~,  ~ = e ~* 

in u~, then (F) and (F*) are determined by 

a n d  _ _ 

We "~ \dz~]" 

Since (F)=(F*)  we have A ~ = ~ A ~ *  B. (69) 

Le t  ~F* = A~q)~, then * * * W~ = A~ e ~  = e~+ ~ (70) 

Since ~* is determined only up to an additive constant, we see that  the ~F* will 

serve to determine (F*) just as well as the CF~. But  now we have 

- (71) % ,r~' 

so if we let 1~ =~-~, (72) 

then in U~ A U~ we have f~(p) = ]~(p). (73) 

Define a function ](p) on all of ~ by 

](p) -- f~(p) for p e  U~. (74) 

Thus [ is single valued (since F is normal) and meromorphic on ~.  

We can now write log (t~F *) = log ~F~, (75) 

thus _ ~ d  log ~F* 1 d/ d log ~F~. (76) 
dz~ [ dz~ dz~ 

This shows that  F* = F~+ ~ dz~'d] (77) 

F* = P + ~ ,  (77") symbolically or 

where [ is a meromorphic function on ~.  Clearly, if this last relation holds between 

F and F* then we have (F)=  (F*). 
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Suppose now that  F is a simple connection with its singularity at ~ E~, and F* 

is another simple connection with its singularity at  ~ also. I t  then follows that  

(F)~=(F*). For their difference would be an Abelian differential of the first kind, 

which cannot be written as d log/ ,  where / is meromorphic. 

We may also ask: when is a connection canonical? The answer is surprisingly 

simple. A connection F is canonical i/ and only i/ it is normal and (F)=  1. The 

"only if" part  is immediate from the definition of (F). Now suppose F is normal 

and (F)=  1. Let  

~F~ = e - f  r~ d~, (78) 

then IF~ (dz~ ~ = A ~  \dz,J" (79) 

The ~F~ are single-valued since F is normal, and A,,~=A~,/Ap, since (F)=  1. Thus 

u~'~,/A~, is an Abelian differential and 

F~ = - ~z~ log ~'~ d log ~F~, (80) 
A,~ d z,~ 

which proves our statement. 

6. In this next section we shall make some references to the theory of complex 

line bundles. This theory is not essential to subsequent development of this paper 

and can be omitted if the reader so desires. The theory of complex line bundles 

(as we shall use it) has been developed by K. Kodaira and D. C. Spencer in [13]. 

Another development is contained in [10]. 

A line bundle is determined over ~ if we are given a collection (0~) of non- 

vanishing holomorphic functions 0~:  U~ N U~-->C*. We say that  two such line bundles 

(0~*~) and (0~} are equivalent if there exist non-vanishing holomorphic functions 

2~: U~-->C* such that  

, Jt~ 0,r = 0 ~ .  (81) 

Each line bundle {0~) determines (again by standard techniques in ~ech theory) a 

unique element of HI(~,  ~*), where ~* is the sheaf (faisceau) of germs of non- 

vanishing holomorphic functions on ~.  

I t  is known that  

Hl(~t, f~*) ~T~• Z, (82) 

where T n is a 2p-dimensional torus group, and Z is the additive group of integers. 
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In fact, HI(~}~, ~-~*) even carries a natural complex structure and in this structure 

T, ~ J(~), (83) 

the Jacobi variety of ~ [28]. (In higher dimensions, the variety is called the Picard 

variety.) 

Since constants are clearly holomorphic, a coeycle {A~e} on N(ll) with coefficients 

in C* determines a bundle. Thus each connection F determines a bundle, b(F) E Hl(~, ~*). 

:Naturally, we wish to know when b(F)=b(F*) for two connections F and F*. The 

condition is quite similar to the previous one concerning the equality of cohomology 

classes. 

Given two connections F and F*, we have b(F)=b(F*) i/ and only i/ 

F* = F + d log / + o~, (84) 

where / is a meromorphie function on ~, and to is an Abelian differential of the 

first kind. 

In order to see this, we first note that  if {~t~} is a system of non-vanishing holo- 

morphie functions such that  

2~=~t~B~ in U~,fiU~, 

where B~ is a cocyele of N(LI) with coefficients in C*, then d/dz~log ~ defines an 

Abelian differential of the first kind. For we have 

~ z  log ~ = d--~ log ~t~ + d ~  log B~ = log 2~. 
\dz,,/ dz~ 

In order to prove (84), if (r) is represented by {A~} and {r*} by {A~*~}, we have 

A~ 
in U~ n u~, (85) 

A~ 2~ 

where ~ is holomorphie and non-vanishing in U~, and ~# is holomorphie and non- 

vanishing in U~, since b(F)=b(F*). As in (68), we have 

u~" /dz~k 1['* ., / d z ~  

so that  qq.~'~_ A~ ~ (86) 
~'* ~'~ A:~ ~./ 
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This means that  /~ = ~ , -  ~t~iy ~ =/~ in U~ N U~. (87) 

So the (f~} determine a meromorphic function ] on ~ where ] :=/~ in U~. We can 

now write 

~t~'~,=~T'*/2,, in U~, (88) 

or - log ~F*~ = - log u~" + log ] + log 3.~, (89) 

and upon differentiation we have 

d d 
- dz~  log LF* = -- dz--~ log ~F~ + log ] + ~ log )~, (90) 

which is the explicit expression of equation (84). 

As an application of this, we have immediately, if Fr and F~ are elementary 

connections (with singularity at ~E ~) then 

since F~-r: is an 

mapping 

b(F~) = b(F~), (91) 

Abelian differential of the first kind. Thus, if we define the 

b : ~-+b(Fr (92) 

this maps the Riemann surface ~ into the Jacobi variety of ~.  

A natural question is: which elements of Ht(~,  C*) are cohomology classes of 

connections? The answer is simple--all! For, as observed, each eocycle {A~} deter- 

mines a bundle and each bundle has a (meromorphic) cross section [14]. Let  {LIra} 

determine a cross section of the bundle defined by {A,~(dzp//dz,,)}, then 

~'~, [dz~\ (65) 
LF~ 

so -(d/dz~,)log ~F~=F~ defines a connection. (In fact, a norma/ connection.) 

As remarked earlier, each constant is holomorphie, so we have the inclusion mapping 

t : C * - ~ * .  (93) 

This induces t* :HI(~,  C*)-->HI(~, ~*). (94) 

We have also defined an homomorphism h of DI(~) into HI(,~, C) by (27) and through 

exponentiation e: C->C*, we have the homomorphism 

e* : D1(~)--~ HX(~, C*). 
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By the result expressed in equation (84), we see tha t  the kernel of the homomorphism 

t* is e*(Dl(~)),  i.e., we have 

HI(~}~, 13") ~ j ( ~ ) .  (95) 
e*(Dl(~)) 

7. Having developed a method of differentiation which is covariant with respect 

to local uniformizing parameters,  it is natural  to inquire about anti-differentiation, 

or integration. Locally, this is quite simple since we have only one independent vari- 

able. In  fact, leaving aside the questions of multiple valuedness, if ~ is any  complex 

number, and {tI~} defines a differential of dimension ~ + 1, we can find a differential 

{~} of dimension $ such that  

d ~  
dz~ ~- ~ r ~  = ~F~ (96) 

as follows. Using the integrating factor co; r where 

o9~ = e-Y r~ dz~, (97) 

we have q),, = eo~, | ~ dz~,. (98) 
d o)a 

A simple formal calculation shows tha t  {~0~} defines a differential of dimension $. 

In  order to indicate how one can proceed in a global manner, we shall limit 

ourselves to the integration of quadratic differentials, i.e., the ease where ~ =  1, since 

this will illustrate all of the essentials. 

Let  {Q~} define a quadratic differential of any dimension, and let {F~} be a 

canon/ca/ connection. Let  {m~} define an Abelian differential such that  F ~ =  

- (d/dz~) log o9~. We define 

F,, = f w~, -Q~- dz,,, (99) 

an indefinite integral over U,,. 

The transformation laws for {Q,} and {w,} show tha t  

.F~ - .Fp = c~r + 2~i  n~ ,  (lOO) 

where c , r  is a complex number, and n ~  = -  nz~ is an integer. The F~ may  

not all be single valued (they may  have logarithmic singularities in some U~, which 

accounts for the terms 2zd n~; a different n ~  will be required for each branch of a 

multiple valued function). The non-vanishing complex number 
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M~ = ec~ 42~ n~ (101) 

is, however, uniquely determined. Since 

M ~  = M ~  1 ] 
and I (102) 

M ~ M # M r ~ = I  for U, NU~NUrOe0, 

we see that  M ~  determines an element of Hl(~,  C*). 

We now let ~v, = oJ~ $',, (103) 

so that  we have qJ~,_ ~or F~, dz~ F~, q~ co~ F~ dz~, F~" (104) 

If F,,/F~ = 1 for all U~ N U s then {~} defines an Abelian differential. In any event, 

the {~} define an analytic variable which is the product of the Abelian differential 

{oJ~} with an Abelian integral. 

The assignment of the cohomology class of (M~) to the quadratic differential {Q~} 

can be denoted by hr(Q~). (The subscript F indicates the dependence of this assign- 

ment on F.) If D2(,~) denotes the linear space of all quadratic differentials (not ne- 

cessarily regular) on 91, we can state that  

is an homomorphism. 

The homomorphism 

hr  : / f (~)- ->Hl(~,  C*) (105) 

e : C-+C* (106) 

defined by e :z---->e 2~lz induces an homomorphism 

e* :HI(~,  C)--~HI(~, C*). (107) 

Thus e*-lhr(Q~) denotes a subset of Ht(~,  C). (The elements of this subset are the 

ones defined by (c~+2~rin~), for all choices of n~.) Let  zEHI(~, Z), and form 

KI(e *-1 hr(Q~ ), z). (108) 

This is a set of complex numbers, which we may refer to as the periods of {Q~} a- 

round z. If all the periods of {Q~} lie in the kernel of e, then 

~ = oJ~ F (103' )  

where F is the logarithm of a meromorphie function on ~.  For in this case, we 

would have 

F~-F~=2:~in~  in U,,NU~ (100') 
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so tha t  G~ = eF~ (109) 

would define a meromorphie function G on ~ since 

G ~ = ~  in V~n U~. (110) 

Thus we can define F = log G, and we have F~ = F in U~, which is what we asserted. 

I f  we let D~(~) denote the space of quadratic differentials of the first kind which 

have zeros (of at  least as high an order) a t  the zeros of {o~} we can define 

hr(Q.) 6H1(~, C), (111) 

so tha t  hr  :D~(~)-+Ha(~{, C). (112) 

For in this case, each F~ will be regular and single-valued, so we need not use C* 

as coefficients. In  this case 

~ = r F (103") 

where F is an Abelian integral of the first kind. Again, we can define the period 

of {Q~} around z to be 

KI(hr(Q~), z). (108') 

Since D~r(~) is a vector space of (complex) dimension p (the genus of ~),  much of 

the development given for D*(~) will carry over to D~(~). 

Finally, we can modify our approach so tha t  it will apply to the linear space D~r3(~), 

the quadratic differentials of ~ which are regular except (possibly) on the divisor of 

F. (Actually, only [F], the carrier of the divisor, is of importance.) 

J-Q, In  this case-each F~= ~-dz~ (99') 

is single valued if U~f] [F ]=0 .  We define only such F~, then as before we let 

F ~ - F ~  = c~, and this defines 

hr :/~[r3(~)-->Hl(~ rood [F], C). (113) 

By considering elements z of H , ( ~  rood [F], Z) and KI(., .) defined for these groups, 

we have periods of elements of D~rj(~) defined on ~ - [ F ] .  

Up to this point, we have restricted ourselves to canonical connections. Certain 

complications arise if the connection F is not canonical. One wishes to deal with 

elementary connections as much as possible, however, and except in a few trivial 

cases, an elementary connection is never canonical. Thus we shall indicate how to deal 

with this complication. 
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I~ t  us remark first, however, on our preference for dealing with elementary con- 

nections. If F~(z~; ~) is an elementary connection having its simple pole at $ E ~,  we 

can treat  $ as a parameter, and ask for the behavior of F(z; ~) with respect to ~. 

This behavior is not uniquely determined, but we can choose a F(z; ~) with calcu- 

lable behavior as follows. Let  F0(z; ~0) be any elementary connection, and let ~(z; ~, $0) 

be a differential of the third kind with residue 2 -  2p at ~ and 2 p - 2  at ~0. Choose 

some homology basis (which is a fundamental system} A 1 . . . . .  Av; B 1 . . . . .  B~ on ~.  

We can now choose an ~(z; ~, $0) whose periods around the A-loops are all zero. 

This ~](z; ~', ~0) is unique. We now form 

r(z; ; )=  ro(z; ;o)+ ~(z; ~, ;o). (114) 

This elementary connection r(z; ~) is defined for every $ fiN, and its dependence on 

can be calculated from that  of r/(z; ~, ~0)" 

Now let {F~} denote any normal connection, then we have 

I/xl2~ = e ~ =: e -  f r ~  dz~. (62') 

We proceed as before for the integration of quadratic differentials. 

~ = ~F~ F~, (115) 

. ? Q ~ .  
where _e,, = j ~_F~az,,. (116) 

% F~ F/ 

U~ ~ U s 

But now we have ~ (117) 

Therefore, A~F~  = F~ in (118) 

in order for {r to be an Abelian differential. 

The transformation laws for the {F~} are 

A ~ ( F ~ + c ~ ) = F ~  in U~NU~. (119) 

The {c~} define a new type of eoehain (we note that,  in general, c p ~ 4 - c ~ ,  but  

c~ = -Ap~ c~ always). The condition that  a cochain {c~} defines a coeycle is given by 

c,~+ Ap~c~ + Ar,,cr~=O. (120) 

Two cocycles c~ and c~ are to be considered equivalent if there exists a zero di- 

mensional e~)chain (c~} such that  

c ~  - c'~ =: c ~ -  A ~  c~. (121) 
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The equivalence classes of eoeyeles form a group which we denote by  H~(2 ,  C). This 

group depends only on ( r )  and 2 ,  and not on any  special representation of (P). 

Thus we can define 

hr : D~,(2)-+ H~,(2, C), (122) 

hr  : D~r~(2)-+H~-(2 mod [F], C) (123) and 

as before. 

The extension of all these notions to t reat  differentials of any integral dimension 

is immediate. Non-integral dimensions introduce certain technicalities concerned with 

the multivaluedness arising from using non-integral exponents. 

VI. Variation of  connections on Riemann surfaces 

1. We wish to derive in this chapter a variational formula for connections on 

a Riemann surface 2 which is the generalization of formula (IV.44) valid for planar 

domains. In  order to do so, we will have to define a method of infinitesimal varia- 

tion for Riemann surfaces which is analogous to the variational kinematics described 

by (IV.I). Let  P0 be a point on the surface; we choose a uniformizer z in a neigh- 

borhood of P0 such tha t  z =% corresponds to P0. We consider the conformal mapping 

ei~ ~2  

z* = z + - -  (1) 
Z - -  Z o 

which maps the circumference Iz - %1 = o into the linear slit SQ = < z 0 -- 2Q e ~, z 0 + 2~ e ~ > .  

We define 2 "  as tha t  Riemann surface which consists of all points of 2 except those 

which correspond to points z inside of the circle I z -  z0] < ~; this surface is closed by  

identifying the points Z=Zo+Qe ~ and z = z o + ~ e  ~r which have the same image z* 

on S e. Thus, the hole of 2 created by  the removal of the circle I z -  z0] < e is closed 

and z* may  be used as a uniformizer on 2 "  for the remaining points of the piece 

of 2 where previously z served as uniformizer. The variation of 2 thus obtained leads 

to a Riemann surface 2 "  which is arbitrarily near to 2 in the sense tha t  the dif- 

ferentials of 2 "  differ from the differentials of 2 arbitrarily little except in the im- 

mediate neighborhood of the point P0- The variational formulas for the various ca- 

nonical differentials of 2 have been given by  Sehiffer and Spencer [26]. 

Let  now F(p; q) be an elementary connection of 2 and let F*(p; q) by  the corre- 

sponding connection of 2" ,  the Riemann surface obtained from 2 by a variation of 

the above type with P0 different from p and q. We denote by  20 tha t  par t  of 2 

which is obtained by  removal of all points which correspond to the circle IZ-Zol < 
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in the z-uniformizer neighborhood. We may consider ~0 also as a part of ~* if we 

refer the points in the z*-uniformizer neighborhood to those of ~0 by the relation (1). 

We define now the expression 

F*(O; q ) -  F(p; q)= A(O; q) (2) 

for p, q # P0- If Q is small enough, both points will lie in ~0. In this Riemann do- 

main, A(p; q) is regular analytic since the poles of F at  q have cancelled by sub- 

traction and the expression transforms like a differential 

dz~ 
A~(z~; q)Tz~= AO(z~; q), (3) 

since both connections F* and F have the transformation law 

r, dz~= d log dzo (3') 
d z ~ F ~ - -cl~ d z~ " 

Let A,, B, (v= 1 . . . .  , p) be a set of canonical conjugate cross-cuts of ~ which 

lie entirely in ~0. They may then also serve as cross-cut system for ~*. We denote 

by t(O; q) an integral of the second kind with a simple pole of residue 1 at  q and 

normalized with respect to the cross-cut system such that  

fadt(p; q)=O, q)=w;(q) (4) 

where the w~(q) are differentials of the first kind. 

The system A,, B, cuts ~ into a simply-connected domain. I t  transforms, there- 

fore, ~0 into a doubly-connected domain with the boundary continua b =  Y~(Av+B,) 

and the curve c which corresponds to the circumference I z - z o l  =~. Since t(p; q) is 

single-valued in the cut-up domain thus obtained, we can apply the residue theorem 

and find: 

Observe that  A is a differential on ~o such that  the left side line integral is inde- 

pendent of the choice of the uniformizer. Each cut of the cross-cut system is run 

through twice in opposite directions. On each edge the proper determination of the 

integrand is to be taken. By normalization (4), t(p; ~) has the same value on both 

edges of each B,-cut; but it has the saltus w:(~) across each cut A,. Hence (5)yields 

' f 1 ~w,(~) A(p; q)dp 2zti A(p; q)t(p; ~)dp=A(r;  q). (6) 
2zd A, c 
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Until now we defined F and F* only by the characteristic connection properties, 

i.e., by their singularities at q and their transformation law (3'). We might add to 

each an arbitrary differential of the first kind without affecting these properties. In 

order to obtain a variational formula for the connections, we have to couple them 

more closely and this can be done by the requirement: 

q)- r(p;  q)]dp = ~av A(p; q)d 0 =0.  (7) 

While the integral of each connection over the Av is parameter dependent, the integral 

of the variation is uniformizer independent and serves to single out the proper F*(p: q) 

to the given connection F(p; q). 

Now, formula (6) simplifies to 

A(r; q) = ~ A(p; q) t(p; r) d p. (8) 
c 

The significance of this formula lies in the fact that  A(r; q) can be calculated for all 

points in if{0 by evaluating the right-hand integral over the circumference c which lies 

in the z-uniformizer neighborhood of ~. 

2. We remember that  the circumference c is to be followed in the positive sense 

with respect to ~0 when integrating in (8). Since F(p; q) and t(p; r) are both regular 

analytic functions of z for ] z -  zol ~< ~, we may use Cauchy's integral theorem and re- 

duce (8) to 

A(r; q) = ~ /  I'*(p; q) t(p; r )dp .  (8') 
c 

We observe that  l-'*(p; q) is a regular analytic •netion of the uniformizer z* and 

admits a Taylor series development in this variable. But  the integral (8') can be 

evaluated more conveniently in the variable z. Hence, we use the transformation 

formula (3') in order to express 1"* as follows: 

r~*(p; 0) = F**(p; q) 1 (z - ~0) 2 ( z -  Zo) a ~- O(e3) (9) 

Let  F**(p; O) = F*(z*) (10) 

by the analytic representation of r*  in terms of the uniformizer z*. Using the rela- 

tion (1) between z and z*, we find 

F*(O; q) = F* (z )  + e - ~- F * ' ( z )  - ~- O(~a). ( H )  
z -  z 0 ( z -  Zo) 2F*(z) ( z -  Zo) 3 
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Thus, (8') becomes 

P*(r; q) -r(r;  q)=~-~  ct(p; r) F*(z) i_z~z-- ~ (z_z0) ~ (z_-Zo)~ +0(~ 3) dz. (12) 

All terms written out are well-defined inside the circumference c, and the integral 

may be evaluated by means of the residue theorem. The term 0(@ 3) is a regular 

analytic function of r and q outside of c which has the explicit factor ~a. I t  may 

be evaluated by integration over a fixed concentric circle with radius a as long as 

a is so small tha t  this circle lies in the neighborhood of z 0 considered. Thus, a de- 

pends on r, q and Po but not on Q. Hence, the O(~a)-term behaves uniformly as a 

remainder term for Q-->0 as long as r, q lie in a closed subdomain of ~0. By a simple 

calculation, we can evaluate the right hand integral in (12) and find 

r*(r;  q) - F(r; q) = e ~= Q2 [F.(zo) t,(P0; r) + t"(p0; r)] + O(~S). (13) 

Let ]z-zo[=a be a fixed circle in '~0 in the uniformizer neighborhood of z. 

Clearly, by definition (10) 

~ * ( Z o ) = ~  t . . . . .  I - o z * - Z o  = 2 ~  : l - - . ~ o  z -zo 

Holding a fixed, we deduce from (13) that  F * - F = O ( @  ~) as ~-§ Hence, 

1 q~ r(~;~dz+O(e')=r(po; q)+O(e2). (14') 
F*(~0) = ~ Jl~-~.l= o ~ -  ~0 

This leads to the final variational result 

F*(r; q ) -  P(r; q )=  e~q ~ IF(P0; q)t'(P0; r )+  t"(p0; r)] + O(q3). (15) 

This elegant variational formula expresses the change of P in terms of the con- 

nection itself and differentials of the second kind and corresponds to formula (IV.44). 

In order to show the analogy of this formula to (IV.16), we shall now express (15) 

in terms of connections only. 

I t  is well known that  

t(p; ~) - t (q ;  ~)=w'(~; p, q) (16) 

is a differential of the third kind in ~ with poles at p and q and with residues • 1, 

respectively [9, 21, 26, 30]. Hence, we can write the difference of two connections 

r(~; p ) - r ( ~ ;  q)= ( 2 p - 2 ) I t ( p ;  ~) - t (q ;  ~)] (17) 

provided that  ~ [P(~; p) - F(~; q)] ds = 0. (18) 
J A v 

1 8 -  62173068.  A c t a  mathemat /ca .  107. I m p r i m ~  le 27 j u i n  1962. 
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We have also the symmetry law 

t'(~; r )=  t'(r; ~), (19) 

where the dash denotes differentiation with respect to the first argument. Hence, 

t'(po; r) = t'(r; Po) = ~r [t(r; Po) - t(p; Po)] 

- 2p - 2 [F(P0; r) - F(P0; p)] (20) 

1 ~ F  
- 2 p - 2 ~ r  (Po;r)- 

' ~ 1 7 6  ] 1 ~  
Similarly, t"(po; r) 2p - 2 -- 2 p -  2 ~P0 [~r (Po; t) F'(po; r). (20') 

Thus, finally, we may bring (15) into the form 

1 a (et~ Q2 [F(Po; r) F(po; q) + F'(Po; r) + F'(po; q)]} + O(~3). F*(r; q ) -  F(r; q) 2 p -  2 ar (21) 

3. This symmetric variational formula suggests the existence of a symmetric ex- 

pression H(r; q) which is regular analytic in each uniformizer neighborhood except for 

a logarithmic pole for r = q  and such that 

F(r; q ) = ~  H(r; q). (22) 
O~ 

This function H(r; q) would then possess a particularly simple variational formula. 

I t  is, indeed, possible to eonstruct such a function H(r; q) from the canonical 

integrals of the Riemann surface ~.  Let w(p; r, 3) be an integral of the third kind, 

which has its logarithmic poles at  r and g with residues + 1 and - 1 ,  respectively, 

and which is normalized in such a way that it has zero periods with respect to the 

erosscuts A, of the canonical cut-system considered. I t  is well known [9, 26] that  

the expression 

W(p, q; r, 8)= w(p; r, 8 ) -  w(q; r, 3) (23) 

is symmetric in the pair of argument points p, q and the pair of parameter points r, 3. 

We choose an arbitrary but  fixed differential of the first kind w'(p) and denote 

its zeros by p, (v= 1, 2, . . . ,  2 p - 2 ) .  We construct then the sum 

1 
A(O, q) = ( 2 p -  2) ( 2 p -  3) ~., W(p, p,; q, 0r), v,/~ = 1, . . . ,  2 p -  2. (24) 
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Evidently, A(p, q) is a differential symmetric in p and q which has a logarithmic 

pole for p = q with residue 1. For p = p~, we have a logarithmic pole with residue 

- ( 2 p - 2 )  -1. Hence, the expression 

H(p; q) = [A(p, q). (2p -- 2) + log w'(p) + log w'(q)] (25) 

has precisely all the properties demanded of the function H(O, q) introduced in (22). 

Indeed, H(O, q) is symmetric in p and q, is locally analytic in both variables, except 

for p =q  where it has a logarithmic pole with residue ( 2 - 2 p ) .  From its very con- 

struction it follows that  its derivative with respect to p is a connection which has 

a simple pole at p =q  with the residue ( 2 -  2p). Hence, the relation (22) is verified. 

I t  is seen tha t  H(r; 'q) is determined only up to an additive constant by (22) 

and its symmetry. Hence, if we wish to derive from (21) a variational formula for 

H(r, q) by integration, we will likewise run into the problem of a proper constant 

of integration. We may dispose of this constant in such a way that  the following 

elegant variational formula holds: 

1 f~ 2 
H*(r; o ) - H ( r ;  q) = ~-p--~2 e ~ [H'(p0; r)H'(p0; q)+H"(p0;  r )+H"(p0 ;  q)]+O(~a). (26) 

This formula corresponds to (IV.16) in the case of planar domains. 

An important consequence of the identity (22) and the symmetry of H(r; q) is 

the fact that  the connection F(r; q) depends analytically upon its parameter q. I t  is 

evident from (22) and the construction (25) of H(r; q) that  given an arbitrary con- 

nection F with the only pole q, we can imbed it into a family F(r; q) of connections 

depending analytically upon q by the normalization 

~a ,  [F(r; q) - F(~; qx)] d~ = 0 (27) 

valid for fixed ql and arbitrary q. This result is, of course, implied in the repre- 

sentation (V.114). Finally, attention should be drawn to the expression 

E(p; q )=  exp { - H ( p ;  q)}. (28) 

In view of (25), E(p; q) transforms like a differential in p and a differential in q; it 

has no periods with respect to the crosscuts A~ and has multiplicative periods with 

respect to the crosscuts By. I t  has no poles and vanishes only at  p = q  with the 

order 2 p - 2 .  By these properties, the multiplicative double differential E(p; q ) i s  

determined up to a constant factor. Because of its symmetry in parameter and argu- 

ment, it appears particularly convenient as the element with which to construct the 

various differentials and functions on ~. 
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