ON FOURIER TRANSFORMS OF MEASURES WITH COMPACT SUPPORT

BY

A. BEURLING and P. MALLIAVIN (${ }^{1}$)

Institute for Advanced Study, Princeton, N.J., U.S.A.

Introduction

This paper will deal with the set M of measures with compact support on the real line. To each positive number a we associate the set \boldsymbol{m}_{a} consisting of measures with support contained in $[-a, a] . \hat{m}$ and \hat{m}_{a} will denote the sets of Fourier transforms $\hat{\mu}$ for μ belonging to m and m_{a} respectively. By reason of convenience the identically vanishing measure shall not be included in m or m_{a}.

Our main objective is to decide if for each $a>0$ there exists $\mu \in \mathscr{M}_{a}$ which tend to 0 in a prescribed sense as $x \rightarrow \pm \infty$. Since each $\hat{\mu}(x) \in \hat{m}$ is the restriction to the real axis of an entire function of exponential type $\leqslant a$, bounded for real x, we know by a classical theorem that

$$
\begin{equation*}
J\left(\log ^{-}|\hat{\mu}|\right)=\int_{-\infty}^{\infty} \frac{\log ^{-}|\hat{\mu}(x)|}{1+x^{2}} d x>-\infty . \tag{0.0}
\end{equation*}
$$

This property is therefore a necessary condition.
Let $w(x) \geqslant 1$ be a measurable function on the real line and let $L_{w}^{p}(1 \leqslant p \leqslant \infty)$ be the space of measurable functions $f(x)$ with norm

$$
\|f\|=\left\{\int_{-\infty}^{\infty}|f(x)|^{p} w(x)^{p} d x\right\}^{1 / p}
$$

The following problem will be considered. Determine for a given p the set W_{p} of all weight functions $w(x) \geqslant 1$ subject to these two conditions:

[^0](a) The translation operators $f(x) \rightarrow f(x+t)$ are bounded in L_{w}^{p}.
(b) For each $a>0, L_{w}^{p}$ contains elements of \hat{m}_{a}.

On defining $\omega(x)=\log w(x)$ we find that each of our postulates leads trivially to a necessary condition on $\omega(x)$. Thus (a) implies that

$$
\begin{equation*}
\underset{-\infty<x<\infty}{\operatorname{true} \max _{x}}|\omega(x+t)-\omega(x)|<\infty, \tag{0.1}
\end{equation*}
$$

and (b) implies

$$
\begin{equation*}
\int_{-\infty}^{\infty} \frac{\omega(x)}{1+x^{2}} d x<\infty . \tag{0.2}
\end{equation*}
$$

We shall prove
Theorem I. The sets W_{p} are independent of p and W consists of all weight functions $w(x)=e^{\omega(x)} \geqslant 1$ satisfying (0.1) and (0.2).

The main step in the proof of this result is not elementary and requires the development of new techniques, basically depending on a variational problem in a certain Hilbert space.

The same method will also yield:
Theorem II. Let $g \neq 0$ be an entire function of exponential type such that $J\left(\log ^{+}|g|\right)$ $<\infty$. Then each \hat{m}_{a} contains element $\hat{\mu}$ with the property $\hat{\mu}(x) g(x) \in \hat{m}$.

The preceding result can also be expressed in terms of the convolution algebra m : Let $\nu, \mu \in M$ and assume that μ divides ν in the sense that the function $\hat{\nu} / \hat{\mu}$ is entire. Then for each $\varepsilon>0$, there exists an $\alpha \in m_{\varepsilon}$ such that $\alpha * \nu$ is contained in the ideal generated by μ.

Another formulation of Theorem II deserves to be recognized, viz.: The sets

$$
\left\{f(x) \mid f \text { entire, } f=\frac{\hat{v}}{\hat{\mu}}, \hat{v}, \hat{\mu} \in \hat{m}\right\}
$$

and

$$
\{f(x) \mid f \text { entire of exponential type, } J(|\log | f \mid)<\infty\}
$$

are identical.
The property described above can be considered as a formal analogue of a theorem of Nevanlinna stating that a meromorphic function with bounded characteristic in the unit disc can be expressed as the quotient of two bounded analytic functions.

We should also like to point out that Theorem I combined with a result by Beurling ([1], Theorem IV, lecture 3) give rise to this striking conclusion: If trans-
lations are bounded operators in a space $L_{w}^{p}(w(x) \geqslant 1,1 \leqslant p \leqslant \infty)$ then one of the following two alternatives holds true. The space either contains elements $f \neq \phi$ with Fourier transforms \hat{f} vanishing outside any given interval $[a, b]$, or the space does not contain any $f \neq \phi$ with a transform \hat{f} vanishing on any interval.

1. Preliminaries on Harmonic Functions

In the following sections we shall frequently be concerned with functions $u(x+i y)$ harmonic in the upper half plane and with boundary values $u(x)$ on the real axis. It will always be assumed, although not always explicitly stated, that the relation between $u(z)$ and its boundary values $u(x)$ is such that

$$
\begin{equation*}
\lim _{y \downarrow 0} \int_{x_{1}}^{x_{2}}|u(x+i y)-u(x)| d x=0 \tag{1.1}
\end{equation*}
$$

for finite intervals (x_{1}, x_{2}). If in addition

$$
\begin{equation*}
\int_{-\infty}^{\infty} \frac{|u(x)|}{1+x^{2}} d x<\infty, \tag{1.2}
\end{equation*}
$$

then $u(x)$ has a well defined Poisson integral which we shall denote

$$
P_{z} u=\frac{1}{\pi} \int_{-\infty}^{\infty} \frac{y u(\xi) d \xi}{y^{2}+\frac{(x-\xi)^{2}}{(x)} .}
$$

If therefore $u(z)$ satisfies (2.1) and (2.2), then $u(z)-P_{z} u$ is harmonic in the upper half plane with boundary values vanishing almost everywhere on the real line. By an application of the symmetry principle it follows that

$$
u(z)-P_{z} u=\mathfrak{J m}\left\{\sum_{0}^{\infty} c_{n} z^{n}\right\} \quad(y>0),
$$

where c_{n} are real constants such that the series represent an entire function. The sets D_{0} and D_{1} are defined as follows: $u \in \mathcal{D}_{0}$ if $c_{n}=0, n>0$, and thus $u(z)=P_{z} u$; $u \in \emptyset_{1}$ if $c_{n}=0(n>1)$, and consequently $u(z)=P_{z} u+c_{1} y$.

Let ϱ be a positive measure on $[0, \infty)$ such that the integral

$$
U^{e}(z) \equiv \int_{0}^{\infty} \log \left|1-\frac{z^{2}}{t^{2}}\right| d \varrho(t)
$$

converges for $y>0$. If $U^{\varrho}(z)$ is bounded from above for real z and if

$$
\int_{0}^{t} d \underline{o}=O(t)
$$

then the boundary values

$$
U^{\varrho}(x)=\int_{0}^{\infty} \log \left|1-\frac{x^{2}}{t^{2}}\right| d \varrho(t)
$$

are finite almost everywhere and satisfy (1.1) and (1.2). By a Tauberian theorem of Paley-Wiener it follows that the limit

$$
a=\pi \lim _{T-\infty} \frac{1}{T} \int_{0}^{T} d \varrho
$$

exists and is finitc. Moreover $U^{e}(z) \in \mathcal{D}_{1}$ and the constant c_{1} equals a.

2. Atomizing of Positive Measures

This section will contain an elementary but important step in establishing the existence of functions $\hat{\mu} \in \mathbb{M}_{a}$ with prescribed properties.

We shall denote by Ω the collection of all measurable functions $\omega(x) \geqslant 0$ satisfying (0.2) and in addition meeting this condition: For each $a>0$ there exists on $[0, \infty$ (a continuous positive measure ϱ such that

$$
\begin{gather*}
U^{Q}(x) \leqslant-\omega(x)+\text { const. for a.a. real } x, \tag{2.1}\\
\varlimsup_{T-\infty} \frac{\pi}{T} \int_{0}^{T} d \varrho \leqslant a . \tag{2.2}
\end{gather*}
$$

It should be observed that (0.1) is not included as a condition for Ω. We recognize that Ω is a convex cone: If $\omega_{1}, \omega_{2} \in \Omega$ then the same is true of $\lambda_{1} \omega_{1}+\lambda_{2} \omega_{2}$ for $\lambda_{1}, \lambda_{2} \geqslant 0$. Moreover, if $\omega(x)$ belongs to Ω so does $\omega(-x)$ as well as $\omega(x)+\omega(-x)$. Each non-negative measurable minorant of an $\omega \in \Omega$ will also belong to Ω. The set Ω is therefore uniquely determined by the even functions it contains.

Lemma I. Assume $\omega \in \Omega$ and let γ be a given positive number <1. Then for each $a>0$ there exists a $\hat{\mu} \in \hat{m}_{a}$ such that

$$
\begin{equation*}
\int_{-\infty}^{\infty}|\hat{\mu}(x)| \exp \left(\omega(x)+2|x|^{\nu}\right) d x<\infty \tag{2.3}
\end{equation*}
$$

Proof. We recall the formula

$$
\int_{0}^{\infty} \log \left|1-\frac{x^{2}}{t^{2}}\right| d t^{\gamma}=|x|^{\gamma} \pi \operatorname{cotg} \frac{\pi \gamma}{2} \quad(0<\gamma<2)
$$

Thus, if $s(t)=a t-2 t^{y} \pi^{-1} \operatorname{tg} \frac{1}{2} \pi \gamma(a>0,0<\gamma<1)$, then

$$
\int_{0}^{\infty} \log \left|1-\frac{x^{2}}{t^{2}}\right| d s(t)=-2|x|^{\nu} .
$$

The function $s(t)$ is obviously increasing for $t \geqslant t_{0}$, where t_{0} depends on a and γ. If therefore τ is the measure obtained by restricting s to (t_{0}, ∞) we shall have

$$
\begin{equation*}
U^{\imath}(x) \leqslant-|x|^{\gamma}+\text { const. } \tag{2.4}
\end{equation*}
$$

Hence, $|x|^{\gamma} \in \Omega$ for $0<\gamma<1$. Let $a>0$ be given and let ϱ be a measure satisfying the stipulated conditions with respect to a and to $\omega_{1}(x)=2 \omega(x)+5|x|^{\nu}$. We construct an atomized measure ϱ^{*} by the procedure:

$$
\begin{equation*}
\varrho^{*}(t)=\int_{0}^{t} d \varrho^{*}=\left[\varrho(t)+\frac{1}{2}\right], \quad \varrho(t)=\int_{0}^{t} d \varrho, \tag{2.5}
\end{equation*}
$$

where $[x]$ denotes the integral part of x.
Since ϱ is positive and continuous, ϱ^{*} is uniquely determined. Define for $z=x+i y \quad(y>0)$,

$$
\begin{align*}
& h(z)=\exp \left\{\int_{0}^{\infty} \log \left(1-\frac{z^{2}}{t^{2}}\right) d \varrho(t)\right\}, \tag{2.6}\\
& f(z)=\exp \left\{\int_{0}^{\infty} \log \left(1-\frac{z^{2}}{t^{2}}\right) d \varrho^{*}(t)\right\}, \tag{2.7}
\end{align*}
$$

where the logarithm is real for $z=i y(y>0)$. We observe that $f(z)$ is an entire function,

$$
f(z)=\prod_{1}^{\infty}\left(1-\frac{z^{2}}{\lambda_{n}^{2}}\right), \quad \varrho\left(\lambda_{n}\right)+\frac{1}{2}=n .
$$

Our conditions on ϱ and on ω imply that

$$
\begin{equation*}
\log |h(z)| \leqslant-P_{z} \omega_{1}+b y+\text { const. } \quad(y>0), \tag{2.8}
\end{equation*}
$$

where b is a constant $\leqslant a$. The function

$$
\log \frac{f(z)}{h(z)}=u(z)+i v(z)
$$

is holomorphic in the upper half plane and its imaginary part v is bounded there and vanishes for $z=i y(y>0)$. For $x>0$ the boundary value of v is 20-62173088. Acta mathematica. 107. Imprimé le 27 juin 1962.

$$
v(x)=\pi\left(\varrho^{*}(x)-\varrho(x)\right)=\pi\left(\left[\varrho(x)+\frac{1}{2}\right]-\varrho(x)\right) .
$$

Since $v(-x+i y)=-v(x+i y)$ we shall have $-\frac{1}{2} \pi \leqslant v(x) \leqslant \frac{1}{2} \pi$ on the real axis and those inequalities will hold throughout the upper half plane by virtue of the maxi-mum-minimum principle. Assume $0<k<1$ and set

$$
\left(\frac{f}{h}\right)^{k}=e^{k u} \cos k v+i e^{k u} \sin k v \equiv U_{k}+i V_{k} .
$$

Then U_{k} is a positive harmonic function and

$$
\begin{equation*}
\cos k \frac{\pi}{2}\left|\frac{f}{h}\right|^{k} \leqslant U_{k} . \tag{2.9}
\end{equation*}
$$

By an inequality of Harnack

$$
\begin{equation*}
U_{k}(z) \leqslant U_{k}(i) \frac{|z+i|+|z-i|}{|z+i|-|z-i|} \quad(y>0) . \tag{2.10}
\end{equation*}
$$

In the half plane $y \geqslant 1$, the factor in (2.10) is majorized by $(1+|x|)^{2}$. On combining (2.8), (2.9) and (2.10) taking $k=\frac{1}{2}$, we obtain for $y \geqslant 1$,

$$
\begin{equation*}
\log |f(z)| \leqslant-P_{z} \omega_{1}+b y+4 \log (1+|x|)+\text { const. } \tag{2.11}
\end{equation*}
$$

Since the same inequality holds for $z=x-i y$ it follows that $f(z)$ is of exponential type $\leqslant a$. By virtue of the definition of ω_{1} we conclude that

$$
\begin{equation*}
|f(x+i y)| \leqslant M e^{-4|x|^{y}} \quad(-1 \leqslant y \leqslant 1) \tag{2.12}
\end{equation*}
$$

where M is a finite constant. This proves that $f \in \hat{m}_{a}$.
Since $U_{k}(z)$ is positive for $y>0$, and $U_{k} \in \mathcal{D}_{0}$,

$$
\begin{equation*}
\frac{1}{\pi} \int_{-\infty}^{\infty} \frac{U_{k}(x)}{1+x^{2}} d x=U_{k}(i) \tag{2.13}
\end{equation*}
$$

Hence, by (2.9), taking $k=\frac{1}{2}$,

$$
\begin{equation*}
\int_{-\infty}^{\infty}\left|\frac{f(x)}{h(x)}\right|^{\frac{1}{2}} \frac{d x}{1+x^{2}}<\infty . \tag{2.14}
\end{equation*}
$$

By the definition of ϱ,

$$
\log |h(x)|=U^{e}(x) \leqslant-2 \omega(x)-5|x|^{\gamma}+\text { const. }
$$

Therefore (2.14) implies that

$$
\int_{-\infty}^{\infty}|f(x)|^{2} \exp \left(\omega(x)+2|x|^{y}\right) d x<\infty
$$

and (2.3) follows since $\hat{\mu}(x)=f(x)$ is bounded.
We shall now derive a stronger result under the assumption that $\omega(x)$ has a certain weak continuity property.

Lemma II. Suppose $\omega(x)$ is continuous and let there exist positive numbers α and $\beta<1$ such that for all x outside some compact set and for $|h| \leqslant \exp \left(-|x|^{\beta}\right)$,

$$
\begin{equation*}
|\omega(x+h)-\omega(x)| \leqslant|x|^{\alpha} . \tag{2.15}
\end{equation*}
$$

Then the summability (2.3) for $\gamma>\max (\alpha, \beta)$ implies that

$$
\begin{equation*}
|f(x)| \exp \left(\omega(x)+|x|^{\gamma}\right) \leqslant \text { const. } \tag{2.16}
\end{equation*}
$$

Proof. The lemma is a simple consequence of the following minimum modulus theorem. There exists an absolute constant $\vartheta>0$ such that if $g(z)$ is holomorphic for $|z|<R$ and $|g(z)| \leqslant M$, then

$$
\min _{|z|-r}|g(z)| \geqslant \frac{|g(0)|}{M}
$$

for a set of values r of measure $\geqslant \vartheta R$. If therefore (2.16) were false there would exist arbitrary large x_{0} such that

$$
\left|f\left(x_{0}\right)\right| \geqslant \exp \left(-\omega\left(x_{0}\right)-\left|x_{0}\right|^{\gamma}\right) .
$$

Since f is bounded by a constant M in the strip $-\mathbf{l} \leqslant y \leqslant 1$ we would have

$$
|f(x)| \geqslant M^{-1} \exp \left(-\omega\left(x_{0}\right)-\left|x_{0}\right|^{\nu}\right)
$$

on a set E contained in the interval $\left|\xi-x_{0}\right| \leqslant \exp \left(-\left|x_{0}\right|^{\beta}\right)$ and of measure $\geqslant 2 \vartheta \exp$. $\left(-\left|x_{0}\right|^{\beta}\right)$. This inequality together with (2.15) contradicts the summability expressed in (2.3) and the lemma is therefore true.

3. A Variational Problem in a Hilbert Space

The main objective of this section is to connect the set of functions Ω with a certain variational problem in a suitably chosen real Hilbert space. By definition \mathcal{H} shall consist of all odd real valued measurable function on ($-\infty, \infty$) satisfying the condition

$$
\begin{equation*}
\int_{-\infty}^{\infty} \frac{|u(x)|}{1+x^{2}} d x<\infty \tag{3.1}
\end{equation*}
$$

and such that the harmonic function $u(z)=P_{z} u$ has a finite Dirichlet integral

$$
\begin{equation*}
\|u\|^{2}=\int_{0}^{\infty} \int_{0}^{\infty}|\operatorname{grad} u|^{2} d x d y \tag{3.2}
\end{equation*}
$$

The norm in \mathcal{H} shall be defined by (3.2). Because $u(i y)=0(y>0)$, it follows by well established properties of the Dirichlet norm that \mathcal{H} is complete.

Frequent use will be made of the inequality

$$
\begin{equation*}
\int_{0}^{\infty} u^{2}(x) \frac{d x}{x} \leqslant \frac{\pi}{2}\|u\|^{2} . \tag{3.3}
\end{equation*}
$$

In order to prove (3.3) define $m(r)=\sup _{0<\theta<\boldsymbol{i} \pi}\left|u\left(r e^{i \theta}\right)\right|$. Then

$$
m^{2}(r) \leqslant\left(\int_{0}^{i \pi}\left|\frac{\partial u}{\partial \theta}\right| d \theta\right)^{2} \leqslant \frac{\pi}{2} \int_{0}^{\frac{1}{2} \pi}\left(\frac{\partial u}{\partial \theta}\right)^{2} d \theta
$$

Consequently $\quad \int_{0}^{\infty} m^{2}(r) \frac{d r}{r} \leqslant \frac{\pi}{2} \int_{0}^{\infty} r d r \int_{0}^{\ddagger \pi} \frac{1}{r^{2}}\left(\frac{\partial u}{\partial \theta}\right)^{2} d \theta \leqslant \frac{\pi}{2}\|u\|^{2}$,
and (3.3) follows. The norm in \mathcal{H} can of course be expressed directly in terms of $u(x)$. One such expression is furnished by the Douglas functional

$$
\begin{equation*}
\|u\|^{2}=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty}\left(\frac{u(x)-u(y)}{x-y}\right)^{2} d x d y \tag{3.4}
\end{equation*}
$$

We shall later on define an equivalent norm in \mathcal{H} more convenient than (3.4) for our specific purposes. It should be pointed out that \mathcal{H} is a Dirichlet space in the sense of Beurling and Deny [2,3]. We shall use the technique of these spaces without referring to the general theory.

For each $u(x) \in \mathcal{H}$ the harmonic function $u(z)=P_{z} u$ has a conjugate harmonic function $\check{u}(z)$ uniquely determined except for an additive constant. Since $u(z)$ and
$\tilde{u}(z)$ have the same Dirichlet integral we conclude that $\tilde{u}(z)$ has boundary values $\tilde{u}(x)$ which are at least locally L^{2}-summable. If $u, v \in \mathcal{H}$ the scalar product is.formally expressed by the integrals

$$
(u, v)=\int_{0}^{\infty} u(x) d \tilde{v}(x)=\int_{0}^{\infty} v(x) d \tilde{u}(x) .
$$

If, however, v belongs to the set $C \subset \mathcal{H}$ consisting of all odd real-valued differentiable function with compact support then we shall have

$$
\begin{equation*}
(u, v)=-\int_{0}^{\infty} \tilde{u}(x) d v(x) \tag{3.5}
\end{equation*}
$$

where the integral is well defined. The proof of (3.5) is elementary.
The main result of this paper is contained in
Lemma III. Let $\omega(x)$ be a non-negative measurable function such that for almost all $x>0$

$$
\begin{equation*}
\omega(x) \leqslant x \sigma(x)+\text { const. } \tag{3.6}
\end{equation*}
$$

where $\sigma \in \mathcal{H}$ and

$$
\begin{equation*}
\int_{0}^{\infty} \frac{\sigma(x)}{x} d x<\infty . \tag{3.7}
\end{equation*}
$$

Then $\omega \in \Omega$.
Proof. In order to exhibit the existence of measures ϱ with the prescribed properties we assume $a>0$ given and we choose $b(0<b<a)$. Define

$$
K_{\sigma}=\{u \mid u \in \mathcal{H}, u(x) \geqslant \sigma(x), \text { a.e. for } x>0\} .
$$

This set is convex and it is closed by virtue of (3.3). Define further

$$
\begin{equation*}
\Phi(u)=\|u\|^{2}+2 b \int_{0}^{\infty} \frac{u(x)}{x} d x, \quad m=\inf _{u \in I_{\sigma}} \Phi(u) . \tag{3.8}
\end{equation*}
$$

Since $\sigma \in K_{\sigma}, m$ is finite. Assume $u_{1}, u_{2} \in K_{\sigma}, \Phi\left(u_{1}\right), \Phi\left(u_{2}\right)<m+\varepsilon$. Then $\Phi\left(\frac{1}{2}\left(u_{1}+u_{2}\right)\right)$ $\geqslant \boldsymbol{m}$ and consequently

$$
\frac{1}{2} \Phi\left(u_{1}\right)+\frac{1}{2} \Phi\left(u_{2}\right)-\Phi\left(\frac{1}{2}\left(u_{1}+u_{2}\right)\right)<\varepsilon .
$$

This inequality can also be written in the form

$$
\left\|\frac{1}{2}\left(u_{1}-u_{2}\right)\right\|^{2}<\varepsilon .
$$

If therefore $u_{n} \in K_{\sigma}, \Phi\left(u_{n}\right) \rightarrow m$, then $\left\{u_{n}\right\}_{1}^{\infty}$ is a Cauchy sequence and converges to an element $u \in K_{\sigma}$. By (3.3) we shall have for $0<x_{1}<x_{2}<\infty$,

$$
\left.\lim _{n-\infty} \int_{x_{1}}^{x_{2}}\left|u(x)-u_{n}\right| x\right) \left\lvert\, \frac{d x}{x}=0 .\right.
$$

Hence

$$
\|u\|^{2}+2 b \int_{x_{1}}^{x_{2}} u(x) \frac{d x}{x} \leqslant m
$$

and it follows that $\Phi(u)=m$ since $u(x) \geqslant 0$ a.e. for $x>0$. Let now $v \in C$ and assume $v(x) \geqslant 0$ for $x \geqslant 0$. Then $u+\lambda v \in K_{\sigma}$ for $\lambda>0$ and $\Phi(u+\lambda v)-\Phi(u) \geqslant 0$. This implies that

$$
\begin{equation*}
(u, v)+b \int_{0}^{\infty} \frac{v(x)}{x} d x \geqslant 0 \tag{3.9}
\end{equation*}
$$

The left-hand side of this relation is therefore a linear form $F(v)$ defined for $v \in C$ and $F(v) \geqslant 0$ if $v>0$ for $x>0$. By a familiar argument we conclude that

$$
\begin{equation*}
F(v)=\int_{0}^{\infty} v(x) d \alpha(x), \tag{3.10}
\end{equation*}
$$

where α is a non-negative measure on ($0, \infty$).
We now introduce a normalized conjugate function $\tilde{u}(z)$ by the formula

$$
u(z)+i \tilde{u}(z)=\frac{1}{\pi i} \int_{-\infty}^{\infty} \frac{u(t)}{t-z} d t=\frac{2}{\pi i} \int_{0}^{\infty} \frac{u(t) t}{t^{2}-z^{2}} d t .
$$

The integral is well defined because

$$
\int_{-\infty}^{\infty} \frac{|u(t)|}{|t|} d t<\infty
$$

On combining (3.5) and (3.9) we obtain for $v \in C$

$$
\begin{equation*}
-\int_{0}^{\infty} \tilde{u}(x) d v(x)=-b \int_{0}^{\infty} \frac{v(x)}{x} d x+\int_{0}^{\infty} v(x) d \alpha(x) \tag{3.11}
\end{equation*}
$$

This relation implies that $\tilde{u}(x)$ a.e. coincide with a function locally of bounded variation on ($0, \infty$).

The precise pointwise limit

$$
\tilde{u}(x)=\lim _{y \downarrow 0} \tilde{u}(x+i y)
$$

is therefore of bounded variation on finite intervals $\left[x_{1}, x_{2}\right], x_{1}>0$. This implies that the limits $\tilde{u}(x-0)$ and $\tilde{u}(x+0)$ exist. By another version of (3.3),

$$
\int_{0}^{\infty}(\tilde{u}(x+t)-\tilde{u}(x-t))^{2} \frac{d t}{t} \leqslant \pi\|u\|^{2} .
$$

It follows that $\tilde{u}(x+0)=\tilde{u}(x-0)$, and $\tilde{u}(x)$ is thus continuous on $(0, \infty)$. In addition it follows by (3.11) that

$$
\begin{equation*}
\tilde{u}\left(x_{2}\right)-\tilde{u}\left(x_{1}\right) \geqslant-b \log \frac{x_{2}}{x_{1}} \quad\left(x_{2}>x_{1}>0\right) . \tag{3.12}
\end{equation*}
$$

We shall next prove

$$
\left.\begin{array}{l}
\lim _{x \uparrow \infty}(\tilde{u}(x)-\tilde{u}(i x))=0, \tag{3.13}\\
\lim _{x \downarrow 0}(\tilde{u}(x)-\tilde{u}(i x))=0 .
\end{array}\right\}
$$

To this purpose we consider

$$
J(r, \lambda)=\int_{r}^{\lambda r}|\tilde{u}(x)-\tilde{u}(i x)| \frac{d x}{x} \quad(r>0, \lambda>1)
$$

and we observe that

$$
\lim _{x \uparrow \infty} \tilde{u}(i x)=0, \quad \lim _{x \downarrow 0} \tilde{u}(i x)=-\frac{2}{\pi} \int_{0}^{\infty} \frac{u(t)}{t} d t .
$$

By an application of Schwarz inequality and by the proof of (3.3),

$$
J(r, \lambda) \leqslant\left(\frac{\pi}{2} \log \lambda \cdot D(r, \lambda)\right)^{\frac{1}{2}},
$$

where $D(r, \lambda)$ denotes the Dirichlet integral of \tilde{u} extended over the region

$$
\left\{z\left|r<|z|<\lambda r, 0<\arg z<\frac{1}{2} \pi\right\} .\right.
$$

Hence, for bounded $\lambda, J(r, \lambda)$ tends to 0 as $r \uparrow \infty$ or $r \downarrow 0$. If (3.13) were not true there would exist a positive η and arbitrary large (or small) $x>0$ such that

$$
|\tilde{u}(x)-\tilde{u}(i x)|>2 \eta .
$$

By virtue of (3.12) we conclude that for some fixed $\lambda>1$ only depending on b and η we would have

$$
|\tilde{u}(x)-\tilde{u}(i x)|>\eta \quad(x \in(r, \lambda r))
$$

for some values of r arbitrary large (or small). This contradicts our result on $J(r, \lambda)$
and (3.13) is therefore established. Hence, $\tilde{u}(x)$ is a bounded continuous function tending to 0 at ∞, and to a finite limit at $x=0$.

We now turn to the construction of the measures ϱ. Since $u(z), \tilde{u}(z) \in \mathcal{D}_{0}$ we shall have

$$
u(z)+i \bar{u}(z)=\lim _{T-\infty} \frac{1}{\pi} \int_{-T}^{T} \frac{\tilde{u}(t)}{t-z} d t=\frac{2 z}{\pi} \int_{0}^{\infty} \frac{\tilde{u}(t)}{t^{2}-z^{2}} d t .
$$

This function $u(z)$ coincides with the original $u(z)=P_{z} u$ because both vanish on the positive imaginary axis and both have the same conjugate function. By adding the constant a to $\tilde{u}(t)$, we obtain

$$
u(z)+i \tilde{u}(z)+i a=\frac{2 z}{\pi} \int_{0}^{\infty} \frac{\tilde{u}(t)+a}{t^{2}-z^{2}} d t .
$$

Consequently $\quad z(u(z)+i \tilde{u}(z)+i a)=\frac{1}{\pi} \int_{0}^{\infty} t(\tilde{u}(t)+a) \frac{2 z^{2}}{\left(t^{2}-z^{2}\right) t} d t$,
where the last factor in the integral is the derivative of $\log \left(1-z^{2} / t^{2}\right)$ with respect to t. Since $a>b$ there exists a finite t_{0} such that for $t \geqslant t_{0}, \tilde{u}(t)>b-a$. We also recall that the lower derivative of $\tilde{u}(t)$ is $\geqslant-b / t$ at each point $t>0$. These properties imply that $s(t)=t(\tilde{u}(t)+a)$ is increasing for $t \geqslant t_{0}$ and of bounded variation on $\left[0, t_{0}\right)$. We obtain by first making a partial integration in (3.14) and then by letting $y \downarrow 0$,

$$
-x u(x)=\frac{1}{\pi} \int_{0}^{\infty} \log \left|1-\frac{x^{2}}{t^{2}}\right| d s(t)
$$

A continuous positive measure ϱ_{1} is now readily obtained by defining

$$
\begin{array}{lll}
\pi d \varrho_{1}=d s & \text { for } & t \geqslant t_{0} \\
\pi d \varrho_{1}=\mathrm{a} d t+t d \tilde{u} & \text { for } & 0<t<t_{0} .
\end{array}
$$

By construction of $u(x)$,

$$
\omega(x) \leqslant x \sigma(x)+\text { const } \leqslant x u(x)+\text { const., a.e. for } x>0 .
$$

Therefore

$$
U^{e^{1}}(x) \leqslant-\omega(x)-\frac{1}{\pi} \int_{0}^{t_{0}} \tilde{u}(t) \log \left|1-\frac{x^{2}}{t^{2}}\right| d t+\text { const. }
$$

Since $\tilde{u}(t)$ is bounded we conclude that for a.a. $x>0$,

$$
U^{\varrho_{1}}(x) \leqslant-\omega(x)+c_{\mathrm{r}} \log \left(1+x^{2}\right)+\text { const. }
$$

In order to obtain a ϱ strictly satisfying all the conditions, we have only to form $\varrho=\varrho_{1}+\tau$, where τ is one of the previously constructed measures satisfying (2.4) for $\gamma=\frac{1}{2}$ and (2.2) with the constant $a-b$.

This concludes the proof of Lemma III.

4. An Equivalent Norm in \boldsymbol{H}

In order to obtain simple and explicit conditions implying that functions $u(x)$ belong to \mathcal{H} we shall introduce an equivalent norm in \mathcal{H}.

Lemma IV. For odd measurable functions $u(x)$ on $(-\infty, \infty)$ let

$$
\begin{equation*}
\|u\|_{0}^{2}=\int_{-\infty}^{\infty} u^{2}\left(e^{\xi}\right) d \xi+\int_{0}^{\infty} \frac{d \eta}{\eta^{2}} \int_{-\infty}^{\infty}\left(u\left(e^{\xi+\eta}\right)-u\left(e^{\xi}\right)\right)^{2} d \xi \tag{4.1}
\end{equation*}
$$

Then $\|u\|$ and $\|u\|_{0}$ are equivalent norms in \mathcal{H}, i.e. $\|u\| /\|u\|_{0}$ remains included between positive finite constants.

Proof. Any of the assumptions $\|u\|<\infty$ or $\|u\|_{0}<\infty$ imply that

$$
u\left(e^{\xi}\right) \in L^{2}(-\infty, \infty)
$$

We may therefore assume that $\psi(\xi)=u\left(e^{\xi}\right)$ has a Fourier transform $\hat{\psi}(t) \in L^{2}(-\infty, \infty)$. By an application of Parseval relation

$$
\int_{-\infty}^{\infty}(\psi(\xi+\eta)-\psi(\xi))^{2} d \xi=4 \int_{-\infty}^{\infty} \sin ^{2} \frac{t \eta}{2}|\hat{\psi}(t)|^{2} d t
$$

Consequently

$$
\|u\|_{0}^{2}=\int_{-\infty}^{\infty}|\hat{\psi}(t)|^{2} \lambda_{0}(t) d t
$$

where

$$
\lambda_{0}(t)=1+4|t| \int_{0}^{\infty} \sin ^{2} \frac{s}{2} \frac{d s}{s^{2}}=1+\pi|t|
$$

On the other hand the function $\psi(\xi+i \eta)=u\left(e^{\xi+i \eta}\right)$ is harmonic in the strip $0<\eta<\frac{1}{2} \pi$ and vanishes for $\eta=\frac{1}{2} \pi$. Since the Dirichlet integral is invariant under conformal mapping

$$
\|u\|^{2} \equiv\|\psi\|^{2}=\int_{0}^{\frac{1}{2} \pi} d \eta \int_{-\infty}^{\infty}|\operatorname{grad} \psi|^{2} d \xi
$$

The kernel

$$
K(t, \xi, \eta)=e^{i t \xi} \frac{\operatorname{sh}\left(\frac{\pi}{2}-\eta\right) t}{\operatorname{sh} \frac{\pi}{2} t}
$$

is harmonic in (ξ, η) and $K(t, \xi, 0)=e^{i t \xi}, K\left(t, \xi, \frac{1}{2} \pi\right) \equiv 0$. By this we conclude that

$$
\psi(\xi+i \eta)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} K(t, \xi, \eta) \hat{\psi}(t) d t \quad\left(0<\eta \leqslant \frac{1}{2} \pi\right) .
$$

By a straightforward computation using the Parseval relation,
with

$$
\begin{gathered}
\|u\|^{2}=\int_{-\infty}^{\infty}|\psi(t)|^{2} \lambda(t) d t \\
\lambda(t)=\frac{1}{2} t \frac{\operatorname{sh} \pi t}{\operatorname{sh}^{2} \frac{1}{2} \pi t}=t \cdot \frac{e^{\frac{1}{2} \pi t}+e^{-\frac{1}{2} \pi t}}{e^{\frac{1}{\pi} \pi t}-e^{-\frac{-i}{} \pi t}} .
\end{gathered}
$$

The ratio λ_{0} / λ is obviously bounded from below and from above by positive constants, and the lemma follows.

Lemma V. Let $\omega(x)$ be an even non-negative function uniformly Lip 1 on the real axis and such that

$$
A=\int_{0}^{\infty} \frac{\omega(x)}{x} d x<\infty
$$

Then $\sigma(x)=\omega(x) / x \in \mathcal{H}$, and by Lemma III, $\omega \in \Omega$.
Proof. Without loss of generality we may assume that ω is differentiable for $x \neq 0$ and that its derivative ω^{\prime} is bounded by a constant M. We define on ($-\infty, \infty$),
and observe that

$$
\psi(\xi)=\sigma\left(e^{\xi}\right)=\omega\left(e^{\xi}\right) e^{-\xi}
$$

$$
\begin{gather*}
A=\int_{-\infty}^{\infty} \psi(\xi) d \xi \tag{4.2}\\
\psi^{\prime}(\xi)+\psi(\xi)=\omega^{\prime}\left(\epsilon^{\xi}\right) \tag{4.3}
\end{gather*}
$$

If (4.3) is multiplied by ψ and then integrated over $(-\infty, \xi)$,

$$
\begin{equation*}
\frac{1}{2} \psi^{2}(\xi)+\int_{-\infty}^{\xi} \psi^{2}(\xi) d \xi \leqslant M A \tag{4.4}
\end{equation*}
$$

Thus

$$
\begin{gather*}
\int_{-\infty}^{\infty} \psi^{2}(\xi) d \xi \leqslant M A, \tag{4.5}\\
|\psi(\xi)| \leqslant \sqrt{2 M A}, \tag{4.6}\\
\left|\psi^{\prime}(\xi)\right| \leqslant M+\sqrt{2 M A}=M_{1} . \tag{4.7}
\end{gather*}
$$

By virtue of the definition of the equivalent norm the lemma is proved if we can show that (4.7) implies
where

$$
\begin{equation*}
\int_{0}^{\infty} \delta^{2}(\eta, \psi) \frac{d \eta}{\eta^{2}} \leqslant 4 M_{1} \int_{-\infty}^{\infty} \psi(\xi) d \xi \tag{4.8}
\end{equation*}
$$

$$
\delta^{2}(\eta, \psi)=\int_{-\infty}^{\infty}(\psi(\xi+\eta)-\psi(\xi))^{2} d \xi=\int_{A_{\eta}}+\int_{A^{\prime} \eta}
$$

By A_{η} we denote the set where at least one of the functions $\psi(\xi), \psi(\xi+\eta)$ is $>\eta$, and we define $E_{\eta}=\{\xi \mid \psi(\xi)>\eta\}$. Let $m(\eta)$ be the measure of E_{η} and observe that

$$
\int_{-\infty}^{\infty} \psi^{2}(\xi) d \xi=-\int_{0}^{\infty} \eta^{2} d m(\eta), \quad \int_{-\infty}^{\infty} \psi(\xi) d \xi=\int_{0}^{\infty} m(\eta) d \eta
$$

By reason of homogeneity it is sufficient to establish (4.8) in the particular case that $M_{1}=1$. Since the measure of A_{η} is less than $2 m(\eta)$ we shall have

$$
\begin{gathered}
\int_{A_{\eta}} \leqslant 2 \eta^{2} m(\eta) \\
\int_{A^{\prime} \eta} \leqslant 2 \int_{E_{\eta}^{\prime}} \psi^{2}(\xi) d \xi=-2 \int_{0}^{\eta} t^{2} d m(t)
\end{gathered}
$$

Consequently

$$
\int_{0}^{\infty} \delta^{2}(\eta, \psi) \frac{d \eta}{\eta^{2}} \leqslant 2 \int_{0}^{\infty} m(\eta) d \eta-2 \int_{0}^{\infty} \frac{d \eta}{\eta^{2}} \int_{0}^{\eta} t^{2} d m(t)=4 \int_{-\infty}^{\infty} \psi(\xi) d \xi
$$

This proves (4.8) and the lemma follows.

5. Proofs of Theorems I and II

The necessary condition (0.1) states that

$$
\alpha(t)=\underset{-\infty<x<\infty}{\operatorname{true} \max _{-\infty}|\omega(x+t)-\omega(x)|}
$$

is finite for all t. If therefore M is sufficiently large the set $E=\{t|\alpha(t)| \leqslant M)$ has positive measure. By a well known argument the set

$$
E_{1}=\left\{t \mid t=t_{1}-t_{2}, t_{1}, t_{2} \in E\right\}
$$

contains an interval. Since $\alpha(t)$ is subadditive and even we shall have $\alpha(t) \leqslant 2 M$ on some interval $[a, b]$. Consequently $\alpha(t) \leqslant 4 M$ for $|t| \leqslant b-a$. Again by subadditivity it follows that $\alpha(t) \leqslant M_{0}$ for $|t| \leqslant 1, M_{0}$ being a finite constant. Define

$$
\omega_{1}(x)=\int_{-t}^{t} \omega(x+t) d t
$$

Then $\left|\omega_{1}^{\prime}(x)\right| \leqslant M_{0}$ and we shall have

$$
\begin{gather*}
\left|\omega_{1}\left(x_{1}\right)-\omega_{1}\left(x_{2}\right)\right| \leqslant M_{0}\left|x_{1}-x_{2}\right| \tag{5.1}\\
\left|\omega(x)-\omega_{1}(x)\right|=\left|\int_{-1}^{\frac{1}{t}}(\omega(x)-\omega(x+t)) d t\right| \leqslant M_{0} \tag{5.2}
\end{gather*}
$$

The last inequality implies that the weight functions $w(x)=e^{\omega(x)}$ and $w_{1}(x)=e^{\omega_{1}(x)}$ are equivalent. Without loss of generality we may also assume that ω_{1} vanishes on ($-1,1$). The summability (0.2) and the Lipschitz condition (5.1) imply that Lemma V applies to

$$
\sigma(x)=\frac{\omega_{1}(x)+\omega_{1}(-x)}{x}
$$

Thus, $\sigma \in \mathcal{H}$. By Lemma III, $\omega_{1} \in \Omega$. Lemmas I and II ascertain the existence of functions $\hat{\mu}$ with the stipulated properties, and Theorem I follows.

The proof of Theorem II is also based on Lemma III, while Lemmas II and V are dispensable. If g is entire of exponential type, then the elementary theory of Fourier integrals implies that $\hat{\mu} g \in \hat{m}$, if $\hat{\mu} g$ is summable on the real line.

We also observe that it suffices to prove Theorem II for functions of the form

$$
\begin{equation*}
g(z)=\prod_{1}^{\infty}\left(1-\frac{z^{2}}{\lambda_{n}^{2}}\right) \tag{5.3}
\end{equation*}
$$

because each g has a majorant of this kind on the real axis, viz.

$$
1+z^{2}(g(z) \overline{g(\bar{z})}+g(-z) \overline{g(-\bar{z})})
$$

As a substitute for Lemma V we shall use

Lemma VI. Let (5.3) be entire of exponential type and such that for real $x,|g(x)| \geqslant 1$. If $J(\log |g|)<\infty$, then

$$
\begin{equation*}
u(x)=\frac{\log |g(x)|}{x} \in \mathcal{H} . \tag{5.4}
\end{equation*}
$$

Proof. It is well known that our conditions imply

$$
\begin{gather*}
\sum_{1}^{\infty}\left|\mathfrak{F m}\left(\frac{1}{\lambda_{n}}\right)\right|<\infty, \tag{5.5}\\
\pi \lim _{r-\infty} \frac{N(r)}{r}=\lim _{|z| \rightarrow \infty} \sup \frac{\log |g(z)|}{|z|}=A, \tag{5.6}
\end{gather*}
$$

where $N(r)=\sum_{\left|\lambda_{n}\right|<r} 1$ and where $\mathfrak{F m}$ is the imaginary part. Assume, as we may, $\lambda_{n}=\left|\lambda_{n}\right| e^{i \theta_{n}} \quad\left(0 \leqslant \theta_{n}<\pi\right)$, and define

$$
f(z)=\prod_{1}^{\infty}\left(1+\frac{z}{\bar{\lambda}_{n}}\right)\left(1-\frac{z}{\overline{\bar{\lambda}}_{n}}\right)
$$

By (5.5) this product converges and represents an entire function $f(z)$ of the same exponential type A as $g(z)$. For real $x,|f(x)|=|g(x)|$. Since $f(z)$ is free from zeros in the upper half plane we shall have there

$$
\log f(z)=\log |f(z)|+i \vartheta(z)
$$

where $\vartheta(i y)=0(y>0)$. At each real point $x,|f(x+i y)|$ increases with y and $\vartheta(x)$ is therefore a monotonic decreasing function. In particular, $\vartheta(x)$ has a jump $-\pi$ at each real zero of f. An elementary consequence of (5.5) and (5.6) is that

$$
\lim _{x=\infty} \frac{\vartheta(x)}{x}=-\pi \lim _{r \rightarrow \infty} \frac{N(r)}{r}=-A
$$

There exists therefore a finite constant M such that

$$
\begin{equation*}
\frac{\vartheta(x)}{x} \geqslant-M \quad(x>0) . \tag{5.7}
\end{equation*}
$$

We now define u and \tilde{u} in the upper half plane by the relation

$$
u(z)+i \tilde{u}(z)=\frac{\log f(z)+i A z}{z},
$$

and observe that on the real axis,

$$
u(x)=\frac{\log |f(x)|}{x}, \tilde{u}(x)=\frac{\vartheta(x)}{x}+A .
$$

Because of (5.7) and the fact that $\vartheta(x)$ is decreasing we shall have for $x>0, \lambda>1$,

$$
\begin{equation*}
\tilde{u}(\lambda x)-\tilde{u}(x) \leqslant M \log \lambda . \tag{5.8}
\end{equation*}
$$

We recall that both $u(z)$ and $\tilde{u}(z)$ belong to \mathcal{D}_{0}, and that u is an odd and \tilde{u} an even function of x. Our objective is to show that the Dirichlet integral of $u(z)$ is finite. By assumption on $g, u(z)$ is positive in the first quadrant, and

$$
x^{-1} u(x) \in L^{1}(0, \infty)
$$

Therefore $\quad \int_{0}^{\infty} u\left(r e^{i \theta}\right) \frac{d r}{r}=\left(1-\frac{2 \theta}{\pi}\right) \int_{0}^{\infty} u(r) \frac{d r}{r} \quad\left(0 \leqslant \theta \leqslant \frac{1}{2} \pi\right)$.

In particular

$$
\int_{r_{0}}^{2 r_{0}} u\left(r e^{i \delta}\right) \frac{d r}{r} \rightarrow 0 \quad\left(r_{0} \rightarrow \infty\right)
$$

and we conclude by Harnack's inequality that $u\left(r e^{1 \delta}\right) \rightarrow 0$ as $r \rightarrow \infty, \delta$ being fixed. This implies that we have uniformly

$$
\begin{equation*}
u(z)=o(1) \quad\left(\delta<\theta \leqslant \frac{1}{2} \pi\right) . \tag{5.10}
\end{equation*}
$$

As a consequence of (5.10),

$$
\begin{equation*}
|\operatorname{grad} u|=|\operatorname{grad} \tilde{u}|=o\left(\frac{1}{r}\right) \quad\left(\delta<\theta \leqslant \frac{1}{2} \pi\right) . \tag{5.11}
\end{equation*}
$$

We now turn our attention to \tilde{u}. By virtue of (5.8) the function $\tilde{u}(\lambda z)-\tilde{u}(z)$ is bounded by $M \log \lambda$ on the real axis. The same bound therefore holds throughout the upper half plane. Consequently

$$
\begin{equation*}
\frac{\partial \tilde{u}\left(r e^{1 \theta}\right)}{\partial r} \leqslant \frac{M}{r} \quad(r>0,0<\theta<\pi) . \tag{5.12}
\end{equation*}
$$

The classical formula

$$
\int_{S}|\operatorname{grad} u|^{2} d x d y=\int_{\partial S} u \frac{d \tilde{u}}{d s} d s
$$

is now valid for each sector $S=\left\{z=r e^{i \theta}, 0<r<r_{0}, \delta<\theta<\frac{1}{2} \pi\right\}$. According to (5.10), (5.11), the integral extended over the circular arc tends to 0 as $r_{0} \rightarrow \infty$. The Dirichlet integral for the angle $\delta<\theta<\frac{1}{2} \pi$ is therefore properly expressed by the integral

$$
\int_{0}^{\infty} u\left(r e^{i \delta}\right) \frac{\partial}{\partial r} \tilde{u}\left(r e^{i \delta}\right) d r
$$

and consequently majorized by

$$
M \int_{0}^{\infty} u(r) \frac{d r}{r}
$$

This proves the lemma.

6. Concluding Remarks

It should be observed that the lemmas admit a strengthening of Theorem I independently of whether (0.1) is satisfied or not. Assume for example that $\omega(x) \geqslant 0$ is even and that the necessary summability condition (0.2) is satisfied. If $\omega(x) / x \in \mathcal{H}$, then $f=\hat{\mu} \in \hat{m}_{a}$ can be constructed as in section 2 with ω replaced by $p \omega(1 \leqslant p<\infty)$, so that

$$
\begin{equation*}
\int_{-\infty}^{\infty}|\hat{\mu}(x)|^{p} e^{p \omega(x)} d x<\infty . \tag{6.1}
\end{equation*}
$$

The corresponding result for $p=\infty$,

$$
\begin{equation*}
|\hat{\mu}(x)| e^{\omega(x)} \leqslant \text { const. for a.a. real } x, \tag{6.2}
\end{equation*}
$$

is of course not true since our present condition does not imply that $\omega(x)$ is essentially bounded on any interval. If however, $\omega(x)$ has the continuity stipulated in Lemma II then again each $\hat{m}_{a}(a>0)$, contains elements $\hat{\mu}$ such that (6.2) holds for all real x.

In another paper we shall use the results of this study to resolve a closure problem for given systems of characters. This application together with some aspects of the present problem have been outlined in recent lectures by one of the authors [4].

References

[1]. A. Beurling, On Quasianalyticity and General Distributions. Multigraphod lectures, Summer Institute Stanford University, 1961.
[2]. A. Beurling \& J. Deny, Espaces de Dirichlet. Acta Math., 99 (1958).
[3]. - Dirichlet spaces. Proc. Nat. Acad. Sci., 45 (1959).
[4]. P. Malliavin, Some Applications of Entire Functions of Exponential Type to Harmonic Analysis. Multigraphed lectures, Summer Institute Stanford University, 1961.

[^0]: ${ }^{(1)}$ Partially supported by the Air Force Office of Scientific Research contract AF 49(638)-253.

