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Introduction 

This paper will deal with the set )~/ of measures with compact support on the 

real line. To each positive number a we associate the set ~ consisting of measures 

with support contained in [ - a ,  a]. ~ and 7 ~  will denote the sets of Fourier trans- 

forms /2 for /~ belonging to ~ and ~l~ respectively. By reason of convenience the 

identically vanishing measure shall not be included in ~ or ~ .  

Our main objective is to decide if for each a > 0 there exists/z E~/~ which tend 

to 0 in a prescribed sense as x--> _+ oo. Since each / 2 ( x ) E ~  is the restriction to the 

real axis of an entire function of exponential type ~<a, bounded for real x, we know 

by a classical theorem that 

J(log_l/21)= f_ log I/2( )il (0.0) 

This property is therefore a necessary condition. 

Let w(x)>~l be a measurable function on the real line and let L~ (l~<p~< ~ )  

be the space of measurable functions /(x) with norm 

]l/][={f[ I/(x)l~w(x)~dx} 1''. 
The following problem will be considered. Determine for a given p the set W v of 

all weight functions w(x)>/1 subject to these two conditions: 

(1) Partially supported by the Air Force Office of Scientific Research contract AF 49(638)-253. 
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(a) The translation operators /(x)--->/(x+ t) are bounded in LVw. 

(b) For each a >  O, L~ contains elements of ~/~. 

On defining o~(x)=logw(x) we find tha t  each of our postulates leads trivially 

to a necessary condition on co(x). Thus (a) implies tha t  

t rue  m a x  I o~(x + t) - o~(x) I < ~ ,  (O.1) 
o o < z < o o  

and (b) implies 

We shall prove 

THEOREM I. The sets W~ are independent o/ p and W consists o/all weight/unctions 

w(x) = e~(X)>~ 1 satis/ying (0.1) and (0.2). 

The main step in the proof of this result is not elementary and requires the 

development of new techniques, basically depending on a variational problem in a 

certain Hilbert  space. 

The same method will also yield: 

THEOREM II .  Let g ~ 0 be an entire/unction o/exponential type such that J(log+ ] g I) 

< ~o. Then each ~ contains element fi with the property f~(x) g(x) E ~ .  

The preceding result can also be expressed in terms of the convolution algebra 

~ :  Let  v, ~ E ~  and assume tha t  ~ divides v in the sense tha t  the function ~//~ is 

entire. Then for each e > 0 ,  there exists an a E ~ e  such tha t  a ~ v  is contained in 

the ideal generated by /~. 

Another formulation of Theorem I I  deserves to be recognized, viz.: The sets 

and 

{/(x) l j entire, / = =, ~,/~ E ~} # 

{t(x) l /entire of exponential type, J([ log If [) < co } 

are identical. 

The proper ty  described above can b e  considered as a formal analogue of a 

theorem of Nevanlinna stat ing tha t  a meromorphic function with bounded charac- 

teristic in the unit disc can be expressed as the quotient of two bounded analytic 

functions. 

We should also like to point out tha t  Theorem I combined with a result by 

Beurling ([1], Theorem IV, lecture 3) give rise to this striking conclusion: I f  trans- 
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lations are bounded operators in a space L~(w(x)>~ 1, l ~ < p ~  o~) then one of the 

following two alternatives holds true. The space either contains elements /=V~b with 

Fourier transforms f vanishing outside any given interval [a, b], or the space does 

not contain any /#~b with a transform ] vanishing on any interval. 

1. Preliminaries on Harmonic  Functions 

In  the following sections we shall frequently be concerned with functions u(x + iy) 

harmonic in the upper half plane and with boundary values u(x) on the real axis. 

I t  will always be assumed, although not always explicitly stated, tha t  the relation 

between u(z) and its boundary values u(x) is such tha t  

lim f~ ' lu(x  + iy) - u(x) ldx = 0 (1.1) 
Y4 0 d xt 

for finite intervals (xl, x~). I f  in addition 

lu(x)l (1.2) dx < 
1 + 2  

then u(x) has a well defined Poisson integral which we shall denote 

1 ~:~ yu(~) d~ 
Pzu= ~ J_~ y2+ (X --~)~" 

If  therefore u(z) 

half plane with boundary values vanishing 

an application of the symmetry  principle it 

satisfies (2.1) and (2.2), then u(z) -P~u is harmonic in the upper 

almost everywhere on the real line. By 

follows tha t  

where cn are real constants such tha t  the series represent an entire function. The 

sets P0 and P l  are defined as follows: uriC) 0 if c a = 0 ,  n>O, and thus u(z)=Pzu; 

uE~) 1 if c a = 0  ( n > l ) ,  and consequently u(z)=Pzu+cly .  

Let ~ be a positive measure on [0, ~o) such tha t  the integral 

1 - z2 do(t ) U Q (z) = f :  log 

converges for y > 0. I f  U ~ (z) is bounded from above for real z and if 

t 
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f l do = O(t), 

then the boundary values 

= oo x 2 do(t) 
U'(x) f0 logle - t, 

are finite almost everywhere and satisfy (1.1) and (1.2). By a Tauberian theorem of 

Paley-Wiener it follows that  the limit 

, /  a = ~ lim d o 
T-oo T 

exists and is finite. Moreover UQ(z)E~)I and the constant c 1 equals a. 

2. Atomizing of Positive Measures 

This section will contain an elementary but important step in establishing the 

existence of functions # E ~ with prescribed properties. 

We shall denote by ~ the collection of all measurable functions to(x)/> 0 satis- 

fying (0.2) and in addition meeting this condition: For each a > 0  there exists on 

[0, c~( a continuous positive measure 0 such that  

U q (x) ~ - to(x) + const, for a.a. real x, (2.1) 

r-oo T do ~< a. (2.2) 

I t  should be observed that  (0.1) is not included as a condition for ~. We rec- 

ognize that  ~ is a convex cone: If tol, to, Efl  then the same is true of ).itol+).~toz 

for )-1, )-2 >~ 0. Moreover, if to(x) belongs to ~ so does t o ( - x )  as well as to(x)+ to ( -x ) .  

Each non-negative measurable minorant of an to E ~  win also belong to ~. The set 

is therefore uniquely determined by the even functions it contains. 

LI~MMA I. Assume to E ~  and let ~ be a given positive number < 1. Then [or each 

a > 0 there exists a fi E ~ such that 

~o IP,(~)lexp (to(~) + I~l") < ~ .  (2.3) 2 dx 

Proo/. We recall the formula 

f0~ +1 log 1 - ~  dtr=lx[rrecotg~--~ 2 ( 0 < y < 2 ) .  
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Thus, if s(t)=at-2tvz: -1 tg �89 7 ( a>0 ,  0 < 7 <  1), then 

oo ~2 

~i l o g ] l - ~  Id s ( t )= -2 [x [~ .  

The function s(t) is obviously increasing for t>~ to, where t o depends on a and ~,. If 

therefore v is the measure obtained by restricting s to (t o, ~ )  we shall have 

U ~ (x) ~< - [ x I y + const. (2.4) 

Hence, I xl y E ~  for 0 < y  < 1. Let a > 0  be given and let Q be a measure satisfying 

the stipulated conditions with respect to a and to to1 (x) = 2 to (x) + 5 ] x [Y. We construct 

an atomized measure ~)* by the procedure: 

~*(t)= f :  do~* = [Q(t) + l], ~(t)= f :  dQ, (2.5) 

where [x] denotes the integral part  of x. 

Since ~ is positive and continuous, :)* is uniquely determined. Define for 

z=x+iy (y> 0), 

h(z)=exp{folog(1- ~) d~(t)}, (2.6) 

/(z) = e x p { f o l o g  ( 1 - ~ )  d~*(t)}, (2.7) 

where the logarithm is real for z=iy (y>0) .  We observe that  /(z) is an entire 

function, 

_ ] ~ (  z ~) l 
1 -  Q(~n)+ = n .  /(z)- , ~. , 

Our conditions on ~ and on to imply that  

log[h(z)[~< - P ~ t o : + b y + c o n s t .  (y>0) ,  (2.8) 

where b is a constant ~<a. The function 

l(z) . 
log h ~  = utz) • iv(z) 

is holomorphic in the upper half plane and its imaginary part v is bounded there 

and vanishes for z = i y  (y> 0). For x >  0 the boundary value of v is 
20--62173068. Ac ta  mathematic, a, 107. Imprim6 le 27 juin 1962. 
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V(X) = ~(~'(X) -- O(X) ) ~ ~ ( [~(X) +11 -- Q(X) ) . 

Since v ( - x + i y ) = - v ( x + i y )  we shall have -�89 on the real axis and 

those incqualities will hold throughout the upper half plane by virtue of the maxi- 

mum-minimum principle. Assume 0 < k <  1 and set 

(~)~ = e~ cos kv+iek'sinkv = Uk+ iVk. 

Then Uk is a positive harmonic function and 

cosk2 ~k~<Uk. (2.9) 

By an inequality of Harnack 

I~+~l+lz-il i~(~)<<.v~(i)l;~-[;--il (y> 0). (2.10) 

In the half plane y~>l, the factor in (2.10) is majorized by ( l + l x l )  2. On com- 

bining (2.8), (2.9) and (2.10) taking k = ~ ,  we obtain for y~>l, 

log ]/(z) I ~< - P~Wl + by + 4 log (1 + I x  [) + const. (2.11) 

Since the same inequality holds for z = x - i y  it follows that  /(z)is of exponential 

type <~a. By virtue of the definition of 0) 1 we conclude tha t  

[/(x + iy) ] ~< Me-41xff ( -- 1 < y < 1), (2 .12)  

where M is a finite constant. This proves that  /E 7~/~. 

Since Uk(z) is positive for y >  0, and UkE~)0, 

1 f~_~ U*(X) dx= Uk(i). (2.13) 
:re 1 + x ~ 

Hence, by (2.9), taking k=�89 

f~_r ](x) �89 dx h(x) l ~  < ~ "  (2.14) 

By the definition of ~, 

log  I h(z)  I = U~ (~) << - 2 re(x) - 5 Ix  1" + const. 
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Therefore (2.14) implies that  

and (2.3) follows since f t(x)=/(x) is bounded. 

We shall now derive a stronger result under the assumption that  to(x) has a 

certain weak continuity property. 

LEMMA II.  Suppose to(x) is continuous and let there exist positive numbers ~ and 

< 1 such that/or all x outside some compact set and/or  [hi <<. exp ( - Ix [~), 

Ito(x+h) -to(x)[ < I~P. (2.15), 

Then the summability (2.3)/or  ~ > max (a, 8) implies that 

]/(x) ] exp (to(x) + ]x [Y) ~< const. (2.16) 

Proo/. The lemma is a simple consequence of the following minimum modulus 

theorem. There exists an absolute constant 0 > 0  such that  if g(z) is holomorphic fo r  

]z] < R and I g(z)] ~< M, then 

minlg(z) ] >~ Ig(o) l 
Izl-r M 

for a set of values r of measure ~>v~R. If therefore (2.16) were false there would 

exist arbi trary large x 0 such that  

I/(~o) I >/exp  ( - to@0) - Ix0 I~). 

Since / is bounded by a constant M in the strip - l ~ < y < ~ l  we would have 

I t(x) I > M - ~ e x p  ( - to(Xo) - I X o  I ~) 

o n  a set E contained in the interval  I r  xol < exp ( - I ~o I ~) and of measure > 2 ~ exp, 

(-Ix01.). This inequality together with (2.15) contradicts the summability expressed 

in (2.3) and the lemma is therefore true. 
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3. A Variat ional  Problem in a Hilhel~ Space 

The main objective of this section is to connect the set of functions ~ with a 

certain variational problem in a suitably chosen real Hilbert  space. By definition 

shall consist of all odd real vMued measurable function on ( - ~ ,  oo) satisfying the 

condition 

~_oo l u ( x ) ]  oo (3.1) d x  < 1 +x 2 

and such tha t  the harmonic function u(z)= P~u has a finite Dirichlet integral 

Ii lr = Igradul dxdy �9 (3.2) 

The norm in :~ shall be defined by  (3.2). Because u(iy)= 0 (y>  0), i t  follows by 

well established properties of the Dirichlet norm tha t  :~ is complete. 

Frequent use will be made of the inequality 

00 X 

Ilull (3.3) 
j o  x 

In  order to prove (3.3) define re(r)= supo<e<t,,Ju(re ie) J. Then 

m ~(r) < U o  I e0 2 J0 

Consequently f :  m~(r)d-~f <~ 2 fo rdrL ~ ( ~ )  2dO~ 2 Huj j '  

and (3.3) follows. The norm in ~ can of course be expressed directly in terms of 

u(x). One such expression is furnished by the Douglas functional 

\ x - y  / (3.4) 

We shall later on define an equivalent norm in ~ more convenient than (3.4) 

for our specific purposes. I t  should be pointed out tha t  ~ is a Dirichlet space in 

the sense of Beurling and Deny [2, 3]. We shall use the technique of these spaces 

without referring to the general theory. 

For each u(x)G~ the harmonic function u(z)=Pzu has a conjugate harmonic 

function ~(z) uniquely determined except for an additive constant. Since u(z) and 
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4(z) have the same Diriehlet integral we conclude tha t  4(z) has boundary values 

~(x) which are a t  least locally L~-summable. If  u, v 6 ~  the scalar product is.formally 

expressed by the integrals 

(u, v) = f :  u(x)d~(x) = f :  v(x)d~(x). 

If, however, v belongs to the set C c~ consisting of all odd real-valued differentiable 

function with compact support  then we shall have 

(u, v) = - f :  fi(x) dr(x), (3.5) 

where the integral is well defined. The proof of (3.5) is elementary. 

The main result of this paper  is contained in 

LEMMA I I I .  Let co(x) be a non-negative measurable /unction such that /or almost 

a / / x > 0  

where a E :H and 

Then r E ~. 

co(x) <- xa(x) + eonst., (3.6) 

fo  ~ dx < oo. (3.7) 
~(~) 

.X 

Proo/. In  order to exhib i t  the existence of measures ~ with the prescribed prop- 

erties we assume a > 0  given and we choose b ( 0 < b < a ) .  Define 

K,, = {u l u 6 ~d, u(x) >1 a(x), a.e. for x > 0}. 

This set is convex and it is closed by  virtue of (3.3). Define further 

I~ u(x) 
~P(u) = II u II ~ + 2 b dx, m = inf ~P(u). 

J 0 X ~ K  a 
(3.8) 

Since aEK,,,  m is finite. Assume ul, u26K, ,  (1)(u,), ( I ) (uz)<m+e.  Then ~P(�89 +u2) ) 

>/m and consequently 

�89 r + �89 ~(u~) - r (�89 (u~ + u,)) < ~. 

This inequality can also be writ ten in the form 

[I �89 
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I f  therefore  unEKo,  (I)(un)-->m, then  {un)~ is a Cauchy sequence and  converges to  

a n  e lement  u E Ko. B y  (3.3) we shall  have  for 0 < x 1 < x 2 < ~ ,  

ix, dx l i in [~(~) -  ~ . ) z ) [ - -  = O. 
n - c~ d xl X 

[.x, dx 
Hence  II ~' II ~ + 2 b Jx~ u ( ~ ) ;  ~<.~, 

a n d  i t  follows t h a t  (I)(u)= m since u ( x ) ~  0 a.e. for x >  0. Le t  now v E C and  assume 

w(x) >/0 for x/> 0. Then  u + 2v E Ka for ~t > 0 and  (I)(u + ~tv) - (I)(u) ~> 0. This  implies  t h a t  

(u, v) + b l~v(x)dx>~ O. (3.9) 
30 x 

T h e  l e f t -hand  side of this  re la t ion  is therefore  a l inear  form F(v)  def ined for v E C 

a n d  F(v)>1 0 if v > 0 for x > 0. B y  a famil iar  a r g u m e n t  we conclude t h a t  

F(v) = f :  v(x) d~(x), (3.10) 

-xherc  ~ is a non-nega t ive  measure  on (0, ~ ) .  

We  now in t roduce  a normal ized  conjuga te  funct ion ~2(z) b y  the formula  

1 u ( t )  d t  = _ _  d t .  u(z) + ifi(z) = z i  t - z ~ 

T h e  in tegra l  is well  def ined because 

f _ ~  ' u ( t ) '  d r <  ~ .  It1 

O n  combining (3.5) and  (3.9) we o b t a i n  for v EC 

- f;~(x)dv(x)- -b fo ~dX + f;v(x)d~(x). (3.11) 

This  re la t ion  implies t h a t  fi(x) a.e. coincide with  a funct ion  local ly  of bounded  va-  

r i a t ion  on (0, ~ ) .  

The  precise pointwise  l imi t  

~(x) = lim ~(x + iy) 
y40 
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is therefore of bounded variation on finite intervals [xl, x2], x 1 > 0. This implies tha t  

the limits ~ ( x - 0 )  and ~ ( x + 0 )  exist. By another version of (3.3), 

It follows that ~(x+ 0)= ~(x-0), and ~(x) is thus continuous on (0, oo). In addition 

it follows by (3.11) that 

�9 ~ ( x  2) - ~ ( x l )  ~ - b l o g  x2 (x  2 > x 1 > 0 ) .  ( 3 . 1 2 )  
xl 

We shall next  prove 

x $ ~  

lira (~i(x) - ?i(ix)) (3.13) 
z$0 

To this purpose we consider 

J(r,  2) ~ [ a ( x ) - ~ ( i x ) l  ( r > 0 ,  2 > 1 ) ,  

and we observe tha t  

~(ix) = 0, lim ~t(ix)= _ _2 foo u(t) 
lira dr. 
z?~ z$o Xt Jo ' 

By an application of Schwarz inequality and by  the proof of (3.3), 

where D(r, 2) denotes the Diriehlet integral of g extended over the region 

(~[r<izl<2r, O < a r g  z< �89  

Hence, for bounded 2, J(r ,  2) tends to 0 as r ~  c~ or r ~ O .  If  (3.13) were not true 

there would exist a positive z/ and arbi trary large (or small) x > 0 such tha t  

I a (~ )  - ~ ( i ~ )  I > 2 n.  

By virtue of (3.12) we conclude tha t  for some fixed 2 >  1 only depending on b and 

we would have 

(xE(r, 2r)) 

for some values of r arbi t rary large (or small). This contradicts our result on J(r ,  2) 
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and  ( 3 . 1 3 ) i s  therefore established. Hence, fi(x) is a bounded continuous function 

tending to 0 at  cr and to  a finite limit a t  x = 0 .  

We now tu rn  to  the construct ion of the measures ~. Since u(z), 4(z)E~o we 

shall have 

fT 2~ (" ~,(tkd t u(z) + ifi(z) = lim 1 ~(t) dt = 
T--oo~, T t - - z  ~ 20 t2--Z2 " 

This function u(z) coincides with the original u(z )=Pzu because both  vanish on the 

positive imaginary axis and  both have the same conjugate function. By  adding the 

constant  a to ~2(t), we obtain  

u(z) + i~(z) + ia = 2 z (*~ ~(t) + a 
Jo ~ - _ ~ - a t .  

1 f l  ~ 2z  ~ Consequently z(u(z) + i~(z) + ia) = ~ t(~(t) + a) ~ dt, (3.14) 

where the last factor  in the integral is the derivative of log ( 1 - z 2 / t  2) with respect 

to t. Since a > b  there exists a finite t o such tha t  for t~>t0, ~ ( t ) > b - a .  We also re- 

call t ha t  the lower derivative of fi(t) is ~> - b i t  a t  each point  t > 0. These properties 

imply tha t  s(t)= t(~(t)+ a) is increasing for t~> t o and of bounded variat ion on [0, to). 

We obtain by  first making a part ial  integrat ion in (3.14) and then by  letting y ~ 0, 

- xu(x) = - log 1 - ds(t). 

A continuous positive measure Qt is now readily obtained by  defining 

By  construct ion of u(x), 

zc d~l = ds for t >~ to, 

z td~l=adt+td( t  for 0 < t < t  0. 

Therefore 

co(x) <~ xa(x) + const  ~ xu(x) + const., a.e. for x > 0. 

; U q' (x) ~< - co(x) - 1 4(t) log 1 dt + const. - ~ -  

Since fi(t) is bounded we conclude tha t  for a . a .  x >  0, 

U r (x) ~< - o~(x) + crlog (1 § x2).+ const. 
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In  order to obtain a ~ strictly satisfying all the conditions, we have only to form 

= ~1+% where z is one of the previously constructed measures satisfying (2.4) for 

7 = �89 and (2.2) with the constant a - b .  

This concludes the proof of Lemma I I I .  

4. An Equivalent  Norm in ~/ 

In  order to obtain simple and explicit conditions implying tha t  functions u(x) 

belong to ~ we shall introduce an equivalent norm in ~ .  

Lv, MMA IV. For odd measurable ]unctions u(x) on ( -  co, oo) let 

llull = jo ej_  

~he~ liull and Ilullo are eq~vaZent ~or,~ ~ ~, i.e. Ilull/ll~llo r e ~ a ~  ~,,l~d~ bet~ee~ 
positive linite constants. 

Proo]. Any of the assumptions HuH<oo or [[u]]0< oo imply tha t  

u ( e  ~) e L ~ ( - c o ,  oo ). 

We may  therefore assume tha t  ~v(~) = u(e ~) has a Fourier transform ~v(t) e L ~ ( - oo, oo). 

By  an application of Parseval relation 

Consequently II ~ I1~ = f _~  I~(0 I~o (0 dt 

fo ~ s ds wliere ~0 (0 = 1 + 4 I tl sin e ~ ~ = 1 + ~ I tl 

On the other hand the function ~o(~ + i~/)= u(e r is harmonic in the strip 0 <~ /<  �89 :z 

and vanishes for ~/=�89 Since the Dirichlet integral is invariant  under conformal 

mapping 

I lul l*- I I~l l  ~= f~=d~f~ Igrad~l*d~. 
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The kernel K(t, ~, ~ )=e  u~sh ( 2 - ~ )  t 

sh 2 t 

is harmonic in (~, ~) and K(t, ~, O)=e u~, K(t, ~, � 8 9  By this we conclude tha t  

y~(~+i~7)= ~ K( t ,~ ,~)~( t )d t  ( 0 < ~ < � 8 9  
V z x c  

B y  a s t raightforward computa t ion  using the Parseval  relation, 

1 shx~t e t'~ § e - ! ~  
with 2(t) = ~ t  sh 2 t z~t = t �9 ~-~-~ e_}~ i. 

The ratio ~/~t is obviously bounded from below and from above by  positive con- 

stants,  and tile lemma follows. 

LEMMA V. Let co(x) be an even non-negative /unction uni/ormly Lip 1 on the real 
axis and such that 

A = f~  ~o(x) dx 0 0  ~ 

Jo x 

Then a(x)= oJ(x)/x E~,  and by Lemma I I I ,  eo E ~.  

Proo/. Without  loss of generali ty we m a y  assume tha t  ~o is differentiablc for 

x ~= 0 and tha t  its derivative w'  is bounded by  a constant  M. We define on ( - ~ ,  co), 

~(~)  = a ( d )  = co(d)  e -~, 

and observe tha t  (4.2) 

~p' (~) + ~fl(~) = w'  (e~). (4.3) 

If  (4.3) is multiplied by  ~ and then integrated over ( -  oo, 8), 

-~ yJ ($) + ~ v2 ~ (~) d~ <~ MA.  (4.4) 
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f ~  ~v ~(~)d~< MA, (4.5) 

I~(~) I -< r~-~i/Z (4.6) 

J~' ($)1 < M + 1/2 MA = M~. (4.7) 

:By virtue of the definition of the equivalent norm the lemma is proved if we can 

show that  (4.7) implies 

f :  5~ (,1, ~) ~ < 4 Ml f _~ w(~)d~, (4.8) 

where (3~(~7, ~v)= f ~  

:By A, we denote the set where at  least one of the functions ~v(~), ~v(~q-~) is >~,  

and we define E,={~]~p(~)>~}. Let  m(~) be the measure of E ,  and observe that  

:By reason of homogeneity it is sufficient to establish (4 .8 ) in  the particular case 

tha t  M 1= 1. Since the measure of A, is less than 2m(~) we shall have 

f,, 
Consequently 

This proves (4.8) and the lemma follows. 

5. Proofs of Theorems I and lI 

The necessary condition (0.1) states that  

~(t) = true max [ r + t) - co(x) [ 
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is finite for all t. If therefore M is sufficiently large the set E = {t I a(t) I~< M) has 

positive measure. By a well known argument the set 

E~={tl t=h-tv  tx, t~EE} 

contains an interval. Since ~(t) is subadditive and even we shall have ~(t)~<2M 

on some interval [a, b]. Consequently z t ( t )<4M for I t i < ~ b - a .  Again by subaddi- 

t ivity it follows that  :t(t)<<,M o for Iris<l,  M o being a finite constant. Define 

f 
t 

oh (x) = o~(x + t) dr. 

Then [ w~ (x)] ~< M 0 and we shall have 

(5.1) 

[~176 f ~ t  ( w ( x ) - o ~ ( x + t ) ) d t  <M0. (5.2) 

The last inequality implies that  the weight functions w ( x ) =  e ~(') and w 1 (x)= e ~'(x) are 

equivalent. Without loss of generality we may also assume that  w 1 vanishes on 

( - 1 ,  1). The summability (0.2) and the Lipsehitz condition (5.1) imply that  Lemma 

V applies to 

,~(x)  = o~, ( x )  + o~1 ( - x )  

X 

Thus, a E~H. By Lemma III ,  oJ1E~. Lemmas I and I I  ascertain the existence of 

functions # with the stipulated properties, and Theorem I follows. 

The proof of Theorem II  is also based on Lemma III ,  while Lemmas II  and 

V are dispensable. If g is entire of exponential type, then the elementary theory of 

Fourier integrals implies that  /2gE~/~, if /29 is summable on the real line. 

We also observe that  it suffices to prove Theorem II  for functions of the form 

because each g has a majorant of this kind on the real axis, viz. 

1 + z ~ (g(z)  g(~) + g(  - z)  g( - ~)).  

As a substitute for I~mma V we shall use 
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LEMMA VI. Let (5.3) be entire o/exponential type and such that/or real x, [g(x)[ ~> 1. 

I /J(log[g[)  < oo, then 

u(x) = log[g(x) { e ~ .  (5.4) 
X 

Proof. I t  is well known tha t  our  conditions imply 

lim N(r) = lim sup log [g(z) I 
r-oo r I~l-*=o [zl - A ,  (5.6) 

where ~V(r)= ~ 1 and where ~m is the imaginary part .  Assume, as 
[~ng<r 

~tn = I Xn l e '~ (0 < 0,, < ~), and define 

we may,  

;) 
By (5.5) this product  converges and represents an entire function /(z) of the same 

exponential  type  A as g(z). For  real x, ]](x) l =]g(x)  l. Since ](z) is free from zeros 

in the upper half plane we shall have there 

log/(z) = log [/(z) [ + i~(z), 

where O(iy)= 0 (y > 0). At each real point  x, [/(x+ iy)[ increases with y and 0(x) is 

therefore a monotonic  decreasing function. In  particular,  0(x) has a jump -7~ a t  

each real zero of /. An e lementary  consequence of (5.5) and (5.6) is t ha t  

lira v~(x) - g l i m  N(r) A. 
x = ~  X r - ~  r 

There  exists therefore a finite constant  M such tha t  

o(x) 
- - ~ > - M  ( x > 0 ) .  (5.7) 

X 

We now define u and ~ in the upper  half plane by  the relat ion 

u(z) + ia(z) - log/(z) + iAz, 
Z 
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and observe that  on the real axis, 

u(x) l~ t(x) I, ~(x) = 0(x) + A. 
X X 

Because of (5.7) and the fact that  O(x) is decreasing we shall have for x>O, ~ > 1 ,  

~(j~x) - ~(x) ~ Mlog J. (5.8) 

We recall that  both u(z) and ~(z) belong to ~)0, and that  u is an odd and ~ an 

even function of x. Our objective is to show that  the I)irichlet integral of u(z) is 

finite. By assumption on g, u(z) is positive in the first quadrant, and 

x-lu(x) ELl(O, oo). 

f0 ~ _ = (  2 0 1 f ~  dr Therefore u(retO ) dr 1 - u(r) - -  (0 ~ 0 ~< �89 z~). (5.9) 
r ~ / J 0  r 

~2r. dr  __> O 
In particular | u(re ~) (r0-+oo), 

r0 r 

and we conclude by Harnack's inequality that  u(ret~)-+O as r - + ~ ,  ~ being fixed. 

This implies tha t  we have uniformly 

u(z)=o(1) ( ~ < 0 <  �89 (5.10) 

As a consequence of (5.10), 

[gradu[=[grad~[=o(1)  ( ~ < 0 < � 8 9  (5.11) 

We now turn  our attention to ~. By  virtue of (5.8) the function ~(~z)-~(z)  is 

bounded by M log ~ on the real axis. The same bound therefore holds throughout 

the upper half plane. Consequently 

O~(rel~ ) <,< M ( r>0 ,  0 < 0 < ~ ) .  (5.12) 
Or r 

The classical formula ( [grad u [2 dxdy = ( u d~ ds 
Js .los ds 

is now valid for each sector S = { z = r e  t~ 0 < r < r 0 ,  5 < 0 < � 8 9  According to (5.10), 

(5.11), the integral extended over the circular arc tends to 0 as r0--> ~ .  The Dirichlet 

integral for the angle ~ < 0 < ~g is therefore properly expressed by the integral 
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and consequently majorized by 

This proves the lemma. 

f o U(r e ~) ~r~t(r e ~) dr 

dr 
M u(r) r" 

6. Concluding Remarks 

I t  should be observed that  the lemmas admit a strengthening of Theorem I 

independently of whether (O.1) is satisfied or not. Assume for example that  to(x)>~O 

is even and that the necessary summability condition (0.2) is satisfied. If to(x)/xE:14, 

then / =/2 E 7;//a can be constructed as in section 2 with to replaced by p~o (1 ~< p < ~ ) ,  

so that  

f ~  lfi(x)l" eV'~(X) dx < oo. (6.1) 

The corresponding result for p = ~ ,  

[/2@) [ e ~(~) ~< const, for a.a. real x, (6.2) 

is of course not true since our present condition does not imply that  to(x) is essen- 

tiaUy bounded on any interval. If however, to(x) has the continuity stipulated in 

Lemma I I  then again each ~ a  (a>  0), contains elements fi such that  (6.2) holds 

for all real x. 

In another paper we shall use the results of this study to resolve a closure 

problem for given systems of characters. This application together with some aspects 

of the present problem have been outlined in recent lectures by one of the authors [4]. 
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