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1. Introduct ion 

A problem of wide interest in the geometry of numbers is the determination of the den- 

sity of the closest packing of translates of a given body ~ in thc plane. For ~: convex 

L. Fejes Toth [2] and C. A. Rogers [4] proved independently that  any packing of trans- 

lates of a convex body in the plane has a density not greater than the dcnsity of the best 

lattice packing. 

The problem of packing convex bodies in the plane can be extended to the non-convex 

case in two distinct ways. One is to require that. non-convcx bodies be packed in a non- 

ovcrlapping fashion. The other, the Minkowski-Hlawka type, allows overlapping of the 

bodies under conditions which highlight the relation between the critical lattice of a con- 

vex body and its best lattice packing. It  is this latter type of packing which we considcr 

in what follows. 

Def in i t ions  

1. Let S be a star domain, symmetric about O. A set of points ~) is said to provide a 

packing/or S if the domains (S + P}p+~ have the property that no domain S + Po contains 

the center of another in its intcrior. We shall also say that ~) is an admissible point set for S. 

2. The density of a ]attice, ]0(l~), is the reciprocal of its determinant. 

3. Consider the square Ix] < t, [y] < t. Let A(t) denote the number of points of a sct 7) 

in the square; then the density of ~ (denoted ~)(~), is defined as h~m~t2) ([5], p. 5). 
' t-,~r 4t 

That the Rogers' theorem does not hold generally for non-convex figures is shown by 

following example of a bounded star domain for which the densest packing is not a lattice. 

2. Descr ipt ion  o f  $ 

We take $ to be the region defined in Fig. I. 

Let the point set ~ be the union of a lattice 1:1 of determinant 1 and 1:2, some trans- 

(1) This is part of the author's doctoral thesis at the University of Notre Dame (1961) under the 
direction of :Professor Hans Zassenhaus. 



5 4  M . R .  V O N  W O L F F  

lation of s such that  s U~:~ = ~ is not a lattice. We take as s the lattice of all points 

in the plane with both coordinates integers and define l:~ as follows: 

s = {(x2, Y2)]x2 = Xl + ~, Y~ = Yl + ~; (xl Yl) e~l}- 
I: 1 191:~ is not a lattice. For let L ' = ( ~ ,  1) and consider L = 2 L ' = ( ~ ,  1). L ~ l ,  since ~ is 

not an integer. L(~i:e since it is not of the proper form. Hence, L ~ )  and, therefore, ~) 

cannot be a lattice. 

Note tha t  the point set ~ has density equal to two. 

The problem is then to construct a star S for which 0 is admissible and such tha t  A($) 

is strictly greater than 1. Since S must be symmetric about  the origin, we can include a 

point P in $ only if we can also include - P, its reflection in O, in $. We assume further 

tha t  if we include a point P in $, we include the whole segment OP in S as well, and hence 

this segment must  not contain a point of ~ .  For the particular point set we have chosen 

these are easily seen to be the only restrictions. We note tha t  our star S can contain a 

centrally symmetric rectangle of area two. (In Fig. 1 this rectangle is labelled PdP~Pll 

P12 = ~.) Now a critical lattice of a rectangle has mesh equal to one fourth the area of the 

rectangle and, therefore we can determine S so that  it contains ~ and thus A(S) >/A(~) 

=�89 By adding suitably to ~ to form $ we can get A(S)>~. We find that  "adding suit- 

ably to ~ '  'consists in no more than completing $ in such a way as to include the point 
1 3 (~, ~) as an interior point and (0,1) as a boundary point. 

Fig. 2 shows tha t  ~ is an admissible point set for S. 

For S determined and defined as above we show first tha t  A(S) is strictly greater than 

one half making S the desired example, and then we determine the precise value of A(S). 

�9 1 3. Critical lattice cannot have determmant-~ 

Since the rectangle ~ has critical lattice of determinant equal to one-half and S D ~ we 

have tha t  A(S)~>�89 If A(S)=�89 then every critical lattice for S is also a critical lattice for 

the rectangle ~. A critical lattice of a parallelogram has six or eight points on the boundary 

and at least a pair of these points are mid-points of opposite sides ([1], p. 160). The lattice 

can be generated by one of the mid-points and any one of the lattice points on an adjacent 

side. As the mid-point of PAP12 (or P s P n )  is an interior point of S, we need only inves- 

tigate the critical lattices of ~ generated by the mid-point of PdPs, that  is, P' = (1,0) and 

some point P" on PdP12, in order to determine whether or not A(S) equals 1. By symmetry  

we may  further restrict P" to the segment PaPa. We then have the following conditions 

on the coordinates of P '  = (x', y'), P"  = (x", y"): 

x ' = l ;  y ' = 0 ,  

<l;  y" 
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P1 = (0,1) = - P ,  

P .  = <~e, ~)= - P~o 
P , = ( 1 , ~ ) =  - P , ,  
P s = ( I , - ~ ) ' :  - P , ,  

P,:(1%-~): - P .  

I 
?~.+ Y,, 

Fig. 1. 

P1Ps:  8 x - 7 y = - 7  
P 2 P a :  8x  - y - 3 

P A P 4 :  Y = 

P4Ps: x = 1 

PsPe: Y = 

PsPT: 8x + y = 3 

P ~ P s :  8 x  + 7y  = - 7 

P s P g :  - 8 x +  7 y =  -- 7 

PDPIo:  -- 8X + y = 3 

P , o t ' u :  y - - 

P n P n :  x = - 1 

P12 Pls: Y = 
P n P I ~ :  8 x  + y = - 3 

P14t>1: 8 x  + 7y  = 7 
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Fig. 2. /:x ~J l:z is an S-admissible  set.  []  deno tes  point  of 1: l, C) denotes  point  of ~2. 
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Consider the point P * =  P"  - P ' .  The coordinates of P* satisfy the conditions 

- ~ < x *  ~<0; y*=~, 

and P* is an interior point of S except when - ~ ~< x* ~< - ~. This last inequality implies 

that  P* is an interior point of except when ~ ~< x" ~ ~g. 

For x" in this range, consider the point P** = 2P" - P ' .  We have 

- l < x * *  ~<1; y** = 1. 

Hence, P** is an interior point of S except when x**= 2x" - x ' =  0, that  is, when x" = �89 

hence, when P '  = (1,0) and P"  = (�89 ~). 

However, for this choice of P '  and P" ,  3P" - P '  = (�89 8) which is an interior point of S. 

This completes the proof that  A(S)> ~ and shows that S is the desired example, since the 

density of the point set ~ is greater than the density of the critical lattice. 

4. Determination of the Critical Lattice of S 

Mahler ([3], p. 135) has proved that  there must be a least two independent points of a 

critical lattice on the frontier of a bounded star S. Throughout we will denote by P '  and 

P" the independent points which satisfy the condition that  

P '  is on PJPJ+I and P"  on PkPk+l 

with 1 ~< j ~< k ~< n. S has fourteen vertices but by symmetry we need only let n = 8. 

We will show first that  there must be at least three pairs of points of the critical lattice 

on the boundary of S and then we consider the possible number and placement of these 

points. 

A singular critical lattice ([3] p. 135) of a star domain is one having only four points 

on the boundary of the star. Mahler ([3], p. 142) has proved that if _+ P '  and _+ P"  are 

the points of a singular lattice on the boundary then there is an inner tac-line(1) ([3], p. 141) 

through P '  parallel to OP" and an inner tae-line through P"  parallel to OP'. If S has a 

singular critical lattice, then his condition limits the choice of P '  and P"  to the following: 

(1) the inner vertices of S, namely P1, P3, P6, Ps, P10, and P13, but from symmetry we 

really need to consider only P1, Pa, and P6; and 

(2) the cases P '  on PJPi+I, P"  = Pk, where PJPs+I is parallel to OPk. 

Denote by d(I:) the determinant of the lattice generated by P '  and P" .  

(1) An inner tac-line at P is a straight line such that all points of the line sufficiently near to P 
but distinct from P arc in the star. 
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For  case (1) we have the following possibilities: 

P '  = (x', y') P "  = (x", y") d(t:) 

7 (a) P3 = (7, 11 Px = (0,1) ~ 

(b) P 6 =  (7, 1 )  P ~ =  (0,1) 716 
7 (c) Pc -- (A,I~ - �89 P3 = (7, �89 1~ 

None of the lattices generated by  these choices of P '  and P "  can be critical, or even 

admissible, since A($) > ~ > 7 .  

I n  case 2 we again have the number  of possibilities reduced by  symmet ry  and, therefore, 

have only the  following two: 

(a) P ' = P 1  and P "  on P4P5; 

i. e., P '=  (0,1), P " =  (1, y) where -�89189 and d ( s  1; 

(b) P '  on PIP2, P" =Pa. 

By the tae-line condition, P '  must  satisfy 

0<x'<s l<y'<~ 

in  order t ha t  there be an  inner tae-line th rough  Ps parallel to  OP'. Consider t han  the point  

P* = P '  - P " .  We have 
1 * 

Thus P* is interior to $ except for x * =  x ' - x "  = - 7 .  However,  this implies the t  x ' =  0; 

i. e., P '  = P1 which was considered in case 1. 

I n  what  follows it becomes clear t ha t  2(a) does not  yield a critical lattice and, there- 

fore, $ can have no singular critical lattice. Hence any  critical lattice must  have at  least 

three pairs of points on the  boundary  of S. Wi th  this information we can find the critical 

lattices of $ in the following way. 

Let  P ' ,  P "  be two independent  points on the boundary  of with P '  on PJPJ+I, P" on 

PkPk+l for 1 ~< j ~< k ~< 8. If  P '  and P" belong to a critical lattice, there mus t  be at  least 

one other  pair of lattice points on the boundary .  I t  is sufficient to  consider the cases of 

one or two additional pairs of lattice points on the boundary  of $. We have then only 

the following possibilities: 

(1) P', P" both  vertices: P '  = P j ,  P "  =Pk .  

(2) P' a vertex, P "  a boundary  point, bu t  not  a vertex and some lattice point  Q on the 

boundary:  

P'=Pj;  P" on PkPk+a; Q=kxP'+k2P" on P~Pi+x, 

where k 1, and k 2, are rational numbers.  
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(3) P ' ,  P "  boundary  points, but  not  necessarily vertices, Q a ver tex 

P '  on PjPj~I; P" on PkPk+l; Q = P ,  

(4) P', P" boundary  points, bu t  not  necessarily vertices; Q1, Qz lattice points on the 

boundary,  bu t  not  vertices. 

(5) P', P" boundary  points, but  not  necessarily vertices; Q not  a vertex and no fur ther  

lattice points on the boundary .  

I n  cases (1) to (4) the conditions stated give four equations in four unknowns (the four 

coordinates of P '  and P" )  which in each instance yield either a unique solution for P '  and  

P "  and a specific lattice generated by  them or no solution. I n  case (5) we have only three 

equations in four unknowns and must  deal with this case separately. 

Since S is bounded, for the lattice points Q = kiP'-!-k~P" which must  be considered, 

we have, for i = 1 and 2, [ ks] < c for some constant  c depending on P '  and P" .  Further ,  

for kt rational the denominator  is bounded as will be seen later, and, therefore, there are 

a finite number  of lattice points of the form Q. The number  of choices for P '  and P" is 

also finite and so the number  of possibilities contained in cases (1) to (5) is finite. 

For  each system of equations in case (5) wc proceed as follows: 

First, find a solution to the system of equations and express the most  general solution 

in terms of this solution and a single parameter,  t. Since t is taken to  be equal to one of 

the coordinates of cithcr P '  or P" ,  it ranges over a closed interval. 

Next,  write the expression for the determinant  of the lattice generated by the general 

solution. 

Then, minimize this expression as a function of t. 

I n  all cases it was found tha t  the minimum was at ta ined at  an end point  of the interval. 

Hence, the smallest value for an admissible solution occurs at  vertices thus giving an 

additional equation relating the unknowns and put t ing the system in one of the cases (1) 

to  (4). 

We note tha t  P '  and P" m a y  belong to a critical lattice wi thout  generating it; i. e., the 

lattice they  generate could be a sublattice of the critical lattice. Since we know tha t  

~< A(S)~< 1 (s is admissible), this could occur when the de terminant  of the lattice gen- 

erated by P '  and P "  is strictly greater than  one. However,  given two independent points 

of a lattice we can always use these two points to find a basis. Tha t  is, if P '  and P" are 

ndependcnt  points  of a lattice s bu~ do not  generate l:, they  generate a sub-lattice s  of 

E. Then there exists a basis QI and  Q~ for s such tha t  

P'=v11Q 1, P"=v21QI +v22Q ~, 

where the v,j are integers and v,~ =V 0 ([1], p. 12, Theorem I, B). 
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This theorem is used as follows. Suppose P '  and P "  generate a lattice t~* of determi- 

[a] nan t  a > 1. Let  K = ; then K >/2. Since $ is a star domain there can be no lattice 

point  on OP' between 0 and P' nor on OP" between 0 and P".  Locate  points 

k , 1 ,, 
P = ~yP + ~V P , 

where 0 < k </V ~< K, for k and N integral and N ~> 2. 

Consider the lattice l~ generated by  P and P ' .  The determinant  satisfies �89 < d(iZ) ~< 1 and the 

lattice generated by  P '  and P "  is a sub-lattice of E. We can check such lattices for admis- 

sibility and proceed as indicated below. 

We note tha t  by  the construct ion of S, d(C) is greatest  for P ' =  P2 and P "  = P7 when 

we have d ( l : )=  35/18 < 2. Hence we have tha t  K is either 2 or 3. 

Note also tha t  the lattice points Q, above, are of the form 

Q = k l P '  +k2P" = ~ P  ' +~Pr2 ,,, 

when k 1 and k~ are rational and rl, r2, and k are integers with k = 1, 2 or 3. 

I t  is no t  difficult to  show tha t  we m a y  even require k 1 and k~ to be integral, since, for a 

suitable re-naming of the points, P '  and P" either generate a critical lattice containing 

Q or they  generate a sub-lattice which also contains Q. 

The finite number  of possibilities in eases (1) to (4) is quite large since $ has fourteen 

sides and we must  consider all possible placements of P', P" ,  Q1, Q2. At this stage the 

problem was programmed and eases (1) to (4) were handled on a 610 IBM computer.  We 

thus  obtained solutions to the systems of equations (i. e., the points P' and  P")and in each 

ease the determinant  of the lattice generated by  P '  and P".  Solutions for which the deter- 

minan t  satisfied the condition �89 < d(l~) ~< 1 or which could be sub-lattices of lattices satis- 

fying this condit ion were checked for admissibility. Then, f rom the finitely m a n y  admis- 

sible lattices we chose those of least determinant ;  i. e., the critical lattices. 

The minimum, determinant  was found to be 0.5234'/88359 = 1583/3024. There are only 

two distinct admissible lattices having this determinant .  One critical lattice can be gen- 

era ted by  the points P ' ,  P" satisfying the system: 

P '  on P1P2 

P "  on PsP4 

which gives the solution 

p,= (23 
 4s'42/' 

P' - 3P" on P11P12 

2P' - 3P" on P14 P1 

p,, 1711  
= 

The other  is the reflection of this in the y-axis. 
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