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oo 

Let A1, A 2 . . . . .  At . . . .  be a countable sequence of infinite cycles and I-IHXAt denote 
t - 1  

their unrestricted direct product. Then the following arc well known theorems, due in 

main to Specker [22]: 

T~t]~OREM Or SPECK]~R. Every countable subgroup o/ yI  Hx At is a ]ree abelian 
t - 1  

group. 

oo 

THEOREM Or" SP~CKEIr AND LOS. Let v 2 bet a homomorphism o / l ~ g X A t  into a 
t = l  

/ree abelian group. Then there exists a positive integer m such that 

nX At  = 1. 
\ t - m + 1  / 

Our aim is to investigate the corresponding situation in the case of the nilpotent 

product of infinite cycles. In a similar way one can derive results for the unrestricted 

soluble product and for the unrestricted third Burnside product both of infinite 

cycles and of cycles of order three. 

Before we can give an outline of our main results, we must first introduce the 

following 

Notation. Let v denote a typical power product of a set of power products of the 

letters of some fixed alphabet and their formal inverses. These power products are 

called words. The values of the words obtained by substituting elements from a group 

G for the above letters of the alphabet, in all possible ways, generate a subgroup of 

G--the verbal subgroup V(G) of G. The verbal subgroups corresponding to the words 

[ [ . .  [xl, x~] . . . .  ] ,  x.], 
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dn = [d~-i (x 1, x~,..), d~-i (Yv Y~," ")], where d 1 (Xl, x2) = [Xl, x2] 

and x n 

are of particular importance and their value in G is denoted by  nG, G In] and G n re- 

spectively. They are known as the nth member of the lower central series of G, the 

n th  member of the derived series of G and the nth  Burnside subgroup of G respectively. 

I f  :~ denotes a free group, then ~/V(~-) is known as a relatively free group (el. [6]). 

In  particular 

:~/n+l~, :~/:~M and ~./:~n 

are known as a free nth nilpotent group, a free nth  soluble group and a free nth  

Burnside group respectively. 

In  Moran [16, 17] we studied the verbal product or V-product 

FI ~ a~ = F/(V(F) n [~]~) 
~ G M  

of the groups G~,aEM, where F denotes their free product and [G,] E is the cartesian 

subgroup of F. In  particular, we found that  

:~/v(~) ~ YiVA~, 
cceM 

where the cardinal of M is equal to the rank of the free group :~, and A~, ~EM, are 

cyclic groups of order k. The number  k is the exponent of the variety V and is given 

by  (ef. [6]) 

v(:~) = 9 :~. (v(:~) n T ) .  

k is taken to be infinite if V(~) is contained in the commutator  subgroup ~ ' .  Our 

interest will be confined to direct products, nilpotent products, soluble products, third 

Burnside products and free products. The exponent of the corresponding verbal sub- 

groups in all these eases is infinite, except in the third Burnside subgroup where the 

exponent is three. We shall have cause to consider the third Burnside product both 

of infinite cycles and of cycles of order three. The latter is a free third Burnside 

group. I t  is easy to see that  the former is also a relatively free group, namely, tha t  

associated with the verbal subgroup (2:~)a. ~y. Thus in both cases it is possible to speak 

of free generators. 

Following G. Higman [8], we have in [18] defined the unrestricted verbal product 
oo 

1-IHVAt a s  the projective limit of the verbal products 
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m m + l  

AI~A1VA~+-... ~I-lVA~ +- l-[VA~... 
~=1 i = l  

under the natural homomorphisms as shown by the arrows. 

In the case of the unrestricted free product the situation has been fully investi- 

gated by G. Higman. In  [9], he shows that every finitely generated subgroup of 

I]H*Ai, where as before As are all infinite cycles, is a free group, while in [8] he 
~=1 

constructs a countable subgroup which is not free. Further in [8] he shows that  every 
cr 

homomorphism of r] H* A, into a free group maps she unrestricted free product of all 

but a finite number of the factors A, onto the unit element. 

The unrestricted nth nilpotent product of a countable number of infinite cycles 

will, for the moment, be denoted by G. We show that  every countable subgroup H 

of G, for which H/z(H) is finitely(l) generated, can be mapped isomorphically into a 

free nth nilpotent group. I t  is not known to the author whether this is true for every 

countable subgroup of G. However, we are able to state the following three results 

concerning such subgroups. In [19] (2) Theorems 3.4 and 3.7, we gave a partial char- 

acterization of subgroups of free nth nilpotent groups. Every countable subgroup of 

G satisfies this characterization. Associated with every torsion-free nilpotent group A, 

Mal'cev has defined a torsion-free nilpotent group M(A) of the same nilpotency class 

as A, which has the following properties: 

(a) M(A) is a divisible group, 

(b) Some positive power of every element of M(A) is contained in A. 

M(A) is called the Mal'cev completion of A. For the existence and properties of Mal'cev 

completions we refer the reader to the elegant paper of Lazard [11]. We show that  

the Mal'e~v completion of G can be mapped isomorphically into the Mal'cev comple- 

tion of a free nth nilpotent group. This is deduced from the result, which is of in- 

dependent interest, that  the unrestricted free Lie algebra over a field is a free Lie 

algebra over the same field. Thirdly we not3 that  if we proceed with a similar con- 

struction in the unrestricted second nilpotent product, as G. Higman [8] did to con- 

struct a countable subgroup which is not free, then the resulting countable subgroup 

is a free second nilpotent group. 

Every homom0rphism of an unrestricted nilpotent product of a countably infinite 

number of infinite cycles into a free nilpotent group maps the unrestricted nilpotent 

(1) z(H) denotes the centre of H. 
(~) The reader is assumed to have some acquaintance with the notation and results of this paper. 
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product of all but  a finite number of the factors onto the unit element.(1) A similar 

result holds for a homomorphism of an unrestricted soluble product into a free soluble 

group. As far as the countable subgroups of an unrestricted soluble product of infinite 

cycles are concerned, we have only been able to prove that every countable abelian 

subgroup is free abelian. 

The unrestricted third Burnside product of cycles of order three can be mapped 

isomorphieally into a free third Burnside group. This follows from a Subgroup Theorem 

for free third Burnside groups, similar to that  given for free nilpotent groups in Mo- 

ran [19]. On the other hand, in the unrestricted third Burnside product B of infinite 

cycles, every countable subgroup can be mapped isomorphically into a third Burnside 

product of infinite cycles. This is also true for every abelian subgroup of B. For every 

abelian subgroup of B is a subgroup of the direct product of an infinite cycle with 

an elementary abelian group of exponent three. An investigation into the nature of 

the homomorphisms of B onto a nonabelian subgroup of a third Burnside product of 

infinite cycles, shows that  B cannot be isomorphic to such a subgroup. 

Finally we note that  our results extend to the unrestricted products of an arbi- 

trary number of factors. The only exception to this is a curious one which occurs 

even in the case of the unrestricted direct product. In  the analogues of the Theorem 

of Specker and Los, we must take the set of infinite cycles A~,, eEM, to be such that  

the cardinal of M has measure zero. If the cardinal of M is not of measure zero, 

then, as shown by Los in [24], the Theorem of Specker and Los no longer holds for 

1-] '~x A~.  
ctEM 

w 1. Countable subgroups of unrestricted nth nilpotent product of infinite cycles 

Let G be the unrestricted nth nilpotent product of infinite cyclic groups ~l~ with 

generator a~( i= l ,2  .... ). By [18] Theorem 3.7, 

z(G) = c ( " G )  = C ( " F ) I C ( "  + I F )  , 

where F is the unrestricted free product of the infinite cycles. Hence the upper central 

series of G is given by 

zz(g) = C(n- '+ IG)  

for l= 1,2, ..., n. Now as a direct consequence of Hall's Basis Theorem (see e.g. [7]) 

for free nilpotent groups and the procedure of [18] Theorem 3.7, we have 

(*) In fact our result states a little more than this. Cf. Theorem 4.4 and the example following 
Lemma 1.4. 
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LEMMA 1.1. Let G~ denote the [tee n-th nilpote~t group ot rank k. Then  

C(ZG)/C(I ~ IG) = I L ( t G k f  * IGk ) 

o o  

c('a)/c '~,a) = KI "~ {b, (1). C('§ 

where b~(l) (i = 1, 2 . . . .  ) are the basic commutators o[ weight l on the elements al, a 2 . . . . .  

C O R O L L A R Y  1.1.1. Every element o/ G can be represented uniquely  as an ordered 

product o / t h e / o r m  

where o~ (i = 1, 2 . . . .  ; I = 1, 2 . . . . .  n) takes a n y  integer value or zero. 

Note 1.2. For  each l, h (b t (1) )  ~'ll 

is convergent.  For  from [19] Theorem 1.1 it follows tha t  this element belongs to the 

unrestricted tth nilpotent product  

I-i'~){b,(1)}, 

Let  q~(k) denote the natural  homomorphism of G onto Gk which is obtained by 

mapping 

a k + l ~  a k + 2 ,  . . .  

onto  the unit  element. We can now see, from the construction of the above infinite 

product,  t ha t  the basic products  of weight l can be so ordered tha t  if 

O<k)(b~ (l)) = bi (1) 

while (I)<k)(bj(l)) = 1 

for some positive integer k, then bi(l) appears before bj(1) in the above infinite prod- 

uct. For  convenience we often write x (k) instead of O(~){x). 

(1) I f  r is a positive integer, then [r] denotes the integral par t  of r. 

,5-622906 Acta mathematica. 108. Imprim6 le 20 dSeembre 1962. 
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The following fundamenta l  l emma was proved  for the unrestr ic ted second nil- 

po ten t  p roduc t  in [18] L e m m a  4.3. 

LEMMA 1.3. Let h l, h 2 . . . . .  h~ (p~>2) be elements o/G,  which are linearly indepen- 

dent modulo z~ i(G). Then the subgroup H generated by these elements is a /ree  n-th nil- 

potent group and these elements are/ree generators. 

Proo/. This is by  induction on n. I t  is t rue  for n =  1, by  Specker [22](1). Suppose 

t ha t  the result  holds for I~H(m)Ai with m < n. B y  the induction hypothesis ,  H.z(G)/z(G) 
i -1  

is isomorphic to 

" "{hi}) 1--[(n-"{h, �9 z(G)} = �9 (l)  

in G/z(G). Also by  Spccker [22], there exist  infinite cyclic subgroups Dt/z~_l ( i= 

1,2 . . . . .  N) of G/z~_i such tha t  

or N 
I ~ H X ( A , ' Z n  1/Zn-1) : (~t [iX(n,/z'n 1 ) ) x ( I - I H X ( A t . Z n _ l / Z n _ l ) )  
t~l ] \t>N 

(2) 

N 
and H.z= l/z=_a <. 1-IX(D,/z= 1) =D/ z , _ i .  (3) 

i -I  

Because of (1), it is sufficient to show tha t  

]IL,//~ . . . . .  ~s, 

which denote the basic commuta to r s  of weight n in the elements hx, h 2 . . . .  , h r ,  are 

l inearly independent .  Now suppose to the count rary  tha t  /~i, )~2 . . . . .  ]is are l inearly de- 

pendent ,  then there exist integers e~ (not all zero) such t ha t  

hi ~ 2 . - . ~ ' s  ~ = 1 .  ( 4 )  

Apply  (I) (N) to (4) giving t ha t  

()~(iN))~,(]7~))~,... ( )~ N))~, = 1, (5) 

where N is given by  (2), which is a relation between the basic commuta to r s  of weight  

n in the elements  h (~i , h (N)2 , ..., h(, N). Hence h(i N), h~ 'v), ..., h(p 'v) are not  linearly independent, 

modulo  z~ i (G) .  For  otherwise, by  the Theorem of Mal 'cev [14], t hey  would freely 

(1) Cf. also F u c h s  [ lJ  T h e o r e m  47.1. 
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generate a free nth nilpotent group and this contradicts (5). 

gers ~ (not all zero) such that  

(hIN)) ~' (h(2N)) ~2 ... (h(pN))%-------1 modulo Zn-l(G). (6) 

We have shown that  the element 

h" z~-i = ( h  1 " Zn-1) r162 ( h 2 "  z n_1)~r  . .  (hp. z n_l) zip 

has the following properties: 

(a) h "zn-1 is not the unit element, by assumption; 

(b) h.z= 1 belongs t o  D/zn-1, by (3); 

(c) h 'z=_l belongs to YInX(Ai'zn_i/z,~_l), by (6). 
i > N  

These facts, however, are inconsistent with the direct decomposition (2). Hence our as- 

sumption that  

hi t72 . . . . .  178 

are linearly dependent is false. Thus the required result follows from the induction 

hypothesis (1). 

Hence there exist inte- 

CO~OLLARr  1.3.1. Let hi, h 2 . . . .  be a countable sequence o /e lements  o/ G which 

is linearly independent modulo Zn 1 (G). Then the subgroup generated by these elements is a 

/tee n-th nilpotent group and the elements hi are i t s / t ee  generators. 

LwMMA 1.4. Let hi, h~ . . . .  be a countable sequence o/ elements o/ C(ZG) which is 

linearly independent modulo C(z+IG). Then the subgroup generated by these elements is a /ree  

t-th nilpotent group and the elements h~ are i t s / t ee  generators, where 

any fixed 1 = 1, 2 . . . . .  n. 

Proo]. Suppose that  in the representation of the elements of G in the form given 

by Corollary 1.1.1, the element h~ has the representation 

h~ = h~(1)" hl, 

where h~(l) and h~ belong to C(ZG) and C(z+aG) respectively, and h~ belongs to C(ZG) 

only if it is the unit element, for all i. Now using Hall's commutator collecting pro- 
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cess [5], it follows that  the required result holds for the elements ht if and only if it 

holds for the elements hl(1),h2(1 ) . . . . .  By [19] Theorem 1.1, the basic commutators  of 

weight l on the elements al, a 2 . . . . .  namely, bl(1), b2(1) . . . .  are such tha t  one can form 

the group 
r162 

c(r = 1-i'(~){b~ (l)} 
l= l  

in G. Now the subgroup generated by  the elements h 1 (1), h 2 (1) . . . .  is a subgroup of C (Gl). 

As hi(1), h2(1 ) .... are linearly independent modulo C(+IG) they are also linearly in- 

dependent modulo zt I(C(GI)). Hence the required result follows from Corollary 1.3.1. 

G' is not a closed subgroup in G, as the element 

c = [aa, a2]- [a 3, a4]... [a2m 1, a~m]... 

does not belong to G' (cf. [8]). This implies tha t  it is impossible to find elements 

xl, x~ . . . . .  xq of G, which are not contained in C(G'), such tha t  (for n > l )  

q 
{c} < 1-I (n) {x ,}  < G.  

t= l  

This is in contrast to the case of the unrestricted direct product. However, in general 

we can state the following 

THEOREM 1.5. Let H be a /initely generated subgroup o/ G. Then there exists a 

positive integer N such that the natural endomorphism ~9 (N) induces an isomorphism o / H  

onto a subgroup o / the / ree  n-th nilpotent group (I)(N)(G) o / rank  N. 

Proo/. As H is finitely generated, 

( H ;~ C(  G) ) . C(  + IG) /C(  ~ IG) 

is a finitely generated subgroup of C(G)/C(+IG). Hence, by Lemma 1.1 and Specker 

[22], there exist positive integers N(1) and elements 

d 1 (l) ,  d 2 (l) . . . . .  tiN(Z) (1) 

of C(ZG) such tha t  

N(l) 
(H N C(G)) . C(+'G)/C(+IG) <. 1-~Z {d~(l) �9 C ( l + l a ) }  

~=1 
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/ N(1) 

and C(ZG)/C(Z+IG)=(I~=/{d~(I)'C(§215247 (7) 
/ \ i  > N(1) 

for all I. Let  N be the minimum positive integer such tha t  

(P(m(b~ (1)) = b~ (1) 

for all i ~ N(1) and all l = 1, 2 . . . . .  n. This exists by  the ordering given in Note  1.2. 

We now show tha t  N will serve as the number  given in the s ta tement  of our  

theorem. Apply  the natural  endomorphism (I) (N) to G. This induces an isomorphism of 

N(l) 

]-~X {d,(1) .C(+lO)} into ZGNf+IGN (8) 

for all l, where GN= (I)(N)(G). For  if 

dx (1) ~N~, d2 (1) (m, ..., tiN(Z) (1) (m 

are linearly dependent  modulo z+IGN, then 

~o1 w 2 ~v j  . . .  UaN(1) 

belongs to ~HX{b~(1). C(Z+IG)} 
i > N  

which contradicts the decomposition (7), where gl, ~2 . . . . .  O~N(1) are integers (not all 

zero). Now let 
n N(l) 

d=l-II-I d~(1)~ ~ 
l=1 t=1  

be an element of H which is mapped  by  (I% N) onto the unit  element. I t  follows f rom 

repeated application of (8) for l =  1, 2 . . . . .  n, tha t  d= 1. Hence (I) (N) induces a one-to- 

one mapping of H onto a subgroup of ~P(N)(G) and hence is an isomorphism on H. 

Thus dp(m is the required endomorphism. 

T H E O R E M  1.6. Let H be a countable subgroup o/ G such that H/z(H) is /initely 

generated. Then H is isomorphic to a subgroup o /a / tee  n-th nilpotent group. 

Proo/. Let  hi, h 2 . . . .  , hp be a finite set of elements of H whose images form a set 

of generators of H/z (H). Fur ther  let H (1) be the subgroup of H generated by  h 1, h 2 . . . . .  hp 

and H(1, n) be the subgroup of H generated by  H(1) and the isolator(1) of H(1) N z(H) 

(1) Also known as servicing subgroup (cf. Kuro~ [10] w 30). 
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in z(H). Now H(1, n) is a finitely generated subgroup of G and 

H = H ( 1 , n ) x A ,  

where A is a countable subgroup of z(H). The required result will now follow from 

the previous theorem if we can show that  A is free abelian. In  fact, we state 

L]~M~tA 1.7. Every countable abelian subgroup o / G  is a free abelian group. 

Proof. This by  induction on the class n. For n =  1, this is the content of Speeker 

[22] Theorem 1. Suppose that  the result holds for all unrestricted kth nilpotent prod- 

ucts of infinite cycles, where k < n. Let  A be a countable subgroup of G. Now by 

[18] Theorem 3.7, 
c o  

a/Z( ~) = H H(n-1) (A i .z/z) 

and A .  z/z is a countable subgroup of G/z. Hence, by the induction hypothesis, 

A .z/z~=A/(A N z) 

is a free abelian group. Further,  by  [18] Theorem 3.7, A (l z is a countable subgroup 

of the unrestricted direct product of infinite cycles and hence, by Specker, is free 

abe]Jan. Finally we have tha t  the abelian group A is the extension of a free abelian 

group by  a free abelian group and hence must  itself be free abelian. 

In  general, we have the following information concerning the countable subgroups 

of G. 

THWOR]:~ 1.8. Let H be a countable subgroup of the unrestricted n-th nilpotent prod- 

uct G o/ a countable number o/ infinite cycles. Then H has a set of subgroups H1, H~, 

... .  H~ which generate H, where 

{i) H~ is a f reen i lpo ten t  group o/ class [ / ]  (l = l,  2 . . . . .  n);  

(ii) [H~, Hi] <~ {H,+j . . . . .  H~} if  i + i <<- n, and 

[ H , , H j ] = I  i/ i + ? ' > n ;  

(iii) Hz" {Hm+l . . . .  , Hn} /{ g, ,+ l . . . . .  H,,} 

rm] 
is a / ree  nilpotent group o/class  l l ~ ,  /reely generated by the images of the /ree gen- 

erators of Hz, /or m = l, l + 1 . . . . .  n - 1 and l = 1, 2 . . . .  , n - 1 ; 
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(iv) There exists a set o//ree generators o] Hi (i = 1, 2 . . . . .  n - l) that has the/ollowing prop- 

erties. A subset o/ these /tee generators can be taken to be the maximal set o/original 

commutators o/ weight i in H and. the images o/ the non-original commutators o/ 

weight 1/orm a basis o/ the vector space 

{[M(Hi), M(Hj)]; i + ] = 1}" (M(H~+~) . . . . .  M(Hn)}/{M(Hz+~) . . . . .  M(H~)} 

]or l = 2 ,  . . . ,n .  

Remarks. By [19] Theorem 3.4, every subgroup of a free nth nilpotent group has 

the above properties. On the other hand, if a group H satisfies the above properties 

and the torsion subgroup of 

Bl {Bl+l . . . . .  Bn}/({[B, B~]; i + i = 1}. {Bi+a . . . . .  B,}) 

has finite exponent for l = 2, 3 . . . . .  n, then, by [19] Theorem 3.7, H is isomorphic to a sub- 

group of a free nth  nilpotent group. Our use of the phrase "the torsion subgroup has finite 

exponent"  does not conform to the standard usage. Note tha t  this is to mean tha t  the 

abelian group is the extension of an abelian group of bounded order by  a free abelian 

group (either or both of which may be trivial). M(HI) denotes the Mal'cev completion 

of Hi. For the concepts of orginal and nonoriginal commutators see [19] Definition 

3.2. However, we shall not explicity use these concepts here except the fact tha t  they 

give a basis for the above vector space. 

Proo/. (H (I C(IG)) .C(I+IG)/C(t+IG) is a countable subgroup of C(iG)/C(I+IG) and 

hence, by Lemma 1.1 and the Theorem of Specker, is free abelian. Let  h~(1) be a typi- 

cal element of a set of elements of H (1 C(ZG) whose images form a basis for the free 

abelian group 

(H a c(*G)) �9 C(t+IG)/C(I+IG). 

Let  Hz be the subgroup of H generated by the elements h~(z)(/= 1, 2 . . . . .  n), then, by 

Lemma 1.4, Hz satisfies condition (i). Obviously, 

H n C(ZO) = H z .  (H n C(Z+IG)) 

for l = 1, 2 . . . .  , n. In  particular, H is generated by  the subgroups H1, H 2 . . . . .  H~. 

(ii) [Hi, Hi] ~< [C(~G), G(JG)] N H <  C(t+JG) N U 

which gives the required result. 
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(iii) H~. {Hm+l . . . . .  H~}/{Hm+I . . . . .  H~} = Hz" (H ~ c(m+IG))/(H • C(m+aa)) 

~ H~/(Hz N c(m+IG)) ~ Hz" C(m+*G)/C (m+lG), 

by repeated use of the Isomorphism theorem. Hence the latter subgroup is the image 

of Hz under the natural homomorphism which maps 

ov 

I~H(~)A~ onto ]-]H(m)A~. 
i = 1  ~=1 

For, by [18], the kernel of this homomorphism is 

c(m+ I F) /C(n + I F) = C(m+!G), 

where F is the unrestricted free product of the infinite cycles A~. Thus the required 

result follows on using Lemma 1.4. 

(iv) From the above constructed subgroup H~, we take a finite set of generators 

which generate a subgroup H~ of finite rank for each i and satisfy the above condi- 

tions (i), (ii) and (iii). By Theorem 1.5 and [19] Theorem 3.4, there exists a set of free 

generators of H*( i=  1, 2 . . . . .  n - 1 )  and a subset of the free generators of Hz which 

can be taken to be the original commutators of weight l, such that  the non-original 

commutators of weight 1 from a basis for the vector space 

{[M(H~), /(H~')] ;  i § i = l} modulo {M(H~+I) . . . . .  M(H*)}. 

However, by [19] Lemma 3.6, 

{M(H*+I) . . . . .  M(H*)} = M({H~, H~, . . . ,  H*}) N {M(Hz+I) . . . . .  M(H~)}. 

Hence it follows from the Isomorphism theorem tha t  we can consider the above vector 

space modulo {M(HI+I) . . . . .  M(Hn)}. 

We now consider our given system as the union of an ascending sequence of 

systems whose generating free nilpotent subgroups all have finite ranks. B~ is the 

union of the corresponding B*, for all i. This is, in fact, how our ascending sequence 

is constructed, namely, by  considering successively the cases i = 1 , 2 ,  . . . ,n .  Thus, by 

the above procedure, we have a subset of a set of free generators of H~ (i = 1, 2 . . . . .  n - 1) 

which can be taken to be the original commutators of weight less than n, such tha t  

every finite subset of the set of non-original commutators  of weight 1 are linearly 

independent modulo {M(Hz+I) . . . . .  M(Hn)} over the rationals. Hence we have estab- 

lished property (iv). 

w 2. Unrestricted free Lie algebra over a field 

Let L~ denote the free Lie algebra having the elements xl, x2, ..., xz as its set 

of free generators over the field g2 (k=  1, 2, ...). If  re>k,  then there exists a natural 
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homomorph i sm of Lm onto Lk. We now form the  pro jec t ive  l imi t  L of these free Lie 

a lgebras  under  the  above  homomorphisms ,  and  call L the  unrestricted free Lie al- 

gebra over f2. 

We proceed as in the  case of the  unres t r ic ted  n i lpo ten t  p roduc t  and  give a con- 

venient  unique represen ta t ion  for the  e lements  of L. This is a d i rec t  consequence 

of Hal l ' s  Basis  Theorem (see [4]) for a free Lie algebra.  We first  in t roduce  the  following 

Notation. ~ and  ~* will denote  res t r i c ted  and  unres t r i c ted  sums of e lements  re- 

spect ively,  dP (~) denotes  the  na tu r a l  homomorph i sm of L onto  L~ which is ob ta ined  b y  

mapp ing  X~+l, x~+2, ... onto  the  zero e lement  of Lk. The image of an e lement  x of L 

under  O (k) is deno ted  by  x (~). 

L E ~ M A  2.1. Every element o / L  can be represented uniquely in the form 

where :r for all values o / i  and 1. b~(1) runs through all the basic monomials of weight 1 

on the free generators xl, x 2 . . . .  (for fixed 1). I n  the unrestricted infinite sum the basic mono- 

mials o/weight l are so ordered that if 

r while O(~)(bj(1))=O, 

for some positive integer Ic, then b~(l) appears before bj (1) in the unrestricted sum ~ *  

Notation. All the  e lements  of L which involve only basic monomials  of weight  no t  

less t h a n  1 in the  above  represen ta t ion  form an  ideal  of L which we will denote  b y  zL. 

We come now to the  ma in  resul t  of th is  sect ion which will show t h a t  L is a 

free Lie  algebra.  We commence wi th  

CO~STnUCTION 2.2. F i r s t l y  we notice t h a t  ~L/~+IL is a vec tor  space over  ~ ,  for all  i, 

and  hence i t  is possible to  const ruct  the  following sets As. Le t  A 1 = C 1 be a set of e lements  

of L t h a t  is l inear ly  independen t  modulo  ~L. Suppose  t h a t  the  sets A~ and  C~ have  

a l r eady  been def ined for all  u < n  (where n > l )  and  the  e lements  of the  sets  A~(~= 

1,2, . . . , n - l )  have been ordered  so t h a t  an  e lement  of A~ is g rea te r  t h a n  an  ele- 

m e n t  of A~, if ~ > v ' .  W e  define C~ to be the  set of all  basic monomia ls  on the  ele- 

men t s  of the  sets A~,A~ . . . . .  A~_~ which belong t o  ~L bu t  do no t  belong to  ~+IL. 

F ina l ly  An is a set(1) of e lements  of nL which is l inear ly  independen t  modulo  the  

subalgebra(2) genera ted  b y  ~+IL and  the  set  C~. 

(1) In the language of our paper [19], An is a set of original monomials of weight n while Cn is 
a set of non-original monomials of weight n. 

(3) This subalgebra is easily seen to bo an ideal. 
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The following lemma is fundamental for our purposes: 

LEMMX 2.3. I /  A1, A 2 . . . .  ,A~  1 are [inite sets, then C~ is a set o] linearly indepen- 

dent elements o / ~ L  modulo ~+IL/or n = 1, 2, . . . .  

Proo[. We proceed by induction on n. The result is true, by construction, when 

n =  1. Suppose that the result is true for C~, C 2, ..., Cn-1. Now as these sets are finite, 

for every m, where l < m ~ n - 1 ,  there exist elements d,(m) of mL and positive inte- 

gers N(m) and q(m) such that  

mLIm+,L = (i~_~l){d~ (m) + m+l~li}) -}- (t>~:m ! b, {m)-t- m+l L}) 

q(m) 

and (Cm U Am) + m+lL ~< ~ ({d~(m) + m+lL}). (9) 
~=1 

In the above, ~ and ~* denote restricted and unrestricted direct sums respectively, 

while ~* is to mean that those and only those basic monomials of weight m on 
t> N(m) 

xl, x~ . . . .  occur in the unrestricted direct sum which satisfy the condition 

r  = 0 .  

Suppose that contrary to our lemma, the elements of C~ are linearly dependent mo- 

dulo n+lL, then there exist scalars 7n~ (not all zero) such that 

c=Tnlc~, + ... +7~cn~ belongs to n+lL. 

Let N denote the maximum of N(1), N(2) . . . . .  N ( n -  l). Apply the homomorphism 

r to c. Hence 

c (N)=- c (N) - c (N) belongs to n+lL N yn~ ~, + - - -  + u nk 

This implies that  for some l (~<n-1) ,  

Ci ~) U Ai ~), 

where the superscripts have their obvious meaning, must be a set of linearly depen- 

dent elements of zL modulo z+lL. For, otherwise, by the Theorem of ~ir~ov [21] (cf. 

[19] Theorem 2.3), the elements of the set 

A(~ "~ u A~ "~ U ... u A ( ~  
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freely generate a free Lie subalgebra of LN and this contradicts the fact that  C (N) be- 

longs to "+IZN. Hence there exist scalars sz~, e~ (not all zero) such tha t  

a ( N )  j _  , a ( N )  • " , ( N )  - -  ' c ( N )  
l l  l l  . . .  - ~  ~ l k  l k  T ~ l l  t ' l l  T . . .  ~ -  ~,lk" l k '  

belongs to l+lL, where az~EAl and cl{EC1. Thus the element 

5z : ezlaa + ... + elkazk + e[lczl + ... + e;k, Clk, 

has the following properties: 

(a) 5z does not belong to z+lL, by the induction hypothesis and Construction 2.2; 

(b) 5z belongs to ~*({b,(/) +z+lL}) modulo l+lL; 
i>N 
q(l) 

(c) 5l belongs to ~z({d,(l )+Z+lL}) modulo z+lL. 

The above three properties of the element 5z+z+lL contradict the direct decomposi- 

tion (9) for iL/z+lL. 

THEOREM 2.4. L is a /ree Lie algebra over ~ .  

Proo/. Let A1, A 2 . . . . .  A . . . . .  be maximal sets satisfying the conditions of Con- 

struction 2.2. The elements of Cn are linearly independent modulo n+lL. For, by  

Lemma 2.3, every finite subset of C~ is linearly independent modulo n+lL. Hence the 

elements of the set 

are a set of free generators for L. 

Notice that  the above set of free generators for L does not coincide with the 

set A z. For the element 

(x 1, x2) + (x~, x4) + ... + ( x ~ - l ,  x2~) + ... 

is an element of ~L which is not contained in (L, L). 

We can now see tha t  the same situation holds for the unrestricted /ree n-th nil- 

potent Lie algebra s over a field ~.  The latter is defined as the projective limit of 

the free n-th nilpotent Lie algebras s on the free generators xz, x~ . . . . .  x k (k = 1, 2, ...) 

under the natural homorphisms defined as above. Reducing L modulo n+lL, we obtain 

the following consequence of Theorem 2.4. 

THEOREM 2.5. The unrestricted /ree n-th nilpotent Lie algebra over a /ield ~ is 

isomorphic to a subalgebra o] a /ree n-th nilpotent Lie algebra over ~ .  
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w 3. The Mal'cev completion of the unrestricted nth nilpotent product of a countable 
number of infinite cycles 

LEMMA 3.1. Let G (~), ~EM, be an inverse system o/ torsion-/ree nilpotent groups 

under some set o/ homorphisms, such that their projective limit is a nilpotent group. Then 

M(IL(G(~))) <~ IL(M(G(~))). 

Proo]. First ly we need to show tha t  the groups M(G (~) form an inverse system 

of groups under the appropriate  homorphisms. Suppose z:Z:G(~)-~ G (~) is the given 

homomorphism of G (~) into G (~), where ~ >  ft. By  Lazard  [11] Theorem 4.10, there exists 

a unique homomorphism ~*~:M(G (~)) -*M(G(~)), which extends the homomorphism z~z. 

If  ~ > f l > y ,  then z ~  ~$, is a homomorphism of M(G (~)) into M(G(')), which extends 

7~,. As such a homomorphism is unique, it follows tha t  

Let  g = (g(~)} be an element of IL(G (~)) and n be any  positive integer. Then 

* from ~ .  Hence ((g(~))li~} is an element of IL(M(G(~))), by  the construction(1) of ~Z 

x n : g 

has a solution x-((g(~))lJn} belonging to IL(M(G(~))), 

which is unique as IL(M(G(~))) is torsion-free. This shows tha t  the Mal 'cev comple- 

t ion of IL(G (~)) is contained in the inverse limit of the groups M(G(~)). 

I t  is easy to see that ,  in general, it is not  possible to tu rn  the above inequal i ty  

into an  equali ty even in the case when all the groups are abelian. 

THEOI~EM 3.2. The Mal'cev completion o/ "the unrestricted n-th nilpotent product 

G o/ a countable number o] in/inite cycles" is isomorphic to the Mal'cev completion of 

"a subgroup o/ a /ree n-th nilpotent group". 

Proo/. Let  Gk denote the free n th  nilpotent group of rank /c and 

~k+l : Gk+l ---> Gk (k = 1, 2 . . . .  ) 

denote the natural  homomorphism of Gk+l onto Gk. B y  Lazard  [11] Theorem 4.10, 

there exists a unique homomorphism ~*+1 of M(Gk+I) onto M(Gk), which extends 

~k+l. By  a similar a rgument  as tha t  given in the previous lemma, we have tha t  

(1) Cf. construction of ~* from ~ in Lazard [11]. 
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~k+l : M(Gk+I) --> M(Gk) (k = 1, 2 . . . .  ) 

is an inverse system of groups and homomorphisms. By Lazard [11] w 4 especially 

Theorem 4.15 and the remark afterwards, ~*~§ is the natural homomorphism of the 

free nth nilpotent Lie algebra M(G~+I) of rank k +  1 over the rationals onto the free 

nth nilpotcnt free Lie algebra M(Gk) of rank k over the rationals. Now 

M(IL~(Gk) ) <~ ILz,(M (G~)). 

by Lemma 3.1, and IL,.(M(Gk)) is the unrestricted free nth nilpotent Lie algebra i: 

over the rationals. By Theorem 2.5, ~ is isomomorphic to a subalgebra K of a flee 

nth  nilpotent Lie algebra H over the rationals. By Lazard [11] w 4, H can also be 

considered as the Mal'cev completion of a free nth nilpotent group. Further,  by  

Lazard [11] w 4, K is a divisible subgroup of the Mal'cev completion of a free nth 

nilpotent group P.  
K = M(P  N K) 

and P fi K is a subgroup of P. For 

K>~M(PNK)  as K > ~ P ~ K ,  

by Lazard [11] Theorem 4.10. 

On the other hand, if k is an arbi trary element of K, then there exists a posi- 

tive integer n such tha t  k ~ belongs to P.  Hence, by  Lazard [11] Theorem 4.9, 

K <~ M(P ~ K). 

Thus we have that  IL~,(M(G~)) is isomorphic to M(P N K). Similarly we obtain the 

required result for the subalgebra M(IL~(Gk)). 

Because of the results of w 1, the following corollary to the above theorem is of 

interest. 

COROLLARY 3.2.1. The Mal'cev completion o/ "a countable subgroup o/ G" is 

isomorphic to the Mal'cev completion o/ "a countable subgroup o/ a /tee n-th nilpotent 

group". 

w 4. Homomorpldsms of unrestricted nth nilpotent product of infinite cycles into a free 
nilpotent group 

We show that,  as in the case of the unrestricted direct product, the only way 

of obtaining a subgroup of a free nilpotent group from the unrestricted nilpotent 

product of infinite cycles, by  means of a homomorphism, is to map the unrestricted 



78 s. MORAI~ 

nilpotent product of most of the cycles onto the unit element. 

tion A ~ ( i - 1 , 2 ,  ...) denote infinite cycles. 

then 

Throughout this sec- 

c o  

L~MMA 4.1. 1/ ~0 is a homomorphism o/I~H(n)At into a/ree nilpotent group such that 
~ - 1  

~o (~)A, = 1, 

co 

~ t - - 1  ! 

Proo/. We proceed by induction on n. By the Theorem of Specker and Los 

(cf. [1], Theorems 47.247.4), the result is true for n =  1. Actually we also need to 

use [19] Theorem 1.5, which states that  every abelian subgroup of a free nilpotent 

group is free abelian. Suppose that the result is true for all unrestricted mth nil- 

potent products, where m < n .  From 

c o  

\ t - - 1  

(,0, ) follows that (i) ~o (o {b,(l)} = 1 

for / = 1 , 2  . . . . .  n, where b~(1) ( i = I , 2  . . . .  ) are the basic commutators of weight l on 

the elements al, a 2 . . . . .  by [19] Theorem 3.1. By Corollary 1.1.1 and [19] Theorem 3.1, 

t - - I  

} _ _  H ( t )  and C([G,G]) -  {b,(/)}; / = 2 , 3  . . . . .  n .  

Hence, by the induction hypothesis, w(C([G, G] ) ) -1 .  Thus W defines a homomorphism 

of G/C(G') into A, where A is an abelian subgroup of a free nilpotent group. How- 

ever, by [19] Theorem 1.5, A is free abelian. By [18] Corollary 1.6.1, 

G/C(G') ~ 1-I UXA,. 

Hence y~ maps G onto the unit element, by the Thcorcln of Specker and Los. 

,1, 
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or 

LEMMA 4.2. Let yJ be a homomorphism o/ G=HH(n)A~ into a free abelian group. 

Then there exists some positive integer m such that 

g(m)= 1 implies that yJ(g) = 1 

/or all elements g o/ G. 

Proof. We proceed by induction on n. The result is true for n = l ,  by the 

Theorem of Specker and Los. Suppose that  the result is true for all unrestricted mth 

nilpotent products, where m < n .  yJ defines a homomorphism of G/C(G')  into a free 

abelian group A. :For G' belongs t o  the kernel of y~ and this, by  the argument given 

in the previous proof, shows tha t  C(G') also belongs to the kernel of yJ. Now, by 

the Theorem of Specker and Los, there exists a positive integer m such that  

g<m) belongs to C(G') implies that  yj(g)= 1, 

which gives the required result. One has to use the fact that  

oo 

U/ C( G') ~- y I 'X  A, . 
5 - 1  

Before proving the main theorem of this section, we state the following simple conse- 

quence of [19] Theorem 1.6. 

LEM~A 4.3. I f  B is a nonabelian subgroup o/ a free n-th nilpotent group A ,  then 

z(B) = zs (A) n B,  

where s is some positive integer less than, (~n + 1). 

oo 

THEORE~ 4.4. Let ~f be a homomorphism of G=I~H(~)A~ into a free nilpotent 
t - 1  

group. Then there exists a positive integer m such that 

for all elements g o/ C. 

g(m)= 1 implies that yJ(g) = 1 

Proof. We proceed by induction on n. Let  B denote the image of G under the 

homomorphism ~. If  B is abelian, then the required result follows from [19] Theorem 

1.5 and Lemma 4.2. Hence we may  assume tha t  B is nonabelian. Then, by  Lemma 

4.3, there exists a positive integer s such that  

z(B) = zs(A) n B, 
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where A is the free nilpotent group of which B is a subgroup. Thus 

z(G)~<.z(GyJ) = z ( B ) =  z~(A) N B 

and ~f induces a homomorphism of G/z(G) onto 

B//z(B) = B/(zo(A) ~ B)~=B. z~(A)/zs(A). 

By [18] Theorems 2.2 and 3.7, 

oo  

G/z (g) ~= 1-[ "(~ - 1)A t. 
i - 1  

By a result of Wit t  [23], B'zs(A)/z~(A) is isomorphic to a subgroup of the free 

nilpotent group A/z~(A). Hence, by the induction hypothesis, there exists a positive 

integer p such that  

g(P)= 1 implies tha t  F(g) belongs to z~(A). 

In  particular, y~(~=~(n)A~) <~z~(A), 

where zs(A) is free abelian. By Lemma 4.2, there exists a positive integer m ( > ~ p + l )  

which has the following property: 

g(m)= 1 implies that  y~(g) = 1 

for all elements g of G. 

w 5. Unrestricted soluble products of infinite cycles 

Let G denote a free soluble group of derived length n, namely, ~ / 9  :In], where :~ 

is a free group. Then the last memher G C~-1] of the derived series of G has been 

characterized, by Mal'cev [15] Theorem 1, as the maximal  normal abe]ian subgroup 

of G. I t  can also be considered to be the set of all left Engel elements or alterna- 

t ively as the maximal normal locally nilpotent subgroup (1) of G. For our purposes, 

it is convenient to consider the set R(X) of all left Engel elements of the group X. 

g is said to be a left Engel element of the group X if for each x of X there exists 

a positive integer h such tha t  

[x, ~ . . . . .  g] = 1. 

h 

(1) These two subgroups, in fact, coincide in a soluble group. Cf. for instance Gruenberg [3]. 



UNRESTRICTED NILPOTENT PRODUCTS 81  

Note that  R(X) is a normal subgroup of the soluble group X and 

R(X)O <<. R(X  O) 

for all homomorphisms (I) of the soluble group X. 

As in free nilpotent groups we have the following result. 

LEM~A 5.1. Every abelian subgroup o/ a free soluble group is free abelian. 

Proof. This proceeds by induction on the derived length n of the free soluble 

group G. The result is true for n = 1. Suppose that  the result is true for all free soluble 

groups of derived length less than n. If  A is an abelian subgroup of G, then 

A . G[n-1]/G [n-1] ~=A/(A N G E~-I]) 

is an abelian subgroup of GIG E~-I] and hence, by the induction hypothesis, is free 

abelian. Thus A as an abelian group that  is an extension of a free abelian group 

by a free abelian group is itself free abelian. 

THEOREM 5.2. The radical of the unrestricted n-th soluble product of a countable 

number of infinite cycles is 
C(F[n- I ] ) / /C(F[n] ) ,  

which is the unrestricted direct product of a countable number o/ infinite cycles(I). 

Proof. According to the above mentioned result of Mal'cev, 

R( Fk/  F~ "1) = FE~- ~J / FE.~ k / k , 

which is a free abelian group of countably infiniterank, for/c = 2, 3 . . . . .  As previously 

2'~ denotes the free group of rank k. The above system is an inverse system of 

groups and homomorphisms (induced by the natural homomorphisms of the groups 

Fk/F~) .  I t  is easy to see from the definition of left Engel elements, that  

R(IL(F~/F~]) ) = IL(R(Fk/F~]) ) = IL(F~ ~-I]/F~]) = C(F[n-1])/C(F [n]) 

by a similar argument to that given in [18] Theorem 3.7. The inverse limit is, in 

fact, the unrestricted direct product of the infinite cycles. 

Now using the fundamental Lemma 1 of A. W. Mostowski [20] one can establish 

the following result by means of an induction argument on the derived length of a 

free soluble group. 

(1) F deno tes  t he  unres t r i c t ed  free p roduc t  of t h e  cycles. 

6 - 622906 A c t a  m a t h e m a t i c a .  108. Imprim6 le 6 novembre 1962. 
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LEMMA 5.3. Let G be a /tee n-th soluble group. A set o/ elements o/ G tin1 which 

is linearly independent modulo G Em+ll /reely generates a /ree suluble group o/ derived 

length (n - m). 

The following subgroup theorem for free soluble groups is sufficient for our 

purposes (1). 

THEOREM 5.4. Every subgroup H o/ a /ree n-th soluble group is generated by a 

set o/ subgroups 
Ho, H1, H 2 . . . . .  H . . . . . .  Hn-1 

which are /ree soluble groups o/ derived length 

n , n -  1 , n - 2 ,  . . . , n - m ~  ...,  1 

respectively. Moreover 
[Hi, Hi] <~ {Hk+l . . . .  , H~-I} ,  

where Ic is the m i n i m u m  o/ i and ], i/ lc § 1 <~ n - 1 .  While [Hi, Hs] = 1 i/ i and ] both 

exceed n -  1. Further 

H~. {Hm, Hm+I . . . . .  g ~ - l } / { H m ,  Hm+l . . . . .  H~-I} 

is a /tee ( m -  i)-th soluble group with the images o/ the /ree generators o/ Hi as a set 

o/ /ree generators, /or i=O,  1, .. . ,  m - 1  and m =  l ,  2, .. . ,  n - 1 .  

Proo/. I t  is sufficient to make the following observation.  If  we take a set of 

elements of H N G C~ whose images form a basis for the free abel ian group 

(H N GE~) " GEm+I]/G [m+11, 

then,  by  Lemma 5.3, they  freely generate a free ( n -  m)th  soluble group H~ in  G. 

I t  is easy to see tha t  the subgroups Ho, H1, H s . . . . .  Hn-1 satisfy the above conditions. 

Of course, i t  is possible tha t  some of these subgroups m a y  have rank  zero, t ha t  is, 

are t r ivial  subgroups. 

I t  is no t  difficult to verify t ha t  there exists a un ique  representat ion for every 

element  of a free soluble group with free generators a~ in  terms of the obvious com- 

plex commuta tors  of the form (~) 

a~ ~ a~ ... [a~ ~, a~J]rfJ ... [[a~ t, a~] ~j, [a~ k, a~i]'kz]~is k~ . . . .  

(1) I t  is not difficult to verify that every countable subgroup of the unrestricted nth soluble 
product of infinite cycles is a group of this type. This follows from a result corresponding to Lemma 1.4. 

(~) Tho powers occurring in the form are integers and only a finite number of them are nonzero. 
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Using this representation instead of representation by basic commutators and the 

radical instead of the centre ,  we can establish as above the following results for 

unrestricted soluble products. 

oo 

THEOREM 5.5. Every countable abelian subgroup o / I ~  ~E"l A s is a / ree  abelian group. 
S = I  

oo 

THEOREM 5.6. I /  ~ is a homomorphism o/1-I H~1 As into a / ree  soluble group so that 
S = I  

(fI'C~aAs) ~ 1 .  then Y~ ,s ~ 1 , 

oo 

THEOREM 5.7. Let ~p be a homomorphism o/ G=I-IH[~1As into a /ree soluble group. 
Sffi l  

Then there exists a positive integer m such that 

g(m) = 1 implies that y~(g) = 1 
/or all elements g o/ G. 

In  order to prove the above theorem we need the following simple result cor- 

responding to Lemma 4.3. 

LEMMA 5.8. I /  B is a nonabdian subgroup el a /ree n-th soluble group A ,  then 

R(B)  = R(A)  N B.  

w 6. Unrestricted third Burnside product 

The results in this section will only be briefly outlined as their proof proceeds 

in a similar way to that  previously given for unrestricted nilpotent products. We will 

consider side by  side the cases of the unrestricted third Burnside product of (a) in- 

finite cycles (b) cycles of order three. 

Every  element of 1-IH3As can be represented uniquely as an ordered product of 
i= l  

the form 

where bs(1) ( i = 1 , 2  . . . .  ) are the basic commutators of weight 1 on the elements 

al, a S . . . . .  If  the factors A~ are infinite cycles, then ~sl takes any  integer value or 

zero. I f  the factors As are cycles of order three, then ~ 1  takes values 0, 1, 2. For 

l = 2 ,  3, the values of ~sz range over 0, 1, 2. 
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See Levi [12] for the unique representation of elements of a free third Burnside 

group and [17] Theorem 6.6 gives the corresponding representation for the third 

Burnside product of infinite cycles. 

The upper central series of yIHaA~ is given by  

oo  

z = [I HX {b, (3)} 

and z a = ~[HaA~. 

z and z 2 are elementary abelian groups of exponent 3. 

group of I-IH3AI is isomorphic to a subgroup of I-[SA~. 
~=1 5=1 

Every  finitely generated sub- 

oo 

Every  abelian subgroup of ~[H3A~ is a subgroup of the direct product of an 
i - I  

elementary abelian group of exponent 3 and an infinite cyclic group. 

In  order to distinguish more precisely between the cases when A~ are cycles of 

order three and when A~ are infinite cycles, we must  now consider a subgroup theorem 

for the third Burnside product in these two cases. I t  is obviously sufficient to con- 

sider nonabelian subgroups. 

However, we first prove the following 

L~MMA 6.1. Let A be a free third Burnside group. Then any set o/ elements of 

A, which is linearly independent modulo A',  freely generates a free third Burnside 

subgroup o/ A. 

Proof. As A / A '  is elementary abelian of exponent 3, the given set of linearly 

independent elements can be expanded to a set S of elements of A whose images 

form a basis for A / A ' .  By Mal'eev [13] Theorem 5 a, S is a set of free generators 

for A, which gives the required result. 

We also have the corresponding result for the third Burnside product of infinite 

cycles 

LEMMA 6.2. Let  A be the third Burnside product o/ infinite cycles. Then any set 

of elements of A, which is linearly independent modulo A', freely generates a third 

Burnside product of infinite cycles. (1) 

(1) Cf. I n t r o d u c t i o n  for  t he  fact  t h a t  t h i s  is a re la t ive ly  free g ro u p .  
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Pro@ Let A~, aEM,  be infinite cyclic groups and A= I]S A~ .  
~GM 

Then A 

where ~ is the free group on the generators of the cyclic groups A~. Now the re- 

quired result follows from the corresponding theorem of Mal'cev [14] for free nilpotent 

groups. 

THEOREM 6.3. The /ollowing conditions are necessary and su//icient /or a non- 

abelian group B to be isomorphic to a subgroup o/ a /ree third Burnside group. 

B is generated by subgroups BI, B~, and B a where 

(i) B 1 is a [ree third Burnside group, while B 2 and B a are elementary abelian 

groups o/ exponent 3; 

(ii) I /  i §  then [B~, Bj]<~{B~+s, B3}, while IBm, B j ] = I  i~ i §  

(iii) B 2 N B  a = l ;  

(iv) Let d# be a typical element o/ a set o/ elements o/ B~, whose images /orm a 

basis /or 
B 2 �9 B3/(B 3 �9 [ B  1 , B1]). 

Then [B1, B2] is /reely generated by the basic commutators o/ weight three on the /tee 

generators o/ B 1 and all commutators o/ the /orm [bl, d~], where b 1 and d~ traverse all 

the [ree generators o/ B 1 and all the above constructed elements o/ B 2 respectively. 

Pro@ First a few remarks about the necessity of the above conditions. Let B 

be a subgroup of a free third Burnside group G. Then, as in the Subgroup Theorem 

for free nilpotent groups, the subgroups B1, B 2 and B 3 are constructed from sets of 

elements of B whose images form a basis for 

B.G ' /G ' ,  (BNG') 'aG/aG and B N a G  

respectively. Conditions (i) to (iii) follow from the construction of the subgroups and 

Lemma 6.1. Condition (iv) is a consequence of the fact tha t  

B~ = (1-i x {b2} ) • (l~I z {dz}), 

where b~ runs over the basic commutators of weight two on the free generators of B 1. 

Now in order to prove the sufficiency of our conditions, we proceed as in the Sub- 

group Theorem for free nilpotent groups and consider the group 

B / B  a = (B 1 �9 BJBa)  x (1-JX({d~}. B3/Ba) ). 
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:From (ii) it follows that  B 1 �9 B3/B 3 is the second nilpotent product of the subgroups 

generated b y  the images of the free generators of B I. Take a free third Burnside 

group G with a sufficient number of free generators. B I B  3 can obviously be mapped 

isomorphieally into G/z(G). I t  remains to show that,  as in the case of free nilpotent 

groups, this isomorphism can be extended to give an isomorphism of B into G. This 

causes no difficulties. 

We state, without any further comment, the corresponding result for the third 

Burnside produc~ of infinite cycles. 

T H E O ~ E ~  6.4. The [ollowing conditions are necessary and su//icient /or a non- 

abelian group B to be isomorphic to a subgroup o/ the third Burnside product o/in/inite 

cycles. 

B is generated by subgroups B1, B 2 and B a where 

(i) B I is the third Burnside product o/ infinite cycles, while B 2 and B 3 are ele- 

mentary abelian groups o/ exponent 3; 

(ii) I /  i + i < 3 ,  then [B~,Bj]<(B~+j, B3}, while IBm, B j ] = I  i/ i + ] > 3 ;  

(iii) B 2(1B 3 = 1 ;  

(iv) Same as (iv) o/ Theorem 6.3 with the above given di//erent interpretation o / B  1. 

As in the case of the unrestricted nilpotent product we are able to prove the 

following result for the unrestricted Burnside product. 

o o  

LEMMA 6.5. Every /inite set o/ elements o/ G=~IH3A~ (both when all the groups 

At are in/inite cycles and when they are all cycles o/ order 3) which is linearly inde- 

pendent modulo C(G') /reely generates a third Burnside product o/ cycles. 

This enables us, with the help of the above Subgroup Theorems: r deduce the 

following main results. 

THEOREM 6.6. The unrestricted third Burnside product o/ a countable number o/ 

cycles o/ order three is isomorphic to a subgroup o/ a /tee third Burnside group. 

THEOREM 6.7. Every countable subgroup o/ the unrestricted third Burnside product 

o/ in/inite cycles is isomorphic to a subgroup o / a  third Burnside product o/infinite cycles. 

The other main problem is solved by  

THEOREM 6.8. Let ~o be a homomorphism o/the unrestricted third Burnside product 
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G o/ a countably in/inite number o/ in/inite cycles onto a nonabelian subgroup o / a  third 

Burnside product A o/ in/inite cycles. Then there exists a positive integer m such that 

g(m) = 1 implies that ~v(g) belongs to z 2 (A) 
/or all g o/ G. 

Proo/. I t  is sufficient to point  out  the following facts. I f  B is the image of G 

under  ~p, then 
z2(G ) ~p ~< z2( G~) ) = z2(B ) = z~(A ) N B. 

Hence ~v induces a homomorphism of 

c~ 

G/z2(G) ~- I]'XA~, 
1=1 

where As are infinite cycles, onto 

B/(z2(A) N B) ~=B. z2(A)/z2(A ). 

COROLLARY 6.8.1. The unrestricted third Burnside product o / a  countably in/inite 

number o] in]inite cycles is not isomorphic to a subgroup o/ a third Burnside product 

o/ in/inite cycles. 

Generalizations. There is no difficulty in extending our  above given results to 

the unrestricted products  of an  "a rb i t r a ry"  number  of cycles. However,  we make the 

following relevant remarks. I n  the case of the above subgroup theorems, we use [18] 

Theorem 2.2 which gives a representat ion for unrestr icted verbal products  in terms of 

a factor  group of the unrestr icted free product  of the same factors. :For an arb i t rary  

verbal product  we have been able to prove this result only when the product  has a 

countable number  of factors. However,  for unrestricted nilpotent soluble, and Burnside 

products  of the cycles considered above, we have a unique representation which 

enables us to extend [18] Theorem 2.2 to an arb i t rary  number  of factors. A similar 

situation holds for the unrestr icted free n th  nilpotent Lie algebra. I n  the theorems 

similar to the Theorem of Specker and Los, we must,  as mentioned in the introduc- 

tion, confine our a t ten t ion  to  a set of cycles such tha t  the set has measure zero. 
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