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Introduction 

In  this paper we investigate, from the point of view of Nevanlinna's theory, 

meromorphic functions with certain restrictions on the location of their poles and zeros. 

We assume familiarity with Nevanlinna's  theory and with its s tandard notations. 

In  order to state our results concisely, we introduce two definitions. 

DEFINITION 1. A path L in the complex z-plane is said to be regular i / i t  satis. 

/ies the two /ollowing conditions: 

(i) it is possible to represent L by the parametric equation 

L:  z = z ( t ) = t e  i~(t) (t>~t o >10), 

where ~z(t) is a real-valued continuous /unction; 

(ii) there is a constant B( >~ 1) such that, /or any pair  (tt, t2) (to <~ tl < t2) , the portion 

o/ L which lies in t 1 <~ ]z[ ~ t 2 is recti/iable and o/ length 

s ( t .  t2) < B(t~ - tl). (1) 

If  it is important  to mention the constant B, we shall call a regular curve for 

which (1) holds B-regular. 

DEFINITION 2. Let S be a curvilinear sector, in the z-plane, bounded by an arc 

o/ ]z I = to and two regular paths in [zl >~ to" 
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S ta t e s  G o v e r n m e n t .  
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We say that S has opening >~ c i/ the intersection o/ every circle I zl = r( >~ to)and 

is an arc o/ length >~ cr. 

Our simplest result is 

THEOREM 1. Let L1, L 2 . . . . .  Ls be regular curves dividing the plane into s sectors, 

each o/ opening >~ c, /or some c>  O. Let ~1, ~2 be two /inite distinct complex numbers. 

1/ /(z) is an entire /unction o/ in/inite order, then at least one o/ the equations 

/ ( z )  = ~1, / ( z )  = $3, 

has in/initely many  roots which do not lie on the paths L1, L 2 . . . . .  L s. 

This result  will be a corollary of 

THEOREM 2. Let the s B-regular curves 

Lj: z = t e  ~J(t) (t~>t0; i = 1 , 2  . . . . .  s; ~l(t)<~2(t)< . . .<o~s( t )<o~l ( t )+2~=~s+l ( t ) )  (2} 

divide ]z] >~ t o into s sectors, each o/ which has opening >~ c > O. 

Suppose that all but a /inite number o/ zeros and poles o/ the meromorphic /unc- 

tion /(z) lie on the curves Lj .  

I /  some T(~#O, ~ oo) is a de/icient value (in the sense o/ R. Nevanlinna) o/ the 

/unction /(q)(z), /or some non-negative integer q (/(o)~/), then the order ~ o/ /(z) is neces- 

sarily /inite and 
<~ ~o = 9~B2/c.  (3) 

COROLLARY. Let ~1, ~2, ~3 be three distinct complex values, one o/ which may be oo 

I /  all except a /inite number o/ the roots o/ the equations 

/ (Z)  = ~1' / (Z) : ~2' / (Z)  : ~3 

lie on s regular curves Lj  satis/ying the same hypothesis as in Theorem 2, then either 

the order o/ /(z) does not exceed ~o, given by (3), or /(z) has no de/icient value, /inite 

or in/inite. 

This corollary follows at  once by  the application of Theorem 2 to the three 

functions 
( /-  ~)/( /-  ~), (1- ~)/( /-  ~), (t- ~)/( /-  ~) 

(easy modification, if one of the ~'s is infinite). 

Theorem 1 is a special case of this corollary ($3 = o% (~(~3,/) = 1). 

Theorem 2 generalizes a result obtained by  one of us [3; p. 276] in the special case 

gj(t)-~ const. (j = 1, 2 . . . . .  s). (4) 
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I t  is then possible to replace (3) by  

C 

The quotient  of Bessel functions 

(5) 

/(z) = J1/~(2z�89189 (2 ~< s = integer) (6) 

has s finite deficient values (none of which is zero); its zeros and poles are on the  

lines arg z=2kze/s  ( k = l , 2 ,  ..., s) and its order is s/2 [5; p. 343]. This shows t h a t  

the bound ~ ,  in (5), is "best  possible". 

The more general bound given in Theorem 2 is not  as accurate bu t  still is, in 

some respects, satisfactory. I n  the special case of the functions (6), we have B =  1, 

c = 2 z / s ,  so t h a t  (3 )y ie lds  

this shows t h a t  the form of the dependence of 20 on c is correct. 

The restriction ~ # 0, ~ # co in Theorem 2 is essential. This m a y  be seen by  con- 

sidering an  entire function g(z) of order ~, 2 < 2 < + ~ ,  all of whose zeros are real. 

Trivially ~ ( ~ ,  g) = ~ (co, g(q)) = 1. We have Shown elsewhere [4] t ha t  6 (0, g) > 0. I t  is 

well known [10; p. 22] t ha t  for an entire function of finite order ~(0, gcq))>~(0, g), 

so tha t  also ~(0, g(q))> 0. The function g(z) satisfies the hypotheses of Theorem 2 with 

s = 1, q ~> O, r = 0 or 3 =  ~ ,  but  the order of g can be arbitrari ly large. 

I t  is possible to generalize Theorem 2 by  allowing zeros and poles of /(z) to  lie 

off the paths  Lj,  provided the number  of such zeros and poles, in I zl ~< r, is sui tably 

restricted. I n  the case (4), of radial lines, such a result was obtained by  I . V .  

Ostrovski [9]. 

Under  the hypotheses of Theorem 2 about  the location of zeros and poles, a func- 

t ion of order ~t>~t 0 c a n  not  have any  deficient values other  than  0 and ~ .  The 

Theorem gives no information about  functions of order ~t~< ~t 0. I n  this direction we 

p r o v e  

THEOREM 3. Let /(z) (~const.) be an entire /unction o/ /inite order 2 and let 

L 1, L2 . . . . .  Ls be the s B-regular paths de/ined by (2). 

Let 8( > O) be /ixed and let ~(r)  denote the number o/ zeros o/ /(z) which lie in 

ro<<. Izl<~r but outside the s sectors Ej(~) (?'=1, 2, ..., s) de/ined by 

~j(t)-~<~argz<~j(t)+(~, ro <~lzI=t< + ~ .  (7) 
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Assume that /or every /ixed ~( >0), we have 

lim ~( r )  = 0 ,  (8) 
r-~r T(r, /) 

where T(r,/)  denotes Nevanlinna's characteristic /unction. 

Denote by p the number o/ de/icient values o/ /(z) other than 0 and co. Then 

p < 2~t. (9) 

Our proof of Theorem 3 also yields 

p~<s. (10) 

If  the configuration (2) is fixed and if F(z) is an entire function of order 

~(~< + ~) ,  with all but a finite number of its zeros on the s paths (2), we may, by 

combining Theorem 2, Theorem 3 and (10) summarize our results as follows: 

97~B 2 
If ~ t = ~  or ~ > - - ,  

e 

then p = 0. 

Otherwise p = min {s, 2)~}. 

I t  is not known whether there exist entire functions of finite order with in- 

finitely many deficient values. Assume that  such functions exist and that G(z)be one 

of them. Then, the lemmas and methods of this paper show that  the arguments of 

the zeros of G(z) cannot have a simple behavior. A closer study of the question leads 

to the following theorem which we state without proof. 

THEOREM 4. Let /(z) be an entire /unction o/ /inite order ~ and let 

al, a2, 63, . . .  

be its zeros o/ positive modulus. 

Put a~=la~le~ (0~< w~< 2a) 

and let ~ be the closure o/ the set (or}. 

I /  ~ is o/ measure zero, /(z) has at most 2~ de/icient values other than 0 and ~ .  

We conclude this Introduction by an indication of the contents of the following 

paragraphs. 
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1. Nota t ion  and s ta tement  of known lemmas. 

2. S ta tement  of principal lemmas. 

3. Proof of Theorem 2. 

4. Proof of Theorem 3. 

The remaining paragraphs 5-9 are devoted to the proofs of the lemmas stated 

in w 

l .  Notation, terminology and statement of known results 

We use the symbol A to denote a positive absolute constant  and the symbol K 

to denote a positive constant  depending on one or more parameters.  

Most of our inequalities are only valid for sufficiently large values of certain 

parameters  m, r, . . . .  We usually indicate this fact by  writing, immediately after the 

relevant inequality,  (m > m0), (r > ro) . . . . .  

The quantit ies A, K, m0, %, ... are not  necessarily the same ones each t ime they  

occur. We write A1, A s . . . . .  K1, K s . . . .  whenever it seems clearer to preserve the 

ident i ty  of the constants and KI(~,  2 . . . .  ), K2(~, ~, ...) . . . .  if it is useful to list ex- 

plicitly all the parameters  on which the constants  depend. 

The measurable sets E, which will appear  in our proofs are subsets of the positive 

axis. I f  E is such a set, we denote by  E(~, fl) its intersection with the interval (~, fl) 

and by  mE(~, fl) the measure of this intersection. 
+ 

Nevanl inna 's  nota t ion for the means of log [[I will be extended by  the following 

convention. 

If  J is a measurable set of values of 0, we write 

1 f j  + log ]/(ret~ dO = re(r,/; J).  (1.1) 

For  the convenience of the reader, we first state as Lemma A some well-known 

consequences of the fundamenta l  estimates of R. Nevanlinna. 

L E ~ M A  A [7; p. 62 and p. 104]. Let ](z) be a meromorphic [unction which does 

not reduce to a polynomial. 

There is a set E (o/ values o[ r) o/ /inite measure, such that r ~ E implies all the 

/ollowing inequalities 
+ 

T(r , /<k) )<K(T(r , / )+logr )  ( k = 0 ,  1, 2 . . . . .  q + l ) ,  (1.2) 

+ + 

re(r, [(k+l)//(k)) < K(log T(r, [) + log r) (k = 0, 1 . . . . .  q), (1.3) 

+ + 

re(r, [(q+l)/(/(q) - -  T))  ~ K(log T(r, [) + log r). (1.4) 
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We also need the three following lemmas which we have proved elsewhere [5]. 

LEMMA B. Let /(z) be a meromorphic /unction (/(z)~const.),  let v(=~O) be a com- 

plex number and let J be a measurable set o/ O, in 0 <~ 0 < 27~. Then 

re(r , / / / ' ;  J) > re(r, 1 / ( / -  z); J) - re(r , / ' / / )  - m ( r , / ' / ( / -  7)) - K(~). (1.5) 

L]~M~A C [5; p. 322, Lemma III]. Let g(z) be meromorphic. With each r ( > 0 )  we 

associate a measurable set I(r) (o/ values o/ O) o/ measure 

mI(r) = #(r). 

Then, /or 1 ~ r < R',  

+ 1 -< l l  R ' T ( R ' , g )  #(r) [l + log ~(~)]. (1.6) re(r, g; I(r)) ..~ R'  -mr 

lemma is a special case of Lemma 10.2 [5] (~=0,  e = l  and ~=3 ,  

such that outside E simultaneously 

The following Lemma E is obtained from a result of R. Nevanlinna [8; p. 84, 

formula (14")] by letting fi' (in Nevanlinna's notation) shrink to a point a, putting 
~"=~. 

L]~MMA E. Let G be a domain bounded by a Jordan curve C consisting o / a  Jordan 

arc B and its complement .,4 in C. Let F~ be a recti/iable curve in G joining a point 

a E,4  to a point b E B. Let z be a point on E. Let ~(z) be the distance o/ z /rom ,4. 

Then the harmonic measure co(z) o/ B with respect to G satis/ies 

J~ e(~)J' 

where the integral is taken along s 

Our next 

~=1,  M = 2 ) :  

Lv.MMA D. Let V(r) be a non-negative, non-decreasing, unbounded /unction de/ined 

in r >%. There is a set E with 

(log V(Q)) ~ 
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2. Lemmas 

Here we state Lemmas needed in the proofs of Theorems 2 and 3. The numbers 

in brackets refer to the paragraphs in which these Lemmas are proved. 

LEMMA 1 [w Let z = z ( u ) = u e  i~(u) (u>~to) (2.1) 

be the parametric equation o/ a B-regular curve L. Then the point 

t e i(~(t) + r) 

is at a distance d >~ t I sin �89 

/rom L. 

This Lemma readily yields 

LEMMA 2 [w Let ~ be a denumerable set o/ circles with centers in Izl>~tl >~to 

and sum o/ radii less than D( < t j B ) .  

Let L(~): ~(u)=ue ~(~(u)+r) ( - r l < ~ )  

be the curve obtained by rotating the B-regular curve (2.1) through an angle ~. 

Then L(~) will not meet any circle o/ ~ i/ ~ lies outside a set o/ measure 2reBD/t  r 

LEMMA 3 [w 6]. Let /(z) be a meromorphic, non-rational /unction. There is a meas- 

urable set E, o/ values o/ r, such that 

mE(e,2~)=o(e  ) (~-->~) 
and such that /or r ~ E 

T(r, /) <~ AT(r,/(q)) log a T(r, /(q)). 

LEMMA 4 [w 7]. Let /(z) ( ~0)  be a meromorphic /unction and let 

d 1, d 2, d 3 . . . .  ( / d i n / ~ / d i n + l / )  

be the sequence o/ its zeros and poles, each one appearing as o/ten as its multiplicity 

indicates. Let H(>1)  be given and denote by ~(H) the union o~ the discs 

1 
~m: Iz-dm]<<-~-~ ( m = 1 , 2 , 3  .... ). 

Then there is an r o such that /or 

B'>r>~]z]>r o z ~ ( H ) ,  
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we have ]/(q+l)(z)~ < Kl(q) [/HR'T(R"/)} K ~ ( q ) ' R ' - r  (2.2) 

where Kl(q) and K2(q) depend only on q. 

Let C be a circular arc belonging to the half-plane x ~  0 (z= x+ iy)and passing 

through the points + i ~  (zr Let A + be the closed set (in x~>0)of points bounded 

by C and by the segment [ -  ir162 + i~] of the imaginary axis. 

We define the "lens" A to be the smallest set containing A + and symmetrical 

with respect to the imaginary axis. 

The lens A is characterized by zr and by f l (0<f i<z ) ,  the angle formed by 

the imaginary axis and the tangent to C at ia. Ambiguities concerning the value of 

fl will be removed by the convention that  0 < f l~ 7~/2 for convex lenses. 

LEMMA 5 [w Let A be the lens, in the z-plane, with vertices +_i~ and semi- 

vertical angle fl(O < fi < 7e). 

Let H(z) be regular in A; assume that 

]H(z)[~<l (zEA), 

and 

regular paths L1, L2: 

Lj: 

and by the two circular arcs 

Z = ~ j  e ~0 

Put 

assume that 

and let tl, t 2 be such that 

f_ -~ log I 1/H(iy)] dy (0 < ~ < a). (2.3) > M* > 0 
~q-e 

Then log IH(iy) l < - ~ t2~J (lyl< (2.4) 

Our last lemma is a straightforward consequence of Ahlfors' distortion theorem. 

LEMMA 6 [w 9]. Let the domain D in the z-plane be bounded by portions o/ two 

z=tei~J (t) (0~<t< + ~ ;  j=1 ,2 ) ,  (2.5) 

(gl (~)) ~'~ 0 ~'~ g2 (~j), j = l ,  2; 0 < h < Q 2 ) .  

O(t) = ~2 (t) -- ~1 (t) (2.6) 

0<O(t)~<2~ ( 0 < t < + c r  (2.7) 

~1 ~ tl ~ t2 ~ Q2. 
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I /  o)2(z , t2) denotes the harmonic measure with respect to D o/the part o/the bound- 

ary o/ D which lies in and i/ 

then 

re ~~ ED, t2/r > e 9" (2.8) 

5e'" ( ( 2dti 
w 2 (re ~~ te) < exp - re . (2.9) 

re Jr  tO(t)J 

Similarly, i/ o),(z, t,) denotes the harmonic measure with respect to D o/ the part 

o/ the boundary o/ D which lies in I=1 t,, then /or 

re ~~ r / t , > e  9= 

we have m, (re ~~ t,) < - -  exp - . 
r e  ~ 

(2.10) 

3.  P r o o f  o f  T h e o r e m  2 

Denoting by  2 the order (not necessarily finite) of /(z), we prove Theorem 2 by  

deducing from the assumption 

2 > 9reB2/c = 20, 

the contradiction tha t  /(z) is a polynomial.  

Choose /~ so tha t  2 0 < / z < 2 .  (3.1) 

Then there exist arbitrari ly large ~ such tha t  

T(e, / )  > (2e)" 

and consequently T(r, /) > r l" (3.2) 

in Q < r < 2 ~ .  

If  Q > q0, then r can be chosen in such a way  tha t  all the following relations hold:  

T(r , / (~))<KT(r , / )  ( k = 0 ,  1,2 . . . . .  q + l ) ,  

re(r,/(k+l)//(k)) < K log T(r , / )  (k = 0, 1, 2 . . . . .  q), 

m(r, /(q+l)/ (/(q) _ T) ) < K log T(r, /), 

T(r+r{logT(r , / (~))}-2,](k))<eT(r ,]  (k)) ( / c=0 ,1 ,2  . . . . .  q + l ) ,  

T(r + r(log T(r, ]))-�89 < T2(r,/),  

T(r, /) < AT(r,/(q)) log a T(r, /(q)). 

(3.3) 

(3.4) 

(3.5) 

(3.6) 

(3.7) 

(3.8) 



122 A L B E R T  E D R E I  AND W O L F G A N G  H.  J .  FUCI-IS 

The identi ty 

and  (3.4) imply 

This assertion is true, because by  Lemma A, Lemma D, (3.2) and Lemma 3 the 

set  E of values for which at  least one of (3.3)-(3.8) ceases to be true satisfies 

mE(o, 2~o)=o(~) (~--> + oo). 

Since T is a deficient value of /(q), there is a u > 0  such tha t  

m R , ~  >uT(R,/(q)) ( R > r 0 ;  q>~0). (3.9) 

The curves L1, L ~ . . . . .  L s divide the region [zl>~t o into s sectors S1, S ~ . . . .  ,S~. 

Le t  J k = J k ( R )  be the set of arguments  of the arc of I z l = R  which lies in Sk. Then 

(3.9) implies t ha t  there is at  least one index k = k ( R )  such tha t  for J=Jk(R)(R)  

( 1 J )  > {u/s} T(R,/(q)) (R > r0). (3.10) m \R,/(q) _ 7: ; 

When R--> oo through the values of a sequence 

Rx, R2, ..., Rm, ..., (3.11) 

a t  least one value of k(R) must  be taken infinitely often. Wi thou t  loss of generality, 

we may  assume it to  be k = 1, corresponding to the sector $1 = S given by  

S: r>~t o , a~ l(r)<~O<~c2(r) (z=rei~ 

I n  the remainder of the proof, the letter R will always s tand for a member  of 

a fixed sequence (3.11), such tha t  for r = R = R m  ( m = 1 , 2  . . . .  ), (3.2)-(3.8)hold as well 

as (3.10) with J = J l ( R m ) .  I t  is impor tant  to notice tha t  the constants  K which will 

appear  in the proof are independent  of m. 

By  Lemma B, (3.10), (3.4), (3.5) and the assumptions T # 0 ,  ~ P  oo, 

re(R,/(q)//(q+l); j )  > KT(R ,  /(q)) - K log T(R, /). (3.12) 

1 (~) 1 1' 1" f~ 
1(o+,- 1(~+~)']'1-...1(~-,) 

m(R, ill(q+1); j )  > m(R, /(q)//(q+l); j )  _ K log T(R, /). 

Combining (3.12), (3.13), (3.8), (3.3) and using the abbreviat ion 

T = T(R, 1), 

we find re(R,///(q+i); j )  > KT(log T) -3, 

(3.13) 

(3.14) 

where R = Rm and m > m 0. 
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We now leave m fixed and  consider the  function 

h ( z )  / (q+ i ) ( z )  
- -  (z  = r e ~ ) ,  

l ( z )  

in the curvil inear sector S '  

S': Izl>~ro(>to), o~l(r)§ T-t<~O<~a2(r)- T-�89 

where r 0 has been chosen so large t h a t  S '  exists and is free f rom zeros and  poles of 

/(z). We establish first t h a t  if 

zES' ,  ro<~]z[<~R§189 

t h e n  ]h(z)] ~< T K'(q). (3.15) 

This follows f rom (3.7), L e m m a  4 with 

R ' = R + R l o g - ~ T ,  H = T  

.and the r emark  that ,  b y  L e m m a  1, the distance between a poin t  of S '  and the curves 

L1, L 2 is a t  least  
r 0 s i n ( � 8 9  � 8 9  1. 

Next  we show t h a t  

f~(R)  ' log  I ZK'/h(Re~~ dO > K T  log -3 T (R = Rm, m > m 0, K 3 = K~ (q).) (3.16) 
(log T) 

1 (R)+(log T) 

I f  I = I ( R )  is the union of the  two intervals  

~1 (R) ~< 0 ~< ~1 (R) + (log T) 6, 

~2(R)  - ( log  T) -6 <~ 0 <~ zc2(R), 

then, b y  L e m m a  C with g(z)= 1/h(z) and 

R '  = min  {R + R(log T) -2, R + R(log T(R,/(~+1))) 2} 

combined  with (3.6) and (3.3): 
+ 

re(R, I/h; I) <~ AT(R' ,  1/h) mI(1 + log(I/re(I)) log 2 T 

<~ A (T(R', /) + T(R',  /(q+ l))} log-4 T log log T 

= o(T log -a T) (R = Rm--~ oo ). (3.17) 

B y  (3.14) and (3.17) 

re(R, I/h; J - I) > K T  tog -8 T (R = R~, m > too). 
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Afor t io r i  re(R, TK"/h; J - I) > K T  log -a T. 
+ 

This is exactly (3.16) with the log under the integral sign replaced by log. But  

by  (3.15), 
-b 

o log lTd.~hi = log I T ' / h l ,  

on J - l ,  and (3.16) is proved. 

Let F be the arc z = R e  t~ with 

al (R)+ {log T}-~< 0 ~< a2 (R) - {log T}-6; (3.18) 

our next step is to show that  

log Ih(z)l< - g T e x p ( - { l o g T } i )  ( z e r ,  R = R ~ ;  re>m0). (3.19) 

This is done by an application of Lemma 5. To prepare this application, we 

first map S' into the ~-plane by  

= ~ + i~ = ~F(z) = log z + const., 

in such a way that  the insersection of S' with I zl = R is mapped onto the segment 

T 

of the imaginary axis. Then the arc F is mapped on 

~=0 ,  I ~ l < s  -~. 

Let  A be the lens, in the ~-plane, bounded by  the two circular arcs which pass 

through the points -_b_is' and make an angle 

= 1 ,  (log T} -�89 (3.20) 

with the ~-axis. If R is large enough, we have ~' > c / 3  and since T-~  co as R-~  ~ ,  

it is clear that  
lim fl = 0. (3.21) 
R-~oO 

We prove first that  the image ~F-I(A) of A, in the z-plane, lies in the inter- 

section ~ of S' and 
[z I ~< R + ~ R(log T) -�89 

If R is large enough, A lies in the parallelogram P defined by 



so t ha t  

implies 

Pu t  

then  
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~F ~ ( P ) ~ D  

~F -1 (A) c D. 

= i(~' - ~1) + ~, 

Kt?- I ( ~ ) = Re~ e~(~,~( a) - T-+-~h}. 

Hence,  for ~ 6 P,  
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(3.22) 

(3.23) 

I ~1?-1 (~)1 = Re~ <~ Rd"  tan~ ~< (1 § 2 a '  t an  fl) R (3.24) 

provided fl( > 0) is small  enough. 

B y  (3.21), /~-->0 as m - - > ~  and therefore 

tan/~ < ~/~ (m > m0). 

Using this inequal i ty  and (3.20), in (3.24), we find 

I ~F-i (~)l < R(1 + ~ {log T}-�89 (m > m0). (3.25) 

Also, if ~ is small enough, 

1~-1 (~) - ~IZ-1 (~1) 1 = R l e ~ - 11 < 2R I~l ~< 2R [:r - (~' - ~1)] t an  fi = 2R~1 tan  fl; 

using again (3.20) and  the fact  t h a t  T - +  ~ as m--> ~ :  

I~F-1 (~) _ ~F-1(~1) i ~ < ~1 R(log T) -+. 

Since ~ R ( l o g T ) - � 8 9 1 8 9 1 8 9 1 8 9 1 8 9  ) (m > m0) , 

i t  follows b y  L e m m a  1 t h a t  /F-x(~) is in a circle with center  ~ - 1 ( ~ 1 ) w h i c h  does not  

intersect the  bounda ry  curves of S' ,  so t h a t  

KF-I (~ )  e S ' .  

I n  view of (3.25), this shows tha t  the image of the upper  half  of P lies(1) in ~0. 

The  lower half m a y  be t rea ted  in a similar way.  Hence (3.22) and  therefore (3.23) 

hold for m > m 0. 

(1) I t  is i m p o r t a n t  to observe  t h a t  (3.25) a n d  t he  o the r  inequal i t ies  for /F 1 (~ )and  ~F-1(~1) 
ho ld  u n i f o r m l y  for all admiss ib le  va lues  of ~ a n d  ~1, as  soon as m > m 0. 
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If we pu t  

we have, by  (3.15) 

}%ewriting (3.16) as 

f 
~ ' - ( l o g T )  - 6  : T "  �89 

- ~r �9 ( l o g T )  6 T " ] 

defining fl by  (3.20) and letting 
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H(r = T - ~ ' h ( z )  = T - K ' h ( V / - I ( r  

IH($ ) I<  1, (~" C A). 

L 1 
log H-(~5~) d~ > KT( log  T) 3 = M*, 

=s e=(logT) 6_T �89 

we see t ha t  L e m m a  5 m a y  be applied to the funct ion H(~) with SEA.  

The assumpt ions  of Theorem 2 imply 

6 
< zr < ~  (m > m0) , 3 

so t ha t  (2.4) yields 

log I h(Re'~ = log I H( iy ) l  + g a log T 

< - K T { l o g  T} -a exp ( - A{log T}�89 log log T) + K 3 log T 

< - K T  exp ( - {log T} ~) 

(a 1 (R) + (log T) 6 <~ 0 ~< as (R) - (log T)-6;  m > m0) , 

which is (3.19). 

Next  we es t imate  log I h(z)[ a t  

z --te ~(~'(t)'�89 (t>~2r0) , 

by  applying L e m m a  E with G - S " ( R ) ,  

S " ( R ) :  r o ~ r < ~ R ,  a l ( r ) + ( l o g T  ) 6 < ~ O < ~ a 2 ( r ) - ( l o g T )  e'(z-=rei~ 

and with B = F  (defined by  (3.18)). 

For  E we choose the B-regular  pa th  

s(u) -- ue i(~'(~)+�89162 (2r 0 ~< u ~ R). 

Le t  C denote the boundary  of S " ( R ) ,  let 

A =C-B, 

and let O(s(u)) denote the shortest  distance between s(u) and A. 

(3.26) 
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Considering separately the circular arc and the two B-regular curves which 

form A, we have, in view of Lemma 1, 

Q ( s ( u ) ) > ~ m i n { u ( 1 - r ~ ) ,  u B I s i n [ l ( 2 - { l o g T } - 6 ) ]  , 

u , 1 

In view of the assumptions 

c~a2(u) -~ l (u)<~2:re  , B>~I,  

(3.27) readily yields 

O(s(u)) >~ min B 1 -  , sin l e - ~ { l o g T } -  > 9 ~ B  (u>~Kr~ m > m , ) .  

Since the path described by s(u) is B-regular, 

(u) q(8) 3u e ( ~  < ~  t 4c 

By the two-constant theorem [8; p. 42], (3.15) and (3.19), 

log ]h(s) l < K a log T - ~oKT exp ( - {log T}~), 

where (o is the harmonic measure of B(=F)  with respect to S"(R)  at the point~ 

s = s ( u ) .  

By Lemma E and (3.28) 

o) ~ log 

But, by (3.2) R < {T} ~'", 

1 u2 ' T_(2~ so that  ~o > 

log [h(s(u))[< K a log T - K u  ~~ T (~-(~~ exp ( - {log T}t). 

As R =  R,n-~ ~ , T--> ~ 

(3.1). Hence 

(3.29t 

and the right hand side of (3.29)tends t o -  c~, by  

l(q+i) (8) /1(8)  = 0 
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for every s=s(u) (u>Kro). Hence fq+l)(z)//(z) vanishes identically, which is only 

possible if /(z) is a polynomial.  This contradicts our assumpt ion tha t  /(z) is of order 

2( > 20) and hence completes the proof of Theorem 2. 

Proof of  Theorem 3 

The idea of the proof is as follows. Suppose tha t  the function /(z) satisfies the 

hypotheses of Theorem 3 and t h a t  it has the distinct deficient values 

"Q,z 2 . . . . .  zp (z j # 0 ,  Tj4=~; ] = 1 , 2  . . . . .  p). 

The curves Lj divide the z-plane into sectors Sk. Le t  Jk=Jk(r) be the set of 

arguments  corresponding to the arc of I zl = r in Sk. Since the zj are deficient, there 

is at  least one index k = k(?', r) such tha t  for some fixed x > 0 

m r,[_-~j;Jk >~T(r,/)=~T(r) (r>ro, k=k(j ,r  ), j = l , 2 , . . . , p ) ;  (4.1) 

I 
- rain {0(vj)}. (4.2) we may  choose ~ = s + 1 l<J~p 

I n  (4.1), we have wri t ten T(r) instead of T(r,/); from now on this will be done 

systematical ly and we shall use the more explicit nota t ion for the characteristics of 

functions other than  [. 

F rom (4.1) we shall deduce that ,  for some arbitrari ly large R, ]'/[ is small at  

most  points of the intersection Dk of Sk (k=k( j ,R ) )  with the annulus 

e MR<~]ZI<<.eMR ( 0 < M = c o n s t . ) .  (4.3) 

Since, by  (4.1), /(z) must  be close to Tj for some zeSk, it will follow, by  integra- 

t ion of / ' / ] ,  t ha t  there is a regular curve Ca in the intersection of the annulus (4.3) 

with Sk (k = k(?', R)) such tha t  

(i) /(z) is close to ~:j on Ck; 

(ii) /'(z) is small on Ck. 

The curves C~ divide the annulus (4.3) into p sectors. By  a method which is 

closely related to A. J. Macintyre 's  proof of the Denjoy  conjecture [6] we prove 

that ,  if 
p > 2 2 ,  

/'(z) is so small in one of these new sectors, S' ,  say, t ha t  /(z) can not  be close to 

two different ~'s at  the ends of the arc of Izl=R which lies in S' .  This contradicts 

(i) and shows tha t  the assumption p > 2 2  is not  tenable. 
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We proceed to the details of the proof. 

Let ~ be any finite fixed number such tha t  

~ t<v<~t+  1; (4.4) 

then, T(r) r-"-+O, 

as r--~oo. Hence we can find an increasing, unbounded sequence rl, r2, ..., rm, ..., 

such tha t  
T(r) r -~ < T(rm) rVn ~ (r ~> r~; ra = 1, 2 . . . .  ). (4.5) 

With the equations (2) for the Lj, we shall denote by Sk the sector 

by  Sk(5) the sector 

r>t  o, o:k(r)<O<o~k+l(r) (z=re~~ 

r>t  o, O'~k(r)+5<O<O:k+l(r)--5 (0<a<~c); 

by Jk(5) the set of arguments of the arc of Izl=r in Sk(5) and by I~(5) the  comple- 

ment  of Jk(5) in Jk=Jk(O). We apply Lemma C to the function 1 / ( / - ~ ) ,  with 

R'= 2r, I(r)= Ik(25) and 

rm<<. r<~ 2rm. 

This yields 

m(r, 1 / ( / - T j ) ;  Ik(25))<,.22T(2r, 1/( t - -Tj))45 l + l o g  . 

Using the first fundamental  theorem and (4.5), we obtain 

re(r, 1 / ( / - ~ j ) ;  Ik(25))<-..9O(4)~T(r)5(l+lo+g(:-:-~))<2T(r) 

provided 5 < 51 = 51 (u, 2), m > me. 

Hence, by  (4.1), re(r, 1 / ( / -  vj); J~(25)) > �89 xT(r). (4.6) 

We may  assume tha t  /(z) is not a polynomial (since non-constant polynomials 

have no finite deficient values) and hence 

log r=o(T(r)) (r-->c~). (4.7) 

Combining (4.6), Lemma B, the estimate 

re(r, / ' / / )  + r e ( r , / ' / ( ! -  T)) = O(log r) 
9 -- 622906. Acta mathematica. 108. I m p r l m 6  lo 2I  ddcembre  1962 
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and (4.7), we obtain m(r,/(z)/]'(z); Jk(2~))>~T(r), (4.8) 

for rm<~r<~2rm, r e > m 0 ;  k=k(? ' , r ) ;  j = l , 2  . . . . .  p ;  0~<~<~  1. 

We choose now a constant  M(>~2). For  the proof of (10) we take M = 2 .  For  

the  proof of (9) we shall" obtain a contradict ion if we assume 

~t < ~ < P, (4.9) 

and  if we choose M so large t h a t  

eM> 16A~= U, A~=5e4~/:~, (4.10) 

and  K4 + 4 ~+2 A2e -M(�89 § 4A2e -�89 < 0, (4.11) 
4 

where the constant  K 4 (defined in (4.38)) depends only on the function /(z), on the 

configuration of the paths  Lk and on u (defined by  (4.2)). We shall see, in fact, t h a t  

K 4 (as well as two auxiliary constants  K 5 and K 6 wich appear  in (4.21) and (4.24), 

respectively) m a y  be characterized completely in terms of ,~, c, B, z. I t  is essential to  

observe tha t  these constants  depend neither explicitly nor  implicitly on the parameters  

m and M.  

Our next  task  is the investigation of the funct ion /'(z)//(z) in the annulus 

~e-Mr,~<~lzl<3eMrm. 

By Lemma 4 (with H = l , q = 0 ,  R ' = 2 r )  

I/'(z)//(z)l <ATT(2r)} A (r>r0), (412) 

outside a set ~ of discs with sum of radii less t h a n  1. Therefore, since /(z) is of 

finite order, we can find an integer h=h(A) (depending only on the order A of /(z)) 
such tha t  

Iz < 1 (4.13) 

I t  follows now from Lemma 2, tha t  there exist some ~ (�89 and some 

r 0 such tha t  (4.13) holds on the boundaries of the Sk((~) (1c=1,2 . . . . .  s), for [ z l > r  0. 

F rom now on we assume tha t  ~ has been chosen in this way  and we shall make no 

fur ther  changes in the choice of (~. I t  is also easily seen tha t  there are two circles 

]zl=R'=R'~; 2eMr,~<R' <aeUr,~, (4.14) 

and Iz[=r'=r:n; e-Mrm/3<r' <�89 

on which (4.13) holds. 
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Consider now g(z) = z h/'(z) P(z)/[(z),  (4.15) 

& ( z -  at) 
where P(z )=  l l  1 2R ~ , 

is the product, taken over all the poles of ]'//[ which lie in I zl ~< R' but  outside the 

sectors Ej(d) (]= I, 2 . . . .  ,s) defined by (7). 

The function g(z) is regular in the intersection of to<. Izl<~R' with every Sk(d) 

( k = l , 2  . . . . .  s). In Izl<R' 
[P(z) [ ~< 1. (4.16) 

By (4.13), (4.16) and the maximum modulus principle 

[g(z)[ < 1 (zeDk),  (4.17) 

where Dk is defined by the inequalities 

Dk: r '<~r~R' ;  o~k(r)+~O<~o~+i(r)--(~. 

By a well-known lemma of H. Cartan 

I~ I z .  a,,I > (bR')" 
#21  

outside circles the sum of whose diameters is less than 4ebR' .  In lzl<~R' and out- 

side the circles 

IP(z)l = 11 ~ > ~ ( � 8 9  n. (4.18) 

If b is chosen less than some bo(c ,B,M) (c and B as in the statement of Theo- 

rem 2), then it is possible to choose 

(i) curves Ck (k = 1, 2 . . . . .  s) given by 

Ck : z = z(t) = tet(%(t)+rk ) 

with �88 c < yk < �89 c 

on which (4.18) holds; this follows from Lemma 2; 

(ii) a c i r c l e  ]ZI=R m with rm~Rrn<~.~rm 

on which (4.18) is satisfied. 

By (4.15), (4.16) and. (4.8) 

for 

(r' < t < R ' )  

m(R,n, I / g ;  Jk(2d)) > m(Rm,/(z)/] '(z);  Jk(2~)) > ~ T(Rm) 

m>mo ,  k=k(j ,  Rm) , ] = 1 , 2  . . . . .  p. 

(4.19) 

(4.20) 
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Next  we use Lemma 5 and Lemma E to show tha t  g(z) is small on Ck (k = k(~, Rm) ) 

and on the arcs Jk(2O) of I~l=Rm (~=~(i ,  Rm)). 

We note first, by  repeating the arguments following (3.19), tha t  the image of D k by 

t = log z + const. 

contains a lens A whose center line is formed by  the vertical segment which is the 

image of Rm e~~ (OEJk((~)) and whose boundary is formed by the two circular arcs 

through the endpoints of this segment making a sufficiently small constant angle fl 

with it. We choose f l= 1/40B and apply Lemma 5 with this value of /3 and 

H(t )  = g(z), s = ~ (�89 61 < ~ < (~1), M* ~4 =~T(Rm),  

= � 8 9  - -  ~k(Rm)) -- ~ > ~c. 

This yields log [g(z)[ < - K 5 T(Rm) (z E Bm (k)), (4.21) 

where Bin(k) is given by  

z = R,,e t~ 0 E Jk(2O), k = k(], Rm), (4.22) 

and where the constant K~ may  be chosen as 

2n / 2 
K 5 = 3-~ exp ~ - 

(8 = fl(B) a n d  81 = 81 (N, ~)) .  

Next we apply Lemma E, first to the par t  of Dk in I zl~>Rm then to the par t  

of Dk in Izl<~Rm. In  both eases Nm(k) is the arc (4.22) and 1: is a portion of the 

curve Ck. I t  is easily verified, with the aid of Lemma 1, tha t  for any point t on 

Ck, with 
e-MRm < It] < eMRm, (4.23) 

we have e(t) > I t  }/Ks (c, B). (4.24) 

From now on, we denote by C' k the portion of Ck which satisfies the condi- 

tion (4.23). 

By (4.24) and by  the B-regularity of Ck 

B E  6 t t log (z  e Ck ; R m e ~~ e C'k). 
d Rm Rm 
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Therefore, by (4.17), (4.21), Lemma E and the two-constant theorem 

( loglg(z)l<- exp -4BK~ log T(Rm) (zE k, k=k(],rm)). (4.25) 

We now deduce from (4.21) and (4.25) similar inequalities with g replaced by ['/]. 
For the degree n of P(z), we have, by (8) 

n <-% ~ (R') = o(T(R')). 

R' R' 
By (4.14) and (4.19) R--m <<" rm--<<'3eM' (4.26) 

and in view of (4.5) 

n < o(T(3 eMrm)) = O({3eM}~T(rm)) = o (T (Rm)  ). ( 4 . 2 7 )  

Combining (4.15), (4.18), (4.26) and (4.27), we obtain 

I'1 log T <~l~176176176 (Izl~<R:n=R')" (4.28) 

Now (4.21), (4.28) and (4.7) yield 

/'(z) <exp(_�89 ) ( m > m  0, ZeBm(k)). (4.29) 
/(z) 

Similarly, using (4.25) instead of (4.21), we have 

By (4.6), with r=R,~, there must be a point z 1 on Bm(k(j, Rm)) such that  

I I(~i) - ~ I  < 

for any assigned s( > 0), provided m > m 0. 

If z is any other point of Ba(k), then by integration of (4.29) along B,n(k), 
keeping (4.7) in mind, 

] log/ (z ) - logf (z l )]<2~Rmexp(-~T(R,n))=o( l  ) (m-->+ ~),  

and so for any assigned s(O<s < �89 

I / ( z ) - ~ l < 2 e < l  (ZeBm(~), k=k(],Rm), m>m0). (4.31) 
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By choosing e (>0)  small enough, we see tha t  the index k(j, Rm)cannot have 

the same value for different values of ?'. This proves (10) and also shows tha t  all .the 

p curves Ck lie in distinct sectors Sk. The proof is valid with M = 2 and hence does 

not depend on the assumption (4.9). 

By  integrating /'(z)/f(z) along C' k (k=k(j,Rm)) from the point of intersection z~ 

of C~ with Bm(k) to the point z and remembering that  C~ is a B-regular curve, we 

obtain, in view of (4.30), 

[log/(z)--log/(z2)]<B(eMRm--Rm)exp(--~e-'BK6MT(Rm)) ( m > m  o, ZECk). 

Hence, by  (4.31) and (4.7) we have, for any assigned s (>0) ,  

[/(z)-~,U<~ (m>mo, zeta, ~=~(i, Bm)). 

These inequalities and (4.30) imply 

K5 log ,/'(z)l < - ~  exp ( -4BK e log ~ ) T(Rm) 

(re>m0, zeC~, k=k( j ,  Rm), j = l , 2  . . . . .  p). (4.32) 

We have already seen tha t  the curves Ck do not intersect, since they lie in 

different sectors Sk. Therefore they divide the annulus (4.3) (with R= Rm)into p dif- 

ferent domains. Let  S* be a typical one of these domains and let tO(t) be the length 

of the arc of Izl=t which lies in S*. 

Our aim is to estimate /'(z) in S* by means of Lemma 6. Let  Al=e 9:~ and let 

A 2 and U(>A1)  be the quantities which appear  in (4.10). 

Denote by  Pl the part  of the boundary of S* in 

R = / V  < l~l < URn, 

by F 2 the boundary arc of S* o n  Iz]=eMRm, by Fa the boundary arc of S* on 

I zt =e MR m and by F 4 the par t  of the boundary of S* which does not belong to 

r l  U r~ U F3. 

We denote by wj (z) the harmonic measure of r j  with respect to S* (?" = l, 2, 3, 4). 

Then, by  Lemma 6, 

�9 d t  2/ 

since O(t) <~ 2~. 
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Hence,  in view of (4.10), 

COl(Rm e ~~ = 1 - co 2 - w3 - o~4 > �89 (4.33) 

Similarly, co 3 (Rmei~.) < A2 e �89 (4.34) 

~eMRm dt 
and  w 2(Rm e~~ < A 2 exp - Z JR ~ tO(t)J" (4.35) 

We  now show t h a t  for a t  least  one of the sectors S* 

fe~R,~ dt 
| , ~ , ,>~ �89  (4.36) 

:For (the index ] refers to the p different sectors S*) 

p2= (Oj(t))~(Oj(t))-~ <2~(Oj(t)) --~, 
]ffi 1=1 

b y  Schwarz 's  inequal i ty  and  the obvious fact  t h a t  ~ O j = 2 z .  Hence  

1 ~ 2  71/T - -  1 p 2  f eMRm d t  ~ f ~  dt 

which is impossible, unless (4.36) holds for a t  least  one S*. For  such an S* 

w2(Rme~O)<~A~e �89 (4.37) 

On F1 and  F 4 (4.32) holds, so t h a t  

( K5 e-4BX'I~ (4.38) log I/'(Z) I < -- K4T(Rm,/) \z e f t ,  K, = 

logl/'(z)[ <0  (~ er , ) .  (4.39) 

B y  Nevanl inna ' s  inequal i ty  

sup log ]/'(z) l<~ ~ m(2r,/') = 3 m ( 2 r , / ' )  (r > r0), 

and, for non-rat ional  functions of finite order, 

re(t,/') <~ m(t,/) + m(t, ]'//) < ~ T(t) (t > ro). 

Therefore (in view of 2e-M<~2e 2 < 1 )  

log I/'(z)l <4T(2e-MRm)< 4T(Rm) (zEFa), (4.40) 

135 
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and log [/'(z)[ < 4T(2 eMRm) <~ 4T(3eMrm) < (4) (3 ~) e~MT(rm) < 4~+2e~MT(R,~) (z 6 F~), (4.41) 

by (4.4), (4.5), (4.19) and the fact that  T(r) is an increasing function. 

Now a bounded function, harmonic in S*, with the following boundary values: 

-KaT(Rm ) o n  F1, 4~+2e~MT(R,~) on Fe, 

4T(R~) on F3, 0 on F4, 

dominates the subharmonic function log [/'(z)l at each point of S*. 

Hence 

log [/'(R~e~~ < - wlK4T(Rm ) + m24~+2dMT(Rm) + 4waT(Rm) (Rme ~~ 6 S*, m > too). 

The estimates (4.33), (4.34) and (4.37) now give 

log ,,'(Rme~~ < {-K24 + 4~+2A~e-M~�89 + 4A~e-�89 T(Rm) , 

and hence, in view of (4.11), 

Ir(Rme~~ <exp - T T ( R m )  (Rme ~~ 6S*, re>m0). (4.42) 

Let ~1 and $~ be the endpoints of the arc of [zI=R~ in S*; then, by choosing 

adequately e( > 0), in (4.31), it is obvious that  [~(~1)-/(~2)] stays above a fixed positive 

bound (as m-+oo). 

On the other hand, by integrating (4.42), 

]/($1) -/($2) [ ~< 2~R~ exp ( - 
K4 T(Rm)) 

and, in view of (4.7), the right-hand side of this inequality tends to 0 as m-->+ oo. 

This contradiction shows that  p~< 2A, since otherwise we could always select a 

satisfying (4.4) and (4.9) and an M satisfying (4.10) and (4.11). We have thus proved (9). 

5. Proof  of  Lemmas  1 and 2 

We choose the determination of y so that  17/21 < �89 and notice that  if ? = 0  

there is nothing to prove. We may therefore assume 

t Isin (7/2)[ >0.  (5.1) 
O B 
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If the ]emma were not true, it would be possible to find u(>~to)and t ( ~ t o )  

such that  

I td(~(~)§ - ue~(u))l  < e. (5.2) 

This implies It - u] < e, 

and, by the definition of regular curve 

= Ire '~ ( t ) -  ud~(u) I <<. B It - u[  < B e .  (5.3) 

By the triangle inequality, (5.1) and (5.2), 

a >1 ]t~ ~"<~)+~ - t+ ~(~) ] - Ite ~E~(~)+~ - u r  ~<u>l > 2 B e  - e (e  > 0) .  

Since B~>I, this contradicts (5.3) and proves Lemma 1. 

To prove Lemma 2, we consider a disc 

]z--teit~(t)+'F][ <~ ~] (t >~tl >~to) (5.4) 

and notice that  it  will not intersect the curve 

L(7): ~(u)=ue ~E~(~>+~J (u>~to) 

if the distance d between the center te ~t:(t)+'F~ of (5.4) and L(7) exceeds ~, 

Hence, in wiew of Lemma 1, there is no intersection unless 

>~d > t_J sin �89 >t~ [sin �89 ( 7 -  ~F)] 
B B 

Choosing adequately the determination of ~F this implies 

n ~>t117-- ~Ir[ 
~ B  (5.5) 

The lemma is now obvious since (5.5) restricts the values of 7 to an interval of 

length 2reBuilt 1. 

6. Proof of Lemma 3 

Let bl, b2, ..., bk denote the poles of modulus less than one and 

b~+~, b~+~ . . . .  (1 < }b~+~} < }b~+~l < . . ) ,  

the remaining poles of ](q)(z) (each pole being repeated as often as indicated by its 

multiplicity). 

By the Poisson-Jensen formula, 

2 < I ~ I < R  
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implies 

f:~ R e -  Iz{ ~ 
log I/(q)(~)l ~< ~ logl/(q)(Re~)lR2+lz{2_2Rizlcos(O_q~) d~0 

+ k l o g  ~ + l<lb,~l<R~" log R(-~-b~) (O~argz). (6.1) 

Let R denote the union of the discs 

~m: {z-bml<{b~ -~j (m>~k+l). (6.2) 

Then, if 2<{zl<~r<R, z(~R, 

R~-z~m { 2R2m ~ 2R[n(R,/(q>)] ~ 
~<--~-~. ~< (6.3) R(z-b,~) Rlbm { Jb~{ ' 

so that  (6.3) and (6.1) imply 

R+r  
log {/(') (z) l • R~---r re(R,/(q)) +/c log (2R) + n(R,/(q)) log 2 

+ 2n(R, j(q>) log n(R, j(q)) § N(R, ](q)). (6.4) 

Now for R '>R~> 1 and any meromorphic function g(z) 

n(R,g)<. ~ du<~ N(R,  g). (6.5) 

By Lemma D, with V(r)= T(r, j(q>), 

T(r § r{log T(r, /(q))}-2, /(q)) < eT(r, /(q)) (6.6) 

provided r lies outside an exceptional set E 1 with 

mEl(~,2~)=o(~) (~--->~). 

Let R '  = r + r{log T(r,/(q))}-2, R ~ �89 (R' + r). 

Then we obtain from (6.4), (6.5) (with g=/(q)) and (6.6) 

log{/(q)(z){~AT(r, fq)){logT(r,/(q))} a ((zr ro<~[z{<~r, r(~W~). (6.7) 

Seen from the origin, the discs ~m subtend angles of sum not greater than 
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Therefore we can find a ray  

arg z = tF, r ~> r 0 (6.8) 

which does not  intersect ~.  I t  is also easily verified tha t  the set E2 of values of r 

such tha t  [z[=r intersects ~ satisfies 

mE2(Q,2~)=o(o ) (Q-->r 

If  r ~ E  2, then we can join zl=re ~~ to  Zo=ro e~r (same r o as in (6.8)) by  a pa th  

F consisting of an are of the circle Izl=r and par t  of the r ay  (6.8). 

1 fz"  Now l(zl) (q_ tiC+ o(lzdo- ), 
a 

where the integral is taken along F. The length of F is, a t  most, equal to (7~+ 1)r, 

and  hence (6.7) yields 

]](re~~ q-~) (rr r>r0) .  (6.9) 

Since log r=o(T(r,/(q))), we find, by  taking logarithms in (6.9), 

re(r,/) < AT(r,/(q)) (log T(r,/(q)))a (r > to, r r {E 1 U E~}). (6.10) 

Since at  every point where /(z) has a pole /(q) has a pole of at  least the same 

order, 
N(r,/) <~ N(r,/(q)) < T(r,/(q)) (r >~ 1). (6.11) 

The Lemma now follows from (6.10) and (6.11). 

7. Proof  o f  L e m m a  4 

An easy induction on q s tar t ing from 

shows tha t  /(q+~)// is expressible as a polynomial  in / ' / / a n d  its successive derivatives 

Dk(f/]) (k = 1, 2 . . . . .  q). The coefficients of the polynomial  are integers depending on 

q only. I t  is therefore enough to prove 

ro < lzl <~ r < R'). (7.1) 

There is nothing to prove, if ](z) is a constant.  We m a y  therefore suppose T(r,/) 

unbounded.  
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B y  ( k + l )  differentiations of the  Poisson-Jensen formula  for log/(z)  we find 

[8; p. 222], for [z]<~r<R, 

Dk~(z)  ~<k!la~l<R{i _ 1  1 5 [~_ ~- (R - -  r) k+2 {m(R, t) § re(R, 1/])}. dmlk+~ (R_r)~+~} + (k+ l)!2R 

Now, if z $ ~ (H) ,  the typica l  t e rm in the  sum on the right hand  side is less t han  

1 Hk+l(n(R))2k+2R k+l 
m2~+eHk+l-~ (R_r)Z+x < 2 (R_r)k+l (R >~ 1), 

where n(R)=n(R , / )  § n(R, 1//).  The number  of t e rms  in the sum is n(R). Therefore,  

Dk/_(z ) <2(k!)Hk+lRk+l(n(R)) 2k+~ (k+ l)T2Rf  , ~ .  

(R-  ~)~+1 ~ (-~_. ~ ; ~  l ~ , / )  + re(R, 1/1)}. (7.~ / 

Since R >~ 1, H ~> 1 and (R / (R  - r)} > l ,  (7.2) implies 

' ] Rq+2 
D ~/'(z) < r)q+ ~ {2(q!)Hq+l{n(R)}eq+~ + (q + 1)T 212T(R,/) + O(1)]} 

l(z) (R - 

( k = 0 ,  1, 2 . . . .  ,q). 
We choose now R = �89 R')  

and  es t imate  n(R) by  N ( R ' , / ) + N ( R ' ,  1//),  using (6.5). This yields 

AR'  T(R' , / )  
n(R) < R' - r (r > rQ). 

Using (7.4) in (7.3), we obta in  (7.1). 

(7.3) 

(7.4} 

8. Proof  of  L e m m a  5 

The funct ion u + iv = w = ~(z) = ( /~ - -  zj 

maps  the  interior of A on l arg w[ < ~, I wl > 0. 

The  interval  - ~ + e < y < ~ -- s 

of the  y-axis is mapped  on the in terval  

u l < u < l f U l  

of the u-axis, where ul  = ~ - - ~  ~ < I.  

(s.1) 
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Let  ~F(w) = H ( ~  l(w)), 

log I H(~) I = log I~'(w) I = r  

where ~'(w) is regular in each of the half-planes v > 0 and v<: 0. Moreover, ~F(w) is 

continuous and bounded in v~>0 as well as in v ~ 0 .  Under  our assumptions we 

also have 
(I:)(w)~0 ( - z ~ < a r g w ~ < - i - ~ ) .  (8.2) 

As an immediate consequence of the Poisson-Jensen formula for a half-plane 

[2; p. 93], we have, for v > 0 ,  or v < 0  

v__~ ~ _ d u r I ~J01 r (8.3) 

In  the r ight-hand side of (8.3) we have omit ted an integral involving aP(ue t'~) or 

r ~'~); this is possible in view of (8.2). 

By  (8.2) and (8.3) r ~ ]V] ~l/ul du 
O(u) uS + v~. *] UL 

Expressing (I)(u) and du in terms of y, by means of (8.1), 

r f~ ~ u dy - - -  -~+~l~ I H(iy)] uS ~ V~. (~2 ~_ yS). (8.4) 

U U 1 
In  U l ~ U ~  1 

u~+-v 2> 1 + v 2' 

u 1 /u  u 1 
and  in l ~ < u < l / u  1 u s + v  2 l + ( v / u )  2 > l + v  2" 

Hence (8.4) implies 

r < 2~u~ I~1CJ|~'" log IH(iy)l ~"~, 
fl(1 + v  ~) ~:~ 

(because log ]H(iy)l ~< 0) and in view of (2.3), 

2UlM* 
(P(iv) <~ - - -  Ivl 

l :~v  ~ ( - ~ < ~ < + ~ ) .  
(8.5) 

The Poisson-Jensen formula for the half-plane u > 0 now yields 

( ' ~  . dv _ ~ 1 2 f * (  ~ t vdv (t> 0). (8.6) 
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Observing that ,  for t # l  

I = J o  ( l+v2)( t~+v2)-2( t  2 -1 )  l + v 2  

we obtain I = ,  log__t2 
2(t ~ -  1)' 

1 
t ~ + v 2} d(v~) 

which, properly interpreted,  is also valid for t =  1. 

Using this result  in (8.6), we find 

2UlM* [t log $2] _ 2uxM* [log $ - log ( I / t ) ]  
r  ~< 

gaff [ t  ~ - l j -  =aft [ t : ( l ~  J 
(t > 0). 

F o r  u 1 < t < 1 / U l ,  

an applicat ion of the mean value theorem of the differential calculus now gives 

which is the assertion of Lemma 5. 

9. P r o o f  o f  L e m m a  6 

Let  S be the (open) curvilinear sector (extending from 0 to oo) which contains 

D and is bounded by the curves (2.5). 

Le t  ~ be the par t  of S in ]z[ <t2 and let C be an arc of its boundary  defined by 

C: [zl=t2, ~l(t2)<argz<~2(t2). 

We map S, by s = log z = log t + iO, 

onto a region g/ to which we shall apply  Ahlfors' distortion theorem. 

Le t  w -  u § i v -  ~(s) = q~(log z) = O(z) = U(z) -r iV(z) (9.1) 

map f /  conformally on the strip 

7~ 7g 
- -  c x 3 < U <  ~ c~ --2<V<~, 

in such a way tha t  U(z) - ->-~  as ]z[-->O and U(z)-->-4-~ as ]z[-->-i-~.  

Pu t  U 2 -  inf U(z). 
e e C  
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By Ahlfors' theorem [1; p. 10] and the definition (2.6), we see that  if 

0 < t < t z <  -kco, 

[l~ do" It: d T 
and if j~og~ ~)Udi=  j t  T~-T)>2,  (9.2) 

ft, dT 
then U 2 -  U( te~)  1>g Jr "tO(T) . . . .  4~ (9.3) 

for te ~v E ~.  

We thus have 

and 

By (2.7) and (2.8) 

I "t2 dv  >. 1 [ ' t 'dv  1 . . 9 
- - - -  ~ Jr  -V- := ~ log (t~/r) Jr  tO(T) ~ ~. (9.4) 

This shows that  (9.2) is satisfied with t = r and hence (9.3) is valid with te t~ = re ~~ 

U 2 - U(re '~ 1> �89 (9.5) 

~-t, dv 
U(re ~~ - U 2 <~ 4 ~  - z j ~  TO(v)"  (9.6) 

Two applications of Carleman's principle [8; p. 69] show that  

co 2 (z, t~) < ~ ( z ,  C; ~), 

where co(z, C; ~)  is the harmonic measure of C with respect to ~, at  the point z = re ~~ 

By the invariance of harmonic measure under conformal mapping 

~o(z,C; ~)=oJ(U(z) ~iV(z), O(C); O(~)), 

where O(C) and (1)(Z) denote the images of C and ~" under the mapping w=O(z)  

given by (9.1). A further application of Carleman's principle shows, in view of (9.5), that  

o~(U(z) -~ iV(z), O(C); 4)(5)) < ~o(U(z) ~ iV(z)), 

where c~(w) is the harmonic measure of the boundary segment 

u=U2 ,  - ~ < v < � 8 9  (9.7) 

with respect to the semi.infinite strip Z 

Z: u<U~, - � 8 9  

The function ~- ~ ~ + ir] = e .... v, 
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maps the closure of Z on the closure of the semi-disc Z', 

Z': I$1<1, ~>0,  

in such a way that  the circular boundary 

I~[=l, ~>0 (9.8) 

corresponds to (9.7). It  is easily verified that, at ~(EZ'), the harmonic measure of 

the arc (9.8), with respect to Z', is given by 

Re {2 - 2~ log ~-~ i/  2 ( 1 - 1 a r g ~ -  i] = 2 ( l - ~ )  
- ,~j = ~ _ ~ /  , 

where Z is the angle subtended at ~ by the line-segment 

~ 0 ,  - i < ~ < ~ i .  

Hence using again the invariance of harmonic measure under conformal trans- 

formation, 

2 [ 1 + ~ ]  a r c t a n { ~ -  } ~o(U + i V ) : = 2 -  a r c t a n l - ~ - - I - 2 ~  

~ 2  [arc tan ( i  ~ }  + are tan {1 ~ } ] ~ <  2 (1-~-~ -b ~---~) 

4~ 4e ~ U, cosV 4e v-v, 
= ~ i  - ~ j  = ~(1 - e~--- ~ sV~ ~ V) < ~[i  ---~'~: <~] (V + i V = V(z) + i V(z)). 

Using (9.5) in the denominator and (9.6) in the numerator, we obtain 

4e4" [ ; "  dv ] 
w2(z' t2) < ~~ -r iV(z)) <~z( i=e :'i exp [ - ~ J~ T(~,--~z)~ ' 

which implies (2.9). The proof of (2.10) is similar. 
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