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Introduction 

I n  this  paper  we s tudy  some connections among (a) b o u n d a r y  value problems 

arising in pa r t i a l  different ial  equat ions ,  (b) funct ion space integrals  (stochastic process 

expecta t ions) ,  and  (c) wha t  we have  decided to  call F rgche t -Vol te r ra  (F.V.) var ia t iona l  

e q u a t i o n s - - e q u a t i o n s  where an  unknown funct ional  appears  under  opera t ions  involving 

F .V.  der ivat ives .  Before giving an  expl ic i t  example  to  i l lus t ra te  the  k ind  of connect ions 

we mean,  let  us first  recall  br ief ly the  defini t ion of a F.V. derivative.(1) 

B y  a funct ional  we mean  a complex va lued  funct ion  u(q) def ined on a space of 

funct ions  q = q(t) where t E T, an  open in te rva l  of R. B y  the  F .V.  der iva t ive  of the  

funct ional  u(q) at  the  po in t  T, deno ted  by  6u/Sq(T), we mean  the  l imi t  (in a sui table  

sense) of 

u(q + ~n) - u(q) 
/~n (t)dt ' 

where (q0n} is a sequence of funct ions  of t wi th  suppor t  [ T - - e ~ , T + ~ ] ,  ~,e~-->0, m a x  

]~]-->0.(1) W e  also define F.V.  der iva t ives  of higher  order. 

As an i l lus t ra t ive  example  of the  connections referred to  above,  let  us consider  

f i rs t  the  func t ion  space integral .  L e t  C(O,t) be the  space of cont inuous  funct ions z(a) 

on 0 ~< a ~ t wi th  z (0)=  0. We will denote  b y  E~{F[z]} the  Wiene r  in tegral  (Brownian 

mot ion  expec ta t ion)  of a funct ional  F[z] defined on C(0, t), i.e., the  integral  based on 

the  Wiener  measure  (Brownian mot ion  stochast ic  process measure)  on the  space C(0, t). 

B y  EWz{F[z]; x<z( t )<x+e}  we mean  the integral  of F[z] t aken  over  the  subspace of 

CO, t ) consist ing of funct ions z(a) for which x<z( t )<x+e.  Fina l l y  we will f ind i t  

useful to  consider l im e.-1EW{F(z);x<z(t)<x+e}, which we will denote  b y  E~{F[z] 
e-c0 

~ ( z ( t )  - x ) } .  

Now in par t i cu la r  consider 

t 1 t 
u(x,t;q)~Er(exp(ifoZ(a)q(a)d(~-72foz2((~)da)~(z(t)+x)}, (1.1) 

(1) For a preci~ definition of the F.V. derivative, see chapter I, scctior~ 1. of this paper. 
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where q(a) (a parametr ic  funct ion in this integral) is continuous on [0, t]. Using prob- 

abilistic techniques it  is not  difficult to explicit ly calculate this function space integral  

and indeed one obtains 

u(x,  t; q) = (2~ sinh t )  J exp - 2[ tanh t ta~il t R(t,  a; - 1)q(~)da 

/1 /,t/,t ,~ 
x e x p | ~  | | R(a,  ~; - I )q(a)q(~)dad~)  (1.2) 

\ J o J 0  

( '  f:f: ) x exp 2 t anh  t R(t ,  a; - l )R( t ,  $; - 1)q(a)q(~)da5~ 

where R(a, ~;/~) is the resolvent  kernel on [0, t] of rain (a, $), i.e., 

[ -_- cosh ( t -  ~) s!nh (~ ,<<~, 
cosh t a 

R(a ,~;  - 1 ) = ~._ Co_sh. !t__.a_) sinh ~: ~>~:. 

[ cosh t a 

From a well-known theorem of Kae  [12, 13] (see also Rosenbla t t  [20], Cameron [I],  

Darling and Siegert [4]) it follows tha t  u(x , t ;  q) as defined in (1.1) is the solution of 

au 1 0"u x 2 
~ t - 2 o X ~ = - - - ~ u + i x q ( t ) u  u(x,t;q)-->O, x~-~..:oo, u(x , t ;q)-->~(x)  t--->O. (1.3) 

Now one can obtain  (1.2) by  solving this sys tem direct ly as well as b y  calcu- 

lating the function space integral above.  The mot iva t ion  for this paper  is now illu- 

s t ra ted b y  the observat ion t ha t  u ( x , t ; q )  as defined in (1.1) also satisfies a F.V. va- 

riational equation, specifically (1.1) is the unique solution of 

-dq(zi = - rain (r, s) q(s)ds u -  min (v, S)dq(s) i ~ x ,  0 < z <  t, 

(~U 
,-,tlim ~ = i x u, 

Ou(x, t; O) l O"-u(x, t; O) - x z 
o ~  - 2 . . . .  -o~ -2- u(~, t; o), u ( z , t ; O ) ~ b ( x )  t ~ 0 .  

(1.4) 

I t  will be shown in Chapter  I I ,  section 14, t h a t  (1.2) can also be obta ined f rom 

the system (1.4) by  using techniques appropr ia te  to such a s y s t e m - - i n  this very  simple 

example,  by  using a F.V. series expansion of the unknown functional u ( x , t ; q )  and 

determining the coefficients (functions in this case) by  recurrence formulae and the  

other  conditions in {1.4). 
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Thus we have three quite different problems, (1.1), (1.3), and (1.4), each solvable 

by  its own particular technique and all leading to (1.2). As indicated above, the 

relation between the function space integral and the partial  differential equation has 

been well explored and generalized. We are chiefly interested here in the connection 

between the systems (1.3) and (1.4) and the general relation between boundary value 

problems and F.V. variational equations that  this particular example suggests. 

Let  us now see how one can obtain the system (1.4) by  operating formally with 

the function space integral (1.1). We have from (1.1), for any point 0 < ~ < t ,  

du =iE~{z(~)exp i z(~)q(~)d~-~ z2(~)d~ d(z(t)-x)}. (1.5) 
dq(T) 

Noting that  

w e  h a v e  

i ~ t 1 t 

6qO:) 

To proceed it is essential to exploit the relation between the integral in function 

space and the derivative in function space, i.e. between the Wiener expectation and 

the F.V. der ivat ive--we must integrate by parts in function space. For this we have 

the relation (ef. Cameron [2]) 

f l m i  n (~, s)EW { (SF tds ~ )  ! = Ey {z(~)E[z]} (1 7) 

Using this we get from (1.6), 

| e ~X|min(v ,s)E~'  exp i z(~)q(~)de 
dq(7:) 2~.] _~r .]o ~z(s) 

As is easily seen(1) (~z(t)/(~z(s)= (~t(s), the Dirac measure in t at  the point s. Thus we 

have 

(1) We will show this in chapter I, example 1.1. 



~U 

tq(x) 
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i ( '~ /-t ( 
- -  | e -*"x | min(~, s)E~ (iq(s)-z(s) ~-i/t(St(8)) 

=(-flmin(r,s)q(s)ds)EW{exp(ifoZ(a)q(a)da-:[z2(a)(~a)5(z(t)-x) I 

t t 1 t 

-ifomin(T,s)EY{z(8)exp(if~oZ(a)q(a)da-~foz2(a)da)5(z(t)-x)} ds 

o/ z 
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(1.9) 

and  finally, therefore, the Volterra variational equation, 

du __ _ rain ('~, s)q(s)ds u - min (r, s ) ~ j  ds - ,~" ~ .  dq(~) (1.10) 

The condition in (1.4) tha t  l i m - - = i x u  follows from (1.5), and the other condi- ~--~t- (~q( ~ ) 
tions in (1.4) from the fact tha t  (1.1) with q(a)------0 satisfies (1.3) with q(a )~0 .  

Thus we see that  the variational equation in (1.4) arises from "differentiating" 

(1.1) with respect to the parametric function q and tha t  what we have done is the 

function space analogue of the usual  one-dimensional technique of obtaining a dif- 

ferential equation for a Fourier transform by  differentiation with respect to the para- 

meter  of the transform. From this point of view, the differential equation "boundary 

condition" in (1.4) is then quite natural  as it determines the transform when the 

parameter  is zero. 

I t  should be remarked tha t  the technique used in this particular example of 

obtaining the F.V. variational equation from (1.1) can be used in more general situa- 

tions. First of all one can consider the more general function space integral 

u(x,t; q)= E~ (exp (i flz(a)q((~)d(~- fl v(z(a))d(~) ~(z(t)-x) }, (1.11) 

where v(x)>~O is continuous on ( - ~ ,  or (1.1) being the special case v(x)= �89 2. As- 

suming further tha t  v(x) is differentiable and denoting its derivative by  v'(x) we obtain 

formally, in the same way as above, the F.V. variational equation 
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~u (~:,s)q(s)ds)u_iflmi n 5q(T)-(-fl min ( v , s ) v ' ( - i ~ ) ) u d s - - "  Ou ~V~x, (1.12) 

where again 0 <  3 <  t and where the operator  v'(-i(5/6q(s)) must  be defined appropri- 

a te ly(1) - - i t  is clear wha t  the operator means when v(x) is a polynomial.  

Jus t  as in the special case (l . l) ,  it  follows from Kac  [12] t ha t  (1.11) is the 

solution (for this we need only tha t  v(x)>lO is continuous) of 

~u 1 ~2u 
~t 2~x 2 -  v(x)u+ixq(t)u, u(x,t;q)->O x-->+_c~, u(x,t;q)->5(x) t-->O. (1.13) 

And in this case we are again interested in the connection between the system (1.13) 

and the F.V. variational system consisting of (1.12) augmented by the conditions 

lim - -  = i xu  ,~-~q(v) 

5u(x, t; O) 132u(x, t; O) 
~t 2 ~x 2 

- v(x)  u ( x , t ; O ) ,  u(x, t; 0)-+(~(x) t->0. 

(1.14) 

The first of the conditions in (1.14) comes again directly from (1.11) and the differential 

equat ion condition in (1.14) follows from the fact  tha t  (1.11) satisfies (1.13) when q(a)--O. 

From the point  of view of differential equations the interesting observation is 

tha t  lhe solution o/{1.13) considered as a/unctional o/the parametric/unction q satis/ies a 

F.V. variational equation. Although in the particular example (1.1) and also in (1.11) 

the relationship between the differential equat ion boundary  value problem and the 

F.V. variational system was through the space integral, it is clear tha t  a more gen- 

eral problem presents itself which we now describe. 

Consider a linear(2) boundary  value problem 

Au(x)=O, xE~,  an open set of R n, (1.15) 

where A is a linear partial differential operator  with some boundary  conditions 

Bju(x)=O ] = 0 , 1 , 2  . . . . .  #, (1.16) 

where x E P, the boundary  of g2, and where Bi is a linear partial differential ope- 

rator. 

(1) We do this in chapter II, section 4. 
(2) The ~me problems arise in non-linear cases but nothing seems to be known in this direc- 

tion at this time. 



F.V. VARIATIONAL EQUATIONS 153 

We introduce, in association with this boundary value problem,(1) a family of 

boundary value problems: 

_A_u(x) = B(q)u, (1.17) 

where B(q) is a family of linear partial differential operators depending on the para- 

metric function q and where we impose on (1.17) the boundary conditions (1.16). 

Now in (1.17) the solution u depends on q 

u(x) = u(x; q), (1.18) 

i.e., it is a /unctional of q and we ask the following questions: 

1. For what B(q) does the F.V. derivative (~u/(~q(v) exist? Do higher order F.V. 

derivatives exist? And what  is important,  

2. Can one choose B:q) in such a way tha t  u(x; q) satis/ies a F.V. variational 

equation? 

3. I f  the answer to the preceding question is "yes",  then the natural next ques- 

tion is, does this variational equation augmented by certain "boundary conditions" 

have u(x; q) as its unique solution? That  is, are the differential equation boundary 

value problem and the F.V. variational equation system equivalent? 

We find these questions interesting because, as already noted in the explicit 

example (1.1), the tools which seem natural for attacking F.V. variational equations, 

e.g., F.V. series, function space integral transforms, (2) etc., are essentially different 

from the natural or known tools used in partial differential equations. 

In  chapter I we will see tha t  question 1 above can be answered quite generally 

but, as stated above, questions 2 and 3 seem difficult. We shall s tudy these questions 

for some mixed problems in chapter I and in order to obtain anything like complete 

results we shall have to confine ourselves to some Cauchy problems in chapter I I .  Our 

approach will be quite abstract  since we are looking for general methods to apply in 

the case of various differential operators (cf. Remark  9.5 in chapter I). We will, 

however, show tha t  the solution u(x, t;q) of (1.13) does satisfy the F.V. variational 

equation (1.12) and moreover that  u(x, t; q) is the unique solution of (1.12)satisfying 

the conditions (1.14). The same methods used to show this will also show tha t  the 

fundamental solution of the SchrSdinger equation, 

(x) We are purposely being brief here--we implicitly assume all the boundary value problems 
are well set. 

(2) And other methods yet to be found. 
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~u i ~2u 
dt 2 ~x 2 ~ V(x)u + ixq(t)u (1.19) 

satisfies the F.V. variational equation 

~_u_= t q ( s ) d s ) u - i ; m i n ( T ,  ( - i ~ ) u d s + ~ x .  (1.20) ~q(~) ( - i f l m i n ( T , s )  s) V' ~u 

Now in the SchrSdinger equation case there is no direct representation of u(x, t; q), 

the solution of (1.19), as a function space integral. (1)(,) However, using a conjecture of 

Donsker expressing u(x, t;q) as the limit of a certain Wiener expectation one can 

formally derive tha t  u(x, t; q) satisfies the F.V. variational equation (l.20). Actually, 

whether (1.20) is obtained, formally or not, using function space integrals or just 

guessing by  analogy with (1.12), the point is tha t  once we know the equation (1.20) 

we prove tha t  u(x, t, q), the solution of (1.19), satisfies (1.20), using our general methods 

not involving function space integrals. 

Our proof of uniqueness, i.e., that  u(x, t; q) is the only solution of the F.V. var- 

iational equation satisfying certain side conditions does involve the use of function 

space integrals, and an inversion formula for function space transforms (cf. Cameron 

and Donsker [3]). Only in very special cases (cf. chapter I I ,  section 14) can we prove 

uniqueness without the function space integral. I t  would be of great intesest, in the 

general setting of this paper, to prove the equivalence of the differential equation 

boundary value problem and the F.V. variational system without recourse to function 

space integration, since in certain cases there is, intrinsically at least, no function space 

integral involved. 

On the other hand,(2) and what is of some interest from the point of view of 

stochastic processes, the relation between function space integrals and F.V. varia- 

tional equations exists without the corresponding partial differential equation. To be 

specific, consider, for example, a Gaussian stochastic process {y,, 0 ~< ~ <  t) with mean 

function zero and covariance function @(0, ~). Let us denote expectations on this pro- 

cess by E~{.) .  I t  is possible to s h o w t h a t  in this case (1.7) can be replaced by 

fi@(~, s" E q [ ~F ] ') v ~.-:~_,~ds = E~{y(T) F[y]} (1.21) 
toyt~')j 

and tha t  operating formally as before, 

(1) Except by the so-called "Feynman integral" (seo Gelfand and Yaglom [8]). 
(2) We do not pursue this point in the present paper. 
(*) (Added in proof.) Cf. also Nelson, Colloque C.N.A.S. :Paris, June 1962. 
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u(x, t; q)=-- Eg{ exp ( i ;  y(a) q(a)da- ; v(y(a) )da) 6(y(t) - x)} (1.22) 

satisfies the F.V. variational equation 

(~u t t ~u ,~q(~)- (- foO(V,s)q(s)ds)u-i foe(~,s)v'(-i2(q(~)uds-iq(t, ~)~. (1.23) 

Now one of the reasons that  in the special case Q(6, ~e)=rain (6, ~) (the Wiener pro- 

eess), the function space integral also satisfies a partial differential equation is because 

the Wiener process is Markovian. The F.V. variational equation (1.23) holds for 

u(x, t; q) defined by  (1.22) whether the Gaussian process {y,, 0 4 a ~< t} is Markovian 

or not. However, in the non-Markovian ease the determination of just what boundary 

conditions on the solution of (1.23) specify the function space integral (1.22) as the 

unique solution seems difficult. I t  is not difficult to see that  if ~(a, ~) is the Green 

function of a Sturm-Liouville differential equation (in this case {ya, O<~ 6<~t} is Mar- 

kovian), then one has again a differential equation as in (1.3) but where the differen- 

tial operator -�89 ~, which is inverse to min (a, ~), is replaced by the corresponding 

Sturm-Liouville differential operator. 

The study of F.V. variational equations in their own right should prove use- 

ful. In  this connection see L6vy [16] for a discussion of certain variational equations. 

In  a paper of Hopf [11] a F.V. variational equation is considered in conjunction 

with a corresponding partial  differential equation boundary value problem; however, 

the relation indicated formally there seems quite different from the type of corre- 

spondence considered here. Connections between F.V. variational equations, boundary 

value problems, and function space integrals of the type we consider here exist in 

a formal way in the literature of quantum field theory, although there the context 

is much more complicated. From tha t  point of view the results in this paper are 

only the beginnings of what is needed (d. Sehwinger [24], [25], Kristensen [15]). 

The authors are extremely grateful to Professor Povl Kristensen, professor of Physics 

a t  Aarhus University, for generously informing them and discussing with them these 

lat ter  results. 

Finally the authors wish to express their gratitude to Aarhus University and 

the Universit6 de Nancy for making their collaboration possible. 
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CHAPTER I 

F.V. derivatives of certain functionals 

1. Definition of the F.V. derivative 

Let  E be a vector  topological space, locally convex, complete,(1) and let T be 

an ()pen interval ,  bounded  or not,  of R ( T =  R is possible). :By ~O(T) (or C(T)) we 

mean  the space of infinitely diffcrcntiable (or continuous) functions on T with compac t  

suppor t  provided with the topology of Schwartz  (cf. Schwartz [22]) (or with the to- 

pology of uniform convergence on every  compac t  set of T). The functions of ~ ( T )  

and  C(T) arc complex-valucd.  

A /unctional will be a mapping  q-->O(q) f rom ~)(T) or C(T) into E with the 

following properties:  

The mapping  q-->CO(q) is continuous. (l.1) 

For  every  q and ql belonging to ~ ( T )  (or C(T)), the funct ion / (1.2) 

~-->(~) (q-~-~ql) is entire analyt ic  with values in E. J 

Let  q be a fixed element  in ~)(T). For  every  yJEO(T) we define 

d 
ar 9) = d~r + ~')[~-0. (1.3) 

This is an e lement  of E, hence a mapp ing  ~p-->6(I)(q; ~p) from O(T)  into E. Let  

us check tha t  this mapping  is linear. First  of all i t  is obvious ' f rom thc definit ion t h a t  

6(I)(q; k~) = kb(1)(q; V) for every  k E C. 

Therefore,  wc want  to show for every  ~pl, yJzE~)(T) t ha t  

6aP(q; y~ -~- ~/ )2 )  - -  6(I)(q; ~ft) + 6eP(q; ~f2). (1.4) 

Now if e ' E E ' ,  the dual space of E,  then  the scalar function 

~, ~2-~ ((l)(q + ~ V~ + ~2 ~2), e') = ~(~x, ~) 

is par t ia l ly  differentiable in ~1,~2. Thus 

(1) We do not look for the most general hypotheses under which what follows is correct. 



F.V. VARIATIONAL EQUATIONS 157 

tF(r 1, r = tF(0,0) + ~1 a~F(0'0) ~IF(0,0) 
~r ~ ~ ~o(1r 

where [r = ([~[2 + [~212)~. Bu t  8~(0,0)/8~ = (~(I)(q; 9~), e ' ) ,  i = 1, 2 so t ha t  

<r + r + 9~)) - (P(q), e') = r162 9~) + ~r 92), e'> + 0([2[ ). 

Dividing b y  ~ and letting ~--~0, we obta in  

<~r 91 + 9~), e'> = <Oq)(q; 9 0  + ~(I)(q; 9~), e'> 

for every e 'EE'  so t ha t  (1.4) follows.(1) 

We now check t h a t  the mapp ing  9-+driP(q;9 ) is continuous f rom D(T)  into E.  

Indeed  from definition (1.3) and  Cauchy 's  theorem(: )  it follows t h a t  

r  " i 

5(I)(q; 9) = ~1 Jo (b(q + e~~ ~ , (1.5) 

this integral  being t aken  in E.  Let  V be a convex neighborhood of 0 in E. We look 

for a neighborhood U of 0 in ~)(T) such t h a t  

(5(I)(q; 9) ~ V whenever  ~f E U. (1.6) 

F r o m  (1.1) there exists a neighborhood U of 0 in O(T)  such t h a t  r V 

whenever  Z EU, and  also e~~ E U if Z E U. 

Hence,  since 

1 f 2 .  ~r 9) - ~r 0) = ~r 9) = ~ o (r  + e~~ - r  e-~~ 

we have (1.6) if 9 E  U. 

Therefore we have  obta ined  a continuous linear mapping 

9-->6(I)(q; 9) (1.7) 

/rom D(T) into E. By de]inition (eft Schwartz  [23]) this means the mapping (1.7) defines 

a distribution O(I)(q)/Oq(v) on T with values in E. This dis t r ibut ion verifies 

fT ~(I)(q) "~'d~ ~t J = ~r 9) �9 (1.s) 

(1) This reasoning is well known and we recall it here for the convenience of the reader (see 
Hille-Phillips [10] and the bibliography mentioned there). 

(2) Which holds for vector-valued analytic functions (see for instance Grothendieck [9]). 
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:DEFINITION 1.1. The distribution 5(1)(q)/Sq(z) 6:0' (T; E), the space of distributions 

in T with values in E, is the F.V. derivative o~ the /unctional q). 

Remark 1.1. If  the functional q---->(1)(q) is given continuous on C(T), then the 

same reasoning as above proves tha t  V-->5(I)(q; ~) is linear continuous from C(T)into 
E and hence a measure with values in E for the F.V. derivative 8r 

Example 1.1. Let  E=~'(~)) ,  distributions on ~ ,  where ~2={x, t l x eR ,  t > 0 }  and 

let T = ( 0 , ~ ) .  For  qE~)(T) let (I)(q) be the funct ion x,t---->q(t) so tha t  5(I)(q;~r is the 

function x, t---->y~(t). I t  follows tha t  6r is the function 

z-->lx| 

z/> O ~ D ' ( ~ ) ,  

where 6t(~) is the :Dirac measure in t a t  the point  v (so tha t  (l~| 

(f~_u(x)dx)v(v), u and v being test functions). To show this we need only note tha t  

and <dr u(x)v(t)>= u(x)dx) (f :v(t)w(t)dt). 

Example 1.2. Let  E and T be as in Example  1.1 and for qeD(T)  let O(q) 

be the con,stant x, t---->q(s), where s is fixed. Thus bO(q; yJ) is the function, x, t-->yJ(s), 

from which it follows tha t  (Sc9(q)/bq(v) is now a distribution, ~t~(s)| This is clear 

since if y~ is given in ~(T) ,  then 

f ~(s)| lx.t ~v(v)d~ = y~(s), 

an element of /)~.t and hence the result. 

I f  we assume in (1.8) tha t  v->~r is actually a co~tinuous function from 
T to E, then one can define tim value of this function at the point  T 0 E T  by 

,5~(q) 
- l i r a  5 (I ) (q;  ~on) ,  

(~q(~o) 

where yJ~ E O(T) and the support  of yJ~ are [v 0 : ~ ,  T 0 t fl~], ~/~,~- >0, ~v~ ~> 0, fW~(v)dv-- 1, 

and where ~f~-->~(v0) for the weak topology of measures on T. One says tha t  ~, is 
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a regularising sequence at To. Assuming that  

~[ap(q + - in E 2->0 ~ )  ~(q)]-->~r ~o) a s  

uniformly for % an element of a regularizing sequence, one obtains 

~*(q) = lim(~p(q + ~yjn) - cb(q!) 2-->0 (1.9) 
~q(~0) ~ ' ~-~(~0)" 

We can state this results as follows; we introduce the 

DEFINITION 1.2. A sequence ~cnE~(T) is a F.V. sequence at the point ~ if: 

(i) The support of ~n is [~+~n,T+fln], ~nfln-+O (Of arbitrary sign). 

(ii) max ]q~n (t)I-->O. 

Then ~ f l n = ~  is a F.V. sequence at the point ~ and 

6(I)(q) = lim/(I)(q + ~Vn) - (I)(q)t, (1.10) 

where {(?n) is a F.V. sequence at ~. 

This is the original definition of Volterra [26]. One can show (cf. Volterra [26]) 

that, conversely, if a functional (I)(q), verifying (1.1) and (1.2) admits a F.V. de- 

rivative (given by (1.10)) for every ~ET, and that  ~-+r is, for example, 

piece-wise continuous with values in E, then T-->(~(q)/Ot(T) defines a distribution 

which coincides with the distribution defined by (1.8). (1) We shall need 

L~MMA 1.1. Let q3(q) be a /unctional veri/ying (1.1) and (1.2) such that 

r)~P(q) = 0 in ~'(T,  E), /or every q E~(T). (1.11) ~q(~) 

Then ~(q) does not depend on q. 

Proo/. I t  follows from (1.3) that  

d 
r + ~ )  = ~r + ~ ;  ~), (1.12) 

(1) Our more general  def ini t ion allows us to consider s imultaneously the  ordinary  and  the  "'ex- 
cept ional"  points  of Volterra  (of. Vol terra  [26]). 
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d d 
since ~/~ O(q + ~p) = dzz O(q + (2 + z)~)Iz- 0. 

60(q + $~p; v/) = f 5(1)(q + ~v2) ~fl(v)dT = O, But  
r 5q(~) 

by  (1.11) so tha t  (D(q+8~v) does not  depend on 8 and this for every q and y, in O(T) 

from which the result follows. 

Remark 1.2. Let  us apply definition (1.10) to example 1.1. We must  consider 

O(q + cp,) - (1)(q) 

f :q~.( t )dt  ' 

where {qg.} is a F.V. sequence at r. We obtain 

lx| .~n(t )  , 

j o qJn (t)dt 

which converges to l~| as n - + ~ .  

2. A functional associated with a Cauchy problem 

Let  A =A(8/Sx) be a partial differential operator with constant coe/[icients on R. 

We consider the Cauchy problem: 

8 
Axu(x, t) + ~tu(x, t) + w(x)u(x, t) = ixq(t)u(x, t), (2.1) 

~(x, o) = l (x ) ,  (2.2) 

where x E R, t > 0,/(x) is given and with growth conditions on / (x )  and u(x, t) as x-~ _ oo. 

We will assume q(t) real and continuous and w(x) continuous and complex-valued. 

We now make precise assumptions. Let  .& be a vector topological space, locally 

convex, complete, of functions or distributions on R~. We assume 

For  every a E A ,  wa(x-+w(x)a(x)) and xa are defined as ele- ] 

ments  of O'(R), distributions on R; the mappings a--~wa and I (C.1) 

a--~xa being continuous. 
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Given / E  A,  there  exixsts  one and  on ly  one funct ion,  t->u( �9 ,t), 

cont inuous  from t>~O--~A which is a solut ion of (2.1) and  

(2.2). W e  assume fu r the r  t h a t  the  ma pp ing  ]-:>u is cont in-  

uous from A-->C(O, ~ ; A) ,  the  space of cont inuous  funct ions (C.2) 

from t~>0-->J4 wi th  the  topo logy  of un i form convergence on 

every  compac t  set. (1) 

We define in  this  way  a funct ional  

q-->u(q) = u(x, t, q) = u(q; x, t) 

def ined  for q(t) EC(T)  (continuous funct ions  in t~>0) and  wi th  values  in C(0,oo; A) .  

W e  need two more  assumptions .  

The solut ion of (2.1) and  (2.2) in C(0,oo; A) is stable in q, 
(C.3) I i.e., q-->u(q; x, t) is cont inuous  from C(T) to  C ( 0 , ~ ;  A).  

Le t  ~ ( A )  be the  space F~(C(R), "..4) of cont inuous  l inear  mapp ings  from C(R), 

cont inuous  funct ions  on R, into A.  ~ ( A )  is a subspace  of ~ ' ( A ) ,  d i s t r ibu t ions  wi th  

va lues  in A.  W e  will assume 

Given g E ~ ( A ) ,  g = 0  for t < 0 ,  there  exists  a unique ele- 

men t  u E ~ ( A ) ,  u = 0  for t < 0, which is a solut ion of 

(A~ + ~ + w(x) - ixq(t))u=g . (c.4) 

The mapp ing  g-->u is cont inuous  f rom ~(~4)  in to  itself. (e) 

Our purpose  in th is  sect ion is to  s tudy  the  Vol te r ra  der iva t ive  of the  func t iona  

q-->u(q). One has 

T ~ E o ~ E ~ 2.1. Assuming (C.1) - (C.4), the junctional q--->u(q; x, t) = u(x, t; q)/rom 

C(T),  T =  [0, ~ ) ,  into ~(. ,4) admits a Volterra derivative /or every ~> O. This  Volterra 

.derivative 5u(x, t; q)/(~q(~) is characterized by the/ollowing properties: 

~u(x, t; q) = 0 /or t < ~, (2.3) 
~q(~) 

(1) In other words the Cauchy problem is "well set" in the sense of I-Iadamard. Notice also that 
the space I4 contains the conditions at oo in x. 

(2) In this statement the initial Cauchy condition is contained in the second member g (Sobolev- 
Schwartz method). 

11 - 6 2 2 9 0 6 .  Acta mathematica 108. Imprim6 le 21 d6eembre 1962 
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/or t > 3, (~u(x, t; q)/(~q(3) is the solution o / t he  Cauchy problem, 

a . . . .  ~ ~u(x, t; q) 
Ax + ~ + w(~) - ~xq~) ~-~) = o 

(~u(x, 3; q) 
= ixu(x, 3; q) 

~q(3) 

, t; q) is continuous /rom t >~ 3-->~4.(1) 

(2.4) 

Proo/.  Let  

A 0 A =  x + St + w(x) (2.5) 

and  le t  ~n be a F.V.  sequence a t  T. W e  consider 

By  def ini t ion 

v~ = v.  (x, t) = u(q + ~ ;  x, t) - u(q; x, t) 

f~( t)dt 

A u ( q  + ~ ;  x, t) = ix(q + ~ )  u(q + ~ ;  x, t), 

Therefore,  

u(q + q.; x, o) =/ (x) .  

Avn - ixq(t)vn = ixu(q + ~n; x, t) ~n(t) 

.(tldt 

v .  (x, O) = O. 

(2.6) 

(2.7) 

Thus,  v~ is the  solut ion of the  non-homogeneous  Cauchy prob lem (as in (C.4)) wi th  

second member  

q.(t) 
gn (x, t) = ixu(q + On; x, t) . (2.8) 

fQ~( t)dt 

As has a l r eady  been observed  

q~(t) ->tt(T) 

fe.( t)dt 

(1) This Cauehy problem with initial value at t =• is well set under hypotheses (C.1)-(C.4) (re- 
place t by t+T and note by (C.1) that x--->u(x, T; q) belongs to A). 



F.V.  VARIATIONAL EQUATIoNs 163 

weakly in the space of Radon  measures on Rt, and according to ( C . 3 ) a n d  (C.1), 

ixu(q + o~n; x, t)-+ixu(q; x, t) in the space C(0, cr ; ,-4). Therefore  

gn-+ixu(q; x, t) (~t(~) = ixu(q; x, 3) ~t(r) (2.9) 

in 7/~(J4). By  (C.4) it follows t h a t  v~ converges in }~/(A) to the unique solution v in 

~ ( A )  of 
A v  -- ixq(t)v = ixu(x,  t; q) 5t (3). (2.10) 

v(x, t; q) = 0 for t < 0. (2. I 1) 

This proves a l ready t h a t  6u(x, t; q)/~q(~) exists (in ~'/l(A)) and t h a t  

5u(x, t; q) 
v -  ~(--~-  (2.12) 

Let  us now introduce the  unique function t-+ U ( . ,  t; q), continuous f rom t ~> ~-+A,  with 

A U - i x q ( t ) U = O ,  t > ~ ,  (2.13) 

U(x, v; q) = ixu(x ,  3; q). (2.14) 

I f  ~ (x , t ; q )  is defined as U(x, t ;  q) for t >iv and 0 otherwise, then  we have  

A ~  - ixq( t )~  = ixu(x ,  3; q)(~t (~), (2.15) 

and,  of course, ~ = 0 ,  t < 0 .  (2.16) 

B y  comparing (2.10), (2.11) with (2.15), (2.16) and using the uniqueness in (C.4) we 

obtain  t ha t  v =  U. This completes the proof of the  theorem.  

Remark  2.1. Taking E = ~ ( A )  we see t h a t  the functional  q--~u(q) verifies (1.1) 

and  (1.2). lndeed,  (1.1) follows from (C.3) (and more precisely q-~u(q)  is cont inuous 

with values in C(0, ~ ;  J4)). One proves  (1.2) b y  the same reasoning as above in the  

proof of Theorem 2.1. I n  this way  one obtains t h a t  6u(x,t;q;~v) is the  solution of 

ASu(x ,  t; q; ~v) - ixq(t)6u(x,  t; q; ~v) = ix~v(t)u(x, t; q), 

(~u(x, 0; q; ~v) = 0, 

and  then  by the  same reasoning as in Example  (1.1) one obtains  Theorem 2.1. 
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3. A Volterra variational equation 

Our aim in this section is to see to what  ex ten t  properties (2.3) and (2.4) 

"character ize"  u(x, t; q). More precisely, let O(x, t; q) be a functional verifying 

O(x, t; q) E C(0, ~ ;  •), q-->O being continuous from } (3.1) 

C(T), T = [0, oo), into C(0, oo; A), 

and if E=)~(A) ,  (1.2) holds and we can define } (3.2) 

SO(x, t; q)/~q(7) in ~ ( A )  for every  7 > 0. 

Let  us denote by  ~F(x, t; q) the solution of the Cauchy problem: 

(A-ixq( t ) )vF=O for t>7,  ] 

1F(x, 7; q) = ixO(x, 7; q)' l (3.3) 
�9 ( . ,  t;q) continuous from t ~> v-*A.  

Let  ~ (x ,  t; q) = ~(x ,  t; q) if t >~ 7 and 0 otherwise. We now fur ther  assume about  �9 tha t  

it  verifies the following Volterra variat ional  equation: 

SO(x, t; q) = ~ (x ,  t; q) (3.4) 
~q(T) 

with the boundary conditions: 

O(x, 0; q) = / (x ) , / ( x )  given in A, (3.5) 

A(x, t; 0) = 0. (1) (3.6) 

We want  to prove now 

THEO~]~M 3.1. Assuming that (C.1)-(C.4) (of section 2) hold, there exists one and 

only one /unctional O(q) veri/ying (3.1), (3.2), (3.4), (3.5) and (3.6). This/unctional �9 is 

(3.7) 

(3.5) 

(3.8) 

the unique solution o/the Cauchy problem: 

(A - ixq(t)) �9 = 0, 

O(x, 0; q) =/(x), 
t-->O( " , t; q) is continuous /rom t >~ O--> A. 

Proo]. Let  us introduce the new functional 

R(x, t; q) = AO(x, t; q) - ixq(t)O(x,  t; q). (3.9) 

(1) This is a new kind of "boundary condition". 
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Considered as a functional with values in D'(Rx • this functional  verifies (1 .1 )and  

(1.2). As is easily checked, it  follows f rom (3.9) t ha t  

~R(q) 
~q(~) - (A - ixq) 5r _ ixCO(q)~t(T). (~q(T) 

From (3.3) and (3.4) it follows tha t  

Bu t  L e m m a  1.1 and (3.10) imply  

~R(q) 
6q(~- = 0. (3.10) 

R(q) = R(x, t; q) = R(x, t; 0), (3.11) 

and  (3.6) and (3.9) imply  t h a t  R(x, t ; 0 ) = 0 .  Thus R(q)=0 and we have  

(A - ixq(t) )r = O. 

Therefore,  i/ a solution exists, it is necessarily given by  the  unique solution of the  

Cauchy problem (3.7), (3.5), and  (3.8). Since, b y  Theorem 2.1, we know t h a t  this  

solution actual ly  verifies (3.1), (3.2), (3.4), (3.5) and (3.6), the  theorem is proved.  

4. A functional  associated with a mixed problem 

We introduce the following notat ions.  Le t  H and K be two Hi lber t  spaces. I f  

/ , g E H  (and u, vEK) ,  (/,g) (and ((u,v)) denote the  scalar p roduc t  of / and  g (and u 

and  v (in H and K respectively).  We assume t h a t  K c H,  the  injection K - + H  being 

continuous, and K being dense in H.  We set I/I = (1,/)~,11~II = ((u, ~))~. 

We assume t h a t  t varies in ( - ~ , t 0 )  where t 0 > 0  is fixed. Le t  a(t;u,v) be a 

family  of continuous sesquilinear forms (1) on K • K.  We assume t h a t  a(t; u, v) is given 

for t < t 0  and t h a t  the funct ion t-->a(t; u, v) is continuous on ( - ~ ,  to], for every 

u, v E K, with 

la(t;u, v) l< MtI~II Ilvll, 

where M is a constant  independent  of t. (z) I f  X is a Banach  space, b y  L2(~, fl; X) 

(1) a(t;u,v) is a linear in u, semi- (or anti)- l inear in v and ]a(t;u,v) l<~c(t)llull ]tvll. 
(2) We are no t  looking for  the mos t  general hypotheses  here. We notice t h a t  the behaviour  of 

a(t; u, v) for t < 0 is irrelevant for  wha t  follows. For  this kind of problem the  reader  is referred to 
[17] (where K = V). 
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we mean  the  space of the  (classes of) funct ions  in (~, fl) which are  square in tegrable  

wi th  values in X.  I f  X is a H i lbe r t  space (scalar p roduc t  (/, g)x), then  L2(ct, fl; X) is 

a H i lbe r t  space for the  scalar  p roduc t  

f ~J(t),  g(t) )xdt.  

W e  make  now the  first  hypothesis .  

Given ] E H and  g E L2( - ~ ,  to; K),  with g = 0 for t < 0, there  

exists  an  unique funct ion u E L ~ ( - ~ ,  to; K),  wi th  u = 0 for 

t < 0, such t h a t  (1) 

a(t; u(t), v) + d (u(t), v) - iq(t) (Bu(t),  v) = ( (g(t), v) ) + (/, v)~ 

for every  v E K,  where(2) B E E ( K ;  H),  q is given cont inuous  

in ( - ~ , t o ] ( ~ )  and  where ($ is the  Dirac measure  a t  the  

origin. 

(M.1) 

F r o m  (M.1) and  the  closed graph  theorem,  i t  follows t h a t  {/,g}-->u is cont inuous  

from H • L2(0, to; K)--->L~(O, to; K).  (4) W e  define in this  way  a funct ional  q-->u(q) = u(t; q) = 

u(q; t) from C(T),  T = [0, to] to  L~(0, to; K) .  (5) 

We assume (for th is  k ind  of s t ab i l i ty  condi t ion the  reader  is referred to  [17, 

chap te r  IV]): 

The mapp ing  q-->u(q; t) is cont inuous  from C(O, to)-->L2(O, to; K) .  (M.2) 

Le t  us compare  these hypotheses  wi th  those  made  in sect ion 2. Here  the  space 

~4 is rep laced  to  a cer ta in  extent ,  b y  the  two  spaces K and  H,  and  the  space of 

continuous funct ions  wi th  values  in ,4 is rep laced  b y  L2(0, to; K) .  (~) The  fact  t h a t  in 

sect ion 2, a-->wa is cont inuous  from A-->J4 is conta ined  here in the  hypothes i s  t h a t  

a(t; u ,v )  is cont inuous  on K •  (see sect ion 9) and  the  fact  t h a t  in sect ion 2, a-->xa 

(1) d/dt is taken in the sense of distributions in ( -  c~, to) 
(2) In general we write ~(X; Y) for the space of continuous linear mappings from X into Y. 
(8) Or in [0, to] since one can then extend q arbitrarily for t< 0. 
(4) One can, of course, identify LZ(0, to; K) with the subspace of LZ( - c~, to; K), consisting of the 

functions which are 0 for t < 0. 
(5) qCL~(0, to ) would in general be enough (cf. [17]). 
(~) The fact that we replace "continuity" by "'square integrability" is the main advantage of  

this presentation since (~u/~q(v) has essentially a discontinuity at t = T. 
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is continuous from ~4-+A is replaced, again to some extent (cf. section 9), by  the 

hypothesis BEI~(K;H). Then (M.1) replaces (C.2) and (M.2) replaces (C.3). We shall 

also need: 

I t  is possible to choose / E H  v a subspace of H, such that 

the corresponding solution of the mixed problem in (M.1), (M.3 h 

with g =0,  is continuous from t >~0-->K. 

We can now prove 

T ~ E O R E ~  4.1. Assume that (M.1), (M.2) and (M.3)1 hold and that / is given in H 1 

and g=O. Let u=u(q;t)  be the solution o/ the mixed problem in (M.1). The Junctional 

q-->u(q; t) admits, as a/unctional with values in L2(O, to; K), a Volterra derivative at ~, T > O. 

This derivative (~u(t; q)/(~q(~) is characterized by 

~u(t; q) ~ 5u 
tL~(--  ~ ,  t0;K), bq(~)=O /or t<~, (4.1) 

[. ~u(t; q) ~ d (~u(t; q),v~ -iq(t) [~u( t ;  q) a~;  ~ - ~ - ,  v) + d-t \ (~q(~) ] ~ ~ q ~ ,  v) (4.2) 

= i(Bu(~; q), v) 6t(~) /or every v E K. 

Proo/. The proof follows the same lines as that of Theorem 2.1. Let ~n be a 

Volterra sequence at the point v. Setting 

we have 

u(t; q + q~) - u(t; q) 

q)~(t) fq~(t)dt ' 

d = i _ q n  (t) a(t; q~(t),v) +~(9~(t),v)-iq(t)(Bq~(t),v) J~(~(t)dt 

(4.3) 

(B u(t; q + qn), v). (4.4) 

Now let ~(t) be a once continuously differentiable function on [0, to] with ~(to)=0. 

I t  follows from (4.4) that  

~'~ ~n (t), F( t ) ) -  (q~n (t), y/ (t) ) - iq(t)(Bqgn(t), y)(t) ) }dt 
Jo 

i /.to 
- -  l" -- J o ~ ( t ) ( B u ( t ; q + ~ ) ,  ~(t))dt, 

J ~  (t)dt 
(4.5) 
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v 

where here ~0(t)=$(t)v. Hence  (4.5) holds for yJ(t)=~=~i(t)v~,.= and passing to the l imit  

(cf. details, for instance, in [17]), (4.5) holds for every y3 E L2(0, to; K), with ~0' E L2(0, to; K),  

W(t0) = 0 .  

Now as n - - > ~ ,  the second member  in (4.5)converges to (Bu(T;q), yJ(T))where we 

use here (M.3)1 and  / E H  1. B y  using stabi l i ty  results given in [17], it follows t h a t  

~-->q~ in L2(0, to; K) which a l ready proves  t ha t  (Su(q)/(~q(T) exists and  indeed actual ly  

equals ~. Moreover q~ verifies 

f 
ro 

o {a(t; ~(t), ~fl(t)) - ((p(t), ~'(t)) - iq(t)(Bq~(t), ~p(t))}dt = i(Bu(~; q), ~p(~)) 

and this is equivalent  (cf. [17])wi th  

a(t; q~(t), v) + d (qD(t), v) - iq ( t )  (Bq>(t), v) = i(Bu(z; q), v) 5t (~), 

where v E K ,  (extending ~ by  0 for t < 0 )  and  this proves the  theorem. 

Remark 4.1. I t  is possible to give here a converse p rope r ty  analogous to the  

one given in section 3 bu t  we do not  give details. 

Remark 4.2. The functional  q-->u(q;t) verifies (1.1) and  (1 .2 ) i f  qEC[O, to] and 

E=L~(O, to;K). Same proof as in Theorem 4.1 (cf. R e m a r k  2.1). 

5. F.V. derivatives of higher order 

Let  us again consider a functional  q-->(I)(q) as in section 1. For  every  

{~/)1,~)2 . . . . .  ~n) E O(T)  n = O(T)  •  • O(T)  

(n times), we define 

on(~(q; ~)1, ~/)2, . . . .  ~/)n) --  ~ 1  ~ 2 " "  ' ~ n  (I)(q ~- ~1 ~/)1 -~- "'" -~- ~n ~])n) I ~t=0 �9 (5.1) 

We define in this way  an n-linear mapp ing  y~l, yJ~ .... .  ~fn-->(~n~p(q; ~1, Y)2 . . . . .  ~n), f rom 

D(T)n -~E .  This mapping  is continuous and  hence defines a distr ibution,  

On~9(q) e D'(Tn; E). (5.2) 
6q(vl)...Oq(~n) 
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( "36, O(q--),3,yJ:('i::)...%(v~)d3:. 
J T  q( 1}"" qt n) 

I t  is easy  to  check t h a t  

d~ ~=o= ~ ~n~o) ~=o' 

hence 

2 q( ~)... q (~ )  

169 

- (5.3) 

(5.4) 

(5.5) 

Since ~ - ~ O ( q +  ~ )  is an  ent ire  ana ly t ic  function,  one has (in the  space E)  

n~0 �9 

and  using (5.5) we obta in  

n>~O �9 J T (~q(31)., .(~q(Tn) ~(31) '"  '~~ "d3n" 
(5.6) 

This is the  F.V.  series of the  funct ional  (cf. Vol ter ra  [26]). The distributions 

~(Ig(q)/(~q(31)...Sq(3~) are the F .V .  derivatives o/ higher order. I n  w h a t  follows we are  

especial ly in teres ted  in the  case when the  dnr are /unctions and  i t  

will be essential  to define (~nOp(q)/~q(~l)...Sq(3n) on the diagonal 31= 32 = ... = 3n = 3. But  

the  funct ions 5~r ~q(Tn) are  not continuous (in our  case) so t h a t  one has  to  

define with care (~r when T 1 = T2 = ..- = ~n = 3. W e  t ake  the  following 

D E F I N I T I O N  5.1.  

(of course, when this  l imi t  exists).  

n =  2, 3 . . . .  (5.7) 

Remark 5.1. One has the  obvious genera l iza t ion of L e m m a  1.1 b y  replacing 

(~/(5q(3) with  ~/~q('q)...~q(3,) b u t  no genera l iza t ion  when replac ing 8/~q(3) b y  (~/(~q(3)L 
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6. The higher order F.V. derivatives of the functional u(q) defined in section 4 

We shall need in this section a stronger hypothesis  t han  (M.3)l of section 4. 

I t  is possible to choose [ E Hm, a subspace of H, such t h a t  

the corresponding solution of (M.1) (section 4), when g=O, (M.3)m 

verifies the  conditions: u(t),Bu(t) ..... B(m-1)u(t) arc a]l con- 

t inuous f rom [0, to] into K. 

We  can now prove  

T H E O R E M  6.1. We assume that (M.1), (M.2), and (M.3)m hold, / being given in Hm 

and g = 0 .  Then dmu(q)/Sq(~) a (cf. definition 5.1) exists and is characterized by: 

and 

5mu(t; q) 5mu(t;q) EL~( c%t0;K),  ~ - ~  = 0 / o r  t< ~ 

a(t; (~mu(t' q) ~ + d_ [(~mu(t; q) ~ . 5mu(t; q) 

= ((iB)mu(~; q), v) ~t(T)/or v E K .  

(6.1) 

Proo/. The proof  is by  induction on m. First  of all the result  is t rue for m = 1 

(Theorem 4.1). Assume then t ha t  6m-lu(q)/~q(~)a-l=Um_l(q)=Um_l(t;q) exists and is 

the  unique solution in L"-(-  oo, to; K), which is 0 for t <  0, of 

a(t; um-l(t; q), v) + d t (Um-l(t; q), v) - iq(t) (Bum-l(t; q), v) = ((iB)m-lu(~; q), v) (~t (~). (6.3) 

7/$ We now deduce the  result for m. Le t  9, be a Volterra  sequence a t  T*, > v .  Le t  

us set 

1 
(~n(t) = (Um-l(t;  q §  en) -- Um-l( t ;  q)). (6.4) 

fQ,  (t) dt 

We obtain  

a(t; q~, (t), v) + d dt (% (t), v) - iq(t) (Bq~, (t),v) 

i 
f9 ~n (t) (BUm_l (t; q + Q,), v) -~ 

,( t)dt 

1 
((iB)m-l(u(v; q + Qn) - u(~; q)), v) Ot (3). 

(6.2) 
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Multiplying by  ~(t) EC'(0, to), ~(to)=O and integrating in t we obtain (as in Theorem 

(4.1)), 

f i:'{a(t; q~. (t), v2(t) ) - ( ~  (t), w' (t) ) - iq(t) (Bq:~ (t), v/(t)}dt) 

i r t~ ((Bi)m-lU(V;q+~-n)--U(V;-q),F(T)) (6.5) 
= ~ -  Jo  (Bu'-~(t;q+~ + \ fo~(t)dt 

Jo~(t)dt 

t 2 �9 �9 for every  v2EL2(O, to;K),y~ EL (O, to, H),~(to)-:O. But  as n-->~, 

u(z; q + ~o~) - u(t; q)-->Su(~; q)/Sq(~*) = ~ in K 

~ - -  f o,~ (t)dt 

and, moreover,  B~n-->B~ ..... B'~-I~n---~Bm-I~ in K since /~Hm. But  (cf. Theorem 4.1) 

(~u(T; q)]Sq(v*) = O, since ~ < 3" and therefore 

~ltm- 1 ~ 5m lu(q) 
~q(~:*i 6q(v*) Oq(v),.-1 - UT. 

exists and is characterized as the unique solution in L ~ ( - c ~ , t o ;  K) which is 0 for 

t<0, of 

d 
a(t; UT, (t), v) +dt (U~. (t), v) - iq(t) (BUT. (t), v) = ((iB)um-1 (v*), v) ~t (v*) for v e K. 

I t  then  follows (cf. also section 8) that ,  as v*-->v, UT.--->U in L2(O, to; K), where 

U is the unique solution in L 2 ( - ~ ,  t0;K), which is 0 for t < 0 ,  of 

a(t; U(t) ,v)§ . (Sq(~) m-1 (6.7) 

But  the induction hypothesis implies tha t  

om -lu(~; q) = (iB)'n-lu(v; q) 
Oq(~) m-1 

and  hence the theorem follows. 

Remark 6.1. According to Remark  5.1 there is here (when m >  1) no converse 

proper ty  analogous to the one of section 3. 
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7. The operational calculus 

Under  the hypotheses of Theorem 6.1, one can define 

(7.1) 

where P ( 2 ) =  ~ ak2 ~, akEC. (7.2) 
k = 0  

If  now we assume tha t  (M.3)m holds /or every m (and taking /E ~Hm) w e  can define 
m 

P( - i~/~q(~))u for every polynomial  and, consequently, we can define F( - i6/~q(~))u 
for suitable functions F(~t). 

We shall assume 

(M.3)m holds for every m and it is possible to choose a 

sequence of polynomials P,n(~) such tha t  Pm(2)-->F(~)in such 

a way  tha t  for ] E HF c N Hm c H, the corresponding solution 
(M.3)~ 

of (M.1) (section 4), with g = 0, verifies the condition: Pm (B)u(t) 
converges to a limit in H, uniformly on every compact  set, 

the limit being called F(B)u(t). 

We have then 

T ~ E O R E M  7,1.  We assume that (M.1), (M.2), and (M.3)F hold, and we take/EHF 
and g =0 .  Then, the sequence (1) Pm(-i~/Sq(v))u(t; q) converges in L~-(O, to; K) to a limit 
called F( - i ~/(Sq(~))u(t; q). This limit is characterized by 

- i 

and 

a(t; F ( - - i ~ )  u(t;q),v) + :-t ( F ( - i ~ )  u(t; q), v) - i q ( t ) ( B E ( - i ~ )  u(t; q), v) 

=(F(B)u(T;q),v)St(v) /or v6K.  (7.4) 

Proo/. We observe tha t  f rom Theorem 6.1 it follows tha t  

(I) The Pm are the polynomials introduced in (M.3)F. 
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- i (~ dt i (~ v) 

F r o m  (M.3)F and  the  s t ab i l i t y  p roper t ies  of the  solut ion of the  mixed  p rob lem 

wee see t h a t  Theorem 7.1 follows from (7.5). 

5mu(t: q) 
8.  T h e  f u n c t i o n  T - - - ~ - -  ~q(T) m 

We wan t  to  prove in this  sect ion 

T H E o R ~ M 8.1. Under the hypotheses o/Theorem 6.1, the/unction T-->~mu(t; q)/~q(T)" 

is continuous/rom [0, t0]--~L2(0, to; K)  

Proo/. This follows from equat ions  (6.1), (6.2) and  the s t ab i l i ty  proper t ies  of mixed  

problems given in [17]. In  the  same way  we have 

T H E O R ~ M 8.2..Under the hypotheses o/Theorem 7.1, the/unction T->F( - i~/Sq(~))u(t; q) 

is continuous ]rom [0, to]---> L2(O, to; K).  

9. E x a m p l e  1 

We wan t  now to a p p l y  the  considerat ions  above to  the  Cauchy problem for the  

parabolic operator 

1 ~2 ~ - ixq(t), 
- 2 ~x --~ + V(x) + ~t 

where V(x)>~O is a given funct ion  cont inuous on ( - ~ ,  ~)(1).  Le t  us in t roduce  the  

spaces H and  K.  We t ake  H = L 2 ( - ~ ,  ~ )=L2(R)  so t h a t  if / , g E H ,  

(/,g= f~_ /(x)g(x)dx 

as usual.  F o r  K we t ake  the  space of funct ions u E H such t h a t  

du  
(1 + V(x))�89 and  ~xEL~(R).(2) 

(1) Actually measurable is enough here. 

(3) du/dx is taken in the sense of dis t r ibut ions on R. 
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l~or u, v E K,  we set 

((u, v)) = (1 + V(x))u(x)v(x)dx + I . . . .  dx, 
,]._ :r dx 

not ing t h a t  for this  scalar  p roduc t ,  K becomes a Hi lbe r t  space. F o r  u, v E K  we set 

1 ~r162 dudO j['~r 
a(t;u,v) = ! - - - - d x +  V(x)uOdx.(1) 

2 J _ ~r dx 
(9.1) 

The opera to r  B (using the  no ta t ion  of sect ion 4) is the  opera to r  B: / - + x [  of mul t i -  

p l ica t ion  b y  x. This  defines B E F , ( K ; H ) i f  V(x)>~clx]2. W i t h  simple changes the  same 

s i tua t ion  ob ta ins  if V(x )~c]x  I (cf. R e m a r k  9.1). Ac tua l ly  if V(x) is  only assumed >~0 

all of wha t  follows is correct  b u t  with less obvious changes in the  proofs  (cf. R e m a r k  

9.3 a t  the  end of this  section), therefore,  we will f irst  assume t h a t  

I f  we set 

V(x)>~c]xl, c > 0 .  (9.2) 

f oOoox u ~ dx , ~(t; u, v) = a(t; u, v) - iq(t) (9.3) 

then  we define a continuous sesquil inear  form on K •  (using (9.2)) and  since q(t) 

is real:  

l dv'dxdx 
Re~(t;v,v)+X]vl~= ~ + (R+ V(x))lvl dx  llvll , (9.4) 

where a > 0 ,  v EK  and  2 > 0 .  Therefore,  b y  [17, chapter  IV] there  exists  a unique 

u E L e ( - ~ ,  t0;K) such t ha t  u = O  for t < 0  and  such t h a t  for every  v E K  

(fL,(x. ) ~(t; u(t), v) +dt  (u(t), v) = (x, t~;~xidx + idx 6t, (9.5) 

where / is given in H and 

(1 + V(x))-i  g(x, t) E L2(0, to; H).(2) (9.6) 

Taking  der iva t ives  in the  d i s t r ibu t ion  sense we can write (9.5) as 

(1) So that a(t; u, v)=a(u, v) does not depend on t. All our considerations apply, however, with 
easy changes to the case where V(x, t) depends on x and t (and in that case a(t; u, v) depends on t). 

 ir)' (~) I.e. g(x, t)]2dxdt< c~. 
~ 1 +  
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1 ~2u 
- :2 ax ~ + V(x)u  + ~-t- - ixq(t)u = g(x, t) +/(x)|  (9.7) 

This solves the Cauchy problem. The solution depends continuously on q(t) (cf. [17]), 

when q varies in CO, to). Moreover, (M.1) anal (M.2) hold. I t  is known ([17, Chapter  

IV/) t ha t  t->u( .; t) is almost everywhere equal to a continuous function from [0, to]-+H 

with u( �9 ; 0) - / .  We define now the subspace Hm of H. Let,  for m a positive integer, 

Um =  {/I (1 + x2)m/EH} (1) (9.8) 

and let H~r = N Hm. (9.9) 
m~>0 

We now prove 

P R O P O S I T I O N  9.1. I /  / E H  1 and g=O,(2) the solution u el the Cauchy problem 

(9.7) verifies the condition: 

t-->u ( .; t) is cont inuous/ram [0, to]--->H 1. (9.10) 

Proo/. For  u, v E K ,  let us set 

1 ~:r dud~ 
al(t; u, v) = a 1 (u, v) = ~ J  ~ dx  d-x dx 

. . . .  ~r x d~ 2x~ 
\dx  - . xe)~ u~dx, (9.11) 

which defines a continuous sesquilinear form on K •  As was done above one now 

checks tha t  there exists (s) a unique u x E L 2 ( -  oo, to; K) such tha t  u 1= 0 for t < 0 and 

such tha t  for every v E K  (we use here the fact tha t  (1 + x 2 ) / E H ) ,  

al(t; ul(t), v ) - i q ( t  ) _ xul  ( t)~dx§ )~ (ul(t), v )=  (1 + x2)/(x)~(x)dx. (9.12) 
o o  

f 
~ 

(1) I.e. (1 +x2)2m]/(x)i2dx<c~. For convenience let Ho=H. 

(') More g e n e r a l l y ,  J 0 J  ~ ;~IT~) [g(~'t)l'd~'dt<~" 

(a) In. the inequality which corresponds to (9.4) one must now take ). "large enough". 
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Equat ion  (9.12) can be writ ten in the form 

la2Ul X ~Ul ~ ( X ) 2x2 
2 ~x 2 + V(x)ul-ixq(t)ul-~ l~-x  2 ~xx ~ x  l ~ x  2ul - (1+x2) 2u~=(l+x2) 

and therefore 

1 ~ 2 (  Ul ~_? -~xq(t)( l+x2)=/(x)~t .  

/(x) (~t, 

From the uniqueness proper ty  we have 

ul(x, t) 
X+X 2 

- - - -  = u(x, t). (9.13) 

Bu t  since t-->ul(., t) is continuous from [0, to]--->H, we have tha t  (9.10) follows from 

(9A3)  and the definition of H 1. 

This, a l though not  equivalent, has the force of (M.3)1 by  noticing the 

Remark 9.1. Under  the hypothesis  of Proposit ion 9.1, u(t)does not  necessarily 

belong to K and B: /-->x/ does not  map K into H,  i.e., we are not  exact ly in the 

si tuation of (M.3)I but  t-->u(t) is continuous from [0, t0]-->H 1 and B EC(H1;H ). 

Applying Theorem 4.1 we obtain 

P R O r O S I T I O N  9.2. I /  (9.2) holds and i/ /CH~, then the solution u o/ the Cauchy 

problem (9.7) (with g=ff )  admits a Volterra derivative ~u(x, t; q)/~q(~) which is charac- 

terized as the unique solution in L2( - c~, to; K), which is zero/or t < O, (1) o/ 

1 ~2 )Su(x,t;q)=ixu(x,~;q)~t(~)" 
- ~ ~x 2 + V(x) + ~ t -  ixq(t) 6q[~) (9.14) 

Remark 9.2. We are by  no means looking for the largest space H 1 where the 

conclusion of Proposit ion 9.2 is valid, e.g., a simple generalization is obtained by  

replacing 1 + x 2 by  (1 + x2) �89 

If  /EHm, we can use (M.3)m and Theorem 6.1, hence 

1 ) R o P o s I T I o N 9.3. I /  (9.2) holds and i / / E  Ha, the solution u o/the Cauchy problem 

(9.7) (with g = 0 )  admits a Volterra derivative bmu(x, t; q)/~q(~)m which is characterized as 

the unique solution in Le( - c~, to; K), which is zero/or t < 0(1) o/ 

(x) And actually t < "r 
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1 ~ + V(x)+~--ixq(t)~ r 
~t ] 

From this last proposition we have for /EH:r 

1 02 - ~  

177 

(ix)mu(x, T; q', c~t (3). (9.15) 

+ V(x)+~t-ixq(t))P(-i~q--~)u(x,t;q)=P(x)u(x,~;q)(~t(~) (9.16) 

for every polynomial P(2). We note that  (9.16) characterizes P(-i(~/Oq(~))u(x, t; q) by 

adding that  P( - i~/~q(v))U(x, t; q) E L2( - c~ to; K) and should be zero for t < 0. (1) In 

chapter I I  we will pass to the limit and replace P(-i~/(~q(v)) by F(-i~/Sq(v))where 

F(x) is a suitable restricted function. 

Remark 9.3. We want now to drop hypothesis (9.2) assuming only that  V(x) 

is continuous (or measurable) with 

V(x) >10. (9.17) 

The difficulty arises from the fact tha t  

u, v--~iq(t xu~dx 

is not continuous on K xK.(S) 

We then modify the preceding observations as follows. Let  us consider the class 

of functions ~0 which satisfy 

~0EL2(0, to; K), ~0' EL2(0, to; H), q~(to) = 0  ] 

and x(1 + V(x))-�89 EL~(O, to; H). (8) l (9.18) 

For uEL2(O, to;K) and ~0 satisfying (9.18) we set 

r r E(u, ~) = 3o J_:c[~x~x + V(x)u~- at J 
(9.19) 

By calculating Re E(~0, ~0), which eliminates the term in ixqq~, we see that  we can 

apply [17], Chapter 3 and therefore obtain: 

Given g with (l+V(x))-�89 to;H) and ]EH, there exists uEL~(O, to;K) 
such that  

(1) A n d  ac tua l ly  t < T .  

(8) A n d  even  n o t  def ined  in general .  

(8) Th i s  cond i t i on  is impl ied  b y  the  p reced ing  ones  in  case V(x)>~ c[x[. 

12 - 622906. Acta mathematica 108. Imprim~ le 21 d6cembre 1962 
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/'to 1"~o fo~ 
E(u, ~) = J o J_ccg(x, t)~(x, t)dxdt + _r162 O)dx (9.20) 

for every ~ satisfying (9.18). The uniqueness does not follow from the general theorem 

but is true and can be checked as follows: 

Let  us consider u with E(u, q~)=0 for every ~0 satisfying (9.18). Then (extending 

u by 0 for t < 0 )  we have 

uEL2(-~ , to;K) ,  u = 0 f o r t < 0 ,  (9.21) 

1 ~2u 
2 ~x 2 . . . .  4- V(x)u + ~t - ixq(t)u = O. (9.22) 

This implies u- -0 .  To see this let a be a function of O(R) (real infinitely differen- 

tiable functions with compact support) with a(x)= 1 in a neighborhood of zero and 

let ar(x)=a(x/r). We will let r - + ~  in what follows. Now let ~ be a regularizing 

sequence of even functions of t and let O~(t) be defined by  

I 1, 

,) 
0, 

2 
t ~ t  o n' 

2 1 
t o - -~<t<~t  o - - ,  

n n 

1 
t >~ t o - -  -. n 

Multiplying (9.22) by ((ar(X)On(t)(e)~r(t)a)On(1) and integrating over R• to) we obtain 

1_ Re f I a (Onu) a--((arO~ (~)~)dxdt + Re ( ( V(x)(O, u) ((arOn (~)~)dxdt 
2 JJax ax JJ 

- Re f f (o u) t Re f f uO: ((a,O=u)* )axdt 

-- Re(i f f xq(t)O~ u((arO~ 4)~)dxdt = 0. (9.23) 

Now the particular term 

Re f f (O~ u) ~t ( (arOn (t) ~ zt)dxdt = O, 

(1) Cf. [17] for similar techniques. A modification of this process gives uniqueness in non- 
linear problems, cf. Lions-Prodi [18]. 
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and hence letting a-+8 in (9.23) we obtain 

1 ~ F  
- R e  - + ReJJ V(x)ar 2 ffox(~ (ar~ [Onu[2dxdt 

: 0  

Noticing that  the last term on the left of this equation is itself 0 we obtain on letting 

r---~ ~ 

But now 0=0.'~<0 and hence O~u=O. Since n is arbitrary this implies u = 0 .  

We are now provided with a Theorem of existence and uniqueness and can 

therefore proceed here exactly as in Propositions 9.1-9.3. The same results are valid. 

Remark 9.4. All the results of this section are valid if we replace V(x) by 

V(x, t) with V(x, t) >10 and continuous (or even measurable). 

Remark 9.5. We have used Hilbert space methods because this gives rise to 

many generalizations (cf. section 11) and works without essential changes in the case 

of the SchrSdinger equation (next section). In the case of the parabolic operator 

treated in this section other techniques are available, especially integral equations. 

One can apply by a suitable adaption(1) the reasoning of several authors. We refer 

to Dressel [5], Fortet [7], Kac [12], Rosenblatt [20], Rosenbloom [21], and the bib- 

liography in the latter. 

10. Example 2 

We want now to consider, from the same point of view as in section 9, the 

Cauchy problem/or the Schr6dinger operator, 

i 92 . . 
~x*- -1-, V (x) + ~t - ixq(t), 

where V(x) is given i> 0 and continuous (to fix the ideas). Here we will take the spaces 

H and K exactly the same as in section 9, and we will use the same notations as used 

(t) One  m u s t  t a k e  ca re  of t h e  t e r m  ixq(t)u. 
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there. Again we define a(t;u,v) by (9.1), and we assume that  (9.2) holds. Applying 

[17, chapter 8], we have that there exists a unique function u E L e ( - c ~ ,  to; K), which 

is zero for t < 0 ,  and such that  

ia(t; u(t), v) + di (u(t), v) - iq(t ) _r162 r162 t)v(x)dx for every v e K, (10.1) 

where g(x,t) is given satisfying 

_~1+ V(x) g(x't)l~+ o~:~;.!.! ~dxdt at ] 
< ~ ,  (10.2) 

and where q E C1(0, to), q(0) = 0. (10.3) 

We notice that in (10.1) there is no term ( f~/(x)~(x)dx)~t  which means that u(x, O)= O. 

I t  seems impossible in general to consider a term of this form assuming only that  

/ E H = L 2 ( R ) .  But let us set in general 

T / =  (1 + V(x))-�89 ( - �89 + V(x)/), ] 

l "  d"l = d ~  2 taken in the sense of distributions on R. 
(10.4) 

We have then 

PROPOSITION 10.1. Asssume that 

v(x)>~c[xl, c>O, (10.5) 

and (10.2), (10.3) hold. Let / be given in H with 

T~ E U = L 2 (R). (10.6) 

Then, there exists a unique u E L2( - ~ ,  to; K) with u = 0 /or  t < O, such that 

-2~c~  + iV(x)+or  - ixq(t) u--g(x,  t )+/(x)dv (10.7) 

Proo/. Let O(t) be twice continuously differentiable in R with compact support, 

and let 0(0)= 1. Introduce the new unknown, u*= u-O(t) / (x) ,  so that u ' E L 2 ( -  c~,to; K), 

u * = 0  for t < 0 ,  and 
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i ~2 ~ - i xq( t ) )u*  2~+iv(~)+~ 

11" + V(x)/)  O(t) - O'(t)/(x) - =g(~, t)-i(-2 
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ixq(t)O(t)/(x) (10.8) 

Now equation (10.8) is equivalent to equation (10.1) with g replaced by g*, where g* 

is defined as the second member of (10.8). But the hypotheses imply that  this new 

function g* verifies 

o j - o o l + V ( x )  Ig*[2+ ~g* 
~ [  dxdt < ~ , 

and therefore u* exists and is unique so that  the proposition follows. 

Let  us now introduce a space Hm (different from the analogous space introduced 

in section 9). For m an integer > 0, let 

Hm = {/I ( 1 + x2) m/e H, T(( 1 § x ~) ~/) e H}, (10.9) 

H~= nH~. (lO.lO) 
m 

The same reasoning as i n  P}oposition 9.1 leads to 

P~OPOSITION 10.2. Under the hypotheses o/ Proposition 10.1, with g = 0  and 

/ e  Hm, the solution u veri/ies 

t-->(1 § x2) m u(x, t) is continuous/rom [0, to]--> Le(Rx). (10.1l) 

We have, therefore, the result analogous to the one of Proposition 9.3, namely 

PROPOSITION 10.3. Under the hypotheses o/ Proposition 10.2, the /unctional 

q-->u(x, t; q) admits a F. V. derivative (Smu(x, t; q)/~q(T) m which is characterized as the unique 

solution in L~( - ~ ,  to; K), equal to zero/or t < O, o/ 

i ~2 . ~ . . . .  ~mu(x , t ;q )  
- ~ x 2 + i V ( x ) t ~ t - ~ x q l ~ ) )  ~ q ( ~  (ix)mu(x,~;q)(~t(r). (10.12) 

Remark 10.1. There is a difficulty similar to the one encountered in section 9 

when assuming only that  V(x)>~ O. However, by the same kind of method (E(u, ~) 
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is now more complicated--cf .  [17, chapter  8, section 5]) we can prove tha t  all 

the preceding results hold assuming only V(x)>10. One can also make the same 

observat ion here as in Remark  9.4. 

l l .  Example 3 

The observations of sections 9 and 10 are by  no means restr icted to operators 

of order 2 in x. We can in general consider 

a(t; u, v)= k-o J ~r (x, t)DkuDkr dx, 
d 

D = ~ x .  (11.1) 

Wi th  suitable hypotheses (we do no t  wan t  to give details here), the preceding results 

will extend to operators 

( - 1)kDk(ak(x , t)D k) + ~ -  ixq(t). (1) (11.2) 
k - O  Cb 

As a very  simple special case, we can consider 

( -  1)nD~n+ V(z)+ ~t. (11.3) 

Here t h e s p a c e  H remains unchanged  and we define K by  

K = {u [ V ~  V(x)u E L2(R), Dnu E L2(R)}. (11.4) 

I t  should also be observed tha t  the results above apply  also to  mixed problems, i.e. 

problems where Rz is replaced by  ~ ,  an open set in Rx. Here conditions at  infinity 

in x are replaced by  suitable boundary conditions. Unfor tunate ly  however in the case 

of mixed problems we meet  a difficulty in chapter  I I .  

I n  the preceding the fact  t ha t  the dimension in x is one is essentially irrelevant. 

However ,  if x E R ~, then one must  replace q by  a system of n parametr ic  functions. 

This is the purpose of the next  section. 

12. The mult i -dimensional  case 

We start  with some general remarks. Wi th  the notat ions of section 1 we con- 

sider a functional 

(l) The potential V(x) is now contained in the term a0(x, t). 
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q = {qt, q2 . . . . .  q,}-~(I)(qx, q2, --., q~) = (I)(q) from /)(T) •  •  = D(T)  ~ into E and we 

assume: q = {qx, q~ .... q,}-->(I)(q) (12.1) 

is continuous from ~(T)  ~ into E, and: 

Then  

For  every q, q* E ~ ( T )  n, the function ] 

~,  ~2 . . . . .  ~ , -+r  + ~lq~, . . . ,  q~ + ~ q * )  = r  + ~q*) 

is entire analyt ic  in C ~ with values in E. 

d 
y~s-->DScl)(q + ~v) ~-o = d ~  q)(ql' q2 . . . . .  qs-1, q, + ~s~O, qs+, . . . . .  q,) r 

(12.2) 

is a linear and continuous mapping  from ~ ( T )  into E (el. section 1), and therefore 

defines a distribution 

~(I)(q) e / ) '  (T; E), (12.3) ~qj~ 

which is called the F.V. derivative with respect to qs and which verifies 

f ,~r , , ,  d. , , . ,  , a~,(i: i  r ~ < ~  = ~ q , ,  . . . ,  q,-~, q, + ~,v,, q,+, . . . .  q,)  I~,-o. (12.4) 

In  the case when 5dP(q)lSqs@) is a /unction, we have 

~(I)(q) lim ((I)(q, . . . . .  qs_l, qs+cp,,,qs+, ..... q,.,)_dp(q)) (12.5) 

/ dlqJ(~)= r - -  " cf,(t)dt 
T 

where ((p,,} is a F.V. sequence at  v. 

We can then define 

(~m(I) (q) (~ ~m- l ( I ) (q )~  
lim ~ (12.6) 

/tqs(r)" ~'-+~<~qs(r ) \~qs(~) "-~] 
Tit >.i- 

whenever  the limit exists in E. 

Of course, we can also define mixed F.V. derivatives. Let  us notice (cf. 

L e m m a  1.1) t ha t  if (1)(q) verifies (12.1) and (12.2) and 

6(1)(q)=o in ~0 ' (T;E)  for every q and i {12.7) 
~qj(r) 

then  (I)(q) does not  depend on q. 
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Let  us  look n o w  a t  some m i x e d  p r o b l e m s  in  th is  m u l t i - d i m e n s i o n a l  case. We  use  

t he  n o t a t i o n s  of sec t ion  4. L e t  B1, B~, . . . ,B~ be a f ami ly  of opera to r s  l i nea r  a n d  

c o n t i n u o u s  f rom K to  H(1) a n d  assume:  

There  exists  a u n i q u e  f u n c t i o n  u E L ~ ( -  c~, to; K) ,  

which  is zero for t < 0 ,  a n d  sa t i s fy ing  (12.8) 

a't; u(t), v) + (u(t), v) - i ~ qj(t)(Bju(t), v) = (/, v) 5, 
t=1 

where  v EKo /  given  in  H, a n d  qjEC(O, to).(2) I n  th is  w a y  we def ine  a f u n c t i o n a l  

q = { ql ~ . . . . .  qn} -+ u(t; q) = u(t;  ql, q~ . . . . .  qn), 

a b o u t  which  we assume:  

q-->u(t; q) is c o n t i n u o u s  f rom C(0, t0) n i n to  L 2 ( -  O%to; K) 

a n d  m o r e o v e r  

(12.9) 

the re  exists  a subspace  Hm of H such  t h a t  for e v e r y / E H m  ] 

t t he  so lu t ion  u of (12.8) verif ies  

t-->u(t), Bju(t) . . . . .  B~-lu(t), ] = 1, 2 . . . . .  n, I 

J are  c o n t i n u o u s  f rom [0, to]-->K. (a) 

(12.10) 

N o w  we prove  in  the  s ame  w a y  as T h e o r e m  6.1, 

T H E O R E M  12.1. We assume that (12.8), (12.9), (12.10)m hold and that / is given ir~ 

Hm. Then ~mu(q)/Sqj(~)m exists and is characterized by 

~mu/q) EL2( -  oo, to; K) and = 0 / o r  t < 0 ;  (12.11) ~qj(r.) m 

moreover, 

It ~mu(t; q) ~ d [~mu(t;q) ~ n [ 5~u( t ;q)  v \  
a~ ; ~ j (~ )~ ,v )  + - ~ t ~ , v ) - i j ~ = ] q ~ ( t ) ( B j ~ ,  ) 

=((iBj)mu(v;q),v)~t(~) /or vEK.  (12.12) 

W e  could  also consider  here m i x e d  F.V.  de r iva t ives .  

(1) A slight change will be used in the examples as already seen in sections 9 and 10. 
(2) In  some examples (cf. section 9) q E L~162 to) would be enough; in others, more restrictions 

are needed on the qj (ef. section 10). We extend q arbitrarily for t< 0. 
(a) As we have noted previously, in some applications this condition appears in a slightly dif- 

ferent way. 
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Remark  12.1. We can pass to the limit along the same lines as in section 7. 

Let  us look now at  the Cauchy problem: 

1 ~ u  . n 

- + v( )u § ( t )u  = o,  (12.  13) 

u(x, O) =/ (x ) ,  (12.14) 

where x = {x D x 2 . . . . .  xn} E R n, V(x) is a given non-negative continuous function in R ~, A,  

= ~2/axl 2 + ~2/~x~ + ... + ~2/~x~ and where/ (x)  is a given function. This then is the gener- 

alization of section 9. The preceding considerations apply  with 

H = L2(R~), K = {/I (1 + V(x))�89 L2(R'~), ~/ /3xj  E L2(Rn), ] = 1 . . . . .  n}. O) 

2 If  x 2 = x~ + x~ + . . .  + xn, we define Hm = {/](1 q- x2)m/e H}.  In  this way  the results 

o/ section 9 apply to this ease. There are analogous generalizations /or the Schrddinger 

equation. 

13. Supplements 

In  this section we give some results supplementary to those of sections 9 and 10 

(the same would apply to sections 1i and 12). These results will be useful in chapter  I I .  

First  we prove the following uniqueness theorem. 

TI4]~OR~M. 13.1 Let u be given with 

such that 

u C L2( -- ~ ,  to; H),  (H ~ L2(R)) and u = 0 / o r  t < O, (13.1) 

~u 1 ~ u  
+ V(x)u - ixq(t)u = 0, (13.2) 

~t 2 ~x ~- 

where V(x) is >~ O. Then u is identically zero. 

Proo/. Let  ~ and 0 be given in ~ (R)  (infinitely differentiable functions with 

compact  support).  Assume tha t  ~ is real and even and tha t  0>~0. Multiply (13 .2)by  

((u-x-~)0)-x-~, where the convolut ion ~ is taken with respect to the x variable. Inte-  

(1) I f  u, v~K, t h e n  

fR  n F ~u ~ ((u, v)) = (1 + V(x))u(x)~)dx +~=1 | - - d x "  n j ~  ~xi axi 
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grate over Qt=R• (the integrals are meaningful  and note t ha t  (13.2) yields in- 

format ion about  au/at). Since, 

f ,/(y~e)dx= f (/~e)ydx, 
we obtain 

f f Qt (~t (u~))(((t~Q)O)dxdt § ~ f f Qt (~ (u~ ~))~ (((t~e~)O)dxdt 

+ ffQ((V~)~e)(~e)Odxdt- iffQtq(t)((xu)~e)(((t~Q)O)dxdt = o. 

Taking twice the real par t  of both  members,  we obtain 

f O(x)l(u-~e)(x,t)pdx+~fotol~(u~e)l~dxdt+~ff,~tO'~lu-~QI ~dxdt 

for almost  all t. Since the second integral on the left is >/ O, we obtain 

f ff(x) l(u~e) (x, t)12 dx- 1_ ( ( O,,lu~ e i~ dxdt 
2 J3Qt 

+ f f o,( ( dxdt- 2Rei f f <-< O. 

Now, taking a sequence of ~ such tha t  ~ - ~ ,  we obtain 

f O(x)lu(x,t)l~dx-~ffoo"lul~dxdt+2ReffoVlul~dxdt 

--2Rei f fQtq(t)xluteOdxdt<~O. (13.3) 

Since the third  term on the left in (13.3) is ~> 0 and the last one equals zero, we have 

f ff(x)lu(x,t)12dx -1 r r o"lu(x,t)l~dxdt<~ o. (13.4) 
2 JJ~t 

We now take a sequence O=Om(x)=a(x/m), where a E ~ ,  a~>0, and a = l  in a neigh- 

borhood of zero. From (13.4) with 0 = O ~  and letting m- ->~ ,  we obtain 
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fRlu(x ,  t)12dx = 0 
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ulEL2 ( - co , to ;H) ,  u1=Ofort<O,  (13.9) 

and au 1 1 ~2u 1 
aT - 2- ~x 2 § V(x)ul =/(x)~. (13.10) 

We now check tha t  

where V(x) >~ O. Then u is identically zero. 

Actually this result holds when V is assumed only to be real. 

Now we prove an existence theorem. 

TH]~OREM 13.3. Let/(x) be given satis/ying 

/(x) (1 + V(x)) -�89 e H = L~(R), (13.6) 

where V(x) is a given continuous ]unction with V(x)>~c]xl2. Then, there exists a unique 

]unction u satis/ying (13.1) and 

au 1 ~2u 
~t 2~x 2 ~ V(x)u-ixq(t)u=/(x)8.  (13.7) 

Proo/. The uniqueness follows from Theorem 13.1. In  the space H, the unbounded 

operator, 

1 d~u 
A: u ~  - ~ Tx~ + V(x)u, 

with domain D(A) = {ulu  E K, Au  E H}, is sel/-adjoint and >/ 0. We diagonalize A into 

the multiplication by 2 over a measurable sum h over (0, co). Let  X be the uni tary 

mapping from H onto h which diagonalizes A. If  uED(A),  then Xu  Eh, 2XuEh and 

X(Au) = 2Xu. We set 

Ul(X, t)= X-I(e-~tX/) for t > 0 and 0 for t < 0. (13.8) 

for almost all t, from which the theorem follows. 

The same method may  be applied in the case of the Schr5dinger operator to 

prove 

TH]~OREM 13.2. Let u be given satis]ying (13.1) and 

~u i a2u 
~t 2~x~ ~iV(x)u- ixq( t )u=O, (13.5) 
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Note  tha t  (13 .6 )means  tha t  / e D ( A - ~ ) .  Therefore, ) , - ~ X / e h  and since f~e-2~tgt<c/~, 

we obtain (13.9) and (13.10) follows immediately.  

Now, let w = u - u 1 (13.11) 

~w 1 aew 
we obtain  ~t 2 ~x ~ + V ( x ) w -  ixq(t)w = ixq(t}u r (13.12} 

From section 9 we know the existence of w E L~ ' ( -  c~, to; K), w = 0 for t < 0, satisfying 

(13.12) providing 

xq(t)ul(1 + V(x)) -�89 C L~(O, to; H). 

But  this last follows from (13.9) and V(x)>~clxl 2. Thus u = u l + w  is a solution of 

(13.7) and (13.1) is verified. Thus Theorem 13.3 is proved. 

This me thod  does not work in the case of the Schrhdinger operator because in 

(13.8) one has to replace e -At by  e -i~t. 

CHAPTER I I  

The F.V. variational equations 

1. The general method 
We want  to derive a F.V. variational equation for the functional u(t;q), the  

solution of the mixed problem described in chapter  l,  section 4. As we saw there, 

~u(t; q)/(~q(~) is characterized as the unique solution of a well-set mixed problem. In  

this chapter  our p r imary  aim is to find a second expression, apparent ly  different, for 

the solution of this latter mixed problem, say ~Fu(q). :By the uniqueness property,  we 

then have 
~u(t; q) 
- - -  = ~F~ (q) = Tu  (t; q). (1.1) 
Oq(~) 

This is the F .V .  variational equation we are looking/or. Our next  goal in this chapter  

will be to s tudy  to what  extent  the only solution of the F.V. variational equation 

(1.1), with some "bounda ry  condit ions" to  be found, (1) is the solution of the mixed 

problem, u(t; q). 

The second expression ~'Fu(q) is obtained b y  means of some algebraic properties 

and this fact  explains why  in what  follows we are obliged to consider only the  

problems corresponding to the examples of sections 9-11 of chapter  I. 

(x) We have already s~en some examples of such "boundary conditions" in chapter I, section 3. 
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2. The  parabol ic  case  ( I )  

We consider the s i tuat ion of chapter  I, section 9, with the addi t ional  hypothes is  

t h a t  V(x) is a polynomial  of degree ~ m. To be specific, assume 

V(x) is a polynomial of degree <~ m, V(x)>~ O, m even. (2.1) 

We at  first  fcr  convenience make  another  assumpt icn  but  later  in section 3, af ter  

replacing condit ion (2.1) by  a more general  condition, we shall ac tual ly  prove  t h a t  

this assumpt ion  holds. Thus,  assume for now 

one can choose /E  H *  c Hm (Hm is defined by  (9.8) of chapter  

I) in such a way  tha t  the  corresponding solution of the  

Cauchy problem (9.7) verifies �9 (2.2) 

~u e L~(0, to; K) (1) 
~x 

Le t  us now introduce Oy(x, t; q) the  solution of 

(I)/e L2( - ~ ,  to; K), O~ = 0 for t < 0 (2.3) 

( 1 ~2 ~ - ixq( t ) lO,= ix/(x)Ot. (2.4) and  \ - ~ ~ x  2 + V(x) + ~t / 

Since /EHm, it is easily checked t h a t  x/EH,n-1 (in part icular) .  Therefore (I) I exists, 

is unique, and  t-->Of(x, t;q)(1 +xe)  ~-1 is continuous f rom [0, to]--->H. 

Since giving f is equivalent  to giving u, we can also set  

Of(x, t; q) = Lu(x, t; q), (2.5) 

where u-->Lu is a linear opera tor  in u. We now have  

TH]~ORV,~ 2.1. We assume that (2.1) holds and that /EH*,  defined in (2.2). Let 

us define w(x, t, ~; q) by 

w(x't'~;q)=-iT~u(x't;q)~x (f:min(v,s)q(s)ds)u(x,t;q) 
- i  0min (~ , s )V '  - 

(1) Notations are those of chapter I, section 9. Therefore uEL~(-c~, to; K), u=O for t< 0, and 

( 1~2 O_ixq(t))u=/(x)Jt" 
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and w(x, t, 3; q) = 0 i / t  < 3. (2.7) 

Then t-+w( ", t, 3; q) e L2( - 0% to; K) (1) (2.8) 

/ 1 ~2 . 
and + v(x) +  xq(t)) t, q ) :  ixu(x, 3; (2 9)  

We will prove  this short ly bu t  let us first notice b y  compar ison with Proposi t ion 

9.2, chapter  I and  according to the general r emarks  of section 1 t ha t  we obta in  

T r t E O R ~ I  2.2. Under the hypotheses o/ Theorem 2.1, the solution o/ the Cauehy 

problem 

- + V(x) + - ixq(t) u(x, t; q) =/(x)~t. (2.10) 

u( ' , t ;q)EL2(  - oo, t0 ;K ) and = 0 [or t < 0 ,  (2.11) 

satis/ies the F.V. variational equation 

~u(x,t;q)~q(3) ~- i3 ~u(x' t;q)  + ( f~omin(3,  

t > 3 ,  (2.12) 

where (b r is defined by (2.3) and (2.4). 

Also before proving Theorem 2.1, let us notice 

Remark 2.1. The F.V. variat ional  equat ion (2.12) is quite unsat is fac tory  

as it  stands,  since the r ight  side (I)r(X , t; q) = Lu(x, t; q)cannot be explici ty expressed in 

t e rms  of V and  q. (2) However ,  as we shall see, equa t ion  (2.12) becomes a much  

simpler equat ion for the kernel of the mapp ing  /--+u i.e., for t he /undamen ta l  solution 

of the opera tor  

1 ~2 
2 ~x 2 ~ V(x) + ~ - ixq(t). 

Proo/ o/ Theorem 2.1. We first check tha t  w defined b y  (2.6) and (2.7) verifies 

(2.8). This is t rue  for the first t e rm in (2.6), - iv~u(x, t;q)/~x,  because of (2.2). Ob- 

(1) And, of course, =0 for t<  0 since v>~0. 
(~) Except by using function space integrals (cf. Introduction). 
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viously the same is t rue for ( fomin  (v, s )q(s )ds)u(x ,  t; q) and also for (I) I (cf. {2.3)). B y  

Proposi t ion  9.3 and  Theorem 8.1, chapter  I,  the funct ion s---> V' (  - i 6 /6q ( s ) )u (x ,  t; q) 

is continuous f rom [0, to] to  L~(0, to; K)  and  therefore 

defines an e lement  of L2(v,  t; K )  and thus (2.8) is proved.  I t  remains  to prove  (2.9). 

To  simplify the  writ ing let us set  

1 03 
A -  - ~ x ~ +  V(x) + ~ .  

Since Au  = i xq( t )u  we have  b y  different iat ion in x, 

I-Ience for t > T, 

(A - ixq(t)  ) ~ + V'  (x)u  - iq(t)u = O. 

. Ou) 
( A -  ixq(~) ) - ~V Ox = iT: V'  (x )u  + rq( t )u  . (2.14) 

On the  other  hand,  for t > T 

(A-ixq(t)) ( ( -  ftomin (v, s)q(o)ds) u) = - zq(t)u. (2.15) 

Moreover,  

= - i z V ' ( x ) u .  (x) (2.16) 

Since b y  definition of (I)t, (A - ixq(t))  (I) r = 0 for t > T (cf. (2.4)), one obtains  f rom (2.14), 

(2.15) and  (2.16) t ha t  ( A - i x q ( t ) ) w = O  for t > z .  Thus in order to prove  (2 .9)we mus t  

only  check tha t  

w(x ,  t, z; q)-->ixu(x,  ~; q) as t-->T. (2) (2.17) 

(1) By Proposition 9.3 (6mu(x, t; q)/6q(v)m)[~=t = (ix)mu(x, t; q ) ,  sO that 

V" - i ~(x, t; q) [2 =~ = V'(x) u(x, t; q). 

(s) For instance, in H. 
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Now condition (2.17) is equivalent  to 

 ulx, ;q, (f? ) - iT O ~  q',s)ds u (x ,  3; q) - i V' - i ~ u (x ,  3; q 'ds  

+ (I)I(x, 3; q) = i xu ( x ,  T; q) (2.18) 

and this relation (2.18) has to be true /or  every  3 > 0 .  Replacing T by  t, and setting 

w l ( x , t ; q ) = - ~  - -  osq(s)ds  u ( x , t ; q )  

;)) - i  - ~ u (x ,  t; q)ds i- q)I(x,  t; q ) ,  (2.19) 

one has to check tha t  

wl(x ,  t; q) = i xu ( x ,  t; q) for t > 0. (2.20) 

Since, by  hypothesis, / E H * ,  both terms in (2.20) belong to L 2 ( - ~ , t 0 ;  K) and are 

--=0 for t < 0 .  Therefore, in order to prove (2.20) it is enough to prove 

(A - i xq( t ) )w  I -- (A - ixq(t))  ( ixu)  (2.21) 

and Wl(X, 0; q) - i xu (x ,  0; q). (2.22) 

The lat ter  equali ty is easy since w l ( x  , 0; q) = Or(x, 0; q) and Or(x ,  0; q) = i x / ( x )  (cf. (2.4)), 

and moreover  u(x ,  O; q ) - -  / (x) .  We now verify (2.21). First  one has 

( A - ixq(t  ) ) ( - itOu- - i x u )  - i ~ i tq(t)u - t V '  ( x )u  ) 

and since (A- ixq( t ) )dPI=0 ,  there remains only to check tha t  

tq(t)u -!- it V' (x )u  - (A - ixq', t) ) u 

- i(A - ixq(t) ) ( ftos V' ( - i sq~si) u(x, t; q)ds) = 0. 

But  (A - ixq(t)  ) u = tq( t) u 

and (A- ixq( t ) ) ( f tosV' ( - i -g~s))uds)=tV' ( - i~s))u  s ~ t = t V ' ( x ) u ( x , t ; q ) ,  

so tha t  the result follows. The proof of Theorem 2.1 is completed. 
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3. Verification of hypothesis (2.2) 

Let  u be the solution in L 2 ( -  oo, to; K) which is zero for t < 0 of 

- ~ ~ + V(x) + - ixq(t) u = l (x)~ , .  (3.1)  

We now apply the method of finite differences in x (el. for this very  general method  

L. Nirenberg [19]). Let  us set 

1 
w~ (x, t) = ~ (u(x + h, t) - u(x, t) ), 

1 
h (:e) = ~ (l(x + h) - l(x)), 

Vh(x) = ~ ( V ( x +  h ) -  V(~)). 

Then  wh verifies 

- ~ - ~ x 2 +  V ( x ) +  - ix f l ( t )  w ~ =  - V h ( x ) u ( x + h , t ) + i q ( t ) u ( x + h , t ) + / h ( x ) ~ t .  (3 .2)  

Let  us assume tha t  / '=d / /dxEL2(R)=H,  (3.3) 

and  

V is once continuously differentiable with V'(x)/(1 + V(x) bounded. (3.4) 

As h->O, iq(t)u(x + h, t)-->iq(t)u(x, t) in L2(0, to; K) and /~--~[' in L2(R) = H. I t  follows 

t h a t  w~ will belong to a bounded set of L2(O, to;K) as h-->0 if V~(x)u(x + h, t) remains 

in a bounded set of L2(0, to; K').(1) This last is t rue if 

Vh(1 + V)-tu(x+ h, t) 

remains in a bounded set of L2(0, to; H). But  ~l-+-~Zu(x+ h, t) remains in a bounded 

set of this space and therefore 

Vh (1+  V)tu(x+h,t)  Vh(l+ V) t u ( x + h , t ) =  i-~_ 

remains in a bounded set of L~(0,~o;H). Hence wa belongs to a bounded  set of 

L2(0, to; K). We can extract  h,-->0 such tha t  wh~-->w in L~(0, to; K) weakly and since 

wht-+~u/Ox in the sense of distributions, one has ~u/~x = w E L~(O, to; K). Hence we have 

(1) K '  is the dual of K. 

13-  622906. Acta mathematics 108. Imprim6 le 27 ddcombro 1962 
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P ~ t O r O S I T I O . ~  3.1. I /  we assume that V(x)>~O satisfies (3.4) and i~ we t a k e / 6 H  

satis/ying (3.3), then the solution o~ the Cauchy problem (3.1) verifies (2.2), i.e., 

--~ 6 L2(0, to; K).  (3.5) 
~x 

Remark 3.1. I f  we consider, instead of a Cauehy problem, a mixed  problem,  

i.e. x e (a, b) a or b finite, wi th  u(x, t) verifying some boundary conditions for x = a  

or b, then  condit ion (3.5) will never be satisfied. Consequently the  p rob lem of 

finding a F.V. var ia t ional  equat ion somewha t  analogous to  (2.12) for a mixed 

p rob lem is open. 

Remark 3.2. Wi th  some more hypotheses  on V(x) we can obtain  by  the same 

method,  similar results abou t  ~2u/~x 2, ~3u/~x a, etc. For  instance, if V verifies (3.4) and 

we assume fur ther  

V' is once continuously differentiable wi th  V"/(1 + V)bounded,  (3.6) 

then  if / , / ' , / "  6 H  we have  

We now prove 

- 6 L2(O, to; K).  (3.7) ~x 2 

P R O P O S I T X O N  3.2. We assume that V(x)~O and that V(x) verifies (3.4) and (3.6). 

I] / is given with 

(1 + V ) / s  (3.8) 

then (u being the solution o/(3.1)), (1 + V)u 6L2(0, to; K) and the/unction t-->(1 + V)u( ' ,  t) 

is continuous /rom [0, to]->H. 

Proo/. Using (3.6) one sees t ha t  there exists a unique w in' L 2 ( - ~ , t 0 ; K )  

which is zero for t < 0  such t ha t  

1 02 0 _ ixq(t) w + + 2 w = (1 + V)/(x)6t. ~2 + V(x) + et ~x\l + v /  V4-v 

But,  if we set u * - - w / ( l + V ) ,  then  u * 6 L 2 ( - ~ , t o ; K ) ,  u * = 0  for t < 0  and  

( l a ~  ' ~ - i xq ( t ) )u*  - 2 ~  + v(x)  ~ ~i = / (x )~"  

Hence u * = u  and the result  follows. 
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4. Stability in V 

We consider a family of functions V,,(x)~0, with 

Vm--+V uniformly on every compact set.0) (4.1) 

We define a space Km by 

Let  u,n (or respectively u) be the unique solution in L~( - c~, to; Kin) (or L~( - c~, 

to; K)) which is zero for t<O, of 

( _ ~  f x  2+02 Vm(x)+~t _ 0  ixq(t))u,,(x, t)=/(x)(~t, (4.3) 

( 102 ~-ixq(t))u(xt) (4.4) or of - ~ ~x 2 + V(x) + =/(x)St. 

P ~ o P o s I T I 0 N 4.1. Let Vm, V be ~ 0 continuous /unctiows satis/ying (4.1). Then 

Ox Ox' 

in L~(R • (0, to) ) weakly. 

Proo]. If we set urn(x, t)= etwm(x, t), then Wm verifies 

( 102 O-ixq(t))w,=/(x)~t. 

This implies (multiplying by .~5~ and integrating by parts) that  

f lf:( i + 
and therefore 

- ~o.y o Ox +(1 + V~)I <c. 

Consequently we can extract  a subsequence u,.~ such that  

Umt_.~U. ' ~)U~ OU * 

(1) Practically, the Vm will be polynomials but for the moment this hypothesis is useless. 
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weakly in the space L~(R• to)). But using (4.1) one sees that  V,~um~-+V~u * in the 

sense of distributions, hence u**= V~u * and therefore u*EL*( - oo, to; K) and u * = 0  

for t <0. Passing to the limit in (4.3) one sees that  

( 1 0 2 -  ~ ~x2 + V(x)+O- tO-ixq(t))u*(x,t)-~f(x)~. 

Comparing this with (4.4) one concludes that  u* = u  so u* does not depend on the 

subsequence and proposition 4.1 follows. 

P~OPOSITIoN 4.2. Assume the ]unetioru~ V,,, V are twice continuou.~ly di]]eren. 

tiable with 
' ' V r~-')" V uni/ormly on every compact set, V ,,--+ V , V m -+ V , " " 

(I V~I +[ V~ I)/(1 + Vm) bounded (/or each m) a,~d I V',n [/(1 + Vm) bounded l 

J uni]ormly in m, 

and (I V'] + ] V" I)/(1 + V) bounded. 

(4.6) 

(4.7) 

(4.s) 

given with [ e H, (1 + x 2) (1 + V)2/e H, (1 + x 2) (1 + V,,)2/E H, lot every m and Let / be 

remain in a bou~uted 8et o/ that space.(1) 

Then 
(1 +/V~)(1 + x2)(1 + Vm)*um-+(ln + Vt)(1 + z2)(1 + V)~u'[ (4.9) 

and 3x[(1 + x2)(1 + Vm)2Um]--~0X[(1 + XZ)(1 + V)~u] l 
weakly in L2(R x (0, to) ). 

Proo/. Set ym(x )=( l+x~) ( l+  Vm(x)) 2 and consider the equation 

1 02[w ,~ ' ,+(V ,~+~_ ixq )w , ,  (4.10) 

w,~EL"(-oo, to;Km) and win=0 for t<0. ( ' )  Now if we set wm/y,,=um, then u~E 

Z~( - 0% t0; Kin) and u,~ = 0 for t < 0, as well as satisfying (4.3), so that  it coincides with 

the u~ previously introduced. In the same way, let w be the unique solution in 

L*( - ~ , t 0 ; K  ) which is 0 for t < 0  of 

- ~ y ~  + v+bi-ixq w=yl(x)o,, 

(x) We  are  no t  looking for the  m o s t  general  hypo the se s  on ] for wh ich  w h a t  follows is t rue ,  e.g. 

one can  obvious ly  replace (1 + x  ~) by  (1 +x2) ~. F o r  our  m a i n  resul t ,  sec t ion  6, it  would  be  e n o u g h  to  

t ake  ] inf ini te ly difforent iable  wi th  compac t  suppor t .  
(a) The  solut ion ex is t s  and  is uniqtae. This  fac t  is a s imple  va r i an t  of the  case Y m  = 1. 
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where y ( x ) = ( l + x 2 ) ( l +  V) 2. Then as above w/y=u.  ]f we replace w~ by ektw,~, then 

(4.10) is replaced by the same equation but with (O/~t-§ k) instead of ~/Ot. We obtain 

1 or ( ~ r  ( t .  1 ~r I l ;(w: yo)dxdt-. . (V, (z)+k)lwol dzdt lyj( )l'd , ~Re(_ccj -t0a Wm ~ �9 
JoY \ym/V J-ooJo 

hence 

1 ~ to 0 to _ _ ' _ _ 

 fo lW l'd dt+ fo Y~ IZdxdt<constant. 
ym(x)] ' ~' 

Choosing k large enough and using the fact that  Y~/Ym is bounded, it follows that  

l [,Oo [.t. ~ f\ fo' Jo Wm l dzdt § Vm(z) l l d dt <- oonstant, 

and we complete the proof as in Proposition 4.1. 

If we use Proposition 3.1, we obtain, always by the same method, 

PROPOSITION 4.3. Assume that Vm, V are once continuously di//erentiable, 

V'/(I+ V), Vm/(l + Vm) are bounded, V~-+ V, V'~-+ V' uni/ormly on every c~mpact set. 

Suppose / is given with /, [' E H. Then 

~ x  m ~2um ~2u 
(1 + V~) �89 -+(1 + V)�89 Ox 2 -+~x z, 

weakly in L2(Rx (0, to) ). 

PROPOSITION 4.4. Assume the hypotheses o/ Propositions 4.2 and 4.3. Then 

(1+ Vm)um( " , t ) -+( l+  V)u(",t) wealcly in H /or every fixed t>0 .  

Proo/. It  follows from (4.3) and (4.4) that  in the open set R• t0) 

~u~ = 1_ 02Urn - _ Vmum + ixqum, 
~t 2 ax ~ 

~u 1 02u 
~-t = 2 ~-2 - v u  + ixqu.  

Using the results of Propositions 4.2 and 4.3, this implies ~u,~/~t-->au/~t weakly in 

L2(0, to;L~(R)). Let s>  0 be fixed and let ~(x)E~(R)(infinitely differentiable functions 

with compact support). Furthermore, let ~P(x, t) EO(Rx• with (I)(x, s)=~(x). Then, 
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r (1 + Vm)um(x, s)~(x)dx = (1 + Vm) (u~r + (1 + Vm)/(x)(P(x, 0)dx, 
- o o  d -  c a  J O  t j ~  = r 1 6 2  

and since ( l+Vm)um and ~um/~t converge respectively to ( l + V ) u  and ~u/~t in 

L 2 (R• (0, to) ) weakly we obtain 

(1 + Vm)um(X , 8)~p(x)dx---> (1 + V) u(x, sFf(x)dx. 

On the other  hand, 

(1+ Vm)~Jum(x,s)l~dx=j ~ jo~[ (1  + Vm)UUmU-m]dxdt + (1§ vm?l/(x) l~dx 
- - 0 0  - 0~ 

and this is bounded. Therefore one can extract  a subsequence u~, such tha t  

(1 + Vm,)Um~(X, s)--->gs weakly in L~(R). But  since 

f5 (1 + V~,)Um~(X, s)q~(x)dx--> (1 + V)u(x, s)~(x)dx, 

one has gs = (1 + V(x))u(x, s) and therefore (1 + V,n)Um(X, s)-->(1 + V)u(x, s) weakly in 

L2(R). Thus proposition 4.4 is proved. 

We pass now to the stabili ty of Volterra derivatives. By  Proposit ion 9.2 (chapter 

I) we know tha t  ~um/~q(z) (or respectively 5u/(Sq(v)) is characterized when / E H  1 as 

the unique element in L~( - ~ , t 0 ; K ~ )  (or L2( - ~ , t 0 ; K ) )  which is zero for t < 0  (in 

fact  for t < T) and is the solution of 

1 ~2 ~ . . . .  ~(~um(x, t; q) 
- ~ x ~ +  V~(x)+~t-,xq(r)] ~ ixu~(x,z;q)~,O: ) (4.11) 

1 ~ 2  , ~ . . . .  ~(~u(x,t;q) 
or of - ~x~  § V(x) t ~ -  ,xq(~)) ~q(~ ixu(x, ~; q)~t(~). (4.12) 

W h e n / E H  1 one has by  a variant  of Proposit ion 4.4, ixu~(x,~;q)-->ixu(x,T;q) weakly 

in L~(R) and by  Proposit ion 4.1(1) we get  

P R O P O S I T I O N  4.5. Under hypotheses o] Proposition 4.1 and with /EH1, 

(1) Where t=O is replaced by t =T and in (4.3) ] is replaced by ]m where Ira-->/ weakly in H. 
This does not change the result. 
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weakly in L2(Rx(O, to)). 

Assume now that  ] E H and henceforth that Vm is a polynomial. By Proposition 

9.3, (chapter I) we obtain 

--~---'lu., = V'm(X)Um(X, S)~t(S), (4.14) ( -~2~x~TI~2' V , , ( x ) + ; - i x q ( t ) ) V ' ~ ( - i  dq(s)/ 

with Vm(-i6/6q(s))u,~EL~( - ~ , t 0 ; K  ) and ~- 0 for t < 0  (in fact for t<s). We want 

now to pass to the limit. We make the fundamental hypothesis: 

V is twice continuously differentiable, V(x)>1 O, and 

I V'(x) I +J_V"!x)J ~< M < o0. 
1 + V(x) 

One can find a sequence of polynomials 

such that 

Vm~V,  Vm~V' ,  V ~ V "  

V,dx), Vm(X) >1 O, 

uniformly on every compact sot and with [ V~[/(1 + Vm) <~ C, 

where c is a constant independent of m. 

Under the hypotheses of Proposition 4.2 one has (cf. Proposition 4.4) 

VV,n (1 V'~(x)u,,(x, s) - ! + Vm)Um(X, ~)-+ V'u(x, s) 

weakly in H, and this remark combined with (4.14) and the proof of Proposition 4.1 

gives. 

TH]~OREM 4.1. Assume that V and Vm verify (4.15) and. that the /unction f i8 
given such that 

IEHor / ' , / " E H ,  (I+x~)(I+V)2fEH, (1-x2)( l+Vm)2feH (4.16) 

and remains bounded in that space. Then, V~(-i6/Oq(s))um converges to a limit weakly 

in L~(Rx(0, to) ). By definition this limit is called V'(-iS/Sq(s))u. One has 

(4.15) 

a o 
..... - + - - - - ,  ~ (4 .13)  

6q(~) 5q(~) - " ~q(~) " ~q(~)' Ox6q(r) Ox~q(~) 



200 M. D.  D O . ~ S K E R  A N D  J .  L.  L I O N S  

(4.17) 

~ ( V ' ~ ( - i ~ ) U m ) - - > ~ x ( V ' ( - i ~ i ) u  ), all weakly in L2(R• to)). 

( O ,or 

and satisfies 

1 ~2 
2 ax, ~ V(x) + ~ -  ixq(t)) V' ( -  i~-s-))u= V'(x)u(x, s)6t(s). (4.18) 

Also the limit in (4.17) behaves in s in such a way that 

-'~-qisOUmdS--->fomin(T,s'V'(-i?-q(s))uds 

weakly in L2(O, to; H). (4.19) 

Proo/. There remains to prove only (4.19). Let  us set 

By (4.14), we have 

But 

f| (t.[l[~w~)3+ w~)[ )dzdt<~f~ [V, (z) ]U'n(Z,S)] 2dx" _ o. j o  \~  I ~ - ~  vm(~) I 2 1 13 

I v'~(z)l*lum(z,s)12dx<<.cx (l + Vm(z))21u~(x;s)12dx 

and according to the proof of Proposition 4.4, this is < c 2. Therefore we obtain in 

particular S-->W(Sm) E L:r to; L2(0, to; H)) (bounded measurable functions in (0, to) with 

values in L2(0, to;H), and w~ s) remains in a bounded set of this space�9 As a con- 

sequence, we can extract  a subsequence m~ such that  w ~  converges weakly in 

L~c(0, t0; L~(O, to;H)). Necessarily this limit is w (s), hence w~)-->w (s~ weakly in 

L~(0, t0;L2(0, to; H)) and this implies (4.19). 

By using the results of section 13, chapter I, we are now going to prove that  

essentially Theorem 4.1 remains true under similar hypotheses but  with V assumed 

only once continuously differentiable instead of twice�9 

We need first some more propositions�9 
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PROPOSITIO.~ 4.6. Assume that q is once continuously di//erentiable with q(0)=0 

and that V(x)>~clxt~,c>O. Let / be given in K with -(1/2)  / " +  V ( x ) / e H .  Then the 

solution u o/ (4.4) veri/ies 

~u L~ E (0, to; g ) .  (4.20) 

Proo/. Using the notations of (13.2) (section 13, chapter I) let us consider 

u I = X - I ( e - ~ X / )  (and = 0 for t < 0). 

By hypothesis /ED(A)  so that  2 X / E h  and therefore 

~u~ E L2(0, to; K). 
~t 

(4.21) 

Since u l ( l +  V) t belongs to L*(0, to; H) and V(x)>~cfxt  2, we have 

xul(1 + V) -�89 E L2(0, to; H). (4.22) 

Now if we set w - - u - u l ,  then w belongs to L2 ( - c o ,  to; K) and satisfies 

8w 1 82w 
8t 2 8x ~ ": V(x)w - ixq(t)w = ixq(t)u r (4.23) 

But since q is once continuously differentiable and q(0)=0, then setting g(x, t )= ixq 

(t)ul(x, t) we have g and ~g/~t belonging to L2( - or to; K') where K'  is the dual of K. 

Therefore by [17, chapter V, Th. 3.1], we have 

~ t E  L2(0, to; K) 

and this combined with (4.21) gives the result. 

P~OPOSITIO~ 4.7. We assume that q and V are given as in Proposition 4.6 

and that [E~)(R).  Let Vm be a sequence o/ polynomials with Vm(x)>~cmix] 2, c,,>~c0>0 

and Vm--> V on every compact set. Let um be the solution o[ (4.3). We have 

urn(x, 8)(1 + Vm(x))~--->u(x, 8)(1 + V(x)) ~ weakly in L2(R). 

Proo/. Le t  qJ,~ =~um/~t and we have 

20x  2 ~- Vm(x) - ixq q)m -- iXfl'U m § /"  - Vm/ dr. 
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I t  follows that (where Qto ~ R• (0, to) ) 

1/'11,, 

But 

§ V~(x)I q~ Ie)dxdt 

(4.24) 

t - X t (( xqumvma t=ffQto(i+V:( )q(t)(u (l+V )')(Vm(l  Vm)')a t, JJQt, 

and since u~( l+  Fro) t is bounded in L2(Qto), it follows that, in particular, (1-!- Vm)�89 

is bounded in L2(Qt,) and therefore 

~u 
(1-!- V~)~--~--~(1 + V) t ~t weakly in L~(Qto). 

From this and Proposition 4.1 we infer (4.24). 

Tt[EOREM 4.2. Assume the hypotheses o/ Proposition 4.7 and moreover that 
I V~ I/(1 !- Vm) < constant independent o/ m. Then 

V '~( - i~s i )Um-->V' ( - i -5~) )u  weakly in LZ(0, to; H) (4.25) 

and 

- i=- - lu~ds - -~ (  man(r, - i  j min(r ,s )v 'm(  6 t s )V ' (  ~ i ) u d s  
o 6q(s)] Jo (4.26) 

weakly in L2(0, to; H). 

Proo/. Set w~ )= V',,(-iS/~q(s))u,,. From section 13, chapter I, we know that 

w~ ) is the unique solution in L2(0, to; H) which is 0 for t < s of 

~ 2 0~. ~ § Vm(x) - ixq(t) w~ ~ = V,,(x)um(x, s)d~(s). 

Let W~ ~ be the solution in L 2 ( - o o ,  t0; H) which is zero for t < 0  of 

( b 1 ~  )w('> 
~ t - ~ x 2  + V,,(x) ., ~ = V~(x)um(x,s',~(s) 



F.V. VARIATIONAL :EQUATIONS 2 0 3  

(of. chapter I, section 13). We have 

\I---~V~J (1 + Vm)]u,,(x, 8)]2dx, 

where c is independent of m. Thus W~ ) remains in a bounded set of L2(Qt0). Using 

the proof of Theorem 13.3, chapter I, we see that  win(s) belongs to a bounded set of 

L2(Qt,) when m and s vary. We complete the proof as in Theorem 4.1 

5. The parabolic case (II) 

THEOREM 5.1 Under the hypotheses o] Theorem 4.1 or o] Theorem 4.2, the solu- 

tion u o~ the Cauchy problem 

2 ~x 2 " V(x) - i xq ( t )  u(x, t; q)~/(x)6t,  (5.1) 

u ( . ,  t;q) E L 2 ( -  0% to; K) a n d = 0  /or t<O, (5.2) 

sati/ies the Volterra variational equation 

(; ) (~u(x, t, q) + iT ~u(x, t; q) ~ rain (% s)q(s)ds u(x, t; q) 
5q(~) ~x o 

; ~-i (~, s)V' - ~ .  , omin u(x, t; q)ds = @r(x, t; q), (5.3) 

where ~I  is defined as in (2.3) and (2.4). 

Proo/. Assuming first tha t  we are under hypotheses of Theorem 4.1, we consider 

Vm a sequence of non-negative polynomials verifying the conditions which appear in 

(4.15). Let  um be the corresponding solution of the Cauchy problem. Now V~ verifies 

(cf. Theorem 2.2) the Volterra variational equation analogous to (5.3). By Proposi- 

tions 4.1, 4.3, 4.5 and Theorem 4.1 we can pass to the limit in the left-hand side. 

With obvious notations one checks by the same method as in Proposition 4.1 tha t  

(1)~m)(x, t; q)-+(I)1(x , t; q) weakly in L2(R• to) ) and hence the theorem follows. I f  we 

assume the hypotheses of Theorem 4.2, we see tha t  the same proof obtains. 
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6, The parabolic case (III): The F.V. variational equation for the kernel 

We consider the mapping /--->u. I t  is, in particular, a mapping from ~ ( R )  (space 

of functions infinitely differentiable on R with compact  support) into ~ ' ( R x ( -  ~ ,  to) ). 

This mapping is defined, by  the Schwartz kernel theorem (see Schwartz [23]), by  a 

kernel Q(x, y,t; q) which is a distribution on R~•215 co, to) and is -- 0 /or t < 0  

and is, moreover,  such t h a t  

u(x, t; q)= Q~ , y, t; q)f(y)dy. (6.1) 

The distribution Q(x, y, t; q) is the /undame~tal solution of 

1 ~2 a 
2 ~x ~ + V(x) + ~t - ixq(t), 

i.e. 2~x2 -', V (x) + ~ -  ixq(t) Q(x, y, t; q) =: b~(y)| (6.2) 

and, for every y and t, x--~Q(x, y, t; q) satisfies growth conditions equivalent to the fact 

tha t  the operator (6.1) maps L2(R) into L2(0, to; K).(1) Using the kernel Q(x, y, t; q), 

one can write 

r t; q)= Q(x, y, t; q)iy1(y)dy. (6.3) 
j -  

Admit ,  for the time being, the 

LEMMA 6.1. ;Let X and Y be two open sets in R ~ and R "~ respectively. Denote 

by I)(Y) (or ~)'(X)) the space of [unctio~ infinitely differentiable in Y with compact 

support (or o/ distribution~ on X). Let F~(~)(Y), ~)'(X)) be the space o/continuow~ linear 

mappings /rom ~(  Y) into ~ ' (X)  provided with the topology o/ uniform convergence on 

bounded sets o/ ~)(Y). Let T be an open interval o/ Rt. Let q-+M(q) be a mapping 

/rom ~)(T) into E(~(Y),  ~ ' (X) )  which verifies: 

For every q~EO(Y), q-+M(q)q~ is continuous /rom I)(T) into 1 

J 7D'(X) uniformly for qj belonging to a bounded set of I)(Y).  
(6.4) 

(1) In the present case, one has in part.icular Q(x, y, t; q)~ 0 as x-+ +_co. 



Then 

and 
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For every q)EZ)( Y) and ever!! q, q~EZ)(T), the [unction ~--~ 

M(q+~qi) 9 is entire analytic /rom C into O'(X). 

Let K(x, y; q) be the kernel (in the sence of Schwartz) o/ M(q), i.e. 

M(q)9 = f K(x, y; q)9(y)dy /or 9 E ~(Y).  
d Y 

q-->K(x, y; q) is continuous /rom 7)(T)->O'(X x Y), 

~--~K(x, y; q + ~ql) is entire analytic /rom C-->~'(X x Y) 
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(6.5) 

(6.6) 

(6.7) 

6K(x, y; q! 6 O ' (T;  ~0'(X x Y)) = D ' ( T  x X x Y) 
6q(v) 

(6.8) 

5M(q) f 5K(x, y; q) ( d satisfies ~q(~)-qJ-- ~-  6q(~) - ~ y) y" 

We apply this lemma to the kerncl Q(x, y, t; q)(1) of the mappmg [-->u. We assume 

tha t  V satisfies (4.15). Then 

weakly in L~(Rx(O, to) ) (in particular, ef. section 41. 

Let  Qm(x, y, t; q) be the kernel of /-~u,,. By (6.8) 

. d . 3 

and, on the other hand, the mapping 

V'( - s S~)Ju(x,  t; q) (6.11) 

has a kernel (applying once more Schwartz 's  Kernel  Theorem). Bu t  the kernels depend 

continuously on the mappings (stability of the kernels) and there[ore the kernel 

(1) {x, t} plays the role of x in the lemma. 
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V',,~-~ ~-~))Q,~(x, y, t; q) 

has a limit (for every fixed s) in O ' (Rx•215  to) ). This limit is the kernel o~ 

the mapping (6.11). By de/inition this limit kernel is denoted by 

We notice also tha t  the kernel of the mapping 

t . ~ 

i s  ifimin y,t;,)ds 

From these remarks and from Theorem 5.1 we deduce 

THEOREM 6.1. Assume that V and V,n verily (4.15). Let Q(x, y, t;q) be the /un- 

damental solution o/ the operator - 1 / 2 ~ / a x 2 +  V(x) + ~/~t-ixq(t) (cf. (6.1), (6.2)). One 

de/ines in this way a /unctional q--->Q(x, y, t; q) /rom C(O, to)-->O'(R~x R~• ( - ~ , to) ). 

This /unctional veri/ies the Volterra variational equatiou 

5Q(x' y' t; q) + i~OQ(x' Y' t~" q! + (ftomin (~:' s)q(s)ds)Q(x' y' t; ~x 

+ i  0min(T,s)V'  Q(x,y, t ;q)gs=iyQ(x,g, t;q)  /or t>'r. (6.12) 

We note tha t  the same result holds under the hypothesvs of Theorem 4.2. 

Remark 6.1. The interest of equation (6.12) is tha t  now all the expressions 

which appear in (6.12) are known once V is given. 

Remark 6.2. We leave open the problem of determining the best conditions 

on V for which (6.12) holds. Now there remains only to prove the lemma. 

Proo/ o/ Lemma 6.1. First of all (6.7) follows from general properties of vector- 

valued distributions (of. Schwartz [23]). For (6.8), we calculate 
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~ M(q + ~ql)qJ= J-~ f rK(x, y; q # ~q,)qD(y)dy= f r ~  K(x, Y; q + 'qi)qXy)dy 

and taking $ = 0 and applying the definitions of Chapter I, section 1, we have the result. 

7. The Schriklinger case (I)  

We consider the situation in section 10 of chapter I. To begin with assume 

V(x)>~O is a polynomial of degree m. (7.1) 

We consider u(x, t; q), solution of 

( i~2 +~--ixq(t))u=/(x)cSt, (7.2) -2~-xx ~+iV(x) ~t 

where uEL2( - o%t0;K ) and u = 0  for t<0 .  (7.3) 

This solution exists and is unique if 

qEC~(0, t0) , q(0)=0 (7.4) 

and / and T] (=  (1 + V)-�89 1 /2 / "+  V(x)/)) belong to H=L2(R). (7.5) 

The space K is unchanged, i.e. 

K =  {ul(1 + V)�89 dx j" 

The same proo/ as in Proposition 3.1 gives 

P 1~ o P o s 1 T I o ~ 7.1. I/ V is once continuously di//erentiable with 

] V'@)._[] <~ M < oo, 
1 -~ V(x)  

and i~ / veri/ies (7.5) and 

f ,  T/'EH, 

then the solution u o/ 7.2 and 7.3 ~'atis/ies 

~u E L2(O, to; K). 
~x 

We shall now prove 

(7.6) 

(7.7) 

(7.8) 
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T H E O R E M  7.1. Under the hypotheses o/ Proposition 7.1 and with/EH,~ (cf. (10.9), 

c h a p t e r  I), the solution u o/ the Cauchy problem (7.2), (7.3), satis/ies the Volterra varia- 

tional equation 

(; ) du(x, t; q) Ou(x, t; q) + i rain (r, s)q(s)ds u(x, t; q) 

]or t>~  and where @r is the solution in L 2 ( - ~ , t o ; K )  which i s - 0  [or t<O oJ 

( -72~x2~-iV(x)ia2 +O--ixq(t))  (7.10) 

Proo/. The proof is along the same lines as t ha t  of Theorem 2.1. We have to 

check tha t  

t aU ~ t 
w-'aX-~(fo min(~,,)q(8)ds)u(~,t;q)+ifo min (T, s)V'(-i~)u(x,t;q)ds+ 

for t > T ,  

w = 0  for t < ~ ,  

(I) I 

satisfies w E L2(O, to; K) (7.11) 

+ -  ixq(t)|w = ixu(x, t)6t(~). 
i a 2 \ 

- ~ ~x2 + i v ( . )  at / 
(7.12) 

Condition (7.11) follows f rom (7.8) and  the results of section 10, chapter  I. I n  order 

to prove (7.12) we first check tha t  this relation holds for t>v .  Set 

i a 2 a 
A =  -2ax--~+ig(x)+Dt. (7.13) 

:From (A- ixq( t ) )u=O,  we deduce 

(A - ixq) | ~ = |  = - i~V'(x)u + ivqu. 
\ ax] 

(7.14) 

Now 
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and 
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iv V ' ( -  ~ ~ ) ) u ( x ,  t; q) [~_t = i~V'(x)u. 

Thus since by  definition (A- ixq)4PI=O , these relations combined with (7.14) prove 

t h a t  ( A - i x q ) w  = 0 for t > v. Consequently in order to prove (7.12) there remains only 

to check tha t  w=w(x , t ,~ ;q) -+ix / (x )  as t-+~ or, replacing ~ by  t, t ha t  

t; q)ds 

+ ~I(x, t; q) = ixu(x, t; q). (7.15) 

I n  order to verify (7.15) we note t ha t  both  members belong to Z,~(- ~ ,  to; K), are 

zero for t < 0  and are equal for t = 0  (where both  sides equal ix[(x)). Now applying 

( A - i x q )  to both  members gives the same result, for 

Ou 
(A - ixq) (t~x - iXu) = itq(t)u - it V' (x)u, 

= it V'(x)u, 

and  hence the conclusion follows. 

8. The S e h r ~ i n g e r  case ( I I )  

We can pass to the limit in Theorem 7.1 along the same lines as in sections 4 

and  5. We obtain  

THEORV.M 8.1. Assume that V,,, V verily (4.15). Let / be given with 

/eH~(:) 

/', (TF) ' , / " ,  (T/)" e l l ,  
(8.1) 

(1 -k x~) (1 -b V)~/, T((1 + x2)(1 § V)2/), (1 § x~)(1 -k Vm)~/, T((1 § x2)(1 + V,n)2/) 

all in H and remaining bounded in H.(~) 

(1) Cf. (10.9), chapter I. 
(3) For our purposes here we can take !E~(R) so that these hypotheses are harmless. 

1 4 -  622906. Acta mathematlca 108. I m p r i m 6  le 27 d~cembro  1962 
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Let u be the solution o/ the Cauchy problem 

uEL2( - oo,t0;K ) with u=O /or t < 0  (8.2) 

/ i ~ 2  . a _ i x q ( t ) ~ u  and ~ -  ~-~x2 q-zV(x) + ~ l(z)a,. (8.3) 

Then V'~(-i~l~q(s))um converges to a limit weakly in L2(Rx(O, to)). This limit is called 

V' ( - iS/~q(s) ) u. The /unctional u verifies the Volterra variational equation, 

dq(~) v ~ ( z , t ; q ) + i  omin(~'s)q(s)~ u(x,t;q) 

t . d 

/or t >~, where ~I is the solution in L 2 ( -  ~ ,  to; K), which is zero /or t<O, o/ 

( _2~xx2+iV(x)+~ ~2 ~ -ixq(t))gP, ~- ixl(x)~t. (8.5) 

We consider now the kernel Q(x, y, t; q) of the mapping /-->u, i.e. 

u(x, t; q)= ~ Q(x, y, t; q)l(y)dy, (8.6) 
J oo 

where Q(x, y, t; q) is the fundamental solution of the operator 

i a 2 a 
- 2 ~x- 2 + iV(x) + ~t - ixq(t); 

Q(x ,y , t ;q )E~ ' (R~xR~x( -oo , t0 ) ) ,  Q = 0  for t < 0 ,  (8.7)' 

and ( _  i ~2 ~ ~ + i v(~) + ~ t -  i~q(t) / Q(~, y, t; q) = ~(y)| (88) 

with growth conditions as x-~ _+ oo. These latter growth conditions are equivalent to 

the fact that  l->u, given by (8.6), maps the space of functions / for which / and 

TI belong to L2(R) into L2(O, to;K). By the same considerations as in section 6, 

we obtain 

Tz~):Ol~]~:~ 8.2. Assume that V and Vm satis/y (4.15). Let Q(x,y, t;q) be the 

/undamental solution o~ the operator 
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i 0 ~ ~t 2 ~x 2 ~" iV(x) + - ixq(t) 

(cf. (8.7), (8.8)). In  this way one de/ines a /unctional q--->Q(x,y,t; q) /tom the space o/ 

q e C1(0, to) with q(O) = 0 into O'(R x • Ry • ( - ~ ,  to) ).I This /unctional satis/ies the Vol- 

terra variational equation, 

(SQ(x, y, t; q) v~Q(x , y, t; q )§  i ( (~min  (~, s)q(s)d8] Q(x, y, t; q) 
~q(~) Ox \3o / 

t . (5 

= iyQ(x, y, t; q) /or t > ~. (8.9) 

Remark 8.1. As in Remark 6.1, we notice that  all the expressions appearing 

in equation (8.9) are known, once V is given. 

9 .  T h e  m u l t i - d i m e n s i o n a l  c a s e  

We consider now the situation in chapter I, section 12, i.e., we consider u, the 

solution of 

1 au . n 
- 2 Axu + V(x) u + ~7 - ~ ~ xjqj(t)u = ](x)~t, (9.1) 

tJ~ J= 1 

where Ax = t~1 ~ , 

with ueL2(  - ~ , t 0 ; K  ), u=O for t < 0  (9.2) 

and K = { u I ( I  + V)�89 , H=L2(R~).  

Now, if ]EH,  u exists and is unique. By the same methods as in sections 2 and 

3, we prove 

T H E O ~ E ~  9.1. Asssume V is a polynomial~O o/degree m. Assume / is given with 

~ e H ,  j = l ,  2 . . . . .  n. (9.3) (l ~-x2)m/eH, 

Then, /or j =  1, 2 , . . . ,  n, one has 
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6qj(v) ~xj + 

t ~ V _ ~ 7  ) 
(9.4) 

/or t > T  and where ~P(/) is the solution in L2( - oo, t 0 ;K  ), which is zero /or t<O, o/ 

n 

+ + (9.5) 

One  can  pass  to  t h e  l imi t  a long  t h e  same  l ines  as i n  sect ions  4 a n d  5. Le t  us  deno te  

b y  Q(x, y, t; ql, ..., qn) = Q(x, y, t; q) t he  ke rne l  of t he  m a p p i n g  /-->u, i.e. 

u(x, t; ql, q2 . . . . .  q,) = J ~ Q(x, y, t; qa q2 . . . . .  q,) /(y)dy. 

W e  o b t a i n  the  resu l t  

(9.6) 

T H E O R ~ . ' ~  9.2. Assume that V>~O is given(x) in C ~, that 

o_v+ ~,v I 
~xj I - - -  . . . .  ~XJOx~ [ <<. 

1 + V(x) 
M < ~ ,  

and that there exists a sequence o/ polynomials V,~(x) such that V,~--> V in C ~, with 

arm(x) I 
I <~ c o n s t a n t .  

1 + Vm(x) 

Then, /or j =  1,2 . . . .  , n,  

~Q(x,y, t;q)  ~-i~ ~- min(v,s)qj(s)ds Q(x,y , t ;q)  
~qj(~) ~x, 

+ i f : m i n ( v , s ) (  ~V \~xj ( -  i ~ ) )  ) Q(x, y, t; q) ds 

= iyjQ(x, y, t; q) /or t > v. 

The  same  r ema rk s  are va l id  in  the  m u l t i - d i m e n s i o n a l  Shr6d inger  casc. 

(9.7) 

(1) C 2 is the space of twice continuously difforentiable functions. In that space gn---~g if 

gn---~-g, Ogn/OXt---~Og[Ox 1, O~gn/OXtOxt--+atg/Ox~Oxj 

uniformly on every compact set. 
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10. Case of example 3, chapter I 

We do not here make a systematic study, along the same lines as above, for 

the general situation of section 11, chapter I. We only want to mention, however, 

the following result. 

Let u(x,t;q) be the solution in L2( - oo,t0;K ) which is = 0 for t<0 ,  of 

(( - 1)"2nD~ + 0~- ixq(t))u=/(x)6t, (10.1) 

r d"u } 
where K = l u  U,~xnEH , H=L~(R), /EH.  

Now, assuming that  

/ , / '  E H, (10.2) 

we have the F.V. variational equation 

5u(x,t;q) + i + (10.3) 

where (l)t is the solution in L2(-ov , t0  ;K) which is - 0  for t < 0  of 

a' .  e ] 2n ax 2. ~St-'xq(t)] r (10.4) 

u(x,t)= ~ Q(x,y,t)l(y)dy, (10.5) If 
J - -  

then one obtains the desired F.V. variational equation, 

for t>~ .  

6Q(x,y,t;q) (fi ( ~-x ~t \(2~-~ \ y,t;q)=iyQ(x,y,t;q) (lO.6) 

11. Lemmas 

We recall the following Lemma (cf. Cameron [2]): 

LEMMA 11.1. Let M(z) and N(z) be two/unctionals, zEC(O,t), z(0)=0. We assume 

z-+M(z) is continuous with values in a vector topological space E (cf. section 1, chapter 

I), and admits a Volterra derivative 5M(z)/~z(s) which depends continuon~ly on s in E. 
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Also we assume z-->N(z) is continuous with values in s  E),(1) and admits a Volterra 

derivative (~N(z)/(~z(s) which depends continuously on s in E(E; E). Then 

[ +E" {N 8 - ~ } ] d s - E z  {z(T)MN}.  (11.11) 

~G 
where R(x, t; z) = ~ ~x 

Then  

L E M M A 11.2. Assume that /or every continuous /unction q E C(O, t): 

§247 t > T .  

R=0.(~) 

Proo/. 

More precisely  we now prove:  

Let _F[z] be a /unctional defined on C(O, t) which is bounded and continuous in the 

uni/orm topology. I /  /or all q(a)E C(O, t) we have 

{ (f*oq(a)z(a)da) } E w exp i F[z] =0 (11.1) 

then F[z]  = 0 /or all z(a)e C(O, t). 

The proof  of th is  fact  makes  use of cer ta in  techniques  and  calculat ions  used  in 

Cameron and  Donsker  [1]. We  repea t  some of these  here so t h a t  the  p resen t  proof  

will  be self conta ined.  I n  the  proof  we pos tpone  to  the  end some of the  calculat ions  

so t h a t  the  s imple idea of the  proof  will  be clear. 

Le t  2 and # be posi t ive  cons tants  and  le t  x(a) be a f ixed funct ion  def ined on 

0 ~< a~< t wi th  x ( 0 ) =  0 and  sa t i s fy ing a L ip -a  condi t ion  for some a > 0. F r o m  assump-  

t ion  (11.1) we have  for all  q(a)EC(0, t) 

exp{ -i,~ f:x(a)q(a)da} E~ {exp{ i~ f:q(a)z(a)da} F[z]}=O (11.2) 

Now let  R(a, ~ ; - # ~ )  be the  reso lvent  kernel  on [0, t/ of min  (a, ~), i.e., 

(1) Continuous linear mappings from E to E. 
(2) The authors wish to thank G. E. Baxter for pointing out an error in an earlier version of 

Lemma 11.2 which is corrected in the present proof. 
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[ cosh #(t - ~) sinh jua 

R(o, ~; - # = ] _ c?sh ~_(t - o) s inh /~  

[ # cosh jut a ~> ~. 

The eigenvalues of - R(a, ~; -/~2) are all positive (being (k + �89 + #2, k = 1, 2, 3, ... ), 

and therefore p , ( a , ~ ) - - R ( a ,  ~;-/~2) is a positive definite, symmetric function and 

we can form a Gaussian process, {q,, 0<~ a<~t}, with mean function zero, covariance 

function p,(a, ~) and almost all the sample functions of which, q(o), vanish at 0 = 0 .  

Moreover, with this covariancc function almost all sample functions q(a) are continuous. 

Since (11.2) holds for all continuous q(o), it holds in particular for allmost all 

sample functions of the Gaussian process just constructed, and therefore taking ex- 

pectations with respect to this Gaussian process we get 

E:, {exp -i~f:x(o)q(o)doIEy{exp[i;t~fiq(o)z(o)doIF[z]}}=O 
But, 

E~' { exp { i),~ f o[Z(a) - x(a)]q(a)do } 

= exp { - 1 /,t Ct 

fl  ff 
= e x P / 2 2 / ~  0 o [z(~176176 ~;-'u2)dad~} 

and therefore we have 

E~ exp /~ ; t  # o o [z(~176176 F[z] =0. (11.3) 

We will show later in this proof that  if y(a)EC(0, t) and furthermore satisfies some 

order Lipschitz condition, then 

fY f: lim/~2 y(o)y(~)R(a, ~; - #2)dad~ = - y2(a)da. (11.4) 
I1-*oo 0 

Since by  assumption x(o) satisfies a Lip ~-condition for some :c>0, and since almost 

all sample functions, z(a), of the Wiener process satisfy a Lipschitz condition of order 

strictly less than �89 we apply (11.4) and obtain from (11.3) on letting/~-~oo, 
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w 1 3 -x(a)]2da}F[z]}=O ( 1 1 . 5 )  

demonstrate later in this proof that  under the assumptions imposed We will also 

here on F[z] and on x(a), 

{ { 1 fo  } } E~ exp - - ~  [z(e) - x(~)]2d~ N[z] 
lira 2 F r " (11.6) 

- - T - T U - - - - - U  = E~ exp ~ t  2 -- o [z(a) - x(a)]~da 

Thus, dividing both sides of (11.5) by 

E~ exp - [z(~) 
2 J0 

and letting ,~---> ~ ,  we obtain F[x] = 0. Now let z(a) be an arbitrary element of C(0, t]. 
Since F[z] is continuous in the uniform topology and since every uniform neighbor- 

hood of z(a) contains a function x(a) satisfying a Lip ~-condition, we have F[z] = 0. 

This completes the proof except we must now prove (11.4) and (11.6). 

To prove (11.4), consider 

ftoy2(a)da + ~;- #2)dad~ 

= f: Y2(a)[l + #~ f: R(a, $;- #~)d~]d(~-~ f:~: R(a, ' ; -  #~)[Y(a) -Y(~)]~dad~ 
(11.7) 

Each of the terms in this last expression are positive and therefore to prove 

(11.4) it will suffice to show that  each goes to 0 as #-+cr Now 

f t  eosh #(t - ~) 1 + #3 R(a, ~; - #2)d~ 
�9 o cosh tit 

and therefore, letting h be the bound on y(a) on [0, t], 

t 1 t 

~< c-oosh-~t eosh/~(t - a)da = # eosh/~t" 
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Since this last  approaches  0 as /~-->oo, we see t h a t  the  first  t e rm on the r ight  in 

(11.7) goes to zero. 

For  the  second t e rm on the r ight  of (11.7) we use first  the assumed Lip ~- 

condit ion on y(a), i.e., 

#~2 r~l ~ ~;_#2)[y(a)_y(~)]~dad~ # 2 ~ f ~ c o s h / z ( t - ~ )  sinh # a 2 
J oJ o R(a' = jojo lu cosh #t  [y(a) - y(~)] dad~ 

~< ~ t  J 0 J o  (a - ~)e~ cosh #(t  - ~) sinh #adad$. 

B y  the Hhlder  inequal i ty  this last  expression in less t han  or equal  to 

#h~ [(tf'(~-~)~cosh#(t-,)sinh/z~dad,] ~ f cosh#(t-,)sinh#edad, ] cosh #t  Ld o jo  J kz oJo 

_ [cosh  (1 +  ]O[ cosh.  
cosh/~t L , u~ co--~sh~t]J [ ~ 2 - ~  [ 

h2 1 t ~-~ h2t 1-~ 

which approaches  0 as # - ~ .  Hence  the  second t e rm  on the  r ight  of (11.7) also 

goes to zero and  we have  p roved  (11.4). 

We now prove  (11.6), bu t  for this we need only assume t h a t  x(a)EC(O, t). The 

Lipschitz condit ion assumpt ion  on x(a) was used in apply ing  (11.4) to (11.2) and  

is not  needed here. Assume then  t ha t  x(a) is a fixed funct ion in C(O, t) and  tha t  

$'[z] is bounded  and  continuous in the  uni form topology on C(0, t). For  e > 0  let 

($ > 0 be such t h a t  [F[z] - F[x][  < s whenever  sup0<~<t I z(a) - x(a)[ < 6. Le t  S~ = { z(a): 

sup0<o<~ I z(o) - ~(~)[ < ~ }. Now 

" 2 J0[z(~) - Fix]]  } 
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'~ l " f o[z(a)_x(a)]~da}[F[z]-F[x]] } Ez~s,,5{exp{-~]~" t 

where 85 is the complement of S~. Using the continuity of F[z] and letting M be the 

assumed bound on F[z] we have 

E~:{exp{-~)3 f:[z(a)-x(a);'d~ F[x] 
1 t 

E~ (exp{-2,t2 f o[z(a)-x(a)J~datt 

E~s,~ exp _ 1  2 

< e + 2 M  { { 2x 
w 1 2 t 

and therefore to prove (11.6) it will suffice to show 

lim 
) . - ~  

or what is equivalent 

lim = 1 (11.8) 

-~Z2 f oiZ(,~)-x(,~)]2d,~}} 

The proof of (11.8) is somewhat delicate and is done in Cameron and Donsker [1]. 

The context there is more complicated and therefore to avoid confusion we now show 

(11.7) in detail. We need first the following transformation theorem: Let x(a)E 
C(0, t) and let L[z] be a functional such that L[z-x] is measurable on the Wiener 

process. Then, for any positive number 2 



where 

and 
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l ~ f o X 2 ( a ) d a } E ~ { L [ O - x ] } ,  (11.9) 

f' qo(a) = 2 "~ seth  2(t - s)ds cosh 2 ( t -  ~)x(~)d~ 
0 s 

f l  se th  2(t O(a) = cosh ]~(t - a) - s)d[p(s) + %(s)] 

f ~  sinh 2a ft  
= x(a) + eosh 2(t - a) o sech 2(t - s)dp(s)  + ~ o s ~ t  3o sinh 2(t - s)dx(s) 

_ f l  

We will now prove  (11.9) and  use it to prove  (11.8). To show (11.9) we make  

use of a result  of Cameron and  Mart in  to the  effect t h a t  if r(a) is posit ive and  

continuous on [0, t] and if G[z] is measurable  on the Wiener  process, then  

(11.10) 

where /,(~) is a non-tr ivial  solution of 

{" L (~) + ~r(G)L(e) = 0 

/; ,(t)  = 0 
(11.11) 

and # is less t han  the  least eigenvaluc of the sys tem (11.11) augmen ted  b y  the  

condit ion /~(0)=0.  Equa t ion  (11.10) holds in the  sense t h a t  the existence of e i ther  

side implies t h a t  of the other  and  the equal i ty.  We app ly  (11.10) to the left side 

of {11.27) with 

G[z] = L[z - x] exp { - 1 t t ~ZfoX~(~)d~} exp{ Z f ox{a)z(a)da} 
r(a) = 1 
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and we choose ]~(a)=cosh2(t-a) in accordance with (11.11). Then the left member 

of (11.9) becomes identical with the left member of (11.10) and is hence equal to 

1 2 =(sech ~t)'exp{-~). f:x~(a)da} 

�9 E~{L[cosh~(t-(.)) f:) sech]~(t-s)dy(s)-x(. )] 

�9 exp(~/:cosh2(t-a)x(a)daf:sech~(t-s)dy(s)}. (11.12) 

To show that  this last expression is the same as the right member of (11.9), i.e., 

to show that  

cxp (~ f: [qo(~)]~da} E[ ( L[O-x) } 

= E~ ( Z[eosh ~(e- ( . )) f:')sech ~(t- s)dy(s) -x( " )] 

exp ( 2~ f: cosh 2(t-a)x(a)d~ f: sech ]t(t- s)dy(s) }}, (11.13) 

we make use of the Cameron-Martin translation theorem which states that  when 

%(a) is absolutely continuous, q'o(a)eL~, and H is a functional measurable on the 

Wiener process 

t 

We apply (11.14) to the left side of (11.13) with q0(a) as given just after (11.9) 

and with H[y] = L[cosh ),(t- (.)} f~) sech f t( t -  s)dy(s)- x(. )]. This verifies (11.13) and 

proves (11.9). If we consider (11.9) in the special case where L = I  and divide 

(11.9) member by member by this special case we obtain tha t  

2 Jo =E~{L[O-x]}. (11.15) 
E~ exp - [z(a) 

2 Jo 
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Let ~(u) = 1 for l ul ~ 6 and 0 otherwise. Define the functional L[y] = ~(sup0<~<t ly(a)l). 
Comparing (11.15) for this functional and the left side of (11.8) it is clear that  to 

prove (11.8) and hence (ll.4)) we need to show 

lim E~ { q(sup0<~<t 10(a) - x(o) I } = 1 
),-+ r162 

where O(a) is given just after (11.9). For  this it will suffice to show that  for almost 

all p(a) (Wiener process measure) lira O(a)= x(a) uniformly for a 6 [0, t]. Looking at 

the second form for 0(0) (which is obtained from the first form by repeated inte- 

grations by parts) we want to show that  uniformly for o 6 [0, t] and for almost all p(a) 

f lim cosh 2 ( t -  0) seth 2(t - s)dp(s) = 0 
~'--~ 0 

sinh 20 1 "~ 
i m - -  / sinh2(t-s)dx(s)=O (11.16) 

~ r  cosh 2t 3a 

eosh2<t-o)f: lira cosh 2sdx(s) = O. 
~-,~ cosh 2t 

Almost all sample functions of the Wiener process satisfy for some h depending on 

p the modified HSlder condition 

1~o(o)-~o(o')1<h(Io-r logl~ ~ )+. (11.17) 

Let  7 =  (log 2)/2. In order to estimate the first expression in (11.16) we note that  

cosh2('--o) f~-rlseeh2('--8)d~(8) 
~< [eosh 2 ( t -  0)] [seeh [2(t - o) + log 2]]h 

< 2hea(t-~) et-a(t-a)-lo~ 4] = 2 h +  0 
2 

uniformly for a E [0, t] as 2-+ c~. Also for sufficiently large 2 

eosh 2(t- ~r) f2_ sech l(t- s)dp(s) l 

<-..[cosh2(t-o)][sech2(t-o)]h(rlllog~)�89 

=h(l~189176189189189 
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uniformly in aE[0 ,  t] as 2- ->~.  Thus we have shown the first s ta tement  in (11.16). 

The next  two s ta tements  in (11.16) arc t rue because of the uniform cont inui ty  of 

x(a). The argument  for the th i rd  s ta tement  is almost  identical with tha t  for the 

second and therefore we will domonst ra te  only the second. Since x(a) is uniformly 

continuous on [0, t] there  exists a continuous increasing funct ion ~,(e) such tha t  ~(0) = 0 

and Ix(a) - x(a') ] ~< 7(I a -  a' I)" Again letting ~ = (log 2)/2, we have 

sinhXa f~ s inh2a  _ . c o ~  sinh )t(t - a)?(~) ~< ?(~)---~0 

uniformly for ~ E [0, t] as X---~ oo. Also 

] s i n S ; t a r  t t sinh ;ta . . . . . .  

eosh 2t d,, ~ sinh 2(t - s) dx(s) <~ ~ [stun ztt - a - ~/)] ~,(t) 

e;~ e~(t-~-n) e~(t-n) ~(t)__> 0 

again uniformly for a E [0, t] as ~t--> cr 

T ~ ] ~ o ~ E ~  12.1. Assume that V and 

tional which satisfies 

6u 

Suppose that 

Then necessarily 

12. The equivalence Problem; Parabolic ease 

Vm verily (4.15). Let u(x, t ;q)  be a /unc- 

min ( v , s ) V ' ( - i - 6 q ~ s ) ) U d s - ' O u  * T ~ ,  (12.1) 

6u 
lim = ixu (12.2) 
~-, 6q(T) 

~u (x, t; O) - 1 ~2u ~-t ~ ~x i (x, t; O) - - V(x) u(x, t; 0) (12.3) 

u(x,t;O)-~-6 as t-*O. (12.4) 

1 o0 
(12.5) 
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H(z) =e-  YOv(*(o))~. 

Proof. From (12.5) it follows that  (0<v<t ) :  

_6U_sq(,) = _1_2~ f ~ ,  r { iz(-r e'f~oq(")*(~')'~"H(z)e `~'z(t) } dtz. 

We apply now Lcmma 11.1 with 

M(z)=e~ftoq(.)z(.)d.,,.~(t), N(z)= H(z), 

and we compare the result with (12.1). We obtain 

- ; m i n  (~,s) V' (-i~q(~) uds= 

=_l_2rc L e_~,:: ; min (v, s)EzW { e, f~q(o)~(o)ao~Hz(~) e~,z(t) } dsd/x" 

i 6 1 But 

hence 

1 t { e,;~q<.)~(o)a. [6H(z) 

Since this relation holds for every x we have 

[~H(z) 

Applying _d2 /d~  we obtain: 

[~z~) V'(z(v)) tI(z)] 

for all /~, any 0 < v < t ,  and all q E C(0, t). 

Using Lemma 11.2 it follows that 

+V'(z(s))H(z)]e~PZ(t)}dsd# 

+V'(z(s))H(z)]et~'z(t)}ds=O. 

--0.  

(~H(z) 
6z(~i + V'(z(~)) H(z) = 0 

223 

(12.6) 

=0. 
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from which 
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H(z) = ge -  fto v(~(~))a~" 

Using (12.3) (12.4), i t  follows tha t  K =  1, which completes the proof of the 

theorem. 

13. The equivalence problem: general ease 

The solution of the equivalence problem given in sections 11 and 12 does not 

apply to the SchrSdinger case, where a representation of the kernel Q(x, y, t; q) as a 

single Wiener integral does not exist. I t  would be of interest to find a proof of 

uniqueness for the solution of the F.V variational equations involved here without 

any use o/ /unction space integrals. Such a proof is given but only for very special 

V(x) in section 14. 

In  these connections we would like to point out the following communative 

property which obtains here. For a functional F(x,y, t;q)  with values in l)'(Rx•215 

( - c o ,  to) ) we set 

"~ F 6F + i v ~ x + ( ; m i n ( v , s ) q ( s ) d s ) F  

; + i  rain (T,s) V' -- i  Fds - iq ( t )F  for t>v ,  (13.1) 
o 

1 ~2 0 
and A~ = A - ixq(t), A 2~x~ + V(x) + ~.  (13.2) 

THEOREM 13.1 Let F be a /unctional so that (13.1) exists and which veri/ies 

V ' ( - i  ~ ) )  F(x, y, t; q)--> V'(x) F(x, y, t; q) (13.3) 

in the sence o/ distributions as s-->t.(1) 

Then Aq~qF = 79qAqF, /or t < 3. 

Proo/. We calculate ~qAqF. One has 

(AqF) = hq-fl F - ixF6t(v), 
6q(~) oqtv) 

(1) W e  a s s u m e  V is i n f i n i t e l y  d i f f e r e n t i a b l e  here .  
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hence (~(AqF) (~F Aq~-q-~ for t > v .  (~q(~) 

Next, i v : -  x AqF  = ivAq OFox + iv V' (x) F + vq(t) F. 

But A~( ( fl  min (v, s)q(s)ds)F) = (fl min (~, s)q(s)ds) A~F + ~q(t) F, 

A~(i f:min(~,s) V'(-i~)Fds=i f:min(-c,s) V'(-i~)A~Fds+ivV'(x)F, 
using (13.3). Hence (13.4) follows. 
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14. Solution by F.V. series 

In this section we show that  in the case of very simple V(x) one can solve the 

:F.V. variational system: 

5u t i ~ 3u ~q(vS--(- f:min ( z , . s )q ( s )ds )u - i  f0min (v, s)V'(- ~-~)ugh-i~, 
(~U 

lim =---- = ixu, ~-~ dq(v) 

Ou(x, t; O) 1 ~u(x, t; O) 
~t 2 Ox 2 ~ -- V(x)u(x, t; O) u(x, t; 0)->(~(x), t->0, 

( 1 4 . 1 )  

by the use of F.V. series expansions of the unknown functional u(x,t;q) (cf. 

chapter I, section 5 and the remarks made in the Introduction). I t  is of interest to 

note that  this elementary technique also provides uniqueness proofs for the solution 

of (14.1) in these simple cases of V(x)--uniqueness proofs different from those given 

in the preceding sections, since here no function space integrals are used. 

Consider (14.1) with V(x)=�89 2 (this is the example considered in the Introduc- 

tion) and the F.V. series expansion of u(x, t; q), 

u(x, t; q)=co(x,t  ) + ~ 1 ft(n) f t c , ( x , t ; v , ,  v~ . . . . .  v,)q(vl) ... q(v,)dv, dr,. (14.2) 
~- l  n! J o . . . . . .  Jo 

Substituting (14.2) in the F.V. variational equation of (14.1) we obtain the recur- 

rence formulae, 
15-- 622906. Acta mathemat/ca 108. Imprim~ le 27 ddcembre 1962 
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C l ( X ' t ; v ) = - f :  min(v's)q(x't;s)ds-irOc~ (14.3) 

C2(X,t;~,T)= -Co(X,t) min (T, ~)-- ff0min (,, 8)c (x, e, 8)ds-ir~cl(x't;~)-etC'~x (14.4) 

Now we can solve the integral equation (14.3) and obtain 

~- - i ~co (x, t) - l ) d s ] ,  el(X, t; T) (14 m5~ 

where R(r, s; - 1), the resolvent kernel of rain (~, 8) on [0, t], is given explicitly in the 

Introduction. From the boundary condition in (14.1) involving the limit we obtain 

using again the F.V. series (14.2) that  in particular 

Cl(X , t; t)  = iXCo(X , t)* (14.6) 

Putt ing (14.5) (with r-~t) and (14.6) together we get the equation 

izco(x,  t) = - ,  ~ 

and thus since t+flsR(t, 8;-1)ds=tauht, 
we get co(x , t) = K(t)e x,j2 tanh t (14.8) 

:Now the differential equation "boundary condition" in (14.1) and the last condition 

in (14.1) determine that  

K(t) = (2~ sinh t) -11~. 

From (14.5) we now can obtain explicitly and uniquely cl(x , t;~) and from (14.4) etc. 

we determine explicitly and uniquely the coefficients in the F.V. series expansion 

(14.2). The resulting series is exactly formula (1.2) of the Introduction. 

An even simpler example is V(x)--O, where the technique above leads to the 

same result one would obtain from either the differential equation (Introduction (1.13) 

with V(x)~-O) or by calculating the function space integral (Introduction (1.1l) with 

V(x)=O). By all three techniques one obtains 

u(x, t; q) = (2,~t) t exp [ - 
X 2 ix ] 
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Aga in  the  uniqueness comes f rom the  fact  t h a t  the  coupled recurrence formulae  de- 

t e rmine  the  coefficients uniquely.  

E v e n  in the  ease 

compl ica ted  w a y  t h a t  

me thod .  The d i f f icu l ty  

x4/4 i t  is not  possible 

to  exp l ic i t ly  solve the  

V(x) = x4/4 the  recurrence formulae  are coupled in  such a more  

i t  seems ve ry  diff icul t  to  t r y  to  p rove  uniqueness  b y  this  

wi th  th is  coupling is to  be expected ,  since in the  case V ( x ) =  

to  calcula te  the  funct ion space in tegra l  and  also no t  possible  

d i f ferent ia l  equa t ion  b o u n d a r y  value  problem.  
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