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1. Introduction 

The first part  of this paper presents a generalization of a portion of the theory of 

analytic functions in the unit disc. The theory to be extended consists of some basic theorems 

related to the Hardy class H v (1 ~<p~ co). For example, (i) the theorem of SzegS, Kolmo- 

goroff and Krein on mean-square approximation of 1 by polynomials which vanish at the 

origin, (ii) the theorems of F. and M. Riesz, on the absolute continuity of "analytic" 

measures, and on the integrability of log [ / [ for / in H 1, (iii) Beurling's theorem on invariant 

subspaces of H 2, (iv) the faetorization of H p functions into products of "inner" and "outer"  

functions. The second part  of the paper discusses the embedding of analytic discs in the 

maximal ideal space of a function algebra. 

The paper was inspired by the work of Arens and Singer [3; 4], Bochner [6], Helson and 

Lowdenslager [14; 15], Newman [24], and Wermer [27]. Some of the proofs we employ 

are minor modifications of arguments due to these authors; however, the paper is self- 

contained and assumes only standard facts of abstract "real variable" theory, e.g., funda- 

mental theorems on measure and integration, Banach spaces, and Hilbert spaces. In  

particular, very little knowledge of analytic function theory is essential for reading the 

paper, since the classical results which are to be generalized are special cases of the theorems 

here. 

The Hardy class H v (1 ~<p< 0o) consists of those analytic functions / in the unit disc 

for which the integrals 

fl f(rr176 I' 0 

(1) This research was partially supported by the Office of Scientific Research, United States Air Force. 
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are bounded as r tends to 1. Since these spaces arise naturally in the s tudy of Abel-Poisson 

summabili ty of Fourier series, i t  was realized early in their development tha t  many  pro- 

perties of H ~ functions belonged in the realm of "real variable" theory. Specifically, we 

mean tha t  general compactness arguments enable one to write each H ~ function as the 

Foisson integral of an L ~ function on the boundary (or, a measure in the case p = 1); and 

thus, by identifying an H ~ function with its boundary-values, some results can be deduced 

without reference to the geometry of analytic mappings. I t  now appears that  the portion 

of the theory which is susceptible of a "real variable" t reatment  is much larger than  one 

would have imagined. 

From the point of view which we adopt, the basic vehicle for the s tudy of H p is the 

algebra of continuous functions on the unit circle whose Fourier coefficients vanish on the 

negative integers. The space H" is regarded as the completion of this algebra in the Banach 

space L ~ (of the unit circle). Thus, in our general t reatment,  we begin with a uniformly 

closed algebra A, consisting of continuous complex-valued functions on a compact Haus- 

dorff space X. The role of the points of the unit disc is played by certain positive measures 

on the space X. In  the case of the disc, these are the harmonic (Poisson) measures for 

the various points. What  is most important  to us is tha t  these measures are multiplicative 

on the algebra: 

f /gdm= f /dm f gdm (/,geA). 

I f  we fix a measure m on X which is multiplicative on the algebra A, we can introduce 

HP(dm), the completion of A in the Banach space L~(dm). Of course, we cannot expect 

many  interesting results about H ~ in such extreme generality. We need some hypothesis 

on the underlying algebra A which (roughly) forces it to resemble an algebra of analytic 

functions. Our hypothesis is tha t  A is a logmodular algebra, by which we mean tha t  each 

real-valued continuous function on X can be uniformly approximated by  functions log [/], 

where both / and 1[/belong to A. For such algebras, and any multiplicative measure m, 

we can s tudy H~(dm) with considerable success. We shall concentrate on the values p - -1 ,2 ,  

and r 

In  their paper [14], Henry  Helson and David Lowdenslager studied algebras of contin- 

uous functions on special compact abelian groups. The algebras were isomorphic to rings 

of analytic almost periodic functions in a half-plane, and they are described in Example  3, 

section 3. Arens and Singer [4] began the s tudy of analytic function theory for these algebras, 

in the sense of working directly on the compact groups. Helson and Lowdenslager discovered 

elegant proofs for most of the theorems itemized in the first paragraph of the Introduction 
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(as they apply to H p as the completion of the algebra in L p of the compact group). After 

their paper appeared, Bochner [6] pointed out that  several of their proofs could be applied 

to a general class of rings of functions. The abstract rings which Bochner described are 

much like certain function algebras which were being studied at the time, namely, Dirichlet 

algebras. (The algebra of continuous functions A is called a Dirichlet algebra provided 

each real-valued continuous function on X is a uniform limit of real parts of functions in 

A.) Indeed, a careful reading of Helson-Lowdenslager revealed that their proofs were 

valid for Diriehlet algebras, virtually without change. Wermer [27] made use of some of 

the arguments to embed analytic discs in the maximal ideal space of a Dirichlet algebra. 

The Helson-Lowdenslager arguments are applied to the classical case in the author's 

book [18]. A description of the form of some of the results for Dirichlet algebras appears 

there, as well as in Wermer's expository paper [28]. However, a detailed treatment of the 

proofs in the Dirichlet algebra context has not been available until now. 

Dirichlet algebras are special cases of what we call logmodular algebras. Thus, this paper 

will include a detailed development of the Dirichlet algebra results which we have been 

discussing. But, it will go considerably beyond this, for two reasons. First, even in the 

Dirichlet case, we shall affect a reorganization of the order of the theorems, as well as an 

increase in the number of theorems which are generalized. Second, for logmodular algebras, 

one cannot simply repeat the Helson-Lowdenslager arguments. They can be used, with 

:some modifications; however, one must first prove some basic theorems about a logmodular 

algebra. The most basic of these theorems are (i) each complex homomorphism of the 

algebra A has a unique (positive) representing measure on the space X, (ii) if m is such a 

representing measure on X, the functions in A and their complex conjugates span L~(dm). 
These facts are evident for a Dirichlet algebra, but far from obvious for a logmodular 

algebra. 

I t  is a tribute to the clarity and elegance of the Helson-Lowdenslager arguments that  

they are capable of generalization in many directions. If  one wants only part of the results, 

there are various other hypotheses which one can place on the ring of functions A; for 

example, hypotheses such as (i) and (ii) of the last paragraph. We shall t ry  to indicate 

,some of these weakened hypotheses as we go along. I t  is the author's feeling that, if one 

wants the full strength of the results, logmodular algebras provide the natural setting. In  

any event, this setting does capture the full strength of the theorems; and, it allows for a 

considerable amount of non-trivial generality, as one can see from the examples in section 3. 

There are two objections to our approach which might occur to one. First, we insist that  

~)ur ring A should consist of continuous functions on a compact space. Second, we treat 

HP(dm), where m is an arbitrary measure which is multiplicative on A. One meets situations 

1 8 - - 6 2 2 9 0 6  Acta mathematica 108. Imprim6 le 28 d6cembre 1962 
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in which A is a ring of bounded measurable functions on a measure space (S, ~, m), the 

measure m is multiplicative on A, and the interest is in the particular spaces HP(dm). But 

such a ring of functions is isomorphic to a ring of continuous functions on a compact space 

X (the maximal ideal space of L~176 and m can easily be transferred to a measure on X. 

After H p spaces have been discussed, we turn to analytic structures on subsets of the 

maximal ideal space of a logmodular algebra. Given our basic knowledge of logmodular 

algebras, one can employ the argument which Wermer [27] gave for Dirichlet algebras, 

to show that each Gleason "part" of the maximal ideal space is either one point or is an 

"analytic disc". This extension of Wermer's result is particularly interesting, because it 

applies to the algebra of hounded analytic functions in the unit disc. This algebra is (iso- 

morphic to) a logmodular algebra, and very few things about the structure of its maximal 

ideal space are easy to treat. 

The author would like to express his appreciation to Professor Richard Arens, for many 

enlightening discussions during the evolution of the concept of a logmodular algebra. 

2. Notation and basic definitions 

Throughout this paper, X will denote a compact Hausdorff space. We denote by 

C(X) [(CR(X)] the complex [real] linear algebra of all continuous complex [real] valued 

functions on X. Each of these algebras is a Banach space (Banach algebra) under the sup 

norm 

I I /11--suplll .  

By a measure on X we shall understand a finite complex Baire measure on X. We shall 

make frequent use of the Riesz representation theorem, in this form. Every bounded (i.e., 

continuous) linear functional L on CR(X) is induced by a real measure/x on X, 

L(./) = f]++,+. 
Similarly every hounded linear functional on C(X) is induced hy a (complex) measure oll 

X. The norm of the linear functional L, 

II L II =sup/ L',I) l, 
i r f l l~<l 

is precisely the total variation of the measure/~. See [9; Chap. IV, w 6]. 

DEFINITION 2.1. A sup norm algebra on X is a complex linear subalgebra A of C(X) 

which satisfies 
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(i) A is uniformly closed; 

(ii) the constant  functions are in A; 

(iii) A separates the points of X, i.e., if x and y are distinct points of X,  there is an 

/ in A wi th / (x)  4=/(y). 
If  A is a sup norm algebra on X, we shall have occasion to discuss other  classes of 

functions associated with A, and we shall adopt  a uniform type  notat ion for these classes. 

For  example, A -1 will denote the set of invertibie elements of A, t ha t  is, the set of all 

functions / in A such tha t  [-1 = 1/ / is  also in A; Re A will denote the set of all real parts  of 

functions in A; ~i will denote the set of complex conjugates of functions in A; and log I A-1[ 
will denote the set of logari thms of moduli  of invertible elements of A. 

D E F I N I T I O N  2.2. Let  A be a sup norm algebra on X. A complex homomorphism of A is 

an  algebra homomorphism,  from A onto the field of complex numbers.  

Since the sup norm algebra A is uniformly dosed, it is a Banach space (Banach Mgebra) 

under  the sup norm. We need to know tha t  each complex homomorphism (P is a bounded 

linear functional on tha t  Banach space, indeed tha t  

[(P(/)I < 11/[[ (leA). (2.11) 

This has a simple proof. If  (2.11) does not  hold, there is an / in A with (I)(/)=1 bu t  I]/]1 <1 .  

Since A is a uniformly closed algebra, the series expansion (1 _/)-1= 1 + / + / 3 +  ... shows 

tha t  (1 - / )  is invertible in A. Since (I) is not  the zero homomorphism,  we must  have (I)(1) = 1; 

hence ( I ) (1- / )  =0.  We have the contradiction 

1 =O(1) =0(1 -l)O([1 -/]-1) =0. 

Of course, (2.11) together with O(1 )=1  tells us t ha t  the norm of �9 is precisely 1. 

D E F I N I T I O N  2.3. Let  A be a sup norm algebra on X, and let (P be a complex homo- 

morphism of A. A representing measure for (I) is a positive measure m on X such tha t  

�9 ( / )=f /d in  (leA). 

An Arens-Singer measure for (I) is a positive measure m on X such tha t  

loglr (l CA-i). 

I t  is impor tan t  to note t ha t  both  representing measures and Arens-Singer  measures 

are required to be positive. Since (I)(1)= 1, either type  of measure satisfies 

f dm = 1 

and is, consequently, a probabil i ty measure (positive measure of mass 1). 
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THEOREM 2.1 (Arens-Singcr [3]). Let (I) be a camplex homomorphism o/ the  sup norm 

algebra, A.  There exists at least one Arens-Singer measure/or  (I). Furthermore, every Arens -  

Singer mea, vure /or ~ is a representing measure/or  (I). 

Proo/. Given (I), we define a function L on the set log I A-1 ] by 

L ( l o g l / I )  = l o g  I@(/)1 ( /6A-1) .  

We now extend L linearly to the linear span of log I A-1 l" This linear span is a subspace 

of CR(X), and we shall verify tha t  L is a well-defined function on tha t  subspace and tha t  

L is bounded by  h 

IL(u) I < sup lul. 

Obviously the second condition implies the first. I f  L is not  bounded by 1, then, since we 

are dealing with real-valued functions, there will exist some u in the linear span of log I A-11 

with 
L(u) > max u. (2.12) 

x 

Now u has the form u - t l u  1 !- ... +tnu, ,  where each uj is of the form u j = l o g  I /J l , / J  EA-1, 

and the t s are real numbers.  The number  L(u) Ls defined by  L ( u ) = ~  tjlog I(1)(/j)[. We may  

assume tha t  each tj is rationa], since (2.12) will not  be affected by  a small change of any tj. 

Choose a positive integer r such tha t  every rtj is an integer, say r t j=pj .  Then (2.12) says 

YP loglr ,. maXx   qogl/,I. (2.13) 

If  we let /=/~' . . . /P,~,  t h e n / C A  -1 and (2.13)becomes 

log ldp(/)l> max log l/I. 
x 

This contradicts the fact tha t  (1) is bounded by 1. 

Now we have a linear function L on a subspace of Cn(X), and L is hounded by 1. 

The H a h n - B a n a c h  theorem tells us tha t  we can extend L to a linear functional L on Cn(X ) 

which is also bounded by 1. This )~ has the form 

t(,,)= fudn, 
where m is a real measure on X of total  variat ion at most 1. But  the constant  function 1 

is in log IA -~ ] and L(I)  = 1. Thus j" d m -  1. Since m has integral 1 and total variation at 

most  1, it is clear tha t  m is a positive measure. Hence, we have produced an Arens-Singer 

measure for O. 

I f  m is any Arens-Singer measure for O, then m is a representing measure for ~ .  To 

show this, it will suffice to prove tha t  
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fRe/dm (I)(/) (lEA). Re 

I f / E A ,  then e~EA-1; consequently 

fRo/a., = flog ]Jldm = log ]r  = log [e Cd' ] = Re (I)([). 

This concludes the major part of what we need to know about sup norm algebras in 

general. However, for our work in Section 7, and also to understand some of the examples 

in the next section, we require some familiarity with the maximal ideal space of a sup 

norm algebra. 

For the sup norm algebra A, we denote by M(A) the set of all complex hemomorphisms 

of A. With each / in A we associate a complex-valued function [ on M(A) by 

/((I)) = ( I ) ( / ) ( ( D C z M ( A ) ) .  (2.14) 

If we topologize M(A) with the weakest topology which makes all these functions f con- 

tinuous, then M(A) becomes a compact Hausdorff space. This is a consequence of the fact 

that  the Cartesian product of compact spaces is compact [10; 21]. This space M(A) is 

known as the space o/complex homomorphism~v of A or the maximal ideal splice of A. The 

latter terminology arises from the fact that there is a one-one correspondence between 

complex homomorphisms (I) of A and maximal ideals M in the algebra A. I t  is defined by 

M=kerne l  ((l))= {/EA; (I)(/)=0}. One may consult [10; 21] for a proof, although we shall 

not need this result. 

Each point x in X gives rise to a complex homomorphism (1)~ of A by 

r = l(x). 

I t  is not difficult to see that x->(I)~ is a continuous map of X into M(A). Since A separates 

the points of X and X is compact, this map is a homeomorphism of X into M(A). 
We have the representation /-->/ of A by an algebra A of continuous functions on 

M(A). This representation is not only one-one but also isometric. The inequality 

; u ltl< II/11 
results from the fact that  each (1) in M(A) is bounded by 1. On the other hand, 

/ I >/sup I 1(r  I = sup I1( ) I = II111. 

Therefore, when it is convenient, we may employ the isometric isomorphism/-->/to regard 

A as a uniformly closed algebra of continuous functions on M(A); and we may also employ 

the homeomorphism x-->(P~ to regard X as a compact subset of M(A). 
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3. Logmodular algebras 
We now introduce the class of algebras in which we are pr imar i ly  interested.  

I )EFINITIOI~  3.1. Le t  A be a sup norm algebra on X. We say t h a t  A is a logmodular 
algebra on X if the set of functions log I A-11 is uni formly dense in C•(X). 

I t  is impor t an t  to note that ,  in order for A to be logmodular ,  we require the  set log ] A -1 I 

to be dense, not  its linear span. As we shall see, the  distinction is impor tan t .  

Dirichlet  algebras provide a class of examples  of logmodular  algebras. A Dirichlet 
algebra on X is a sup norm algebra A on X such tha t  the space Re A is uni formly dense 

in C'R(X). Certainly such an algebra is a logmodular  algebra,  because R e A  is contained in 

log ]A- l  I: 

Re  / = log [ ell . 

I t  is easy to see t ha t  A is a Dirichlet algebra on X if, and only if, / + A is uni formly dense 

in C(X), or, if, and only if, there is no non-zero real measure  on X which is or thogonal  to A. 

We shall now give some specific examples  of logmodular  algebras, some of which are 

Dirichlet  algebras and some of which are not.  

Example 1. Let  X be the uni t  circle in the plane, and let A be the  algebra of all 

continuous complex-valued functions / on X such t h a t  the negat ive Fourier  coefficients 

of / are zero: 

f ~ e~n~ (n=1,2 ,3  . . . .  ). 

Then  A is a Dirichlet algebra on X. This is a consequence of Fejer 's  theorem,  or of the 

Weierstrass  approx imat ion  theorem. We shall refer to this algebra as the standard algebra 
on the unit circle. I t  m a y  also be described as the uniform closure (on the  circle) of the 

polynomials  p(z), or, as the algebra of boundary-va lues  of continuous functions on the 

closed uni t  disc which are analyt ic  in the  interior. The  last  description arises f rom the 

fact  t h a t  each / in A can be (analytically) extended to the  disc by  the Poisson integral  

formula:  

l f [et~ + z] 2=l f : /(z) = / ( e  ~~ 1%e [ ~ 0 ~ ]  dO = J (e  ~~ Pz(O)dO. (3.11) 

The  max imal  ideal space of A is the closed unit  disc in the plane. The complex homo- 

morph i sm which corresponds to z, ]z] <1 ,  is (I)~(/)=/(z), where /(z) is given by  (3.11). 

The measure  

dmz(O) = :=Pz(O) dO 

is the unique representing measure for the  homomorph i sm �9 z. 
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Example 2. The following is a generalization of Example 1. Let  X be a compact set in 

the plane, with the property that  each point of X is in the closure of the unbounded com- 

ponent of the complement of X. Let A be the algebra of continuous functions on X which 

can be uniformly approximated (on X) by polynomials p(z). Then A is a Dirichlet algebra 

on X. See Wermer [28, p. 68]. 

Example 3. One can generalize Example 1 in another direction. Let  G be a (non-trivial) 

subgroup of the additive group of real numbers. Regard G as a discrete topological group, 

and let G be its compact character group. Let A a be the algebra of continuous functions 

[ on G whose (generalized) Fourier transforms vanish on the negative par t  of G: 

f ~(x,o:)/(~)dcr (x <0).  (3.31) 

In  (3.31), zr denotes the typical element of ~, that  is, a mapping of G into the unit circle 

such tha t  ~(Xl+X~)=~(Xl)~(x2). Of course, (x,:r denotes ~(x). The measure dzr is the 

Haar  measure on G, that  is, the unique probabili ty measure on G which is translation in- 

variant. 

The algebra A a is a Dirichlet algebra on G; because, the "trigonometric" polynomials 

N 

P(~) = ~ 2n(tn, o~) (tne G) (3.32) 
n - - 1  

are dense in C(G), and each such function has the form / +  ~, where / and g belong to A G. 

Indeed, A~ is the uniform closure of the polynomials (3.32) for which each tn is a non- 

negative element of G. 

Now A z is isomorphic to an algebra of analytic almost periodic functions in the upper 

half-plane. I f  P is a function of the form (3.32), we associate with P an exponential poly- 

nomial Q on the real line, by  
N 

Q(x) = ~ *~n e~t~:. (3.33) 
n - - 1  

The map P--> Q is easily seen to be an algebra isomorphism. Furthermore, it is isometric: 

sup IP(a) ] = sup I Q(x) I. 
X 

This isometric isomorphism can therefore be extended to one between the uniform closures 

of the two algebras of "polynomials". The uniform closure of the functions (3.32) is C(G), 

and the uniform closure of the functions (3.33) consists of the almost periodic functions F 

on the real line such that  the Diriehlet series for F is supported on G: 

1 r 
l i m - - (  e-tt~F(x) dx=O (t@G). 
T~:c2TJ-T 
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Under the same isomorphism, the algebra A a is carried onto the algebra consisting of 

the almost periodic functions F on the line which have a Dirichlet series supported on the 

non-negative part  of G. In  other words, the image algebra is the uniform closure of the 

exponential polynomials (3.33) for which each t~ is a non-negative element of G. Each 

function F in this algebra has an analytic extension to the upper half-plane. For the 

polynomials Q (3.33), the extension is 

Q(z) - 5, ).. e "~. 
When each t,, is non-negative 

suplQ(z) l supIQ(x) I 
I m  z ~ 0  x 

and this permits the analytic extension of any uniform limit of such polynomials. 

When G is the group of integers, (~ is the unit circle and Aa is the standard algebra 

of Example I. When G is the group of all real numbers, C~ is the Bohr compactificatien of 

the real line, and A G is isomorphic to the algebra of all analytic ahnost periodic functions 

in the upper half-plane which have continuous boundary-values. Another interesting case 

is obtained as follows. Choose an irrational number ~, and let G be the group of numbers 

of the form m +n'y, where m and n are integers. The group (~ is the torus, and A a consists 

of the continuous functions / on the torus whose Fourier coefficients 

am.:4~ f f e-im~ "~/(O,~)dOdyJ 

vanish outside the half-plane of lattice points for which m + n 7 ~ O. 

Algebras of analytic ahnost periodic functions were studied some time ago by Bohr 

[7] and others. A systematic study of A G as a sup norm algebra was begun by Arens and 

Singer [4], and continued by Arens [1], the author [17], Helson and Lowdenslager [15], 

and deLeeuw and Glicksberg [8]. Arens and Singer identified the maximal ideal space of 

A~, and it will be helpful for us to describe it. Topologically, it is the Cartesian produc_t 

of the unit interval and 0, with all the points (0, :r identified to a single point. 

Suppose 0 < r  ~ 1 and a 6 G. Define a complex homomorphism on the polynomials P,  

of the form (3.32) with t ~ 0 ,  by 

(P~ (P) = ~ )., /~  :r 
n 

Then [(I)~(P) [ ~< II Pll and so (1) extends uniquely to a complex homomorphism of A G. These 

functionals (P~ exhaust the complex homomorphisms of A G, except for the Haar  homo- 

morphism 
/ ,  

00( / )  -~ : |~/(~) d~. (3.34) 
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The points of G, which define homomorphisms of Aa by point evaluation, are then embedded 

in the maximal ideal space of AG as the homomorphisms d)l~. 

When G is not isomorphic to the group of integers, the maximal ideal space of Aa 

is often called a "Big Disc". The reason for the terminology should be evident from the 

analogy between the discussion above and Example  1. The group G is the "boundary"  

of the Big Disc, and the Haar  Homomorphism (3.34) is the "origin". 

Example 4. The algebra H ~, consisting of all bounded analytic functions in the unit 

disc, is (isomorphic to) a logmodular algebra. A classical theorem of Fatou states tha t  if 

/ E H  ~ t h e n / i s  representable as the Poisson integral of a bounded Baire function F on the 

unit circle: 

1(z)--27 ~ F(O)Pz(O)dO. 

Furthermore, the bound of / is the (Lebesgue) essential sup norm of F: 

sup I / ( z l l=  II F II = snp I F Oll. 
Izl<l 

This identifies H ~ with a closed subalgebra of L ~, the algebra of bounded measurable 

functions on the circle. The subalgebra, which we shall also call H% consists of those 

functions in L ~ whose Fourier coefficients c~ vanish for n < 0 .  The algebra L ~ is isome- 

trically isomorphic to C(X), where X is the maximal ideal space of L ~. This isomorphism 

carries H ~ onto a sup norm algebra A on the space X. Now A is a logmodular algebra on 

X; indeed, log [A-l[ = Ca(X). This simply states tha t  each real-valued function u in L ~ 

is the logarithm of the modulus of an invertible H ~ function F. The appropriate F is the 

boundary function for the bounded analytic function ], defined by 

r 1 e i ~  z ] 
/ ( z ) = e x p / - - /  ~-~u(O)dOI. 

L2~3-~e - z J 

This logmodular algebra A is not a Dirichlet algebra. For a proof of this and other facts 

pertinent to the foregoing discussion, see [18; Chapter 10]. 

Example 5. Let G be a (non-trivial) subgroup of the additive group of re~l numbers. 

We refer to the algebra A a of Example  3, and its maximal ideal space M(A)e. The algebra 

Aa is the uniformly closed linear span of the monomials 

Mt(:r ~(t) (teG, t>~O) 

tha t  is, the characters of G which arise from non-negative elements of G. If  we neglect the 

"origin" of M(Aa), the function Mt is extended to M(Aa) by 

M , ( r ,  ~ )  = ~/, (r = r~o:(t). 
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We now fix an "annulus"  S in M(Az): 

S = {(r,0r r>~e-1}. 

Let  B G be the uniformly closed subalgebra of C(S) which is generated by  the functions 2~/t 

and their reciprocals. I t  is easy to  see tha t  each function in B~ at tains its max imum over 

S on the "boundary" ,  

x = (e-~4) u d,  

which consists of two disjoint copies of G. We are going to show tha t  By is a logmodular  

algebra on X if, and only if, G is a dense subgroup of the real numbers.  Before we do this, 

let us note the concrete representat ion of the algebra B G. If  one refers to tha t  port ion of 

Example  3 in which we identified A'a with an algebra of analytic almost periodic functions, 

one sees t ha t  B o is isomorphic to an algebra of analytic almost  periodic functions in the 

strip 0 ~< I m  z ~< 1. The algebra B~ is the uniform completion on S of the functions 

P ( r , : c ) = ~ r t ~ ( t ~ )  (t~CG). 

From this it is easy to see tha t  B~ is isomorphic to the uniform completion of the expo- 

nential polynomials 

Q(z)=Zl~e ~t~ (t~eG) 

on the strip 0 ~< Im  z < 1. 

Note tha t  B G is not a Dirichlet algebra on X. Let ju o be the measure on X which is " H a a r  

measure on d minus Haa r  measure on (e-lG)": 

I t  is easy to check tha t / to  is orthogonal to Bc; hence, Ba is not  a Dirichlet algebra on X. 

We need to observe tha t  any  real measure on X which is orthogonal  to B~ is a scalar multiple 

of/~o- Suppose/~ is such a measure, and write/~ as the sum of two measures, the real measure 

~u 1 on ~ and the real measure lu2 on (e-lG). Since ~u is orthogonal to each monomial  Mr, 

t 6 G, we have 

<t, <t, (3.51) 0. 
J 

If  we replace t by  ( - t ) ,  i.e., replace Mt by  its reciprocal, 

have 

and then conjugate, we 

(3.52) 
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F r o m  (3.51) and (3.52) we see t h a t  

f ~ <t, ~) d / t l ( ~  ) = 0 (t~:o). 

But ,  s ince /h  is a real measure,  we then  have  d/tl(~ ) =cd~, for some real scalar c. I t  is easy 

to  see t ha t  d/t2(~ ) = -cd~, and hence t h a t / t  =c/t  0. 

When  G is a dense subgroup of the line, we wish to show tha t  log ] BG* I is dense in 

CR(X). We know tha t  log I Be* I contains Re  Be, and t ha t  the annihi lator  of R e B  e is the 

one dimensional space spanned by  the m e a s u r e / t  0. Therefore, in order to prove  t ha t  B z 

is a logmodular  algebra on X, it  will suffice to prove t h a t  the uniform closure of log I B~* ] 

contains  a linear subspace/V of Ca(X), such tha t  N contains l~e B e and one funct ion which 

is not  amfihflated by/ to .  Le t  t o be a fixed non-zero element  of G, and let 

u = log I ]~Lo I . 

Then  u 6 log I B~ll ,  and S u d/t o # 0 becanse 

0, on 0 
u =  - t  o , on e-lG. 

N o w  log I BG 1 I contains 

cu + Re / 

provided (cto)6 G and ] 6 Be. When  G is a dense subgroup of the line, there is a dense set 

of real numbers  c such t h a t  ct o lies in G. Hence,  the  uniform closure of log I B511 contains 

the  linear subspace spanned by  u and Re  Be. 

When  G is not  dense in the line, i.e., when G is isomorphic to the  group of integers, 

the  algebra B e consists of the  continuous functions on the  annulus e -1 ~< ] z I ~< l,  which are 

analyt ic  in the interior; and X is the  bounda ry  of the annulus. I n  this case, Be  is not  a 

l ogmodular  algebra on X. Points  inside the  annulus do not  have  unique represent ing 

measures  on X, whereas, we shall soon show tha t  representing measures  are unique for a 

logmodular  algebra. I t  is worth  noting (in the case of this annulus algebra) t ha t  the linear 

span  of log [BGI[ is dense in Cn(X), a l though log ]B~ll itself is not  dense. 

Other  examples  of Dirichlet algebras m a y  be found in Wermer  [27; 28]. We shall see 

other  examples  of logmodular  (non-Dirichlet) algebras later. We might  point  out  tha t ,  if 

A is a logmodular  algebra which is not  a Dirichlet algebra, then  the  max imal  ideal space 

M(A) cannot  be s imply connected, i.e., the  Cech eohomology group HI(M(A); Z) cannot  

be trivial.  For,  if this group is trivial,  a theorem of Arens and Calderon [2] s tates t h a t  

eve ry  invert ible element of A is of the  form e f, with /6  A. 
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4. Representing measures  

F r o m  this  po in t  on, we shall  be s tudy ing  a f ixed logmodular  a lgebra  A on the  space X.  

THEORWM 4.1. Let r be a complex homomorphism o/A. Then there is a unique Arens- 

Singer measure m/or 09, and that measure saris/lee Jensen's inequality: 

logl+(/)l=log fldm ~flogl/l<~m (levi). 
Proo/. Since all Arens -S inger  measures  for eP agree on log IA-,I, which is un i fo rmly  

dense in CR(X), there  is not  more t h a n  one such measure.  B y  Theorem 2.1, there  exis ts  

such ~ measure  m, and  i t  is a represent ing measure  for (I). To es tabl ish  the  Jensen  inequa l i ty ,  

we argue as follows. L e t / e A  and  let  e > 0 .  Then log( I / I  + s ) i s  a cont inuous rea l -va lued  

funct ion on X. Hence  there  is a funct ion u in log ]A-~ I which is uni formly  wi th in  s of 

log(Ill +~): 
u - .  < log(Il l  +~) < u + . .  (4.11} 

If u=log Igl, gEA -1, let h=/g -1. Then hEA; and, b y  the  r igh t -hand  inequa l i ty  of (4.11), 

we have Ihl < +  on Z. Therefore Ir I <+ .  But then 

I@(/)n I ~  (4.12, 
log I @(/) I - log I r I < 

Now m is an Arens -S inger  measure  for r and  g is inver t ible .  Consequent ly  

log Io(g) I = f log Igidm = fugm. 
B y  the  l e f t -hand  inequa l i ty  of (4.11) 

f udm <e+ f log(I/I +s)dm. 

If  we combine this  wi th  (4.12) we ob ta in  

logiO(/) I =log f/dm <2e+flog<lll +~>~m 
As e tends  monotonica l ly  to  0, we ob ta in  the  Jensen  inequal i ty .  

T ~ E O R ~ M  4.2. Let ~ be a complex homomorphism o] A. Then eP has a unique represent- 

ing measure. 

Proo/. Le t  m x and m 2 be represent ing measures  for dp. Le t  /E A - L  Then 

O([)= f]dml; I<i'(l)l< fllldm,, 
r l)= fl-'dm~; I+(l ')l</lll-ldm=. 



ANALYTIC FUNCTIONS 285 

Bu t  0(])0(1-1) = 1, hence 

l< fllldm flll idm2. 

Since this holds for every lEA -1 and loglA-11 is dense in Ca(X), we have 

l<./e~dmife-~dm~ (u~CR(X)). 

Fix u E CR(X) and define 

~(t)=fd~dml/e=t~dm~ ( -  ~ < t <  ~ ) .  

(4.21) 

I t  is clear tha t  ~ is an analytic function on the real line. By  (4.21) we have ~(t)>~ 1 for all 

t; because m s and m 2 are probabil i ty measures, ~(0)= 1. Therefore p ' ( 0 ) = 0 .  But  

e'(o)=fudm -fudm . 
We conclude tha t  m I and m 2 define the same linear functional on CR(X), and hence tha t  

m 1 = m 2. 

Several remarks are in order. Theorem 4.1 is due to Arcns and Singer [3]. Indeed, they  

proved this theorem under the hypothesis  tha t  the linear span of log I A-~I is dense in 

CR(X); this can be proved by  slightly modifying the proof we gave for logmodular  algebras. 

The present proof is a minor modification of a proof for Dirichlet algebras which was shown 

to  me by  John  Wermer.  Theorem 4.2 is a special case of a result about  the general sup 

norm algebra, as can be seen by examining the proof. I f  (I) is a complex homomorphism 

of the sup norm algebra A, then all representing measures for (]) agree on every u C CR(X) 
which has the proper ty  tha t  every (real) scalar multiple of u is in the weak closure of a 

bounded subset of log IA-11 . 

The uniqueness Theorem (4.2) is (of course) trivial if A is a Diriehlet algebra. For  the 

"Big Annulus"  algebra of Example  5, section 3, the uniqueness of representing measures 

was proved by Wermer.  For  the algebra H ~ of Example  4, section 3, Gleason and Whi tney  

[12] proved tha t  the homomorphism "evaluat ion at the origin" has a unique representing 

measure. The uniqueness of all representing measures for H ~ was proved by the au thor  

[18; page 182]. Of course, the uniqueness of the representing measure for (I) can also be 

s ta ted as follows: the linear functional (i) has a unique norm-preserving extension to a 

linear functional on C(X). 
Because of Theorem 4.2, there is really no need to speak any  longerof complex homo- 
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morphisms of the ]ogmodular algebra A, we may instead discuss probability measures m 

on X which are multiplicative on A: 

f/gdm= f/dm/gdm ( / , g 6 A ) .  

In  this language, the last two theorems say the following. 

COROLLARY. Let m be any probability measure on X which is multiplicative on A .  Then 

log f/dm<.flogl/Idm ( /6A).  

I n  particular, i[ ~ / d m # O  then log I/] eLl(din)  �9 1/ # is any positive measure such that 

/ d m =  ; / d# /or all ] 6 A,  then kt = m. 

For a discussion of the integrability of log ][[ when ; / d m  = 0, see the remarks after 

the corollaries to Theorem 6.3. 

We shall now extend to the class of logmodular algebras a theorem of Szeg5 [26] and 

Kolmogoroff and Krein [19], concerning mean-square approximation of 1 by polynomials 

which vanish at the origin. The role of the polynomials will be played by the functions in 

A, and that  of the origin will be played by a multiplicative measure on A. 

DEFINITION 4.1. Let m be a probabili ty measure on X which is multiplicative on A. 

We denote by Am the set of all functions / in A such that  ; / d m  =0. 

Of course, Am is a maximal ideal in the algebra A. The setting for the Szeg5 theorem 

is this. We are given m and also an arbi trary positive measure/x on X. We wish to compute 

the distance from the constant function 1 to the space Am, in the Hilbert space LZ(d#). The 

square of this distance is 

inf ~] 1 ~ / ~ 2 d ~  
reAm 3 

and the result is that  the above infimum is equal to exp [ ;  log hdm], where h is the derivative 

of # with respect to m. The proof we give is a modification of a proof due to Helson and 

Lowdenslager [14]. Their proof is also discussed in the author 's  book [18; page 46]. 

THEOREM 4.3. Let m be a probability measure on X which is multiplicative on A .  Let 

# be an arbitrary positive measure on X ,  and let I~a be the absolutely continuous part o / i  x with 

respect to m. Then 

inf ( [ 1 - / [ 2 d / ~  = inf fll-/l d,a. 
/eArn J /eArn 

I n  particular, i f  # is mutually singular with m, then 1 lies in the closed subspace o/L2(d#)  

which is spanned by Am. 
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Proo/. In the Hilbert space L~(d/~), leg F be the orthogonal projection of 1 into the 

closed subspace spanned by Am. Then 

If /6  A m then (1 - F )  is orthogonal to [ in Le(d#). Choose a sequence of functions/n in Am 

which converge to F. If leArn then (1 -]~)/is in Am, because Am is an ideal in A. Since [ 

is bounded, (1 - /~ ) /  converges to ( l - F ) / ,  and the latter function is (therefore) in the 

closure of Am. Hence (1-_~) is orthogonal to ( 1 - F ) [ .  In other words 

f /l]-Fr'd~=O (/eAm). 

Let ]c = f l  1 -Fled#. 

Of course, we may have k =0; this happens if, and only if, 1 is in the L~(d#) closure of Am. 
If k>0 ,  the measure d/~l=k-lll-FI2d/a satisfies ~/d/~=S/dm for every / in A. By 

Theorem 4.2 we have/~1 =m. Thus, whether k is 0 or not, we have 

I 1 - F l2dt~ =]cdm. (4.31) 

If we write tt =tta +tes, where/~a is absolutely continuous with respect to m and/is is mutually 

singular with m, then it is evident from (4.31) that  ( 1 - F )  vanishes almost everywhere 

with respect to/zs. For any / in Am we then have 

f (1-F)/dza= f (1-P)/d/~=O. (4.32) 

If we assume (as we may) that  F is a Baire function, then F belongs to the closure of Am 

in L2(d/~), because 

If we combine this observation with (4.32), we see that  F is the orthogonal projection of 

1 into the L~(dl~) closure of Am. This proves the equality of the two infima in the statement 

of the theorem: 

fEAm J f t A m  

In case/z is mutually singular with m we have/z~ =0, and hence 1 is in the L2(d/z) closure 

of Am, i.e., F=I ahnost everywhere with respect to/z. 
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Now we proceed to investigate the inf imumum for absolutely continuous measures. 

We shall nccd two lemmas concerning probabili ty measures. 

LEI~IMn 4.4. Let m be a probability measure on. X,  and let g be any real-valued ]unction 

in Ll(dm). Then 

f egdm ~ exp [ f  gdm] �9 

Proo[. This is a well-known the()rem. I t  is a consequence of the familiar inequali ty 

between ari thmetic and geometric means. I t  is included because the author  assumes he 

was not  alone in being unaware of the following elegant proof, which was shown to him 

by  Steven Orszag. Apparent ly  this proof is originally due to F. Riesz. I t  clearly suffices to 

prove the inequality when S gdm=O. In  this case simply observe tha t  ea~l-~-g and 

integrate. 

LE)IMA 4.5. Let m be a probability measure on X and let h be a non-negative/unction 

in Ll(dm). Then 

w~re g ranges over any one o/the three/ollowing spaces o/]unctions: (a) the space o/real/unc- 

tions in LX(dm); (b) the space o/real bounded Baire ]u~vtions; (e) the space CR(X). 

Proo/. Since hELl(din) and log h < h, we can only have log h non-integrable if 

log h d m :  -- ~ .  I n  this case the left-hand member of (4.51) is defined to be 0. Let g be 

any  real function in Ll(dm) such tha t  j" grim =0. By Lemma 4.4 we have 

fe~215 -. l o g h ) d m ] - e x p [ f l o g h d m ] ,  (4.52) 

at  least in the case when log h is integrable. If  log h is not  integrable the inequali ty is trivial. 

Thus 

ext, [f loghd,n] f e~ (geL,,(d,,), f dm-O) 
(L~(dm) denotes the space of red/ L 1 functions.) Suppose log h is integrablc. Let  

g - log  h + flog h dm 

so tha t  gfL~(dm) and .[ gdm-O. For this g, equality holds in (4.52). If  log h is not  inte- 

grable then, for any e > 0 ,  }og(h+e) is integrablc; and if we let e tend monotonically to 0 

we obtain (4.51). Thus (4.51) holds for all non-negative h in Ll(dm), where g ranges over 

/jl(dm). 
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The infimum on the right of (4.51) is unaffected if L~(dm) is replaced by the class of 

real bounded Baire functions. Given any gE Ll(dm) for which ~ gdm=O, we can select of 

sequence of real bounded Baire functions g, such tha t  ~ gndm--->O, 

g, V 0 = max [g~, 0] 

increases monotonically to g V 0, and 

g, A 0 = rain [gn, 0] 

decreases monotonically to g A 0. By the monotone convergence theorem, 

lim f e"hdm= f eahdm. (4.53) 

From this it is clear that  the infima corresponding to L~(dm) and the space of bounded 

functions are equal. 

I f  g is a real bounded Baire function with S gdm =0,  we can find a sequence of func- 

tions g, fi CR(X) which 2s bounded, satisfies ~ g, dm = 0, and converges pointwise to g almost 

everywhere relative to m. By the bounded convergence theorem, we have (4.53). That  

proves the lemma. 

Now we return to our logmodular algebra A and prove the generalized Szeg5 theorem. 

T ~ O R E M  4.6. Let m be a probability measure which is multiplicative on A and let h 

be a non-negative ]unction in Ll(dm). Then 

in, 
lEArn J 

Proo]. By the last lemma 

exp [flog hdm] =inf/ e"hdm (ueCa(X), f udm=O). 
Since log I A 11 is uniformly dense in Ca(X) we have 

exp[floghdm]=i rfl]l hdm (leA -1, /dm = 1). 

Here, we have used the fact that  m is an Arens-Singer measure, so tha t  when we approxi- 

mate  ueCR(X) by log ]/I s, / C A - ' ,  the number  l o g [ S / d m l ~ =  ~ log [/[~dm will be near 

udm. I f / E A  -1 and ~ / r i m = l ,  t h e n / = 1  - g ,  where gEA,n. Thus 

19--622906 Acta  mathematica 108. Imprira6 lo 28 d~embro  1962 
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On the other hand, if gEAm 

f log [1-g[2dm>~ 21og f (1-g)dm =0 

because m satisfies Jensen's  inequality (Theorem 4.1). By Lemma 4,4 we then have 

f ] l - g [2 h dm >~ exp { f [log [1 -  g ' 2 + log h] dm } >~ exp [ f log h dm] . 

This establishes the reverse inequality in (4.61), and the theorem is proved. 

THWORWM 4.7. Let m be a probability measure on X which is multiplicative on A. Let 
/~ be a positive measure on X, and let d/~=hdm§ be the Lebesgue decomposition o/i~ 
relative to m. Then 

'nZf,  ] 
Proo/. The absolutely continuous par t  of # relative to m is hdm. Now apply Theorems 

4.3 and 4.6. 

5. The  space H 2 

We now begin to s tudy the analogue (for logmodular algebras) of a segment of analytic 

function theory in the unit disc. 

DEFINITION 5.1. Let  # be a positive measure on X.  The space H~(d#), 1 <.p< ~,  
is the closure of the algebra A in the Banach space/2(d/u). 

When A is the standard algebra on the unit circle and m is normalized Lebesgue 

measure on the circle, the spaces H~(dm) are (isomorphic to) the Hardy  spaces H p. These 

spaces are discussed from this point of view in [18]. 

In  this section, we shall/ix a probability measure m on X which is multiplicative on our 
logmodular algebra A, and concentrate on a study of the Hilbert  space H2(dm). 

The measure m is multiplicative on H2(dm). Also, we have the Jensen THEOREM 5.1. 

inequality 

log fldml< flogl/Idm (/eH2(dm)). 

Thus, i / /E  H2(dm) and S / dm ~ 0 the/unction log ] / ] is integrable with respect to m. 

Proo/. I f  /, g are in H2(dm) we choose sequences of functions/n, gn in A which con- 

verge (respectively) to / and g in L 2 norm. Since S/ng~=$/n~g~, it is clear tha t  

~/g din= ~/dmSg dm, i.e., tha t  m is multiplicative on H2(dm). 
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Given ]EH2(dm) choose functions In in A which converge to ] in L2(dm) and which 

satisfy S ]~dm = ~ [din. Let ~>0. Then I],l +~ converges to I/I +e  in iLl(din). Therefore 

log(If~ I +e) converges to log(I/[ +e) iu L~(dm). For, it is easy to verify tha t  if m is any 

positive measure and {p~} is a sequence of positive functions in Ll(dm) which converges 

to p in Ll(dm), and if p~>~e>0 for each n, then logp~ converges to logp in L ~. Thus 

f l o g (  I[] +e, dm= lim f l o g (  I[nl +e, dm~ l i ~ f l o g  I/nidm 

Here we have used the Jensen inequality for functions in the algebra A. If we let e tend 

monotonically to 0, we are done. 

The Jensen inequality for functions in H2(dm) can also be deduced from the Szeg5 

theorem (4.6). This proof is not only simpler, but has two other advantages. I t  works just 

as well for functions in Hi(din); and it does not depend upon the fact that  A is a logmodular 

algebra. I t  assumes only that  the measure m is multiplicative on the sup norm algebra A 

and that  m satisfies the Jensen inequality on the algebra. 

Now we come to one of the most basic facts about a logmodular algebra. What we 

want to prove is that  L2(dm) is the (Hilbert space) direct sum of H2(dm) and/l~m(dm), the 

space of complex conjugates of H 2 functions which are annulled by m. This amounts to 

showing that  if gEL2(dm) and ~ ]gdm=O for all [EA,,, then g is actually in H2(dm). In 

case A is a Dirichlet algebra, this is almost evident, because the space A + ~ is uniformly 

dense in C(X). For the general logmodular algebra, A +_~ is not dense in C(X), but  we 

shall show that  it is dense in L~(dm). 

THEOREI~I 5.2. Let gELl(dm), and suppose that ~ /gdm=O /or all/EA. Then 

f l o g l l -  I dm~O. g 

Proo/. Let / E A -1. Then 

f / dm= f ( 1  -g) /dm 

and so 
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Since m is an Arens-Singer measure and / e A  -1, we have 

flog I/l~m<log fltlll-glam 

o,, exp[f'ogI,Idm]<<, f'/ll'-gld~. 
Since log [A-l[ is uniformly dense in Cn(X), we have 

l <~ f e ~ ] l - g l d m  (ueC~(X), fudm=O). (5.21) 

The infimum over u of the right-hand member of (5.21) is 

by Lamina 4.4. That  proves the theorem. 

LE~MA 5.3. Let m be a probability measure, and let g be a real-valued [unction in 

L2(dm). Suppose that 

f log [ 1 - tg I dm >1 0 (5.31) 

/or every real number t in some interval [t I < 8. Then g = 0 almost everywhere with re. 

spect to m. 

Pro@ If we employ (5.31) for t and - t  and then add, we obtain 

0 <  flog ll-~g~ldm (0<t<t~). 

Let  Et be the set on which 1 - t 2 g ~ > 0 ,  and let E~ be its complement. Then 

o <. f . log (1-  t' f ) dm + f ..t log (t~ g~ - l ) dm. 

We apply the inequality log ( 1 - x ) ~ < - x  in the first integrand and the inequality 

log ( x - 1 ) < x  in the second integrand. We obtain 

or 0.<-fj '+f..f. 
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Thus we obta'.n 

and therefore g = 0. 
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Since Et={g2<l/t  2} and g2 is integrable, lim m(Et)=l. 
t---~ 

, 

o<. -jg~-dm 

TH~ORI~M 5.4. The spt:ce IA +,~) is dense in L~(dm). Thus 

L"(,Im) = H2(dm) @/~m(am), 

where H~ is the closure o/ Am in L2(dm). In Tarticular, a Im~ction g in L~(dm) belongs 

to H2(dm) i/, and only i/, 

f /gdm=O (~eArn). 

Proo/. If  A + ~I is not dense in L2(dm), there exists a non-zero function in L2(dm) 

which is orthogonal to A and ~.  Thus there exists a non-zero real-valued g in L2(dm) 

which is orthogonal to A. Each real scalar multiple of g will also be or~h~gonal to A. 

By Theorem 5.2 this g satisfies 

f log]l-tg]dm>~O ( -  oo < t <  oo). 

By Lemma 5.3, this is impossible with g * 0 .  We conclude that  A +.~ is dense in L2(dm). 

Since A and -~m are orthogonal subspaces of L2(dm) and their sum is dense, we have L 2 = 

H2@H~. Thus H 2 is characterized as the subspace orthogonal to ~m, and wc are done. 

Needless to say, it follows from the same argument that  A + ~  is dense in Lr(4m), 

1 ~< p ~< 2. In  the next section we shall prove the density for p > 2. 

We turn now to the discussion of certain invariant subspaces of H2(dm). The result 

is a generalization of Beurling's theorem [5], for the case in which A is the standard algebra 

on the unit circle. The proof we employ is due to tIelson and Lowdenslager [14]. Other 

relevant references are Lax [20], Masani [22], ttalmos [13], and [18, Chapter 7]. 

TH~,OREM 5.5. Let S be a closed subspace o/H2(dm) which is invariant under multi- 

plication by the/unctions in A. Suppose that ~ g dm ~: 0/or at least one/unction g in S. Then 

there is a/unction F in H2(dm) such that 

(i) IF]  = 1 almost everywhere with respect to m; 

(ii) S=FH2(dm). 

The/unction F with these two properties is unique to within a constant/actor o/modulus 1. 
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Proo/. Let G be the orthogonal projection of 1 into S. Then (1 - G )  is orthogonal to S. 

Since G belongs to S and S is invariant under multiplication by  the functions in A, the 

function (1 - G )  is orthogonal t o / G , / E A ;  tha t  is 

o=S(1-o)a/dm 
I n  ease / e A ~  then ( /G)e / /~  and so S /Gdm=O.  Therefore, we have 

o=S/Iol d  (/eArn). 
:By the uniqueness of m (Theorem 4.2), we must have 

[ G i ~ dm = k2 dm 

t h a t  is, [G[ is a constant k almost everywhere. 

Since G belongs to S, the subspaee S contains GA. But  G is a bounded function, and 

:so S contains GH 2. We can see tha t  S = GH 2 as follows. Suppose g E S and g is orthogonal 

to GH ~. Then 

o= flOg m (leA). (5.51) 

Since g E S  we have (/g)ES and ( 1 - g )  is orthogonal to /g. "In case /EAm this says 

o= f/Ogdm (/EArn). (5.52) 

,Combining (5.51) and (5.52), we see tha t  Gg is orthogonal to (A +A).  By Theorem 5.4 it 

must  be tha t  Gg = 0. But  G is a function of constant modulus k, and that  constant cannot 

be 0 because we have assumed tha t  1 is not orthogonal to S. (1 is orthogonal to S if and 

,only if S hdm=O for all hES.) Therefore g=0 .  We conclude tha t  S = G H  ~. I f  we let F =  

G/I~ then 2' has the properties required. 

Suppose F 1 is a function in H2(dm) such that  S = F 1 H  ~ and I F 1 / = 1  almost every- 

where. Let  ~ =~ Fldm. I t  is trivial to verify that  ~F 1 is the orthogonal projection of 1 

:into S. Hence, F 1 is a constant multiple of F. 

THEOREM 5.6. Let g be a /unction in H2(dm). The set o/ /unctions Ag is dense in 

H~(dm) i], and only i/, 

floglgldm=log fadml>-o . (5.61) 

Proo/. The space Ag is dense in H2(dm) is and only if 1 belongs to the closure of Ag. 

I n  order for this density to prevail, it is clearly necessary tha t  ~ gdm=4=O. Since (5.61) is 
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not affected if g is multiplied by a nonzero scalar, we may  assume tha t  ~ gdm = I. As we 

already noted, Ag is dense in H 2 if and only if there exist functions/~ in A with 

l imfl I - t gl = 0. 

Since ~gdm=l we may  assume tha t  ~[,~dm=l, i.e., that  fn=l-gn, with ~EA,n.  

Now 

f t l - (1-g,~) g,~dm= - l + f , l -gn,~lgl~dm 

and so Ag is dense if, and only if, there exist functions gn in Am with 

lim Il l -g~12]gl2dm= l. 
a , j  

for any /EA~.  Thus the density of A~ in /t2 is equivalent to 

inf ( l l - / [ 2 [ g I 2 d m =  1. 
r e A m  , J  

By the generalized Szeg5 theorem (4.6), this infimum is equal to 

Since ~ g~dm = 1 we obtain (5.61) as the necessary and sufficient condition for the density 

of Ag in H e. 

DEFINITIOX 5.2. An inner Junction is any F in It2(dm)such tha t  IFI =1 almost 

everywhere relative to m. An outer/unction in / /~  is any g in H~(dm) which satisfies (5.6I). 

Our last two results may  then be stated as follows. I f  S is a dosed subspace of//e(dm) 

which is invariant under multiplication by  the functions in A, and if not every function in 

S "vanishes at m", then S = E / / ~ ,  where F is an (essentially unique) inner function. A 

function g in H~(dm) is an outer function if, and only if, Ag is dense in/-F,  i.e., if, and only 

if, g lies hi no proper " invar iant"  subspace of/-/~. I t  should be noted that  when A is the 

s tandard algebra on the unit circle, Theorem 5.5 is valid if one merely assumes tha t  S is 

not the zero subspace; however, the hypothesis that  1 is not orthogonM to S cannot be 

deleted for the general logmodular (or even Diriehlet) algebra. Consider the I)iriehlet 

algebra Ao of Example 3, section 3. Let  m be I t aa r  measure on O, and let S be the space 
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H~. Then, unless G is isomorphic to the group of integers, the subspace S is not of the 

form FH2(dm). 

THEOREM 5.7. Let / be any /unction in H2(dm) /or which ~ /dm:~=O. Then /=Fg,  

where E is an inner/unction and g is an outer/unction in H~(dm). This/actorization o/ / is 

unique up to a constant o/ modulus 1. 

Proo/. Let S be the closure of A / i n  H~(dm). Then S is " invariant";  and 1 is not ortho- 

gonal to S, because ~ / d m  ~ O. Thus S = F H  ~, where 2' is an inner function. In  particular 

]=Fg, where gEH ~. Since A/=.F.(Ag)  and S = F H  ~, it is clear tha t  the closure of Ag is 

H 2. Thus g is an outer function in H 2. The factorization is unique, by  the uniqueness state- 

ment  of Theorem 5.5. 

The following theorem will be important  for our work in the next  section, and will 

help us to characterize moduli of H 2 functions. The proof is due to Helson and Lowdens- 

lager [14]. Also see [18; p. 44]. 

THEOREM 5.8. Let/~ be a positive measure on X ,  and assume that 1 i8 not in the L2(d/~) 
closure o/ Am. Let G be the orthogonal projection o/1 into the closed subspace o/L~(d/~) which 

is spanned by A m . 

(i) [ 1 - G I ~dl~ = Ic dm, where k is a positive constant. 

(ii) The/unction (1 -G)  -1 is an outer/unction in H~(dm). 

(iii} I/dlz =h dm+ d/~s, where h eLl(din) and Iz8 is mutually singular with m, then (1 - G) h 

is in L~(dm). 

(iv) k = e x p  [~ log h din/. 

Proo/. Statement  (i) results from the definition of G and the uniqueness of m. See 

the proof of Theorem 4.3. We then have [ 1 - G  I ~h dm =k din, from which it is clear tha t  

(1 - G )  -1 is in L2(dm). Let /eArn.  Then 

f/(l-G)-ldm=~ f,(1-G)-~ll-Gl'd~=~ f/'(1-O}d~=O 
because ( 1 - G )  is orthogonal to Am in L~(d#). By Theorem 5.4 we see tha t  ( 1 - G )  -1 is in 

H~(dm). Since 

(1 - G) h d m  = k .  (1 - G) -1 dm 

and ( 1 - G )  -1 is in L~(dm), we see tha t  (1 -G)heL2(dm) .  Statement (iv) is simply a repeti- 

tion of the Szeg5 theorem (4.7). This completes the proof, except for the assertion tha t  

(1 - G )  -1 is an outer function. This we see as follows. We have 

h = k I 1 - G [ -3, almost everywhere din. 
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log h = log k + 2 log [ 1 - G I- 1. 

(iv), ~ log hdm = log k. Therefore 

f l og  I 1 - G] -1 dm = O. 
d 

On the other hand, 
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f(1-a)-ldm= f(1-O)dlz= f(1- )dlz- f(1-O)adtz 

Here, we have used the fact that  ( 1 -  G) is orthogonal to G in L2(d#). Therefore 

flog [1-G[-l dm= log l f (1-O)-l [ =o 

and ( 1 -  G) -1 is an outer function. 

THeOReM 5.9. Let h be a non-negative/unction in Ll(dm). The/oUowing are equivalent. 

(i) logh is integrable with respect to m. 
(ii) h =  i / i  s, where/EHU(dm) and ~/dm:~O. 

h = I g13, where g i8 an outer/unction in H~(dm). 

Proo/. The equivalence of (ii) and (iii) is evident from Theorem 5.7. I t  is also clear that  

(iii) implies (i). Suppose (i) holds. Let  d# =h din. Since logh is integrable, 1 is not in the 

closed subspace of L~(dl z) which is spanned by Am (Theorem 4.6). Let  G be the orthogonal 

projection of 1 into that  subspace of L2(dtz). By Theorem 5.8 (and its proof), (1 - G )  -1 is 

an outer function in H2(dm) and 

h = k i l - G [  -2 (k=exp[f loghdm]) .  

Let g = Yk(1 - G )  -1, and then g is an outer function with I gl ~= h. 

6. The  spaces  H 1 and H ~ 

We retain our fixed logmodular algebra A and the fixed probability measure m, 

which is multiplicative on A. In  the last section, we introduced the spaces H~(dm), 1 <~p < ~ ,  
and studied H2(dm) to a certain extent. Now we consider Hl(dm) and its basic properties. 

We shall also define and discuss the space H~ Our first problem is to characterize 
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H 1 as the space of all functions h in Ll(dm) such that  ~ /hdm =0 for every / in Am. This 

leads to the factorization of H 1 functions. We shall also treat complex measures which are 

orthogonal to Am. 

THEORE~ 6.1. Let h be a /unction in Ll(dm) such that ~ /hdm = 0 / o r  every / in A m 
and/or which ~ h dm :VO. Then h is the product o~ two/unctions in H2(dm). 

Proo/. Let us assume that  ~ h dm=l. Then h = l - g ,  where g is a function inLl(dm) 
which satisfies ~/g dm=O for every / in the algebra A. According to Theorem 5.2, the 

function log/1 - g [  =log ]h I is in Li(dm). By the general Szeg5 theorem (4.6), the constant 

function 1 does not lie in the closed subspace of L2([h[dm) which is spanned by Am. Now 

Theorem 5.8 tells us that, if G is the orthogonal projection of 1 into that  closed subspace, 

the function ( l - G )  -1 is in H~(dm) and (1 -G)]h[  is in Le(dm). Therefore ( 1 - G ) h  is in 

Le(dm). The claim is that  ( 1 - G ) h  is in He(dm). By Theorem 5.4, this is equivalent to the 

statement that  

~ /(1-G)hdm=O (leA,,). 

Choose a sequence of elements/~ in Am which converge to G in L2(Ih]dm). Clearly, for any 

/ in Am we have 

f /(1--G)hdm--li,m f /(1-/ ,)hdm. 

But each function ( 1 - / n ) / i s  in Am, and h is "orthogonal" to Am. We conclude that ( 1 -  G)h 
is in He(dm), and the factorization of h which we seek is 

h = (1-0)-1[(1 - G)h]. 

COROLLARY. The space Hl(dm) consists o/ those /unctior~s h in Ll(dm) such that 
/ hdm=O /or every/EA,n. 

Proo/. Obviously any H 1 function is "orthogonal" to Am. On the other hand, if we are 

given an h in Ll(dm) with this orthogonality property, we can choose a constant c so that  

(c=-h) is orthogonal to Am and has mean different from 0. By ~he Theorem, (c+h) is the 

product of two H 2 functions. From this it is obvious that  (c +h) is in the L 1 closure of A. 

Hence h as in the L I closure of A, i.e., h is in Hl(dm). 
We can now proceed to factor H 1 functions, just as we did H e functions. 

D~rNITIO.W 6.1. An outer/unction in Hi(din) is a function g in Hl(dm) such that  

f loglg,dm~log f g d m > - ~ .  

There is no need for us to have another definition of inner function. Such a function 

F was defined as an element of H2(dm) which has modulus 1 ahnost everywhere. Certainly 
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this is the same as saying tha t  F is an element of Hl(dm) which has modulus 1 almost  

everywhere. One can say slightly more. 

DEFINITIOn"  6.2. The space H~176 is the set of all h in L~ such tha t  

S/hdm =0 for every / in Am. 

I t  is clear t ha t  H~176 consists of the bounded  functions in H2(dm); or, equivalently,  

it consists of the bounded functions in Hl(dm). We see also tha t  an inner function is precisely 

an element of H~ which has modulus 1 almost  everywhere. 

THEOREM 6.2. Let / be a/unction in Hl(dm) such that ~ /dm 4=O. Then/=Fg,  where 

F is an inner/unction and g is an outer/unction in Hl(dm). 

Proof. Since j " / d m 4 0 ,  we know from Theorem 6.1 tha t  ]=/1/2, where /1  a n d / 2  are 

in He(dm). Obviously ~/ldm4=O 4= ~/~dm. By the factorization theorem (5.7) for H 2, we 

have fj = Fjgj, ~ = 1,2, where 2' 1 and 2' 2 are inner functions and gl and g~ are outer functions 

in H2(dm). Certainly F = F 1 F 2 is an inner function, and it is easily checked tha t  g =gig,, 

is an outer function in Hi(din). 

Of course, we want  to know tha t  this factorization for H I functions is unique, just  as 

it is for H 2 functions. To see this, it is both convenient  and instructive to proceed as follows. 

THEOaE.~  6.3. Let g be a/unction in Hi(din). The following are equivalent. 

(i) g is an outer function. 

(fi) The space Ag is dense in Hl(dm). 

(ffi) S gdm4=O; and i/ h is any /uuction in Hl(dm) such that [h I <~ Ig[, then h/g is in 

H~(dm). 

Proof. Suppose g is an outer  function. B y  Theorem 6.1, g =gig2, where gl and g2 are 

in He(drn). I t  is clear tha t  gl and g2 are outer functions. By  Theorem 5.6, the L2(dm) closure 

of Ag~ is H2(dm). Since gl is in L2(dm), it follows tha t  the Ll(dm) closure of Ag=gI(Ag2) 

contains Ag I. Since gl is outer, 1 is in the Le(dm) closure of Ag 1. Thus 1 is in the Ll(dm) 

closure of Ag, f rom which it is apparent  t ha t  Ag is dense in Hi(din). Thus (i) implies (ii). 

Suppose (ii) holds. Since 1 is in the Ll(dm) closure of Ag, it is evident tha t  S gdm 4=0. Let  

h be a function in Hi(din) such tha t  Ihl ~< [gl" Choose a sequence of elements/~ in A such 

tha t  fng converges to 1 in L l norm. For  any  f in A~ 

g J g 

because the function /[h/g] is bounded. Since S ]/nhdm =O for each n, we see tha t  h/g is 

bounded and "or thogonal"  to Am, i.e., h/g is in H~(dm). Thus (ii) implies (iii). Suppose 
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(iii) holds. Since S gdm ~0 we have g = Fgl, where F is an inner function and gl is an outer 

function. Now l gl I = I gl and so (by (iii)) the function gl/g is in H~(dm). But  g~/g = 1IF =F. 

Thus both F and P belong to H~C(dm). This implies that  F is constant, either by the ob- 

servation that  any real-valued function in H2(dm) is constant, or by the following. Let  

2=S Fdm. Then E=2+G, where GEH:C(dm) and S Gdm=O. Since F = 2 + G  is also in 

H:C(dm) 

1= jlFl  dm= j'(z + + G)dm 

=lAl +0+0§ 

Since I F I = 1 and I S Fdm [ = 1 it is clear that  F =~ almost everywhere. Since F is constant, 

9 =~91, an outer function. 

COROLLARY. I / g  and gl are outer/unctions in Hl(dm) such that Igl = [ g l l ,  then g=2gl, 

where ,~ is a constant o/ modulus 1. 

COROT,T.A~Y. The/actorization in Theorem 6.2 is unique up to a constant o/modulus 1. 

Proo/. If Eg =Fig1, where F and F 1 are inner functions and g and gl are outer functions, 

then ]g] = ]gl ], so that  g =~gl. Therefore ,~Fg 1 = ~~1~1. Since log[g 1 [ is integrable, gl cannot 

vanish on a set of positive measure; hence 2F  = F 1. 

COROLLARY. Let g be an outer/unction in Hl(dm). Then g=h ~, where h is an outer 

/unction in H2(dm). 

Proo/. In  the t t i lbert  space L2(]g]dm), the constant function 1 is not in the closed 

subspace spanned by Am. (Because, log [g] is integrable (4.6).) Let  G be the orthogonal 

projection of 1 into that  subspace. Then, by Theorem 5.8, the function (1 - G )  -I is an outer 

function in HZ(dm), and 

l l  - G  I ~[gldm = k din, 

where k = e x p  [S log Igldm3 = IS gdml. Thus Igl --kl 1 -G1-2,  and since bothg  and (1 - G )  -2 

are outer functions g = k�89 1 --G) -~, where [AI = 1. Thus g is the square of an outer function 

in H~(dm). 

COROLLARY. Let / be a/unction in Hl ( dm ) such that S/dm#O. Let G be the orthogonal 

projection o/1 into the closed subspace o/ L~(I/I din) which is spanned by Am, and let 
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Then g =c(1 - G )  -2 is the outer part o/ /, that is, g is the (essentially unique) outer/unction oc- 

curring in the/actorization o/ Theorem 6.2. 

In  the classical s tudy of H " spaces, one deals with the special case in which A is the 

standard algebra on the unit circle and m is normalized Lebesgue measure. In  this case, 

the factorization theory is valid without the hypothesis tha t  S ]dm:4:0. One need only 

assume that  /~:0. This results from the fact tha t  an analytic function in the unit disc 

which is not identically zero can be written in the form zk/, where / does not vanish at  the 

origin. Thus, any non-zero function in H 1 has an integrable logarithm. This fails for the 

general logmodular algebra A, even in the case when m is non-trivial, i.e., when m is not 

simply a point mass on X. Indeed, there may  exist functions / in the algebra A which vanish 

on an open subset of X with positive m measure, but  which are not 0 almost everywhere 

rc]ative to m. In  special cases, the integrability of log ]/] does go through. Consider the 

case in which X is the Bohr compactification of the real line and A is the algebra of analytic 

almost periodic functions (Example 3, Section 3). Take m to be Haar  measure on X. This 

is a situation which closely resembles the standard one on the unit circle. Arens [1] proved 

that  ff / is a non-zero element of A, then log I/I eLl(dm), even if S / d m  = 0; however, Helson 

and Lowdenslager [15] showed tha t  there exist non-zero functions in H~176 which do 

not have an integrable logarithm. I t  is interesting to note tha t  this algebra H~176 is 

again a logmodular algebra. This is true for the general logmodular algebra. 

TH~ OREM 6.4. Let h be a non-negative/unction in Ll( dm ). Then h = I/i, where / e Hl( dm ) 

and ~ /dm ~:0 i/, and only i/, log h is integrable with respect to m. A non-negative/unction h 

inLet(rim) has the/orm h = [ / I with /E H:C(dm) and ~ ] dm 4 0  i/, and only i/, log h is in L~(dm). 

Proo/. Since every / in Hl(dm) for which ~ / d m  4 0  is the product of two functions in 

H2(dm), this is immediate from Theorem 5.9. 

COROLLARY. The algebra H~(dm), with the m-essential sup norm, is a logmodular 

algebra on the maximal ideal space o/L~C(dm). 

Proo/. From the Theorem, every real-valued function u in L~(dm) has the form 

u = l o g  ]/[, where / is in H~(dm). We can (of course) arrange tha t  / is an outer function in 

H:C(dm), just as in Theorem 5.9. This / is invertible in HCC(dm). Simply choose an outer 

function g in HCC(dm) such tha t  [g] = e - L  Then the outer funct ion/g  has modulus 1 and 

must  be constant; hence, a scalar multiple of g is the inverse o f / .  We conclude tha t  

l og  I ( H ~ ) - I  I - - L =  

and therefore H~176 is a logmodular algebra on the maximal ideal space of L~(dm). 

See Example  4, Section 3. 
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One of the most beautiful theorems in the theory of analytic functions in the unit disc 

is due to F. and M. Riesz [25]. I t  provides a characterization of functions in the Hardy  

class H 1. I t  states that  if # is a (complex) measure on the unit circle whose Fourier coef- 

ficients vanish on the negative integers, then/~ is absolutely continuous with respect to 

Lebesgue measure. The analogue of this theorem is false for logmodular algebras; however, 

there is a general theorem of this sort which easily implies the classical result. The proof 

is due to Helson and Lowdenslager [14]. See [18, page 46] for a discussion. 

THEOREM 6.5. Let ~ be a complex measure on X such that ~ is orthogonal to Am: 

f /d#=O (leArn). 

Let #a and #s be (respectively) the absolutely continuous and singular parts o] # with respect 

to m. Then/~a and/~s are separately orthogonal to Am, and/~s is also orthogonal to 1. Further. 

more, d/~a = h dm, where h e Hl(dm). 

Proo/. Let d/~ = h dm, and let e be the positive measure on X defined by 

de = (1 + Ihl)dm+dl  l, 

where denotes the total variation (measure) of If then, 

Let G be the orthogonal projection of 1 into the closed subspace of L2(de) which is spanned 

by Am. By (6.51) 

fn -Gl de l. 
By Theorem 5.8, the function (1 - G) -1 is (an outer function) in H2(dm), and (1 - G) (1 + [h I ) 

is in L2(dm). Therefore ( 1 - G ) h  is in L2(dm). 

Again, let/EArn. We claim that  

f ( 1  - = 0. G) /d# 

For, choose a sequence of elements 1~ in A m which converge to G in L2(de). Since/~ is abso- 

lutely continuous with respect to e and d/~/d e is bounded 

f (1-G)ld~=lim f (1 " /~)/d#=O 

because each (1-1~)1 is in Am and ~u is orthogonal to Am. From Theorem 5.8 we know that  
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( 1 - G )  vanishes almost everywhere with respect to the singular par t  of o. Thus ( 1 - G )  

valfishes almost everywhere relative to/ t , ,  and so 

Let gn be a sequence of elements of A which converge to (1 - G )  -1 in LZ(dm). There 

is such a sequence, since (1 - G )  -x is in H~(dm). By (6.52) 

/gn/(1 - hdm -- 0 G) (6.53) 

for each n. Now (1 -G)h  is in L2(dm) and gn converges to (1 - G )  -1 in LZ(dm). We may,  

therefore, pass to the limit in (6.53) and obtain 

f lhdm--O (/eArn). 

This proves that  tta is orthogonal to Am; and hence that /x ,  is also. 

According to Theorem 4.3, 1 belongs to the closure of Am in L 2 of the positive singular 

measure tzsl. if we choose functions/n in Am which converge to 1 in i2(dk, s I), we shall 

have 

f dt~s= lim f l~d~. 

But tt, is orthogonal to Am; consequently ~ dtt~=O. By the Corollary to Theorem 6.1, 

h EH~(dm). That  completes the proof. 

We should like to relate some further results concerning measures which are orthogonal 

to A m (or A). We shall need the following lemma which extends Lemma 5.3. This argument  

is basically due to R. Arens, and we should like to thank him for allowing us to use his 

proof. 

LEMMA 6.6. Let m be a probability measure and let g be a real-valued/unction in Ll(dm). 

Suppose that 

f l o g  [ 1 - dm 0 tgl (6.61) 

/or every real number t in some interval It ] < 5. Then g vanishes almost everywhere with respect 

to m. 

Proo/. First, let g be any function in L~(dm). If  z is a complex number in the (open) 

upper half-plane, define 

u(z) = [ l o g  11 - zg I din. 
J 
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I t  is 

l im u(iy) = O. 
u~o y 

W e  see th is  as follows. F i r s t ,  

1 ]~dm=~flog(1 dm. u(iy) = ~ flog I 1 - iyg + y292) 

easy to see t h a t  u is a harmonic  funct ion in the  upper  half-plane.  Fu r the rmore ,  

(6.62) 

Y y log( l+y2g2)dm--~  ~ log ( l+y~g2)gdm.  (6.63) 

F o r  each y > 0, the  funct ion log(1 + y2g2)/yg is defined to  be 0 on the  set, where ff = 0. As 

y ->0 ,  this  one -pa ramete r  f ami ly  of funct ions converges pointwise to 0; and,  the  convergence 

is bounded,  since the  funct ion log(1 +x~)/x is bounded  on the  real  line. Since the  funct ion 

g is in tegrable ,  the  bounded  (dominated)  convergence theorem tells us t h a t  we m a y  pass 

to  the  l imi t  iu (6.63) and  ob ta in  (6.62). 

Now suppose (6.61) holds for - 5 < t < 5 .  Then the  funct ion  u is non-nega t ive  in the  

s t r ip  - 5 < Re z < 5. This follows from the observa t ion  t h a t  

1 f . (x ~1 ( [(1 xg)2 + y2g~] dm >1 flog +iy)= jlogll-+iy)gl~dm= . / log-  I I-xgldm. U(X 

The rema inde r  of the  proof consists in showing tha t ,  if u is a non-negat ive  harmonic  

funct ion in the  hal f -s t r ip  - 5 < Re z < 5, and  if u(iy)/y t ends  to  0 as y--~ 0, then  u -- 0. Actua l ly ,  

u does no t  have to  be defined in so large a region. Le t  

v(w)=u[iS(1-w)]  ( I w [ < l ) .  

Then  v is a non-negat ive  harmonic  funct ion in the  uni t  disc. Also, (6.62) becomes 

l im v_(r) = 0. (6.64) 
r-~l 1 - r 

According to  the  theorem of Herglotz  [16; 18; 23], v has  the  form 

v(w) = f P (O) 

where /~ is a f inite posi t ive  measure  on the uni t  circle (and Pw is the  Poisson kernel) .  

:Now 

1 - r  
minP,(O) = o l + r  
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1 - - r f  so that v(r) >l ~ dit. 

From (6.64) we have immediately It = 0. Therefore v = 0, hence u = 0. 

Since u = 0 ,  O=u(i)=~ log(2+g~)dm 

from which it is apparent that  g =0. 

TH~.OR~.M 6.7. Let g be a [unaion in Ll(dm) which is orthogor~l to (A +~). Then 

g = 0 almost everywhere relative to m. 

Proo/. I t  suffices to prove that  if g is a real-valued function in Ll(dm) such that  

S/gdm=O for every / in A, then g=O. Any such function g satisfies the hypotheses of 

Lemma 6.6, as follows from Theorem 5.2. Hence g =0. 

COROLLARY. 1/ 1 ~<p<co, then (A + ~) is dense in I2(dm). In particular, any real. 

valued/unction in HP(dm) is constant. 

COROLLARY. Let tt be a (complex) measure on X which is orthogonal to (A +.~). Then 

tt is mutually singular with m. 

Proo/. By the generalized Riesz theorem (6.5), if dit =h dm+ dits, where h ELl(din) and 

Its is mutually singular with m, then both h and Its are orthogonal to (A +.zI). By 6.7, h = 0 .  

COROLLARY. Let g be a/unction in L l( dm), an let L be the linear ]unctional on the sub. 

space (A +.~) o/C(X) which is defined by 

L(/)= f/gdm ( l e (A+2) ) .  

Then L has a unique Hahn-Banach (norm preserving) extension to a linear /unctional 

I, on C(X). Furthermore, this extension L is defined by 

In particular 

L ( I )  = fig dm 

flgldm=sup f/gdm I 
(/E O(x)). 

(/E (A II/11 

Proo/. Let L be any linear functional on C(X) such that /~ is an extension of L 

and 

, , L l , = l l L , l = s u p l f , g d m  I ( /E (A+~) ,  

2 0 -  622906 Aeta mathematlca 108. Imprim6 le 28 d~cembro 1962 

Ilfll<l). 
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Then L arises from a (complex) measure ~t on X, say 

d# = h dm + d#s, 

where h eLl(din) and #, is mutually singular with m. Since L is an extension of L, the measure 

dg - g d m  = (h-g)dm + dll, 

is orthogonal to (A + ~ ) .  By the generalized Riesz theorem (6.5}, the measures (h -g)dm 

and dt~, are separately orthogonal to (A + ~ ) .  Thus ( h - g )  is a function in Ll(dm) which is 

orthogonal to (A +z~). Hence, h =g. Since the norm of L is 

f lgl era+ I1~,11 

and is equal to the norm of L, it is clear that  #~=0  and 

IILIl= f lgld'n. 

COnOLLARY. Let geLl(dm) and let L be the linear [unctional on A defined by 

I,(l)= flgdm (leA). 

Then L has a unique Hah~t-Banach extension to a linear lunctional L on C(X), and 

has the torm 

L(l} : f l~ dm leO(X)), 

where ~ e L~(dm). 

Proo I. ~ t  L be any norm-preserving extension of L to a linear functional on C(X). 

Then 

L(t} = f t '~ '  (leO(X)), 

where ~, is a complex meas.re on X ,  and the ~ l  variation of ~, equals IILII- I ~ t  

dg = ~ dm + d~ts, 

where ~eLl(dm) and ~ts and m are mutually singular. Since L is an extension of L, the 

measure d r - g d m  is orthogonal to A. By the general F. and M. Riesz theorem, the absolutely 

continuous and singular parts of this measure are separately orthogonal to A. Thus, ,us 

is orthogonal to A and ( g - g )  is in H~(dm}. Therefore, if l ea  
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Hence tEasup If/~dm=sur.~ If/gdm = ' [LH" 
IIYII~I [[YI[~I 

From thi~ we ~ e  that tlLll<ll0111 But 

liLII = Ill, II = II0111+ I lml l  
We conclude t h a t  

~ , = o  and II~lh =IILII. 

Any  other  Hahn-Banach  extension of L mus t  have the form 

f /(~+h)dm (IEC(X)), 

where hEHXm(dm) and I I ~ + h l h = l l 0 1 h .  

Now II01h= ~u~ ~/~dm. 
a /  

IlYlI~<I 

Since the uni t  ball in L ~ is weak-star  compact,  we can find a n / E H ~ ( d m )  such tha t  

II/11:0 = 1 and 

f[~dm = II Ih. g 

This results f rom the evident fact  t ha t  the weak-star  closure of the uni t  ball in A is con- 

tained in the uni t  hall of HC~(dm). Since I/[ 4 1 ,  it is clear t h a t / g =  [gl" But,  n )te t ha t  

ff(~ + h ) a m =  f/Oam= It g Ill = Ilg + h II1. 

Thus 1(9 + h) = ] g + h 1. Since [g and/ (g  + h) are non-negative,  ]h is real-valued. Bu t  [ E H~'~(dm) 
and hEHl(dm). Therefore ([h)EHl(dm), and being real-valued, is constant.  Since S hdm =0 ,  

we have ]h = 0. Now, from 

/g=lgl, /h=o, I g l = l g + ~ l  

it is evident t h a t  h = O. This proves the corollary. 

7. Analytic structures in M(A) 
We shall now regard the space X as embedded in the maximal  ideal space M(A), as 

we described in Section 2. We shall once again discuss complex homomorphisms of A. 

I f  (I) is such a homomorphism,  we know tha t  there is a unique positive measure m on X 

such tha t  

f ( r  = ~td,n (/~A) 
dx 
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We are primarily interested in (1)'s which do not  lie in X, tha t  is homomorphisms which 

are not  simply evaluat ion at  a point  of X. I t  is worthwhile to  ask what  distinguishes X 

among the closed subsets of M(A). 

THEOREM 7.1. The space X is the ~ilov boundary /or A; that is, X is the smallest 

closed subset o/M(A) on which every/unction f, leA, attains its maximum modulus. 

Proo]. Since A was originally defined as a sup norm algebra on X, 

sup I I I  = sup I I I  = sup I l l  
M(A) X X 

for every / in A. Let  x E X and let U be a relatively open subset of X Which contains X.  

Since log IA-11 is uniformly dense in CR(X), it is clear t h a t  we can find a function / in A 

such tha t / (x)  = 1, II/11 < 1 +e,  and ]/I < e  on X - U. Therefore / does not  a t ta in  its max imum 

modulus on X -  U. 

We are interested in strengthening the analogy of logmodular  algebras with algebras 

of analytic functions, by  finding subsets of M(A) which can be endowed with an analyt ic  

s t ructure in which the functions : are analytic.  Whether  this is always possible or no t  

remains an unsolved problem; however, we can show tha t  if (I) is a point  of M(A) such 

tha t  there is at  least one other point  (I) 1 "closely related" to it, then there passes th rough  

(I) an "analyt ic  disc" in M(A). The argument  we present is due to Wermer  [27], who 

proved the corresponding result  for Dirichlet algebras. We shall reorganize Wermer ' s  

proof considerably, in order to gain a slightly more general theorem. We continue to  work 

with our logmodular  algebra A, and will comment  on the generali ty later. 

D E F I N I T I O N  7.1. Let  (I) be a complex homomorphism of A with representing measure 

m. Let  ~v be another  complex homomorphism of A. We say t h a t  ~v is bounded on H~(dm) 

if there exists a positive constant  K such tha t  

,~(,)]<<.K.[f[/i~dm] ' (lEA). 

The reason for the terminology should be apparent .  We are discussing a linear func- 

t ional y~ which is bounded on the pre Hilbert  space consisting of A with the (semi) norm 

of the space L~(dm). I f  y~ is so bounded,  it is clear tha t  y~ has a unique extension to a bounded 

linear functional on H~dm), the completion of A in Le(dm). We shall call this extended 

functional y~ also. I t  is clearly multiplicative: 

y,(/g) =~(/)~/(g) (/. aEH~(dm)). 

THEOREM 7.2. Let r be a complex homomorphism o / A  with representing measure m. 

Let v/ be a complex homomorphism o/ A which is distinct/rom r and which is bounded on 
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H2(dm). Let G be the orthogonal projection o/ 1 into the closed subspace o/ H2(dm) which is 

spanned by kernel (~)= (/EA;v2(/)=O }. Then ~ Gdm=k 2, where 0 < k < l .  Furthermore, if 

we define 
Z = I . k ~ - G  

k 1 -  G (7.21) 

we have the /ollowing. 

(i) Z is an inner /unction in H2(dm). 

(ii) The measure 

d# [1-G[2i-~2 1-k~ 
dm I I'l-kz'~dm (7.22) 

is a (the) representing measure /or y~. 

ZH2=H~m, the space o/ /unctions in H~(dm) such that r  (iii) 

(iv) I/  /EH~(dm) and a~=~Z~/dm, then 

y~(/) = ~. a~[~(Z)] =. 
Tt=0 

Proo/. Let S be the closed subspace of H~(dm) which is spanned by the kcrnel of v 2. 

Then S is invariant under multiplication by the functions in A. Also, 1 is not orthogonal 

to S; because, ~o 4=(I) and so there exists an / in A such that  v2(/)=0 but CP(/)= ~/dm#O.  

By Theorem 5.5, G is a function of constant modulus 

IGI = ~ > o  

and S = Gtt2(dm). Since ( I -  G) is orthogonal to G, 

f Gdm = k 2. 

Evidently k < 1; for k 2 ~< j" [ G ] dm = k, and i / k  = 1 then G is constant. But  this means tha t  

S =H 2, which is impossible since v? is a bounded and non-zero functional on H~(dm). (Its 

kernel cannot be dense, unless v 2 =0.) Now define Z by (7.21). Then 

k - ~ G  
N= 

- 

and since Ik-lGl =1, Z is a function of modulus 1. Certainly ZEH2(dm) because Z is 

the sum of a uniformly convergent power series in G. That  proves (i). 

Define/~ by (7.22). Let  lEA. Then 

(1-k*) f /d/~= f /'(1-G) (1-O)dm. 
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I f  ~0(!)= 0 then ( 1 -  G)/ is in the subspace S; hence ( 1 -  G) is orthogonal to ( 1 -  G)/  

and .~/d/a = O. Since ( 1 -  G) is orthogonal to G 

and thus 

f l  1 - G]2dm = f(1- o) dm= 1 - k e 

f dl~ = 1. 

Therefore /~ is a representing measure for y~. 

I t  is clear tha t  .( Z dm = O, since .( G dm = k 2. Since [ Z [ = 1 we have ZH 2 contained 

in H~. Let  g E H~ and suppose tha t  g is orthogonal to ZH 2. Then g E S, i.e., ~(g)= 0. 

For 

v,(g)= fgd~= fg. ]l-G]2 ~ d m .  

From (7.21), G is the sum of a uniformly convergent power series in Z. So ] 1 - G [  2 

is a power series in Z and Z and we shall have y~(g)= 0 provided we can show tha t  

f Zngdm=O (n=O, •  •  . . . .  ). 

For n/> 0, this follows from the fact that  S gdm = 0. For n < 0, it follows from the 

fact tha t  g is orthogonal to Z H  2. Now, since ~(g)= 0, we have g = Gh, where h E H*. 

Note tha t  

By (7.21), G = k 2 + Z / ,  where /E/ /2 .  Since g is orthogonal to ZH 2, 

But ] G ] = k <  1 and so h=O, i.e., g = 0 .  That  proves (iii). 

Let  / E H  2. Then / - r  is in H~. So 

1 -  r  = Zg, 

where g is in H 2. Obviously g is uniquely determined by ]. The constant functions 

are orthogonal to ZH ~ and so 



A ~ A L Y T I C  F U n C T I O n S  311 

If we define a linear operator T by T/=g,  i.e., 

! = r  

then the operator T is bounded by 1 on H~-(dm). If we define 

an = f ~ a  / dm 

then it is clear that  / = a o + Z( T/) 

T / =  a 1 + Z( TZ/) etc. 

For any n we (therefore) have 

/ = ao+alZ + . . .  +aa_l Zn-1 +Zn(T~]). 

Now ~o(Z)=k < 1. The numbers ~o(Tn/) are bounded, because ~ is a bounded functional on 

H 2 and [] T H ~< 1. Therefore we let n-->r162 and obtain 

~(/) = ~ aj[~0(Z)] ~. 
1-0 

T~EOREM 7.3. Let (1), m, ~v, and Z be as in Theorem 7.2. Let 0 be any complex homo- 

morphism o / A  which is bounded on H2(dm). Then,/or every / in H2(dm) 

0(/) = ~ a.[O(Z)]". 
n - O  

Proo/. If 0 =(I), the statement is evident. Suppose 0 4(I). We apply Theorem 7.2 with 

~o replaced by 0. We obtain an inner function Z1 associated by 0, such that  H~ =Z1H 2 

and the corresponding series expansion for 0(/) is valid. Since 

ZH 2 = Z 1 H 2 

and I zl  = I zl I=  1, the function Z/Z 1 and its complex conjugate both belong to H2(dm). 

Since (A +~/) is dense in L~(dm) (Theorem 5.4), there are no non-constant tea-valued func- 

tions in H2(dm). Therefore Z 1 =),~, where ;l is a constant of modulus 1. I t  is easy to see 

that  the series 

~. a,[O(Z)] ~, a~= f Z"fdm 
n - -O  

is unaffected if Z is replaced by ).Z, I ~ ] = 1. We are done. 

TEEORrM 7.4. Let (~ be a complex homomorphism o / A  with representing measure m, 

and .suppose there exists a complex homomorphism ~p o / A  which is distinct/rom (I) and which 

is bounded on H2(dm). Let Z be the/unction de/ined in Theorem 7.2. Let D be the set o /al l  

complex homomorphisms o / A  which are bounded on H2(dm). I / O E D  de/ine Z(0) =0(Z). Then 
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is a one-one map o / D  onto the open unit disc in the plane. The inverse mapping T o / Z  is 

a continuous one-one map of the open unit  disc onto D, and/or  every / in A the composed/unc- 

tion f o ~ is analytic. 

Proof. Obviously Z maps D into the open unit disc. For  suppose 0 E D. Associated with 

0 is a function Zi, as in the last proof; and Z 1 =2Z, where [4[ = 1. By Theorem 7.2, [ 0(Z1) [ < 1, 

so [Z(0)[ <1.  I f / E H  2 we have 

0(/)= n=0 ~ a,[Z(0)]', an= f Z n f d m  

for all 0 in D. If Z(0i) =s then 01(/) =02(/) for all f in A; hence 01 =02. Thus Z is a one- 

one map of D into the open unit disc. 

To see that  Z is onto, we argue as follows. Suppose f and g belong to A. Let 

an= f Zn/dm, b.= f Z'gdm. (7.41) 

Then / = a o + a iZ  + ... + anZ n -4-Zn+lhl 

g = b o + blZ +... + bnZ n +Z"+lh~, 

where h 1 and h 2 are (bounded) functions in H2(dm). From this it is easy to see that  if 

= f~n( fg )  dm Cn 

c o = aobo, 

c 1 = aob ~ + a~b o, 
we have (7.42) 

c z = aob 2 § a~b 1 + a2b o, 

etc. 

Now let ~t be a complex number, ]4 ]<  1. For any f in A define 

Off) = ~ an~ n, 
r t - 0  

where the an are defined by (7.41). Obviously 0 is a 

(7.42) 0 is multiplicative. Suppose / E A  and 

fl/1 2dm<  

Then ] an l<e  for each n and 

I 
[. 

(7.43) 

linear functional on A, and by 
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(i) I1r162 <2,  i.e., there exists a constant K, 0 < K < 2 ,  such that I r162 ~< 

gl[/[[ /or every [EA. 

(ii) There is a positive constant c < l  such that ]r <~c]]/n /or every / in A which 

satis/ies r [) = 0. 

Proo[. Suppose (ii) fails to hold. Then there is a sequence of functions [= in A such 

that  (Pz(/~)=0, 11/.]1 ~<l, and 1r163 If ( ~ )  is a sequence of points in the closed unit 

disc such that  ]2~]-+1, it is easy to find a sequence of linear fractional maps Ln (of the 

unit disc onto itself) such that  IL.(0)-Ln(+~) I-+2. Each L.  can be uniformly approximated 

on the unit disc by polynomials. Hence, if [EA and II/11 ~< 1, then L.o [ belongs to A. Find 

such a sequence of maps for 2==r Then define g.=L~o/n- We have IIg~ll < 1 and 

Ir Thus (i) does not hold, i.e., I1r =2. 

i f  (i) does not  hold, i.e., if [l(I)t-dp~l I =2,  there is a sequence of functions gn in A with 

ng~]]~l and ](I)t(gn),(i)~(gn)]-+2. Let  [,=�89 ]. Then /nEA, U/~U~l, (I)i(/n)=0, 

and [(I)2(/n)]-+1. Thus (ii) does not hold. 

TRV.ORE~ 7.6. Let A be a logmodular algebra on X,  and let ~1 and (b 2 be complex homo- 

morphisms o/ A. The/ollowing are equivalent. 

(i) I I+ : - r  <2.  
(ii) I1 m 1 and m~ are the (respective) representing measures/or (I) 1 and r then m 2 is 

absolutely continuous with respect to ml, and the derivative dm2/dm 1 is bounded. 

(fii) r is bounded on HZ(dml). 

Proo[. Let K be a positive constant, and suppose that  we do not have m~<Kmx. 

Then there is a positive continuous function u on X such thag 

f u dm~ > K f u dm 1. 

Since log I A -1 ] is uniformly dense in CR(X), we may assume that  u = - log 

Since u > 0  we have n [ ] ]< l ,  and (7.61) says 

flog I/Idm~ < K flog I/Idm~ 

I +~(/) I < I+~(h I ~. that  is, 

Let  ~ =  r and f l= (I)x(/). Let  

g= 1-~/" 

(7.61) 

/ ] , l E A  -1. 
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Hence 0 is a complex homomorphism of A which is bounded on H2(dm), i.e., 0 is in D. 

Certainly Z(0)=2. Thus Z maps D onto 12] <1.  

Now let 7 be the inverse map of Z, i.e., if 121 <1,  then 7(2)=0, the complex homo- 

morphism of A defined by (7.43). We know that  z is one-one and maps the open unit disc 

onto D. I t  is also clear that  7 is continuous. This simply says that,  if we fix ] E A, the map 

2-->7(2) (]) is continuous, i.e., that  ~o7 is continuous. But [07 is an analytic function in the 

unit disc: 

(~o z)(~) = ~ an2 n, 
n = O  

where {an} is the bounded sequence of numbers defined by 

an = f ~n] din. 

That  completes the proof. 

We Should now ask ourselves just which properties of a logmodular algebra were used 

in this argument. Actually, we employed only properties of a particular representing meas- 

ure for the fixed complex homomorphism CP. The properties were those which were necessary 

for the proof of the invariant subspace theorem (5.5), (i) A +~I is dense in L2(dm), (ii) if 

# is a representing measure for (I) which is absolutely continuous with respect to m, then 

i ~ =m. Suppose we have a sup norm algebra A and a complex homomorphism CP of A which 

has a representing measure m which satisfies (i), (ii), and (iii) there exists a complex homo- 

morphism ~o of A which is distinct from ~b and is bounded on H2(dm). By the same argument, 

there exists an "analytic disc" in M(A) which passes through (I), i.e., there exists a one- 

one map z of [2] <1  into M(A) such that  7(0)=O and ~o7 is analytic for every / in A. 

For the logmodular A, one can give a slightly more intrinsic characterization of the 

analytic disc D which occurs in Theorem 7.4. I t  is what Gleason termed the "par t"  of @. 

In [11], Gleason pointed out that  the relation 

r  ~ < 2 

is an equivalence relation on the set of complex homomorphisms of a sup norm algebra 

(or commutative Banach algebra). The  equivalence classes for this relation he called the 

parts of M(A). I t  is not immediately evident that  the relation is transitive; however, it is 

not difficult to show that  it is. For logmodular algebras, the transitivity will soon become 

evident. 

L~,MMA 7.5. Let r and ~P2 be complex homomorphisms o] the sup norm algebra A. 

These statements are equivalent. 
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Then  II g II < 1, g fi A, r = 0, and  

[ r  = It l-I   I l-I l 
1-ll  ] 
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r - r  K K -  1 
l im 1'  r-~l 1 - r  ~+1 K +  

we conclude t h a t  

K - 1  
K --~----1 < sup I (I)l(g) [ 

ff 
(g e A,  II g II ~< 1, gP2(g) = 0). 

i f  llr162 <2 ,  L e m m a  7.5 tells us t h a t  the  sup remum on the  r ight  is less t han  1. Thus,  

for some sufficiently large K we mus t  have  

m s <~ K m  1. 

Therefore (i) implies (ii). 

I t  is evident  t ha t  (ii) implies (i), and also t h a t  (ii) implies (iii). I f  (iii) holds, we can 

deduce (ii) immedia te ly  f rom pa r t  (ii) of Theorem 7.2. Tha t  completes the  proof.  

We can easily see (from this result) t h a t  11r162 < 2  is an equivalence relat ion on 

M(A).  This relation, i.e., "belonging to  the  same pa r t " ,  means  t ha t  the  represent ing meas- 

ures ml and  m s are mutua l ly  absolutely  continuous,  wi th  bounded  der ivat ives  each way.  

I f  we combine the last  theorem with  Theorem 7.4, we have  the  following. 

T ~ E O R ~ M  7.7. Let A be a logmodular algebra on the space X.  Let ~P be a complex homo- 

morphism o~ A, and suppose that the (Gleason) part P(~P) contains at least two points. Then 

there exists a one-one continuous map ~ /rom the open unit disc into the maximal ideal space 

ol A such that 

(a) the range o/ T is the part P(~P) 

(b) /or every / in A,  the/unction [o~ is analytic. 

I t  is easy  to see (for example,  b y  Theorem 7.5) t h a t  each point  of X const i tutes  a one- 

point  p a r t  in M(A).  A point  not  in X (i.e., not  on the  ~ilov boundary)  m a y  const i tute  a 

one-point  par t .  One can raise the  same questions for logmodular  algebras t h a t  W e r m e r  [27] 

raised for Diriehlet  algebras. I f  A #C(X)  is X a proper  subset  of M(A)? I f  A # C(X)  mus t  

there  exist a pa r t  in M(A) which contains a t  least  two points? 

I n  the  various examples  of section 3, it is re la t ively easy to  ident i fy the  par ts ,  excep t  

in the  case of the  algebra H ~ (Example  4). We  shall discuss the  pa r t s  for this a lgebra in 

a la ter  paper .  I n  E x a m p l e  1, the  open unit  disc is one par t ,  and  the  points  of the  uni t  

Now (7.61) will not  be affected if we replace u b y  su, ~ > 0. As e-->0 we have  ]fl[-->l. Since 
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circle constitute one-point parts. For the "Big Disc" algebra Aa of Example 3 (G not 

isomorphic to the integers) the description of the parts is as follows. Each point of the 

boundary G constitutes a one-point part. The "origin" of M(Aa) ,  i.e., the t taar  homo- 

morphism, is also a one-point part. The remaining parts are "analytic discs", each of 

which is dense in the entire maximal ideal space. These parts are easily described. If  one 

regards Aa as an algebra of almost periodic functions in the upper half-plane, there is a 

natural injection ~ of the half-plane into M(Aa) ,  "z goes into evaluation at z". The image 

of the open half-plane under ~ is a part of M(AG). I t  consists of all points (r,~) in M(Aa)  

such that  0 < r < 1 and ~ belongs to a dense one-parameter subgroup of G. This subgroup 

K is the image of the reM axis under (the extended) T. Any remaining (non-trivial) part 

is formed of the points (r,~), 0 < r < l ,  where ~ ranges over a coset of the subgroup K. 

The description of the parts for the algebra Ba of Example 5 is similar. In  this case there 

are no one-point parts of the ~flov boundary X. 
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