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1. We consider analytic mappings of an open Riemann surface R into a closed
Riemann surface S. )

The first and second main theorems of the classical Nevanlinna-Ahlfors [3] theory
were generalized in 1960 by S. Chern [4] to an R obtained from a closed surface by
omitting a finite number of points. He also referred to a forthcoming paper where,
in addition, a finite number of disks are removed.

Chern’s elegant work stimulated the present author to look into the question: what
can be said about arbitrary open Riemann surfaces R? In particular, can Nevanlinna’s
first and second main theorems and any counterpart of Picard’s great theorem be
established on them? A priori there seemed to be no basis for a conjecture: it was
known from classification theory that when the genus becomes infinite, intuition can
no longer be relied upon, and surprises are possible. Moreover, although J. Tamura
[12] had singled out a class of meromorphic functions with at most two Picard values,
M. Heins [5] had exhibited a parabolic Riemann surface with one boundary compo-
nent, which carried a meromorphic function with an infinite number of Picard values.
This rather seemed to speak against any second main theorem in the general case.

In the present paper we propose a new choice for the proximity function and
the characteristic function. The first main theorem, the second main theorem, and

the defect and ramification relations can then be given for arbitrary Riemann surfaces

() An hour-address delivered at the meeting of the Mathematical Society of Japan in
Tokyo on September 14, 1962.
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R (Theorems 1, 2, 3). Our form of the second main theorem is universally valid,
without exceptional intervals, Meromorphic functions on an arbitrary R are a special
case, and earlier results are included (Corollaries 1-4). In particular, for functions
in the plane or the disk we have new simple proofs for classical theorems.

In contrast with Chern’s paper, written for differential geometers, our method
is elementary, the most sophisticated tool used being Stokes’ formula. The method

also applies, mutatis mutandis, to open image surfaces S [11].

§ 1. Proximity function

2. Let R be an arbitrary open Riemann surface and § an arbitrary closed Rie-
mann surface. On R we use the symbol z both for the generic point and the local
variable. On S we similarly employ . A mapping {=f(z) into § is, by definition,
analytic if it is so in terms of local variables.

On S consider points ay, ..., a,. The question is, in essence, how many a;’s can
be Picard points. First we need a function to measure the proximity of two points
on S.

Take £,, {, € S different from a,, ..., a,. Construct on 8§ — {, — £, the harmonic funec-
tion ¢, with #({)+2log|l~{,| harmonic at {,, and £(l) —2log|¢—¢;| harmonic at
£y, the former tending to 0 as [—{, in a fixed parametric disk. Set

3o(C) =log (1 + €"®). (1)

For a=+{ylet t({,a) be harmonic on S—a—¢, with #,a)+2log|f—a| harmonic
at a, and t({,a)—2log |, —¢,| harmonic at (, the latter tending to sy(@) as {—{,.
The function

s(C,a) =t(C, ) +8(0) 2)
becomes logarithmically infinite as {—a and is bounded below on §. It is the proxi-
mity function we set out to construct.

The function is symmetric: for any a,b€S,
s(a,b) =s(b,a). (3)

This is seen directly by applying Stokes’ formula to ¢, a) and #(,b) along small cir-
cles about a,b,{, and then letting the circles tend to these points.

3. In terms of s we endow S with a conformal metric. The Euclidian area ele-

ment dS in the parametric [-disk is given the area

dow=22dS, (4)
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|2

where A=Asg= _etn |grad

(1+e)?

Clearly dw is a conformally invariant area element in this metric.
Throughout this paper we denote by »(¢) the number of zeros of the “function”

@ in question. We have
v(Ay=es+2=2g, (6)

where eg is the Euler characteristic of S, and g is its genus. In fact, the zeros of 4
are those of grad #, and this vector forms a differentiable vector field on 8—,— ;.
By Lefschetz’s fixed point theorem the number of its singularities is the Euler char-
acteristic of S—,—{,, that is, es+2. This in turn is 2¢. The proof can also be based
on the Riemann-Roch theorem or on geometric properties of #,- ;.

The total area of S is

o0 to
€ *
= = 7 =4 7
w fsdw le J‘,gz(1+e‘°)2dt0 dxr=4rn, (7)

where 8, is the level line $y=x€(— oo,00).

Alog 2
——-

Furthermore

1. (8)

Indeed, the logarithm of the numerator of 4 is harmonic, and that of the denominator
is the same function s, we started with.

In passing we note that if S is open, then we require that f{, has, in essence,
vanishing normal derivative on the boundary (cf. {7]), and our reasoning holds verbatim.
As a by-product we have constructed on an arbitrary Riemann surface a metric with

finite total area and constant Gaussian curvature.

§ 2. First main theorem

4. On R choose a parametric disk R, with boundary f, such that f(§,) does not
meet @y, ...,aq Lo §. Let Q be an adjacent regular region with boundary 8, U fo. On
Q form the harmonic function u with w=0 on By, u=k(Q) = const. on Sq, f s du*=1.

For any h€{0,k] let 8, be the level line w =% and denote by €, the region be-

tween [, and f,. By the same reasoning as before, the number of zeros of grad u
is the Euler characteristic e(h) of (:

v(h, grad u) = e(h). (9)
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5. We are now ready to prove the first main theorem. Let a be any point on
8 and let z; be its inverse images in Q,. Denote their number, counted with multi-
plicities, by »(h,a). Let A, be small disks about z; with boundaries «;, oriented clock-
wise; f, and B, are oriented to leave R, to the left. Apply Stokes’ formula to v(2)
=h—u(z) and s(f(z), a):

f vds'—sdv*=J‘ vA,sdR. (10)
Za;+Bp—Fp Qp-VA;

Here dR is the Euclidian area element in the z-disk.
As the «; shrink to the z, the second term in f zo; goes to zero, for the flux of

v across «; vanishes. The flux of s tends to 4z and

B
—d47 > v(z)) = 4nf (b —x)dy(z,a).
0

Toaj

Integrate by parts and denote this contribution of the «,’s by
h
A(h,a)=4nf v(x,a)dz. (11)
0

It is our counting function. Clearly it vanishes for a Picard point a.

In f,gh, »=0, and we designate this part corresponding to 8, by
B, a)=f sdu”. (12)
Bn

This we choose as our proximily function. It gives the mean proximity to a of the
image of (.

On the right we have, in terms of dw(f(z)),
Oy = f vdo. (13)
Qp

This is our characteristic function. It is independent of a.

What remain are the integrals along fy:
D(h,a) = B(0,a)+ hB'(0, a). (14)

Note that this is O(h). The only functions of interest turn out to be those for which
C(k) grows more rapidly than k. Thus D is a negligible remainder. This is even more
clearly seen if we do not omit R, from €, in which case there are no integrals along

Bo- But for our later results the present set-up is more suitable,
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We have established the first main theorem:

THEOREM 1. For analytic mappings of an arbitrary R into a closed S, and for
any Q<R,
A(k,a)+ Blk,a)=C(k)+ D(k,a). (15)
Thus the beautiful balance continues to hold despite infinite genus: any defect
in coverage of a point a, such as of a Picard point, is compensated for by a close
proximity of f(8s). The functions A4 and B add up, in essence, to the same C for
all a.

6. The characteristic C retains its simple geometric meaning. To see this take
v=1 in (10). The integrand on the left is then ds*, on the right, A,s dR =dw(f(z)), and
we have :

A'(h,a)+ B'(h,a) = J. dw + D'(h,a).
Qp

A comparison with (15) gives

C'(h)= f dw. (16)
Qp

We see that the characteristic is the integral of the total area of the multisheeted

image of Q, over §.

7. We next ask how numerous are the points ¢ with a Picard nature, i.e., with
great contributions from B. Do they continue to be exceptional compared with strongly
covered points a? To answer this we must estimate B upward.

This process is facilitated by replacing B by the integral of its integral. For
heuristic motivation consider the simple case of the exponential function ¢’. It maps
not only the boundaries of exhausting regions but, naturally, also these regions them-
selves, with increasing mean proximity to the Picard points 0 and oo. This phen-
omenon is universal, and we can replace the conventional curvilinear proximity by
areal proximity. To facilitate subsequent computations, we even integrate this.

We introduce for any function ¢(h) the notations

h

Pu(h) = fo p@)de,  pylh) =f @) da. (17)

0

Then the new proximity function is B, and we can attach subindices “2” to each

term in (15).

8. Another simple device that will shorten later reasoning is the following. We

add to ay, ...,a, the 2g zeros a1, ..., 8455, of A and set for any function y(k,a),
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q+2g
y(h) = 2 ylh, a)- (18)
Then (15) gives
| Ay(h) + By(h) = (q+ 29) Co(R) + Dy(h). (19)

Our task is to find an upper estimate for B,(h).

§ 3. Second main theorem

9. Set o()=exp [D{"¥s(L,a;) —2log (O§7% (L, a;) + const.)] with D s+ const.>0

on S, and distribute on S the mass dm=odw. It has singularities at the a;. The
total mass m=f sdm is finite, however.

The density cA? of dm induces in the u+ iu*-plane the density ou?, where
u(z)=2(2)| f (2) || grad u(z) | . (20)
We use the concavity of the logarithm to obtain

Bh) < f log ¢ du* + 2 log (B{h) + const.) (21)
Bn

and decompose the integral into

F) = f log (o u®) du*,
Bn

(22)
G(h) = —f log p®du*.
Bh
Then B,(h) < Fy(h) + Gy(h) + 2[log (C(h) + O(R))],. (23)
We shall first estimate F,, then G,.
10. We write
H(h)=f ou?du* (24)
Bn

and obtain by the concavity of the logarithm,

F(h)<log H(h),
Fi(h)y<hlog 1H (h)) =hlog H,(k)—h log h,
h 1

Fy(h) < k% log H,(h) + O(h* log k). (25)
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To estimate H, note that

H, (k)= f v(h,a)dm(a).

In fact, both quantities give the total mass on the multisheeted image of (, over
8. On integrating (15) with respect to dm(a) the first term thus gives 47 H,(A). Since
8(¢, a)=s(a, () is uniformly bounded below on the compact S, —B(k) contributes 0(1)

and we obtain
47 H,(kh) < mC(h) + O(h).

Substitution into (25) yields
Fy(h) < 1 log (C(h) + O(h)). (26)

11. To obtain G,(h) we first evaluate

G'(h)=— 2f d* log u.
Bn

Let I'; be small disks about the singularities of log u, bounded by clockwise orien-
ted ;. Then

G'(h)=2 f d* log u—2 f A, log AdR.
5B Qp-Ury

By virtue of (20), (9), (4), (8), and (16), we have
G'(h) = 4x —v(h, ) —v(h, [') + e(R)] + 2C’(h) + const. (27)
Triple integration gives G,(h).

12. In the last term of (23) we replace the integrand in both integrations by
its value at the right end point of the interval of integration and obtain the estimate
2h* log (C(k)+ O(R)). We substitute it together with G,(k) and (26) into (23), this into
(19), and set '

Eh)= 4nfh e(x)dx.
0

We have reached our main result, the second main theorem:

THEOREM 2. For an analytic mapping f of an arbitrary open Riemann surface
R into a closed Riemann surface S, any regular subregion Qc B with k=k(Q) gives

(g + es) Colk) < ?Az(k, a;) — Ay(k, f') + Eq(k) + O(k* + k* log C(k)). (28)

As a special case we have the second main theorem for meromorphic functions

on arbitrary Riemann surfaces.
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§ 4. Consequences
13. In the sequel we consider nondegenerate mappings f characterized by

B+ Elog Clk)

lim =0. (29)

Q>R 02(’0)
The condition is assured by C(k)/k—co and the existence of a constant 0<a <1
with CO(ak)/log C(k)—>oco. (This formulation was suggested to the author by K.V.R.
Rao.) The condition is general and is obviously even met by such functions as £ and

erk

, T=const.>1, 0, respectively.
14. Using canonical regions Q we introduce the defect

TR 2(’01 a)

—1—1lim —2%% 0
d@)=1-Jm o ) (30)
the ramification index
. Ak, f)
#=lim =227 31
Q—>R Oz(k) ( )
and the Euler index
. E,(k)
=lim =2~/ 32
n o OE) (32)

From (28) we obtain the following defect and ramification relation:
TaEOREM 3. For nondegenerate mappings of an arbitrary R into a closed S,
>da)+P<n—es. (33)

In particular there can be at most 7 —es Picard values.
If § is obtained from a closed surface S, by removing n points then, in terms of
quantities defined for S,
Sdla) +H<n—es,—n. (33"
15. We have the following immediate consequences. First consider the existence

of mappings f.

COROLLARY 1. A necessary condition for a nondegenerate mapping of an arbitrary

R into a closed 8 is that n=>es. For a closed S less n points,  must dominate es+n.

For the sphere S or the plane or the punctured plane we have es>0 and there
is no restriction. This is compatible with the theorem of Behnke and Stein: every open
Riemann surface can be mapped into the punctured plane. For the torus S we again

have no restriction but for genus >1, C(k) cannot grow more rapidly than E(k).
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16. Next suppose R has finite Euler characteristic.

CoROLLARY 2. If e(R)< oo, then the number P of Picard values for a mapping
tnto a closed S is
P< —eg. (34)
In the case where R is obtained from a closed surface by removing a finite num-
ber of points this is the Chern result. We see that a finite number of disks or any

closed connected sets can as well be removed.
17. Suppose S is the sphere or the plane.

CoroLLARY 3. For a meromorphic or entire function on an arbitrary open Rie-

mann surface,
P<2+y or P<i+y, (35)
respectively.

The former bound was shown to be sharp in [9,10] and by B. Rodin in [6].
For =0 we have the Tamura [12] functions with P<2.

18. As the most special case let R be the finite or infinite disk.
COROLLARY 4. For meromorphic functions on |z|<p< oo,
S o) +9<2. (36)

We can now take w=logr on R and the integration with respect to % covers
all of B. By L’Hospital’s rule the subscripts “2” in (30)-(32) can be dropped and we
have a new proof for the conventional form of the defect relation, simultaneously
for the plane and the disk. The second main theorem (28) is valid without excep-

tional intervals.
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