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1. W e  consider  ana ly t ic  mapp ings  of an  open R i e m a n n  surface R in to  a closed 

R i e m a n n  surface S. 

The  f irst  and  second ma in  theorems  of the  classical N e va n l i nna -A h l fo r s  [3] t h e o r y  

were genera l ized  in 1960 b y  S. Chern [4] to  an  R ob ta ined  f rom a closed surface b y  

omi t t ing  a f ini te  number  of points .  He  also referred to a for thcoming p a p e r  where,  

in addi t ion ,  a f ini te  n u m b e r  of disks a re  removed.  

Chern 's  e legant  work s t imu la t ed  the  p resen t  au tho r  to  look in to  the  quest ion:  w h a t  

can be sa id  abou t  a r b i t r a r y  open R i e m a n n  surfaces R? I n  par t i cu la r ,  can N e va n l i nna ' s  

f i rs t  and  second ma in  theorems  a n d  any  coun te rpa r t  of P i ca rd ' s  g rea t  theorem be 

es tab l i shed  on them? A pr ior i  there  seemed to be no basis  for a conjecture :  i t  was 

known  from classif icat ion t heo ry  t h a t  when the  genus becomes infini te ,  in tu i t ion  can 

no longer  be re l ied upon,  and  surprises a re  possible.  Moreover,  a l though  J .  T a m u r a  

[12] had  singled ou t  a class of meromorph ic  funct ions  wi th  a t  mos t  two P ica rd  values,  

M. Heins  [5] had  exh ib i t ed  a parabo l ic  R i e m a n n  surface wi th  one b o u n d a r y  compo- 

nent ,  which carr ied  a meromorph ic  funct ion  wi th  an  inf ini te  n u m b e r  of P ica rd  values.  

This r a the r  seemed to speak  aga ins t  a n y  second ma in  theorem in t he  genera l  case. 

I n  t he  presen t  pape r  we propose  a new choice for t he  p r o x i m i t y  funct ion  a n d  

the  charac ter i s t ic  funct ion.  The  f irst  ma in  theorem,  the  second ma in  theorem,  and  

the  defect  and  rami f ica t ion  re la t ions  can then  be given for a r b i t r a r y  R i e m a n n  surfaces 
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R (Theorems l~ 2, 3). Our form of the second main  theorem is universally valid, 

wi thout  exceptional intervals. Meromorphic functions on an a rb i t ra ry  R are a special 

case, and earlier results are included (Corollaries 1-4). I n  particular,  for functions 

in the  plane or the disk we have new simple proofs for classical theorems. 

I n  contrast  with Chern's  paper, wri t ten for differential geometers, our method  

is elementary,  the  most  sophisticated tool used being Stokes '  formula. The method  

also applies, muta t is  mutandis ,  to  open image surfaces S [11]. 

w 1. Proximity function 

2. Let  R be an a rb i t ra ry  open Riemann  surface and S an arbi t rary  closed Rie- 

mann  surface. On R we use the symbol  $ both  for the generic point  and the local 

variable. On S we similarly employ ~. A mapping ~ = ](z) into S is, by  definition, 

analyt ic  if it is so in terms of local variables. 

On S consider points a 1 . . . . .  ao. The question is, in essence, how m a n y  a~'s can 

be Picard points. First  we need a funct ion to measure the proximity  of two points  

o n  S .  

Take ~0, ~1 E S different f rom a 1 . . . . .  ao. Construct  on S - ~o - ~1 the  harmonic func- 

t ion t o with t0(~) + 2 log ] ~ - ~0 [ harmonic  a t  ~o, and to(~) - 2 log I ~ - ~1 [ harmonic a t  

~i, the former tending to 0 as ~-->~0 in a fixed parametr ic  disk. Set 

s0(~) = log (1 + et~162 (1) 

For  a 4 = ~0 let t(~, a) be harmonic  on S - a - ~0 with t(~, a) + 2 log I ~ -  a l harmonic 

at  a, and t ( $ , a ) - 2 1 o g  I~-~0]  harmonic at  ~0, the lat ter  tending to So(a ) as ~-->~0. 

The function 
s(~, a) = t(~, a) + s0(~ ) (2) 

becomes logarithmically infinite as ~-->a and is bounded below on S. I t  is the  proxi- 

mi ty  funct ion we set out  to construct .  

The funct ion is symmetric:  for any  a, bES,  

s(a, b) = s(b, a). (3) 

This is seen directly by applying Stokes '  formula to t(~, a) and t(~,b)along small cir- 

cles about  a, b, ~0 and then letting the circles tend to these points. 

3. I n  terms of s we endow S with a conformal metric. The Euclidian area ele- 

men t  dS in the parametr ic  ~-disk is given the area 

dec = ]~ dS, (4) 
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where ~2 = As -- et~ [grad t o 12 (5) 
(1 + et~ 2 

Clearly dco is a conformally invariant  area element in this metric. 

Throughout  this paper  we denote by  v(~) the number  of zeros of the " func t ion"  

in question. We have 

r(2) = es + 2 = 2g, (6) 

where es is the Euler  characterist ic of S, and g is its genus. I n  fact, the zeros of ;t 

are those of grad to, and  this vector  forms a differentiable vector  field on S - t 0 - $ 1 -  

By  Lefschetz 's  fixed point  theorem the number  of its singularities is the Euler char- 

acteristic of S -  r  r t ha t  is, es + 2. This in tu rn  is 2g. The proof can also be based 
�9 $ 

on the Riemann-Roch  theorem or on geometric properties of to+ ~to. 

The total  area of S is 

e ~ 1 7 6  1 

where fl~ is the  level line t o = x e ( -  c~, cr ). 

et~ 
+ et0) 2 dt~ dx = 4ze, (7) 

A log ,~ = 1. Fur thermore  )2 (8) 

Indeed,  the logari thm of the numera tor  of X is harmonic,  and tha t  of the  denominator  

is the  same function s o we s tar ted wi th . '  

I n  passing we note  t ha t  if S is open, then  we require t ha t  t o has, in essence, 

vanishing normal  derivative on the boundary  (cf. [7]), and  our  reasoning holds verbatim. 

As a by-produc t  we have constructed on an a rb i t ra ry  Riemann  surface a metric with 

finite total  area and constant  Gaussian curvature.  

w 2. First main theorem 

4. On R choose a parametr ic  disk R 0 with boundary  flo such that /(f lo)  does no t  

meet  a 1 ...... aq, to, r Let  ~ be an adjacent  regular region with boundary  flo U fin. On 

form the harmonic funct ion u with u = 0  on fl0, u = k ( ~ ) =  const, on fin, f~o du*= 1. 

For  a ny  h E [0, k] let flh be the level line u = h and denote by  ~h the region be- 

tween flo and fib. By  the same reasoning as before, the number  of zeros of grad u 

is the  Euler characteristic e(h) of ~h: 

v(h, grad u) = e(h). (9) 
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5. We are now ready to prove the  first main  theorem. Let  a be any  point  on 

S and  let zj be its inverse images in ~h. Denote  their number,  counted with multi-  

plicities, by  v(h,a).~Let Aj be small disks about  zj with boundaries aj, oriented clock- 

wise; flh and  fl0 are oriented to leave R 0 to the left. Apply  Stokes '  formula to  v(z) 
= h -  u(z) and s(/(z), a): 

f ~.j§ ~._~o V dS* - s dv * = f a~_oAj v • s dR. (10) 

Here dR is the Euclidian area element in the  z-disk. 

As the aj shrink to the  zj, the  second term in f ~ j  goes to zero, for the  flux of 

v across ~l vanishes. The flux of s tends to 4z~ and 

--->4~v(zs)=4~ (h-x)d~(x,a). 

In tegra te  by  par ts  and denote  this contr ibut ion of the e / s  by  

A(h,a) =4e f]~(x,a) dx. (11) 

I t  is our counting [unction. Clearly it vanishes for a Picard point  a. 

I n  f~h, v = 0 ,  and we designate this par t  corresponding to flh by  

B(h, a) = f~hsdu*. (12) 

This we choose as our proximity /unction. I t  gives the mean proximi ty  to a of the  

image of fib. 

On the r ight  we have, in terms of doJ(/(z)), 

C(h) = f~h vdo). (13) 

This is our characteristic /unction. I t  is independent  of a. 

W h a t  remain are the integrals along rio: 

D(h, a) = B(O, a) + hB'(O, a). (14) 

Note  tha t  this is O(h). The only functions of interest tu rn  out  to be those for which 

C(h) grows more rapidly than  h. Thus D is a negligible remainder.  This is even more 

clearly seen if we do not  omit  R 0 f rom ~ ,  in which case there are no integTals along 

rio. Bu t  for our  later results the present set-up is more suitable. 
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We have established the first main theorem: 

THEOREM 1. For analytic mappings o] an arbitrary R into a closed S, and /or 
any ~ oR,  

A(k, a) + B(]c, a) = C(]c) + D(k, a). (15) 

Thus the beautiful balance continues to hold despite infinite genus: any  defect 

in coverage of a point a, such as of a Picard point, is compensated for by  a close 

proximity of /(fib). The functions A and B add up, in essence, to the same C for 

all a. 

6. The characteristic C retains its simple geometric meaning. To see this take 

v = 1 in (10). The integrand on the left is then ds*, on the  right, A,s dR=dto(/(z)), and 

we have 

A'(h, a) + B'(h, a) = ["  do) + D'(h, a). 
J l 'l  h 

A comparison with (15) gives 

C'(h) = J~h dto. (16) 

We see tha t  the characteristic is the integral of the total  area of the multisheeted 

image of ~h over S. 

7. We next  ask how numerous are the points a with a Pic~rd nature, i.e., with 

great contributions from B. Do they continue to be exceptional compared with strongly 

covered points a? To answer this we must  estimate B upward. 

This process is facilitated by  replacing B by the integral of its integral. For 

heuristic motivat ion consider the simple case of the exponential function e ~. I t  maps 

not only the boundaries of exhausting regions but, naturally, also these regions them- 

selves, with increasing mean proximity to the Picard points 0 and c~. This phen- 

omenon is universal, and we can replace the conventional curvilinear proximity by 

areal proximity. To facilitate subsequent computations, we even integrate this. 

We introduce for any function ~(h) the notations 

q~,(h)=;cf(x)dx, cf2(h)=;cfl(x)dx. (17) 

Then the new proximity  function is B~, and we can at tach subindices "2" to each 

term in (15). 

8. Another simple device tha t  will shorten later reasoning is the following. We 

add to a I . . . .  ,aq the 2g zeros aq+l . . . .  ,aq+2g of 2 and  set for any function y~(h,a), 
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q+eg 

y~(h) = ~ y~(h, a,). 

A.,.(h) + B2(h ) = (q + 2g) Ce(h ) + De(h ). 

Our task is to find an upper estimate for Be(h). 

(18) 

(19) 

w 3. Second main theorem 

9. Set a(~) = exp [~+2g s(~, a,) - 2 log (~+2g s(~, at) + eonst.)] with ~ s +const .  > 0 

on S, and distribute on S the mass dm = a deo. I t  has singularities at the as. The 

total mass m = f s d m  is finite, however. 

The density a2 z of dm induces in the u + iu*-plane the density a/~ 2, where 

tu(z) = 2(z) l /' (z) [1 grad u(z)] -1. (20) 

We use the concavity of the logarithm to obtain 

~< I_ log adu* + 2 log (B(h) + eonst.) (21) B(h) 
J #  h 

and decompose the integral into 

F(h) = ..I% log (a I ~e ) du*, 

(22) 
G(h) = - J ~h log #e du *. 

Then B~(h) <~ F2(h ) + G~(h) + 2[log (C(h) + O(h))]z. (23) 

We shall first estimate Fe, then G 2. 

10. We write 

H(h) = f~h alae du * (2 4) 

and obtain by the concavity of the logarithm, 

F(h) <~ log H(h), 

Fl(h) < h log (~ Hl(h)) = h log Hi(h) - h log h, 

Fe(h ) < h e log He(h) + O(h 2 log h). (25) 
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To estimate H~ note that  

Hi(h ) = f sv(h, a) dm(a). 

In fact, both quantities give the total mass on the multisheeted image of ~h over 

S. On integrating (15) with respect to din(a) the first term thus gives 4~tH=(h). Since 

s(~, a)=s(a,~) is uniformly bounded below on the compact S , - B ( h )  contributes 0(1) 

and we obtain 
4:~ H~(h) < mC(h) § O(h). 

Substitution into (25) yields 

F~(h) < h 2 log (C(h) + O(h)). (26) 

11. To obtain G=(h) we first evaluate 

G'(h) = - 2 ~  d* log F. 
JJ ~h 

Let  Fj be small disks about the singularities of log /~, bounded by clockwise orien- 

ted ~r Then f a  
: 2  / d ~r log ~ - - 2  / i z log G'(h) 2dR. 

JE yj - f lo  J E~h- u F i 

By virtue of (20), (9), (4), (8), and (16), we have 

G'(h) = 4~[ - v(h, 2) - ~(h,/') § e(h)] + 2C'(h) § const. (27) 

Triple integration gives G=(h). 

12. In the last term of (23) we replace the integrand in both integrations by  

its value at the right end point of the interval of integration and obtain the estimate 

2h 2 log (C(h)+ O(h)). We substitute it together with G~(h) and (26) into (23), this into 

(19), and set 

f: E(h) = 4~ e(x) dx. 

We have reached our main result, the seeond main theorem: 

THE ORE ~ 2. For an analytic mapping / o/ an arbitrary open Riemann sur/ace 

R into a closed Riemann sur/ace S, any regular subregion ~ c  R with k = k(~) gives 

q 

(q + es) C2(k) < ~ A2(k, as) - A2(k,/') + E~(k) + O(k s + k 2 log C(k)). (28) 

As a special case we have the second main theorem for meromorphic functions 

on arbitrary Riemann surfaces. 
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w 4. Consequences 

13. In  the sequel we consider nondegenerate  mappings [ characterized by  

lira k3 + ]ca log C(k) = 0. (29) 
n--,R C~(k) 

The condition is assured by  C(k)/k-->c~ and the  existence of a constant  0 < : r  1 

with C(:r C(k)-->c~. (This formulat ion was suggested to the au thor  by  K . V . R .  

Rao.) The condit ion is general and is obviously even met  by  such functions as k ~ and 

e "k, v = const. > 1, 0, respectively. 

14. Using canonical regions ~ we introduce the defect 

As(k, a) 
5(a) = 1 - lim , (30) 

a--,R C~(k) 

the  ramification index 

and  the Euler index 

v~=lim Aa(k' 1') (31) 
n . R  Ca(k) ' 

= lim Ea(]c) (32) 
h~-R C~(k)" 

From (28) we obtain  the following defect and ramification relation: 

T H E  O REM 3. For nondegenerate mappings  o/ an arbitrary R into a closed S,  

Z ~(a) + ~ <~ ~ - es. (33) 

I n  part icular  there can be at  mos t  ~7- es Picard values. 

I f  S is obtained from a closed surface S o by  removing n points  then, in terms of 

quanti t ies defined for S o , 
~(a) + ~ ~ ~ - eso - n. (33') 

15. We have the following immediate  consequences. First  consider the existence 

of mappings /. 

COROLLARY 1. A necessary condi t ion/or  a nontegenerate mapping  o / a n  arbitrary 

R into a closed S is that ~ >1 es. For a closed S less n points, ~ must  dominate es + n. 

:For the sphere S or the plane or the punctured  plane we have es >~ 0 and there 

is no restriction. This is compatible with the theorem of Behnke and Stein: every open 

Riemann  surface can be mapped  into the punctured  plane. For  the torus S we again 

have no restriction bu t  for genus > 1, C(]r cannot  grow more rapidly than  E(k). 
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16. Nex t  suppose R has finite Euler  charac ter i s t ic .  

C O R O L L A R Y  2. I]  e (R)<  ~ ,  then the number  P o/ Picard  va lue s /o r  a m a p p i n g  

into a closed S is 
P <~ - es. (34) 

I n  the case where R is obtained from a closed surface by  removing a finite num- 

ber of points  this is the Chern result. We see tha t  a finite number  of disks or any  

closed connected sets can as well be removed. 

17. Suppose S is the sphere or the plane. 

C o R o L L A R Y 3. For  a meromorphic or entire /unct ion on an  arbitrary open Rie-  

m a n n  sur/ace, 
P~<2+~/  or P ~ < I + z ] ,  (35) 

respectively. 

The former bound  was shown to be sharp in [9, 10] and by  B. Rodin  in [6]. 

For  ~ /=0  we have the Tamura  [12] functions with P~< 2. 

18. As the mos t  special case let R be the finite or infinite disk. 

C o R o L L A R Y 4. For  meromorphic /unct ions  on [ z I < ~ ~ ~ ,  

(~(ai+ v ~ ~< 2. (36) 

We can now take u = l o g  r on R and  the integrat ion with respect to h covers 

all of R. By  L 'Hospi ta l ' s  rule the subscripts "2"  in (30)- (32)can  be dropped and we 

have a new proof for the conventional  form of the defect relation, simultaneously 

for the plane and the disk. The second main  theorem (28) is valid wi thout  excep- 

t ional intervals. 
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