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1. Introduction 

A n  examina t i on  of tab les  [3; 5; 8; 12; 15] of the  positive(2) zeros of fami l ia r  special  

funct ions,  such as Bessel functions(a) a n d  var ious  or thogonal  polynomials ,  suggests  t h a t  

sequences of differences cons t ruc ted  f rom those  zeros behave  in a regula r  manner .  Indeed ,  

cer ta in  heur is t ica l ly  observed  regular i t ies  are  exp lo i t ed  sys t ema t i ca l l y  b y  t ab l e -maker s  as 

checks on the i r  computa t ions  [1; 5, p. 404; 12, esp. pp.  liii-liv].(4) 

Rigorous  s t u d y  of th is  useful  phenomenon,  however ,  does no t  a p p e a r  to  have  pro-  

gressed beyond  considera t ion  of the  second differences of zeros of S t u r m - L i o u v i l l e  funct ions  

(solutions of the  S tu rm-L iouv i l l e  di f ferent ia l  equa t ion  y "  +](x)y=O).  Here  S t u r m ' s  com- 

par i son  theorem [13; 14, pp.  19-21] has  been  the  pr inc ipa l  tool.  

F o r  instance,  denot ing  b y  ( c ~ ,  n = 1,2 .... , the  ascending sequence of posi t ive  zeros of 

an  a r b i t r a r y  Bessel funct ion  C~(x) of order  u, Ch. S t u r m  [13, pp.  173-175] used his compar ison  

theo rem to show t h a t  the  second (forward) differences A~c~n, n = 1,2 .... .  are  al l  pos i t ive  if 

Iv] <�89 and  are  all  nega t ive  if [~, 1>�89 I n  the  same manner ,  s imilar  resul ts  have  been 

es tabl i shed  for Hermi te ,  Laguer re  and  Legendre  po lynomia l s  a n d  o ther  S t u r m - L i o u v i l l e  

unct ions.  

(1) Some of this work was done a few years ago when the first-named author received partial 
support from the (U.S.) National Science Foundation through Research Grant NSF G-3663 to Phi- 
lander Smith College, Little Rock, Arkansas. Its completion was facilitated by a grant from the 
University of Alberta General Research Fund. Both authors thank Professor Gabor Szeg6 for his 
interest and encouragement. 

(2) All quantities discussed throughout this paper are assumed to be real. 
(a) By a Bessel function we mean any real solution of the Bessel differential equation, not 

merely J~ or Yr. 
(4) The regularities now used to check tables are not the ones discussed in this paper. How- 

ever, the ones established here can also be used conveniently for this purpose. 
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Analogous  p rob lems  can be fo rmula t ed  for the  sequence of the  areas  bounded  b y  the  

successive arches or  waves  (having consecut ive zeros as end-points)  of the  graphs  of such 

special  functions.  The corresponding results ,  including the  in format ion  abou t  the  second 

differences of the  zeros, were es tabl i shed  in a unif ied and  simple m a n n e r  b y  E. Makai  [11]. 

His  work  was subsequen t ly  general ized in several  d i rect ions  b y  I .  Bihar i  [2]. 

Our  ma in  purpose  here  is to  go b e y o n d  the  second differences and  to  show t h a t  all  

higher  differences of cer ta in  sequences connected  wi th  the  zeros and  areas  of C~ (x) have  

cons tan t  sign, a l t e rna t ing  f rom one difference to  the  next ,  when I v ] >  �89 A i ry  funct ions  

and  cer ta in  genera l iza t ions  of C,(x) are  shown to  share these proper t ies .  The  precise for- 

mula t ions  are  found  in w167 2-4.  

I n  w 5, these  resul ts  are  ex tended ,  in par t ,  to  the  s t u d y  of the  h igher  differences of 

sequences whose e lements  are  the  (first) differences of the  respect ive  zeros of the  solut ions 

of d i s t inc t  Stu rm-L iouv i l l e  equat ions .  This  genera l iza t ion  is app l i ed  in  w 6 to  ob t a in  in- 

fo rma t ion  concerning the  h igher  differences of sequences composed of the  (first) differences 

of the  respect ive  zeros of a r b i t r a r y  Bessel funct ions  of different  orders.  

The general  me thod  of proof  we emp loy  m a y  perhaps  be extens ib le  to  y ie ld  analogous  

(a l though no t  ident ical)  resul ts  for C~(x) wi th  Iv] < 1 and  for o ther  special  funct ions,  such 

as Hermi te ,  Laguer re  and  Legendre  polynomials ,  the  B a t e m a n  k-funct ion and,  in  general ,  

for the  confluent  hypergeomet r ic  funct ion for cer ta in  values  of the  parameter .(1)  W e  

l ist  some of our  conjectures  in w 7. 

Al l  the  resul ts  bear ing  on Bessel funct ions  which are  p resen ted  here dea l  wi th  the  

behav io r  of differences of quant i t i es  connected  wi th  funct ions  of cons tan t  order.  Elsewhere  

[10] we consider  some analogous  p rob lems  involving ins tead  the  differences of zeros of 

f ixed rank,  b u t  of funct ions  of va ry ing  order.  

2. Definitions, notat ions and general results (one  equation)  

I f  y ( x )  has  zeros when x is in an  open in te rva l  I and  is a non- t r iv ia l  solut ion of the  

S tu rm-L iouv i l l e  di f ferent ia l  equa t ion  

y " + / ( x ) y  = 0 ,  (2.1) 

(1) More generally, one may seek a generalization of the Sturm comparison theorem. This 
theorem shows that the second differences of the sequence of successive zeros of an oscillatory 
Sturm-Liouville function are all positive if ] '(x)<0, and are all negative if ]'(x)>~0. Perhaps the 
signs of the first -IV differences of these zeros can be inferred from the signs of ](n)(x), n =  1 . . . .  , N .  
In particular, it would be interesting to determine if the complete monotonicity of /'(x), 0 < x < r 
implies the complete monotonicity of the sequence composed of the differences of successive zeros of 
an arbitrary solution of y" +/(x) y = 0, 0 < x < c~. This is the ease for Bessel functions (Theorem 3.1), 
and for Airy functions (Theorem 4.1). 
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where/(x) is a given function, we designate any increasing sequence of consecutive zeros in 

I by  x,, x 2 ..... and define for any fixed 2 > - 1  

f X k + l  

Mk= ]y(x)]~dx (k=  1,2 . . . .  ). (2.2) 
d x k 

When 2 = 1, the M k are simply the areas, say Ak, of the successive arches of y(x). 

When )~ = 0, the Me become the differences, Axk, of successive zeros of y(x). Moreover, Mk 

exists for any 2 > --1, since the zeros of y(x) are all of order 1 (the existence of a multiple 

zero of a solution of (2.1) would imply tha t  y(x) is identically zero). 

Where it is convenient to distinguish any two (non-trivial) solutions of (2.1), linearly 

independent or not, we denote them by  y(x) and ~(x), with the corresponding zeros and 

arch-areas, for example, written as xg, s Ak, Ak, k = 1,2 ..... respectively. When we designate 

two such solutions by  yl(x), y2(x) we mean tha t  they are linearly independent. 

The symbol A~/~ means, as usual, the n-th (forward) difference of the sequence 

{/xk}, i.e., 

A~ A/~k=/~k+l--/~, A~/xk=A=-l/xk+l-A~-ll~k ( n = l , 2  ..... k = l , 2  .... ). 

For typographical convenience, we frequently use the symbol D~0(~) to denote the 

n-th derivative gc(n)(~). 

We prove a general theorem concerning solutions of (2.1) and then specialize in 

w167 3-4 to general solutions of the Bessel and Airy differential equations, respectively. 

Certain preliminary facts are needed in this connection (and again in w 5). Some may  be 

known, but, inasmuch as they occupy a central position in this work, we formulate them 

as lemmas and supply proofs. 

L~M~A 2.1. Let p(x) be a positive/unction such that p(n~(x) exists in an open interval 

(a, b). Map (a, b) onto an interval o /a  variable t through the relation x'(t) =p(x). Then,/or any 

a > 0  and any n=O, 1 ..... N, the derivative D~{[x'(t)] ~ is a homogeneous /orm in p(~ 

p(1)(x) ..... p(~(x) /or xE(a,b). I t  has (i) order (a+n), (ii) weight n, (iii) non-negative coe/- 

/icients and exponents (both dependent only on n and a), and (iv) integral exponents with the 

possible exception o/the exponent o/p(~ 

Proo/. The mapping is possible since p(x)>0.  The proof proceeds by  induction. 

When n = 0 ,  we have D~{[x'(t)]~176176 when n = l ,  we have D~{[x'(t)]~ = 

a[p(~176 In  both cases, the assertions of the lemma are fulfilled. 

A general term of D; ~ {[x'(t)] ~ would appear  as 

S = C [ p ( ~  ' [ p ( i ) ( x ) F '  . . .  [ p ( ~ ) ( x ) F ~ ,  
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with  C, ~o ..... an all  non-nega t ive  and  ~1 ..... ~n all  integers.  The order  would be a 0 §  

�9 .. § an and  the  weight  a l  + 2 ~  3 . . .  + n~n. 

The induc t ion  is carr ied  th rough  b y  d i f fe rent ia t ing  S wi th  respect  to  t. We  have  

dS dS 
-dr = p(x) dxx: C~176176176 [P(n)(x)]~n 

+ Coq[p(~176176 ~+1 ... [p(n)(x)]~n 

J r -  . . ,  

+ Co~[p(O)(x)]~~ [p(n)(x)]~ ~ i[p(n+l)(x)]" 

Thus,  S'(t) is a po lynomia l  in  p(~ p(1)(x) ..... p(~+l~(x) with  non-nega t ive  coefficients. 

None of the  exponen t s  t h a t  appea r  become negat ive;  the  exponen t  of p(x) never  decreases 

while t he  o thers  decrease b y  s teps  of one uni t ,  if a t  all.  They  m a y  reach  zero, b u t  th is  

occurrence would  on ly  presage the  vanish ing  of the  de r iva t ive  of the  corresponding factor .  

The  order,  oJ, and  weight ,  w, of a t e r m  in S'(t) other  t h a n  the  f i rs t  and  last ,  are,  re- 

spect ively,  

~o = (~o + 1) + ~  + ... + ( ~ -  1) + (~+~ + 1) + . . .  + a ,  = 1 + (~0 + ~  + . . .  +~n)  

and  

w = a l  + 2a2 + -.. + i (a t  - 1) + (i + 1) (a~+l + 1) + ... + nan = 1 + (a 1 + 2a  i + ... + nan). 

Thus,  the  order  and  weight  increase b y  one uni t  unde r  the  process of d i f fe rent ia t ion  of 

these t e rms  wi th  respect  to  t. The  same is c lear ly  t rue  of the  f i rs t  and  las t  t e rms  as well. 

F ina l ly ,  we observe t h a t  the  coefficients and  exponen t s  do no t  depend  on p(x) b u t  only  

on n a n d  a. 

Thus,  S'(t) satisfies the  asser t ion of the  l emma and  the  induc t ion  (which can  be con- 

t i nued  to  n = N) is complete.  

L E M ~ A  2.2. Let p(x) satis/y the conditions o/Lemma 2.1 and, in addition, the inequalities 

( -1)np(~)(x)  > 0 ( n = 0 , 1  ..... N; xe(a,b)). (2.3) 

Let the mapping described in Lemma 2.1 be carried out. Then,/or any a >O, 

(-1)nDT{[x'(t)] ~ > 0 ( n = 0 , 1  .... .  N).  

The lemma remains true i/the/actor ( - 1) n is deleted/tom both (2.3) and  (2.4). 

Proo/. F r o m  L e m m a  2.1, we see t h a t  a general  t e rm of D~{[x'(t)] ~} has the  form 

(2.4) 

S = C[p(~ ~' [p(1)(x)]~' . . .  [p(n)(X)]~n. 
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By assumpt ion (2.3) the sign of S is 

( - -  1)a'+2a~+'"+nan. 

But  the exponent  is simply the weight which, according to Lemma 2.1, has the value n. 

Thus, S has sign ( -  1) n and (2.4) is established. The final sentence of the lemma is trivial. 

LEMMA 2.3. Let Yl, Y2 be solutions o/(2.1), normalized so that their Wronskian Y lY~-  

YlY2 = 1. Let p(x) =y~ (x) +y~ (x) and de/ine the trans/ormation y(x) = [p(x)]�89 x'(t) =p(x).  

This trans/orms (2.1) into the di//erential equation u"(t) +u(t)=0. 

Proo]. The funct ion p(x) is an admissible mapping  funct ion since it is always positive. 

The t ransformat ion takes (2.1) into u"(t)+q(t)u(t)=0, where 

q(t) = �89 p(x)  p" (x) - �88 + [p(x) ]2 /(x) (2.5) 

so tha t  (with p(x)= y~(x) + ~ y" y2(x) and = - / (x )y ) ,  

' 2 " . ~  ' "  2 " 2 2 " " 2 ' 2 q(t) = p(x) [(y;)~ + (y2) + ylyl y2y2 ) - [Yl(yl) + ylyly2Y2 + + y2(y2) ] [p(x)] 2/(x) 
2 2 t 2  t 2  i P 2 = (Y~+Y2)[(yl) + (y2) ] [y~(yl)2+2yly~y2y~+ 2 , 

- Y2(Y2) ] = (yiy~ - yly2) = 1. 

The main  result of this section can be proved now: 

THEOREM 2.1. Suppose that in some closed interval I* there exist two linearly inde- 

pendent solutions yl(x), y2(x) o/ (2.1) such that 

( - 1)~n n { [y~(x)] ~ + [y~(x)] 2 } > O (n = 0, 1 . . . . .  N), (2.6) 

where the N-th derivative exists in the open interval I,  and the lower order derivatives are 

continuous in its closure I*. Then(i) 

( - 1 ) ~ A n M k > 0  ( n = 0 , 1  .... ,N; k = l , 2 , . . . ) ,  (2.7) 

so that, in particular, 

(--1)n-lAnxk>O (n= 1,2 ..... N + I ;  k =  1,2 .... ). (2.8) 

Moreover, i / x  1 > Xl, then 

(--1)nAn(Xk--~k) > 0  ( n = 0 , 1  .... ,N; k = l , 2 , . . . ) .  (2.9) 

I / the/actor  ( - 1 )  ~ is deleted/rom assumption (2.6), then the conclusions (2.7), (2.8) and 

(2.9) remain valid provided they are amended by eliminating the/actors ( -  1) ~, ( -  1) ~-1 and 

( - 1) n, respectively. 

(1) The quantities Mk, xk, ~ are defined in the first paragraph of this section, e.g., by (2.2). 
It  should be remembered that they refer to any nontrivial solution of (2.1), not merely to yl(x) 
and y2(x). 



60 15. LORCH AND P.  SZEGO 

Proo I. Without  loss of generality, we normalize the solutions yl(x), y2(x) so tha t  their 

Wronskian is 1. Then we can apply Lemma 2.3 and transform the differential equation 

(2.1) into the form u"(t)+u(t)=0. Since p(x)=x'(t)>O in I ,  there is a one-to-one corre- 

spondence between the zeros of y(x) and those of u(t). But  u(t) =A cos ( t -  b), A, b constants, 

so tha t  its zeros are equidistant from one another with Ark=g, k = l , 2  ..... where t k is the 

zero of u(t) corresponding to x k. 

Thus, (2.2) becomes 
[ ' tk+l  t 

M k = J t  k [x (t)] 1+�89 lu(t)l~dt. 

Recalling tha t  At~ = ~ (k = 1, 2 . . . .  ), and noting tha t  lu( t+ g ) [ =  lu(t)], we have 

AM~= (*,~+2_ [,,~+, = f~"+* {[x'(t + =)]~+'a[u(t + ~ ) l ~ - [ x ' ( t ) ] l + ~ a l u ( t ) ] a } d t  
J t k +  1 *It k , I t  k 

= f'~+l{A~ {[x'(t)]i+'~)} lu(t)l~dt, 

where A,{F(t)} = $'(t + =) - F(t). 

I t  follows, in the same way, tha t  the higher differences are given by 

• = ~tk +1 { A2 { [x,(t)]l + ~a}} lu(t ) iadt ' (2.10) 
d t k  

where A", {F(t)} = A. {A~-1F(t)). 

:Now, according to a mean-value theorem for higher derivatives and differences [7, 

p. 73] there exists a 0 such tha t  

A~F(t) =znF(n)(t+On~) (0 < 0  < 1), (2.11) 

provided F(n)(t) exists in the open interval (t, t + nz) and the lower derivatives are continu- 

ous in the corresponding closed interval. 

Applying the extended mean-value theorem (2.11) to the expression (2.10) for AnMk, 

we obtain 

~ t k+ l  
Ani~=r~ n {D'~{[x'(t+Onr~)]l+�89 (0< 0(t) < 1). (2.12) 

J t  k 

I t  should be noted tha t  the argument  of x' can fall anywhere in [tk, tk+(n+l)~] .  

However, this causes no difficulty since the range of t-values occurring in A~Mk encompas- 

ses the same interval. 

Lemma 2.2 can now be applied, with a = 1 + �89 since condition (2.3) of the lemma is 

fulfilled by  virtue of assumption (2.6) in the theorem. Employing the conclusion of the 

lemma, (2.4), the result (2.7) of the theorem follows from (2.12). 
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Taking 7 = 0  in (2.7), in turn,  yields (2.8), since 

M k = A x k ,  A n M k = A n + l x k  for ~ = 0 .  

The proof of (2.9) is slightly different. Le t  tl, t l + ~ ,  t ~ + 2 g  ..... be the sequence of 

t-values corresponding to the zeros xl,x2, x a .... , and  tl, il +~ ,  tl +2z~ ..... be the sequence 

of t-values corresponding to  ~1,~2,~3 ..... Then, with xz=x( t k ) ,~k=x( l k ) ,  

h ~ ( x k - ~ )  = •  x(i~)] = A~[x( t~)-x( t~-~)] ,  

where ~ = tk- ik  and is independent  of k. 

Applying the same mean-value theorem (2.11) as before, we have 

An(xk - - ~ k )  = :~n[x(~)(tk +One) --x~'~)(t~ +On~--7)], 

with 0 < 0 < 1. This can be rewrit ten as 

f 
tk+On~ 

A~(xk-- ~k) = ~ x(~+l)(t) dr. 
J t k  §  ~ 

Thus, the sign of A~(xk--xk) is determined by  the sign of x(n+l)(t). However~ Lemma 2.2 

(with a = l ) ,  applicable in view of hypothesis  (2.6), shows this sign to  be ( - 1 )  ~ for n =  

0,1 ..... N.  Hence, the quan t i ty  ( -1)nAn(x k --xk)  is positive or negative according as ~ > 0 

or ~ < 0. Bu t  

x k -  ek = x(tk) - x(ik) = x'(t)  dr, 
k - U  

which has the same sign as ~ since x ' ( t ) > 0 .  Inasmuch  as x~ > ~ ,  it is clear t ha t  ~] >0 ,  so 

tha t  (2.9) is established. The final sentence of the theorem follows at once on making the 

obvious changes in the above proof. 

Remark .  I t  should be kept  in mind tha t  the definition of x 1, x 2 ..... Xl, x2 ..... provides 

a considerable amoun t  of flexibility. Nei ther  x I nor  xl need be the first zero of its respective 

function, nor  is the re  even any  requirement  t ha t  x~ should occupy the same relative position 

among the to ta l i ty  of zeros of y(x)  in I as ~1 does relative to ~(x). This is useful to know 

in connection with applications of Theorem 2.1. 

3. Application of  w 2 to certain Bessel functions 

One oppor tun i ty  to  apply  Theorem 2.1 to Bessel functions of appropria te  order is 

facilitated by  Nicholson's integral [15, p. 444(1)]. 

Theorem 2.1 applies for all non-negative integers N to the Bessel differential equat ion 

in the form 
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provided [ v[ > �89 

The fundamen ta l  

Y.(x) so t h a t  

y " ( x ) § 1 8 8  ( x >  0), (3.1) 

solutions Yl, Y2 of (3.1) can be t aken  to be (�89189 J~(x), (�89189 

p(x) = �89 ~ + [ Y~(x)]2}. 

For  Iv] > �89 p(x) is analytic,  0 < x < oo, and  so p(N~(x) exists for all non-negat ive  integers _hr. 

To satisfy the  conditions of Theorem 2.1, we need only choose an  interval  I encompas-  

sing all zeros under  considerat ion and  with  its lower end-point  a posit ive number .  This 

can obviously be done, since each Bessel funct ion has a least  posi t ive zero. Condition (2.6) 

on the sign of p(n)(x) c a n  be verified b y  using G. N. Wat son ' s  manipula t ion  of Nicholson's  

integral  representa t ion  for our p(x) [15, p. 446]: 

Wat son ' s  calculation gives 

p'(x) = ~ {K o(2x sinh T)} ( tanh T) (eosh 2vT) .  [ tanh T - 2v t anh  2vT] dT, (3.2) 

where K0(~) is the  Bessel funct ion of second kind, imaginary  a rgumen t  and  zero order. 

As Wat son  points  out,  the  bracke ted  factor  in the  above in tegrand is negat ive  for 

Iv I > �89 every th ing  else is positive. Hence,  p'(x)<0. Fur the r  differentiation yields 

~ 

p(~)(x) = ~ {K~n-1)(2x sinh T)} (2 sinh T) n -~ ( tanh T) (eosh 2vT) 

�9 [ tanh T - 2v t anh  2vT] dT. (3.3) 

Now, it is clear f rom the representa t ion  [15, p. 446 footnote]  

K0(~) = I ~ e  ~ oo:h t dt ' 
Jo 

t h a t  ( - 1)"K(0 n)(~) > 0 for ~ > 0, n = 0,1,2 ..... so t h a t  p(x) satisfies the  hypotheses  of Theorem 

2.1, and  (2.7), (2.8) and (2.9) are therefore valid for Bessel functions of order v, Iv] >1 ,  for 

all N = l , 2  ... . .  

There is an a l ternat ive  argument ,  based on work of P. H a r t m a n  [6], avai lable  to 

establish the  va l id i ty  of (2.7), (2.8), (2.9) for these Bessel functions.  

Applied direct ly to equat ion  (3.1), H a r t m a n ' s  Theorem 18.1n [6, p. 182], wi th  n = + ,  

asserts t h a t  p(x) is complete ly  monotonic  in (0, ~ ), i.e., i t  gives (2.6) in the  slightly weakened 

form in which " > "  is replaced b y  "~> ". However ,  as shown in w 8 below, a funct ion com- 

pletely monotonic  in (0, c~ ) mus t  be a cons tant  if any  one of its der ivat ives  (including the 
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zeroth, the funct ion itself) vanishes for any  single positive value. Thus, if equal i ty  ever 

prevailed in (2.6), p(x) would have to  be a constant .  However ,  this, in turn,  is impossible 

for Iv[ > �89 since, according to a lemma established in w 9 below, this would require the  

coefficient of y in (3.1) also to be constant,  which it is not.  

Thus, Ha r tman ' s  Theorem 18.1n, with n = c~, implies (2.6) and so also (2.7), (2.8) and 

(2.9) for Bessel functions of order v, Iv I >  1. Therefore,  by  ei ther argument ,  we obtain 

the following results for  Besse] functions. 

THEOREM 3.1. Let c~k, 5~k denote, respectively, the k-th positive zeros, arranged in ascend- 

ing order, o/ any pair  o/ non-trivial solutions (linearly independent or not) o/ the Bessel equa- 

tion (3.1) with [~1 >1. Let ~ be a constant, ,~> - 1 ,  and 

f Cv, k + l  

M k =  x�89 dx. (3.4) 
t] Cvk  

Then , /or  Ic = 1, 2 . . . . .  

( -- 1)nA~(C~.m+k -- 5~k) > 0 

/or any / i x ed  m =  O, 1 . . . . .  provided c~.m + l > 5~1. 

I n  particular (still with Ivl > �89 

( -- 1)n-lAnj~ > 0, ( -- 1)n-lAny~k > 0 

(--  1)nhnMk> 0 ( n = 0 ,  1 . . . .  ), (3.5) 

( -  1)'-lAnc~k > 0 ( n =  1, 2 . . . .  ), (3.6) 

(n = 0, 1, 2 . . . .  ), (3.7) 

( n = l , 2  . . . .  ), 

(--1)nAn(?'~k--y~k)>0 ( n = 0 , 1 , 2  . . . .  ), 

where j~ ,  y,,~ denote the respective k-th positive zeros o/J~(x)  and Y~(x). 

Remark. (3.7) implies (3.9), since ]~l>y~l [15, p. 487 (10)]. 

(3.8) 

(3.9) 

4. Application of w 2 to Airy functions 

The Airy functions satisfy the differential equat ion [14, p. 18] 

y"(x)  + ~xy= O. (4.1) 

A broader  class of functions, including the Airy functions, satisfy the differential equa- 

t ion [15, p. 97 (9)] 

y"(x)  + f12~2x2~-2y = O. (4.2) 

These functions are closely related to Bessel functions.  Indeed,  y = x�89 C1,(2~)(yx ~) satisfies 

(4.2). 
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When  1 </~<~,  equat ion (4.2) meets H a r t m a n ' s  conditions [6, p. 183 (Theorem 

20.1~)] with n = oo, so tha t  the special case (4.1), where f l=  3, is covered as well. Accord- 

ingly, we have an  analogue of Theorem 3.1 for Airy functions and their zeros. I n  partic- 

ular, the following result holds: 

THEOREM 4.1. I /  1 <fl<~, then 

( --  1 )n- lAn([Cl / (2~) .k]  1/~} > 0 ( n ,  k = 1, 2 . . . .  ). 

I] (a~}, (sk} are the sequences o/positive zeros, arranged in ascending order, o /any  pair o/ 

Airy/unctions (solutions o/(4.1)), and a 1 >ax, then 

(--1)n-lA~ak>0,  (--1)~A~(ak--Sk)>0 (n,k = 1,2 .... ). (4.3) 

This theorem follows f rom H a r t m a n ' s  Theorem 20.1~, with n = ~ ,  in precisely the 

same way as Theorem 3.1 was shown to follow from his Theorem 18.1n, with n = ~ ,  and 

the subordinate results in w167 8-9 below. 

For  this theorem, unlike Theorem 3.1, we have no alternative proof to offer. 

5. Higher monotonieity of sequences arising from zeros of two 
Sturm-LiouviHe functions 

Previous sections discussed higher monotonic i ty  of various sequences connected with, 

inter alia, the areas under  successive arches of the graphs of certain Sturm-Liouvi l le  func- 

t ions and, more particularly, with their zeros. Here we supply a partial  generalization 

(restricted to zeros) of some of the previous results by  relating the zeros of an  arb i t rary  

solution of one Sturm-Liouvi l le  equat ion to those of an arbi t rary  solution of a di//erent 

Sturm-Liouvi l le  equation, under  certain circumstances. This will imply, for example, the 

complete monotonic i ty  of certain sequences, such as (?',.r+k-Y~. m+k}k%l, for appropriate  

/~, ~, r and m (cf. Theorem 6.1 for details). 

To this end, we need the following extension of our first two lemmas: 

LEMMA 5.1. Let an open interval I t o/the variable t be mapped onto corresponding open 

intervals Ix and I x o/ the variables x and X by the mappings x'(t) =p(x). X'(t) =P(X), respec- 

tively, where p(x), P(X) are prescribed positive/unctions such that p(N)(x), P(N~(X) exist in 

the open interval I x N I x  (say Ixx ). Suppose,/urthermore, that p(x), P( X) satis/y the inequalities 

( - 1)nD~x (P(X)} >1(- 1)'D~ (p(x)} > 0 (n = 0, 1 . . . . .  N), (5.1) 

/or x, X E Ixx, where x and X in (5.1) correspond to the same t. 
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Then, for any a > O, 

( -  1)~D~ {[X'(t)] o}/> ( -  1)nD~ {[x'(t)] o} > 0, (5.2) 

n = 0 , 1  . . . . .  N ,  /or t E It. 

Again,  i /both /ac tors  ( - 1 )  n are e l iminated/ tom azsumption (5.1), then conclusion (5.2) 

remains valid once the same deletions are made. 

Proo/. The second inequal i ty  of (5.2) is identical  wi th  the conclusion of L e m m a  2.2. 

The first  inequal i ty  follows f rom a t e r m  by  t e r m  compar ison of the  homogeneous  forms for 

D~([X'(t)]  ~} and D'~([x'(t)]~}: According to L e m m a  2.1, a typical  t e rm of ( -1 )nD~( [x ' ( t ) ]  ~} 

is 

Sx= ( - 1)nV[p(x)]~'[p'(x)] ~' ... [p(n)(X)]~n = C[p(x)]~*[( -- 1)p'(x)] ~ ...  [( -- 1)np(n)(x)J~n, 

since a 1 + 2a2 §  + nan = n (this being the  weight), wi th  C positive, and with  each remaining 

factor  posi t ive b y  (5.1). 

The corresponding typ ica l  t e rm  of ( - 1)nD.~ ([X'(t)] ~} is 

S x  = C [ P ( X ) ] ~ ' [ (  - 1) P ' ( X ) ] ~ ,  . . .  [( - 1 ) ~ P ( n ) ( X ) ] ~ n ,  

with the  same values for C, a0 . . . . .  an as for  ( -  1)nD~ ([x'(t)]"}, b y  L e m m a  2.1. 

Thus,  the  proof  of (5.2) will be complete  once it is established t h a t  S~>Sx .  This 

follows f rom (5.1), since each factor  in brackets  in S x is posi t ive and  not  more  t han  the  

corresponding factor  of Sx, while C > 0. The proof  of the final assertion follows on mak ing  

the  obvious changes in the  foregoing. 

Remark.  I f  the  symbol  ">~" in (5.1) is replaced b y  " >  ", t hen  (5.2) can be s t rengthened 

correspondingly.  

F r o m  this l emma  we obta in  the  principal  result  of the section. 

T H ]~ 0 R ~ M 5.1. Suppose that in some closed interval I* there exist two pairs o / l inearly  

independent solutions (yl(x), y2(x)}, (Yl(x), Y2(x)} (each pair  normalized so that the Wronskian 

is 1) o / the  respective di]/erential equations 

y"(x) +f ix)  y = 0; Y"(x) + F(x) Y = 0, (5.3) 

(where/,  F are given/unctions) such that 

( - 1 ) n p ( n ~ ( x ) ~ ( - 1 ) n p ( n ) ( x ) > O  ( n = O ,  1 ..... N), (5.4) 

where the N-th  derivatives exist in the open interval I ,  and the lower derivatives are continuous 

in its closure I*, and where 

p(x) = [yl(x)] 2 + [y2(x)]2; P(x)  = [YI(x)] 2 + [Y2(x)] 2. 

5 - -  632917 .  Acta  mathematica 109.  I m p r i m 6  le 29 m a r s  1963 
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Then, i /X  1 > X1, w e  h a v e  

( - 1 )nAn(xk -Xk)  > 0 ,  (n = 0 , 1  ..... N;  k = 1,2 .... ), (5.5) 

/or the zeros xk, X k o / y  and Y, respectively, in the intersection 1" N J, where J is an interval 

de/ined to be either (XI, ~o) or (X 1, co) according as there does or does not exist a solution ~ ]or 

the equation 

f (  ds (+ ds (5.6) 
J ~ , P ( s )  

~o being the least such solution. 

I /  the symbol ">~" in (5.4) is replaced by " > "  /or n =O, then the solution o/ (5.6), i/ 

any, is unique. 

Proof. As in w 2, L e m m a  2.3, the t ransformations 

y(x) = [x'(t)]�89 x'(t) = [yl(x)] 2 + [y~(x)] ~ (5.7) 

Y(X) = [X'(t)]�89 V(t); X'(t) = [ YI(X)] ~ + [ Y3(X)] 2 

take equations (5.3) into, respectively, 

u"(t) +u( t )  = o; uH(t) + u(t)  = o. (5.8) 

The mapping  functions (5.7) are not  unique; an  integrat ion constant  is left unspecified. 

I n  order to particularize (5.7) completely, we take  

(x d s  = (Xds  (5.9) 
t = Jx, p(s) ,]x,P(s)" 

The t ransformations (5.7) now establish a one-to-one correspondence between the zeros of 

y(x) and u(t) and between those of Y(X)  and U(t), respectively, x'(t) and X'(t) being 

positive. 

Let  us designate by  tl, t 2 ..... the zeros of u(t) corresponding, respectively, to  xl, x 3 .... 

and by  T1, T3 ..... the zeros of U(t) corresponding to X 1, X2 ..... Since all solutions of (5.8) 

are of the form A cos ( t - b ) ,  it follows tha t  Ark = A T  k =~ for all k. 

Now, t l=T l=O , from (5.9), so tha t  t k = T k = ( k - 1 ) ~ ,  k = l , 2  ..... Hence 

( - 1 )nAn(xk  - X k )  = ( - -  1 )nAn  [x(tk) - -  X( tk ) ] ,  ( 5 .10 )  

where the subscript  ~ on the r ight -hand difference operator  signifies t ha t  these differences 

are to be taken  with increment  ~. 

According to  a mean-value theorem for higher differences [7, p. 73], (cf. (2.11)) there 

exists 0 such t h a t  
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AnF(t)  =~F(n) ( t+n~O)  (0 < 0  < 1), (5.11) 

under  conditions on F(t) which are satisfied here b y  x ( t ) -X ( t ) .  Applying  this to (5.10), 

we have,  for such a 0, 

(--1)nA~(xk--Xk) = (--~)n[x(~)(tk+n~O)--X(~)(tk+nnO)] ( 0 < 0 < 1 ;  n=O, 1,...,N; k = l , 2  .... ). 

(5.12) 

The a rgumen t  in (5.12) m a y  fall anywhere  in the  in terval  [t~, tk +n~] ;  this is precisely the  

range implied in AnF(tk). Now, (5.5) will follow from (5.12) once it is established t h a t  

(--1)nx(~)(t) > (--1)~X(n~(t) (n = 0,1 ..... /V), (5.13) 

for t in the appropr ia te  interval .  The case n = 0 requires t h a t  we show 

x(t) > X(t), (5.14) 

while the  other  cases require 

( -- 1)nD'~{X'(t)} > ( - 1)nD'~ {x'(t)} (n = O, 1, 2 . . . . .  N - 1). (5.15) 

I n  view of assumpt ion  (5.4), i t  is clear t ha t  L e m m a  5.1 is applicable,  so t h a t  (5.15) would 

follow f rom 

(-1)~P(n~(X) > (-1)np(~)(x) (n = 0 , 1  ..... N - I ) .  (5.16) 

Bu t  this is equivalent  to  

( -1 )~[P(~(X) -P(n) (x ) ]  > (-I)~ip(~)(x)-P(~)(x)]  (n = 0 , 1  ..... N - I ) .  (5.17) 

The r ight  side of (5.17) is non-posi t ive (from (5.4)). Showing t h a t  the  left side is posi t ive 

will p rove  the  inequal i ty  (5.17). T h a t  is, i t  will suffice to show t h a t  

= ( -  d s  > 0 ( n  = O, 1 . . . . .  N -  1). ( 1)~*[P(n)(x) P(~)(x)] 

However ,  hypothesis  (5.4) s tates t h a t  ( -  1)nP(n+ll(s)<0, so t h a t  to p rove  (5.17), i t  is suf- 

ficient to establish t h a t  x(t)>X(t) ,  i.e., inequal i ty  (5.14). I n  other  words, the  val id i ty  of 

(5.5) is coextensive with t h a t  of (5.14). 

Now, we have  assumed t h a t  

X ( 0 )  - -  X ( 0 )  : x I - X 1 > 0 .  

Hence,  if (5.14) is ever  violated,  then  there mus t  exist a t  least  one value of t, say T, for 

which x(v) =X(~)------} > X  r 

I f  no such ~ exists, then  the  proof  is complete,  and  the  interval  J of the theorem is 

s imply  (X1, ~ ). 



68 L. LORCH AND P. SZEGO 

Otherwise, employing the restriction on t, (5.9), the condition on ~ becomes (5.6). 

Accordingly, we define the differentiable function g(v) by 

g(v) = Jx,  P(s) 

Obviously, g(X~) > O, since x 1 > X1, and 

_ _ _  f~ .qd~, v>~X r (5.18) J~,p,s) 

from (5.4). 

1 1 g'(v) <0, 
P(v) p(v) 

Thus, g(v) is a continuous, non-increasing function which is positive at X1, so that  the 

set of its zeros, i.e., of the values of ~ violating (5.14), would, if non-empty, be a closed inter- 

val. If there be such ~, then there is a least such, say ~e, and (5.14) is satisfied throughout 

the open interval J----(X1, ~o)" 
This completes the proof of the theorem, except for its final sentence. This, in turn, 

follows immediately on observing that  assumption (5.4) becomes, in this case, the in- 

equality P(x) >p(x), so that  the function g(v) is now strictly decreasing and hence cannot 

vanish more than once, if at all. 

Remark 1. If the functions p(s), P(s) are analytic (or even merely members of the 

same quasi-analytic class), then also the solution of (5.6), if any, is unique. For, otherwise, 

there would exist an interval of solutions ~, so that,  differentiating both sides of (5.6) 

with respect to ~, we would have p(~)=P(~) for all ~ in the solution interval. Then, from 

(quasi) analyticity, it follows that  p(s) = P(s) everywhere. Since x 1 > X 1, (5,6) clearly could 

not be satisfied, a contradiction. 

Remark 2. The inequality (2.8) and its consequences, but  not the whole of Theorem 

2.1, follow from Theorem 5.1, on taking the two differential equations (5.3) to be identical, 

so that  (5.4) is satisfied with ">~" reducing to " =  ". 

Remark 3. As in w 2, if assumption (5.4) is altered by deleting both factors ( -  1) n, 

then conclusion (5.5) will remain valid provided the factor ( - 1 )n is deleted. 

Finally, we note the additional corollary below which, in essence, assures us that  

Theorem 5.1 has non-vacuous content in certain specific circumstances. 

COROLLARY 5.1. Let all the conditions o/Theorem 5.1 be saris]fed and suppose,/urther, 

that (i) I*= [XI, oo ], (if) there are in/initely many xk, Xk in I*, and (iii) 

~ {  ~ s ) ~ ,  P(s)} ds<c~" (5.19) 
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Then,/or any/ ixed choice o/X1,  there always exists an x 1 su//iciently large so that (5.5) ho/ds 

in (X1, co). 

Proo/. I t  suffices to  show tha t  there  exists no ~ satisfying (5.6), and for this we need 

establish only tha t  g(v)>0 for all v where the funct ion g(v) is defined by  (5.18). This func- 

t ion can be pu t  in the form 

g(v) ,}x,P(s) , p(s) P(s) ds (v>~Xl). (5.20) 

Now, g'(v) <<. 0, so t ha t  the posi t iv i ty  of g(v), v >~ X 1, can be shown by  proving tha t  g( ~ ) > 0, 

i.e., by  demonst ra t ing t ha t  

,P(s) ,]x~ in(s) 

for all sufficiently large x 1. Both  sides of (5.21) are non-negative,  since P(s)>~p(s)>0 and 

x 1 > X  1. However,  the left side is an increasing funct ion of Xl, while the right side, which is 

non-increasing, approaches zero as x l - ->~.  This proves the  corollary. 

6. An application of w 5 to Bessel functions 

The conditions of Corollary 5.1 will be verified for certain Bessel functions of orders 

/~, ~, respectively. 

THEOREM 6.1. Given three numbers 1~, ~, m, with �89 m a positive integer, let 

c,m, ~,~ denote the m-th positive zero o /any  solutions o/the Bessel equations o/order i~ and ~, 

respectively. Then there exists a positive integer r such that c,, > y~,~ and 

(--1)nA~{C~.r+~--~v.m+k}>0 ( n , k = 0 ,  1 . . . .  ). (6.1) 

In  particular, c and ~ can be chosen to be ] and y in either order. 

Proo]. With  P(x)=�89 Y~(x)] and p(x)= �89 Y~(x)], we have to  

show tha t  (5.4) and (5.19) are satisfied. 

To ver i fy  (5.4) we obtain from [16, p. 446] 

~( - 1)nP(n)(X)a~ ~4_ f /  {( _ 1)n[Ko(n_l,(2x sinh t)] (2 sinh t) n-1 t anh  t} 

• {(cosh 2~t) ( - 2 t anh  2rt - 4rt seth ~ 2~t) + (2t sinh 2rt) ( tanh t - 2~ t anh  2~t)} dt. 
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Regarding this integral, we note t h a t  the expression in the first set of braces is ne. 

gative,  since ( - 1)nK0(~)(T) > 0 for all positive T, and  t h a t  the expression in the second 

set of braces is also negative, since v ~> 1 and t anh  T ~' 1 as T--> ~ .  Hence 

8 ( -  1)np(~)(x)>0 for r~> �89 (6.2) 
~v 

and  so, since 1 ~/~ < v, we see tha t  ( - 1 ) n P ( n ) ( x ) > ( - 1 ) n p ( n ) ( X ) >  0, which is (5.4). 

To establish (5.19), we note t h a t  bo th  p(x) and P(x) equal 1 + O(x -2) as x - ->~  [15, 

p. 449 (1)], so tha t  

1 1 O(s -2) as s - - > ~ .  
p(s) P(s) 

Thus,  (5.19) is satisfied, since 

f~ {p(8) P(8)l }ds~O(v_l) a s  v ---~ r 

This being the case, Corollary 5.1 applies and the theorem is proved. 

7. Remarks. Open Problems 

We comment  here on some variants  of our results and call a t ten t ion  to some fur ther  

problems. 

(i) The results s tated in w 2 and w 5 assert strict posi t ivi ty of certain quantities. I t  

m a y  be useful for other  applications to record parallel results in which, instead, non- 

negat ivi ty  is assumed and inferred. This involves replacing " > "  by  ">~" in the lemmas 

and  theorems of these sections. I t  is essential to observe, however, t h a t  for the case n = 0  

of (2.3) and (5.4), i.e., for the mapping  function p(x) itself, we must  retain strict positivity,  

so tha t  the mapping  exists, even though for n = 1,2, ..., N, only non-negat iv i ty  is assumed. 

{Suppose p(xo)=0. Then yl(XO)=y2(xo)=0 and the Wronskian of Yl, Y2 would vanish for 

x =x o, cont rary  to the assumption tha t  Yl, Y2 are linearly independent.)  

(ii) We have dealt explicitly only with those zeros of solutions of (2.1) and (5.3) which 

lie inside the interval of definition. This was primari ly for ease of s tatement.  

Excluding end-point  zeros, if any,  assured us t ha t  the correspondence between the 

zeros of y(x) and u(t) (as given by  Lemma 2.3) is one-to-one. A var ie ty  of other  restrictions 

would do the same. For  instance, if x'($) is bounded away  f rom 0 as t approaches an  end- 

point,  then the requisite one-to-one correspondence would persist even if we include pos- 

sible end-point  zeros. This part icular  condition is satisfied for Jr(x), r > �89 so tha t  our results 
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for this function can be extended to cover its non-negative zeros rather than, as in Theorem 

3.1, only its positive zeros. 

(iii) We have been unable to establish an analogue for the case I vl < �89 of Theorem 3.1. 

The Sturm comparison theorem shows tha t  the theorem must  .be modified for this instance 

and numerical calculations suggest the following (which is known for n = 2  [11; 13; 14]): 

CO~Z~CTURE. I /  IVl < �89 then ( - 1)nAncy, k > O, k = 1, 2 . . . . .  n = 2, 3 . . . . .  

(iv) Many similar conjectures can be advanced; an examination of various tables of 

zeros will produce them. Appropriate analogues or extensions of Nicholson's integral or 

Har tman ' s  theorems, used in conjunction with an analogue or extension of Theorem 2.1 

or Theorem 5.1 m a y  settle some of them. 

In  some instances, such as the 0-zeros of the Legendre polynomials Pn (cos 0), and the 

Hermite and Laguerre polynomials, the positive zeros appear to form absolutely (rather 

than  completely)monotonic sequences; tha t  is, we conjecture for these cases tha t  all dif- 

ferences of the zeros are non-negative. 

In  this connection, we are happy to thank  a number  of persons who have aided us 

by  making numerical checks of these conjectures (and of our theorems while they were 

still conjectures): (1) Messrs. Samuel C. Arthur, Lovell Moore and Rober t  Robinson for 

hand calculations involving the differences of zeros of Bessel and Airy functions, done in 

1957 while they were students at  Philander Smith College; (2) Professor D. H. Lehmer for 

recomputing certain zeros of Bessel functions which turned out to have been recorded 

erroneously in [15] (Corrections noted also in [5, vol. 2, p. 925]); (3) Drs. P. J .  Davis and 

P. l~abinowitz [4 (a), p. 435; (b), p. 619] for verifying, at our request, tha t  all the differences 

of the 0-zeros of the Legendre polynomials P ~  (cos 0) and P~4 (cos 0) are non-negative, and 

for noting tha t  the higher differences of the zeros of P~(x)  do not follow this pattern;  

(4) the University of Alberta Computing Centre for verifying tha t  all the differences of 

the positive zeros of the Laguerre polynomials of degrees 6 through 15, inclusive, and of 

the Hermite  polynomials of degrees 6 through 20, inclusive, are non-negative. 

The problem of generalizing the Sturm comparison theorem has been mentioned 

in footnote (1), p. 56. 

8. Appendix I: A remark on completely monotonic functions 

A function p(x) is said to be completely monotonic in (a, b) [16, p. 145] if 

(-1)np(~(x)>~O, a < x < b  (n=O,  1,2 .... ). (8.1) 

In  connection with the application of Har tman ' s  work to the proofs of Theorems 3.1 

and 4.1, we used the following result, which we prove now: 
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I /  p(x) is completely monotonic in (0,oo), then (-1) 'p( '~(x)  >0, 0 < x <  oo, n = 0 , 1 , 2  .... , 

unless p(x) is a constant. 

Proo/. Suppose there exists a non-negat ive integer N and a positive number  ~: such 

tha t  p (N~ (~) = 0. Then p (N~(x) = 0 for all x ~> $, since the funct ion ( - 1)Np (N~ (X) is non-negat ive 

and non-increasing. 

Now, i0(x) and, with it, p(~(x) are analyt ic  in (0, oo) [16, p. 146], so tha t  p(~)(x) =0 for 

0 < x < oo. Hence, p(x) is a polynomial  for 0 < x < oo. But  p{x) >~ 0, so tha t  the highest degree 

te rm in this polynomial  has a positive coefficient (unless p(x} is identically zero, in which 

case the theorem is obvious). 

I f  p(x) be no t  constant ,  then  the highest degree term in p'(x) also would have a positive 

coefficient, and p'(x) would assume positive values for all large x, contradict ing the defini- 

t ion (8.1) when n = l .  This proves the result. 

Remark. The above result  can be shown to be equivalent  to the following: I f  {Pk}~ is 

a completely monotonic  sequence (i.e., if ( -1)nAnpk >~ 0, n, k = 0,1,2, ...), then ( -1)nA=/~k > 0 

for n, k =0 ,1 ,2 ,  ..., unless Pl =P2 = ..- =/x= = .... 

A direct, e lementary proof of this lat ter  s ta tement  is provided in [9]. 

9. Appendix II: A remark on Sturm-iJouville equations 

I n  applying Hargman ' s  work to the proofs of Theorems 3.1 and 4.1, we made use 

also of the following lemma whose proof we supply now: 

Let yl(x), y~(x) be two linearly independent solutions o/the Sturm-Liouville di//erential 

equation y" +/(x) y = O. I / p ( x )  ~ [yl(x)] 2 + [y2(x)] 2 is identically a constant, say Z, then /(x) 

is identically a constant also, namely Z -2. 

Proo/. Clearly Z > 0. Wi thou t  loss of generality, we suppose the solutions Yl, Y2 such 

tha t  their  Wronskian is 1. Then, f rom L e m m a  2.3, we t ransform the  given differential 

equat ion into the  differential equat ion u"(t)+u(t)=O, with x ' ( t )=p(x)=z ,  by  writing 

y(x) =[x'(t)]�89 The solution of this la t ter  equat ion is u( t )=A cos( t -b) ,  A, b constants.  

:Now, x(t)= Zt + 6, and so 

y(x) = Z�89 = Z�89 cos ( Z - i x -  b - diZ- 1). 

Subst i tut ing this in the given differential equat ion then yields the  desired result. 
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