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Introduction

The symmetric space associated to the orthogonal group of a real indefinite quad-
ratic form ¢ can be described, as is well known, as the set M of positive definite
quadratic forms u which are minimal with respect to the property |g|<w. The or-
thogonal group O(g) of the form ¢ acts transitively on M, and the isotropy group
of any p€M is a maximal compact subgroup of O(p). A similar statement holds for
the symplectic group.

A. Weil raised the question of the p-adic analogue of this phenomenon, and
suggested the use of norms (sec. 1) in place of the positive definite quadratic forms.
If ¢ is a non-degenerate quadratic form on a vector space E over a p-adic field we
associate to ¢ the set M(p) (see sec. 4) of norms « on E which are minimal with
respect to the property |@|<a®. Then again the orthogonal group O(p) of ¢ acts
transitively on M(g). However, the isotropy group of an element « € M(p), while still
compact, is no longer a maximal compact subgroup. :

The study of norms on p-adic vector spaces it not new. (See for example Cohen [1]
and Monna [3].) These authors were concerned with the metric topology induced on
the vector space by a norm on that space. We are here concerned with the intrinsic
structure that is carried by the set H(E) of all norms on a given vector space E.
We define a natural metric on W(%), and in sec. 2 of the present paper describe some
of the properties of N(E) as a metric space. For example, H(E) is a complete, locally

compact arc-wise connected space, and is even contractible to a point.

(*) This research was partially supported by the National Science Foundation through Brandeis

University, the University of California at Berkeley, Harvard University and the Institute for Ad-
vanced Study.
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The group Aut(E) of linear automorphisms of F acts, in a natural way, on H(E)
leaving the metric invariant. In sec. 3 we give some of the properties of this action.
The isotropy group of any point of H(E) is a compact open subgroup of Aut (£), while
the orbit of any point is a closed discrete subspace. The quotient space Aut (E)\ H(E)
is proved to be canonically homeomorphic to the symmetric product of » circles,
where 7 is the dimension of F. In the same section we describe invariants for the
conjugacy of two elements of M(E) with respect to the isotropy group of a preas-
signed norm.

In sec. 4 we consider some relations between quadratic forms and norms and
give a characterization of the elements of M(p). In this we make use of the relations,
developed in sec. 1, between norms and lattices in E. Using this criterion of mini-
mality, we obtain an explicit description of the elements of M(p) from which the
transitivity of O(g) on M(p) follows easily. To some extent, our technique in this
section is a variation of the method used by Eichler [2] in his study of the action
of O(p) on certain lattices in E associated to ¢.

In the fifth section we introduce the notion of the discriminant of a quadratic
form with respect to a norm and describe some of the properties and applications of
this concept.

We have given such a detailed description of H(E) as a metric space and of the
action of Aut(E) on N(E) because we feel that there are possibilities of using these
structures to study other types of arithmetic problems which may be formulated in
the p-adic domain.

We should like to thank A. Weil for suggesting this line of investigation and

for his help during the course of our work.

Section 1. Lattices and Norms
The following notation will have a fixed meaning throughout this paper:

K is a field complete in a discrete valuation, having a finite residue class field,
hence locally compact.

¢ is the number of elements in that residue class field.

[| is the valuation of K normalized so as to assume all integral powers of ¢
on K*.

D is the valuation ring of K.

p=n9 is the maximal ideal of £.



THE SPACE OF p-ADIC NORMS 139

E is a vector space over K of finite dimension », topologized in the only natural
topology over K, so that E is locally compact.
P(E) is the projective space of E, so that P(Z) is compact.

By a laitice in E will be meant a finitely generated O-submodule L of E which
spans E over K. Alternatively, L may be described as an O-submodule of E which
is compact and open.

Let L be a lattice on E. If x is any non-zero element of E, the set of elements
a €K such that ax€L is a fractional ideal of ©, and so has the form p™. We set
o{x)=¢q". We complete the definition of « by setting «(0)=0. Then, it is readily
verified that o has the following properties:

1. if x+0, then «fx)>0.

2. ofazr)=|a|x(x), a€K.

3. alx+y)<sup (a(x), a(y)).

Any real-valued function on F having these three properties will be called a norm
on E. In particular, every lattice determines a norm, and conversely, if « is the norm
associated to a lattice L, then L is in turn determined by « through the relation
L={zx€E|a(x)<1}. It will be seen shortly that not every norm is determined by a
lattice. We denote by N, or by H(E), the set of all norms on E, and by L, the set
of norms determined by the lattices of E.

It follows immediately from the definition that each norm is a continuous func-
tion on E. If a norm is multiplied by a positive real number, the result is again a
norm. Finally, ¥ is partially ordered by the relation «< 8 means o(z) < f(x) for all € E.

Let L be a lattice. As © is a principal ideal ring, L is a free O-module; let
Zy, ..., %, be a set of free generators of L. If « is the norm associated to L, it is clear
that «(> a,2;) =sup (|a|).

ProPosiTION 1.1. Let « be any norm on E. Then there is a basis {x;} of E,
and positive real numbers r; such that

x (Z a;x;) = sup (7 |az |)~

Proof. We prove the proposition by induction on the dimension of E. If dim E=1,
let z be any non-zero element of E. Then, a(ax) = a(x)|a|, and the assertion is verified
in that case. Assume that dim £=mn, and that the proposition is valid for spaces of
dimension less than ». Let E; be a subspace of dimension n—1 of E. It is clear that
the restriction of « to E, lies in N(E,), so that a restricted to E, has the form de-
scribed in the proposition.
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Let A2 be a linear functional on K having E, for its kernel. With = any non-
zero element of E, consider the quotient |A(z)|/ax(x). First of all this quotient is con-
tinuous. Secondly, it is a homogeneous function of degree 0. Hence it defines a con-
tinuous function on the projective space P(E). As P(E) is compact, this function

agsumes its maximum. Thus, there is an element x, €E such that

@) _|M=)| oy e g,
a(z)  afzy)

It is clear that x, cannot be in E,. Hence, E is the direct sum of Kz, and K.
Let y€E; then y=ux,A(y)/A(x,)+2, with z€E,. We have, on the one hand,

[A)]

e ol a(z)),
1

a(y) < sup (

and, on the other hand, from the definition of z,, that

| A(z)]
= .
oly) M(xl)la(xl)
It follows that ofy) = sup (llj((i/))ll o(xy), oc(z)).
1
From the inductive assumption, there is a basis z,, ..., %, of B, and positive real

numbers r,, ..., r, such that
n
o (; aix,) =sup (7, |@y], ..., 7a |@a])-

If we set r,=a(z,), then the argument above shows that «(27 a,;)=sup (ri|ail)-

If «€MN(E), and {2} is a basis such that «(D a;x,)=sup (r;|a;|), then we shall
say that o is canonical with respect to {z;}.

We denote by E* the dual space of E. We shall now describe a useful mapping
from H(E) to N(E*). Let « € H(E). If A€E*, we have already considered in the proof
above, the quotient |A(z)|/a(x) for non-zero x€E. The continuity of this quotient

and the compactness of P(E) enable us to set

|A(z)]

z () ’

(A=

There is no difficulty in verifying that «* is a norm on E*.
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ProprositioN 1.2. The mapping a—>a* has the following properties:

1. (ax)*=1/aa* for a>0.

2. if a<p, then B*<o’.

3. if « is canonical with respect to a basis {x;}, and {A;} is the dual basis of {x;},
then o s canonical with respect to {A} and o*(A)=oa(x;) .

4, of*=q.

Proof. These assertions are all trivial consequences of the definition of «*. The

fourth statement follows from the third by making use of Prop. 1.1.

ProposiTION 1.3.(1) Let o0 and § be any two norms. Then there is a basis of E

with respect to which both « and f are canonical.

Proof. The proof is by induction on dim E; the case where dim E=1 is trivial.
Suppose the assertion valid for spaces of dimension less than n. We consider the
quotient «(x)/B(x) for non-zero x€X. This defines a continuous function on P(E),

hence attains its maximum somewhere. Thus there is a non-zero z, € £ such that

x(x) _ olx)
—< 11 €E. 1
B@) Ba) O 7 0
From the fact that o= ™", we have
— g | M)
oc(xl)—sgp 0

and as P(E*) is compact, the supremum is attained somewhere. Thus, there is a
A, €E*, with

lll (%)

= . 2
a(z,) o (1) (2)
Clearly A,(x,)+0. Using the definition of «*, we have from (2)
@) _ @)
< 3
M1(“71)|<“(x1) @)
Since from (1) we have B(z)/B(x,) > «(x)/a(z,), it follows that
(@] _ B )

~—

M (%)I - Bz,

(*) This theorem was given by A. Weil in a course in algebraic number theory at Princeton
University.
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Let E, be the kernel of A,. Since 4,(z;)+0, E is the direct sum of ¥, and Kz,
From the inductive assumption, there is a basis {z, ..., 2.} of B, with respect t
which a|z, and B|z, are canonical. It follows immediately from (3) and (4) that « and

are canonical with respect to the basis {zi, ..., %,}.

CoOROLLARY 1.4. Let L and L' be lattices in E. Then there is a set of free gen
erators {z,, ...,2,} of L such that for suitable a,€ K*, {a,2,, ..., a,2,} ts a set of fre
generators of L'.

Proof. Let a, o be respectively the norms of the lattices L, L. By Propositibn 1.3
there is a basis ¥,,...,4, of E with respect to which « and o« are both canonical
Since the values assumed by « and o' are integral powers of g, there are elements:
b,€ K* such that a(y;)=|b;|. Set x,=bi'y,. Then it is clear that {z;,...,,} is a set
of free generators for L. If we choose a, € K* such that o (2;) =|a;["", then {a,2,, ..., 2, %,)
will be a set of free generators of L.

Let {x;;j€J} be an indexed family of elements of # which has the following
property: for each z€E, the set {a;(x)} of real numbers is bounded. If we then put
B(x) =sup,e;{o;(x)}, then there is no difficulty in verifying that 8 is again a norm.
We shall write sup;e;{o} for f. This operation has all the usual properties of a su-
premum. In particular, sup{«,} is always defined for finite sets J.

Suppose {a,;j€J} is again an indexed family of elements of M(E), but assume
this time that sup;c;{a;'} is defined (in H(E*)). In that case, we set

inf {o;} = (sup of)*.

In contrast to the sup operation, it is not true in general that inf {a;}(z)=
inf {a,(x)}, not even when the indexing set J is finite.

We conclude this section with a description of some relations between norms and
lattices which will be used later in studying quadratic forms.

Let « be a norm and let L,={zr€E|a(z)<1}. Then L, is a lattice, and is the
largest lattice on which the values of « do not exceed 1. We denote by [«] the norm

of the lattice L,. It is clear from the definition that «< [«]<gex. [«] may also be
characterized as inf{8€L|a<pg}.

ProrosiTIiON 1.5.

(a) a<f=[al<[f]

(b) [ga]=qla].

(6) afz)=inf ¢ '[¢*x](x), the inf being taken over all t or over the set 0<t<1.
(d) for each x€E, the function of t defined by [¢'x](x) is continuous from the left.
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Proof.

(a) If a<f, then L,>Lg from which we find [«] <[]

(b) We have L,,=nL, and hence [gx]= q[«].

(c) We note first that ¢’a<[¢'«] so that a<gq ‘[¢’x]. Hence inf ¢ ‘[¢’x] exists,
and «<infq ‘[¢x]. It follows from (b) above, that ¢ ‘[¢’x] is periodic in ¢ with
period 1 so that inf over all ¢ is the same as inf over the interval 0 <<¢{<1. Now, let
x be any non-zero element of E, and set a(x)=g . Then, [¢"a](x)=1, so that
¢ "[g" a](x) = «(x). Hence,

a(x) =inf ¢*[¢* ] (),
which proves (c).

(d) ¥ x=+0, then one readily verifies that [¢°a](x) is the smallest integral power
of ¢ which is not less than ¢a(x). Continuity of [¢g’x](z) from the left follows imme-
diately.

It should be remarked that as a consequence of (a), [¢‘x] is a monotonic in-
creasing function of £.

Lrmma 1.6. Let o, €L for 0<t<1 be such that:
(1) o ts monotonic increasing in t.
(2) o =qay.

Then there is a basis of E with respect to which all o, are canonical.

Proof. Let I, be the lattice {x|a,(x)<1}. Then
(a) t,<t,=1, oI,
(0) Iy =y,

so that also [, >l >nl,.

Now [,/nl, is an n-dimensional vector space over O/n0, and l;/al, form a de-
scending family of subspaces of 1,/7l,. We may imbed the family {/,/nly} in a maximal
descending chain [y/aly=V,5V,>...2 V1 =0, with dimV,/Vi,;=1. For each ¢,
L;/aly=V,, for suitable 4. Let y,, ..., ¥, be a basis for ¥V, chosen so that y;, i1, ..., ¥n
is a basis for V;. Let xz,, ..., x, be elements of I, such that z;, maps onto y; in the
homomorphism ly~>l,/nl,=V,. Clearly x,, ..., , is a set of free generators of l,. Fur-
thermore, for each #, there is an index ¢ such that l;=nly+ > Ox;, and therefore
{mvl, s T2y Xy veny xn} is a set of free generators for Il,. It is now clear that all
the «, are canonical with respect to the basis {z:}.
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ProrositioN 1.7. Let, for all real t, 0, €L be chosen such that:
(a) {Li<ty,=a, <ay

(b) ottyq=qa

(c) for each z, ay(x) is continuous from the left.

Then there is a unique « €N such that o, =[q'a].

Proof. By lemma 1.6 above there is a basis {z;} with respect to which all «, are
canonical. We have then «,(> a;z;)=sup,{¢"”|a:|}, where

1. ,ui(t)ez
2. 4ty () < paty)
3. wilt+1)=ui(t)+ 1.

Now define dy= inf {u;(t)—t} = inf {u,(t) —t},
[IES 4N t

set 7,—q% and «(D a,z;)=sup {r|a,|}. Then «€MH, and we shall show that [¢'a]=c,.
It is clearly sufficient to consider only 0<t<1. We note also that from condition (c),
di=p(t)—t for some ¢ with 0<t<1.

We have [¢'a]=inf{f€L|B>q'a}. From the definition of « we have a<q ‘a,
so that [¢’a«]<o,. Hence we must show that «,< [¢‘x].

Now [g*«] is the norm of the lattice {z|ax(z)<g¢ *}. Hence the desired inequality
a; < [¢'a] will follow if we prove the implication: a(x)>1=ot(x)>¢"

Suppose then that «,(x)>1. Since a,€L, the values assumed by a; on the non-
zero elements of E are integral powers of . Hence we have & (x)>g¢. With #= 2 a;,
there is an index 4 such that q“‘“’[a,—|>q. Now, for some ¢’ with 0<# <1, we have
d;=u;(t')~t. We consider

¢*|a;| =g |a].
Suppose first that ¢<¢'. Then, pu;(¢)< u;(t’) so that
qdilasl>qﬁ(t)‘tllat|>ql_t’>q't-

On the other hand, suppose that ¢ <¢. Then,

(1) < (1) = gy (0) + 1 < () + 1,
and hence ¢la| =g eyl =g > g7t
Thus, in either event a(x) > q%|a;| > g7t

This shows that «,<[¢’«] and hence a, =[¢'x]. The uniqueness of « follows from Propo-

gition 1.5.
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Remark. 1t follows from the above that there are at most » distinct norms among
the [¢'a] for 0<t<1. ‘
Let E=E,+E, (direct sum), and let «€H. We shall say that E, and E, are

orthogonal with respect to « if a(x, +x,)=sup (x(x,), a(z,)), whenever z,€E;.

LevMMA 18. Let E=E,+ E, (direct sum) and let | be the projection of E onto E,.
Let x€N. Then E, and E, are orthogonal with respect to « if, and only if, a'x) = a(fix))
for all z€E.

Proof. Suppose E; and E, are orthogonal with respect to a«. Then ox) =
sup («(f(x)), a(x— f(x))), hence afx)> «(f(z)). Suppose now that «(x) > «(f(x)) for all x€ K.
Since a(x) < sup («(f(x)), a(x— f(x))) only if «(f(x))=oa(x— f(x)), it follows that «(x)=
sup (e(f(x)), o’z — f(x))), so that E, and E, are orthogonal with respect to «

CoroLLARY 1.9. Let E=E, + E, (direct sum) and let «€N. Then E, and E, are

orthogonal with respect to « if, and only if, E, and E, are orthogonal with respect to
[¢°a] for all t.

Proof. Let f be the projection of E onto E,. Then a(x) > af(x)<=[q'a] (z) = [¢’a] (f(x))
for all ¢{ and the result follows from Lemma 1.8.

Section 2. The topological structure of H(E)

We introduce a metric in the set M 0f all norms on E. If «, €N consider, for
non-zero z, the quotient «(x)/B(x). As we have already seen, this defines a contin-
uous function on the compact space P(E). As a(x) >0 for non-zero z, the function
|log («(x)/B(x))| is bounded on P(E), and we define

@)

d{e, B) = sup log

ﬂ(

There is no difficulty in verifying that d is a metric on H.

There is an explicit formula for d which will be useful later.

ProrositioN 2.1. Let o« and B be norms such that o is canonical with respect

to a basis {x;} and B is canonical with respect to {y}. Then,

ﬂ(xz J)}
(@)’ log By)|

Proof. It is clear from the definition of d that

d(e, B) = sup {log

o =aup gl 5 up o 01
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Bx) B2 ax)
Now, 1 =sup lo )
o Teb Ba@ P 8LS am)
with the supremum being taken over all a, ..., a, € K, not all 0. Hence,
B(=) ﬂ(x:)
sup — =su .
xeg a(x) ( )

Let m=a(Da;x;) = sup; {|a;] (z;)). Then, ,a,»[ <m/afx;). Hence,

B(S ayz) < sup (lai fle:) < sup (m Bed)

()
B ax) _ B
so that S azy) SI‘IP )’
Thus sup log % = sup og ﬂi:;
In the same way, we obtain |
sup log = sup log (g, ),
veE /3 i Bly;)

and the assertion follows immediately.
From now on, when we speak of the topology of M it will be understood to

mean the metric topology defined by d.
THEOREM 2.2. N s complete.

Proof. Let {x,} be a Cauchy sequence in H. Let § be any element of M, and set
falx)=log (a,(x)/B(x)), for =0 in E. Then the f, are continuous functions on P(E)
and form a Cauchy sequence in the uniform topology on P(E). Hence g(z) = limn, 0 fx (%)
exists, where ¢ is continuous on P(E), and the convergence is uniform.

Set o x) B(x) e on E, defining «(0)=0. Then, for =0 we have a(z) >0, also

a(ax)=|a|a(z) for a€ K. We have log (a(z)/x,(2)) =g(x) — fa(x), so that

hmllogoc(x —log an(x [—
uniformly for non-zero z.
Now suppose that for some x and y we have afx+ y)>sup (a(z), 2(y)). Clearly
then none of the elements z,y,x+y is 0. Choose £>0 such that &< }(loga(x+y)—
log «{x}) and also e< }(log x(z-+y)—log «{y)). Then, there is an » such that logx(z)—

log «,(2)| < & for all non-zero z. In particular,
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log a{x+y)—loga,(x+y)<e
—log a(x) + log &, (x) < &

and therefore, log a,(x + y) — log &, () >0, or «,(x+y) > o, (z). In exactly the same way,
we find o, (2 +y)>a,(y). But this contradicts the fact that a, is a norm. Thus, we
must have o(x+y)<sup(a(z), a(y)), and hence « is a norm. It follows immediately

from the definition of o, that lim,_ . d(«, a,)=0. This completes the proof that M is
complete.

TeEOREM 2.3. N is locally compact. More precisely, if «€MN, and b>0, then
{BEN|d(x, B)<b} is compact.

Proof. Let D={B€MN|d(x, )<b}. By Theorem 2.2, D is complete. Let X be a
subset of B having the following properties: 0¢ X, X compact, and if x is a non-zero
element of K, then ax€X for some a€K. Such a set X may be obtained in the
following manner: let {z;} be a basis of B, and set X ={3 a;x,|sup {|a:|} =1}

Denote by F the space of functions on X described by the restriction to X of
log , with f€D. The metric topology in D coincides with the uniform topology in F.
We shall show that F consists of uniformly bounded, uniformly equicontinuous func-
tions on X.

Because, for €D, d(a, f)<b, we have

for all x€X, so that
|log f()| < b+ [log «(x)| -

Since loga(x) is bounded on X, it follows that the elements of F are uniformly
bounded on X.

Also, since «(z) is bounded away from 0 on X, all §€D are uniformly bounded
away from 0, so that the uniform equicontinuity of {log 8} is the same as uniform
equicontinuity of {}. Now,

|B(z) = B < plz — y) < alx—y),

and because o is uniformly continuous on X, the result follows. Hence by the theo-
rem of Ascoli-Arzela, F' is compact, and hence D is also compact.

We consider now the connectedness properties of M.
TurorEM 2.4. Let «, 8 be two norms, and let 0<t<1. Let

P(t)={y e N|p(x) <a(x)' ~*p(x)}, all x € E}.
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Then, P(t) is not empty. Set ;m,=sup{y|y€P()}. Then, m, has the following properties:

() my=a, m, =4
(b) d(m,, m,,) = Itl - tzl d(e, B)
(e) If {a;} is a basis with respect to which both « and B are canonical, then m, is

also canonical with respect to {z,}, and m ()= o(x;)" " B(x:)".

Proof. Let {x} be a basis with respect to which both « and § are canonical.
Define y, by:
ye(2 @) = sttlp {la| o)~ B,

so that y,€ H. We shall show first that y,€ P(#).
We have |a,| a(z;) <a(> a;z;), so that
la 't o)t < @D ag2)'
Similarly, la ]! B(a:) < B as i),
so that ;| oe(2)! = Bla)t < a3 ) ™ B(S @y

Since this is so for all ¢, it follows that y,€ P(t). Furthermore, for each z, y(x) is
bounded from above, as y ranges through P(#), so that m, is defined. We have, of
course, ;<.

We shall now show that actually y,=,. Namely,
7 () < o) * ()
so that 70 (3 ayxy) < sup (|| 7 (2,)) < sup (e a(z:) (@) = v (D 2iy).

Thus, 7, <9y, or m,=7y,. This proves assertion (c).
The assertion (a) is obvious, while (b) follows immediately from the formula of
Proposition 2.1.

As an immediate corollary, we have:
COROLLARY 2.5. N is arcwise connected.

Proof. With « and f given, construct m, as above. It follows from (b) that the
map $—>m is a continuous mapping of the unit interval into M. Since my=a and

7, =f, the result follows.

ProPoSITION 2.6. H is contractible.

Proof. Let ayg€ N be given. If « € N, let 71;(x) be the arc described by Theorem 2.4,
with 7y(e) = g and m,(x)=a. Let ! be the closed interval 0<¢<1, and define
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f:IxN—=N by ft, «)=m(x). Then, f(0,a)=c, while f(1,x)=a«. Thus, the result will

follow when we prove that f is continuous.

We have d(f(tp o), f(ts, atg)) = d7my, (o), 70, ()

< d(ﬂtl(oﬁ); 701, (o)) + A7, (t5), T84, (20)),
so that d(f(ty, %), f(tz’ %)) S d(7w, (o), 70, (00p)) + |t1 - tzl d(otg, %)-

We shall now show that
d(nt(a)> 7tiﬁ(ﬁ)) < td(“: ‘B)’

from which everything will follow.
Let {x} be a basis with respect to which both «, and « are canonical, {y;} a
basis with respect to which «, and B are canonical. Then, m(«) is canonical with

respect to {;}, while 7,(8) is canonical with respect to {y;}. Furthermore,

7 (00) (%) = otg ()~ ox(@)*
7o) (95) < ot ()~ ()’
() (@) < g (1) B(y)*
7(B) () = o (4))*~* By

Combining these relations with the formula of Proposition 2.1 gives immediately
d(mmy (o), 7:(B)) < td(ex, B). This completes the proof.
Let a € M. Denote by C(a) the set of real numbers {log x(z)|x € E, x+0}. Choose

a basis {x;} with respect to which « is canonical. Then

a(Zaix¢)=sup (’mzlath,

and for each non-zero x € E, we have log a(x) =1log m; + log |a|, for some a € K*, some 3.
This shows that C(e) is the union of a finite number of cosets of R/Zlog ¢, the number
of cosets being no more than n=dim E. We shall call the number of these cosets the
rank of «, and shall denote it by r(x). In the next section we shall associate multi-
plicities to the cosets of C(x).

The set C(«) is uniformly discrete in the following sense: there exist positive
real numbers d such that, if r,s€C(x) and |r—s|<d, then r=s. We shall call such

numbers d separating numbers of a.

ProrosiTiON 2.7. Let x€N, and let d be a separating number of a. If BEN
and d(x, B)< id, then r(f)> r(x).
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Proof. Let {x;} be a basis with respect to which both « and f are canonical,

a (D a;z;) =sup (m; |ai)), B aix;) =sup (m;|ai).
Then, Proposition 2.1 shows that d(a, 8) =sup |log m; —log m;|. Hence, |log m; —log mi| <
3d, 1<i<n.
Let r(a) =7, and renumber the =z; so that log m,, ..., log m, are incongruent
mod Zlog g. From the choice of d as a separating number of «, it follows that

log my, ..., log m, are incongruent mod Z log ¢, so that r(8)>r=r(x).

CoROLLARY 2.8. The set of BEN for which r(f)=n is open and everywhere
dense in N.

Proof. Proposition 2.7 shows immediately that the set under consideration is open.
To see that the set is everywhere dense, let « €W and let {z;} be a basis with re-
spect to which o« is canonical. Set m;=a(z;). Let ¢>0, and choose real numbers ¢; as
follows:
[t|<e, and ¢, +logm,, ...,t,+logm,

are incongruent mod Z log ¢. Now put

B(2 aiz;) =sup (em |a;).
Then, €M and d(«, B) =sup || <e. Finally, it is clear that r(8)=n=. Thus, the set of

norms of rank # is everywhere dense in M.

THEOREM 2.9. Let x €N have rank n, let d be a separating number of o, and let
{x;} be a basis with respect to which o« is canonical. Then, if d(x, f)<}d, B is also

canonical with respect to {x}.

Proof. Set ofx;)=m,;. Since r(x)=n, and (2 a;,x;) =sup (m;|a;|), the numbers
logmy, ..., log m, are incongruent mod Z log q. Because d(a, f) < }d, we have |log f(x;) —
log m;| < }d, and since d is a separating number of «, it follows that log f(z,), ..., log 8.x,)
are incongruent mod Z log ¢. Let = a;z; be any non-zero element of E. From the
incongruence, mod Z log g, of {log B(x;)}, we find that those of the numbers f(z;)|a;|

which are non-zero are distinct. Hence
B3 a;x;) =sup (B(x) |ai]),
or f# is canonical with respect to {}.

CoROLLARY 2.10. Let W' be the set of all x €N with ria)=n. Then N is locally

Euclidean of dimension n.
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Proof. Let €M, let d be a separating number of « and let {x;} be a basis with
respect to which « is canonical. Set D={g|d(«, 8)<4d}. Then D= N’ is a neighbor-
hood of «, and Theorem 2.9 shows that each element of D is canonical with respect
to {x.}. Define f:D—>R" by

/(8) ={log f(x), ..., log Blzy)}.
Then { is a homeomorphism of D with the open subset of B* defined by
{(ry, .o, ma) | |ri—log afw;)| < d}.
ProrosiTioN 2.11. Let {x;} be a basis of E. Let A be the set of all norms which

are canonical with respect to {x;}. Then A is a closed subspace of N.

Proof. Suppose ¢ 4. Then there are a,€ K, not all 0, such that
sup {log a(a,2;) ~ log oc(, ay;)} =d > 0.

Now suppose that S€H such that d(x,f)<id. Then, for all non-zero x, we have
|log «(z) - log B(z)| < 4d, and combining this with the definition of d gives

sup {log B(a;x;) —log B> a;x:)} < }d.

Thus also f¢ A which shows that A4 is closed.

COROLLARY 2.12. Let W' be again the set of €N with ria)=n, and let X be a
connectedness component of N'. Let {x;} be a basis with respect to which some element

of X is canonical. Then every element of X is canonical with respect to {z;}.

Proof. Let A be the set of all norms which are canonical with respect to {x;}.
Then by Proposition 2.11, W' N A is a closed subset of N'. However, Theorem 2.9

shows that W' N A is open in N'. The assertion follows immediately.

Section 3. The action of Aut (E) on H(E)

We denote by Aut (E) the group of linear automorphisms of E with its natural
locally compact topology. Aut (E) acts on W(E) as follows: if ¢ € Aut () and o € H(E),
then oa(x)=a(o 'x). It is clear from the definition of the metric on M, that the
elements of Aut(Z) are represented by isometries of M. It is also clear that the subset

L of N is stable under the action of Aut ().
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ProrositioN 3.1. The kernel of the representation of Aut(E) by transformations

of WE) consists of the automorphisms x — cx, with |c|=1.

Proof. If for some x€E the elements x and o(x) are linearly independent, then
there exist norms « so that a(x)=+a(ox). Hence z and ¢(x) are linearly dependent for
all z€E, from which it follows that o(x)=cx with ¢ a fixed element of K. As we
have a(cx)=|c|x(x), we conclude that |c|=1. Conversely, it is obvious that any au-
tomorphism of the form x—cx, [¢|=1 is represented by the identity on M.

If x€MN, we denote by G, the isotropy group of o in Aut(E).

ProrositioN 3.2. G, = N;Gkla

Proof. The assertion is an immediate consequence of the definition of [«], and

Proposition 1.5 (c).

COROLLARY 3.3. For each o€ N(E), the isotropy group G, is a compact open sub-
group of Aut(E).

Proof. Let L be a lattice and g its norm. If {x,} is a set of free generators of
L and o is in Aut(E) with ox,=D>a,2,, then ¢€Gy if, and only if, all a; are in O
and det (@) is a unit in . It follows immediately that G; is a compact open sub-
group of Aut(®) (and is in fact a maximal compact subgroup).

If o is any norm, then by the remark following Prop. 1.7, only finitely many of
the norms [¢'x] are distinct. Hence, because of Prop. 3.2, G, is also a compact open
subgroup of Aut(E).

Remark. Proposition 2.1 may be used to give an explicit description of the ele-
ments of G,. Let {x;} be a basis with respect to which « is canonical. Let ¢ € Aut (E),
and suppose o(z;)=2;a,x, Then, ¢€0, if, and only if,

{an] < () x(x)™, 4,7=12,...,n
and |det (a;)|=1.

COROLLARY 3.4. The map Aut(E)x N(E)—> NE) is continuous.
Proof. We have
d(of, o) <d(of, o) + d(oa, Ta) = d(B, &) + d(a, 6™ 7et).

Hence, if 67'7€G,, we obtain d(of, 1a) <d(f,«). Since G, is open, the assertion follows.
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ProrosiTiON 3.5. Let o and B be elements of N, and let d be a positive real
number. Let X, be the orbit of a under the action of Aut(E), and let D={y € N|d(B,y) <d}.
Then X, N D is finite.

Proof. Let {x;} be a basis with respect to which both « and # are canonical.
Set a(x;) =7, and f(x;)=s;. Suppose ¢ €Aut(E) is such that ox€.D. Set

o (@) = 2 a;2;. Then oa(x;) =sup{r,|ayl}.
J 7

From the fact that d(ce.f)<d, we get

o]

ﬂ(“‘i)

and therefore e s, <sup;{r;|ay]} <e’s;.

Hence |a;|<e%sr;. It follows that the set of ¢€Aut(E) for which ¢x€D lies in a
compact subset of M, (K). However, the map Aut(E)—MN defined by ¢ — o« is con-
tinuous. Hence the set {¢€Aut(E)|ox€D} is a closed subset of Aut(E), so that it
is compact. Since G, is an open subgroup of Aut(E), it follows that X, N D is finite.

As an immediate consequence, we have:

COROLLARY 3.6. The orbit X, is a closed discrete subset of H.

Let €M and 14 {x;} be a basis with respect to which « is canonical. Set
a(x;) =m,;. Then, the numbers logm,, ..., logm, are representatives (with possible repe-
titions) of the cosets of C(x) mod Zlogg. Let r=r(x), and suppose the x; have been
renumbered so that logm,, ..., m, are incongruent mod Zlogq. Let, for 1 <i<r, E, be
the space spanned by all x; which are such that logm,;=logm; (mod Zloggq). Then, &
is the direct sum of E,,..., E,. Furthermore, there is a lattice norm MEL(E) such
that the restriction of a to E; is m; ;.

The dimension of the space E; does not depend on the choice of the basis {z;}.
Namely, suppose E=E;+...+ E; (direct sum). Suppose further that there is a
A €L(E]). and a positive real number m; such that «|E;=m; A and log m;=log m;
(mod Zloggq). Let f; be the projection of E onto E; and let x be a non-zero ele-
ment of E;. We have «(x)=m; A (), so that loga(z)=logm;(mod Zlogg). At the same
time, the non-zero numbers among m;A;f;(x) are distinct, hence a(x) =sup;(m,4;f,(x)),
so that in particular, f;(x)+0. Thus, the restriction of f; to E! maps E; monomor-
phically into E;, so that dim E{ <dim E;. From the symmetry, it follows that dim &; =
11— 632918. Acta mathematica 109. Imprimé le 13 juin 1963.
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dim Z;. We shall call dim E, the multiplicity of the coset (in C{(a)) which is repre-
sented by logm;. We shall also use the notation C, («) to denote the set C(a) together
with the assigned multiplicities. It is clear that the sum of the multiplicities of the

cosets which comprise C(x) is =.

THEOREM 3.7. Let a and f§ be elements of N. Then, a necessary and sufficient
condition that oo and B be conjugate under the action of Aut(E) is that C, (o) =Cp ().

Proof. Suppose first that f=ox, with c€Aut(Z). Let {x,} be a basis with re-
spect to which o« is canonical, and let y;=¢ 'z;. Then g is canonical with respect
to {y:}, and B(y,) =a(z;). It is clear that C,(a)=Cn(h).

Now suppose O, (x)=0C,(B8). Let {z;} be a basis with respect to which both «

and g are canonical, and furthermore such that
1< ale) Safx,) < ...x(2,) < q.

Then each «(x;) occurs in the set {x(z,,...,x(z,)} as often as the multiplicity of the
associated coset in C(x). The numbers f(x;) are not necessarily in increasing order.

However, there is an element o€ Aut(¥), such that with y =08, we have
1<y(z,) <yp(z,) <...p(Tn) < g.

Furthermore, ¢ is a product of a diagonal transformation with a permutation of the
x;, so that y is still canonical with respect to {z;}. As we have Cp,(y) =0, (8) =Cpn(a),
it follows that y(r;)) =a(x;) all 7. Hence y =a, or a and § are conjugate under Aut (E).

CoROLLARY 3.8. The orbit space Aut(E)\N(E) is naturally homeomorphic to the

symmetric product of n circles.

Proof. Set T=R/Zloggq so that T is a circle, and let S be the symmetric pro-
duct of n copies of 7. We define a map h: N(E)— S as follows: given « € N(E),
O(x)/Zlogq is a subset of T consisting of r(x) points, each with an assigned multi-
plicity, the sum of the multiplicities being n. If tl,v... ,t, are those points of 7', and

¥y, ...,%, are their multiplicities, set
k(o) = (¢, %, ... ,t,), each t; appearing », times,

It is clear that A maps HN(E) onto 8. It follows from Theorem 3.7 that the inverse
image of a point of S is precisely one orbit of H(E) under the action of Aut(E).
Hence % defines a 1—1 map &’ of Aut(E)\N(E) onto S. To show that &’ is a homeo-

morphism, we shall show that % is a continuous open map.
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We show first that % is an open map. Let €M, let d>0 be given, and set
D={B|d(x,8)<d}. Let {x;} be a basis with respect to which « is canonical and such

that
l1<a(e)Salr,) <...<olz,) <q.

Suppose that (¢;,...,t,) €S is such that ¢, <#,<...<t, |t;—loga(x)|<d. Define f€H
by
B(2. a,x;) =sup (6t’|ai|)-

Then d(x, B) =sup;{|t; — log () |} < d,

so that S€D, while A(f)=(t,...,t,). Thus the image of D contains an open set,
which contains A(e), so that % is an open map.
To see that h is continuous, let o, €N with d(x,f)=d. Let {2} be a basis

with respect to which both « and f are canonical. Then
|log a(x)) —log B(x;)| <d.

Hence, by choosing d sufficiently small, we can make h(f) lie in any prescribed
neighborhood of A(e). Thus, A is continuous and the proof is complete.

Remark. The structure of the orbit space Aut(E)\M(E) makes it possible to de-
fine an integration on M (E) which is invariant under the action of Aut(E). Namely,
let f be a complex-valued function on M (E) which is continuous with compact sup-
port. Let €M, and define for o€Aut(E), g(c,«)=f(ox). Then, g is a continuous
function on Aut(F)(x is fixed) with compact support. The continuity of g is imme-
diate. Suppose D is the support of f. Then, since the orbit of o« is discrete, there
are only a finite number of norms o« in D. Hence, g vanishes outside a finite union
of cosets mod @,, and since G, is compact, it follows that g has compact support.

With a Haar measure chosen on Aut (), form
h(a) = f g(c,a)do.
Aut(E)

Then, k depends only on the orbit of o under Aut(X), so that it defines a function
h on the symmetric product of n circles. The ordinary product 7, of n-circles, being
a group, carries a Haar measure. We lift /£ to a function ' on T,, and then define
fz,h to be the integral of f on M.

We have shown above that C,(«) gives a complete set of invariants for equi-

valence of norms with respect to the group Aut(X). We now consider the question
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of equivalence with respect to the elements of the isotropy group G, of a preassigned
norm «. In order to describe the invariants for this type of equivalence we must
first consider the extensions of norms from E to the exterior algebra of E.

We denote by AE the exterior algebra of E, by A,E the homogeneous compo-
nent of AE of degree r. In particular, AyE=K and A, E=E. If « € H(E), we shall
associate to & a norm A,« on A, E, for r>1.

Let 2 be an element of the dual space E* of E. Then there is defined a deri-
vation d; of AE which maps A, E into A, E, and which coincides with 4 on E.
Hence, if w€A,E and 4,,...,A, are elements of E*, then dy,...d; (w)€EK. For
x €N (E), we define, for w €A E,

Ao (o) =sup e
o (Ay) ... ¥ (4)
as A, ...,A range independently over the non-zero elements of E*. As we have al-
ready seen in section 1, the existence of such a supremum lies in the compactness
of the space P(E*). It follows from Prop. 1.2 that A ja=a.

It follows without difficulty from the definition that, for r>1, and w €A, ., (E),

we have
Ara (0) (@) = flelg——A' ‘;‘3 ((f)m)

We leave to the reader the details of the verification of the following properties

of A, (x).

ProposiTiON 3.9. If o is a norm of E, then A,(a) is a norm of A, E. If a is
canonical with respect to the basis {x;} of E, then A, () is canonical with respect to the

basis {x, A ... N}, (i, <iy<...<i,) of A, E, and

Ap(a@) (@, A o Ay ) =alay).ofz).

If g€Aut(E) and «€MH(K), then it follows directly from the definition that
A, (o) =0, A, («), where o, is the automorphism of A,E induced by o.
Let « and B8 be two norms of E. We define, for 1<r<n, the r-discriminant
A, (B,a) of B with respect to a by
A
Ar 5 = 8 'TL"_'“r
2= 258 A (@) (@)
where  ranges over the non-zero elements of A,E. As usual, the supremum exists

because of the compactness of the projective space P(A,E).
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ProrosiTion-3.10. Let {x;} be a basis with respect to which both o and f are

canonical, and suppose that the elements of the basis are arranged so thal

Blxy) By Blan)

“(x1) ‘x(xz) 2 atl@,)’

Then A (B, o) :ﬁﬂx,)

Proof. Since A, (x) is canonical with respect to the basis
@A A Y <ig< ... <d) of AE,

A B) (@ A oo A y)

we have A, (B, «) =sup A (@ A Ax)

the supremum being taken over the set of r-tuples (i;< ... <¢,). However, we have

A (B (@i A oo Ay, )
A, (o) (xil/\ A ) i=1 a(xij)'

It follows immediately from the fact that

By Blx)) . Blaw)

al@)  x(x,) ()"

that the supremum occurs for the r-tuple (1,2,...,7), and hence that

;)
Ar (Bt = 1_[1/035 ()

Using the same notation as above, it follows from the proposition that the num-
bers fB(x;)/o(x;) are determined by the discriminants A, (B, «) and do not depend on
the choice of the basis {x;}. Thus, if « and B are two norms, and {z;} is a basis
with respect to which both « and f§ are canonical, then the unordered n-tuple
{Bla)fec(x,), ..., B(x,)|a(x,)} is completely determined, including multiplicities, by « and
f, and does not depend on the choice of the basis. We shall call that (unordered)
n-tuple of real numbers the invariants of § with respect to o, and shall denote it
by I(8,«). If 0<t<1 we consider also the invariants I(B,[g'«]). Considered as a
function of ¢, the invariants I(8, [¢'«]) will be called the elementary divisors of B with
respect to o.
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If o€Aut(E), then the definition of I(f, a) shows immediately that I(of, ox)=
I(8,«). In particular, the elementary divisors of of with regard to ca are the same
as those of § with respect to e.

We shall use the elementary divisors to give a criterion for the equivalence of

two norms with respect to the isotropy group of a third norm.

LeMMA 3.10. Let « and B be two norms and let {z;} be a basis with respect to
which a« is canonical. Then, there is a o €@, such that off is canonical with respect to
{x:}.

Proof. Let {y} be a basis with respect to which both « and § are canonical.
According to our description of C,,(«), the set of » numbers {log (), ..., log a(z.)}
represent the same cosets, modZlogg, as do the numbers {loga(w,), ..., log a(yn)},
each coset being represented the same number of times in the first set as in the se-
cond. Hence, by renumbering the y,, we have a(r) =q" aly,), with h€Z.

Define o € Aut(E) by o(y;) =xn"z,. Then, because a is canonical with respect to

{9:}, oa is canonical with respect to {z}. At the same time,
ox(z;) = (o™ z;) =" alyy) = a(x),

and hence o €@,. Finally, because § is canonical with respect to {y;}, it follows that
of is canonical with respect to {z.}.
We choose a norm « which will be fixed for the rest of this section. Let {x,}

be a basis with respect to which « is canonical, and such that
1
§<a(xl)<a(x2)<...<a(x,,)<l.

This basis will also be kept fixed. With respect to the basis {z;}, we have [a](x;)=1.
Using the basis {x,} we identify Aut(E) with GL(n, K) as follows: to ¢ € Aut (E)
we associate the matrix (a;) given by oz, =2 a,2;.
Let g be the rank of «, and let »,,...,7, be the multiplicities of the a(x;).
Namely,

a(xy) =... =a(z,) < a2, 41) = ... = a(,,1,,) < ete.

We place along the main diagonal of a generic nxXn matrix square blocks of size
gy Vg e, ¥g. Then, the elements of G, are the matrices with coefficients in £, whose
determinant is a unit in © and whose elements to the left of the aforementioned

diagonal blocks are in p. In passing, we observe that the elements ¢ € Aut (&) having
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the property cx>a are exactly those matrices with the properties just described for
the elements of G, except for the condition on the determinant.

The symmetric group ©, of degree n is considered as a subgroup of Aut(E)
acting by permutation of the x;. The group &, is a subgroup of G,. We consider
also the direct product S,=,,x...xS, as a subgroup of &, in the obvious fashion.
Clearly &, nG,=6,.

Lemma 3.11. Lei f§ and y be two norms each of which is canonical with respect
to {a;}. If I(B,[g'a)) = L(y,[g'x]) for all t, then there is a ¢€S, such that y=op.

Proof. For convenience, we set p;=»,+ ...+ v, Suppose 0<{<1, and qtoc(xﬂj)<1,
qtoc(xﬂjﬂ) >1. Then it is easy to verify that [¢’a](z)=1 for i<y, and [¢'«](x;) =g for
%> u;. Henee, the hypothesis on § and y implies that for j=1,..., g we have

{B@), v’ B@i)s ¢ B@uri1)s s 4 B@)} = {Plr), ooes P(3)s @ (g 02)s -or @ (@)}

By equality, we mean multiplicity of repetitions but disregarding order.
Let 2 be any positive integer. We form the sum of the hth powers of the ele-
ments of the two sets just considered. Then, we have

L]

2R3 B =S a3 e

i=1

Assigning to j successively the values 1,2,...,g leads to the following:

o

2By =3 pia),
= i=1

vy
i=

+vg vy +v2

2 Pa)= > y@)
yy+1 i=p+1

and so on. Since these relations hold for all A>0, we conclude that

{ﬁ(xl): cees ﬁ(:v,,l)} = {'}’(xl): vers ’V(xvl)},

B ), oo @)} =@ 11), -oes Y(®1w,)}, ete. Thus, there is an element c€&,
such that of(x;) =y(x;) for all i. Since f is canonical with respect to {x,}, the same
is the case for off, and since y is also canonical with respect to {z;}, we conclude
finally that y=op.

CoroLrLARY 3.12. Let 8 and v be two norms. Then, the following statements are
equivalent:

(i) There is a 1€G, with y=18

(ii) I(B, [g'«)) =I(y, [¢'x]), for ol t.
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Proof.

(i) = (ii).

This implication follows immediately from the definition of the elementary di-
visors.

(ii) = ().

By Lemma 3.10 we can find elements p, o, € G, such that g8 and oy are canon-
ical with respect to {z;}. Since I(gp, [¢'a])=I(B, [¢'x]), with a similar statement for y,
Lemma 3.11 may be applied to give the desired conclusion.

We denote by D the group of diagonal matrices whose elements are powers of
n and by & the group generated by D and €,. Clearly D is a normal subgroup of
® and © is the semi-direct product of D and &,.

ProrosiTIioN 3.13. &nG,.=S,.

. Proof. Obviously €,<® n®,. Suppose dw€® NG, with €D and w€S,. Since
1/g< a(a;) <1, it follows immediately that 6 =1 and hence that w€&,.

THEOREM 3.14. Aut(E)=G,®4,.

Proof. Let g€ Aut(#) and set f=ox. By lemma 3.10, there is a g € G, such that
of =pox is canonical with respect to {x;}. Hence, from the properties of Cp (), there
is a T€® such that tpox =«. But this shows that 196€G, or c€G, GG,

The theorem just proved asserts that each double coset of Aut(E) with respect
to @, is represented by an element of &. We consider now the question of when

two elements of & represent the same double coset.

THEOREM 3.15. Suppose that p and o are in & with ¢ € G, 0G,. Then 0 €S,0S,.

Proof. We have p=JAsu with A, u€G,. Hence, gx=Ziox so that I(p«, [¢'«]) =
I(oa, [¢'x]), for all ¢ Also, because 0,0€@®, both pa and ca are canonical with re-
spect to {z;}. It follows from Lemma 3.11 that px=rvox, with 7€8,. Hence,
6 't ' €G,, while clearly ¢ 't 0 €®. Since B n G, =E,, we find that ¢ €&, 0C..

Section 4. Quadratic forms

From now on we assume that the characteristic of K is not 2. By a non-de-

generate quadratic form we shall mean a mapping ¢: % — K which is such that

plaz) —alp(z), and B(z, y) = p(x+y) — () — @)
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is a non-degenerate bilinear form on E. We shall say that ¢ is definite if @(x)=0

implies x =0, otherwise ¢ is indefinite. We denote the orthogonal group of ¢ by O(g).

TuEOREM 4.1. Let ¢ be a definite quadratic form. Then |@|* is a norm on E.

Proof. 1t is clear that we need only prove that |p(z+y)|< sup (|p(@)|, |e@)])-
Suppose the contrary is the case for a pair of elements , y of E, i.e., |p(z+y)|> sup
(lp@)]), |@(x)]). Then it is clear that z and y are linearly independent. Set @(x)=a,
@(y)=c and B(x,y)=b. Then we have |b|>|a| and also |b|>|c|. With ¢ an arbitrary

element of K, we have

2 +ét 2t
bz‘P z ¢ Y11= b

(Note that we have tacitly assumed that c=0. That is so because ¢ is definite.)
Now |ac/b*| <1, so that the polynomial #+¢+ac/b? has a simple zero in the field
/7O, hence by Hensel’s lemma it has a zero in K. This contradicts the fact that
@ is definite and therefore we conclude that |p|! is indeed a norm.

Given ¢, we denote by M(p) the set of those norms « on E having the property
lp(@)|* <a(x), all zEE. Tt is easy to see that N(p) is not empty. For, let 8 be any
norm on K. Then |p()|}/f(x), x+0 defines a continuous function on the compact
space P(E), and is therefore bounded. Hence there is some positive real number ¢
such that c¢B€MN(p). We shall also use that notation L(p) for £ nHN(p). It is clear
that both H(p) and L(p) are stable under the action of O(g).

We shall be interested in the set of elements of H(p) which are minimal (in that
set) in the partial ordering of N. In order to prove that such minimal elements exist,
it will be useful to extend the notion of norm by defining a semi-norm on E to be

a real-valued function o on E such that:

(1) af(z)=0
(2) alax)=|a]ax(z)
(3) alz-+y)< sup (x(z), aly)).

Let § be the set of all semi-norms, and let
Sip)={z€S||p@)|}<afx), all z€E}.

LevMma 4.2. S(p)=H(p).

Proof. Let « be a semi-norm such that |@(x)|<a(z)® for all z, and suppose that

a(y) =0. If x is any element of E and a any element of K, we have a(x + ay) < a(z). Now,
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| B(z, ay)| =|p(z + ay) — p(x) — p(ay)|
and, |p(x + ay)| < alz + ay)® < afz)?,
|@p(@)| < (x)?, while @(ay) =0.
Hence, la] | Bz, y)| = | B(z, ay)| < a(z)>.

Since this relation holds for all a € K and all x € E, we have B(z,y) =0 for all z,

so that y=0 from the fact that ¢ is non-degenerate. Thus, « is & norm and

S(p)=M(g).
Lemma 4.3. Let §' be any totally ordered subset of S, and let

B(z) = inf {x(z)|x € §'}.
Then BES.

Proof. It is clear that 8 satisfies the first two conditions above in the definition
of semi-norm; we must verify that the third condition holds. Suppose on the contrary
that f(z+y)> sup (B(x), B(y)) for some pair of elements of E. Choose a positive real

£ such that
e< fxz+y)— sup (B(z), B(y))-

Then, there exist « and o’ in §' such that
a(x) < B(x)+ ¢
o' (y) < Bly) +e.

If we replace either x or o' by a smaller element of §’, these relations will remain
valid. As §’ is totally ordered, one of the inequalities a<a', &' <o must be valid;

let us suppose that it is the latter relation. Thus,
o' ()< Bla) + e
(y)<Ply)+e
while o (z+y) < sup (o' (2), &' (y)) < sup (B@), fy)) + e < flz+y).

This is impossible from the definition of f. Thus, § is a semi-norm.

CoROLLARY 4.4. If x € N(p), then there is a minimal element §€ Nip) with f<a.
Hence in particular, N(p) has minimal elements.
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Proof. We apply Zorn’s lemma. If §' is a totally ordered subset of H(gp), and we
set B(z)=inf {y(x)|y€S’}, then by Lemma 4.3 8 is a semi-norm. At the same time it
is clear that B € $(p). But by Lemma 4.2 this shows that 8 is in fact in H(g). This
shows that Zorn’s lemma may be applied to the set {y € H(p)|y <} and hence shows
that this set has a minimal element.

We shall denote by M(p) the set of minimal elements of H(p). The same argu-
ment as above shows also that L(p) has minimal elements; we shall denote by L (p)
the set of minimal elements of L(p). One should not suppose that L£.(¢) coincides
with L(p) N M(p); in general these sets are distinct. It is clear that both M(p) and
L.(p) are stable under the action of O(p).

Theorem 4.1 shows that M(p) has only one element when ¢ is definite. As a

consequence, we have:

THEOREM 4.5. If ¢ is definite, then O(p) is compact.

Proof. Since M(p) is stable under the action of O(¢), we have immediately
O(¢) = Gyt. However, G,i is compact and O(p) is closed, hence O(p) is compact.
(See Ono [4].)

The converse of Theorem 4.5 is trivial.

There is an intimate connection between Ml(@) and the function |p|. We have:

ProrosiTioN 4.6. For each x€E, we have

|p(x)|= inf a(z)®.

aeMip)

Proof. Tt follows immediately from Corollary 4.4. that inf o(x)® = inf B(x)®. Let
o€ M(P) € H(P)

x be a non-isotropic vector of . Then, there is a basis {z,} such that 2, =z and ¢
is diagonal with respect to {z.}; ¢S a;z)=>;%af. Define BEN by B2 a;x;) =sup,
{]7:]* |a:|}. Clearly, f€N(g), and |p(x,)|=p(=x,)%

Suppose now that z+0 is an isotropic vector of @. Choose y isotropic with
B(x,y)=1. Let H=Kxz+ Ky, and let H' be the orthogonal complement of H with
respect to @. We note the following. Suppose «€H(p|s) and B€N(p|x). Define y
through y(z+2') ==sup («(z), 8(z')), where 2€H and 2z’ €H'. Then, y € H(¢). Thus, we
are reduced to the case where I =H.

Let h be any integer; define
Blaz+by) =sup (¢"|al, ¢ [b]).

Then, it is easy to check that B€MN(p). At the same time, f(x) =¢", while A is ar-
bitrary. The result follows immediately.
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A much stronger form of this proposition will be proved at the end of this sec
tion when more detailed information about the structure of M(p) will be available
It will be convenient for later purposes to note the following: with « any norm

we have:
2€ N(g) = ¢t a€ Nin'9)

2 EM(p) = gta e M ' g).

ProProsSiTION 4.7. Let L be a lattice in E and let o be its norm. Then, a nec-
essary and sufficient condition that « € L(g) s that |p|<1 on L. A mnecessary and suj-
ficient condition that a €L, (@) is that L be maximal in the set of lattices with the above

property.

Proof. Suppose a€L(p). If x€L, we have |p(z)|* <a(x)<1. Suppose now that
|p]<1 on L. Let x be any non-zero element of E; determine the integer A such that
a"x€L but n" 'x¢L. Then, alx)=g¢". Now |p(a"z)|<1, whence |p(z)|<¢™ =
a(x)? ov € L(p). The second assertion follows immediately from the first.

We now use some of the relations between norms and lattices described in section 1.

ProrosiTioN 4.8. Let x€N. Then the following statements are equivalent:

(i) 2€H(p)

(i) (a) [x]€L(p)

(b) [¢x]€L(np) for 0<t<}
(¢) [ffx]€L(n2p) for L <t<]1.

Proof.

(i) = (ii):

We have |gp(z)|<a(z)® and alr)<g ‘[¢’«](z). In particular, for t=0 we get
[x]€L(p). Suppose 0<t<3}. Then [¢'a](x)?>g¢*|p(x)|, while both [¢‘x](x) and |g(z)]|
are integral powers of ¢ (unless (x)=0). Hence [¢‘a](z)*>q|p(x)], i.e., [¢fa] € L' ).

Statement (c) follows from (b) by replacing ¢ by n'¢ and « by ¢ta.

(i) = (i):

We have

o) = inflqﬁt[qt“] ().

ogi<

We need only show that ¢ *[¢'a](x)?>|@(z)|, to obtain the desired result. But this

inequality follows immediately from ii.
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THEOREM 4.9.(1) Let «€MN. Then the following conditions are equivalent:

(i) «€Mip)

(i) (2) [x]€Ln(p)
(b) [g* ] € Lol g)
(¢) [dfa] =[qt«] for 0<t<}
(d) [¢fa] =g[a] for L<it<]1.

Proof.

(i) = ():

It follows from Proposition 4.8 that [x]€L(p) and that [¢*x]€L(n'¢p). If
0<t<4, then [¢’a]<[¢*«], while, again by Proposition 4.8, [¢‘a]€L (7w '¢). Hence
(b) = (¢). In a similar fashion (a) = (d). By replacing ¢ by n ¢ and « by ¢ta,
we see also that (a) = (b). Thus, we must prove (a).

Let u€L(p) be such that u<[x]. We shall show that u=[«]. Define

Ly={z|a(@)<1}

Ly ={z|a(z)<q ™%}

Lo={z| u(x) <1}

L, =L, +nL.
Then [«] is the norm of L,, [¢«] is the norm of L,. Also nL,<L; <Ly, nly<L}<Lg
and L,< L.

Denote by » the norm of the lattice L;.

u t=0
Set Bi=1 v O0<t<}
qu  E<i<l1

Then by Proposition 1.7 there is a #€MN such that [¢'f]=p;. Clearly g,<[¢’a], hence
B<a. We shall show that S€M(¢). Since o€ M(p), it will follow that f=o and
hence that y=[a]. This will show that [«]€ L, (p).

In order to show that S€M(p), Proposition 4.8 requires that we prove that
Bo€L(p) and that S, € L(m 'p). That B,€L(p) is so by the choice of u. Hence we
are left with proving that »€L(x 'g), or because of Proposition 4.7, with proving that
|z g|<1 on L.

Let y€L, and 2€L,. Then

(1) We wish to thank M. Sato for suggesting the possibility of characterizing the elements
o€ M) by properties of [qtac].
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oy +n2) = ply) + a°p(z) + w By, 2)
=@(y) + 2Pp2)+ ne(y +2) — mely) — ne(2)

so that
|2~ gy + 22) | <sup {|2 " ()|, |7e@)], loly+2)|, le@)l. le@[}-
Now, yEL, = |nlply)| <1
2€Ly = |p(2)| <1 = |ng(2)| <1
y+2€Ly+LocLy= |p(y+2)|<1.
Hence |7 'y +mz)| <1 as desired.

(i) = (i):

Suppose that f<a with € H(p). Then [¢*B]<[¢'a] for all £. Hence by Propo-
sition 4.8 we conclude that [f]=[«] and [¢*B]=[¢*«]. Let 0<t<}. Again by Pro-
position 4.8, [¢*81€ L(n ') while

[¢B1<Iq*Bl=I[g* ], so that [¢'8]=(q!p].

Similarly, if {<#<1, then [¢¢f]=¢[f]. This shows that «€M(p) and completes the
proof of the theorem.

The theorem just proved shows that M{p) may be identified with a subset of
L.(@)xLn(n'p). Namely with the set of («, f) € £ (@)X Ln(n ™ @) for which a<f<qa.

ProPOSITION 4.10. Let ¢ be an indefinite non-degenerate quadratic form and y=C
an isotropic vector of . Let a €Ly, (p). Then, a(y)=sup {|B(x,y)|}, the sup being taken
over the lattice L={x|a(x)<1}.

Proof. According to Proposition 4.7, |p|<1 on L and L is a maximal lattice
with respect to this property. Define the integer m by w«(y) =¢", and set y, ==y
Then «(y,)=1, and y, €L. Hence, for all z€L we have |p(z-+y;)|<1. It follows

immediately that
|B(z,y)|<1, for all xz€L.

Set sap | B(z, y,)| =¢", and y,=="y,.
zel

Then, |B(x,y,)|<1 for x€L. It follows from this, that |p|<1 on the lattice L+ Dy,
and hence that y,€L from the maximality of L. Hence u(y,)<1, or 2>0. However

we have |B(z, y))|<1, for x€L, so that #<0. Thus, #=0 and hence

sup | B(z, y1)| =1, or sup |B(z,y)|=a(y).
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TuroremM 4.11. Let ¢ be an indefinite non-degenerate quadratic form, and let

2 €M(p). Then there exist isotropic wectors y, and y, such that:

(1)’ By, y,) =1
2) [ely) =1, [el(ys)=1
3) [gtal(y) =1, [@al@ 'y,)=1, where j is either 0 or 1 (depending on «).

Furthermore, y, may be chosen, up to multiplication by an element of K*, as any non-

zero isotropic vector.

Proof. Set L={x|a(x)<1} and L ={x|a(x)<q¢ ?}. Then [«] and [¢*«] are, re-
spectively, the norms of the lattices L and L'

Let w be any non-zero isotropic vector of @, define m by [a] (w)=g", and set
yy=n"w. Then, [«](y,)=1 so that, by Proposition 4.10, we have sup | Bz, y,)| = 1.

Define j by [¢ta](y;) =¢'- Since

1 =[] (y1) <[ ] (y,) < gle] (1) =¢, we have
j=0orl.

Again by Proposition 4.10,
sup |2~ B(w, yy)| =¢, Le., sup |B@,y)|=¢""

If j=0, choose x, €L so that Bz, y,)=1. If j=1, choose €L’ so that
B(z,,4;)=1. Then of course z,; is also in L. Now set y,=x; —¢(x;)y;. Then y, is
isotropic, and B(y,,y,)=1. As x, €L, we have |p(z;)|<1, and therefore also, y,€L.
If follows again from Proposition 4.10 that [a](y,)=1.

In case =0, we have y, €L’ and my,€L’, with 7' B(y,, ny,)=1. If j=1, then
my, €L and |g(z)|<1/q, so that y,€L. Again n~' B(my,,y,)=1. In either case, we
find [g*a] ('y,) =gt «] (7' Tyy) = 1.

Before continuing with the general case, we shall apply the theorem just proved
to describe 'm(A(p) when ¢ is indefinite, and dim £ =2.

TueOREM 4.12. Suppose that ¢ is indefinite and dim E=2. Let x, and z, be
a basis of E consisting of isotropic vectors for which B(x,, z,)=1. Let h be any integer
and let B, € WE) be defined by Byla,x,+a, ) =sup (¢t |a;], ¢ 3] as]). Then M(gp)
is the set {Bn; h€Z}. Finally, O() ts transitive on M(p).

Proof. Let g be any integer. Define o€ Aut(E) by o(x;) =n’%;, 6(%y) =7 °,.
Then, ¢€O0(p), and ¢f,=fz;- Now define 7€ Aut (E) by t(z;) =%,, t(¥,) =2, so that
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T is also in O(p), and o1fy=p:,-1. Thus, each B, is conjugate to §, by some ele-
ment of O(g). However, O(p) is generated by the automorphisms ¢ and 7 as de-
scribed, together with the automorphisms z, >cz,, x,—>c¢ 'z, with |¢|]=1. Those
automorphisms however leave fixed each f. Thus, {#,} is stable under O(p) and
O(p) is transitive on that set. The full assertion of the theorem will follow when
we show that M(p) is contained in {B}.

Let a€M(p). We apply Theorem 4.11 to «. Thus, y,=bx, for some b€K*.
Since all isotropic vectors in E are multiples either of », or ,, it follows that
Yo =b""a,.

Set |b|=¢ ™. Now, bx, and b 'z, form a set of free generators for L. Hence
[o] (@, 2y + ayz,) = sup (¢"|a,], ¢ ™|as)).
At the same time, n’bz, and at’ b‘1x2 form a set of free generators for L’. Therefore,
(g} o] (@, 2, + ayz,) = sup (@™ |ay|, g™ ] ay]).
If follows from Proposition 1.5 and Theorem 4.8 that |
a=inf {[a], ¢ ¥ (g} al}.
Hence, a(ay 2, + ay2,) =sup {d,|a,|, ds|a,|},
where d,=q™inf {1,¢'"¥},d,=q ™ inf {1, ¢*7}.
Thus, we find that «=pfsm., when j=0, and & =pfs, when j=1. This completes the
description of M(p) in the indefinite case of dimension two.

We return to the general case of an indefinite quadratic form ¢. Using the same

notation as in Theorem 4.11, we have:

ProrosiTioN 4.13. Let H be the space spanned by y, and y,, and let H' be the
orthogonal complement of H with respect to . Then H and H' are .orthogonal with

respect to o.

Proof. We apply Corollary 1.9; because of Theorem 4.9, we have to show only
that H and H’' are orthogonal with respect to [x] and with respect to [¢*a]. Let f
be the projection of E onto H, then f(x) = B(x, y,)y, -~ B(, ¥,) y5. According to Lemma
1.8, the desired result will follow when we prove that [ga](z)>|«](f(x)) and also that
[¢* o] (%) > [¢* ] (f(x)). Furthermore, it is clearly sufficient to prove the first of these
inequalities for [«](z)=1, and the second for [¢ta](x)=1. Now if [«](x)=1, then
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2€L, so that |B(x,y;)|<1 and |B(z,y,|<1. Since y, and y, are in L, it follows that
f(x) €L or that [«](f(z))<1l. In the second case, x€L’, we have

|7 ' Bz, 2’y)| <1 and |7 Bz, a'7y,)|<1,
so that again f(@) =B(x, )y, + Bz, y )y, €L’

and the assertion follows.
In order to use the result just proved to obtain further information on the struc-

ture of the set (@), we need a preliminary lemma.

LEMMa 4.14. Let € M(p), and let E=E,+E, be such that E, and E, are or-
thogonal with respect to ¢ as well as with respect to o. Then, oc|E,-€m((p|Ei).

Proof. Let B;€ N(g|r) with B;<o|g,. Define y € U by p(x, +2,) =sup (B,(x,), Ba(s)).
That y is in fact a norm on E is clear. From the fact that E, and E, are orthogo-
nal with respect to ¢, we find y€MN(p). And, from the fact that E, and E, are
orthogonal with respect to o, we obtain y<a. As a€M(gp), it follows that y =a and
hence that 8, =alz. Thus, oclgie'}ﬂ(gplgi).

Combining Proposition 4.13 and the lemma allows us to use induction on the

dimension of E to conclude the following:
THrROREM 4.15. Let a € M(p). Then, there is a direct sum decomposition
E=E,+E +.. +E,

into subspaces which are mutually orthogonal with respect to ¢ as well as with respect
to oo such that:

(@) @lz, is definite
(b) For 1<i<g, dim E;=2, and ¢|g is indefinite
n€Mplz) 0<i<y.

{c) a
As an immediate corollary we obtain:

TarorEM 4.16. O(p) is transitive on M(p).

Proof. Let o and « be elements of M(p), and let E=2E,=2E; be decom.
positions of K of the type described in Theorem 4.15 corresponding respectively to o
and «'. By Witt’s Theorem, there is an element v€ (@) such that vE;=F;. Set
B=7o/. Then 2 E; is a decomposition of E of the type under consideration corre-
sponding to B. Since ¢[g, is definite, M(p|z,) has only one element (Theorem 4.1),

so that Bls,=ols,. Let 1<i<g. Then, O(p|z) is transitive on M(p|z) (Theorem 4.11),
12— 632918. Acta mathematica 109. Imprimé le 14 juin 1963.
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so that there is a ¢;€O(plz) such that B|s =0a|s. Defining o as the direct sum of
o; (and the identity on E;), we see that 0 €0(p) and §=oa. Thus, O(p) is tran-
sitive on M(g).

As an immediate corollary we obtain a result already proved by Eichler [2].

CoroLLARY 4.17. O(p) ts transitive on L,(¢p).

Proof. Let a€L,(p). By Corollary 4.4 there is a S€M(¢) such that f<a. It
follows immediately from Theorem 4.9 that «=[f]. Now let «’ be another element
of L.(¢), and choose 8" € M(¢) such that f'<a'. Then, there is a ¢ € O(p) such that
B =08, Hence osa=o{B]={cf]=[p'1=a, which shows that O(¢) is transitive on £, (¢).

If g is a positive integer, we denote by M, the set of those a €1 with the pro-
perty that «(x)’ is an integral power of ¢, for all non-zero x € E. Thus, for example,
N, =L. It follows from Proposition 1.5 and Theorem 4.9 that M(g) = H,. Note that
if E' is a subspace of E, the restriction mapping from H(E) to H(E') maps H,(E)
into N, (&).

We shall now prove a strengthened form of Proposition 4.6.

TaeoreM 4.18. Let E' be a totally isotropic subspace of E (i.e., ¢ (x)=0, all
z€E') and let y€Ny(E’'). Then there exists an «€ M(p) such that alp=1y.

Proof. It is clearly sufficient to prove the theorem in the case where £’ is a
maximal totally isotropic subspace of E. Let z,,...,x, be a basis of E’ with respect
to which y is canonical. Since y € M,(E’), we have y(z;) =¢*™, with k; integers.

Choose y; € E such that

L. ¢(y)=0

2. B(x;,y;) =0y-

Let E” be the space spanned by y,,...,y,. Then E'nE”=0. Furthermore, the re-
striction of ¢ to E'+E” is non-degenerate. Let E, be the orthogonal complement,
with respect to ¢, of E'+E”. Then, E=E +E"+E, is a direct sum, and the re-
striction of ¢ to E, is definite.

Set &(y;) =¢ ="+, and define 6 € N(E") by

8(Za;y;) =sup (|ai| 6(yy))-
Also, set d,=|p|* in E, Finally, define a € H(E) by

a(x+y+z) =sup (p(x), 8(y), 64 (2)),

where x€E', y€E", z€E,.
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Let H; be the space spanned by z; and y;,. Then, E is the orthogonal direct
sum of K, H,,...,H,, and these spaces are also orthogonal with respect to «. It fol-
lows from Theorem 4.12 thatv the restriction of a« to H, is in M(p|m). Hence from
the description of M(p) we conclude that «€M(g). Since we have x|z =7, the result
follows.

We conclude this section with several supplementary remarks concerning the re-
lations between quadratic forms and norms which are vaiid in general only under the
hypothesis that the characteristic of the residue class field ©/p is not 2.

ProrosiTioN 4.19. Let L be a lattice and ¢ a non-degenerate quadratic form.
If 24q, there is a set of free gemerators {z;} of L such that ¢ is diagonal with respect
to {x;}.

Proof. It is clear that we may replace ¢ by ¢ ¢ with ¢ any element of K*.
Hence we may suppose that |@|<1 on L and that equality holds for some element
of L. We shall prove the proposition by induction on n=dim E. The case where
n=1 is trivial.

Let z,€L be such that |p(z,)]=1. Let E’ be the orthogonal complement, with
respect to ¢, of Kz,. Let L'=LNE'. It is clear that we shall be done when we
prove that L=z + L.

Obviously, Oz, + L < L. Suppose z€L; then x=ax, +y with y€E'. Here, a=
B(x, z,)/2 p(x,). Thus, everything follows from |a|<1. As we suppose that 24tg,
and as we have |p(z,)|=1, we must show that |B(z,2,)|<1. But,

Bz, z;) = p(z+ 2;) — (=) — p(y),
and |@|<1 on L, so that indeed we have |B(x,;)]<1 and the proof is complete.

PROPOSITION 4.20. Let ¢ be a definite form and let p=|p|t. Assume that 24 q.
If {x;} is a basis with respect to which @ 1s diagonal, then u is canonical with respect
to {x}.

Proof. We have ¢(Z aix)=2x#a;. I we replace each x; by ¢z with ¢,€ K",
then ¢ is still diagonal, and if y is canonical with respect to {c;z;} it will be canonical
with respect to {x;}. Thus, we may suppose that || is either 1 or 1/q. We set
#;=wm"™, with |u;}=1 and k=0 or 1. Now suppose that u is not canonical with
respect to {x;}. Then, there are elements a,€ K such that |2 xa?|<sup{|x]||a:|*}

Set a;=v;n%, where |v;|=0 or 1. Thus,

I > u,-viznhs+2ai| < sup {l”z" q—(hl+20|')}.
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Let 4, be an index for which |x,||a,|* is maximal, and let J be the set of all
indices ¢ such that |x]||a;|*=]x;||a,|*. Then, we note first that J must have at least
two elements. Secondly, for ¢€.J, we have |'vi| =1. Also since »; =0 or 1, the equality,
for i€J, h,+2g,=h, + 2g,;, implies immediately that k;=A,, and g, =g;. Hence we have
| Ziesuvf| < 1.

Since %; and v; are all units in O, and 24 ¢, Hensel’s lemma asserts that there
are units w,; €D, for 1€J, such that >;.;u;wf=0. This contradicts the hypothesis
that ¢ is definite, from which we conclude that u is canonical with respect to {x}.

For the final proposition we refer to the notation of Theorem 4.15 and say that
@ has mazimal index if E,=0. This is equivalent to the condition that Z is a direct
sum of mutually orthogonal hyperbolic planes.

We denote by SO(@) the special orthogonal group consisting of the elements
d€0(p) with det o=1. It is well known that [O(¢) : SO(p)] =2. We consider the ques-
tion of the transitivity of $O(g) on M(p). Suppose «€ M(p). Then it is clear that
SO(p) is transitive on M(p) if, and only if, O(p) N G, & SO(¢).

ProPOSITION 4.21. Suppose that 24q. Then, SO(p) is transitive on M(g) if,

and only if, @ does not have maximal index.

Proof. Choose o€ M(p) and decompose E according to Theorem 4.15: E=E,+
E,+ ...+ E,. Suppose that E,=0. Then, there is an element ¢ € O(¢ |z,) with det 6 = — 1.
If we extend ¢ to E by defining it to be 1 on E,, for 1<i<g, then we find
6€0(p) N G, Since detg= —1, it follows that O(g) N G.¢ SO(p) so that SO(¢) is
transitive on M(p). (Note that for this part of the proposition we need not assume
that 24gq.)

Now suppose that E,=0 and that 244q. Let a;,y; be a basis of E; consisting
of isotropic vectors with B(x;,y;)=0;. If we set z;=z, for 1<i¢<g and 2z =y_, for

g+1<i<n, then with respect to this basis of E, the elements of G, are represented

_(A B)
? nC D

with A4, B, C, D arbitrary gxg matrices with coefficients in £ and such that det ¢ is

by the matrices of the form

a unit in . If we impose the condition that such a matrix represent an element of
O(¢) we find that *AD=1 (mod p). Hence, det =1 (mod p), while 24¢. It follows
that @, N O(p)< SO(p) and hence SO(g) is not transitive on M(p).
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Section 5. Discriminants

Let &« be a norm on E. In section 3 we described an extension of « to a norm
on the exterior algebra AE of E. As a consequence of Proposition 3.9 we obtain the

following useful fact:

ProrosiTioN 5.1. Let o be a norm on E and let {z;}, {y;} be two bases of E
with respect to which « is canonical. Let o€ Aut (E) be defined by y,= o(z;). Then,

il;[loc(yi) =|det ali_l:lloc(xi).
Proof. It follows from Proposition 3.9 that
Aq (@) (@ A oo A ) =TT ()
and, at the same time, An (o) (4 A oo Ayn) =TT alys).

However, B A Ay =(deto) (2, A ... A ),

and the assertion follows.
Let « €M(E) and let ¢ be a non-degenerate quadratic form. Let {x,} be a basis

with respect to which o« is canonical. Set
n -2
A(p, ) =|det B(x,, x,)]{iH oc(xi)} .
=1

It follows immediately from Proposition 5.1 that A(gp, ) is independent of the choice
of {x;}; we call A(p,a) the discriminant of @ with respect to «.

ProrosiTION 5.2. If 0€Aut (E), then
Alps™!, o) = A(p, o).

Proof. Let {xl} be a basis with respect to which « is canonical, and set y; = ox;.
Then ox is canonical with respect to {y;} and oa(y,) = a(x,), while Bo™*(y;, y;) = B(x;, 7;).
The result follows immediately.

THEOREM 5.3. Let ¢ be a non-degenerate quadratic form. Then, A(gp, &) is the same
for all o in M(p). Let d(p) be the value assumed by A(p, a) for « € M(p). If B € N(p),
then A(p, B)<d(p), and equality holds only when B € M(p).

Proof. Since O(p) is transitive on TM(p), it follows immediately from Proposi-
tion 5.2 that A(gp,a) is the same for all a€M(g).
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Let B€MH(p). Then, there is an a€M(p) with a<p. Let {x} be a basis with
respect to which both « and B are canonical. Then, x(x;)<p(z;), and T[T o) =
[T-1B8(x:) can hold only for a=p. Thus, A(p, )< A(p,«) and equality holds only
for «=p.

Remark. The value of d(p) may be determined explicitly in case the characteristic
of O/p is not 2. If ¢ is the index of ¢, namely the dimension of a maximal totally
isotropic subspace of E, then d(p)=¢°. We use the notation of Theorem 4.15: =
Ey+ ...+ E, where ¢|z, is definite and for 1<i<g, E; is a hyperbolic plane. If, for
1<i<g, x;,y; form a basis of E; consisting of isotropic vectors with B(z;, ) =1,
then we have a(x;) x(y;) =¢ ! (Theorem 4.12). Also, if 2, ...,2, is a basis of K, with
respect to which @/E, is diagonal, then it follows from Proposition 4.19 that

o IE,. (z a;2;) =sup (l‘P(Zi) I} Iail)'

Then, the determinant of B with respect to the basis {x;,y;, 2,} has an absolute
value of [],|@(z)|, while the product of the values of «® on this basis is ¢~ ?I]|@(z)].
Hence, A(p, a)=4¢".

Let {x;} be a basis of E. If ¢ is a quadratic form, there is some basis in which
@ is diagonal. This may be expressed by the statement that there is a o€ Aut (E)
such that @o is a diagonal in the basis {,}. If v is a diagonal in {z.}, with (2 a;a;) =
2 x;af, then by replacing ¢ by wr, with v snitably chosen in Aut (£), we may keep
p diagonal and change each x; modulo K*2. Since K*/K™? is a finite group, we arrive

at the following result:

ProPOSITION 5.4. There are only a finite number of orbits of quadratic forms
under the action of Aut (E).

As an immediate consequence of this result, we have:

THEOREM 5.5. Let o be a given norm, and let X be the set of all non-degenerate
quadratic forms @ such that o€ M(p). Then X is stable under the action of G, and
decomposes, under that action, into a finite number of orbits.

Proof. Suppose that ¢ and y are in X and are equivalent in Aut (£), i.e., y =@o
with g€Aut (E). Then, ox€M(p) while at the same time a€M(g). Since O(yp) is
transitive on M(gp), we have o =px with ¢ € O(p), and hence ¢ =gt with 7€G,. Thus,

¥ =90 =poT =97,

or ¢ and p are in the same orbit under G,. The result now follows from Proposi-
tion 5.4.
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We need several preliminary propositions in preparation for the main result of

this section. ’

If ¢ is a non-degenerate quadratic form and o €7M(g), we have seen in Theo-
rem 5.3 that A(p, «) depends only on ¢ and not on the choice of «; we set d(p)=
A(gp, a).

ProPOSITION 5.6. As ¢ ranges over all non-degenerate quadratic forms, d(p) ranges
over a finite sef.

Proof. 1f «a€M(¢) and o €Aut(E), then ox€M(ps '), and by Proposition 5.2,
A(po™', ox) =A(p,«). Thus, d(ps~')=d(¢), and the assertion follows from Proposi-
tion 5.4.

Let « and 8 be norms on E, and let {x;} be a basis with respect to which both

a and f are canonical. It follows from Proposition 3.10 that the n-discriminant

_ IL oc(x;)
IL ﬂ(xz) '

An (e, B)

Since we shall use A,(«, ) only for r=n, we shall write A(a, ) in place of A,(«x, f).
It is clear that

Alg, ) =Alg, @) Ae, B)’,
where @ is any non-degenerate quadratic form.

LeMma 5.7. If a<f, then A, f) f<a.

Proof. Let {x;} be a basis with respect to which both « and § are canonical.
Then, o(x;) < f(x;), and

At ) pla) =1 52

o) < alx;).

COROLLARY 5.8. Let B be a given norm, and ¢ a given real number with 0 <c<1.
Then the set of all o such that a<f and A(x,f)=c is compact.

Proof. For fixed f, the function of « given by A(«, ) is clearly continuous.
Hence the set of « for which Afe, ) =c is closed. By Lemma 5.7, each « under
consideration has the property cf<a<pf. But this is the same as the statement
d(ax, ¢t B)<logc™®. The set of all « with the latter property is compact, from which
we obtain the desired conclusion.

LeMMA 5.9. For a given integer g, the set N, is uniformly discrete. Explicitly, if
a=+pf are in N, then d(a,B)>g *log q.
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Proof. Suppose that « and g are in M, with d(«, 8) <g " log q. Let {x;} be a basis
with respect to which both « and § are canonical. Then,

o)
d(ee, 8) =sup |log ——|,
(e, B) up |18 5o
i 1
so that, for each 1, lo (z) <=loggq.
l € B | g B1

It follows from the hypothesis «, 8 €H,, that «(z;)=p(x;) or that o =p.

After these preliminaries, we arrive at the main result of this section:

TaroreM 5.10. Let § be a given norm and ¢ a given positive real number. Let
Y be the set of all non-degenerate quadratic forms whick satisfy the following two con-

ditions:

(1) € N(p)
(2) Alp,p)=c.

Then, Y is stable under the action of Gz and decomposes, under that action, into a finite

number of orbits.
Proof. Let €Y. Then there is an « € M(p) with a<f. We have,

A, ) = Alg, ) Mg, &) " =cd(g) ™.

According to Proposition 5.6, the values of d(p) lie in a finite set, hence the values
of A(e,B) Lie in a finite set.

Jet 4 be the set of all &« which arise in the above manner; it follows from
Corollary 5.8 that A4 is compact. However, A<M, so that by Lemma 5.9, 4 is
discrete. Thus, 4 is a finite set. Let a;, ..., %, be the elements of 4. For¢=1,2, ..., %
let Y; be the set of those ¢ €Y for which o, € M(p). (These sets are not necessarily
disjoint.) Then Y is the union of Y, ..., ¥, Clearly, each Y, is stable under the
action of G, N Gs. Since both @, and Gy are compact open subgroups of Aut (E), the
index of G, NG in G, is finite. Applying Theorem 5.5, we conclude that Y, decom-
poses into a finite number of orbits under the action of G, N Gy, from which it follows
immediately that ¥ decomposes into a finite number of orbits under the action of (4.

There is a sort of dual to Theorem 5.10.

TEHEOREM 5.11. Let ¢ be a non-degenerate quadratic form and let ¢ be a positive
number. Let U be the set of those norms o€ W(@) for whick Alp, a) =c. Then U is stable
under the action of O(p) and the quotient space of U mod O(p) is compact.
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Proof. Let 8 be an element of M(p), and let U’ be the subset of U of those «
for which a>p. Let « be any element of U. Then, there is a y € M(p) with y<a.
Since O(g) is transitive on M(¢), it follows that every orbit of U under the action
of O(p) meets U’, so that we need only prove that U’ is compact. Now, U’ is clearly
closed. At the same time, if a €U’ we have f<a<A(e, f)f and

Ae, B)* = A(g, B) Alg, )7,

or A(x, B)=(d(p)/c)t. But the set of all norms « satisfying these inequalities is com-

pact, so that U’ is also compact.
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