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I n t r o d u c t i o n  

The symmetr ic  space associated to the or thogonal  group of a real indefinite quad- 

ra t ic  form ~ can be described, as is well known, as the set M of positive definite 

quadra t ic  forms y~ which are minimal with respect to the  proper ty  I~l  ~< YJ. The or- 

thogonal  group 0(~)  of the form ~ acts t ransi t ively on M, and the isotropy group 

of  any  ~ E M is a maximal  compact  subgroup of 0(~).  A similar s ta tement  holds for 

the symplectic group. 

A. Weil raised the question of the p-adic analogue of this phenomenon,  and  

~suggested the use of norms (sec. 1) in place of the positive definite quadratic forms. 

If  ~ is a non-degenerate quadrat ic  form on a vector  space E over a p-adic field we 

associate to  T the set ~ ( ~ )  (see sec. 4) of norms ~ on E which are minimal with 

respect to  the p roper ty  I ~ 1 ~  2. Then again the or thogonal  group O ( T ) o f  ~ acts 

t ransi t ively on ~(~0). However,  the isotropy group of an  element a E~(~0), while still 

compact ,  is no longer a maximal  compact  subgroup. 

The s tudy  of norms on p-adic vector spaces it no t  new. (See for example Cohen [1] 

a n d  Monna [3].) These authors  were concerned with the metric topology induced on 

the vector  space by  a norm on t h a t  space. We are here concerned with the intrinsic 

~structure tha t  is carried by  the set ~(E)  of all  norms on a given vector space E. 

We define a na tura l  metric on ~(E) ,  and  in sec. 2 of the present paper  describe some 

of  the properties of ~(E)  as a metric space. For  example, ~ ( E ) i s  a complete, locally 

compact  arc-wise connected space, and is even contractible to a point. 

(1) This research was partially supported by the National Science Foundation through Brandeis 
University, the University of California at Berkeley, Harvard University and the Institute for Ad- 
vanced Study. 

10 - 632918. Acta mathematica 109. Imprira6 le 13 juin 1963. 



138 O. G O L D M A N  A N D  N.  I W k H O R I  

The group Aut (E) of linear automorphisms of E acts, in a natural way, on ~(E) 

leaving the metric invariant. In  sec. 3 we give some of the properties of this action. 

The isotropy group of any point of ~(E) is a compact open subgroup of Aut (E), while: 

the orbit of any point is a closed discrete subspace. The quotient space Aut (E)\~I(E). 
is proved to be canonically homeomorphic to the symmetric product of n circles, 

where n is the dimension of E. In the same section we describe invariants for the: 

conjugacy of two elements of ~(E) with respect to the isotropy group of a preas- 

signed norm. 

In sec. 4 we consider some relations between quadratic forms and norms and 

give a characterization of the elements of ~(T) .  In this we make use of the relations, 

developed in sec. l, between norms and lattices in E. Using this criterion of mini- 

mality, we obtain an explicit description of the elements of ~ ( ~ )  from which the. 

transitivity of O(q0) on ~(q0) follovr easily. To some extent, our technique in this 

section is a variation of the method used by Eichler [2] in his study of the action 

of O(~0) on certain lattices in E associated to ~. 

In  the fifth section we introduce the notion of the discriminant of a quadratic 

form with respect to a norm and describe some of the properties and applications of 

this concept. 

We have given such a detailed description of ~(E) as a metric space and of the 

action of Aut (E) on ~/(E) because we feel that  there are possibilities of using these 

structures to study other types of arithmetic problems which may be formulated in 

the p-adic domain. 

We should like to thank A. Wei| for suggesting this line of investigation and 

for his help during the course of our work. 

Section 1. Lattices and Norms 

The following notation will have a fixed meaning throughout this paper: 

K is a field complete in a discrete valuation, having a finite residue class field, 

hence locally compact. 

q is the number of elements in that  residue class field. 

[I is the valuation of K normalized so as to assume all integral powers of q 

on g*.  

is the valuation ring of K. 

p=~e~  is the maximal ideal of ~.  
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E is a vec tor  space over  K of f ini te  d imension  n, topologized in the  only  n a t u r a l  

topo logy  over  K ,  so t h a t  E is local ly  compact .  

P(E) is the  pro jec t ive  space of E, so t h a t  P(E) is compact .  

B y  a lattice in E will  be m e a n t  a f in i te ly  gene ra t ed  ~ - s u b m o d u l e  L of E which 

spans E over  K.  Al t e rna t ive ly ,  L m a y  be descr ibed as an  ~ - s u b m o d u l e  of E which 

is compac t  and  open. 

Le t  L be a la t t i ce  on E.  I f  x is a n y  non-zero e lement  of E, the  set of e lements  

a E K  such t h a t  axEL is a f rac t iona l  ideal  of 9 ,  and  so has  the" form pro. W e  set  

a(x) = qm. We comple te  the  def ini t ion of ~ b y  se t t ing  a ( 0 ) = 0 .  Then,  i t  is r ead i ly  

ver if ied t h a t  ~ has  the  following proper t ies :  

1. if x # 0 ,  t hen  a ( x ) > 0 .  

2. ~(ax)= ]a] ~(x), aEK.  

3. ~ ( x +  y) ~< sup (a(x), a(y)). 

A n y  rea l -va lued  funct ion on E having  these  th ree  proper t ies  will be called a norm 

on E. I n  par t i cu la r ,  eve ry  la t t i ce  de te rmines  a norm,  and  conversely,  if a is the  no rm 

associa ted  to  a la t t ice  L, t hen  L is in t u r n  de t e rmined  b y  a t h rough  the  re la t ion  

L={xEEIo~(x)<~l }. I t  will be seen shor t ly  t h a t  not  eve ry  norm is de t e rmined  b y  a 

la t t ice .  W e  denote  b y  ~/, or  b y  ~ ( E ) ,  the  set of al l  norms on E,  and  b y  s the  set  

of norms  de t e rmined  b y  the  la t t ices  of E.  

I t  follows i m m e d i a t e l y  from the  def ini t ion t h a t  each norm is a cont inuous  func- 

t ion  on E.  I f  a no rm is mul t ip l i ed  b y  a posi t ive  real  number ,  the  resul t  is aga in  a 

norm.  F ina l ly ,  7 / i s  p a r t i a l l y  o rdered  b y  the  re la t ion  ~ ~< fl means  ~(x) ~< fl(x) for all  x E E.  

Le t  L be a la t t ice .  As ~ is a pr incipal  ideal  ring, L is a free D-module ;  le t  

xl . . . .  , xn be a set of free genera tors  of L. I f  ~ is the  no rm associa ted to  L, i t  is c lear  

t h a t  sr a,x~) = sup (I a, I). 

PROPOSITION 1.1. Let ~ be any norm on E. Then there is a basis {x~} o] E, 

and positive real numbers r~ such that 

a ( 5  aixi) = sup (ri [as 1). 

Proo/. We prove the  propos i t ion  b y  induc t ion  on the d imension of E.  I f  d im E = 1, 

le t  x be a n y  non-zero e lement  of E.  Then,  a(ax) = a(x) [a[ ,  and  the  asser t ion is ver if ied 

in t h a t  case. Assume t h a t  d im E = n, a n d  t h a t  the  propos i t ion  is va l id  for spaces of 

d imension less t h a n  n. Le t  E 1 be a subspaee of d imension n -  1 of E.  I t  is clear  t h a t  

the  res t r ic t ion  of sr to  E 1 lies in ~/(EI) , so t h a t  sr res t r i c ted  to E 1 has  the  form de- 

scr ibed in the  proposi t ion .  
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Le t  ~t be a l inear  func t iona l  on E having  E 1 for  i ts  kernel .  W i t h  x a n y  non- 

zero e lement  of E,  consider  the  quo t i en t  ]~t(x)I/a(x). F i r s t  of a l l  th is  quo t i en t  is con- 

t inuous .  Secondly,  i t  is a homogeneous  funct ion of degree 0. Hence i t  defines a con- 

t inuous  funct ion  on the  pro jec t ive  space P(E). As P(E) is compac t ,  th is  funct ion  

assumes i ts  m a x i m u m .  Thus,  the re  is an  e lement  x~ E E such t h a t  

I~(~)l< I~(~1)1 all  x f iE .  a(x) a(xl) ' 

I t  is clear t h a t  x 1 canno t  be in E 1. Hence,  E is the  d i rec t  sum of Kx 1 and  E 1. 

Le t  y E E ;  t hen  y=xl2(y)/X(Xl)+Z, with  z E E  t. We have,  on the  one hand ,  

/l~(y)l ) ~(y)~<sup [ ~ ( x l ) ,  a(z) , 

and ,  on the  o the r  hand,  f rom the  def ini t ion of Xl, t h a t  

/> I~(y)l ~(~1) 

I t  follows t h a t  /I (y)I ~(y) = sup ~ ~(~1), ~(z)). 

F r o m  the  induct ive  assumpt ion ,  there  is a basis  x~ . . . . .  xn of E 1 and  pos i t ive  real  

numbers  r e . . . . .  rn such t h a t  

o~ a,x, = sup (% [az[ ..... rn lanl). 

I f  we set  r 1 = a(xl), t hen  the  a r g u m e n t  above  shows t h a t  a ( ~  a,x,) = sup (r, ]a,I). 

I f  a e ~ ( E ) ,  and  {x,} is a basis such t h a t  a(ba ,  x,)=sup(r,  la, l), t hen  we shal l  

s ay  t h a t  a is canonical with  respect  to  {x,}. 

We denote  b y  E* the  dua l  space of E.  We shall  now descr ibe a useful  ma pp ing  

f rom ~ ( E )  to  ~(E*) .  Le t  a e ~ ( E ) .  I f  • eE* ,  we have  a l r e a d y  considered in the  proof  

above,  the  quo t ien t  12(x)l/a(x) for non-zero  x e E .  The con t inu i ty  of th is  quo t i en t  

a n d  "the compactness  of P(E) enable  us to  set 

a*(Z) = sup !Z(x) l 
a(x) 

There  is no di f f icul ty  in ver i fy ing t h a t  a* is a no rm on E*. 
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PROPOSITION 1.2. The mapping o~-->o~* has the /ollowinq properties: 

1. 

2. 

3. 

4. 
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(aa)* = 1/ac~* /or a > O. 

i/ ~ <~ 8, then 8" <~ ~*. 

i/ o~ is canonical with respect to a basis {x,}, and {~i} is the dual basis o/ {x~}, 

then c~* is canonical with respect to {~}  and o~*(,~i)= o~(xi) -1. 

Proo/. These assert ions are  al l  t r iv ia l  consequences of the  def ini t ion of a*. The  

four th  s t a t e m e n t  follows f rom the  t h i r d  b y  mak ing  use of Prop.  1.1. 

PROPOSITION 1.3.(1) Let ~ and 8 be any two norms. Then there is a basis o/ E 

with respect to which both ~r and fl are canonical. 

Proo/. The proof  is b y  induc t ion  on d im E ;  the  case where  d im E = 1 is t r iv ia l .  

Suppose the  asser t ion va l id  for spaces of d imension less t h a n  n. W e  consider  the" 

quot ien t  ~(x) /8(x  ) for non-zero x EE.  This  defines a cont inuous  funct ion  on P{E),  

hence a t t a in s  i ts  m a x i m u m  somewhere.  Thus  there  is a non-zero x 1 E E such t h a t  

6~(X) < 6~(Xl) 
8(x) ~ all ~eE.  (1) 

F r o m  the  fact  t h a t  ~ =  ~**, we have  

~(xl) = sup~ ~ ,  

and  as P(E*) is compact ,  the  

~1E E*, wi th  

sup remum is a t t a i n e d  somewhere.  Thus,  there  is a 

, ( ~ ) .  (2) 

Clearly ~l(Xl)::~0. Using the  def in i t ion  of a*, we have  from (2) 

IXI(x)] ~< a(x) (3) 

Since f rom (1) we have  8(x)/8(Xl)>~a(x)/~(xl)  , i t  follows t h a t  

I~l(x)[~ fl(x) ~ 8 ( x l ) "  (4) 

(1) This theorem was given by A. Weil in a course in algebraic number theory at Princeton 
University. 
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Let  E 1 be the kernel  of ~1" Since ~l(Zl):~0, E is the direct sum of E z and  Kx~ 

From the induct ive assumption,  there  is a basis {x~ . . . . .  x,} of E 1 wi th  respect  t, 

which ~ ]E, and  fl I~, are canonical. I t  follows immedia te ly  f rom (3) and  (4) t h a t  a and  / 

are canonical wi th  respect  to  the basis {x I . . . . .  x,}. 

COROLLARY 1.4. Let L and L' be lattices in E. Then there is a set o/ /ree gen 

erators (x 1 . . . . .  xn} of L such that /or suitable aiEK*, {azx 1 . . . . .  anx,} is a set o/ /re, 

generators o / L ' .  

Proo]. Let  ~, ~' be  respect ively the  norms of the  latt ices L, L'. B y  Proposi t ion 1.3 

there  is a basis Yl . . . .  , y ,  of E with  respect  to  which ~ and  ~'  are bo th  canonical 

Since the values assumed by  g and  ~'  are integral  powers  of q, there  are element~, 

b~EK* such t h a t  ~(y~)=lb~[. Set x~=b~Xy~. Then it  is clear t h a t  {Xl . . . . .  xn} is a set 

of free generators  for L. I f  we choose a s E K* such t h a t  ~' (xi) = ]a~ I -x, then  {aix I . . . . .  anxn} 

will be a set of free generators  of L'. 

Let  {aj; ]" E J }  be an indexed family  of e lements  of ~ which has the  following 

p roper ty :  for  each xEE,  the set  {~j(x)) of real numbers  is bounded.  I f  we then  pu t  

f l (x)=supj~j{~j(x)},  then  there is no difficulty in verifying t h a t  fl is again  a norm. 

We shall wri te supj~1{~j} for ft. This operat ion has  all the usual propert ies  of a su- 

p remum.  In  part icular ,  sup (~s} is a lways defined for finite sets J .  

Suppose {aj; ~EJ}  is again an indexed fami ly  of e lements  of ~ (E) ,  bu t  assume 

this t ime t h a t  supjej(~*} is defined (in ~(E*)).  In  t h a t  case, we set 

i n / { ~ }  = (sup ~7)*. 

I n  contras t  to the  sup operat ion,  i t  is not  t rue  in general  t h a t  in f (~9}(x)=  

inf {~9 (x)}, not  even when  the indexing set  J is finite. 

We conclude this section with a description of some relat ions between norms  and 

lat t ices which will be used la ter  in s tudying quadra t ic  forms. 

Le t  ~ be a norm and  let L==(xEE]~(x )<I} .  Then  L~ is a lattice, and  is the 

largest  latt ice on which the  values of g do not  exceed 1. We denote b y  [~] the  norm 

of the  latt ice L=. I t  is clear f rom the definition t h a t  ~ ~ [~] ~ q~. [~] m a y  also be 

character ized as in/{fl  E s  ~</3}. 

PROPOSITION 1.5. 

(a) ~ < fl ~ [~] < [fl]. 
(b) [qg] = q[~]. 

(c) o~(x)=in/q-t[~o~](x), the in/ being taken over all t or over the set O 4 t ~ < l .  

(d) /or each x E E, the /unction o/ t defined by [qto~] (x) is continuous /rom the left. 
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Proo/. 

(a) I f  a~< fl, t hen  L~ D La f rom which we f ind [a] ~< [fl]. 

(b) W e  have  Lq~= z~L~ a n d  hence [qa] = q[a]. 

(c) W e  note  f irst  t h a t  qto~<<. [qta] so t h a t  a~<q-t[qta] .  Hence  inf q-t[qta] exists,  

a n d  a<infq-t[qta].  I t  follows from (b) above,  t h a t  q t[qta] is per iodic  in t wi th  

pe r iod  1 so t h a t  inf over  al l  t is the  same as inf over  the  in te rva l  0 ~< t ~< 1. Now, le t  

x be a n y  non-zero e lement  of E ,  and  set a(x)=q -t'. Then,  [qt'a](x)=l, so t h a t  

q t'[qt~ot](x) = a(x). Hence,  

a(x) = inf q-t [qt a] (x), 

which proves  (c). 

(d) I f  x # 0 ,  t hen  one r ead i ly  verifies t h a t  [qta](x) is the  smal les t  in t eg ra l  power  

of  q which is no t  less t h a n  qta(x). Cont inu i ty  of [qta](x) f rom the  lef t  follows imme-  

d ia te ly .  

I t  should be r e m a r k e d  t h a t  as a consequence of (a), [qta] is a monotonic  in- 

c reas ing  funct ion  of t. 

L]~MMA 1.6. Let a tEs  /or 0~<t~<l  be such that: 

(1) at is monotonic increasing in t. 

(2) a :  = qao. 

Then there is a basis o/ E with respect to which all at are canonical. 

Proo]. Le t  It be the  l a t t i ce  {x l a t (x )~< l  }. Then  

(b) 11= g/o, 

so t h a t  also 1 o ~ l, D 7d o. 

Now lo/Td o is an  n-d imensional  vec tor  space over  ~ / ~ ,  and  lt/xd o form a de- 

scending f ami ly  of subspaces  of lo/gl o. W e  m a y  i m b e d  the  f ami ly  {lt/~lo} in a m a x i m a l  

descending chain  lo/~lo= V : ~  V z ~ . . .  ~ Vn+:=O, with  d im Vt/Vi+:= 1. F o r  each t, 

l~/Td o = V,, for su i tab le  i. L e t  Yl . . . . .  y~ be a basis  for V: chosen so t h a t  y,,  yi+: . . . .  , y~ 

is a basis  for Vt. Le t  xl, . . . ,  x~ be e lements  of l 0 such t h a t  x, maps  onto y, in the  

homomorph i sm  lo-->lo/Td o = V 1. Clear ly  x 1 . . . .  , x~ is a set  of free genera tors  of 1 o. Fu r -  
+ n thermore ,  for each t, the re  is an  index i such t h a t  It = ~lo ~j=t ~ x j ,  a n d  therefore  

{~x: . . . . .  gx~-i,  x~ . . . . .  x~} is a set  of free genera tors  for lt. I t  is now clear  t h a t  all  

t h e  at a re  canonical  wi th  respect  to  the  basis  {x,}. 
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PROI 'OSITION 1.7. Let, /or all real t, actEs be chosen such that: 

(a) tl < t 2 ~ t . < ~  act. 

(b) a t + l =  qat 

(c) /or each x, act(x ) is continuous ]rom the le/t. 

Then  there ks a unique o~e ~l such that ~ t=  [qt~]. 

Proo/.  By lemma 1.6 above there is a basis (x,} with respect to which all ~t are  

canonical. We have then ~t ( 5  a,x,) = sup, {q~(t)$a,I}, where 

1. /z~(t) e Z 

3. /x,(t + 1) =/t~(t) + 1. 

Now define d , =  inf {/~, (t) - t} = inf {/z, (t) - t}, 
0~<t~<l 

set r~=q d~ and  ~ ( ~ a , x , ) = s u p ( r ,  la,[ }. Then a e ~ / ,  and  we shall show t h a t  [qt~]=act. 

I t  is clearly sufficient to  consider only 0 ~< t ~< 1. We note also t h a t  from condition (c), 

d~ = bt~ (t) - t for some t with 0 ~< t < 1. 

We have [qtac]=inf{fles From the definition of zr we have ~<~q tact, 

so tha t  [qt~] < ~tt. Hence we mus t  show tha t  act<.. [qt~]. 

Now [qtac] is the norm of the lattice {xl~(x)<<.q-'). Hence the desired inequal i ty  

act<.. ` [qtac] will follow if we prove the implicat ion:  act(x) > 1 ~ ac(x) >q-t.  

Suppose then tha t  ~ t ( x ) >  1. Since act EE, the values assumed by  act on the non- 

zero elements of E are integral powers of q. Hence we have ~Zt(X)>~ q. With  x = ~ a i x t ,  

there is an index i such tha t  q~'~t~la~l>~q. Now, for some t '  with 0 ~ < t ' < l ,  we have  

d~ = / x , ( t ' ) - t ' .  We consider 
q~l.,l=r162 [a,[. 

Suppose first t h a t  t ~< t'. Then, /~i(t) ~</x, (t') so t h a t  

q~, [a,l 1> qm,t,-t" la, I >~ q~-t" > q-t. 

On the other  hand,  suppose tha t  t ' < t .  Then, 

/x~ (t) <~ tz, (1) = ~ (0) + 1 < tt~ (t') + 1, 

and hence qn, lag I ~> q,,<t,-x t.[a ' I >~ q-t" > q-t. 

Thus, in either event  ac(x) >1 qd'la,] > q-t. 

This shows t h a t  act <~ [qt~] and  hence act = [qtac]. The uniqueness of ac follows from Propo-  

sition 1.5. 
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Remark. I t  follows f rom the above t h a t  there  are a t  mos t  n dist inct  norms among  

the [qta] for 0 ~ < t < l .  

Le t  E = E  I + E  2 (direct sum), and  let ~ET/.  We shall say t h a t  E 1 and  E 2 are  

orthogonal with respect  to a if a ( x l +  x2)= sup (:r , ~(x2)), whenever  xt e e l .  

LEMMA 1.8. Let E = E I  + E 2 (direct sum) and let ] be the projection o / E  onto E 1. 

Let ~ e 7~. Then E 1 and E 2 a r e  orthogonal with respect to ~ i], and only i/, ~(x)>~ :r 

/or all x e E.  

Proo/. Suppose E 1 and  E 2 are or thogonal  with respect  to :r Then  ~ ( x ) =  

sup (~(/(x)), a ( x - / ( x ) ) ) ,  hence ~(x) ~ ~(/(x)). Suppose now t h a t  a(x) ~> o:(/(x)) for all x e E .  

Since ~(x) < sup (~(/(x)), ~ ( x - / ( x ) ) )  only if a(/(x)) = o~(x-/(x)) ,  it follows t h a t  a(x) = 

sup (~(/(x)), ~ ' .x - / (x ) ) ) ,  so t h a t  E 1 and  E 2 are or thogonal  wi th  respect  to g. 

COROLLARY 1.9. Let E = E I  + E 2 (direct sum) and let a E ~ .  Then E 1 and E 2 are 

orthogonal with respect to ~ if, and only i/, E 1 and E~ are orthogonal with respect to 

[qt ~] /or all t. 

Proo/. Let  / be the  project ion of E onto E 1. Then  a(x)>~ ~/(x)~[qt~]  ( x ) ~  [qt~] (/(x)) 

for all t and  the result  follows f rom L e m m a  1.8. 

Section 2. The  topological structure of  T / (E)  

We introduce a metr ic  in the  set 7~ of all norms  on E.  I f  ~, fl E T/ consider, for  

non-zero x, the  quot ient  o~(x)/fl(x). As we have  a l ready seen, this defines a contin- 

uous funct ion on the compac t  space P(E).  As ~ ( x ) > 0  for non-zero x, the  funct ion 

[log (~(x)/fl(x))[ is bounded  on P(E),  and  we define 

d(~,, fl) = x.0sup log fl~)l'~(x) 

There  is no difficulty in verifying t h a t  d is a metr ic  on ~ .  

There is an explicit  formula  for d which will be useful later.  

PROPOSITION 2.1. Let ~ and fl be norms such that ~ is canonical with respect 

to a basis {x~} and fl is canonical with respect to {y,}, Then, 

[lo fl(xi) . a(y,)] 

Proo/, I t  is clear f rom the definit ion of d t h a t  

d(~, fl) = s u p / s u p  1o- fl(x) , =(Y)I 
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Now, f l(x)_ , fl(~ aixi) sup log - ~ -  sup log a - ~  ~ '  

with the  supremum being taken over all a 1 . . . . .  an E K, not  all 0. Hence, 

sup/7(x) >>- sup/7(x,) 

Le t  m = o~(~a,x,) = sup, (la, I ~(z,)). Then, I ,1 < mt~(~, )  Hence, 

/7(~ a,x,)<~ sup (la, I/7(~,)) < sup (m 
, , \ a ( x , ) / '  

so t h a t  /7(~ aixt) /7(x~) 
~(~ aixi~) <~ sup 

Thus  sup log/7(x) fl(xi) xEE - - ~  = sup, log ~(Xi)" 

In  the same way, we obtain 

sup log ~(y) 
yEE ~(~ 

and  the assertion follows immediately.  

~(Yr = sup log - - ,  
s /7(Yr 

From now on, when we speak of the topology of 71 it will be unders tood to  

mean  the metric topology defined by  d. 

THEOREM 2.2. 71 is complete. 

Proo/. Let  {an} be a Cauchy sequence in 71. Let  /7 be any  element of 71, and set 

/,~(x) = l o g  (~n(x)//7(x)), for x # 0  in E. Then the /n are continuous functions on P(E) 

and  form a Cauchy sequence in the uniform topology on P(E).  Hence g(x)= limn_>~/n (x) 

exists, where g is continuous on P(E), and  the convergence is uniform. 

Set ~(x)=/7(x) e ~(x) on E,  defining ~(0)=  O. Then, for x #  0 we have ~(x)>  O, also 

o~(ax)=fala(x) for aEK.  We have log (Ct(X)/~n(X))=g(x)--/n(X), SO tha t  

Iim I log ~(x) - log a ,  (x)[ = O, 

uniformly for non-zero x. 

Now suppose tha t  for some x and y we have a ( x +  y ) > s u p  (a(x), ~(y)). Clearly 

then none of the  elements x, y, x+  y is O. Choose e > 0 such t h a t  E < �89 (log ~ (x+  y ) -  

log ~(x)) and also s < �89 (tog zc(x + y) - log a(y)). Then, there is an n such tha t  log co(z) - 

log ~n(z)l < e for all non-zero z. I n  particular,  
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log a(x + y) - log an (x + y) < 

- log a(x) + log O~n(X) < 

and  therefore,  log a~ (x + y) - log an (x) > 0, or an (x + y) > a~ (x). I n  exac t ly  the same way,  

we find ~n(x+  y)>~n(Y).  Bu t  this contradicts  the  fact  t h a t  a~ is a norm.  Thus,  we 

mus t  have  ~(x+y)<~sup(~(x),  ~(y)), and  hence a is a norm.  I t  follows immedia te ly  

f rom the definition of ~, t h a t  limn~ccd(~, a ~ ) = 0 .  This completes  the  proof t h a t  T / i s  

complete.  

T~EOREM 2.3. T/ is locally compact. More precisely, i/ ~eTl ,  and b > 0 ,  then 

{fle ~tld(~, fl) < b} is ~o~pact. 

Proo/. Let  D = {fl fi ?l[d(~, fl) < b). B y  Theorem 2.2, D is complete.  Le t  X be a 

subset  of E having the  following properties:  0 ~ X ,  X compact ,  and  if x is a non-zero 

e lement  of E,  then  a x e X  for some a e K .  Such a set X m a y  be obta ined  in the  

following manner :  let (xi) be a basis of E,  and  set X = { 5  aix,] sup {[a,I} = 1}. 

Denote  by  F the  space of functions on X described b y  the restr ict ion to X of 

log fl, wi th  f le  D. The  metr ic  topology in D coincides wi th  the  uniform topology in F.  

We shall show t h a t  F consists of uni formly  bounded,  uniformly equicontinuous func- 

t ions on X. 

Because, for f l eD,  d(~, f l )<  b, we have  

e-b~(x) < fl(x) <. e%(x), 
for  all x e X ,  so t h a t  

l log fl(x) I < b + l log ~(z) l �9 

Since log a(x) is bounded on X, it follows t h a t  the  elements  of _P are uni formly  

bounded  on X.  

Also, since zc(x) is bounded  away  from 0 on X, all fl e D are uniformly bounded  

a w a y  f rom 0, so t ha t  the uniform equicont inni ty  of (log fl} is the  same as uniform 

equicont inui ty  of (fl}. Now, 

I f t (x)  - fl(Y) I ~< fl(x - y) <~ e%t(x - y), 

and  because ~ is uni formly continuous on X, the  result  follows. Hence  b y  the  theo- 

rem of Ascoli-Arzela, F is compact ,  and  hence D is also compact .  

We con~ider now the connectedness propert ies  of ~/. 

THEOR~M 2.4. Let ~, fl be two norms, and let 0~<t,.<l. Let 

P(t) = (9r e ~ l ~(x) <~ a(x)l-~ fl(x) t, all x e E}. 
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Then, P(t) is not empty. Set gt = sup {7 [?  tiP(t)}. Then, :~t has the [ollowing properties: 

(a) ~o=a ,  :~l=fl 
(b) d(Tet., :zt,) = It1 - t2l d(~, fl) 

(c) I[  {x,} is a basis with respect to which both o~ and fl are canonical, then ~t is 

also canonical with respect to {xi}, and ~t(xi)=o~(xi)l-t fl(x~) t. 

Proo/. Let  {xi} be a basis with respect  to which bo th  ~ and  fl are canonical.  

Define yt by: 
yt (5  a, x,) = sup {] a, ] a(x,) 1-t fl(z,)t}, 

i 

so t ha t  ytE ~ .  We shall show first  t h a t  y tEP( t ) .  

We have  la,] a(x,) <~ o~(~ a,x,), so t h a t  

la, II-t at(x,) 1-t ~< a(% a,x,) 1-t. 

Similarly, I a, [tfl(x,) t 4  f l(5 a, x,) t , 

so  t h a t  ]a, ] g (x t )  1 - t  f l(xt)t  < g ( ~  at xi)l-t  f l(~ a, x,) t. 

Since this is so for all i, it follows t h a t  ytEP(t) .  Fur thermore ,  for each x, y(x) is 

bounded f rom above,  as y ranges through P(t), so t h a t  ~t is defined. We have,  of 

course, Yt ~ ~t.  

We shall now show t h a t  ac tua l ly  yt =ret. Namely ,  

~t (x~) < a(a)~-t fl(x~) t, 

so t h a t  ~t (Sa ,  xi) <~ sup ([a, [ ~t (xi)) 4 sup ([a,] ~z(x,)~-tfl(x~) t) = Y t ( 5  a,x~). 

Thus, zeta< yt or ztt = y t -  This proves  assert ion (c). 

The assert ion (a) is obvious, while (b) follows immedia te ly  f rom the formula  of 

Proposi t ion 2.1. 

As an immedia te  corollary, we have: 

COROLLARY 2.5. T/ is arcwise connected. 

Proo[. With  :r and  fl given, construct  ~t as above.  I t  follows f rom (b) t h a t  the  

m a p  t-->zt is a continuous mapp ing  of the  unit  in terval  into ~/. Since n o = a  and  

re 1 =fl ,  the result  follows. 

P R O P O S I T I O ~  2.6. T/ /8 contractible. 

Proo/. Let  ~r E 7// be given. I f  a E ~ ,  let ret(~) be the  arc described b y  Theorem 2.4, 

with r~0(~)---~ o and  g~(a)=ar Le t  1 be the  closed interval  0~<t~<l,  and  define 
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/ :/• b y  /(t, a) =~t (~) -  Then,  riO, ~) = a  0 while /(1, a) = ~ .  Thus,  the  result  will 

follow when we prove  t h a t  / is continuous. 

We have  d(/(tl, ~1),/(t~, r162 =d(~t , (~l) ,  gt2(a2) 

so t h a t  d(/(tl, ~i),/(tu, ~2)) < d(a~t, (~1), 7Q, (0c2)) + ]t I - t21 d(~2, a0). 

We shall now show tha t  

d(Tet(a), xet(fl)) <~ td(~, fl), 

f rom which every th ing  will follow. 

Le t  {x~} be a basis wi th  respect  to which bo th  :% and ~ are canonical,  {yj} a 

basis with respect  to which a• and  fl are canonicall Then,  gt(a)  is canonical wi th  

respect  to  {x~}, while ~t(fl) is canonical wi th  respect  to  {yj}. Fur thermore ,  

~t  (~)  (x0  = ~o (x~) 1-t  ~(x~)~ 

~ ( ~ )  (yj) <<. ao(yj)~-~a(yj) t 

~ ( ~ )  (x,) < ~o (x,) ~-~ fl(x,) ~ 

a~t (fl) (yj) = O~o (yj)l-t fl(ys) t. 

Combining these relat ions with the  formula  of Proposi t ion 2.1 gives immedia te ly  

d(xet(a), xet(fi)) <. td(~, fl). This completes the  proof. 

Le t  ~ e ~ .  Denote  by  C(~) the  set of real numbers  {log a(x) l x ~ E ,  x~=O}. Choose 

a basis {x~} with  respect  to which :r is canonical.  Then 

ot(~aiz,) = sup (m, Jail), 

and  for each non-zero x ~ E ,  we have  log a ( x ) = l o g m ~ + l o g  [a], for some a ~ K * ,  some i. 

This  shows t h a t  C(a) is the union of a finite number  of cosets of R / Z  log q, the n u m b e r  

of cosets being no more  t h a n  n = dim E. We shall call the  number  of these cosets the  

rank of a, and  shall denote  it  b y  r(a). I n  the  nex t  section we shall associate mult i -  

plicities to the cosets of C(~). 

The set C(a) is uni formly  discrete in the  following sense: there exist posi t ive 

real numbers  d such tha t ,  if r, s e C(a) and  [ r - s  I ~< d, then  r =s .  We shall call such 

number s  d separating numbers of ~. 

P R O P O S I T I O ~  2.7. Let a ~ ' l ,  and let d be a separating number of a. I /  f l ~ l  

and d(o~, fi) <~ �89 then r(fl) >~ r(a). 
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Proo/. Let {x,} be a basis with respect  to which bo th  ~ and  /3 are canonical,  

cr a , x , ) = s u p  (m, la,]), f l(Xa, x,) = s u p  (m; la, I). 

Then, Proposi t ion 2.1 shows t h a t  d(~,/3) = sup [log m~ - log m~ I . Hence,  [log m, - log m; I ~< 

�89 l<~i<~n. 

Let  r ( ~ ) =  r, and renumber  the x~ so t h a t  log m I . . . . .  log mr are incongruent  

m o d Z l o g q .  F rom the choice of d as a separa t ing number  of ~, it follows t h a t  

log m~ . . . . .  log mr are incongruent  rood Z log q, so t h a t  r(/3) ~> r = r(a). 

COROLLARY 2.8. The set o/ /3E~ /or which r(/3)=n is open and everywhere 

dense in ~. 

Proo/. Proposi t ion 2.7 shows immedia te ly  t h a t  the  set  under  consideration is open. 

To see t h a t  the  set is everywhere  dense, let ~ E ~  and let {x~} be a basis wi th  re- 

spect  to which ~ is canonical.  Set mi =a(x~). Let  s > 0 ,  and choose real numbers  t~ as 

follows: 

[ t t I<e ,  and  t l + l o g m  1 . . . . .  t n + l o g m  n 

are incongruent  mod  Z log q. Now pu t  

/3(~ a,x,) = sup (et'm, la, 1). 

Then,  /3 E ~ and  d(a,/3) = s u p  ]t~] < e. Finally,  it is clear t h a t  r ( /3)=n.  Thus,  the  set  of 

norms of r ank  n is everywhere  dense in ~ .  

TH]~OREM 2.9. Let a E ~ have rank n, let d be a separating number o/ o~, and let 

{x~} be a basis with respect to which a is canonical. Then, i/ d(a,/3) <~ �89 /3 is also 

canonical with respect to {xi}. 

Proo/. Set a(x,) = m , .  Since r(a) = n ,  and  a(Za~x~) = s u p  (m,[a~I), the  numbers  

log m 1 . . . . .  log mn are incongruent  rood Z log q. Because d(a,/3) ~< }d, we have  [log/3(xi) - 

log m~I~< �89 and since d is a separa t ing number  of a, it follows tha t  log/3(xl) . . . . .  log/3(x,) 

are incongruent  m o d Z l o g q .  Le t  x = ~ a i x i  be any  non-zero e lement  of E.  F rom the 

incongruence, m o d Z l o g q ,  of {log/3(x~)}, we find t h a t  those of the numbers  /3(x~)]a,I 

which are non-zero are distinct.  Hence  

f l(X a,x,) = sup (fl(x,) [at I), 

or /3 is canonical with respect  to  {x~}. 

COROLLARY 2.10. Let ~ '  be the set o/ all o~E~ with r ( ~ ) = n .  Then ~ '  is locally 

Euclidean o/ dimension n. 
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Proo/. Let  ~ E Tl', let d be a separa t ing n u m b e r  of :r and  let {x~} be a basis wi th  

respect  to  which ~ is canonical. Set D = {flld(~, fl)< �89 Then  n c T/' is a neighbor-  

hood of ~, and  Theorem 2.9 shows tha t  each element  of D is canonical with respect. 

to {x~}. Define / :D-->R n by  

l(fi) = {log fl(xa) . . . . .  log fl(xn)}. 

Then ] is a homeomorph ism of D with the  open subset  of R ~ defined by  

{(r 1 . . . . .  rn)] i r~- log  ~(x~)] < �89 

PROPOSITION 2.11. Let {xi) be a basis o/ E .  Let A be the set o /a l l  norms which 

are canonical with respect to (x~). Then A is a closed subspace o/ 74. 

Proo[. Suppose ~ ~ A. Then  there are a~ E K,  not  all 0, such t h a t  

sup {log ~(a,x~) - log :r a~x~)} = d > O. 

Now suppose t h a t  f i E ~  such t h a t  d(~,fl)<~�89 Then,  for all non-zero x, we h a v e  

1 d and  combining this with the definit ion of d gives ]log ~(x) - log fl(x) I ~< g , 

sup {log fl(a,x,) - log f i (~ a,x,)} <~ ~d. 

Thus  also f l r  A which shows t h a t  A is closed. 

COROLLARY 2.12. Let ~ '  be again the set o/ a E ~  with r (a )=n ,  and let X be a 

connectedness component o/ ~ ' .  Let {xi} be a basis with respect to which some element 

o/ X is canonical. Then every element o/ X is canonical with respect to {x~}. 

Proo[. Let  A be the set of all norms which are canonical with respect  to {x~}. 

Then  b y  Proposi t ion 2.11, 7//'0 A is a closed subset  of ~ ' .  However ,  Theorem 2.9 

shows t h a t  ~ ' N  A is open in ~ ' .  The assertion follows i m m e d i a t e l y .  

Section 3. The action of Aut (E) on 7~(E) 

We denote b y  Aut  (E) the  group of l inear au tomorph i sms  of E with  its n a t u r a l  

locally compac t  topology.  Aut  (E) acts  on ~ (E)  as follows: if a EAut  (E) and  ~ E ~ ( E ) ,  

then  a~(x)=~( ( r - lx ) .  I t  is clear f rom the definition of the  metr ic  on 71, t h a t  the  

e lements  of A u t ( E )  are represented b y  isometries of 7//. I t  is also clear t h a t  the subset. 

g of ~ is stable under  the act ion of Aut  (E). 
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PROrOSITIO~ 3.1. The kernel o/ the representation o/ Aut(E)  by trans/ormation~, 

o/ ~(E) consists o/ the automorphisms x--> cx, with I cI = 1. 

Proo/. If  for some x E E the elements x and a(x) are linearly independent, then 

there exist norms ~ so tha t  a(x)~: ~(ax). Hence x and a(x) are linearly dependent fol 

all xEE ,  from which it follows tha t  a(x)=cx with c a fixed element of K. As we 

have a(cx)=[cia(x), we conclude tha t  ]c] =1 .  Conversely, it is obvious tha t  any au- 

tomorphism of the form x--> cx, [c] = 1 is represented by  the identity on ~.  

I f  ~ E ~,  we denote by  G~ the isotropy group of ~ in Aut (E). 

PROrOSITIO~ 3.2. G , =  ntGcqt, 1. 

Proo/. The assertion is an immediate consequence of the definition of [a], and 

Proposition 1.5 (c). 

COROLLARY 3.3. For each :r ~(E),  the isotropy group G~ is a compact open sub- 

group o/ Aut (E). 

Proo/. Let L be a lattice and fl its norm. I f  {x,} is a set of free generators of 

L and a is in Aut(E)  with axi=~a,jxj,  then aEG~ if, and only if, all atj are in 

and det (a,j) is a unit  in ~ .  I t  follows immediately tha t  G~ is a compact open sub- 

group of Aut (E) (and is in fact a maximal compact subgroup). 

If  a is any  norm, then by  the renhark following Prop. 1.7, only finitely many  of 

the norms [q t ]  are distinct. Hence, because of Prop. 3.2, G~ is also a compact open 

subgroup of Aut(E) .  

Remark. Proposition 2.1 may  be used to give an explicit description of the ele- 

ments  of G~. Let  {x,} be a basis with respect to which a is canonical. Let a E Aut (E), 

and suppose a(x i )=~jazx  j. Then, aEG~ if, and only if, 

[at, l<cc(x~)o~(xj) -1, i , i = 1 , 2  . . . . .  n 

and I det (aj~)] = 1. 

COROLLARY 3.4. The map Aut(E)•  ~(E) is continuous. 

Proo/. We have 

d(afl, r~) ~< d(afl, aoO + d(aa, r~) = d(fl, o:) + d(o:, a-iron). 

Hence, ff a - l r  E G~, we obtain d(afl, ra) ~ d(fl, a). Since G, is open, the assertion follows. 
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PROPOSITION 3.5. Let :r and fl be elements o/ )l, and let d be a positive real 

number. Let X~ be the orbit o /~  under the action o / A u t  (E), and let D = {r e ~[d(~, r) ~ d}. 

Then X~ N D is finite. 

Proo/. Let  {xi} be a basis with respect to which both  :r and fl are canonical. 

,Set ~(xi) = r, and fl(xi) = el. Suppose a e Aut  (E) is such t h a t  a~ E D. Set 

a-l(xi} = ~. a,j xj. Then ao~(x,) = sup {rjla,, ]}. 
S 1 

From the fact  t h a t  d(a~,fl)~< d, we get 

log fl-(~-) I ~< d 

a n d  therefore e- as, < sups { rs lai s]} ~< e a s,. 

Hence  [ais]<<.edsi/rj. I t  follows t h a t  the set of a E A u t ( E )  for which a : cED lies in a 

compac t  subset of M~ (K). However,  the map  Aut (E)- ->  }i defined by  a--> a~ is con- 

t inuous.  Hence the set {a e Aut  (E) I a~ e D} is a closed subset of Aut  (E), so t h a t  it 

is compact.  Since G~ is an open subgroup of Aut  (E), it follows t h a t  X~ N D is finite. 

As an immediate consequence, we have: 

COROLLARY 3.6. The orbit X~ is a closed discrete subset o/ ~ .  

Let  ~ E ~  and ~ {x,} be a basis with respect to which :r is canonical. Set 

~(xi) = m,. Then, the numbers  log m 1 . . . . .  log mn are representatives (with possible repe- 

titions) of the cosets of C(~) mod  Zlogq .  Let  r=r(ac), and suppose the x, have been 

renumbered  so t h a t  log m 1 . . . .  , mr are incongruent  mod Z log q. Let,  for 1 ~< i ~ r, E, be 

the  space spanned by  all xj which are such tha t  log mj - - log  mi (mod Z log q). Then, E 

is the direct sum of E 1 . . . . .  Er. Fur thermore ,  there is a lattice norm 2, E s  (E,) such 

t h a t  the restriction of ~ to E, is m, 2,. 

The dimension of the space El does not  depend on the choice of the basis {xi}. 

Namely,  suppose E = E ~ +  ... +E'~ (direct sum). Suppose fur ther  t h a t  there is a 
�9 / / p I �9 

2 s e s  and a positive real number  mj such tha t  ~lE~=mi2 ,  and log mt ~ log m, 

(modZlogq) .  Le t  ]i be the projection of E onto E,, and let x be a non-zero ele- 

m e n t  of E~. We have ~(x)=m~2~(x), so t h a t  log~(x)~--logmi(modZlogq). At the same 

time, the ~ non-zero numbers  among  mj2j] s (x) are distinct, hence ~(x) = supj (mj2j]s(x)), 

so t h a t  in particular,  [,(x)=~0. Thus, the restriction of /, to  El maps  E" P" , monomor-  

phical ly into E,, so t h a t  dim E[ ~< dim E~. F rom the symmetry ,  it follows tha t  dim E~ = 

] 1  - 632918 .  Acta  mathematica 109. I m p r i m 6  le 13 ju in  1963. 
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dimE~. We shall call dimE~ the multiplicity of the coset (in C(a)) which is repre- 

sented by  logm~. We shall also use the nota t ion C~(~) to denote the set C(~) together  

with the assigned multiplicities. I t  is clear t ha t  the sum of the multiplicities of the: 

cosets which comprise C(~) is n. 

THEOREM 3.7. Let o~ and ~ be elements o/ 71. Then, a necessary and su//icient 

condition that r162 and ~ be conjugate under the action o/ Aut (E)  is that C,, (~)= Cm (~). 

Proo/. Suppose first t ha t  fl = a~, with a E Aut  (E). Let  (x~} be a basis with re- 

spect to  which ~ is canonical, and let y~ =a-lx~. Then fl is canonical with respect  

to  (y~}, and ;6(y,)=~(x,). I t  is clear t h a t  Cm ( a ) =  Cm(~). 

Now suppose Cm(~)= Cm(fl). Let (x~} be a basis with respect to which both  

and fl are canonical, and fur thermore  such tha t  

1 ~< a(Xl) < a(x2) < . . .  a(xn) < q. 

Then each ~(x~) occurs in the set (:~(x 1 . . . . .  :r as often as the mult ipl ici ty of t he  

associated coset in C(a). The numbers  fl(x~) are no t  necessarily in increasing order~ 

However,  there is an element a E Aut  (E), such t h a t  with ~, = a~, we have 

1 < r(xl)  < r(x , )  <<... r(xn) < q. 

Furthermore,  a is a product  of a diagonal t ransformat ion with a permuta t ion  of t h e  

x~, so tha t  ~, is still canonical with respect to (xi}. As we have Cm (~')= Cm (fl)--C,~(a), 

it follows t h a t  ~(x~) = ~(x~) all i. Hence ~ = a, or ~ and fl are conjugate  under  Aut  (E). 

COROLLARY 3.8. The orbit space Aut(E) \ )~(E)  is naturally homeomorphic to the 

symmetric product o/ n circles. 

Proo/. Set T = R /Z logq  so t h a t  T is a circle, and let S be the symmetr ic  pro-  

duc t  of n copies of T. We define a map  h:~(E)-->S as follows: given ~ E ~ ( E ) ,  

C(:r is a subset of T consisting of r(g) points, each with an assigned mult i -  

plicity, the sum of the multiplicities being n. I f  t 1 . . . . .  tr are those points of T, a n d  

vl . . . .  ,vr are their multiplicities, set 

h(o~) = (tl, t 1 . . . . .  tr), each tt appearing ~ times. 

I t  is clear t ha t  h maps 7/(E) onto S. I t  follows from Theorem 3.7 t h a t  the inverse. 

image of a point  of S is precisely one orbit  of 7/(E) under  the action of Aut  (E). 

Hence h defines a 1 - 1  map  h'  of Au t (E) \7 / (E)  onto S. To show t h a t  h' is a homeo-  

morphism, we shall show tha t  h is a continuous open map.  
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We show first  t h a t  h is an open map .  Le t  ~6~/ ,  let  d > 0  be given, and  set  

D = {fl I d (~ ,~ )<  d}. Le t  {x,} be a basis wi th  respect  to  which ~ is canonical and such 

t h a t  
1 ~< ~(xl) ~< ~(x2) ~<... < ~(x~) < q. 

Suppose t h a t  (t 1 . . . . .  tn) E S is such t h a t  tl ~< t 2 ~<... ~< t~, I t s -  log ~(x~)l < d. Define f le  T/ 

b y  
~(~. a t x,) = sup (e ts lag I). 

Then  d(~, fl) = sups {] ts - log ~(xs)[} < d, 

so t h a t  flED, while h(fl)=(t 1 . . . . .  tn). Thus  the  image of D contains an  open set, 

which contains h(a), so t h a t  h is an  open map.  

To see t h a t  h is continuous,  let a, f l q ~  with  d(a, fl)=d. Le t  {xs} be a basis  

with respect  to  which bo th  a and  fl are canonical.  Then  

[log a(xt) - log fl(xd] ~< d. 

Hence,  b y  choosing d sufficiently small, we can make  h(fl)lie in any  prescribed 

neighborhood of h(a). Thus,  h is cont inuous and  the  proof  is complete.  

Remark. The s t ructure  of the  orbit  space A u t ( E ) \ ~ ( E )  makes  it possible to  de- 

fine an integrat ion on T/(E) which is invar ian t  under  the  act ion of Au t (E) .  Namely ,  

let [ be a complex-valued  funct ion on ~/(E) which is continuous with compac t  sup- 

port .  Le t  a E T/, and  define for a E Aut  (E), g(a, a) = [ ( ~ ) .  Then,  g is a cont inuous 

funct ion on Aut  (E)(~  is fixed) wi th  compac t  suppor t .  The  cont inui ty  of g is imme-  

diate. Suppose D is the  suppor t  of [. Then,  since the  orbi t  of a is discrete, there  

are only a finite n u m b e r  of norms  ~a in D. Hence,  g vanishes outside a finite union 

of eosets mod  G~, and  since G~ is compact ,  it follows t h a t  g has compac t  suppor t .  

Wi th  a H a a r  measure  chosen on Aut  (E), form 

h(a) = fAut(s) g(a, a) da. 

Then,  h depends only on the  orbi t  of ~ under  Aut  (E), so t h a t  it defines a funct ion 

on the  symmetr ic  p roduc t  of n circles. The  ord inary  p roduc t  Tn of n-circles, being 

a group, carries a H a a r  measure.  We lift ~ to a funct ion h' on Tn, and  then  define 

STn h' to  be the  integral  of ] on ~/. 

We have  shown above t h a t  Cm (~) gives a complete  set of invar ian ts  for  equi- 

valence of norms  with respect  to the group Aut  (E). We now consider the question 
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of equivalence with respect to the elements of the isotropy group G~ of a preassigned 

norm ~. In  order to describe the invariants for this type of equivalence we must  

first consider the extensions of norms from E to the exterior algebra of E. 

We denote by  AE the exterior algebra of E, by  A r E  the homogeneous compo- 

nent of AE of degree r. In  particular, A0E = K  and A l E - - E .  I f  a E T/(E), we shall 

associate to cr  norm Ara  on ArE,  for r~> 1. 

Let  2 be an element of the dual space E* of E. Then there is defined a deri- 

vation d~ of AE which maps ArE  into A r - I E ,  and which coincides with 2 on E. 

Hence, if (oEA~E and ~1 . . . . .  ~r are elements of E*, then d~, . . .d~(a))EK. For 

E ~ (E), we define, for co EAr E, 

IDA.... d~ r (o~)1 
Ar (a) (co) = sup a,(2~1) , , ,  a * ( ~ r ) '  

as ~1 . . . . .  ~tr range independently over the non-zero elements of E*. As we have al- 

ready seen in section 1, the existence of such a supremum lies in the compactness 

of the space P(E*).  I t  follows from Prop. 1.2 tha t  A x a = a .  

I t  follows without difficulty from the definition that ,  for r~>l, and w EAr+~ (E), 

we have 
A~ (~) (d~ ~o) 

A,+I (~) (~o) = sup 
~o~* ~*(~) 

We leave to the reader the details of the verification of the following properties 

of Ar (a). 

P~OI"OSlTION 3.9. I /  ~ is a norm o/ E, then At(a) is a norm o/ ArE.  I / a  is 

canonical with respect to the basis {x,} o/ E, then At(a) is canonical with respect to the 

basis {x~, A ... A x~r}, (i I < i 2 < . . .  < it)  O/ Ar E, and 

Ar (a) (x~, A ... A x~r ) = ~(x~,)...a(%). 

I f  a EAut (E) and a E ]I(E), then it follows directly from the definition tha t  

Ar(aa)=arAr(a) ,  where err is the automorphism of ArE  induced by  a. 

Let  ~ and fl be two norms of E. We define, for l~<r<<.n, the r-discriminant 

A r(fl,a) of fl with respect to a by 

Ar (fl)(o~) 
Ar(fl, ~) = sup 

~A~E A~ (a) (o~) 

where co ranges over the non-zero elements of ArE.  As usual, the supremum exists 

because of the compactness of the projective space P(ArE).  
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P ~ O P O S l T I O N 3 . 1 0 .  Let {xi} be a basis with respect to which both :r and fl are 

canonical, and suppose that the elements o/ the basis are arranged so that 

~(x~) ~ "'" ~(z=)" 

Then A~ (/~, ~) = 1~ ~'-'z~". 

Proo/. Since A~(a) is canonical wi th  respect  to  the  basis 

(x~, A . . .  A %}  (i~ < i~ < ... < i~) of A~E,  

A~ (~) (x~, A ... A x,,) 
we have  A~ (fl, ~) = sup Ar (~) (x h A ... A xir ) '  

the  sup remum being t aken  over  the  set  of r- tuples  (i1< ... < i~). However ,  we have  

.. A x, )fl 
h~ (~) (x~, A . . . /~ %) J~l ~(xi~) 

I t  follows immedia te ly  f rom the fact  t h a t  

~(xl)>~(x,) >fl(xn) 
~(~) ~)>~"" ~(~)' 

t h a t  the sup remum occurs for the  r- tuple  (1, 2 . . . . .  r), and  hence t h a t  

• (t~, ~ = n ~(x~) 

Using the  same nota t ion  as above,  it follows f rom the  proposi t ion t h a t  the  num-  

bers fl(xr are de termined b y  the  discr iminants  Ar(f l ,~ ) and  do not  d e p e n d  on 

the  choice of the  basis {x~}. Thus,  if a and  fl are two norms,  and {x,} is a basis 

wi th  respect  to  which bo th  a and  fl are canonical,  t hen  the  unordered  n- tuple  

{fl(Xl)/a(x 1) . . . . .  fl(xn)/a(xn)} is complete ly  determined,  including multiplicities,  b y  ~ and  

fl, and  does not  depend on the choice of the  basis. We shall call t h a t  (unordered) 

n- tuple  of real numbers  the invariants of fl with respect  to a, and  shall denote  i t  

by  I(fl, a). I f  0~<t~<l we consider also the  invar iants  l(fl,[qta]). Considered as a 

funct ion of t, the invar iants  I(fl, [q t ] )  will be called the  elementary divisors of fl wi th  

respect  to a. 
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I f  a EAut (E), then the definition of I(fl, o~) shows immediately tha t  I(afl, a~)= 

I(fl, ~). In particular, the elementary divisors of aft with regard to a~ are the same 

as those of fl with respect to g. 

We shall use the elementary divisors to give a criterion for the equivalence of 

two norms with respect to the isotropy group of a third norm. 

L~.~MA 3.10. Let o~ and fl be two norms and let {x~) be a basis with respect to 

which o~ is canonical. Then, there is a (l E G~ such that aft is canonical with respect to 

{x,~. 

Proo/. Let {y,) be a basis with respect to which both a and fl are canonical. 

According to our description of Cz(a), the set of n numbers {log a(xl) . . . . .  log a(xn)) 

represent the same cosets, modZlogq ,  as do the numbers {loga(yl) . . . . .  log~(yn)}, 

each coset being represented the same number  of times in the first set as in the se- 

cond. Hence, by  renumbering the Yi, we have ~(xi)=qh~a(y~), with h~ fiZ. 

Define a E A u t ( E )  by a(y~)=gh~x~. Then, because a is canonical with respect to 

(y~), a~ is canonical with respect to {x~). At the same time, 

O'a(Xi)  = a ( o ' - l x t )  = q ht a ( y t )  ~-~ a ( X t ) ,  

and hence a EG~. FinaLly, because fl is canonical with respect to (y~}, it follows that  

aft is canonical with respect to {x~). 

We choose a norm ~ which will be fixed for the rest of this section. Let  {x~} 

be a basis with respect to which ~ is canonical, and such tha t  

1 
- < a(x l )  < a(x , )  < . . .  < a(zn)  <<- 1. 
q 

This basis will also be kept  fixed. With respect to the basis {x~), we have [zt] (x~)= 1. 

Using the basis {xt) we identify Aut(E)  with GL(n, K) as follows: to a EAut (E) 

we associate the matr ix  (aj~) given by  ax~=~aj~xj. 

Let g be the rank of ~, and let vl . . . . .  v a be the multiplicities of the ~(x~). 

Namely, 

0~(gl)  = . . .  = 0~(X,,) ( 0~(Xv,+l ) = . . .  = g(Xv,+v2)  < etc. 

We place along the main diagonal of a generic n •  matr ix  square blocks of size 

v 1, v 2 . . . . .  vg. Then, the elements of G~ are the matrices with coefficients in ~ ,  whose 

determinant is a unit in ~ and whose elements to the left of the aforementioned 

diagonal blocks are in p. In  passing, we observe tha t  the elements a E A u t ( E ) h a v i n g  
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the  p rope r ty  aa  >~ ~ are exac t ly  those matr ices  wi th  the  propert ies  jus t  described for 

the  e lements  of G~ except  for the  condit ion on the  de terminant .  

The  symmet r ic  g roup  ~ of degree n is considered as a subgroup of Aut  (E) 

ac t ing  b y  pe rmuta t ion  of the  x~. The  group | is a subgroup of G:~. We consider 

.also the  direct  p roduc t  ~ = @~,• • |  as a subgroup of | in the  obvious fashion. 

:Clearly ~ N G~ = ~ .  

LEMMA 3.11. Let fl and 7 be two norms each of which is canonical with respect 

to {x~}. I[ I ( f ,  [q t~])=1(7 , [qt~]) [or all t, then there is a a e ~  such that y =aft. 

Pros/. For  convenience, we 

qta(xa+ 0 > 1. Then  it  is easy  to 

i > /~ .  Hence,  the  hypothes is  on 

{fl(Xl) . . . . .  f(x~l), q-lf(X~i+l ) . . . . .  

set  #j = v I + ... + vj. Suppose 0 ~< t ~ 1, and  qto~(x~,j) <~ 1, 

ver i fy  t h a t  [q~a] (xi) = 1 for  i ~</zj and [q~a] (xi) = q for 

fl and  7 implies t h a t  for  ~ = 1 . . . . .  g we have  

q-lf(Xn) } = {7(Xl) . . . . .  7(Xt,i), q-ly(x~,i+l) . . . .  , q-17(Xn) }. 

:By equali ty,  we mean  mult ip l ic i ty  of repet i t ions bu t  disregarding order.  

Le t  h be any  posit ive integer.  We form the  sum of the  hth  powers  of the  ele- 

m e n t s  of the  two sets jus t  considered. Then,  we have  

X f(x,) + q = + 
i = i  i> l~  j = 

Assigning to ] successively the  values  1, 2 . . . . .  g leads to the  following: 

yl vl yl+y~ vl+~2 

a n d  so on. Since these relat ions hold for all h>~ 0, we conclude t h a t  

{ f ( X l ) ,  . . . ,  f ( x , , ) }  = . . . . .  

{f(xvl+l) . . . .  , fl(x~,+~)} ={7(x~,+1) . . . . .  y(x~,+,~)}, etc. Thus,  there  is an  e lement  a e ~  

such t h a t  af(x~)=7(x~) for all i. Since f is canonical wi th  respect  to  {x~}, the  same 

is the  ease for  aft, and  since y is also canonical wi th  respect  to  {x~}, we conclude 

finally t h a t  7 = aft. 

COROLLARY 3.12. Let f and y be two norms. Then, the ]ollowing statements are 

equivalent: 

(i) There is a v EG~ with Y = v f  

(ii) I(/~, [q t ] )  =1(7 ,  [q~ ]), /or all t. 
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Proo/. 
(i) ~ (ii). 

This implication follows immediately from the definition of the elementary di- 

visors. 

(ii) ~ (i). 

By  Lemma 3.10 we can find elements ~, a ,~G~ such tha t  fffl and a~ are canon- 

ical with respect to {x~}. Since I(~fl, [ q t ] ) = I ( f l ,  [qta]), with a similar s tatement for ~, 

Lemma 3.11 m a y  be applied to give the desired conclusion. 

We denote by D the group of diagonal matrices whose elements are powers of 

and by (~ the group generated by  D and ~n. Clearly D is a no,Trial subgroup of 

(~ and (~ is the semi-direct product of D and ~ .  

I )~OPOSITIO~ 3.13. ~ N { ~ = ~ .  

Proo[. Obviously ~ ~ ~ N (~ .  Suppose &o E (~ N G~ with ~ E D and w E @n. Since 

1/q<a(x,)<~ 1, it follows immediately that  ~ 1 and hence tha t  w ~ .  

T~]:OR]~M 3.14. A u t ( E ) = G ~ ) G ~ .  

Proo[. Let a EAut(E)  and set fl = a a .  By lemma 3.10, there is a e E G~ such tha t  

~fi = ~ q a  is canonical with respect to {x~}. Hence, from the properties of Cm (g), there 

is a ~ E {~ such tha t  ~Qa~ = ~. But  this shows tha t  ~Qa E G~ or a E G~ (~ G~. 

The theorem just proved asserts tha t  each double coset of Aut (E) with respect 

to G~ is represented by an element of (~. We consider now the question of when 

two elements of ~ represent the same double eoset. 

THEOREM 3.15. Suppose that ~ and a are in (~ with ~EG~aG~. Then e E ~ a ~ .  

Proo/. We have ~ = 2 a #  with ~,~uEG~. Hence, ~ = 2 a : r  so tha t  I(Qa,[q~]) = 

I(a~, [qt ]), for all t. Also, because ~,aE(~,  both r and a~ are canonical with re- 

spect to (x~}. I t  follows from Lemma 3.11 tha t  ~a=~a~,  with ~ E ~ .  Hence, 

a- lT- l~ ~ ~a, while clearly O~-IT-I~ ~ (~. Since (~ N G~ = ~ ,  we find tha t  ~ E ~ a ~ .  

Section 4. Quadratic forms 

From now on we assume tha t  the characteristic of K is not 2. By a non.de- 

generate quadratic /orm we shall mean a mapping cp:E-->K which is such tha t  

q)(ax) = a 2 qJ(x), and B(x, y) = ~(x + y) - qJ(x) - q~(y) 
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is a non-degenerate  bil inear form on E.  We shah say t h a t  ~ is de/inite if ~o(x)= 0 

implies x = 0, otherwise ~v is inde/inite. We denote the or thogonal  group of ~0 b y  0 (~ ) .  

THEOREM 4.1. Let ~v be a de/inite quadratic /orm. Then 1991�89 is a norm on E. 

Proo/. I t  is clear t h a t  we need only prove t h a t  Iqv(x-4-y)[~< sup (]~o(x) l, I~(Y) I)- 

Suppose the cont ra ry  is the case for a pair  of elements  x, y of E,  i.e., [~ (x+y) [  > sup 

(l~~ I~(Y)I)- Then  it  is clear t h a t  x and  y are l inearly independent .  Set ~0(z)=a,  

~ ( y ) = c  and  B(x ,y)=b.  Then  we have  ]bl>la I and also [ b [ > l c  ]. Wi th  t a n  a rb i t r a ry  

e lement  of K,  we have  

~ q ~ ( x + ! t y ) =  2 ac t + t + ~ ,  

(Note t h a t  we have  taci t ly  assumed t h a t  e :#0.  T h a t  is so because ~0 is definite.) 

Now l ae/b21 < 1, so t h a t  the polynomial  t2+t+ ac/b 2 has a simple zero in the field 

~ / ~ ,  hence b y  Hensel ' s  l emma it  has a zero in K.  This  contradicts  the fact  t h a t  

~0 is definite and  therefore we conclude t h a t  I~[ �89 is indeed a norm.  

Given % we denote  b y  T/(~) the  set  of those norms  ~ on E having the  p rope r ty  

[~s(x)[�89 all xEE.  I t  is easy to see t h a t  T/(~) is not  empty .  For,  let fl be any  

norm on E.  Then  [q~(x)1�89 x # O  defines a continuous funct ion on the compac t  

space P(E), and is therefore bounded.  Hence there  is some posit ive real number  c 

such t h a t  c fl e T/(~v). We shall also use t h a t  nota t ion  s  for s N ~/(~). I t  is clear 

t h a t  bo th  ~/(~s) and  s  are stable under  the  act ion of 0(~) .  

We shah be interested in the  set  of e lements  of ~(qg)which are minimal  (in t h a t  

set) in the  par t ia l  ordering of ~/. I n  order to prove  t h a t  such min imal  elements  exist,  

i t  will be useful to ex tend  the  not ion of norm b y  defining a semi-norm on E to be  

a real-valued funct ion ~ on E such that :  

(1) ~(x) >~ 0 

(2) ~(ax) = lal ~(x) 

(3) 7(x + y) ~< sup (~(x), ~(y)). 

Let  $ be the  set  of all semi-norms, and  let 

S(~v)={~xE Sllcf(x)1�89 all x E E } .  

LEMMA 4.2. S(~) = ~(~) .  

Proo/. Let  zr be a semi-norm such t h a t  Iq~(x)l~(x) 2 for all x, and  suppose thab  

~(y) = 0. I f  x is any  element  of E and  a any  e lement  of K,  we have  ~(x + ay) <. a(x). Now,  
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]B(x, ay)[ = I qD(x + ay) - q~(x) - q)(ay)l 

and,  Iq)(x + ay) l <~ zt(x § ay) 2 <~ ~(x) 2, 

I~v(x)l ~< ~(x) ~, while q)(ay) =0. 

Hence,  ]a] I B(x, y)] = [B(x, ay) l <~ a(x) ~. 

Since this relation holds for all a E K and all x E E, we have  B(x, y ) = 0  for all x, 

so t h a t  y = 0  f rom the fact  t ha t  ~v is non-degenerate .  Thus,  ~ is a norm and 

S(~) =/l(q~). 

L ] ~ M i  4.3. Let S' be any totally ordered subset o/ S, and let 

fl(x) = inf {~(x) [a E S'}. 
Then fl E $. 

Proo/. I t  is clear t h a t  fl satisfies the first two conditions above  in the definit ion 

of semi-norm; we mus t  ver i fy t h a t  the  th i rd  condition holds, Suppose on the  con t ra ry  

t ha t  f l (x+  y ) >  sup (fl(x), fl(y)) for  some pair  of e lements  of E.  Choose a posit ive real 

such t h a t  
< fl(x + y) - sup (fl(x), fl(y)). 

Then,  there  exist  a and ~'  in S '  such t ha t  

~(x) < fl(x) + 

a'(y) <~ fl(y) + e. 

I f  we replace ei ther  a or a '  b y  a smaller  e lement  of $ ' ,  these relations will r emain  

valid. As S'  is to ta l ly  ordered,  one of the inequalities a ~< a ' ,  a ' ~  a mus t  be valid; 

let  us suppose t h a t  i t  is the la t ter  relation. Thus,  

~'(x) < fl(x) + 

a'(y) <. fl(y) + e 

while ~'(x + y) < sup (:r :r ~< sup (fl(x), fl(y)) + e < fl(x + y). 

This  is impossible f rom the definition of /~. Thus,  fl is a semi-norm. 

COROLLARY 4.4. I /  O~ E ~(q~), then there is a minimal element fl E ~(q~) with fl <~ ~. 

Hence in particular, ~(q)) has minimal elements. 



THE SPACE OF p-ADIC NORMS 163 

Proo/. We apply Zorn's lemma. If $' is a totally ordered subset of ~(~), and we 

set fl(x)=inf {y(x)lY E $'}, then by Lemma 4.3 fi is a semi-norm. At the same time it 

is clear that  • E $(~). But  by Lemma 4.2 this shows that  fl is in fact in ~(~). This 

shows that  Zorn's lemma may be applied to the set {y E ~(T)lY ~< ~} and hence shows 

that  this set has a minimal element; 

We shall denote by ~ ( ~ )  the set of minimal elements of ~(~). The same argu- 

ment as above shows also that  C{~) has minimal elements; we shall denote by l:m(~) 

the set of minimal elements of s One should not suppose that  Em(~) coincides 

with E(~)fi ~ (~) ;  in general these sets are distinct. I t  is clear that  both ~ @ )  and 

s are stable under the action of O(~). 

Theorem 4.1 shows that  7"/~(~0) has only one element when ~ is definite. As a 

consequence, we have: 

T~EOREM 4.5. I/  cf is de/inite, then O(q~) is compact. 

Proo/. Since ~(~v) is stable under the action of O(~), we have immediately 

O(~)cGlr189 However, GIr189 is compact and O(~) is closed, hence O(~) is compact. 

(See Ono [4].) 

The converse of Theorem 4.5 is trivial. 

There is an intimate connection between ~ ( ~ )  and the function I~1. We have: 

PROPOSITION 4.6. For each xEE, we have 

Iq(x)] = inf a(x) ~. 

Proo/. I t  follows immediately from Corollary 4.4. that  inf a(x) 2= inf fl(x) ~. Let 

x be a non-isotropic vector of T. Then, there is a basis {xi} such that  x I = x  and 

is diagonal with respect to {x~}; q~(Za~x,)=Z~n,a~. Define flET/ by fl(Za, x,)=sup, 

{]u,] �89 [a,]}. Clearly, fiET/(V), and Iv(x~)[ =fl(x,) ~. 

Suppose now that  x # 0  is an isotropic vector of ~. Choose y isotropic with 

B(x, y ) =  1. Let  H = K x +  Ky, and let H' be the orthogonal complement of H with 

respect to ~. We note the following. Suppose ~E~(~]H) and flE~(~lH, ). Define y 

through y(z + z') = sup (a(z), fl(z')), where z E H and z' E H'.  Then, y E T/(~v). Thus, we 

are reduced to the case where E = H. 

Let  h be any integer; define 

fl(ax+ by)=sup (qa lal, q-a Ibl). 

Then, it is easy to check that  fl E T/(~). At the same time, fi(x)=q~, while h is ar- 

bitrary. The result follows immediately. 
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A much stronger form of this proposition will be proved at the end of this sec 

tion when more detailed information about the structure of ~/(qg) will be available 

I t  will be convenient for later purposes to note the following: with ~ any norm 

W e  h a v e :  

a e ?/1(~) ~ q~ a e ?/l(:r -1 ~). 

PROPOSITIOI~ 4.7. Let L be a lattice in E and let :r be its norm. Then, a nec- 

essary and su//icient condition that ~eC(q)) is that Iq~l<~l on L. A necessary and su/. 

]icient condition that ~ E F~ (qJ) is that L be maximal in the set o/lattices with the above 

property. 

Proo/. Suppose ~eE(T) .  If x e L ,  we have [~(x)1�89 Suppose now that  

]~[ ~< 1 on L. Let  x be any non-zero element of E; determine the integer h such that  

~ h x e L  but 7t a lx(~L. Then, ~ ( x ) = q  h. Now Iq~(zax)l~<l, whence [~v(x)l~<q z a =  

~(x) ~ or ~ e s  The second assertion follows immediately from the first. 

We now use some of the relations between norms and lattices described in section 1. 

PROPOSITION 4.8. Let ~ E ~ .  Then the /ollowing statements are equivalent: 

(i) ~ e 7'/@) 

(ii) (a) [~]Es ) 

(b) [qt~]eE(~r-l~) for 0<t~<�89 

(c) [q~:r eC(ze-2~) for 1 <  t~< 1. 

Proo/. 

(i) ~ ( i i ) :  

We have Iq~(x)]<~(x)2 and o:(x)<~q t[qta](x). In particular, for t = 0  we get 

[:r eE@).  Suppose 0<  t~< 1. Then [qt~](x)2~>q2tJ~v(x)], while both [qta](x) and Iq~(x)l 

are integral powers of q (unless q~(x) = 0). Hence [qta] (x) ~ ~> q[T(x)I, i.e., [qta] e l~(zt -1 ~). 

Statement (c) follows from (b) by replacing ~ by Jt- l~ and a by q�89 

(ii) ~ ( i ) :  

We have 
g(x) = inf q-t [q~ ~] (x). 

O~<t<l 

We need only show that  q 2t[qt~] (x)~>~ i~(x ) I, to obtain the desired result. But  this 

inequality follows immediately from ii. 
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(i) ~ c ~(~) 

(ii) (a) [a] E s @) 

(b) [q~] es 
(c) [qt~]=[q�89 for O < t <  I 

(d) [qt~] = q[~] for I < t < 1. 

Proo/. 
(i) ~ (ii): 

I t  follows from Proposition 4.8 that  [~]EC(~v) and t h a t  [q�89 If  

O<t~< 1 2, then [qto~]<[q�89 while, again by Proposition 4.8, [qta]Es Hence 

(b) ~ (c). In a similar fashion (a) ~ (d). By replacing q~ by x~-lq~ and :r by  q�89 

we see also that  (a) ~ (b). Thus, we must prove (a). 

Let # Es  be such that  #~< [a]. We shall show that  # = [a]. Define 

L i = {x I~(x) ~< q- �89 

L~ = L~ + ~Lo. 

Then [~] is the norm of L o, [q�89 ~] is the norm of L�89 Also ~L o c L�89 c Lo, ~Zo ~ L~ c Lo 

and L o c L o .  

Denote by v the norm of the lattice L~. 

l Set fit = 0 < t < 1 

q# � 8 9  1. 

Then by Proposition 1.7 there is a /3ETI such that  [qtfl]=/3 t. Clearly flt<~[qt~], hence 

f l<a .  We shall show that  /3E~(~). Since ~E~(~0), it will follow that  /3=~ and 

hence that  # = [ ~ ] .  This will show that  [~] Es 

In order to show that  /3E~(~), Proposition 4.8 requires that  we prove that  

fl0EL~(~0) and that  /3�89163 lq~). That  /30E1~(9) is so by the choice of #. Hence we 

are left with proving that  v E I~(~-~0), or because of Proposition 4.7, with proving that  

] z - l q [ < l  on L~. 

Let  y~L�89 and zEL0. Then 

(~) We wish to thank M. Sato for suggesting the possibility of characterizing the elements 
a E ~ ( ~ )  by properties of [qt ]. 
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so that  

Now, 

Hence 

~0(y + nz) = ~(y) + nZ~(z) + r~B(y, z) 

= ~(y) + n ~ ( z )  + n~(y + z) - ~ ( y )  - ~0(z) 

y e L  t ~ I~- l~(y) l<  1 

z e i ' o  ~ Iq~(z)l< 1 ~ Iz~(z ) l<~ 1 

y + z ~ L i  + L'o= Lo =~ 17~(y + z)l << - 1. 

I~-l~(y + ~z) l ~< 1 as desired. 

(if) ~ (i): 

Suppose that  fl~< g with f lE~(~).  Then [qtfl] <~ [qta] for all t. Hence by Propo- 

sition 4.8 we conclude that  [fl] =[~] and [qtfl] =[q�89 Let  0<t~< �89 Again by Pro- 

position 4.8, [qtfl] Es  while 

[qt fl] ~ [q~ fl] = [q~a], so that  [qt fl] = (q~ fl]. 

Similarly, if ~ < t ~< 1, then [qtfl] = q[fl]. This shows that  :r e ~ ( T )  and completes the 

proof of the theorem. 

The theorem just proved shows tha t  ~(ep) may  be identified with a subset ot 

i:~(~) • s (~-1~). Namely with the set of (~, fl) e l:~ (~) • s (~-1 ~) for which ~ ~< fl ~< q ~ 

PROPOSITIOI~ 4.10. Let q9 be an inde/inite non-degenerate quadratic/orm and y:#r 

an isotropic vector o/ qJ. Let ~ e s (q~). Then, m(y)= sup { ]B(x, Y) l}, the sup being taken 

over the lattice I , = { x l ~ ( x )  <~ 1}. 

Proo]. According to Proposition 4.7, I~l~<l on L and L is a maximal lattice 

with respect to this property. Define the integer m by :r and set Yl =~,ny 

Then a ( y l ) = l ,  and y l E L .  Hence, for all x E L  we have I~(x+yl)l~<l.  I t  follow<, 

immediately that  
]B(x, yl) l <1 ,  for all x e L .  

7~ h Set sup I B(x, Yi) l =qh' and Ys = Yr 
X E L  

Then, ]B(x,y~)l< 1 for x e L .  I t  follows from this, that  ITl~ < 1 on the lattice L + ~ y ~  

and hence that  Y2 e L from the maximality of L. Hence u(ye) ~ 1, or h >i 0. However 

we have [B(x, y l ) ] < l  , for x e L ,  so that  h~<0. Thus, h = 0  and hence 

sup IB(x, Yl)[  = 1, or sup [B(x, y)[ = ~(y). 
x e L  x e L  



e 7~(~). 

(1) 

(2) 

(3) 

THE SPACE OF p-ADIC :NORMS 167 

THEOREM 4.11. Let qp be an inde/inite non-degenerate quadratic /orm, and let 

Then there exist isotropic vectors y~ and y~ such that: 

B(y~, y~) = 1 

[~] (y~) = 1, [~] (y~) = 1 

[q�89 [q�89 where ~ is either 0 or 1 (depending on ~). 

Furthermore, y~ may be chosen, up to multiplication by an element o/ K*, as any non- 

zero isotropic vector. 

Proo/. Set L=(x l~(x )<~l  } and L'=(x[a(x)<~q-i} .  Then [a] and [q�89 are, re- 

spectively, the norms of the lattices L and L'. 

Let  w be any non-zero isotropie vector of ~, define m by [~] (w)=q~, and set 

y~=~mw. Then, [~](y~)=l  so that,  by Proposition 4.10, we have sup IB(X, y l ) l = l .  
x ~ L  

Define ?" by [q�89162 (y~) =q(  Since 

1 = [~] (Ya) ~< [q�89 a] (Yl) < q[~] (Yl) = q, we have 

] = 0 o r  1. 

Again by Proposition 4.10, 

sup lz-~B(x,  y~)] =q~, i.e., sup IB(x, y~)] =~-~. 
x ~ L  XE L 

If j=O, choose x l E L  so that  B(Xl, Yl)=1. If j =  1, choose X l e J ~ '  SO tha t  

B(xl, y l ) = l .  Then of course x 1 is also in L. Now set y~=xl-q~(x l )y  1. Then y~ is 

isotropic, and B(yl, y,~)=l. As x l e L ,  we have I~(x~)[~<l, and therefore also, y2EL. 

If follows again from Proposition 4.10 that  [g](Y2)= 1. 

In case ?'=0, we have y l e L '  and 7ey2eL', with ~-lB(yl ,  Tey2)=l. If j = l ,  then 

zy~ EL'  and [~(x~) I ~< l /q ,  so that  y~ EL'. Again ~- lB(~y  1, Y2) = 1. In either case, we 

find [q�89 ~] (~JYl) = [q�89 ~] (~1 -Jy~) = 1. 

Before continuing with the general case, we shall apply the theorem just proved 

to describe ~ ( ~ )  when ~ is indefinite, and dim E =2.  

THEOREM 4.12. Suppose that qD is indefinite and dim E = 2 .  Let x 1 and x 2 be 

a basis o/ E consisting o/ isotropic vectors /or which B(xl, x2)= 1. Let h be any integer 

an i  let fi~ e Tl(E) be de/ined by flh (a~ Xs § % X2) = sup (q�89 la~ l, q-�89 Then 7~(qJ) 

is the set (fla; h e Z}, Finally, O(qD) is transitive on ~(qJ). 

Proo/. Let g be any integer. Define a e A u t ( E )  by a(xl)=yegXl, a(x~)=7~-gx2 . 

Then, a e O(T), and aflo =fl2g- Now define v e Aut (E) by T(xl)--x 2, ~(x 2) =Xl so tha t  
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T is also in 0(~) ,  and  aTflo=fleg_ ~. Thus,  each flh is conjugate  to  fl0 by  some ele- 

m e n t  of 0 (~) .  However ,  O(~v) is genera ted  b y  the  au tomorph i sms  a and  T as de- 

scribed, together  with the  au tomorph i sms  x~ --> c x 1, x 2 --> e-1 xe wi th  I cl = 1. Those 

au tomorph i sms  however  leave f ixed each fla. Thus,  {fib} is stable under  O ( ~ ) a n d  

0 @ )  is t rans i t ive  on t h a t  set. The full assert ion of the  theorem will follow when 

we show t h a t  :if/@) is contained in {fib}. 

Le t  aE:/II(V). We app ly  Theorem 4.11 to  ~. Thus,  yl=bXl for some bEK*. 

Since all isotropic vectors  in E are mult iples  ei ther  of x 1 or x 2, i t  follows t h a t  

Ye = b-lx~ �9 

Set Ibl=q -m. Now, bx 1 and b-axe form a set  of free generators  for L. Hence  

[~] (ax x 1 + ag_x e) = s u p  (q'~lal ], q-'n l a e [). 

At  the same t ime,  ~Jbx 1 and 7rl-Jb-lx2 fo rm a set of free generators  for L ' .  Therefore,  

[q�89 a] (a 1 x 1 + a e xe) = sup (q~ +SlaI I, q-  m +l-J la  e I). 

I f  follows f rom Proposi t ion 1.5 and  Theorem 4.8 t h a t  

Hence,  

where  

= i n f  {[a], q - t [q t a ]} .  

ac(a ix  I § a s x~) = sup {d 11 al I, de l ae I}, 

dl =qm inf {1, qS-�89 de =q-m inf {1, q�89 

Thus,  we find t h a t  a=f l em-1  when j = 0 ,  and  a=f lem when j = l .  This completes  the  

descript ion of ~ ( ~ )  in the  indefinite case of dimension two. 

We re tu rn  to the  general  case of an  indefinite quadrat ic  form ~. Using the  same 

no ta t ion  as in Theorem 4.11, we have:  

PROPOSITION 4.13. Let H be the space spanned by Yl and y~, and let H' be the 

orthogonal complement o/ H with respect to q~. Then H and H' are .orthogonal with 

respect to ~. 

Proo/. We app ly  Corollary 1.9; because of Theorem 4.9, we have  to show only 

t h a t  H and H' are or thogonal  wi th  respect  to [a] and  with  respect  to [ q ~ ] .  Le t  / 

be  the  project ion of E onto H, t h e n / ( x )  =B(x, Y~)Yl + B(x, Yl)Ye. According to L e m m a  

1.8, the desired result  will follow when we prove  t h a t  [qa](x)>~Lg](/(x))and also t h a t  

[q�89189 Fur thermore ,  it is clearly sufficient to  prove  the first  of these 

inequalit ies for [~] (x) = 1, and  the second for [q�89 a] (x) = 1. Now if [a] (x) = 1, then  
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x EL,  so tha t  ]B(x, Yl)[~<l and [B(x, y2] < 1. Since Yl and Y2 are in L, it follows tha t  

] ( x ) E L  or tha t  [~](/(x))~<l. In  the second ease, x E L ' ,  we have 

[~-lB(x,z~'y)I ~< 1 and I z - l B ( x ,  zel-J y2)[4 1, 

:so tha t  again /(x) = B(x, Y2) Yl + B(x, Yl) Y2 e L '  

and the assertion follows. 

In  order to use the result just proved to obtain further information on the struc- 

ture  of the set ~(~s), we need a preliminary lemma. 

L.E~MA 4.14. Let ~E~(q~),  and let E = E l d - E  2 be such that E 1 and E 2 are or- 

thogonal with respect to q> as well as with respect to ~. Then, oti~E~(q)ls~ ). 

Proo/. Let fl, e }/(~s [~) with fl~ ~< ~IE~. Define 7 E ~ by 7(x 1 + x2) = sup (ill(z1), f12(z2)). 

Tha t  7 is in fact a norm on E is clear. From the fact tha t  E 1 and E~ are orthogo- 

nal with respect to ~, we find ~;E~(~). And, from the fact tha t  E 1 and E 2 are 

orthogonal with respect to ~, we obtain ~,< a. As ~ E ~ (~ ) ,  it follows tha t  7 = a  and 

hence tha t  flt=~ls~- Thus, ~ls, E~ (~ l s ,  ). 

Combining Proposition 4.13 and the lemma allows us to use induction on the 

dimension of E to conclude the following: 

THSO]~]~M 4.15. Let ~E~(qD). Then, there is a direct sum decomposition 

E = E ~ + E ~  + . . .  +E~ 

into subspaces which are mutually orthogonal with respect to qJ as well as with respect 

to o~ such that: 

(a) ~I~, is de/inite 

(b) For 1 <~ i ~ g, dim E~ = 2, and q~ IE~ is inde/inite 

As an immediate corollary we obtain: 

T H n O ~ ] ~  4.16. 0(~)  is transitive on ~(q~). 

Proo/. Let ~ and a '  be elements of ~ (~ ) ,  and let E = Z E ~ = ~ E ~  be d e c o m  

positions of E of the type described in Theorem 4.15 corresponding respectively to a 

and ~'. By Wit t ' s  Theorem, there is an element ~EO(~) such tha t  ~E~ =E~. Set 

/~ = ~ ' .  Then ~E~ is a decomposition of E of the type under consideration corre- 

sponding to ft. Since ~IE, is definite, ~(~IE0) has only one element (Theorem 4.1), 

so tha t  fllE=O~IE o. Let 1 < i < g .  Then, O(q~lE~) is transitive on )~(~]~,) (Theorem 4.11), 

12  - 632918 .  Acta mathematica 109. I m p r l m ~  le 14 ju in  1963. 
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so tha t  there is a a, eO(cf]E,) such tha t  fllF.,=a~aIs,. Defining a as the direct sum of 

a, (and the identi ty on E0) , we see tha t  a EO(cp) and fl=a:r Thus, O(T) is t ran-  

sitive on ~ (T) .  

As an immediate corollary we obtain a result already proved by  Eichler [2]. 

COROLLARY 4.17. 0(~)  is transitive on ~m(q~). 

Proo/. Let ~Et:m(~0). By Corollary 4.4 there is a f l E ~ ( T )  such tha t  f l ~ a .  I t  

follows immediately from Theorem 4.9 that  ~ = [fl]. Now let a '  be another element 

of I:m(~), and choose f l ' E ~ ( ~ )  such tha t  fl'~< a ' .  Then, there is a a E O ( ~ ) s u c h  tha t  

fl' = aft. Hence a s  = 6[fl] = [aft] = [fl'] = ~', which shows tha t  O(~) is transitive on C~(~). 

I f  g is a positive integer, we denote by )Ig the set of those a E ~ with the pro- 

per ty  tha t  a(x) ~ is an integral power of q, for all non-zero x EE.  Thus, for example, 

711 = ~2. I t  follows from Proposition 1.5 and Theorem 4.9 tha t  )Tl(~)c 712. Note tha t  

if E '  is a subspace of E, the restriction mapping from )l(E) to ~ (E ' )  maps ~g(E) 

into ~g(E'). 
We shall now prove a strengthened form of Proposition 4.6. 

THEOREM 4.18. Let E'  be a totally isotropic subspace o/ E (i.e., ~ ( x ) = 0 ,  all 

x E E ' )  and let 7 E ~ 2 ( E '  ). Then there exists an ~E~(q ) )  such that a ] s ' = ~ .  

Proo/. I t  is clearly sufficient to prove the theorem in the case where E '  is a 

maximal totally isotropic subspace of E. Let  Xl, ..., xg be a basis of E '  with respec~ 

to which 7 is canonical. Since 7E~2(E ' ) ,  we have 7(x~)=q�89 with hi integers. 

Choose y~EE such tha t  

1. q~(y~)=O 

2. B(xi,  yj) = ~ .  

Let E "  be the space spanned by  yx, ...,y~. Then E '  N E " = 0 .  Furthermore,  the re- 

striction of ~ to E ' +  E "  is non-degenerate. Let  E 0 be the orthogonal complement, 

with respect to % of E ' + E " .  Then, E = E ' + E " + E  o is a direct sum, and the re- 

striction of ~ to E 0 is definite. 

Set ~(y~)=q-�89 and define ~ ( E " )  by 

(~(~ a~ y~) = sup (] as ] (~(y~)). 

Also, set o0=l~I  �89 in E 0. Finally, define ~ ( E )  by  

~ ( x + y + z ) = s u p  (~(x), 5(y), 5o(Z)), 

where x E E',  y E E" ,  z E E o . 
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Let  H~ be the space spanned by  x~ and y~. Then, E is the orthogonal  direct  

sum of E 0, H 1 . . . . .  Ho, and these spaces are also or thogonal  with respect to a. I t  fol- 

lows from Theorem 4.12 tha~ the restriction of ~ to H~ is in ~(~01H~ ). Hence from 

the description of ~ ( ~ )  we conclude tha t  ~ e ~ ( ~ ) .  Since we have ~ IE" = 7, the result  

follows. 

We conclude this section with several supp lementa ry  remarks concerning the re- 

lations between quadrat ic  forms and norms which are valid in general only under  the  

hypothesis  t ha t  the characteristic of the residue class field ~ / p  is not  2. 

PRO~OSITIO:N 4.19. Let L be a lattice and q~ a non-degenerate quadratic lorm. 

I l 2 4 q, there is a set ol /ree generators {x~} o/ L such that q~ is diagonal with respect 

to {x,}. 

Proo/. I t  is clear tha t  we m a y  replace ~ by  c ~ with c any  element of K*. 

Hence we m a y  suppose tha t  ]~0] ~< 1 on L and t h a t  equal i ty  holds for some element 

of L. We shall prove the proposit ion b y  induct ion on n = dim E. The case where 

n = 1 is trivial. 

Let  x~EL be such tha t  I~0(Xl)]=l. 

respect to ~, of Kx 1. Let  L ' = L n E ' .  

prove tha t  L = ~x~ + L' .  

Le t  E '  be the or thogonal  complement,  with 

I t  is clear t ha t  we shall be done when we 

Obviously, ~ x  1 + L '  c L. Suppose x E L; then x = ax I q- y with y E E ' .  Here, a = 

B(x, xi)/2cf(xl). Thus, everything follows from [al~<l. As we suppose tha t  2Xq,  

and  as we have I ~ ( x i ) l = l ,  we mus t  show t h a t  IB(x, xl)l<~ 1. But,  

B(x, xO = q~(x + xl) - qJ(x) - qJ(xl), 

and lep]~<l on L, so t h a t  indeed we have IB(x, xO]<l  and the proof is complete. 

PROrOSIT ION 4.20. Let q~ be a de/inite /orm and let/~=1~] �89 Assume that 2X q. 

I /  {x~} is a basis with respect to which ~v is diagonal, then # is canonical with respect 

to {x,}. 

Proo/. We have q~(Saixi) 5 = u~a~. If  we replace each x~ by  c~x~ with c~EK*, 

then ~ is still diagonal, and if /t is canonical with respect to {cix~} it will be canonical 

with respect to {x~}. Thus, we m a y  suppose t h a t  Ix~] is either 1 or 1/q. We set 

u~=uiTe ~, with ]u~ l= l  and h i = 0  or 1. :Now suppose tha t  # is not  canonical with 

respect to {x~}. Then, there are elements a i e K  such t h a t  I ~ u , a ~ [ < s u p { l u ,  l la~12}. 

Set a~=vi~ ~ where [v~]=O or 1. Thus, 
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Let  i 0 be an  index for which I x~0I l a,ol ~ is maximal ,  and  let J be the set of all 

indices i such tha t  I x, I I a,I S = I x,.iia, ol 2. Then, we note first t ha t  J mus t  have at  least 

two elements. Secondly, for i E J ,  we have ]v~ I = 1. Also since h~ = 0 or 1, the equality,  

for i E J ,  h~ + 2 g~ = h~0 + 2g~0 implies immediately  tha t  h~ = h~0 and g~ = g~0. Hence we have 

Since u~ and v~ are all units in 9 ,  and 2 X q, Hensel 's  lemma asserts t ha t  there 

are units w~E~,  for i EJ, such tha t  ~tG1u~w~=O. This contradicts the hypothesis  

t h a t  q) is definite, f rom which we conclude tha t  /, is canonical with respect to (x~}. 

For  the final proposition we refer to the notat ion of Theorem 4.15 and say tha t  

q) has maximal index if E 0 = 0. This is equivalent  to  the condition tha t  E is a direct 

sum of mutua l ly  orthogonal  hyperbolic planes. 

We denote by  SO(q)) the special orthogonal group consisting of the elements 

a e O(q)) with det  a = 1. I t  is well known tha t  [O(q)) : SO(q))] = 2. We consider the ques- 

t ion of the t ransi t ivi ty of SO(q)) on ~(q)). Suppose ~ e ~(q)). Then it is clear t ha t  

SO(q)) is transit ive on ~(q)) if, and only if, O(q))N G~= SO(q)). 

PROl"OSITIO~ 4.21. Suppose that 24q .  Then, SO(q)) is transitive on ~(q)) i], 

and only i], q) does not have maximal index. 

Proo[. Choose ~ e ~ ( q ) )  and decompose E according to Theorem 4.15: E = E o +  

E 1 + ... § Eq. Suppose tha t  E 0 ~= 0. Then, there is an  element a E O(q) IE0) with det  a = - 1. 

I f  we extend a to E by  defining it to  be 1 on E~, for l~<i<~g, then we find 

a E O(q)) N G~. Since det  a = - 1, it follows tha t  O(q)) N G~ ~= SO(q)) so tha t  SO(q)) is 

transit ive on ~(q)). (Note tha t  for this par t  of the proposition we need not  assume 

t h a t  2 4 q.) 

Now suppose tha t  E 0 = 0  and  tha t  2Xq.  Let  x,, y, be a basis of E, consisting 

of isotropic vectors with B(x, ,yj)=6ij .  I f  we set zt=x,  for l<~i<~g and zi=y~_g for 

g + 1 ~< i ~< n, then with respect to this basis of E, the elements of G~ are represented 

by  the matrices of the form 

with A, B, C, 1) arbi t rary  g x g  matrices with coefficients in ~ and such tha t  det  a is 

a uni t  in 9 .  If  we impose the condition tha t  such a matr ix  represent an  element of 

O(q)) we find t h a t  tAD-= 1 (rood p). Hence, det  a = 1 (rood p), while 2 "t" q- I t  follows 

tha t  G~ N O(q))~ SO(q)) and hence SO(q)) is not  transit ive on ~(q)). 
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However ,  

and  the assert ion follows. 
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Section 5. Discrlminants 

Let  ~ be a norm on E.  In  section 3 we described an  extension of ~ to a norm 

on the exter ior  a lgebra A E of E. As a consequence of Proposi t ion 3.9 we obta in  the 

following useful fact: 

P R O P O S I T I O n  5.1. Let o~ be a norm on E and let {x~}, {Yi} be two bases o/ E 

with respect to which ~ is canonical. Let e EAut  (E) be de/ined by y~ = a(x~). Then, 

n n 

Proo/. I t  follows f rom Proposi t ion 3.9 t h a t  

A~ (a) (x 1 A ... A x,) = I-I a(x~) 

A ,  (~) (y~ A ... A Yn) = YI a(y~). 

Yl A . . .  A Y n  = (det a) (x~ A ... A x~), 

Le t  ~ E ~ (E)  and  let ~ be a non-degenerate  quadrat ic  form. Le t  {x~) be a basis 

with respect  to which ~ is canonical.  Set 

I t  follows immedia te ly  f rom Proposi t ion 5.1 t h a t  A(~, ~) is independent  of the choice 

of {x~}; we call A(~0, ~) the discriminant of q) wi th  respect  to  ~. 

P R O P O S I T I O N  5.2. 1 /  a E A u t ( E ) ,  then 

A(~0o -1, aa)  = A (~0, ~). 

Proo/. Let  {x~} be a basis wi th  respect  to which a is canonical,  and  set y~ =ex~. 

Then ag is canonical with respec t ' t o  {y~} and ao~(y~)= ~(x~), while B a  -1 (y~, yj)=B(x~,  xj). 

The result  follows immedia te ly .  

THEOREM 5.31 Let q) be a non-degenerate quadratic/orm. Then, A(% a) is the same 

/or all ~ in ~(q~). Let d(q~) be the value assumed by A(% a) /or ~ E ~(q)). I / f l  E ~(~) ,  

then A (% fl) ~ d(q:), and equality hol~Is only when fl ~ ~(q~). 

Proo/. Since O(q~) is t ransi t ive  on ~ ( ~ ) ,  i t  follows immedia te ly  f rom Proposi-  

t ion 5.2 t h a t  A(q, ~) is the same for  all ~E~(q~) .  
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Let  fle~(~0). Then, there  is an  ~ e ~ ( ~ )  wi th  ~ < f l .  Le t  {xi} be a basis wi th  

respect  to which bo th  ~ and  fl are canonical. Then,  ~(x~)<~(xi), and 1-i~-i ~(x~)= 

1-[~=lfl(x~) can hold only for ~ = f l .  Thus,  A(~0, fl)~<A(~0,~) and  equal i ty  holds only 

for ~ = f l .  

Remarlc. The value of d(~) m a y  be de termined explicit ly in case the eharaeterist ie  

of ~ / p  is not  2. I f  g is the index of ~, name ly  the  dimension of a max ima l  to ta l ly  

isotropie subspaee of E,  then  d ( ~ ) = q  g. We use the no ta t ion  of Theorem 4.15: E =  

E 0 + ... + Eg where ~ I E~ is definite and  for 1 ~ i ~ g, E~ is a hyperbolic plane. If, for  

l ~ i ~ g ,  x~, y~ form a basis of E~ consisting of isotropic vectors  with B(x~,y~)=1, 

then  we have  ~(x~)~(y~)=q-�89 (Theorem 4.12). Also, if zl, ..., zn is a basis of E 0 with 

respect  to which ~ / E  0 is diagonal,  then  it follows f rom Proposi t ion 4.19 t h a t  

[s~ (~a,z,) = s u p  ([~0(z,)[ �89 ]a,[). 

Then,  the de te rminan t  of B with respect  to the basis {x~, Ys, z~} has an absolute  

value of 1-Ik[~0(zk)[, while the  produc t  of the  values  of zt 2 on this basis is q-gl-I[~(zk)]. 

Hence,  A (% ~) ~ qg. 

Le t  {x~} be a basis of E. I f  ~ is a quadrat ic  form, there  is some basis in which 

~0 is diagonal.  This m a y  be expressed by  the s t a t emen t  t ha t  there is a a EAut  (E) 

such t h a t  ~0a is a diagonal  in the  basis {x,}. I f  y, is a diagonal  in {z~}, with ~p(ha, x,)= 

z~a~, then  by  replacing ~p b y  ~trr, with v sui tably  chosen in Aut  (E), we m a y  keep 

y, diagonal  and change each g~ modulo K .2. Since K * / K  .2 is a finite group, we arrive 

a t  the  following result: 

PROPOSITION 5.4. There are only a /inite number of orbits of quadratic ]orms 

under the action o/ Aut  (E). 

As an immedia te  consequence of this result, we have:  

TH~OR]~M 5.5. Let o~ be a given norm, and let X be the set o/ all non-degenerate 

quadratic /orms q9 such that o~ ~ ~(cF). Then X is stable under the action o/ G~ and 

decomposes, under that action, into a finite number o/ orbits. 

Proo/. Suppose t h a t  ~ and  ~ are in X and are equivalent  in Aut  (E), i.e., y~ =~0~ 

with  ~ ~ Aut  (E). Then, ~ ~ ~(~0) while a t  the same t ime a ~ ~(~0). Since 0 (~ )  is 

t ransi t ive  on ~ ( ~ ) ,  we have  a a  = ~  with ~ 0 ( ~ 0 ) ,  and  hence a = O ~  with v~G~. Thus,  

or ~0 and y~ are in the same orbit  under  G~. The result  now follows f rom Proposi-  

t ion 5.4. 
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We need several pre]iminary propositions in preparation for the main result of 

this section. 

I f  ~ is a non-degenerate quadratic form and a e~(q~), we have seen in Theo- 

rem 5.3 that  A(~,~)  depends only on ~0 and not on the choice of ~; we set d (~ )=  

h (% ~). 

PROPOSITION 5.6. As 9) ranges over all non-degenerate quadratic/orms, d(qJ) ranges 

over a finite set. 

Proo/. I f  a e ~ ( ~ )  and a e Aut (E), then aa  e ~ (~a-1) ,  and by  Proposition 5.2, 

A ( ~ a - l , a ~ ) = A ( % ~ ) .  Thus, d(q~a-1)=d(q)), and the assertion follows from Proposi- 

tion 5.4. 

Let  ~ and fl be norms on E, and let {x~} be a basis with respect to which both 

and fl are canonical. I t  follows from Proposition 3.10 tha t  the n-discriminant 

5n(~, fl) YL 8(x,)" 

Since we shall use At(a, 8) only for r=n,  we shall write A(a, 8 ) in place of An(a, 8). 

I t  is clear tha t  

A (% 8) = A (% ~) • (~, 8) ~, 

where ~0 is any non-degenerate quadratic form. 

LEM~A 5.7. U ~<f l ,  then A(a, 8 ) f l<~. 

Proo/. Let {x~} be a basis with respect to which both a and fl are canonical. 

Then, a(x~) ~< 8(x~), and 

~ . ~  8 ( x j )  " "" 

COROLLARY 5.8. Let 8 be a given norm, and c a given real number with 0<c~< 1. 

Then the set o/ all ~ such that o:<~ 8 and A(a, 8)=c is compact. 

Proo]. For fixed 8, the function of ~ given by A(~ , f l ) i s  clearly continuous. 

Hence the set of ~ for which A ( ~ , 8 ) = c  is closed. By Lemma 5.7, each a under 

consideration has the property cS<-~o~<~ 8. But this is the same as the s tatement  

d(a, c�89 log c-�89 The set of all a with the latter property is compact, from which 

we obtain the desired conclusion. 

L]~MMA 5.9. For a given integer g, the set ~g is uni/ormly discrete. Explicitly, i/ 

~ # 8  are in ~g, then d(a, 8)>Jg-llogq. 
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Proof. Suppose that  ~ and fl are in ~g with d(~, fl) < g-~ log q. Let  (x,} be a basis 

with respect to which both ~ and fl are canonical. Then, 

I , ~ ( x , )  I 

I a(x') ] <-1 l~ q" so that, for each i, log fl-~) g 

I t  follows from the hypothesis a, fl E ~ ,  that  a(xi)=fl(xi) or that  a =ft. 

After these preliminaries, we arrive at  the main result of this section: 

THEOREM 5.10. Let fl be a given norm and c a given positive real number. Let 

Y be the set o/ all non-degenerate quadratic forms which satisfy the following two con- 

ditions: 

(1) fl E ~(~) 

(2 )  ~ (~, fi) = c. 

Then, Y is 8table under the action of G~ and decomposes, under that action, into a finite 

number o/ orbits. 

Proof. Let  ~EY. Then there is an a E ~ ( ~ )  with ~<fl .  We have, 

i (a ,  fl)2 = A (~P, fl) A (~9, a ) - I  = c d ( (p) - l .  

According to Proposition 5.6, the values of d(~0) lie in a finite set, hence the values 

of A(~, fl) lie in a finite set. 

Let  A be the set of all a which arise in the above manner; it follows from 

Corollary 5.8 that  A is compact. However, A c ~  2, so that  by Lemma 5.9, A is 

discrete. Thus, A is a finite set. Let  ~1 . . . .  ,~a be the elements of A. For i = 1 , 2 ,  . . . , h  

let Y~ be the set of those ~E Y for which as E~(~) .  (These sets are not necessarily 

disjoint.) Then Y is the union of Y1 . . . . .  Ya- Clearlyl each Y~ is stable under the: 

action of G~ N G~. Since both G~ and G~ are compact open subgroups of Aut (E), the 

index of G~ N G~ in G~ is finite. Applying Theorem 5.5, we conclude that  Y~ decom- 

poses into a finite number of orbits under the action of G~ N G~, from which it follows 

immediately that  Y decomposes into a finite number of orbits under the action of G~. 

There is a sort of dual to Theorem 5.10. 

THEOREM 5.11. Let q~ be a non.degenerate quadratic form and let c be a positive 

number. Let U be the set o/ those norms ~ E ~(q~) /or which A(~, ~)=c.  Then U is stable 

under the action o/ O(q~) and the quotient space of U rood 0(~) is compact. 
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Proo/. Let fl be an element of ~ ( ~ ) ,  and let U' be the subset of U of those 

for which ~ > f l .  Let ~ be any element of U. Then, there is a ~ E ~ ( ~ )  with 7~<~. 

Since 0 (~ )  is transitive on ~ ( ~ ) ,  it follows that every orbit of U under the action 

of O(~) meets U', so that we need only prove that U' is compact. Now, U' is Clearly 

closed. At the same time, if ~ E U' we have fl ~< ~ <  A(~, fl)fl and 

A ( ~ ,  ~)2 : A (~9, ~)  i (~0 ,  0~) -1, 

or A(~,fl)=(d(~0)/c) �89 But  the set of all norms a satisfying these inequalities is com- 

pact, so that U' is also compact. 
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