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l .  Introduction 

I n  th is  pape r  we s t u d y  an  extens ion to  compac t  abe l ian  groups  of the  two ce lebra ted  

theorems  of F .  and  M. Riesz [15] concerning ana ly t ic  measures  on the  circle group.  The  

con ten t  of these theorems  is as follows: 

Let la be a Borel measure on the circle satis/ying 

f +~e~n~ = ( n =  1, 2, 3, . . .) .  0 

Then 

A.  # is absolutely continuous with respect to Lebesgue measure. 

B. I / / u  vanishes identically(1) on a set o /pos i t ive  Lebesgue measure, then/~ must  be 

the zero measure. 

I t  is no t  ha rd  to  see t h a t  A and  B toge the r  are  equ iva len t  to  the  following: 

The  collection o/ Borel sets on which ~ vanishes identically is invariant under rotation. 

This is the  asser t ion concerning ana ly t i c  measures  t h a t  we ex tend  to  compac t  abe l ian  

groups.  Before s t a t ing  this  ex tens ion  we make  the  basic  definit ions.  

I n  all  t h a t  follows G is a compac t  abe l ian  group and  G i ts  discrete  dual .  A n  "o rde r ing"  

of G is given b y  a f ixed non- t r iv ia l  (2) homomorph i sm y~ of G into  the  group R of real  num- 

bers.  The mapp ing  yJ: ~-->R is a cont inuous  homomorph i sm and  thus  induces a cont inuous  

(1) i~ vanishes identically on E if ~u(F) = 0 for all Borel subsets F of E. 
(2) We assume that yJ(G) ~ {0}. 
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homomorphism ~: R-~G of the associated dual groups; ~ is the unique mapping of R into 

G satisfying 

a(q~(t)) = e ~(")t (tER, aEG). 

By measure on G we shall always mean  finite complex regular Borel measure. I f  # 

is a measure on G, we denote by  I#[ the associated total  variat ion measure, tt is said to  

vanish identically on a Borel subset E of G if I#] ( E ) = 0 . / t  is called quasi - invar iant  under  

if the collection of Borel subsets of G on which tt vanishes identically is invariant  under  

t ranslat ion by  elements of ~(R). 

A measure or funct ion on G is called q~-analytic if its Fourier  t ransform vanishes on the  

"negat ive  half"  {a: y:(a)<0} of G. 

M A i N T H E 0 R E M. Let  tt be a q~-analytic measure on G. T h e n  # is quasi - invariant  under ~.  

This result  is established in sections 6 and 7. The method  is roughly  as follows. 

I n  section 6 a covering group R • K for G is constructed in which the one parameter  sub- 

group ~(R) is "unwound" ,  and the Main Theorem for G is reduced to  the corresponding 

result for the covering group. In  section 7 this result for analyt ic  measures on R • K is 

established by  decomposing such measures into analyt ic  measures concentrated on fibers 

R • {u} and applying the  one-dimensional F. and M. Riesz Theorems to  these measures. 

The earlier sections of the paper are devoted to consequences of the Main Theorem. 

In  section 3 we s tudy  extensions of the first F.  and M. Riesz theorem sta ted above. Al though 

a ~-analytic measure need not  be absolutely continuous with respect to Haa r  measure on 

G, we obtain a class of Borel sets on which ~-analyt ic  measures mus t  necessarily vanish. 

These are the Borel subsets of G tha t  intersect each coset of T(R) in a set of linear measure 

zero. We also obtain an extension of the theorem of Bochner  [2] t ha t  states t ha t  a measure 

on the n-torus whose Fourier  t ransform vanishes off the positive oc tant  must  be absolutely 

continuous. 

I n  section 4 we establish analogues of the  second of the F. and  M. Riesz theorems. We 

obtain a theorem tha t  has as consequences the facts that ,  if ~0(R) is dense in G, an absolutely 

continuous ~-analyt ic  measure cannot  vanish identically on a set of positive H a a r  measure 

(due to Helson, Lowdenslager and Malliavin [10]), and an arbi t rary  ~0-analytic measure 

cannot  vanish identically on an open subset of G. 

Section 5 is devoted to  fur ther  consequences of the  Main Theorem. The results are in 

par t  refinements of theorems of Helson-Lowdenslager [9] and Bochner  [2]. 

I n  what  follows we shall use wi thout  comment  the basic results of abst ract  harmonic  

analysis, for which see [13]. We denote Fourier  t ransform by  ^ and convolution by  ~e. 
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We use the fact  (see [5 t or see the recent paper  of Heble and Rosenblat t ,  Proc. Amer. 

Math. Soc., 14 (1963), 177-184) tha t  if # and 2 are measures on G, and E is a Borel subset 

of  G, then x-->~( - x  § E) is a Borel funct ion on G and 

# ~ ( E )  = f a  '~( - x + E)d/~(x). 

For  measures # and ~, # < <~  will mean tha t /~  is absolutely continuous with respect 

to  2. If/~ is a measure on G, we shall s imply say that /~  is absolutely continuous or tha t /~  is 

singular if it is absolutely continuous or singular with respect to H a a r  measure on G. 

The results of this paper  have been announced in [6]. 

2. Properties of  quasi-invariant measures 

The Main Theorem, proved in sections 6 and 7, asserts the quasi-invariance under  

of T-analytic measures on G. I n  this section we s tudy  group and measure theoretic conse- 

quences of quasi-invariance for a rb i t rary  measures. The results obtained are applied, 

together  with the Main Theorem, in the following three sections to establish properties of 

v-ana ly t ic  measures. 

I t  is not  hard  to show tha t  a measure/u on the circle group is quasi-invariant  under  

ro ta t ion  if and only if it is absolutely continuous and does not  vanish identically on any  

set  of positive Lebesgue measure; equivalently, if and only if ]#] and ~ - I # [  are mutua l ly  

absolutely continuous, for ~ t t aa r  measure on the circle. The main theorem of this section, 

Proposi t ion 2.3, is the analogue of this result in this context  we are considering. Before 

proving this theorem we must  make the appropriate  definitions and prove two lemmas. 

A Borel subset E of G will be called null in the direction o/q~ if for each x in E the coset 

x +~(R)  intersects E in a set of linear measure zero, and will be called thick in the direction 

o / ~  if for each x in E the coset x+qJ(R) intersects E in a set of positive linear measure. 

More precisely, E is null (resp., thick) in the direction of ~ if for each x in E, 

(t: tE R, x § E E} 

has zero Lebesgue measure (resp., has positive Lebesgue measure). 

We shall denote by  ~ the image on G of the measure (1 +xZ)-ldx on R under  the 

mapp ing  T: R-~G. Then, for any  bounded Borel measurable function / on G, we have 

The  main proper ty  of the measure ~ tha t  we use in what  follows is tha t  for a Borel subset 

E of G, {x: xeG: e(-x+E) >0} is precisely the set of those x tha t  are such tha t  x+cf(R) 
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in tersec ts  E in a set of posi t ive  l inear  measure .  I n  par t i cu la r ,  th is  set is i nva r i an t  unde r  

t r ans l a t ion  b y  e lements  of ~(R).  

I t  will be convenient  for us to  rephrase  the  null  and  th ickness  condi t ions  in t e rms  of 

the  measure  ~. Because of the  fo rmula  

fo f+= 1 ~ ( - x + E ) =  Z - x + s d Q =  : ) ~ s ( x §  

a Borel  subset  E of G is nul l  in the  d i rec t ion  of ~ if and  only  if Q ( - x §  = 0 ,  all  x in E ,  

and  is th i ck  in the  d i rec t ion  of ~ if and  only  if Q( - x § E) > 0, all  x in E .  

W e  shall  call a measure  ~u on G absolutely continuous in the direction o/cf if/~(E) =0 

for all  Borel  sets E t h a t  are  nul l  in the  d i rec t ion  of ~. 

LEMMA 2.1. Let/~ be a measure on G. Then the/ollowing are equivalent: 

1 ~ /~ /s  absolutely continuous in the direction o/qJ; 
20 I , l  < < 

Proo/. (2 ~ implies  1 ~ Le t  E be a Borel  subset  of G t h a t  is nul l  in the  d i rec t ion  of % 

so for each x in G, ~ ( - x + E ) = 0 .  Then  

~++I/~I(E) : _IcQ(-x + E)dl#l  (x) = 0, 

so, b y  2 ~ [~[(E)=0. 
(1 ~ implies  2 ~ Le t  E be a Borel  subset  of G wi th  ~-)+l ju l (E)=0.  W e  mus t  prove 

I~ul(E) =0 .  Define the  ~0(R)-invariant subsets  G O and  G 1 of G b y  

Go = {x: xeG, e ( - x + E )  =0},  

G1 = (x: xEG, ~ ( - x + E )  > 0 ) .  

Le t  E o = E n G o and  E 1 = E fl G 1. I f  x is in E0, t hen  

0 <<.~(-x+Eo) <<.~(-x+E) =0, 

so E 0 is nul l  in the  d i rec t ion  of ~. A n d  since # is assumed abso lu te ly  cont inuous  in th~ 

di rec t ion  of % we have  I~ul (Eo)=0 .  Fu r the rmore ,  b y  hypothes i s  

f a~( - x  + E)d[p [ (x) = ~ ++ I/~ I ( E) = O, 

and  ~ ( - x + E )  > 0  for x in El ,  so I#1 ( E l ) = 0 .  This proves  t h a t  

I~I(E) = I~l(Eo)§ I~I(E~) =0 .  
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We shall call a measure/x on G non-vanishing in  the direction o/~v if ]ju] (E) > 0  for each 

Borel subset E of G tha t  is thick in the direction of q and for which(1) I # ] ( E  +~v(R))>0. 

L:EMMA 2.2. Let # be a measure on G. Then the/ollowing are equivalent. 

1 ~ /x is non-vanishing in  the direction o/q~; 

2 ~ <<1#1. 

Proo/. (2 ~ implies 1 ~ Assume tha t  2 ~ is t rue and 1 ~ false. Then there is a Borel set E,  

thick in the direction of % with I/xl ( E ) = 0  and I~tl(E § Because of 2 ~ 

0 =~++I/~[(E) = f  ~ ( - x + E ) d [ # [ ( x ) .  

Since E is thick in the direction of % E §  is precisely the set of x where ~ ( - x  + E ) >  0, 

and this contradicts I#1 (E +~(R))  >0 .  

(1 ~ implies 2 ~ ) Let  E be a Borel subset of G with ] /~ [ (E)=0 .  We must  prove 

~ +  I/x I (E) =0.  Define the Borel subsets Go, G D E o and E~ of G as in the proof of Lemma 2.1. 

As in t ha t  proof, E 0 is null in the direction of ~, so 

e+ I.I foe<-x+  o)dl l <x) 0. 

E 1 is thick in the direction of % for x is in E 1 if and only if (x+q~(R)) N E has positive 

linear measure, in which case 

(x+q)(R)) N E = (x+q)(R))  N E 1. 

Since 0 ~< I/~1 (El)~< I#l ( E ) = 0  and # is non-vanishing in the direction of % we have 

]/~1 (El §  =0.  Thus 

e+l l (El) =j;~(-x+E~)dl~l(x) = o ,  

since the integrand is positive precisely for those x in E 1 +T(R).  This completes the proof 

t ha t  

e++I/~[(E) = e++l/~[(Eo) +e++l/zl (El) = 0 .  

We are now able to state the main  result of this section. 

P R 0 P o s I T I 0 N 2.3. Let ~ be a measure on G. Then the/ollowing are equivalent: 

1 ~ /~ is quasi-invariant under qD; 

(1) If E is thick in the direction of qv, E + of(R) = (x :Q( - x  + E) > 0 }, and thus E + ~(R) is Borel. 
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2 ~ /x is absolutely continuous and non-vanishing in the direction o/cf; 

3 ~ I/x] and ~ I / X l  are mutually absolutely continuous. 

Proo/. (3 ~ implies 1 ~ For  any  measure/X, e-x-I/Xl is quasi-invariant  under  r because ot 

e+I/XI(E)  = ~aQ( - x  § E)dl/x l (x), 

~ e  I/Xl (~ ( t )+E)  = J ~ ( - x + q J ( t )  + E ) d l #  I (x), 

and the fact that ,  for each t in R, 

{x: xeG, ~(-x+ E)>O}={x: xeG, e(-x+~(t)+E) >0}. 

I t  follows that/X is quasi-invariant under  ~ if I/Xl is mutual ly  absolutely continuous with 

respect ~ • I/X I" 

(1 ~ implies 3 ~ Assume/X is quasi-invariant  under  ~. For  any  Borel  set E,  

Thus if I # I ( E ) = 0 ,  so tha t  I /x l ( -q~( t )+E)=0,  all t, we have ~ I # I ( E ) = 0 .  And it 

-)e I/Xl (E) =0 ,  then  J/X I ( - ~ ( t )  § E) = 0  for some t, and thus I/XJ (E) = 0. This shows I/Xl and 

Q ~ I# I mutual ly  absolutely continuous. 

This completes the proof of Proposi t ion 2.3, as the equivalence of 2 ~ and 3 ~ is a conse. 

quence of the preceding two lemmas. 

Before stating the last result  of this section, which is the analogue in our context 

of a result  of Plessner [14] for the circle group, one fur ther  definition is necessary. We shall 

say tha t  a measure/X on G translates continuously in the direction o/ q~ if 

lim II/xt- #11 = 0, 
t-)0 

where I1"11 is the total  variat ion norm, and for each t in R the t ranslated measure/xt  i,, 

defined by  

#t(E)  =/x(~(t) + E). 

PROPOSITION 2.4. Let/X be a measure on G. Then the/ollowing are equivalent. 

1 ~ /~ is absolutely continuous in the direction o/qJ; 

2 ~ # translates continuously in the direction o/q~. 
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Proo/. (2 ~ implies 1 ~ Let E be a Borel subset of G null in the direction of q. We must  

prove/x(E) =0. For each positive integer n denote by v, the measure on G tha t  is the image 

under the mapping ~v: R--->G of the uniform measure of total  mass 1 on the interval 

I - I/n, + 1/n]. Because/x translates continuously in the direction of % 

lim II v,~-x-/,- ~11 = O, 

:and in particular #(E) = lim v,-)e~(E). 

But  for each n, 

v ~ # ( E ) = ~ v . ( - x + E ) d # ( x ) = f c  \2 . ] l ,  XE(X+cf(t))dt)dt~(x)=O, 

since E is null in the direction of ~. This proves # ( E ) = 0 .  

(1 ~ implies 2~ We shall denote by  M(G) the Banaeh space of measures on G supplied 

with the total  variation norm H" I], and by Mc(G ) the subset of M(G) consisting of those 

measures that  translate continuously in the direction of q. I t  is easy to check that  Mc(G) 
is a closed linear subspace of M(G) and contains Vn-)elU, for vn defined in the first part  of 

the  proof and # any measure on G. Suppose now that /x  is a measure on G absolutely con- 

tinuous in the direction of ~. We shall prove tha t  vn ~/x converges to/x weakly in the Banach 

space M(G). This will complete the proof tha t  # is in Mo(G), for each v,~+# is in the strongly 

closed linear subspace M~(G) of M(G), and a strongly closed linearly subspace must  be 

weakly closed (see [7], theorem 13, p. 422). To show tha t  v , ~ #  converges weakly to # 

i t  suffices to demonstrate (see [7], theorem 5, p. 308) 

lim v~-~kt(E ) = #(E) 
n - ~  

for an arbi trary Borel subset E of G. Denote by  F the subset of G consisting of those x 

for which 

n (  +l/n 
lim ~ Z~(x+cf(t))dt=ZE(X). 
n....-~ d -lln 

F is a Borel set, and by  the metric density theorem (see for example [8], p. 211) its com- 

plement G\F is a set null in the direction of ~v. Thus, since/x is absolutely continuous in the 

direction of % ]#] (G\F) =0; equivalently 

lim _n (+l/~ ,--,~ 2 a-ll,  ZE(x + q~(t))dt = ZE(X) 

13 - 632918 Acta mathematica 109. I m p r i m 6  le 14 juin 1963. 
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almost everywhere with respect to I#1" So as a consequence of the Lebesgue bounded con- 

vergence theorem we have 

vn~la(E) = lim ~ vn( - x + E) d#(x) lim 
n....~t~o n*.-~oO J a  

This completes the proof. 

lira f a  (2 f+l :n  dt) d~(x) = J-1/n Z E ( Z  "4- ~0( t ) )  

= f a  ZE(x) d#(x) = g(E). 

3. Extensions of  the first Riesz theorem 

In this section we establish, as consequences of the Main Theorem and the results of 

the preeeeding section, absolute continuity properties of analytic measures. The results 

given here are extensions of the first of the F. and M. Riesz theorems. 

THEOREM 3.1. Let/x be a qo-analytic measure on G. Then # is absolutely continuous in the 

direction o/ % Equivalently, # translates continuously in the direction o/ q~. 

Proo/. Immediate from the Main Theorem, Proposition 2.3 and Proposition 2.4. 

If/~ is a measure on G, the ~v-conjngate of # is defined to be that  measure ~u~ (if such 

exists) whose Fourier transform satisfies 

~ ( a ) ,  ~0(a) > 0 

p~(~ )  = 0,  ~ ( a )  = 0 

- ~ (a ) ,  V(a) < 0.  

Suppose that  ju is a measure on G that  has a v/-conjugate/x~. Sinee/x = �89 +/x~) + (/~ - /~ ) ) ,  

Theorem 3.1 applied to /x+/x~ and /x -#~  yields the following, which is equivalent to  

Theorem 3.1. 

THEOREM 3.2. Let # be a measure on G having a ~-conjngate. Then i x is absolutely con- 

tinuous in the direction o/~v and translates continuously in the direction o/q~. 

The following theorem is the extension to our context of a result for the circle group 

due to Rudin [16] and Carleson [4]. 

T]KEOREM 3.3. Let E be a closed subset o/G. Then the/ollowing are equivalent: 

1 ~ E is null in the direction o/q~; 

2 ~ For each continuous/unction h on E there is a continuous q)-analytic/unction / on G 

that agrees with h on E. 
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Proo/. (1 ~ implies 2 ~ Let/z  be any measure on G that  is orthogonal to all continuous 

~0-analytic functions on G. Then in particular, Scad#=O for each a in G with y)(a)>~0. 

Equivalently, /2 vanishes on {a: aEG, yj((r)~<0}. So tt is analytic and by Theorem 3.1, 

#(El) =0  for each Borel E1c  E, or Ittl (E)=0.  Since I#1 ( E ) = 0  for any measure # that  is 

orthogonal to all continuous ~-analytic functions, 2 ~ is a consequence of Theorem 1 of [1]. 

(2 ~ implies 1 ~ Assume that  1 ~ is false and 2 ~ true. By translating E if necessary we 

may assume that  ~(R) fl E has positive linear measure. Let K =~0-X(E), so K is a closed 

subset of R having positive Lebesgue measure. We have assumed that  ~p is a nontrivial 

homomorphism and thus ~0 is a non-trivial homomorphism. Consequently, it is possible to 

find an interval I of R and a point k of K so that  I N K has positive Lebesgue measure and 

~(k) is not in ~(I). By the Tietze extension theorem there is a continuous function h on E 

equal to 0 on E f/q~(I) and 1 at ~(k). By the assumption of 2 ~ there is a continuous el- 

analytic function / on G agreeing with h on E. The function/o~0 on R has an analytic 

extension to the upper half-plane since ] is ~-analytic, and it is 0 on I N K and 1 at k. But 

this is impossible since a bounded analytic function in a half-plane cannot have boundary 

valuez zero on a set of positive Lebesgue measure without vanishing identically. The com- 

pletes the proof of Theorem 3.3. 

If  H is the n-torus, its d u a l / t  is the group of lattice points in real n-space. Bochner's 

extension of the first F. and M. Riesz theorem (see [2]) states that  any measure on the 

n-torus whose Fourier transform vanishes off the positive octant of the lattice points must 

be absolutely continuous. The follo~mg consequence of Theorem 3.1 is an extension of the 

Bochner theorem. To obtain Bochner's theorem from this result, define Y~s, for ~ = 1 ..... n, 

by ~os(ml,...,mn)=m r Then if # is a measure on the n-torus whose Fourier transform 

vanishes off the positive octant, ;%s =/~' ~ = 1 ..... n. 

THEOREM 3.4. Let H be the n.torus, t t a measure on H and {Y~l .... ,v/n} a linearly independ- 

ent(1) set o/homomorphisms o/I:I into R. Assume that/or j = l  ..... n the conjugate measure 

#vj exists. Then # must be absolutely continuous. 

Proo]. Denote by q~s: R-->H the homomorphism dual to ~0s:/t-+R. Let M(G) be the 

Banach space of measures on G supplied with the total variation norm. For x in G, denote 

by Tx# the measure on G defined by T x # ( E ) = # ( x + E  ). By Theorem 3.2, for j = l  ..... n, 

the mapping t--+T~ojct)l u of R into M(G) is continuous. Since the YJs are linearly independent, 

for t small enough, the mapping 

(1) W e  a s s u m e  t h e r e  a r e  n o  c o n s t a n t s  Cl , . . . , c  n so t h a t  c~tpl + . . .  +Cn~Pn is t h e  ze ro  m a p p i n g  f r o m  

/ / to  R. 
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(tl, ... ,t.)--~cpl(tl) ...~n(tn) 

is a homeomorphism of a neighborhood of the origin in n-space with a neighborhood of the 

identity element of H. Thus, by the continuity of t---~T~j(t)# for j = l  .... ,n, x-+Tx/z is a 

continuous mapping of G into M(G). So by the generalized Plessner theorem (see for ex- 

ample, Theorem, p. 230, [17]) kt must be absolutely continuous with respect to Haar 

measure of H. 

4. Extensions of the second Riesz theorem 

In  this section we establish, as consequences of the Main Theorem and the results of 

section 2, non-vanishing properties of analytic measures. The results given here are ex- 

tensions of the second of the F. and M. Riesz theorems. 

THEOREM 4.1. Let t t be a q~-analytic mewsure on G. Then 1 a is nonvanishing in the direc- 

tion o / %  

Proo]. Immediate from the Main Theorem and Proposition 2.3. 

Because of Theorem 4.1, a ~-analytic measure vanishing identically on an open subset 

U of G must also vanish identically on the set ~(R) + U. But we cannot conclude from this 

that  # is the zero measure unless ~(R) is dense in G; or equivalently, that  ~p: G-->R is 

one-one. Thus we make this assumption below in order to be able to draw the stronger 

conclusion. 

Par t  2 ~ of the following is due to Helson, Lowdenslager and Malliavin in [10]. We have 

not been able to obtain a proof of part 1 ~ by their methods. 

THEOREM 4.2. Assume of(R) dense in G. Let l ~ be a ~-anaIytic measure on G that either 

1 ~ vanishes identically on an open subset o / G  or 

2 ~ is absolutely continuous and vanishes identically on a Borel set o/ positive Haar 

measure. 

Then # is the zero measure. 

Proo]. (1~ Suppose # vanishes identically on the open subset U of T. U is thick in the 

direction of % so by Theorem 4.1,/~ vanishes identically on ~0(R) + U. But ~0(R) is dense in 

G, so ef(R) + U = G .  

(2 ~ We shall denote normalized Haar measure on G by ma. Let E be a Borel subset 

of G with ma(E) >0  and I/tl (E) =0.  We must show # is the zero measure. By Theorem 4.1 

and Lemma 2.2, ~-[ /~[(E)  =0. Thus 

= e ~  ]l~[ (E) = l" ( - x +  E)dl/al  (x), 0 
J 6  
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so I/t] (G1) =0 ,  if G 1 is defined to be 

{x: xeG, e(-x+E) > 0}, 

a Borel set invariant  under  translations by  elements of ~(R). Since ~-)e ma =ma,  

f ( - x  E)dma(x) me(E) O, + 

so tha t  ma(G~) > 0. Consequently the characteristic funct ion Ze, of G~ is a non-zero element 

of LI(G ) fixed under  translat ions by  elements of ~(R); and since elements of LI(G) t ranslate  

continuously,  Za, is left fixed by  translat ion by  any  element of ~(R)-  =G.  Eviden t ly  then 

ma(G1) = 1, which proves # is the zero measure since ma(G~) = l, ]/t ] (G~) = 0, and I#l < <ma .  

5. Further properties of analytic measures 

In  this section we establish some fur ther  properties of measures on G tha t  are absolutely 

continuous in the direction of ~0. As a consequence of Theorem 3.1, these results are valid 

for all T-analytic measures on G. For  such measures, the results t ha t  we state are in pa r t  

extensions of results of Bochner  [2] and Helson-Lowdenslager [10].(1) 

Throughout  this section, for # a measure on G, # =/~a +/z~ is its decomposit ion into par ts  

absolutely continuous and singular with respect to  H a a r  measure on G. I t  is clear f rom the 

definition of absolute cont inui ty  in the direction of ~ tha t  #a and tts will be absolutely 

continuous in the direction of V if # is. 

PROPOSITION 5.1. Let tt be a measure absolutely continuous in the direction o] % Let 

K be a closed subset el R. I / f t  vanishes o//~-I(K), then fta and ft~ also vanish o / /K.  

For  /z a v-analyt ic  measure and K={t:  t~<0}, this result  is essentially Theorem 7 

of [9]. 

I t  is convenient  to establish a lemma before the proof of Proposit ion 5.1. 

LEMMA 5.2. Let # be a singular measure on G absolutely continuous in the direction o/ qJ. 

Let ,~ be the image under q~: R-->G o/ some measure ~ on R. Then ~-)ett is also singular. 

Proo/. Since # is singular we can find a Borel subset B of G having H a a r  measure 1 

and ]re] ( B ) = 0 .  Let  B o be the intersection of 

{~(t) + B: t rational}, 

(1) Bochner  has  informed us t ha t  he is able to obta in  the conclusions of Proposi t ion 5.1, 5.3 and 

5.4 for ~-analytic measures  using the results  of [9]. F r a n k  Forelli has  obtained a special case of L e m m a  

5.2 for ~0-analytic measures  using quite different  methods.  
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so Bo has Haar  measure 1 and ] /~l(-r  + B0) = 0  for rational t. I~ul is absolutely continuous 

in the direction of ~, so by Proposition 2.4, t-->l~ul(-~(t)+B0) is continuous and thus 

I # l ( - q ~ ( t ) + B o ) = O  for all t e R .  Let D be an arbi trary Borel subset of B o. Then 

# ( - r  = 0  for all t e R ,  so 

]t~et~(D ) = #(  - x + D)d2(x)  = ~r ]a( - q)(t) § D)dv(t)  = O. 

This proves I2-)e#l (B0)=0, and since B o has Haar  measure 1, ~t-)e# must be singular. 

We now proceed to the proof of Proposition 5.1. Suppose the proposition false. Then 

there is an clement ao of G not in ~- i (K)  with/2a(a0) ~:0. Since K is a closed subset of R 

and ~P(ao) is not in K it is possible to find a measure v on R with ~ =-- 0 on K and ~(~(a0) ) ~0. 

Let  A be the image of v under ~: R-->G. Then ~t =vo~v, and as a consequence ~ - #  =0,  since 

(~-~)^  =)t/2, f~ vanishes off ~- i (K)  and ~ vanishes on ~p-i(K). So we have ~-)eju~= - ~ - ~ .  

2~e#~ is absolutely continuous, and by Lemma 5.2 applied to ~u~, )t-~/~, is singular. Thus 

~ # ~  = ~ e / ~  =0.  But  

,~ ' -~a(O'o)  = ~((70)~a(O'o) = ~(~/.)(O'o))/~a(ao) ~ O, 

so we have a contradiction, completing the proof of Proposition 5.1. 

In  the following two results, we assume for simplicity of s tatement  tha t  G is R with 

the discrete topology and ~: G-->R the identity mapping, so tha t  G is the Bohr compacti- 

fication of the reals. For the validity of the results it would have sufficed to assume ~o 

one-one. 

PROPOSITIOn 5.3. Let  # be a s ingular  measure  on G that is  absolutely cont inuous  in  the 

direct ion of of. T h e n  {a: aER, /2 (a )~0}  is  a subset o/ R containing no isolated points.(l) 

Proo/ .  Suppose a 0 were an isolated point of (a: a E R ,  f~(a) #0}. Let  v be a measure on 

R with v(a0) #0  and ~ = 0  at all other points where/2 is non-zero. Let  2 be the image of v 

under the mapping ~: R-+G,  so tha t  ~ =$, since we have identified G with R under ~. Then 

~ ( a )  = ~(~)~(~) ~ ~ ( a ) / i ( a ) ,  

which is zero if a #a0 and non-zero for a=a0 .  So 2 ~ #  must  be a non-zero multiple of a 

character times Haar  measure on G. But  by  Lemma 5.2, ~ t u  is singular, so we have our 

contradiction. 

(1) We aSsume it contains no isolated points considered as a subset of R with the usual topology. 
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PROPOSITION 5.4. Let K be a countable closed subset o/ R.  Let/~ be a measure on G 

that is absolutely continuous in the direction o] q~ and whose Fourier trans/orm vanishes o ] /K .  

Then i~ is absolutely continuous. 

Proo/. By Proposition 5.1, /2s also vanishes off K. And by Proposition 5.3, (a: aER,  

/2s(a) ~=0} can have no isolated points. But  the only subset of K having no isolated points 

is the empty  set since K is countable and closed. Thus/~s = 0. 

The final result of this section is a refinement of Lemma 5.2, which is valid for measures 

tha t  are quasi-invariant under ~, and thus by  the Main Theorem, for all ~-analytic measures 

o n  G .  

PROPOSITION 5.5. Let/~ be a measure on G that is quasi-invariant under qJ. Let ~ be 

the image under qg: R-->G o/some measure ~ on R: Then 2-)e/~ < </u. 

Proo/. Let E be a Borel subset of G with I/~l (E) =0.  Then for any  Borel subset F of E, 

,~ /~(F)  = f a/~( - x + F)d)t(x) = f ~ :  /u( - rp(t) + F)dr(t) = O, 

since the last integrand is identically zero. This proves tha t  )l-x-# < <# .  

Theorem 5.4 leads easily to an analogue of Bochner's Theorem for the (countably) 

infinite dimensional torus T ~. Indeed, since we may  identify T :r with the (weak) direct 

sum of countably many  replicas of the integers, let the positive "oc tant"  in T ~^ consist 

of those sequences of integers n = (nl,n ~ .... ) with ni ~>0 (only finitely many  n~ are non-zero). 

Then if # in M ( T  ~r has its Fourier t ransform/2 vanishing off the octant, # is absolutely 

continuous with respect to Haar  measure; in fact I~ul is equivalent to Haar  measure if 

#=~0.  

For let al, a~ .... be an increasing sequence of independent positive real numbers tending 

to  ~ .  Then the isomorphism y~ of T ~^ into R defined by  

~ ( n ) = ~  niat, 

maps  the octant onto a closed countable subset of the non-negative reals, as is easily seen. 

Thus with ~ the dual map of R into T ~,/~ is clearly ~0-analytic, so tha t  by Theorems 3.1 

and  5.4, # is absolutely continuous. Moreover, since yJ is one-one, ~(R) is dense in T ~r and 

so Theorem 4.2 applies, and ]~u] cannot vanish on a set of positive Haar  measure if ~u ~: 0. 
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6. Reduction to the covering group 

In  this section we construct a covering group for G and show that  the Main Theorem 

is a consequence of an analogous result for the covering group. This result for the covering 

group is established in the following section, completing the proof of the Main Theorem. 

In  order to clarify matters we shall outline our procedure in this section. We find a 

closed subgroup K of G so that  the homomorphism ~: R • K--->G defined by 

~,(t,u) =q)(t)+u ( teR,  uEK), 

is a covering mapping for G; that  is, ? is onto, has as kernel a discrete subgroup, and is a 

local homeomorphism. (This construction was suggested to us by [11], p. 451.) A measure 

2 on R • K is called analytic if its Fourier transform 4, defined on the dual group R • 

satisfies ~(s,a) =0  for s <0.  And 2 is called quasi-invariant if the collection of all Borel sets 

on which 2 vanishes identically is invariant under translation by the subgroup R • {e} of 

R z K, where e is the identity element of K. We define a mapping #-->2, of measures on G 

into measures on R • K which satisfies 1 ~ 1 / #  is q>analytic, then 2, is analytic; 2 ~ I] 2, is 

quasi-invariant, then 1~ is quasi-invariant under ~. Thus the Main Theorem is reduced to the 

assertion that each analytic measure on R • K is quasi-invariant. And this result is Theorem 

7.1 of the following section. 

We first construct the subgroup K of G. Choose any element Z0 of G with V(7~0)>0. 

By changing the scale of V if necessary we may assume V(Z0)= 1. K is defined to be the 

annihilator in G of the subgroup of G generated by Z0; that  is, 

K={x:  x e a ,  x0(x)=1}. 

K is a closed subgroup of G and thus a compact abelian group. We shall denote by T 

the locally compact abelian group R • K and by 7: T-->G the mapping defined by 

?(t,u) =~(t )+u ( teR,  ueK) .  

7 is clearly a continuous homomorphism; its kernel will be denoted by D. Since Z0(~0(t)) = 

e i~<z~ = e *t for all t E R, ~0(t) is in K if and only if t is an integer multiple of 2~. Thus 

D={(27en, -q~(2r~n)): n = 0 ,  -t-1 .... }. 

In  particular D is a discrete subgroup of T. 

Throughout this section we shall denote by I the interval {t: - a < t  ~< +re} in R. The 

next lemma shows that  y: R • K-->G is a covering mapping and has I • K as fundamental 

domain. The result is essentially Theorem 2.3 of [11]. 
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LEMM~ 6.1. ~ maps I • K one-one onto G and is a homeomorphism on the interior o/ 

I •  

Proo]. Let  xEG. Suppose  t h a t  Zo(x)=e it, where  t is chosen in I .  Le t  u=x-qJ( t ) ,  so 

Zo(u) = e a e - ~ =  1, and  u E K.  Then x =~(t, u), p roving  the  onto  p a r t  of the  assert ion.  F o r  the  

one-one par t ,  suppose t h a t  ( t l ,ul)  and  (Q,u2) in I • K have  the  same image  under  T. Then  

~(tl) §  I =~(t2) §  and  as a consequence q~(t 2 - t l )  =u 2 - u  I EK, so t 2 - t 1 mus t  be an  in tegra l  

mul t ip le  of 2~. Bu t  t 1 and  t~ are bo th  in I ,  so t I =t2, which implies  u I =u2. 

To see ~ is a homeomorph i sm on the  in ter ior  of I •  suppose  ~(t~)+u~--->q)(t)§ 

- z < t ,  t~<~.  Then a n y  cluster  po in t  of {qJ(t~-t)}=(q~(t~)-qJ(t)} is a cluster  po in t  of 

( u -u~} ,  hence in K.  So if t ' is a cluster  po in t  of (t~} then  qJ(t ' - t )EK,  whence t ' - t  is an  

in tegra l  mul t ip le  of 2,~; since -~<~ t '<~  and  ~ < t < 7 ~ ,  we mus t  have  t ' - t = O .  Thus  

t~--->t, so t h a t  ~(t~)-->~(t), whence u~--~u and  (t~,u~)--->(t, u). 

W e  shall  denote  b y  fi: G--~I • K the  mapp ing  inverse  to  the  one-one correspondence 

y: I • K--~G. H a a r  measure  on G, D and  T will be deno ted  b y  too, m D and  mT respect ive ly .  

We assume ma normal ized  to  have  to t a l  mass  1, and  m D normal ized  to  give each po in t  of D 

mass  1. L e m m a  6.1 shows t h a t  G is na tu r a l l y  i somorphic  to  the  quo t ien t  group T/D.  

Thus  b y  p. 131 of [13], i t  is possible to  normal ize  mT SO that(1)  

f T/dmT = f ~ ( (mD-~ /) 0 fl)dmG (6.1) 

for each cont inuous  / on T having  compac t  suppor t .  

W e  proceed nex t  to  the  cons t ruc t ion  of the  mapp ing  #-->2/~ f rom measures  on G to  

measures  on T. W e  denote  b y  C(G) and  Co(T ) the  Banach  spaces of cont inuous  funct ions  

on G and  cont inuous  funct ions  on T zero a t  inf ini ty .  Their  duals  are  the  spaces M(G) and  

M ( T )  of measures  on G and  T. W e  denote  b y  Cc(T) the  space of cont inuous  funct ions  on 

T having  compac t  suppor t .  

To define the  mapp ing  #-->~, we shall  make  use of a f ixed func t ion  g in Co(T ). I n  

order  to  cons t ruc t  the  mapp in g  #-->~, we need only  assume t h a t  g satisfies 

g(ul,t ) =g(ue, t) (u~, u2eK,  tER) ,  

and  g(u,t) = O(t -2) as t-->_ ~ .  

L a t e r  in order  to  es tabl ish  proper t ies  of #--~2~, we shall  p u t  fu r the r  condi t ions  on g. 

(1) mD~l(u) = ~a~D ](u +d). 
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If  # is absolutely continuous, so/~ =/m a for some ma integrable function ] on G, we 

want the associated measure 2, to be (/oy)gmr. So one way of proceeding would be by 

extending the mapping /ma--->(/oT)gmr by continuity to all of M(G). Instead we use a 

somewhat more indirect method which is more convenient. 

We define a mapping L: Co(T)-->C(G) as follows. For each / in Co(T), L/is the function 

{mD-~(/g))o fl on G. I t  is simple to check that, because of the conditions assumed on g, L 

is a continuous linear transformation of C0(T) into C(G). The adjoint mapping L*: M(G)--> 
M(T), defined by 

fr/d(L*#) = f~(L/)d/~ (/ECo(T)), 

is continuous in both the norm and weak* topologies of M(G) and M(T). 
:For each # in M(G) we define ~t~ to be L*~. 
We first show, for a large class of absolutly continuous ~, that  ~t~ is the measure we 

wanted. 

LE~MA 6.2. Let h be a/unction in C(G). Then 

L* (hma) = (h o y)gmr. 

Proo/. I t  suffices to show, that  for each function b in Co(T), 

f rbd(L*(hma)) = f (hoT)bgdmr. (6.2) 

By  the definition of L and L* 

f rbd(L*(hma)) = f a (Lb)hdma 

(6.3) 

= f ((hov)(m~(bg))ofldm~= f (m~((ho~)bg))ofldm~. 

:Formulas (6.1) is valid f o r / =  (hoy)bg, so 

f~(m,~((ho~,)bg))ofldma=fT (ho~,)bgd~r. (6.4) 

(6.3) together with (6.4) implies (6.2). 

We define a measure 2 in T to be quasi-invariant if the collection of Borel sets on 

which 2 vanishes identically is invariant under translation by elements of R • (e). 
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A further condition on g is necessary in order to relate quasi-invarianee on G and T; 

we shall assume that  the function g never vanishes on T. 

LEMMA 6.3. Let # be a measure on G, U a Baire subset o/ G, V =•(U) and d an element o/ 

D. Then 

fd+ v (1/g)d2~ =/~(U). (6.5) 

Proo/. By the definition of 2~, for any / in C0(T), 

f T Ida, = f g (mD ~ (lg) ) o fld/~. (6.6) 

Thus for any b in Cc(T), taking / =  b/g in (6.6), we get 

f r (b /g)d2, = f v (mD-)eb) o rid#. (6.7) 

:For any bounded open interval J of R, denote by Bj the class of all bounded Baire func- 

tions b on T, vanishing off J • K, that  satisfy (6.7). Bj contains all b in Co(T) with support 

in J • K, and is clearly closed under monotone convergence of bounded sequences. Thus 

B1 contains all bounded Baire functions on T vanishing off J • K. This shows in particular 

tha t  (6.7) holds for b the characteristic function of d +  V. But  in this case, mD~b is the 

characteristic function of ~-I(U), so (mD-)eb)ofl is the characteristic function of U and the 

equality (6.7) becomes (6.5). 

COROLLARY 6.4. Let/~ be a measure on G, E a Baire subset o/ G. Then/~ vanishes 

identically on E i /and only i] ~ vanishes identically on ~-I( E). 

Proo/. Suppose # does not vanish identically on E. Then there is a Baire subset U of 

E with #(U) :~0. By Lemma 6.3, 

~(1/g)d~. =~(U) 40, 
V 

where V=fl(U) is a subset of T-I(E), so 2z cannot vanish identically on ~-I(E). For the 

converse, suppose that  ~, does not vanish identically on ~-I(E). Let  

F =fl(E) =~-I(E)  N (I  • K). 

Then, since y - I ( E ) =  ( J ( d + F ) ,  there is some d o is D so that  ~t~, does not vanish 
deD 
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identically on do+F. Let V be a Baire subset of F such that Sd~ �9 0, and let 

U =7(V). Then, by Lemma 6.3, 

#(U) = fd~ v (1/g)d~, ~= O, 

so ~u cannot vanish identically on E. 

PROPOSITION 6.5. Let/~ be a measure on G. I / , ~  is quasi-invariant, then/~ is quasi- 

invariant under cp. 

Proo/. Let E be a Baire subset of G on which # vanishes identically, t an element of R. 

By Corollary 6.4, A, vanishes identically on 7-1(E). 2, is quasi-invariant, so ~, vanishes 

identically on (t,e)+7-1(E), which is 7-1(~(t)+ E)). Again using Corollary 6.4, # vanishes 

identically on q~(t) § E. This proves that  the collection of Baire subsets of G on which # 

vanishes identically is invariant under translation by elements of ~(R). As a consequence, 

since # is regular, the collection of Borel subsets of G on which/~ vanishes identically is 

invariant under the translation by elements of ~(R); that  is, # is quasi-invariant under ~. 

The same sort of proof establishes the converse of Proposition 6.5. However we shall 

not need this result. 

The dual group T of T = R • K can be identified with R x/~; we associate with the 

element (s,a) of R • the character X of R • K defined by 

z(t,u) =e~sta(u) (tER, uEK). 

A function or measure on R • K will be called analytic if its Fourier transform vanishes 

on the "negative half" {(s,a): s<0}  of R • 

We require one final condition on the function g in order to relate analyticity on G 

and T; we assume the function g to be analytic. 

We first show that  functions satisfying all of the conditions that  we have imposed on g 

actually exist. Let h be any continuous function on R, nowhere vanishing, satisfying 

Ih(t)] <1/(1 § all t, and ~(s)=0 if s<0 .  Then we can define g on R •  by g(t,u)=h(t). 

I t  is simple to check that  this function satisfies the conditions. 

We now proceed to the proof that  T-analyticity of fl implies analyticity of ~,. We 

establish first two lemmas. We shall denote by Ma(G) and Ma(T) the subsets of M(G) and 

M(T) consisting of measures that  are ~0-analytic and analytic respectively. 

LEMMA 6.6. M~(T) is a weak* closed linear subspace o /M(T) .  

Proo/. Let h be a Lebesgue integrable continuous function vanishing at infinity on 

R satisfying h(s) = 0 if s > 0 and ~(s) :~ 0 if s < 0. Define the function ] on R • K by/(t,  u) = 
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h(t). Then /E C0(T), ] is integrable with respect to roT, and its Fourier transform [, defined 

on R • satisfies [(s,a)=O if s > 0  and [(s,o)~=0 if s < 0 .  Let  2 be a measure in M(T). 
/ \  

Then 2 % / = ~ [  will be the zero function on R •  precisely when ~ vanishes on the subset 

{(s,o): s<0}  of R x K; tha t  is, when 2 is analytic. This shows tha t  Ma(T) consists of those 

~t in M(T) satisfying ~ - ] = 0 .  But  2-x-/=0 if and only if 2 is orthogonal to all translates 

o f / ,  and / is in Co(T), which proves tha t  Ma(T) is weak* closed. I t  is clear tha t  Ma(T ) is a 

linear subspace of M(T), so the proof is complete. 

LEMMA 6.7. Let Z in G satis]y F(Z)>~0. Then L*(zmG) is an analytic measure on T. 

Proo/. By Lemma 6.2, L* (zma)= (Zo ~)gmT. So it suffices to show tha t  the function 

(Zo~)g is analytic. Denote by Z1 the restriction of the character Z of G to the subgroup K,  

so Z1 e/~. Then for (s, o) in R • K, 

(;goT)g(s, o) = re  -~t o(u)[(ZoT)g](t, u)dmr(t, u) 

I., e-~st ~ei~(z ) t  Z(u)g(t, u)dmT(t, U) 

= d(s -- ~(Z), O21). (6.8) 

Since we have assumed ~(Z)~>0, if s is negative, (6.8) together with the analyticity of g 

shows tha t  (Zo~,)g(s,o)=0. This proves (Zo~)g analytic. 

P ~ o P o s I T I O ~  6.8. Let # be a measure on G. I / #  is q>analytic, then ~ is analytic. 

Proo/. We must  prove that  L* maps M~(G) into Ma(T ). Let (0~: ~ E J )  be an approxi- 

mate identity on G consisting of trigonometric polynomials;(1) that  is, a net of trigonometric 

polynomials satisfying 0~- / - -> / in  C(G) for each / in C(G). Choose # in M~(G). Then each 

#~-0~ is a linear combination of characters Z with yJ(Z)>~0, so by  Lemma 6.7, each 

L*((/~-~O~)ma) is in Ma(T ). Since (0~: ~ E J )  is an approximate identity, (#~O~)ma--> # 

weak*. L* is continuous in the weak* topologies, so L*# is the weak* limit of (L* ((#-)e 0~) me): 

.~EJ), and thus by  Lemma 6.6, is in M~(T). 

7. Completion of proof of Main Theorem 

As a consequence of Proposition 6.5 and 6.8, the Main Theorem will be established 

once we have proved the following. 

(1) A trigonometric polynomial is a linear combination of characters. 
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THEOREM 7.1. Let ~ be a measure on T. I / #  is analytic, then ~ is quasi-invariant. 

This section is devoted to the proof of Theorem 7.1. The method is roughly as follows. 

By Lemma 6.6, the space Ma(T ) of analytic measures in T is a weak* closed linear sub- 

space of the space M(T)  of all measures on T. Thus, by the Alaoglu theorem, its unit ball 

B={#:I~eMa(T) ,  [[#[[ <1} 

is compact in the weak* topology. We denote by B e the set of extreme points of B and 

by / ]e  the weak* closure of Be. I t  is a consequence (see Proposition 7, p. 87 of [3]) of the 

Krein-Milman theorem that  each measure tu in B will have a representation of the form (1) 

#=fs_~dv(2) (7.1) 

for some non-negative measure v of total mass 1. The measures in/]e  are shown to be con- 

centrated on lines R • {u} in R • K; and the one-dimensional F. and M. Riesz theorems 

applied to these measures demonstrates that  they are quasi-invariant. The quasi-invarianee 

of each measure in Ma(T) is then obtained as a consequence of the quasi-invariance of the 

measures in Be and the existence of the representation (7.1). 

Our first aim is the establishment of the quasi-invariance of the measures in Be- 

This will be achieved by a sequence of lemmas. 

LEMMA 7.2. Let v be a measure on R whose Fourier trans/orm vanishes on (s: s <0}. Then 

{D: D Borel, JvJ (D) = 0} (7.2) 

is invariant under translation. 

Proo/. We can assume v is not the zero measure. By the one-dimensional F. and M. 

Riesz theorems for R, ~ must be absolutely continuous and not vanish identically on any 

set of positive Lebesgue measure. Thus (7.2) is simply the collection of Borel subsets of R 

having Lebesgue measure zero. 

LEMMA 7.3. Let/z be a measure in Ma(T ) with carrier contained in R • {u). Then i~ 

is quasi-invariant. 

Proo/. Define the measure v on R by v(D) =ju(D • (u)) for each Borel subset D of R. 

Then, for any s in R, 

(1) The meaning of this integral is discussed after Proposition 7.7. 



Q U A S I - I N V A R I A N C E  AND A N A L Y T I C I T Y  OF MEASURES ON COMPACT GROUPS 199 

;,(s) = e -~t dr(t) = e -~t d/~(t, v) 
- -  •  

= fR  • K e-~t gl(v)d~(t' v) = p(s, Xl), (7.3), 

where Z1 is the character of K identically equal to 1. # is analytic, and thus/2(s,gl) = 0  if 

s < 0 .  So, by  (7.3), ~(s)=0 if s < 0 ,  and the conclusion of Lemma 7.2 applies to v. Now let  

E be any Borel subset of T with ]# ] (E) =0,  t o an element of R. We want to show I[al((to, e) § 

E)=O. Let n = { t :  ( t ,u)EE},  so I v I ( D ) = [ # I ( E ) = O .  The collection of null sets of v is 

translation invariant; thus [#] ((to, e ) + E) = Iv] (to+D) =0.  

LEMMA 7.4. Let # be a measure in Ma(T  ). 11 h is a bounded continuous lunction on T 

satis/ying 

h(tl ,u ) = h(t~,u) (tl, t 2 eR  , u E K )  (7.4), 

then h# is also in Ma( T ). 

Proo 1. Let 74 be the collection of all continuous functions h on T satisfying (7.4) which 

are such tha t  h# is in Ma(T  ). I f  % is a character of K and h on T is defined by h(t,u) =Z(u),  

then h is in ~ .  For, if s < 0 ,  a E R ,  then 

A f.  h#(s, a )=  • a~u)h(t, u)d/~(t, u) 

= fR  • K e-*~t ~(u)y.(u)d/~(t, u) = fi(s, a]~) = 0 

by the analyticity of #. 74 is clearly a linear space of functions and closed under uniform 

convergence. Thus, since each continuous function on K can be approximated uniformly 

by linear combinations of characters, ~4 consists of all continuous functions h on T satis- 

fying (7.4). 

LEMMA 7.5. Let # be a measure in Be. Then there is some u in K / o r  which i ~ has carrier 

contained in R • {u}. 

Prool. Since # is an extreme point of B, II~ull =1.  Assume tha t  there are points (t0,u0). 

and (tl, ul) in the carrier of # with u 0 # u  1. We must show tha t  this contradicts the assumption 

tha t  ~u is in B e. Let  ] be a continuous function on K, 0~<1~<1, 1=0 near % and 1=1 near  

u 1. Define the function h on T b y  h(t ,u)=l(u) .  Then h satisfies (7.4), so b y  Lemma 7.4, the  

measures h# and ( 1 - h ) #  are in Ma(T).  These measures are non-zero and not multiples of  
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each other. For u 0 is in the carrier of (1 -h)/~ and not the carrier of h/~; and u 1 is in the carrier 

of h/~ and not the carrier of (1 -h)~u. We have 

and 

( ' )  ( '  ~=llh~ll ~ l h ~  +ll(1-h)~ll II(1-h)~ll 

II h~ II + I1(1- h)~ll = f Ihldl~l + f~ I1-  hlal~l 

= f, ~lt ' l  + f, (1-h)~lt, I =1~1 (T)= 1, 

which shows that/~ could not be an extreme point of B. 

LEM~A 7.6. Let t ~ be a measure in  Be. Then there is some u in  K so that t ~ has carrier 

contained in  R • {u}. 

Proo/. Let {/t~: a ~ J }  be a net in B e converging weak* to #. By Lemma 7.5, there is 

for each a ~ J  a point u~ in K so that  #~ has carrier contained in R • {u~}. By the compact- 

ness of K, the net {u~: aEJ}  has at least one cluster point. Let u be such a cluster point. 

We will prove the carrier of # is contained in R • {u}. Let / be any continuous function on 

T having compact support contained in the complement of R • {u}. Then the net 

of real numbers has a cofinal subnet consisting of zeros. But 

so ffT/dt~ =0. This proves the carrier of ~u contained in R • {u}. 

We can now assert the quasi-invariance of the measures in Be. 

PRO]~OSITION 7.7. Let t ~ be a measure in  Be. Then ke is quasi-invariant. 

Proo/. Immediate from Lemmas 7.3 and 7.6. 

We now proceed to the second part of the proof of Theorem 7.1, which reduces the 

question of the quasi-invariance of an arbitrary measure in Ma(T) to that of measures in 

/~e, which has been settled. 

Let # be an arbitrary measure in Ma(T)  with I1#11 ~1, so/~ is in B. To complete the 

proof of Theorem 7.1 we must show # quasi-invariant. By Lemma 6.6 and the Alaoglu 
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theorem, B is compact in the w e a k +  topology of M ( T ) .  I t  is a consequence (see Proposi. 

t ion 7, p. 87 of [3]) of the Krein-Mflman theorem tha t  there will be a non-negative measure 

of total  mass 1 on the compact space/]e so tha t  

/~=~_Adv(A). (7.5) 

The integral in (7.5) is to be interpreted in the following sense;(1) for each / in C0(T), 

/~(1) = f-B,';~(l)d~'(;O" 

One further lemma is needed before we are able to complete the proof of Theorem 7.1. 

This lemma states roughly that ,  in the situation we are considering, the formula 

is meaningful and valid. 

LEMMA 7.8. Let E be a Baire subset o/ T.  Then 

is a Borel /unction on B and 

X-+IXI(E) 

I/~1(E) : /~:  I )= [ (E)dv():). 

Let us assume the lemma true and complete the proof of Theorem 7.1; the lemma will 

be proved last. 

Since # is regular, to establish the quasi-invariance of # it suffices to show tha t  the 

collection of Baire subsets E of T with I/t[ (E) = 0  is invariant  under translation by elements 

of R • {e}. So suppose E is Baire, ] / t l (E )=0  and t e R .  We must show [ t t l ( ( t , e )+E)=O.  

By Lemma 7.8, since [# [ (E)=0 ,  

{A: 26/~e, [41 (E) g=0} (7.6) 

is Borel and has v measure 0. By  Proposition 7.7, the set 

{~: ~Be,  I~l((t,e)+E) 4=0} 

(1) We now use the notation A(/) = 5Ida, It(l) = 5/dit. 

14 - 632918 Acta mathematica 109. Imprim@ le 14 juin 1963. 
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is identical with (7.6), and thus in particular has v measure 0. As a consequence, again using 

Lemma 7.8, 

I/~] ((t,e) + E) =fr 12i ((t,e) + E)dv(2) 0. 

So  except for the proof of Lemma 7.8, we have completed the proof of Theorem 7.1, 

and thus of the Main Theorem. We now prove this lemma. 

We continue to use H" il to denote the total variation norm for measures in M(T) 
and will use II" I1~ for the supremum norm for Co(T ). Let / be any bounded continuous 

function on T with /~> 0. Then, for any measure ~ on T, 

I~ ' (/)= fr/dl,~, =-II/~ II =sup{  fT/hd~l:hEC~ IlhH..~ 1 }. (7.7) 

For each h in Co(T ) with [ihll~<l define the function L h on B by Lh(~)= i~(th)i. Each 

L h is continuous on B. And (7.7) shows that  the function 

is the pointwise supremum of the family {Lh} of continuous functions, and is thus a Borel 

function on B. In particular, it is possible to form the integral 

f~. ]21 (/)d~(2): 

We have, using the representation (7.5) and the validity of (7.7) for ~ =/~, 

i21(l)d,(2)  f 121(l)d,(2) 

this proves that  I~l(l) ~< f i ,  121 (l)d~(2) (7.8) 

for all bounded continuous / on T with /~> 0. Suppose that  the inequality (7.8) were strict 

for some/0. We may assume 0 ~</0 ~< 1. Then 

l=ll#ll= fTldl/~l= fr/odl/~[+ fT(1--/o)d]~[. (7.9) 
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We have assumed 

and 

fTlo dl f f l  < I (7.10) 

f (1-/o)dl#l <~ I-]~1( 1-/0)dr() t)  (7.11) 
T a] Be 

because of (7.8) applied to the non-negative function 1 - /0 .  (7.9), (7.10) and (7,11) lead to 

the contradiction 

1 

= I 1. 

This shows tha t  we have the equality 

([) = f ), I ~t ] ([)dv(,t) (7.12) I #] 

for all non-negative bounded continuous ] on T, and thus for all bounded continuous / on T. 

Let  us denote by  B the collection of all bounded Balre functions / on T for which the 

mapping 

is Borel and the equality (7.12) holds. We have shown tha t  B contains all bounded con- 

tinuous functions on T; and because of the bounded convergence theorem, B is closed under 

pointwise convergence of bounded sequences. Thus B consists of all bounded Baire functions 

on T. Since the characteristic function of a Baire subset of T is a Baire function, the lemma 

is established. 

8. Some further questions 

There are several questions connected with the above results which deserve mention. 

First, most of our deductions from the Main Theorem are valid in the context of one- 

parameter  groups of homeomorphisms of compact topological spaces. In  particular, the 

results of sections 2 and 5 can be established in this generality. I t  is conceivable tha t  a 

version of the Main Theorem itself is also valid in the context. Here is a possible generali- 

zation. Let  X be a compact space and {Tt} a one-parameter group of homeomorphisms of 

X. Call a measure # on X {T~}-analytic if the vector valued integral 

f §162 h(t)Ttfdt 
- o o  
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is zero for all h in  L I (R )  whose Four i e r  t rans forms  van i sh  for  t~<0. ( In  the  case t h a t  X = G  

and  Tt  is t r ans l a t ion  b y  V(t), th is  agrees wi th  our  previous  def ini t ion of ana ly t ic i ty . )  Then  

a genera l iza t ion  of our  Main Theorem would  be the  asser t ion t h a t  a (T t} -ana ly t i c  measure  

# is quas i - invar ian t  under  (T~}; t h a t  is, the  collection of Ijul-null  sets is (T~} invar ian t .  

Indeed ,  wi th  th is  def in i t ion  of a n a l y t i c i t y  (and Tt  r igh t  t r ans l a t ion  b y  V(t)), the  Main  

Theorem cont inues to  hold  even when G is non-commutat ive . (1)  

Ano the r  possible ex tens ion  of some of our  resul ts  is to  the  con tex t  of I ) i r ichie t  a lgebras  

(for the  r e l evan t  definit ions,  see [12]). The  collection of v - ana ly t i c  cont inuous  funct ions  on 

G is a Dir ichle t  a lgebra  on G. Theorem 3.1 says  precisely t h a t  each Borel  subse t  of G t h a t  

is of measure  zero for all  of t he  representing m e ~ u r e s  for  the  a lgebra  mus t  be of measure  

zero for all of the  annihi la t ing  measures for  the  algebra.  I t  is conceivable  t h a t  a correspond-  

ing resul t  holds  for a wider  class of Dir ichle t  algebras.  

9. Locally compact abelian groups 

W e  have  neglec ted  the  (seemingly) more general  s i tua t ion  in which G is a local ly  

compac t  abe l ian  group s imply  because the  main  resul ts  in th is  case follow easi ly  f rom 

the  compac t  case. Here  we shall  only  note  how the  Main Theorem and  the  analogues  of 

A a n d  B (Theorems 3.1 and  4.1) are ob ta ined .  

Suppose  t h a t  V: R-->G is a cont inuous  homomorph i sm  in to  the  local ly  compac t  

abe l ian  group G, and  # is a v - ana ly t i c  measure  on G (where " v - a n a l y t i c "  is def ined as ear l ier  

in t e rms  of  the  dua l  of V). Le t  T: G-->G ~ be the  (1 - 1 )  cont inuous  homomorph i sm  of G into  

i ts  Bohr  compact i f ica t ion  G ~. The induced  m a p  of measures  on G into  measures  on G a, 

which we m a y  as well aga in  call  T, t akes  # in to  a measure  T/~ which  is ~v-ana ly t ic  on G ~, 

as is easi ly seen. Thus  v~u is quas i -va r ian t  under  TV; since v maps  Borel  subsets  of G onto 

Borel  subsets  of G ~, while ~v(TE) =v(E)  for any  measure  ~ on G and  Borel  E c  G, i t  is t r iv ia l  

to  conclude t h a t / ~  is quas i - invar ian t  under  V, so t h a t  the  Main Theorem holds. 

S imi la r ly  Theorem 3.1 (which migh t  be ob ta ined  b y  showing i ts  de r iva t i on  f rom the  

Main Theorem involves no essential  use of compactness)  follows once we note  t h a t  a Borel  

(1) Sketch of proof. Let H =~(R)-,  a compact abelian group, and let B be the (Tt }-analytic meas- 
ures of norm ~ 1, with Be, Be defined as before in terms of B. For ] EC(G) constant on (left) eosets mod H, 
Tt]/~ = ]Tt# , so 5 h(t) Tt/d~(t ) = ] ~ h(t) Ttd#(t), and ]/~ is { T t }-analytic if ~ is. Using such ] one can now 
argue as in 7.5 that/~ C B e has carrier contained in a coset of H; and as in 7.6 the same applies to ~u E B~. 
But (Tt}-analyticity for a /~ carried by H coincides with r for the map ~ : R ~ H .  Thus 
/~ E Be has a left translate which is ~-analytic, hence quasi-invariant, and ~u is quasi-invaxiant. The 
final argument of w 7 now completes the proof. 
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set E c G  null in the direction of ~ has TE null in the direction of ~ ,  whence 

O=I~#I(TE)=~I#I(TE)=I#I(E ). And Theorem 4.1 follows since, if E is thick in the 

direction of ~ and(1) I/~[ (E+q~(R))>0, we have the same statements for vE and W, so 
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(1) Since ~E + vq)(R) is a Borel set in G a, E + q~(R) = "t'-l(vE ~- T~(R)) is locally Borel, hence a Borel 
subset of G since i~ is contained in a T-compact set. 


